LESS: Digital Signatures from Linear Code
Equivalence

NIST PQC Seminars

Marco Baldi, Alessandro Barenghi, Jean-Francois Biasse, Andre Esser,
Gerardo Pelosi, Edoardo Persichetti, Markku-J. O. Saarinen, Paolo Santini

14 March 2023

CHARLES E. SCHMIDT
COLLEGE OF SCIENCE

Florida Atlantic University

BT,
“;~ A oo%i‘%% Technology
LIPS "/ g POLITECNICO Tll |nnovatjon
RN LT ¥ DI MILANO Institute

SAPIENZA

POLITECNICA A UNIVERSITA DI ROMA

DELLE MARCHE

'D Tampere University

UNIVERSITY OF
SOUTH FLORIDA

In This Talk

Roadmap

» Background

» Code-based Signatures

» Group Actions

» LESS

» Considerations

2/33

Roadmap

» Background

3/33

Error-Correcting Codes

1 Background

[n, k] Linear Code over F,

A subspace of dimension k of Fg. Value n is called length.

4/33

Error-Correcting Codes

1 Background

[n, k] Linear Code over F,

A subspace of dimension k of Fg. Value n is called length.

Hamming Metric

wt(x) = [{i:x # 0,1 <i<n}|,d(x,y) =wt(x—y).
Minimum distance (of €): min{d(x,y) : x,y € €}.

4/33

Error-Correcting Codes
1 Background

[n, k] Linear Code over F,

A subspace of dimension k of Fg. Value n is called length.

Hamming Metric

wt(x) = [{i:x #0,1 <i<n},dx,y) =wt(x—y).
Minimum distance (of €): min{d(x,y) : x,y € €}.

Generator Matrix

G e]F’(;X” defines the code as: xe€ <= x = uG foru € IFZ.
Not unique: SG, S € GL(k, q); Systematic form: (I |M).

4/33

Error-Correcting Codes
1 Background

[n, k] Linear Code over [,

A subspace of dimension k of Fg. Value n is called length.

Hamming Metric
wt(x) = [{i:x #0,1 <i<n},dx,y) =wt(x—y).
Minimum distance (of €): min{d(x,y) : x,y € €}.

Generator Matrix

G e]F’(;X” defines the code as: xc€ <= x = uGforu € IFZ.
Not unique: SG, S € GL(k, q); Systematic form: (I |M).

Parity-check Matrix

He an—k)xn defines the code as: xe@ <= HxT = 0 (syndrome).

Not unique: SH, S € GL(n — k, q); Systematic form: (MT|I,_y).

4/33

Error-Correcting Codes
1 Background

[n, k] Linear Code over [,

A subspace of dimension k of Fg. Value n is called length.

Hamming Metric
wt(x) = [{i:x #0,1 <i<n},dx,y) =wt(x—y).
Minimum distance (of €): min{d(x,y) : x,y € €}.

Generator Matrix

G e]F’(;X” defines the code as: xc€ <= x = uGforu € IFZ.
Not unique: SG, S € GL(k, q); Systematic form: (I |M).

Parity-check Matrix

He an—k)xn defines the code as: xe@ <= HxT = 0 (syndrome).

Not unique: SH, S € GL(n — k, q); Systematic form: (MT|I,_y).

w-error correcting: d algorithm that corrects up to w errors.

4/33

Example: Goppa Codes

1 Background

Select g(X) € Fgn[X] and non-zero a1, . .., ay € Fgn with g(ay) # 0.
Parity-check given by H = {H;j} = {a}_l/g(aj)}. Codewords over Fy.
Let noisy codeword bey = x + e, x € €, wt(e) < w.

For Goppa codes, w = r/2 (or w = r if binary), where r = deg(g).

5/33

Example: Goppa Codes

1 Background

Select g(X) € Fgn[X] and non-zero ay, . .., o € Fgn with g(oy) # 0.
Parity-check given by H = {H;j} = {a}_l/g(aj)}. Codewords over Fy.
Let noisy codeword bey = x + e, x € €, wt(e) < w.
For Goppa codes, w = r/2 (or w = r if binary), where r = deg(g).
To decode:
1. Compute syndrome s = HyT = (so, ..., s,_1).
2. Obtain error locator poly o (X) and error evaluator poly w(X) by solving key equation
% = s(X) mod X".

3. Find roots; error positions are reciprocals (values from w(X)).

5/33

Decoding Problems

1 Background

In general, it is hard to decode random codes.

6/33

Decoding Problems

1 Background

In general, it is hard to decode random codes.

General Decoding Problem (GDP)

Given: G € Fk*", y € Ff andw € N.
Goal: find a word e € g with wt(e) < wsuch thaty — e = x € .

6/33

Decoding Problems

1 Background

In general, it is hard to decode random codes.

General Decoding Problem (GDP)

Given: G € FK*",y € Fi andw € N.
Goal: find a word e € g with wt(e) < wsuchthaty — e = x € .

Easy to see this is equivalent to the following.

6/33

Decoding Problems

1 Background

In general, it is hard to decode random codes.

General Decoding Problem (GDP)

Given: G € FK*",y € Fi andw € N.
Goal: find a word e € g with wt(e) < wsuchthaty — e = x € .

Easy to see this is equivalent to the following.

Syndrome Decoding Problem (SDP)

Given: H €]Fc(ln_k)xn, v E Fg"_k) andw € N.
Goal: find a word e € I} with wt(e) < w such that He = y.

6/33

Decoding Problems

1 Background

In general, it is hard to decode random codes.

General Decoding Problem (GDP)

Given: G € FK*",y € Fi andw € N.
Goal: find a word e € g with wt(e) < wsuchthaty — e = x € .

Easy to see this is equivalent to the following.

Syndrome Decoding Problem (SDP)

Given: H €]Fc(ln_k)xn, v E Fg"_k) andw € N.
Goal: find a word e € F} with wt(e) < w such that He = y.

NP-CompIete (Berlekamp, McEliece and Van Tilborg, 1978; Barg, 1994).

6/33

Decoding Problems

1 Background

In general, it is hard to decode random codes.

General Decoding Problem (GDP)

Given: G € FK*",y € Fi andw € N.
Goal: find a word e € g with wt(e) < wsuchthaty — e = x € .

Easy to see this is equivalent to the following.

