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Error-Correc�ng Codes
� Background

[n, k] Linear Code over Fq

A subspace of dimension k of Fn
q. Value n is called length.

Hamming Metric
wt(x) = |{i : xi 6= 0, 1  i  n}|, d(x, y) = wt(x� y).
Minimum distance (of C): min{d(x, y) : x, y 2 C}.

Generator Matrix
G 2 Fk⇥n

q de�nes the code as : x2C() x = uG for u 2 Fk
q.

Not unique: SG, S 2 GL(k, q); Systema�c form: (Ik|M).

Parity-check Matrix

H 2 F(n�k)⇥n
q de�nes the code as: x2C() HxT = 0 (syndrome).

Not unique: SH, S 2 GL(n� k, q); Systema�c form: (MT|In�k).

w-error correc�ng: 9 algorithm that corrects up to w errors.
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Example: Goppa Codes
� Background

Select g(X) 2 Fqm [X] and non-zero ↵1, . . . ,↵n 2 Fqm with g(↵i) 6= 0.

Parity-check given by H = {Hij} = {↵i�1
j /g(↵j)}. Codewords over Fq.

Let noisy codeword be y = x + e, x 2 C,wt(e)  w.

For Goppa codes, w = r/2 (or w = r if binary), where r = deg(g).

To decode:

�. Compute syndrome s = HyT = (s0, . . . , sr�1).
�. Obtain error locator poly �(X) and error evaluator poly !(X) by solving key equa�on

!(X)
�(X) ⌘ s(X) mod Xr.

�. Find roots; error posi�ons are reciprocals (values from !(X)).
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Decoding Problems
� Background

In general, it is hard to decode random codes.

General Decoding Problem (GDP)
Given: G 2 Fk⇥n

q , y 2 Fn
q and w 2 N.

Goal: �nd a word e 2 Fn
q with wt(e)  w such that y� e = x 2 CG.

Easy to see this is equivalent to the following.

Syndrome Decoding Problem (SDP)

Given: H 2 F(n�k)⇥n
q , y 2 F(n�k)

q and w 2 N.
Goal: �nd a word e 2 Fn

q with wt(e)  w such that HeT = y.

NP-Complete (Berlekamp, McEliece and Van Tilborg, ����; Barg, ����).

Unique solu�on when w is below a certain threshold.

Gilbert-Varshamov (GV) Bound
For a given �nite �eld Fq and integers n, k, the Gilbert-Varshamov (GV) distance is the
largest integer d0 such that

|B(0, d0 � 1)|  qn�k.

Very well-studied, solid security understanding (ISD).
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What is Code-Based Cryptography?
� Background

The family of primi�ves based on hard problems from coding theory.

If trapdoor is required (e.g. encryp�on), need one more ingredient.

Assump�on (Code Indis�nguishability)
Let M be a matrix de�ning a code. Then M is indis�nguishable from a randomly generated
matrix of the same size.

Choose a code family with e�cient decoding algorithm associated to descrip�on� and
hide the structure.

Example (McEliece/Niederreiter): use change of basis S and permuta�on P to obtain
equivalent code.

Hardness of assump�on depends on chosen code family.
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Idea �: Trapdoor-based Schemes
� Code-based Signatures

Use hash-and-sign framework as in e.g. Full Domain Hash (RSA).

Given message msg, trapdoor OW func�on f and hash func�on Hash.

Create signature � = f�1(td,Hash(msg)). Verify if f (�) = Hash(msg).

For CBC, tradi�onal SDP-based trapdoor is decoding: CFS scheme.
(Courtois, Finiasz, Sendrier, ����)

...except, domain is not “full”.

Complex sampling leads to slow signing, large keys and poten�al weaknesses.
(Bleichenbacher, ����; Faugère Gauthier-Umana, Otmani, Perret, Tillich, ����; Landais, Sendrier, ����; Bernstein, Chou,

Schwabe, ����)

Recent rendi�ons show great improvements, but s�ll exhibit similar features.
(Debris-Alazard, Sendrier, Tillich, ����)
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Idea �: Zero-Knowledge Protocols
� Code-based Signatures

ZKIDs can be turned into signature schemes using Fiat-Shamir transforma�on.

