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Not unique: SG, S € GL(k, q); Systematic form: (I |M).

Parity-check Matrix

He an—k)xn defines the code as: xe@ <= HxT = 0 (syndrome).

Not unique: SH, S € GL(n — k, q); Systematic form: (MT|I,_y).

w-error correcting: d algorithm that corrects up to w errors.
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Example: Goppa Codes

1 Background

Select g(X) € Fgn[X] and non-zero a1, . .., ay € Fgn with g(ay) # 0.
Parity-check given by H = {H;j} = {a}_l/g(aj)}. Codewords over Fy.
Let noisy codeword bey = x + e, x € €, wt(e) < w.

For Goppa codes, w = r/2 (or w = r if binary), where r = deg(g).
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Example: Goppa Codes

1 Background

Select g(X) € Fgn[X] and non-zero ay, . .., o € Fgn with g(oy) # 0.
Parity-check given by H = {H;j} = {a}_l/g(aj)}. Codewords over Fy.
Let noisy codeword bey = x + e, x € €, wt(e) < w.
For Goppa codes, w = r/2 (or w = r if binary), where r = deg(g).
To decode:
1. Compute syndrome s = HyT = (so, ..., s,_1).
2. Obtain error locator poly o (X) and error evaluator poly w(X) by solving key equation
% = s(X) mod X".

3. Find roots; error positions are reciprocals (values from w(X)).
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Given: G € FK*",y € Fi andw € N.
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Easy to see this is equivalent to the following.

Syndrome Decoding Problem (SDP)

Given: H € ]Fc(ln_k)xn, v E F,S"_k) andw € N.
Goal: find a word e € F} with wt(e) < w such that He = y.

NP-CompIete (Berlekamp, McEliece and Van Tilborg, 1978; Barg, 1994).
Unique solution when w is below a certain threshold.

Gilbert-Varshamov (GV) Bound

For a given finite field I, and integers n, k, the Gilbert-Varshamov (GV) distance is the
largest integer dg such that

B(0,do — 1)| < q" .

Very well-studied, solid security understanding (I1SD).
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The family of primitives based on hard problems from coding theory.

If trapdoor is required (e.g. encryption), need one more ingredient.

Assumption (Code Indistinguishability)

Let M be a matrix defining a code. Then M is indistinguishable from a randomly generated
matrix of the same size.

Choose a code family with efficient decoding algorithm associated to description A and
hide the structure.

Example (McEliece/Niederreiter): use change of basis S and permutation P to obtain
equivalent code.

Hardness of assumption depends on chosen code family.
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For CBC, traditional SDP-based trapdoor is decoding: CFS scheme.

(Courtois, Finiasz, Sendrier, 2001)
...except, domain is not “full”.

Complex sampling leads to slow signing, large keys and potential weaknesses.
(Bleichenbacher, 2009; Faugére Gauthier-Umana, Otmani, Perret, Tillich, 2013; Landais, Sendrier, 2012; Bernstein, Chou,

Schwabe, 2013)

Recent renditions show great improvements, but still exhibit similar features.
(Debris-Alazard, Sendrier, Tillich, 2018)
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2 Code-based Signatures

ZKIDs can be turned into signature schemes using Fiat-Shamir transformation.

This method is very promising and usually leads to efficient schemes.
(Schnorr, 1989;...)

Strong security guarantees. No trapdoor is required!
For CBC, can avoid decoding: rely directly on SDP.

Use random codes and exploit hardness of finding low-weight words.
(Stern, 1993;...)

High soundness error requires several repetitions to achieve security.

Due to protocol structure and nature of objects, this results in rather large signatures (e.g.
> 20 kB for 128 sec. bits).
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3 Group Actions

Group Action
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Cryptographic Group Actions

3 Group Actions

Group Action

Let X be a set and (G, -) be a group. A group action is a mapping

x: GxX — X
(g,x) = gxx

such that, for allx € X and g1,92 € G, g2 x (g1 xx) = (g2 - g1) * .

The word cryptographic means that it has some properties of interest in cryptography,
e.g.:

e Efficient evaluation, sampling and membership testing algorithms.

e A hard vectorization problem.