Syndrome Decoding Problem (SDP)

Given: H €]Fc(ln_k)xn, v E Fg"_k) andw € N.
Goal: find a word e € F} with wt(e) < w such that He = y.

NP-CompIete (Berlekamp, McEliece and Van Tilborg, 1978; Barg, 1994).
Unique solution when w is below a certain threshold.

6/33

Decoding Problems
1 Background

In general, it is hard to decode random codes.

General Decoding Problem (GDP)

Given: G € FK*",y € Fi andw € N.
Goal: find a word e € g with wt(e) < wsuchthaty — e = x € .

Easy to see this is equivalent to the following.

Syndrome Decoding Problem (SDP)

Given: H €]Fc(ln_k)xn, v E F,S"_k) andw € N.
Goal: find a word e € F} with wt(e) < w such that He = y.

NP-CompIete (Berlekamp, McEliece and Van Tilborg, 1978; Barg, 1994).
Unique solution when w is below a certain threshold.

Gilbert-Varshamov (GV) Bound

For a given finite field F; and integers n, k, the Gilbert-Varshamov (GV) distance is the
largest integer dg such that

B(0,do — 1)| < q" .

6/33

Decoding Problems
1 Background

In general, it is hard to decode random codes.

General Decoding Problem (GDP)

Given: G € FK*",y € Fi andw € N.
Goal: find a word e € g with wt(e) < wsuchthaty — e = x € .

Easy to see this is equivalent to the following.

Syndrome Decoding Problem (SDP)

Given: H €]Fc(ln_k)xn, v E F,S"_k) andw € N.
Goal: find a word e € F} with wt(e) < w such that He = y.

NP-CompIete (Berlekamp, McEliece and Van Tilborg, 1978; Barg, 1994).
Unique solution when w is below a certain threshold.

Gilbert-Varshamov (GV) Bound

For a given finite field I, and integers n, k, the Gilbert-Varshamov (GV) distance is the
largest integer dg such that

B(0,do — 1)| < q" .

Very well-studied, solid security understanding (I1SD).
6/33

What is Code-Based Cryptography?

1 Background

The family of primitives based on hard problems from coding theory.

7/33

What is Code-Based Cryptography?

1 Background

The family of primitives based on hard problems from coding theory.

If trapdoor is required (e.g. encryption), need one more ingredient.

7/33

What is Code-Based Cryptography?

1 Background

The family of primitives based on hard problems from coding theory.

If trapdoor is required (e.g. encryption), need one more ingredient.

Assumption (Code Indistinguishability)

Let M be a matrix defining a code. Then M is indistinguishable from a randomly generated
matrix of the same size.

7/33

What is Code-Based Cryptography?

1 Background

The family of primitives based on hard problems from coding theory.

If trapdoor is required (e.g. encryption), need one more ingredient.

Assumption (Code Indistinguishability)

Let M be a matrix defining a code. Then M is indistinguishable from a randomly generated
matrix of the same size.

Choose a code family with efficient decoding algorithm associated to description A and
hide the structure.

7/33

What is Code-Based Cryptography?

1 Background

The family of primitives based on hard problems from coding theory.

If trapdoor is required (e.g. encryption), need one more ingredient.

Assumption (Code Indistinguishability)

Let M be a matrix defining a code. Then M is indistinguishable from a randomly generated
matrix of the same size.

Choose a code family with efficient decoding algorithm associated to description A and
hide the structure.

Example (McEliece/Niederreiter): use change of basis § and permutation P to obtain
equivalent code.

7/33

What is Code-Based Cryptography?

1 Background

The family of primitives based on hard problems from coding theory.

If trapdoor is required (e.g. encryption), need one more ingredient.

Assumption (Code Indistinguishability)

Let M be a matrix defining a code. Then M is indistinguishable from a randomly generated
matrix of the same size.

Choose a code family with efficient decoding algorithm associated to description A and
hide the structure.

Example (McEliece/Niederreiter): use change of basis S and permutation P to obtain
equivalent code.

Hardness of assumption depends on chosen code family.

7/33

Roadmap

» Code-based Signatures

8/33

Idea 1: Trapdoor-based Schemes

2 Code-based Signatures

Use hash-and-sign framework as in e.g. Full Domain Hash (RSA).

9/33

Idea 1: Trapdoor-based Schemes

2 Code-based Signatures

Use hash-and-sign framework as in e.g. Full Domain Hash (RSA).

Given message msg, trapdoor OW function f and hash function Hash.

9/33

Idea 1: Trapdoor-based Schemes

2 Code-based Signatures

Use hash-and-sign framework as in e.g. Full Domain Hash (RSA).
Given message msg, trapdoor OW function f and hash function Hash.

Create signature o = f~1(td, Hash(msg)). Verify if f(c) = Hash(msg).

9/33

Idea 1: Trapdoor-based Schemes

2 Code-based Signatures

Use hash-and-sign framework as in e.g. Full Domain Hash (RSA).

Given message msg, trapdoor OW function f and hash function Hash.
Create signature o = f~1(td, Hash(msg)). Verify if f(c) = Hash(msg).
For CBC, traditional SDP-based trapdoor is decoding: CFS scheme.

(Courtois, Finiasz, Sendrier, 2001)

9/33

Idea 1: Trapdoor-based Schemes

2 Code-based Signatures

Use hash-and-sign framework as in e.g. Full Domain Hash (RSA).

Given message msg, trapdoor OW function f and hash function Hash.
Create signature o = f~1(td, Hash(msg)). Verify if f(c) = Hash(msg).
For CBC, traditional SDP-based trapdoor is decoding: CFS scheme.

(Courtois, Finiasz, Sendrier, 2001)

...except, domain is not “full”.

9/33

Idea 1: Trapdoor-based Schemes

2 Code-based Signatures

Use hash-and-sign framework as in e.g. Full Domain Hash (RSA).

Given message msg, trapdoor OW function f and hash function Hash.
Create signature o = f~1(td, Hash(msg)). Verify if f(c) = Hash(msg).
For CBC, traditional SDP-based trapdoor is decoding: CFS scheme.

(Courtois, Finiasz, Sendrier, 2001)
...except, domain is not “full”.

Complex sampling leads to slow signing, large keys and potential weaknesses.
(Bleichenbacher, 2009; Faugére Gauthier-Umana, Otmani, Perret, Tillich, 2013; Landais, Sendrier, 2012; Bernstein, Chou,

Schwabe, 2013)

9/33

Idea 1: Trapdoor-based Schemes

2 Code-based Signatures

Use hash-and-sign framework as in e.g. Full Domain Hash (RSA).