This method is very promising and usually leads to e�cient schemes.
(Schnorr, ����;. . . )

Strong security guarantees. No trapdoor is required!

For CBC, can avoid decoding: rely directly on SDP.

Use random codes and exploit hardness of �nding low-weight words.
(Stern, ����;. . . )

High soundness error requires several repe��ons to achieve security.

Due to protocol structure and nature of objects, this results in rather large signatures (e.g.
> 20 kB for 128 sec. bits).
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Cryptographic Group Ac�ons
� Group Ac�ons

Group Ac�on
Let X be a set and (G, ·) be a group. A group ac�on is a mapping

? : G ⇥ X ! X
(g, x) 7! g ? x

such that, for all x 2 X and g1, g2 2 G, g2 ? (g1 ? x) = (g2 · g1) ? x.

The word cryptographic means that it has some proper�es of interest in cryptography,
e.g.:

• E�cient evalua�on, sampling and membership tes�ng algorithms.
• A hard vectoriza�on problem.

Group Ac�on Vectoriza�on Problem
Given the pair x1, x2 2 X , �nd, if any, g 2 G such that g ? x1 = x2.
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Famous Examples
� Group Ac�ons

Let X be a group of prime order p and G = Z⇤
p.

Then the vectoriza�on problem is exactly DLP in X .

A huge amount of cryptography has been built using this simple, but very special group
ac�on!

Choosing the set X with this extra structure comes with several advantages and
disadvantages.

• Useful proper�es (e.g. commuta�vity) and design op�ons.
• Not post-quantum!

Recently, isogeny-based group ac�ons have cap�vated the cryptographic scene, showing
a unique performance pro�le.

What about group ac�ons from coding theory?
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Isometries in the Hamming Metric
� Group Ac�ons

Three types:
• Permuta�ons: ⇡

�
(a1, a2, . . . , an)

�
=

�
a⇡(1), a⇡(2), . . . , a⇡(n)

�
.

• Monomials: permuta�ons + scaling factors: µ = (v;⇡), with v 2 (F⇤
q)

n

µ
�
(a1, a2, . . . , an)

�
=

�
v1 · a⇡(1), v2 · a⇡(2), . . . , vn · a⇡(n)

�

Monomial matrix: permuta�on⇥ diagonal.

• Monomials + �eld automorphism.

Two codes are equivalent if they are connected by an isometry.

We talk about permuta�on, linear and semilinear equivalence, respec�vely.

��/��



Isometries in the Hamming Metric
� Group Ac�ons

Three types:
• Permuta�ons: ⇡

�
(a1, a2, . . . , an)

�
=

�
a⇡(1), a⇡(2), . . . , a⇡(n)

�
.

• Monomials: permuta�ons + scaling factors: µ = (v;⇡), with v 2 (F⇤
q)

n

µ
�
(a1, a2, . . . , an)

�
=

�
v1 · a⇡(1), v2 · a⇡(2), . . . , vn · a⇡(n)

�

Monomial matrix: permuta�on⇥ diagonal.

• Monomials + �eld automorphism.

Two codes are equivalent if they are connected by an isometry.

We talk about permuta�on, linear and semilinear equivalence, respec�vely.

��/��



Isometries in the Hamming Metric
� Group Ac�ons

Three types:
• Permuta�ons: ⇡

�
(a1, a2, . . . , an)

�
=

�
a⇡(1), a⇡(2), . . . , a⇡(n)

�
.

• Monomials: permuta�ons + scaling factors: µ = (v;⇡), with v 2 (F⇤
q)

n

µ
�
(a1, a2, . . . , an)

�
=

�
v1 · a⇡(1), v2 · a⇡(2), . . . , vn · a⇡(n)

�

Monomial matrix: permuta�on⇥ diagonal.

• Monomials + �eld automorphism.

Two codes are equivalent if they are connected by an isometry.

We talk about permuta�on, linear and semilinear equivalence, respec�vely.

��/��



Isometries in the Hamming Metric
� Group Ac�ons

Three types:
• Permuta�ons: ⇡

�
(a1, a2, . . . , an)

�
=

�
a⇡(1), a⇡(2), . . . , a⇡(n)

�
.