Group Action Vectorization Problem

Given the pair x1,x9 € X, find, if any, g € G such that g x x; = x».
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Let X be a group of prime order p and G = Z;‘;.
Then the vectorization problem is exactly DLP in X.

A huge amount of cryptography has been built using this simple, but very special group
action!

Choosing the set X’ with this extra structure comes with several advantages and
disadvantages.

e Useful properties (e.g. commutativity) and design options.

e Not post-quantum!

Recently, isogeny-based group actions have captivated the cryptographic scene, showing
a unique performance profile.

What about group actions from coding theory?
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e Monomials: permutations + scaling factors: 1 = (v; ), withv € (Fg)"

H( (ala as,... 7an)) — (Vl : aw(l)avz : a7r(2)7 sy Vot aw(n))
Monomial matrix: permutation x diagonal.

e Monomials + field automorphism.

Two codes are equivalent if they are connected by an isometry.

We talk about permutation, linear and semilinear equivalence, respectively.
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Co ~ € < 3(§,0) € GLk(q) x Mp(q) st. G1 = SGy0,
where P is a permutation matrix, and Q a monomial matrix.

Can be seen as a group action of G = GLi(q) x My(q) on full-rank matrices in IF’;X”.

Code-based Group Action

*: gx X — X
((8,Q),G0) — 8GoQ

Can imagine G acting on codes if we choose canonical representation, i.e. systematic form.

In practice, we consider simply RREF(GoQ).
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For our purpose, we are interested in the computational version: this is the vectorization
problem for our action.

Permutation Equivalence Problem (PEP)

Given €y, € C FZ, find a permutation 7 such that 7(&) = €;. Equivalently, given
generators Gg, G, € IE‘ZX", find P € S, such that

Gy = RREF(GoP).

Linear Equivalence Problem (LEP)

Given &g, €; C [y, find a monomial y such that 11(€p) = ;.
Equivalently, given generators Ggp, G; € IE"(;X", find Q € My(q) such that

G1 = RREF(GoQ).

For practical applications, we are not interested in the semilinear version of the problem.
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The situation for isometries recalls that of other group actions, such as for DLP (although
without commutativity).

This means several existing constructions could be adapted to be based on Code
Equivalence.

Possible to construct a ZK protocol based exclusively on the hardness of the code
equivalence problem.
(Biasse, Micheli, P., Santini, 2020)

This can be then transformed into a full-fledged signature scheme via Fiat-Shamir.

Protocol can be tweaked to increase efficiency (e.g. multiple public keys, fixed-weight
challenges).

(Barenghi, Biasse, P., Santini, 2021)

Other applications (e.g. ring signatures) will not be discussed in this talk.

(Barenghi, Biasse, Ngo, P., Santini, 2022)
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e SK: monomial matrix Q.
e PK: matrix G; = RREF(GoQ).

Commit

e Choose random monomial matrix Q € M,(q).
e Compute G = RREF(GoQ)
e Commit to cmt = Hash(G).

Challenge
e Choose random bit ch € {0, 1}.

Response

e If ch = O respond with rsp = Q. .
e If ch = 1 respond with rsp = Q~1Q.
Verify

e If ch = 0 verify that Hash(RREF(Gy - rsp)) = cmt.
e If ch = 1 verify that Hash(RREF(G; - rsp)) = cmt.
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zero-knowledge.

Before applying Fiat-Shamir, need to reduce soundness error — t = X parallel repetitions.
The protocol can be greatly improved with the following modifications:
e Use non-binary challenges.

+ Lower soundness error: 1/2 — 1/2°.

— Rapid increase in public key size.

e Use a fixed-weight challenge string.
+ Exploits imbalance in cost of response: seed vs monomial.

— Larger number of iterations.

Both modifications do not affect security, only require small tweaks in proofs.
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Choose random seed seedg, € {0, 1}
Generate Q1, ..., Qs_1 from seedgy.
fori:=1tos—1
Set SK(i) = Q; and PK(i) = RREF(GoQ;).
Output SK = (SKo, ...,SKs—1) and PK = (PKy, ..., PK;_1).

ok WD

Private key can be easily compressed to a single seed.
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7. Expand d to string (o, . . ., X—1) With w non-zero elements from [0; s — 1].
8. fori:=0tot—1

9.  Setrsp; to either seed; (if x; = 0) or Qx_il@,- (otherwise).

. Output o = (rspo, ..., rsp;—1,d).

o

The expand function (7.) is obtained via application of a PRNG, sampling uniformly at
random from the target set.
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Input: system params, hash function Hash, public key PK, message msg, signature sigma.