Given message msg, trapdoor OW function f and hash function Hash.
Create signature o = f~1(td, Hash(msg)). Verify if f(c) = Hash(msg).
For CBC, traditional SDP-based trapdoor is decoding: CFS scheme.

(Courtois, Finiasz, Sendrier, 2001)
...except, domain is not “full”.

Complex sampling leads to slow signing, large keys and potential weaknesses.
(Bleichenbacher, 2009; Faugére Gauthier-Umana, Otmani, Perret, Tillich, 2013; Landais, Sendrier, 2012; Bernstein, Chou,

Schwabe, 2013)

Recent renditions show great improvements, but still exhibit similar features.
(Debris-Alazard, Sendrier, Tillich, 2018)

9/33

Idea 2: Zero-Knowledge Protocols

2 Code-based Signatures

ZKIDs can be turned into signature schemes using Fiat-Shamir transformation.

10/33

Idea 2: Zero-Knowledge Protocols

2 Code-based Signatures

ZKIDs can be turned into signature schemes using Fiat-Shamir transformation.

This method is very promising and usually leads to efficient schemes.
(Schnorr, 1989;...)

10/33

Idea 2: Zero-Knowledge Protocols

2 Code-based Signatures

ZKIDs can be turned into signature schemes using Fiat-Shamir transformation.

This method is very promising and usually leads to efficient schemes.
(Schnorr, 1989;...)

Strong security guarantees. No trapdoor is required!

10/33

Idea 2: Zero-Knowledge Protocols

2 Code-based Signatures

ZKIDs can be turned into signature schemes using Fiat-Shamir transformation.

This method is very promising and usually leads to efficient schemes.
(Schnorr, 1989;...)

Strong security guarantees. No trapdoor is required!

For CBC, can avoid decoding: rely directly on SDP.

10/33

Idea 2: Zero-Knowledge Protocols

2 Code-based Signatures

ZKIDs can be turned into signature schemes using Fiat-Shamir transformation.

This method is very promising and usually leads to efficient schemes.
(Schnorr, 1989;...)

Strong security guarantees. No trapdoor is required!
For CBC, can avoid decoding: rely directly on SDP.

Use random codes and exploit hardness of finding low-weight words.
(Stern, 1993;...)

10/33

Idea 2: Zero-Knowledge Protocols

2 Code-based Signatures

ZKIDs can be turned into signature schemes using Fiat-Shamir transformation.

This method is very promising and usually leads to efficient schemes.
(Schnorr, 1989;...)

Strong security guarantees. No trapdoor is required!
For CBC, can avoid decoding: rely directly on SDP.

Use random codes and exploit hardness of finding low-weight words.
(Stern, 1993;...)

High soundness error requires several repetitions to achieve security.

10/33

Idea 2: Zero-Knowledge Protocols

2 Code-based Signatures

ZKIDs can be turned into signature schemes using Fiat-Shamir transformation.

This method is very promising and usually leads to efficient schemes.
(Schnorr, 1989;...)

Strong security guarantees. No trapdoor is required!
For CBC, can avoid decoding: rely directly on SDP.

Use random codes and exploit hardness of finding low-weight words.
(Stern, 1993;...)

High soundness error requires several repetitions to achieve security.

Due to protocol structure and nature of objects, this results in rather large signatures (e.g.
> 20 kB for 128 sec. bits).

10/33

Roadmap

» Group Actions

11/33

Cryptographic Group Actions

3 Group Actions

Group Action

Let X be a set and (G, -) be a group. A group action is a mapping

x: GxX — X
(g,x) = gxx

such that, for allx € X and g1,92 € G, g2 x (g1 xx) = (g2 - g1) * .

12/33

Cryptographic Group Actions

3 Group Actions

Group Action

Let X be a set and (G, -) be a group. A group action is a mapping

x: GxX — X
(g,x) = gxx

such that, for allx € X and g1,92 € G, g2 x (g1 xx) = (g2 - g1) * .

The word cryptographic means that it has some properties of interest in cryptography,
e.g.:

12/33

Cryptographic Group Actions

3 Group Actions

Group Action

Let X be a set and (G, -) be a group. A group action is a mapping

x: GxX — X
(g,x) = gxx

such that, for allx € X and g1,92 € G, g2 x (g1 xx) = (g2 - g1) * .

The word cryptographic means that it has some properties of interest in cryptography,
e.g.:

e Efficient evaluation, sampling and membership testing algorithms.

12/33

Cryptographic Group Actions

3 Group Actions

Group Action

Let X be a set and (G, -) be a group. A group action is a mapping

x: GxX — X
(g,x) = gxx

such that, for allx € X and g1,92 € G, g2 x (g1 xx) = (g2 - g1) * .

The word cryptographic means that it has some properties of interest in cryptography,
e.g.:

e Efficient evaluation, sampling and membership testing algorithms.

¢ A hard vectorization problem.

12/33

Cryptographic Group Actions

3 Group Actions

Group Action

Let X be a set and (G, -) be a group. A group action is a mapping

x: GxX — X
(g,x) = gxx

such that, for allx € X and g1,92 € G, g2 x (g1 xx) = (g2 - g1) * .

The word cryptographic means that it has some properties of interest in cryptography,
e.g.:

e Efficient evaluation, sampling and membership testing algorithms.

e A hard vectorization problem.

Group Action Vectorization Problem

Given the pair x1,x9 € X, find, if any, g € G such that g x x; = x».

12/33

Famous Examples
3 Group Actions

Let X be a group of prime order p and G = Z;‘;.

13/33

Famous Examples
3 Group Actions

Let X be a group of prime order p and G = Z;‘;.

Then the vectorization problem is exactly DLP in X.

13/33

Famous Examples
3 Group Actions

Let X be a group of prime order p and G = Z;‘;.
Then the vectorization problem is exactly DLP in X.

A huge amount of cryptography has been built using this simple, but very special group
action!

13/33

Famous Examples
3 Group Actions

Let X be a group of prime order p and G = Z;‘;.
Then the vectorization problem is exactly DLP in X.

A huge amount of cryptography has been built using this simple, but very special group
action!

Choosing the set X’ with this extra structure comes with several advantages and
disadvantages.