• Monomials: permuta�ons + scaling factors: µ = (v;⇡), with v 2 (F⇤
q)

n

µ
�
(a1, a2, . . . , an)

�
=

�
v1 · a⇡(1), v2 · a⇡(2), . . . , vn · a⇡(n)

�

Monomial matrix: permuta�on⇥ diagonal.

• Monomials + �eld automorphism.

Two codes are equivalent if they are connected by an isometry.

We talk about permuta�on, linear and semilinear equivalence, respec�vely.

��/��



Isometries in the Hamming Metric
� Group Ac�ons

Three types:
• Permuta�ons: ⇡

�
(a1, a2, . . . , an)

�
=

�
a⇡(1), a⇡(2), . . . , a⇡(n)

�
.

• Monomials: permuta�ons + scaling factors: µ = (v;⇡), with v 2 (F⇤
q)

n

µ
�
(a1, a2, . . . , an)

�
=

�
v1 · a⇡(1), v2 · a⇡(2), . . . , vn · a⇡(n)

�

Monomial matrix: permuta�on⇥ diagonal.

• Monomials + �eld automorphism.

Two codes are equivalent if they are connected by an isometry.

We talk about permuta�on, linear and semilinear equivalence, respec�vely.

��/��



Code-Based Group Ac�ons
� Group Ac�ons

Code equivalence can be described using generator (or parity-check) matrices. Clearly:

C0
PE⇠ C1 () 9(S, P) 2 GLk(q)⇥ Sn s.t. G1 = SG0P,

C0
LE⇠ C1 () 9(S,Q) 2 GLk(q)⇥Mn(q) s.t. G1 = SG0Q,

where P is a permuta�on matrix, and Q a monomial matrix.

Can be seen as a group ac�on of G = GLk(q)⇥Mn(q) on full-rank matrices in Fk⇥n
q .

Code-based Group Ac�on
? : G ⇥ X ! X

((S,Q),G0) 7! SG0Q

Can imagine G ac�ng on codes if we choose canonical representa�on, i.e. systema�c form.

In prac�ce, we consider simply RREF(G0Q).
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Code Equivalence Problems
� Group Ac�ons

The problem of deciding if two codes are equivalent is well-known in coding theory.

For our purpose, we are interested in the computa�onal version: this is the vectoriza�on
problem for our ac�on.

Permuta�on Equivalence Problem (PEP)
Given C0,C1 ✓ Fn

q, �nd a permuta�on ⇡ such that ⇡(C0) = C1. Equivalently, given
generators G0,G1 2 Fk⇥n

q , �nd P 2 Sn such that

G1 = RREF(G0P).

Linear Equivalence Problem (LEP)
Given C0,C1 ✓ Fn

q, �nd a monomial µ such that µ(C0) = C1.
Equivalently, given generators G0,G1 2 Fk⇥n

q , �nd Q 2 Mn(q) such that

G1 = RREF(G0Q).

For prac�cal applica�ons, we are not interested in the semilinear version of the problem.
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Applica�ons in Cryptography
� LESS

Could Code Equivalence be used as a stand-alone problem?

The situa�on for isometries recalls that of other group ac�ons, such as for DLP (although
without commuta�vity).

This means several exis�ng construc�ons could be adapted to be based on Code
Equivalence.

Possible to construct a ZK protocol based exclusively on the hardness of the code
equivalence problem.
(Biasse, Micheli, P., San�ni, ����)

This can be then transformed into a full-�edged signature scheme via Fiat-Shamir.

Protocol can be tweaked to increase e�ciency (e.g. mul�ple public keys, �xed-weight
challenges).
(Barenghi, Biasse, P., San�ni, ����)

Other applica�ons (e.g. ring signatures) will not be discussed in this talk.
(Barenghi, Biasse, Ngo, P., San�ni, ����)
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LESS ZK Iden��ca�on Scheme
� LESS

Public data: system params, hash func�on Hash, code C with generator G0.

Key Genera�on
• SK: monomial matrix Q.
• PK: matrix G1 = RREF(G0Q).