1. Expand d to string (o, . . . , Xr—1) with w non-zero elements from [0; s — 1].
2. fori:=1tot—1

3. Recover Q; from rsp;.

4. Compute G; = RREF(Gy,0;).

5. Setd = Hash(Go|| .. .||G;—1||msg).

6. Output true if d = d’, or false otherwise.

The recover function (3.) compactly describes: rsp is either already a monomial, or a
matrix can be obtained expanding a seed.
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(Petrank, Roth, 1997)

PEP is also deeply connected with Graph Isomorphism (Gl) (reductions in both ways!),
solvable in quasi-polynomial time.

At the same time, PEP is “not necessarily easy”.
(Petrank, Roth, 1997)

PEP is a special case of LEP; indeed, with time O(q), we have

Reduces to

PEP <——— LEP

As a consequence, most solvers for PEP can be easily adapted to solve LEP as well.
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H(C)=¢cnet

If €1 = 7 (o), then H(€1) = m(H(¢o)); running in O(q").

Random codes tend to have small hulls, which makes attack practical.

* Use (weakly) self-dual codes to avoid attack.
* To solve LEP, need to target closure of the code; these are always self-dual for ¢ > 5.

e Algebraic approaches of different nature, for example:

* Set up a system of equations, solve via Grébner basis. (Saeed-Taha, 2017)
* Exploit reduction to graph isomorphism. (Bardet et al., 2020)

These are only efficient (or applicable in the first place) if hull is trivial.
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Action of 7 can be guessed from the set of all codewords with small weight w. (Leon, 1982)
Moderate w guarantees no spurious solution and sufficiently low number of codewords.
In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.

The attack then consists of:
e Finding codewords (use ISD).

e Matching to extract permutation.

Cost is ~ 2 log(Nw)Cisa(n, k, q, w) + linear algebra.

Permutations preserve multiset of entries = no need to find all words of weight w.
(Beullens, 2020)

Probabilistic algorithm, advantageous only if q is large.

Can obtain small improvement by carefully matching 2-dimensional subcodes instead.

(Barenghi, Biasse, P., Santini, 2023)
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An iterative procedure aimed at finding low-weight words. (prange, 1962)
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Several improvements over the years:

Carefully allocating positions (e.g. allow errors in IS).
Looking for collisions.

Using representations (e.g. 1 + 1 = 0).

Considering nearest neighbors.

Running time is 2”W(1+°(1)) , Wwhere  depends on rate R and w/n. (canto Torres, Sendrier, 2016)
When w = o(n), asymptotically « is the the same for all algorithms:

k = —loga(1 —R)

Improvements to Prange are only polynomial in n. They also come at a high memory cost.
Easy to adapt “early” variants to Iy, q > 3, e.g. Stern’s.(peters, 2010)
Gain from advanced techniques deteriorates quickly for increasing values of q.(Meurer, 2013)
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The design of LESS allows for high degree of flexibility and customizable features
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We select two parameter sets per category level:
e Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.

e Short: sacrifices PK size to push for smallest signature.

We use SHAKE as our PRNG and SHA-3 for the collision-resistant hash function Hash.

We compactly generate and transmit seeds using a seed tree structure.
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e Timings': Keygen 7400 Mcycles, Sign 1644 Mcycles, Verify 5 Mcycles.

There is ample room for improvement in our implementation:
e This week: about 5x speed-up for Cat. 1 parameters by tuning 64-bit arithmetic.
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"This is optimized code.
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It is possible to further reduce signature size using a couple of additional techniques:

e Moving from monomials to permutations.

This requires a few small design modifications (e.g. using self-dual codes) and will be
integrated for the final submission (June).

e Compact commitment and verification exploiting information sets.
Can transmit partial action and then reconstruct permutation/monomial.

This variant is already considered in our document, but not yet implemented.

Optimized implementations (e.g. ARM, possibly hardware) are also a target for June.
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Thank you for listening!
Any questions?
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