13/33

Famous Examples
3 Group Actions

Let X be a group of prime order p and G = Z;‘;.
Then the vectorization problem is exactly DLP in X.

A huge amount of cryptography has been built using this simple, but very special group
action!

Choosing the set X’ with this extra structure comes with several advantages and
disadvantages.

e Useful properties (e.g. commutativity) and design options.

13/33

Famous Examples
3 Group Actions

Let X be a group of prime order p and G = Z;‘;.
Then the vectorization problem is exactly DLP in X.

A huge amount of cryptography has been built using this simple, but very special group
action!

Choosing the set X’ with this extra structure comes with several advantages and
disadvantages.

e Useful properties (e.g. commutativity) and design options.

e Not post-quantum!

13/33

Famous Examples
3 Group Actions

Let X be a group of prime order p and G = Z;‘;.
Then the vectorization problem is exactly DLP in X.

A huge amount of cryptography has been built using this simple, but very special group
action!

Choosing the set X’ with this extra structure comes with several advantages and
disadvantages.

e Useful properties (e.g. commutativity) and design options.

e Not post-quantum!

Recently, isogeny-based group actions have captivated the cryptographic scene, showing
a unique performance profile.

13/33

Famous Examples
3 Group Actions

Let X be a group of prime order p and G = Z;‘;.
Then the vectorization problem is exactly DLP in X.

A huge amount of cryptography has been built using this simple, but very special group
action!

Choosing the set X’ with this extra structure comes with several advantages and
disadvantages.

e Useful properties (e.g. commutativity) and design options.

e Not post-quantum!

Recently, isogeny-based group actions have captivated the cryptographic scene, showing
a unique performance profile.

What about group actions from coding theory?

13/33

Isometries in the Hamming Metric
3 Group Actions

Three types:

o Permutations: 7((a1, az,...,an)) = (Ar(1), ar(2);- - -+ Arn))-

14/33

Isometries in the Hamming Metric
3 Group Actions

Three types:

e Permutations: 7((a1,az,...,an)) = (Ar(1), ar(2); - - -+ Arn))-

e Monomials: permutations + scaling factors: 1 = (v;), withv € (Fg)"

N((alaa27 ce. 7an)) = (Vl : aw(l)avz : a7r(2)7 <o Vne aw(n))

Monomial matrix: permutation x diagonal.

14/33

Isometries in the Hamming Metric
3 Group Actions

Three types:

e Permutations: 7((a1,az,...,an)) = (Ar(1), ar(2); - - -+ Arn))-
e Monomials: permutations + scaling factors: 1 = (v;), withv € (Fg)"
H((ala as,... 7an)) — (Vl : aw(l)vvz : a7r(2)7 sy Vot aw(n))

Monomial matrix: permutation x diagonal.

e Monomials + field automorphism.

14/33

Isometries in the Hamming Metric
3 Group Actions

Three types:

e Permutations: 7((a1,az,...,an)) = (Ar(1), ar(2); - - -+ Arn))-

e Monomials: permutations + scaling factors: 1 = (v;), withv € (Fg)"

H((ala as,... 7an)) — (Vl : aw(l)vvz : a7r(2)7 sy Vot aw(n))
Monomial matrix: permutation x diagonal.

e Monomials + field automorphism.

Two codes are equivalent if they are connected by an isometry.

14/33

Isometries in the Hamming Metric
3 Group Actions

Three types:

e Permutations: 7((a1,az,...,an)) = (Ar(1), ar(2); - - -+ Arn))-

e Monomials: permutations + scaling factors: 1 = (v;), withv € (Fg)"

H((ala as,... 7an)) — (Vl : aw(l)avz : a7r(2)7 sy Vot aw(n))
Monomial matrix: permutation x diagonal.

e Monomials + field automorphism.

Two codes are equivalent if they are connected by an isometry.

We talk about permutation, linear and semilinear equivalence, respectively.

14/33

Code-Based Group Actions

3 Group Actions

Code equivalence can be described using generator (or parity-check) matrices. Clearly:

15/33

Code-Based Group Actions

3 Group Actions

Code equivalence can be described using generator (or parity-check) matrices. Clearly:

Co 5 ¢ <= 3(S,P) € Gly(q) x Sy st. Gy = SGoP,
LE
Co ~ € < 3(§,0) € GLk(q) x Mp(q) st. G1 = SGy0,

where P is a permutation matrix, and Q a monomial matrix.

15/33

Code-Based Group Actions

3 Group Actions

Code equivalence can be described using generator (or parity-check) matrices. Clearly:

Co 5 ¢ <= 3(S,P) € Gly(q) x Sy st. Gy = SGoP,
LE
Co ~ € < 3(§,0) € GLk(q) x Mp(q) st. G1 = SGy0,

where P is a permutation matrix, and Q a monomial matrix.

Can be seen as a group action of G = GLi(q) x My(q) on full-rank matrices in IFZX”.

15/33

Code-Based Group Actions

3 Group Actions

Code equivalence can be described using generator (or parity-check) matrices. Clearly:
Co 5 ¢ <= 3(S,P) € Gly(q) x Sy st. Gy = SGoP,
LE
Co ~ € < 3(§,0) € GLk(q) x Mp(q) st. G1 = SGy0,
where P is a permutation matrix, and Q a monomial matrix.

Can be seen as a group action of G = GLi(q) x My(q) on full-rank matrices in IF’;X”.

Code-based Group Action

*: gx X — X
((8,Q),G0) — 8GoQ

Can imagine G acting on codes if we choose canonical representation, i.e. systematic form.

15/33

Code-Based Group Actions

3 Group Actions

Code equivalence can be described using generator (or parity-check) matrices. Clearly:
Co 5 ¢ <= 3(S,P) € Gly(q) x Sy st. Gy = SGoP,
LE
Co ~ € < 3(§,0) € GLk(q) x Mp(q) st. G1 = SGy0,
where P is a permutation matrix, and Q a monomial matrix.

Can be seen as a group action of G = GLi(q) x My(q) on full-rank matrices in IF’;X”.

Code-based Group Action

*: gx X — X
((8,Q),G0) — 8GoQ

Can imagine G acting on codes if we choose canonical representation, i.e. systematic form.

In practice, we consider simply RREF(GoQ).

15/33

Code Equivalence Problems
3 Group Actions

The problem of deciding if two codes are equivalent is well-known in coding theory.