Commit
• Choose random monomial matrix Q̃ 2 Mn(q).
• Compute G̃ = RREF(G0Q̃)
• Commit to cmt = Hash(G̃).

Challenge
• Choose random bit ch 2 {0, 1}.

Response
• If ch = 0 respond with rsp = Q̃.
• If ch = 1 respond with rsp = Q�1Q̃.

Verify
• If ch = 0 verify that Hash(RREF(G0 · rsp)) = cmt.
• If ch = 1 verify that Hash(RREF(G1 · rsp)) = cmt.
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LESS Signatures
� LESS

It is easy to prove that the ZK protocol is complete, �-special sound and honest-veri�er
zero-knowledge.

Before applying Fiat-Shamir, need to reduce soundness error! t = � parallel repe��ons.

The protocol can be greatly improved with the following modi�ca�ons:

• Use non-binary challenges.
+ Lower soundness error: 1/2! 1/2`.
� Rapid increase in public key size.

• Use a �xed-weight challenge string.
+ Exploits imbalance in cost of response: seed vs monomial.
� Larger number of itera�ons.

Both modi�ca�ons do not a�ect security, only require small tweaks in proofs.
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Key Genera�on
� LESS

Input: system params, code C with generator G0.

Key Genera�on
�. Set SK0 = In and PK0 = G0.
�. Choose random seed seedsk 2 {0, 1}�.
�. Generate Q1, . . . ,Qs�1 from seedsk.
�. for i := 1 to s� 1
�. Set SK(i) = Qi and PK(i) = RREF(G0Qi).
�. Output SK = (SK0, . . . , SKs�1) and PK = (PK0, . . . , PKs�1).

Private key can be easily compressed to a single seed.
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Sign
� LESS

Input: system params, hash func�on Hash, private key SK, message msg.

Sign
�. Choose random master seed mseed 2 {0, 1}�.
�. Generate seed0, . . . , seedt�1 from mseed.
�. for i := 1 to t � 1
�. Generate Q̃i from seedi.
�. Compute G̃i = RREF(G0Q̃i).
�. Set d = Hash(G̃0|| . . . ||G̃t�1||msg).
�. Expand d to string (x0, . . . , xt�1) with ! non-zero elements from [0; s� 1].
�. for i := 0 to t � 1
�. Set rspi to either seedi (if xi = 0) or Q�1

xi
Q̃i (otherwise).

��. Output � = (rsp0, . . . , rspt�1, d).

The expand func�on (�.) is obtained via applica�on of a PRNG, sampling uniformly at
random from the target set.
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Verify
� LESS

Input: system params, hash func�on Hash, public key PK, message msg, signature sigma.

Verify
�. Expand d to string (x0, . . . , xt�1) with ! non-zero elements from [0; s� 1].
�. for i := 1 to t � 1
�. Recover Qi from rspi.
�. Compute Gi = RREF(Gxi Qi).
�. Set d0 = Hash(G0|| . . . ||Gt�1||msg).
�. Output true if d = d0, or false otherwise.

The recover func�on (�.) compactly describes: rsp is either already a monomial, or a
matrix can be obtained expanding a seed.
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Security Considera�ons
� Considera�ons

PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, ����)

PEP is also deeply connected with Graph Isomorphism (GI) (reduc�ons in both ways!),
solvable in quasi-polynomial �me.

At the same �me, PEP is “not necessarily easy”.
(Petrank, Roth, ����)

PEP is a special case of LEP; indeed, with �me O(q), we have

PEP Reduces to ������ LEP

As a consequence, most solvers for PEP can be easily adapted to solve LEP as well.
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A�ack Strategy �: Weak Instances
� Considera�ons

Exploit a variety of proper�es, give rise to (poten�ally) most e�cient solvers.

• Support Spli�ng Algorithm (SSA) looks for invariants to dis�nguish equivalent codes.
(Sendrier, ����)

Weight Enumerator Func�on (WEF) is one, but too expensive; compute on hull.

H(C) = C \ C?

If C1 = ⇡(C0), thenH(C1) = ⇡
�
H(C0)

�
; running inO(qh).