16/33

Code Equivalence Problems
3 Group Actions

The problem of deciding if two codes are equivalent is well-known in coding theory.

For our purpose, we are interested in the computational version: this is the vectorization
problem for our action.

16/33

Code Equivalence Problems
3 Group Actions

The problem of deciding if two codes are equivalent is well-known in coding theory.

For our purpose, we are interested in the computational version: this is the vectorization
problem for our action.

Permutation Equivalence Problem (PEP)

Given €y, € C FZ, find a permutation 7 such that 7(&) = €;. Equivalently, given
generators Gg, G; € IFZX”, find P € S, such that

Gy = RREF(GoP).

16/33

Code Equivalence Problems
3 Group Actions

The problem of deciding if two codes are equivalent is well-known in coding theory.

For our purpose, we are interested in the computational version: this is the vectorization
problem for our action.

Permutation Equivalence Problem (PEP)

Given €y, € C FZ, find a permutation 7 such that 7(&) = €;. Equivalently, given
generators Gg, G, € IE‘ZX", find P € S, such that

Gy = RREF(GoP).

Linear Equivalence Problem (LEP)

Given &g, €; C [y, find a monomial y such that 11(€p) = ;.
Equivalently, given generators Ggp, G; € IE"(;X", find Q € My(q) such that

G1 = RREF(GoQ).

16/33

Code Equivalence Problems
3 Group Actions

The problem of deciding if two codes are equivalent is well-known in coding theory.

For our purpose, we are interested in the computational version: this is the vectorization
problem for our action.

Permutation Equivalence Problem (PEP)

Given €y, € C FZ, find a permutation 7 such that 7(&) = €;. Equivalently, given
generators Gg, G, € IE‘ZX", find P € S, such that

Gy = RREF(GoP).

Linear Equivalence Problem (LEP)

Given &g, €; C [y, find a monomial y such that 11(€p) = ;.
Equivalently, given generators Ggp, G; € IE"(;X", find Q € My(q) such that

G1 = RREF(GoQ).

For practical applications, we are not interested in the semilinear version of the problem.

16/33

Roadmap

» LESS

17/33

Applications in Cryptography

4 LESS

Could Code Equivalence be used as a stand-alone problem?

18/33

Applications in Cryptography

4 LESS

Could Code Equivalence be used as a stand-alone problem?

The situation for isometries recalls that of other group actions, such as for DLP (although
without commutativity).

18/33

Applications in Cryptography

4 LESS

Could Code Equivalence be used as a stand-alone problem?

The situation for isometries recalls that of other group actions, such as for DLP (although
without commutativity).

This means several existing constructions could be adapted to be based on Code
Equivalence.

18/33

Applications in Cryptography

4 LESS

Could Code Equivalence be used as a stand-alone problem?

The situation for isometries recalls that of other group actions, such as for DLP (although
without commutativity).

This means several existing constructions could be adapted to be based on Code
Equivalence.

Possible to construct a ZK protocol based exclusively on the hardness of the code
equivalence problem.
(Biasse, Micheli, P., Santini, 2020)

18/33

Applications in Cryptography

4 LESS

Could Code Equivalence be used as a stand-alone problem?

The situation for isometries recalls that of other group actions, such as for DLP (although
without commutativity).

This means several existing constructions could be adapted to be based on Code
Equivalence.

Possible to construct a ZK protocol based exclusively on the hardness of the code
equivalence problem.
(Biasse, Micheli, P., Santini, 2020)

This can be then transformed into a full-fledged signature scheme via Fiat-Shamir.

18/33

Applications in Cryptography

4 LESS

Could Code Equivalence be used as a stand-alone problem?

The situation for isometries recalls that of other group actions, such as for DLP (although
without commutativity).

This means several existing constructions could be adapted to be based on Code
Equivalence.

Possible to construct a ZK protocol based exclusively on the hardness of the code
equivalence problem.
(Biasse, Micheli, P., Santini, 2020)

This can be then transformed into a full-fledged signature scheme via Fiat-Shamir.

Protocol can be tweaked to increase efficiency (e.g. multiple public keys, fixed-weight
challenges).

(Barenghi, Biasse, P., Santini, 2021)

18/33

Applications in Cryptography

4 LESS

Could Code Equivalence be used as a stand-alone problem?

The situation for isometries recalls that of other group actions, such as for DLP (although
without commutativity).

This means several existing constructions could be adapted to be based on Code
Equivalence.

Possible to construct a ZK protocol based exclusively on the hardness of the code
equivalence problem.
(Biasse, Micheli, P., Santini, 2020)

This can be then transformed into a full-fledged signature scheme via Fiat-Shamir.

Protocol can be tweaked to increase efficiency (e.g. multiple public keys, fixed-weight
challenges).

(Barenghi, Biasse, P., Santini, 2021)

Other applications (e.g. ring signatures) will not be discussed in this talk.

(Barenghi, Biasse, Ngo, P., Santini, 2022)

18/33

LESS ZK Identification Scheme

4 LESS

Public data: system params, hash function Hash, code € with generator Gg.

19/33

LESS ZK Identification Scheme

4 LESS

Public data: system params, hash function Hash, code € with generator Gg.

Key Generation

e SK: monomial matrix Q.
e PK: matrix G; = RREF(GoQ).

19/33

LESS ZK Identification Scheme

4 LESS

Public data: system params, hash function Hash, code € with generator Gg.

Key Generation

e SK: monomial matrix Q.
e PK: matrix G; = RREF(GoQ).

e Choose random monomial matrix Q € M,(q).
e Compute G = RREF(GoQ)
e Commit to cmt = Hash(G).

19/33

LESS ZK Identification Scheme

4 LESS
Public data: system params, hash function Hash, code € with generator Gg.

Key Generation

e SK: monomial matrix Q.
e PK: matrix G; = RREF(GoQ).

e Choose random monomial matrix Q € M,(q).
e Compute G = RREF(GoQ)
e Commit to cmt = Hash(G).

Challenge
e Choose random bit ch € {0, 1}.

19/33

LESS ZK Identification Scheme

4 LESS
Public data: system params, hash function Hash, code € with generator Gg.

Key Generation

e SK: monomial matrix Q.
e PK: matrix G; = RREF(GoQ).

Commit

e Choose random monomial matrix Q € M,(q).
e Compute G = RREF(GoQ)
e Commit to cmt = Hash(G).