Random codes tend to have small hulls, which makes a�ack prac�cal.
* Use (weakly) self-dual codes to avoid a�ack.
* To solve LEP, need to target closure of the code; these are always self-dual for q � 5.

• Algebraic approaches of di�erent nature, for example:
* Set up a system of equa�ons, solve via Gröbner basis. (Saeed-Taha, ����)
* Exploit reduc�on to graph isomorphism. (Bardet et al., ����)

These are only e�cient (or applicable in the �rst place) if hull is trivial.
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* Exploit reduc�on to graph isomorphism. (Bardet et al., ����)

These are only e�cient (or applicable in the �rst place) if hull is trivial.

��/��



A�ack Strategy �: Codeword Search
� Considera�ons

Ac�on of ⇡ can be guessed from the set of all codewords with small weight w. (Leon, ����)

Moderate w guarantees no spurious solu�on and su�ciently low number of codewords.

In prac�ce, minimum distance plus 1 or 2 is enough to guarantee enough structure.

The a�ack then consists of:
• Finding codewords (use ISD).
• Matching to extract permuta�on.

Cost is⇡ 2 log(Nw)Cisd(n, k, q,w) + linear algebra.

Permuta�ons preserve mul�set of entries =) no need to �nd all words of weight w.
(Beullens, ����)

Probabilis�c algorithm, advantageous only if q is large.

Can obtain small improvement by carefully matching 2-dimensional subcodes instead.
(Barenghi, Biasse, P., San�ni, ����)
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Informa�on-Set Decoding
� Considera�ons

An itera�ve procedure aimed at �nding low-weight words. (Prange, ����)

In a nutshell: guess informa�on set to reveal (error) posi�ons.

Several improvements over the years:
• Carefully alloca�ng posi�ons (e.g. allow errors in IS).
• Looking for collisions.
• Using representa�ons (e.g. 1 + 1 = 0).
• Considering nearest neighbors.
• . . .

Running �me is 2w
�

1+o(1)
�
, where  depends on rate R and w/n. (Canto Torres, Sendrier, ����)

When w = o(n), asympto�cally  is the the same for all algorithms:

 = �log2(1� R)

Improvements to Prange are only polynomial in n. They also come at a high memory cost.

Easy to adapt “early” variants to Fq, q � 3, e.g. Stern’s.(Peters, ����)

Gain from advanced techniques deteriorates quickly for increasing values of q.(Meurer, ����)
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Design Considera�ons
� Considera�ons

We parametrize using la�er type of a�acks, following conserva�ve criterion. Namely, we
pick n, k, q so that, for any d and any w, we have:

p
Nd(w) · C(d)

ISD(n, k, q,w) > 2�.

The design of LESS allows for high degree of �exibility and customizable features
according to goal.

We select two parameter sets per category level:

• Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.
• Short: sacri�ces PK size to push for smallest signature.

We use SHAKE as our PRNG and SHA-� for the collision-resistant hash func�on Hash.

We compactly generate and transmit seeds using a seed tree structure.
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Sizes and Timings
� Considera�ons

Protocol parameters (t,!, s) infer performance pro�le:

Seed Tree

Yes No
NIST Parameter Code Params. Prot. Params. Prot. Params.
Cat. Set n k q t ! s PK (kB) Sig (kB) t ! s PK (kB) Sig (kB)

� Balanced 252 126 127 1053 18 2 13.7 6.1 247 30 2 13.7 10.8
Short 252 126 127 1263 9 64 862.4 3.3 46 15 64 862.4 4.2

� Balanced 468 234 31 1776 26 2 33.7 14.8 377 44 2 33.7 26.5
Short 400 200 127 1297 14 64 2167.2 8 72 22 64 2167.2 10.3

� Balanced 636 318 31 2518 34 2 62.1 27.5 525 57 2 62.1 49.7
Short 506 253 509 2300 18 64 4447.9 14.6 116 28 64 4447.9 19.3

Run�me is dominated by RREF computa�on, for both Keygen and Sign/Verify.

This yields �mings with contras�ng behavior. For our reference code:
• Balanced, Cat. �: Keygen⇡ 8 Mcycles, Sign/Verify⇡ 834 Mcycles
• Short, Cat. �: Keygen⇡ 205 Mcycles, Sign/Verify⇡ 115 Mcycles

��/��



Sizes and Timings
� Considera�ons

Protocol parameters (t,!, s) infer performance pro�le:

Seed Tree

Yes No
NIST Parameter Code Params. Prot. Params. Prot. Params.
Cat. Set n k q t ! s PK (kB) Sig (kB) t ! s PK (kB) Sig (kB)

� Balanced 252 126 127 1053 18 2 13.7 6.1 247 30 2 13.7 10.8
Short 252 126 127 1263 9 64 862.4 3.3 46 15 64 862.4 4.2

� Balanced 468 234 31 1776 26 2 33.7 14.8 377 44 2 33.7 26.5
Short 400 200 127 1297 14 64 2167.2 8 72 22 64 2167.2 10.3

� Balanced 636 318 31 2518 34 2 62.1 27.5 525 57 2 62.1 49.7
Short 506 253 509 2300 18 64 4447.9 14.6 116 28 64 4447.9 19.3

Run�me is dominated by RREF computa�on, for both Keygen and Sign/Verify.

This yields �mings with contras�ng behavior. For our reference code:
• Balanced, Cat. �: Keygen⇡ 8 Mcycles, Sign/Verify⇡ 834 Mcycles
• Short, Cat. �: Keygen⇡ 205 Mcycles, Sign/Verify⇡ 115 Mcycles

��/��



Sizes and Timings
� Considera�ons

Protocol parameters (t,!, s) infer performance pro�le:

Seed Tree

Yes No
NIST Parameter Code Params. Prot. Params. Prot. Params.
Cat. Set n k q t ! s PK (kB) Sig (kB) t ! s PK (kB) Sig (kB)

� Balanced 252 126 127 1053 18 2 13.7 6.1 247 30 2 13.7 10.8
Short 252 126 127 1263 9 64 862.4 3.3 46 15 64 862.4 4.2

� Balanced 468 234 31 1776 26 2 33.7 14.8 377 44 2 33.7 26.5
Short 400 200 127 1297 14 64 2167.2 8 72 22 64 2167.2 10.3

� Balanced 636 318 31 2518 34 2 62.1 27.5 525 57 2 62.1 49.7
Short 506 253 509 2300 18 64 4447.9 14.6 116 28 64 4447.9 19.3

Run�me is dominated by RREF computa�on, for both Keygen and Sign/Verify.

This yields �mings with contras�ng behavior. For our reference code:
• Balanced, Cat. �: Keygen⇡ 8 Mcycles, Sign/Verify⇡ 834 Mcycles
• Short, Cat. �: Keygen⇡ 205 Mcycles, Sign/Verify⇡ 115 Mcycles

��/��



Sizes and Timings
� Considera�ons

Protocol parameters (t,!, s) infer performance pro�le:

Seed Tree

Yes No
NIST Parameter Code Params. Prot. Params. Prot. Params.
Cat. Set n k q t ! s PK (kB) Sig (kB) t ! s PK (kB) Sig (kB)

� Balanced 252 126 127 1053 18 2 13.7 6.1 247 30 2 13.7 10.8
Short 252 126 127 1263 9 64 862.4 3.3 46 15 64 862.4 4.2

� Balanced 468 234 31 1776 26 2 33.7 14.8 377 44 2 33.7 26.5
Short 400 200 127 1297 14 64 2167.2 8 72 22 64 2167.2 10.3

� Balanced 636 318 31 2518 34 2 62.1 27.5 525 57 2 62.1 49.7
Short 506 253 509 2300 18 64 4447.9 14.6 116 28 64 4447.9 19.3

Run�me is dominated by RREF computa�on, for both Keygen and Sign/Verify.