Challenge
e Choose random bit ch € {0, 1}.
Response

e If ch = O respond with rsp = Q. .
e If ch = 1 respond with rsp = Q~1Q.

19/33

LESS ZK Identification Scheme

4 LESS

Public data: system params, hash function Hash, code € with generator Gg.

Key Generation

e SK: monomial matrix Q.
e PK: matrix G; = RREF(GoQ).

Commit

e Choose random monomial matrix Q € M,(q).
e Compute G = RREF(GoQ)
e Commit to cmt = Hash(G).

Challenge
e Choose random bit ch € {0, 1}.

Response

e If ch = O respond with rsp = Q. .
e If ch = 1 respond with rsp = Q~1Q.
Verify

e If ch = 0 verify that Hash(RREF(Gy - rsp)) = cmt.
e If ch = 1 verify that Hash(RREF(G; - rsp)) = cmt.

19/33

LESS Signatures

4 LESS

It is easy to prove that the ZK protocol is complete, 2-special sound and honest-verifier
zero-knowledge.

20/33

LESS Signatures

4 LESS

It is easy to prove that the ZK protocol is complete, 2-special sound and honest-verifier
zero-knowledge.

Before applying Fiat-Shamir, need to reduce soundness error — t = X parallel repetitions.

20/33

LESS Signatures

4 LESS

It is easy to prove that the ZK protocol is complete, 2-special sound and honest-verifier
zero-knowledge.

Before applying Fiat-Shamir, need to reduce soundness error — t = X parallel repetitions.

The protocol can be greatly improved with the following modifications:

20/33

LESS Signatures

4 LESS

It is easy to prove that the ZK protocol is complete, 2-special sound and honest-verifier
zero-knowledge.

Before applying Fiat-Shamir, need to reduce soundness error — t = X parallel repetitions.

The protocol can be greatly improved with the following modifications:

e Use non-binary challenges.

20/33

LESS Signatures

4 LESS

It is easy to prove that the ZK protocol is complete, 2-special sound and honest-verifier
zero-knowledge.

Before applying Fiat-Shamir, need to reduce soundness error — t = X parallel repetitions.

The protocol can be greatly improved with the following modifications:

e Use non-binary challenges.
+ Lower soundness error: 1/2 — 1/2°.

— Rapid increase in public key size.

20/33

LESS Signatures

4 LESS

It is easy to prove that the ZK protocol is complete, 2-special sound and honest-verifier
zero-knowledge.

Before applying Fiat-Shamir, need to reduce soundness error — t = X parallel repetitions.
The protocol can be greatly improved with the following modifications:
e Use non-binary challenges.

+ Lower soundness error: 1/2 — 1/2°.

— Rapid increase in public key size.

e Use a fixed-weight challenge string.

20/33

LESS Signatures

4 LESS

It is easy to prove that the ZK protocol is complete, 2-special sound and honest-verifier
zero-knowledge.

Before applying Fiat-Shamir, need to reduce soundness error — t = X parallel repetitions.
The protocol can be greatly improved with the following modifications:
e Use non-binary challenges.

+ Lower soundness error: 1/2 — 1/2°.

— Rapid increase in public key size.

Use a fixed-weight challenge string.
+ Exploits imbalance in cost of response: seed vs monomial.

— Larger number of iterations.

20/33

LESS Signatures

4 LESS

It is easy to prove that the ZK protocol is complete, 2-special sound and honest-verifier
zero-knowledge.

Before applying Fiat-Shamir, need to reduce soundness error — t = X parallel repetitions.
The protocol can be greatly improved with the following modifications:
e Use non-binary challenges.

+ Lower soundness error: 1/2 — 1/2°.

— Rapid increase in public key size.

e Use a fixed-weight challenge string.
+ Exploits imbalance in cost of response: seed vs monomial.

— Larger number of iterations.

Both modifications do not affect security, only require small tweaks in proofs.

20/33

Key Generation
4 LESS

Input: system params, code € with generator Gg.

21/33

Key Generation
4 LESS

Input: system params, code € with generator Gg.

Key Generation

Set SKO = In and PKO = Go.
Choose random seed seedg, € {0, 1}
Generate Q1, ..., Qs_1 from seedgy.
fori:=1tos—1
Set SK(i) = Q; and PK(i) = RREF(GoQ;).
Output SK = (SKo, ...,SKs—1) and PK = (PKy, ..., PK;_1).

ok WD

21/33

Key Generation
4 LESS

Input: system params, code € with generator Gg.

Key Generation

Set SKO = In and PKO = Go.
Choose random seed seedg, € {0, 1}
Generate Q1, ..., Qs_1 from seedgy.
fori:=1tos—1
Set SK(i) = Q; and PK(i) = RREF(GoQ;).
Output SK = (SKo, ...,SKs—1) and PK = (PKy, ..., PK;_1).

ok WD

Private key can be easily compressed to a single seed.

21/33

Input: system params, hash function Hash, private key SK, message msg.

22/33

Input: system params, hash function Hash, private key SK, message msg.

Choose random master seed mseed < {0, 1}

1.
2. Generate seedy, . . ., seed;_1 from mseed.

3. fori:=1tot—1

4. Generate O,- from seed;.

5. Compute G; = RREF(Go0;).

6. Setd = Hash(Go||...||G;—_1||msg).

7. Expand d to string (o, . . ., X—1) With w non-zero elements from [0; s — 1].
8. fori:=0tot—1

9. Setrsp; to either seed; (if x; = 0) or Qx_il@,- (otherwise).

. Output o = (rspo, ..., rsp;—1,d).

o

22/33

Input: system params, hash function Hash, private key SK, message msg.

Choose random master seed mseed < {0, 1}

1.
2. Generate seedy, . . ., seed;_1 from mseed.

3. fori:=1tot—1

4. Generate O,- from seed;.

5. Compute G; = RREF(Go0;).

6. Setd = Hash(Go||...||G;—_1||msg).

7. Expand d to string (o, . . ., X—1) With w non-zero elements from [0; s — 1].
8. fori:=0tot—1

9. Setrsp; to either seed; (if x; = 0) or Qx_il@,- (otherwise).

. Output o = (rspo, ..., rsp;—1,d).

o

The expand function (7.) is obtained via application of a PRNG, sampling uniformly at
random from the target set.

22/33

Input: system params, hash function Hash, public key PK, message msg, signature sigma.