This yields �mings with contras�ng behavior. For our reference code:

• Balanced, Cat. �: Keygen⇡ 8 Mcycles, Sign/Verify⇡ 834 Mcycles
• Short, Cat. �: Keygen⇡ 205 Mcycles, Sign/Verify⇡ 115 Mcycles

��/��



Sizes and Timings
� Considera�ons

Protocol parameters (t,!, s) infer performance pro�le:

Seed Tree

Yes No
NIST Parameter Code Params. Prot. Params. Prot. Params.
Cat. Set n k q t ! s PK (kB) Sig (kB) t ! s PK (kB) Sig (kB)

� Balanced 252 126 127 1053 18 2 13.7 6.1 247 30 2 13.7 10.8
Short 252 126 127 1263 9 64 862.4 3.3 46 15 64 862.4 4.2

� Balanced 468 234 31 1776 26 2 33.7 14.8 377 44 2 33.7 26.5
Short 400 200 127 1297 14 64 2167.2 8 72 22 64 2167.2 10.3

� Balanced 636 318 31 2518 34 2 62.1 27.5 525 57 2 62.1 49.7
Short 506 253 509 2300 18 64 4447.9 14.6 116 28 64 4447.9 19.3

Run�me is dominated by RREF computa�on, for both Keygen and Sign/Verify.

This yields �mings with contras�ng behavior. For our reference code:
• Balanced, Cat. �: Keygen⇡ 8 Mcycles, Sign/Verify⇡ 834 Mcycles

• Short, Cat. �: Keygen⇡ 205 Mcycles, Sign/Verify⇡ 115 Mcycles

��/��



Sizes and Timings
� Considera�ons

Protocol parameters (t,!, s) infer performance pro�le:

Seed Tree

Yes No
NIST Parameter Code Params. Prot. Params. Prot. Params.
Cat. Set n k q t ! s PK (kB) Sig (kB) t ! s PK (kB) Sig (kB)

� Balanced 252 126 127 1053 18 2 13.7 6.1 247 30 2 13.7 10.8
Short 252 126 127 1263 9 64 862.4 3.3 46 15 64 862.4 4.2

� Balanced 468 234 31 1776 26 2 33.7 14.8 377 44 2 33.7 26.5
Short 400 200 127 1297 14 64 2167.2 8 72 22 64 2167.2 10.3

� Balanced 636 318 31 2518 34 2 62.1 27.5 525 57 2 62.1 49.7
Short 506 253 509 2300 18 64 4447.9 14.6 116 28 64 4447.9 19.3

Run�me is dominated by RREF computa�on, for both Keygen and Sign/Verify.

This yields �mings with contras�ng behavior. For our reference code:
• Balanced, Cat. �: Keygen⇡ 8 Mcycles, Sign/Verify⇡ 834 Mcycles
• Short, Cat. �: Keygen⇡ 205 Mcycles, Sign/Verify⇡ 115 Mcycles

��/��



Performance Considera�ons
� Considera�ons

The �exibility of LESS allows mul�ple op�ons for deployment.

For instance, can �t on a microcontroller (PK + Sig 20 kB) or push for⇡ 3 kB signature.

Our balanced set is compe��ve with SPHINCS+. For Cat. �:
• Sizes: signature 7.8 kB (“small”) or 17 kB (“fast”), public key very small.
• Timings: Keygen 9-1195 Mcycles, Sign 239-8995 Mcycles, Verify 4.7-28 Mcycles.

Our short set compares well with e.g. Wave(let). For Cat. �:
• Sizes: signature⇡ 1 kB, public key⇡ 3.1 MB.
• Timings�: Keygen 7400 Mcycles, Sign 1644 Mcycles, Verify 5 Mcycles.

There is ample room for improvement in our implementa�on:
• This week: about 5x speed-up for Cat. � parameters by tuning 64-bit arithme�c.
• Further gains exploi�ng e.g. vectoriza�on.

�This is op�mized code.
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Addi�onal Op�miza�ons
� Considera�ons

It is possible to further reduce signature size using a couple of addi�onal techniques:

• Moving from monomials to permuta�ons.

This requires a few small design modi�ca�ons (e.g. using self-dual codes) and will be
integrated for the �nal submission (June).

• Compact commitment and veri�ca�on exploi�ng informa�on sets.

Can transmit par�al ac�on and then reconstruct permuta�on/monomial.

This variant is already considered in our document, but not yet implemented.

Op�mized implementa�ons (e.g. ARM, possibly hardware) are also a target for June.
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Thank you for listening!
Any ques�ons?
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