23/33

Input: system params, hash function Hash, public key PK, message msg, signature sigma.

1. Expand d to string (o, . . . , Xr—1) with w non-zero elements from [0; s — 1].
2. fori:=1tot—1

3. Recover Q; from rsp;.

4. Compute G; = RREF(Gy,Q;).

5. Setd = Hash(Go|| .. .||G;—1||msg).

6. Output true if d = d’, or false otherwise.

23/33

Input: system params, hash function Hash, public key PK, message msg, signature sigma.

1. Expand d to string (o, . . . , Xr—1) with w non-zero elements from [0; s — 1].
2. fori:=1tot—1

3. Recover Q; from rsp;.

4. Compute G; = RREF(Gy,0;).

5. Setd = Hash(Go|| .. .||G;—1||msg).

6. Output true if d = d’, or false otherwise.

The recover function (3.) compactly describes: rsp is either already a monomial, or a
matrix can be obtained expanding a seed.

23/33

Roadmap

» Considerations

24/33

Security Considerations

5 Considerations

PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

25/33

Security Considerations

5 Considerations

PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

PEP is also deeply connected with Graph Isomorphism (Gl) (reductions in both ways!),
solvable in quasi-polynomial time.

25/33

Security Considerations

5 Considerations

PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

PEP is also deeply connected with Graph Isomorphism (Gl) (reductions in both ways!),
solvable in quasi-polynomial time.

At the same time, PEP is “not necessarily easy”.
(Petrank, Roth, 1997)

25/33

Security Considerations

5 Considerations

PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

PEP is also deeply connected with Graph Isomorphism (Gl) (reductions in both ways!),
solvable in quasi-polynomial time.

At the same time, PEP is “not necessarily easy”.
(Petrank, Roth, 1997)

PEP is a special case of LEP; indeed, with time O(q), we have

Reduces to

PEP <——— LEP

25/33

Security Considerations

5 Considerations

PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

PEP is also deeply connected with Graph Isomorphism (Gl) (reductions in both ways!),
solvable in quasi-polynomial time.

At the same time, PEP is “not necessarily easy”.
(Petrank, Roth, 1997)

PEP is a special case of LEP; indeed, with time O(q), we have

Reduces to

PEP <——— LEP

As a consequence, most solvers for PEP can be easily adapted to solve LEP as well.

25/33

Attack Strategy 1: Weak Instances

5 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

26/33

Attack Strategy 1: Weak Instances

5 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

e Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.

(Sendrier, 2000)

26/33

Attack Strategy 1: Weak Instances

5 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

e Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.

(Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.

H(C) =¢net

26/33

Attack Strategy 1: Weak Instances

5 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

e Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.

(Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.
H(C)=¢cnet

If €1 = 7 (o), then H(€1) = m(H(¢o)); running in O(q").

26/33

Attack Strategy 1: Weak Instances

5 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

e Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.

(Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.
H(C)=¢cnet

If €1 = 7 (o), then H(€1) = m(H(¢o)); running in O(q").

Random codes tend to have small hulls, which makes attack practical.

26/33

Attack Strategy 1: Weak Instances

5 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

e Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.

(Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.
H(C)=¢cnet

If €1 = 7 (o), then H(€1) = m(H(¢o)); running in O(q").

Random codes tend to have small hulls, which makes attack practical.
* Use (weakly) self-dual codes to avoid attack.

26/33

Attack Strategy 1: Weak Instances

5 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

e Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.

(Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.
H(C)=¢cnet

If €1 = 7 (o), then H(€1) = m(H(¢o)); running in O(q").

Random codes tend to have small hulls, which makes attack practical.

* Use (weakly) self-dual codes to avoid attack.
* To solve LEP, need to target closure of the code; these are always self-dual for ¢ > 5.

26/33

Attack Strategy 1: Weak Instances

5 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

e Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.

(Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.
H(C)=¢cnet

If €1 = 7 (o), then H(€1) = m(H(¢o)); running in O(q").

Random codes tend to have small hulls, which makes attack practical.
* Use (weakly) self-dual codes to avoid attack.
* To solve LEP, need to target closure of the code; these are always self-dual for ¢ > 5.

e Algebraic approaches of different nature, for example:

26/33

Attack Strategy 1: Weak Instances

5 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

e Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.

(Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.
H(C)=¢cnet

If €1 = 7 (o), then H(€1) = m(H(¢o)); running in O(q").

Random codes tend to have small hulls, which makes attack practical.
* Use (weakly) self-dual codes to avoid attack.
* To solve LEP, need to target closure of the code; these are always self-dual for ¢ > 5.

e Algebraic approaches of different nature, for example:
* Set up a system of equations, solve via Grébner basis. (Saeed-Taha, 2017)

26/33

Attack Strategy 1: Weak Instances

5 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

e Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.

(Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.
H(C)=¢cnet

If €1 = 7 (o), then H(€1) = m(H(¢o)); running in O(q").

Random codes tend to have small hulls, which makes attack practical.
* Use (weakly) self-dual codes to avoid attack.
* To solve LEP, need to target closure of the code; these are always self-dual for ¢ > 5.

e Algebraic approaches of different nature, for example:

* Set up a system of equations, solve via Grébner basis. (Saeed-Taha, 2017)
* Exploit reduction to graph isomorphism. (Bardet et al., 2020)

26/33

Attack Strategy 1: Weak Instances

5 Considerations

Exploit a variety of properties, give rise to (potentially) most efficient solvers.

e Support Splitting Algorithm (SSA) looks for invariants to distinguish equivalent codes.

(Sendrier, 2000)

Weight Enumerator Function (WEF) is one, but too expensive; compute on hull.
H(C)=¢cnet

If €1 = 7 (o), then H(€1) = m(H(¢o)); running in O(q").

Random codes tend to have small hulls, which makes attack practical.

* Use (weakly) self-dual codes to avoid attack.
* To solve LEP, need to target closure of the code; these are always self-dual for ¢ > 5.

e Algebraic approaches of different nature, for example:

* Set up a system of equations, solve via Grébner basis. (Saeed-Taha, 2017)
* Exploit reduction to graph isomorphism. (Bardet et al., 2020)

These are only efficient (or applicable in the first place) if hull is trivial.

26/33

Attack Strategy 2: Codeword Search

5 Considerations

Action of 7 can be guessed from the set of all codewords with small weight w. (Leon, 1982)

27/33

Attack Strategy 2: Codeword Search

5 Considerations

Action of 7 can be guessed from the set of all codewords with small weight w. (Leon, 1982)

Moderate w guarantees no spurious solution and sufficiently low number of codewords.

27/33

Attack Strategy 2: Codeword Search

5 Considerations

Action of 7 can be guessed from the set of all codewords with small weight w. (Leon, 1982)
Moderate w guarantees no spurious solution and sufficiently low number of codewords.

In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.

27/33

Attack Strategy 2: Codeword Search

5 Considerations

Action of 7 can be guessed from the set of all codewords with small weight w. (Leon, 1982)
Moderate w guarantees no spurious solution and sufficiently low number of codewords.

In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.

The attack then consists of:

27/33

Attack Strategy 2: Codeword Search

5 Considerations

Action of 7 can be guessed from the set of all codewords with small weight w. (Leon, 1982)
Moderate w guarantees no spurious solution and sufficiently low number of codewords.

In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.

The attack then consists of:

e Finding codewords (use ISD).

27/33

Attack Strategy 2: Codeword Search

5 Considerations

Action of 7 can be guessed from the set of all codewords with small weight w. (Leon, 1982)
Moderate w guarantees no spurious solution and sufficiently low number of codewords.

In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.

The attack then consists of:
e Finding codewords (use ISD).

e Matching to extract permutation.

27/33

Attack Strategy 2: Codeword Search

5 Considerations

Action of 7 can be guessed from the set of all codewords with small weight w. (Leon, 1982)
Moderate w guarantees no spurious solution and sufficiently low number of codewords.

In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.

The attack then consists of:
e Finding codewords (use ISD).

e Matching to extract permutation.

Cost is ~ 2 log(Nw)Cisa(n, k, q, w) + linear algebra.

27/33

Attack Strategy 2: Codeword Search

5 Considerations

Action of 7 can be guessed from the set of all codewords with small weight w. (Leon, 1982)
Moderate w guarantees no spurious solution and sufficiently low number of codewords.

In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.

The attack then consists of:
e Finding codewords (use ISD).

e Matching to extract permutation.

Cost is ~ 2 log(Nw)Cisa(n, k, q, w) + linear algebra.

Permutations preserve multiset of entries = no need to find all words of weight w.
(Beullens, 2020)

27/33

Attack Strategy 2: Codeword Search

5 Considerations

Action of 7 can be guessed from the set of all codewords with small weight w. (Leon, 1982)
Moderate w guarantees no spurious solution and sufficiently low number of codewords.

In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.

The attack then consists of:
e Finding codewords (use ISD).

e Matching to extract permutation.

Cost is ~ 2 log(Nw)Cisa(n, k, q, w) + linear algebra.

Permutations preserve multiset of entries = no need to find all words of weight w.
(Beullens, 2020)

Probabilistic algorithm, advantageous only if q is large.

27/33

Attack Strategy 2: Codeword Search

5 Considerations

Action of 7 can be guessed from the set of all codewords with small weight w. (Leon, 1982)
Moderate w guarantees no spurious solution and sufficiently low number of codewords.
In practice, minimum distance plus 1 or 2 is enough to guarantee enough structure.

The attack then consists of:
e Finding codewords (use ISD).

e Matching to extract permutation.

Cost is ~ 2 log(Nw)Cisa(n, k, q, w) + linear algebra.

Permutations preserve multiset of entries = no need to find all words of weight w.
(Beullens, 2020)

Probabilistic algorithm, advantageous only if q is large.

Can obtain small improvement by carefully matching 2-dimensional subcodes instead.

(Barenghi, Biasse, P., Santini, 2023)

27/33

Information-Set Decoding

5 Considerations

An iterative procedure aimed at finding low-weight words. (prange, 1962)

28/33

Information-Set Decoding

5 Considerations

An iterative procedure aimed at finding low-weight words. (prange, 1962)

In a nutshell: guess information set to reveal (error) positions.

28/33

Information-Set Decoding

5 Considerations

An iterative procedure aimed at finding low-weight words. (prange, 1962)
In a nutshell: guess information set to reveal (error) positions.

Several improvements over the years:

28/33

Information-Set Decoding

5 Considerations

An iterative procedure aimed at finding low-weight words. (prange, 1962)
In a nutshell: guess information set to reveal (error) positions.

Several improvements over the years:
e Carefully allocating positions (e.g. allow errors in IS).

28/33

Information-Set Decoding

5 Considerations

An iterative procedure aimed at finding low-weight words. (prange, 1962)
In a nutshell: guess information set to reveal (error) positions.

Several improvements over the years:
e Carefully allocating positions (e.g. allow errors in IS).
e Looking for collisions.

28/33

Information-Set Decoding

5 Considerations

An iterative procedure aimed at finding low-weight words. (prange, 1962)
In a nutshell: guess information set to reveal (error) positions.

Several improvements over the years:
e Carefully allocating positions (e.g. allow errors in IS).
e Looking for collisions.
e Using representations (e.g. 1 + 1 = 0).

28/33

Information-Set Decoding

5 Considerations

An iterative procedure aimed at finding low-weight words. (prange, 1962)
In a nutshell: guess information set to reveal (error) positions.

Several improvements over the years:
e Carefully allocating positions (e.g. allow errors in IS).
e Looking for collisions.
e Using representations (e.g. 1 +1 = 0).
e Considering nearest neighbors.

28/33

Information-Set Decoding

5 Considerations

An iterative procedure aimed at finding low-weight words. (prange, 1962)
In a nutshell: guess information set to reveal (error) positions.

Several improvements over the years:
e Carefully allocating positions (e.g. allow errors in IS).
e Looking for collisions.
e Using representations (e.g. 1 +1 = 0).
e Considering nearest neighbors.

28/33

Information-Set Decoding

5 Considerations

An iterative procedure aimed at finding low-weight words. (prange, 1962)
In a nutshell: guess information set to reveal (error) positions.

Several improvements over the years:
e Carefully allocating positions (e.g. allow errors in IS).
e Looking for collisions.
e Using representations (e.g. 1 +1 = 0).
e Considering nearest neighbors.
o ...

Running time is 2”W(1+°(1)) , Wwhere depends on rate R and w/n. (canto Torres, Sendrier, 2016)

28/33

Information-Set Decoding

5 Considerations

An iterative procedure aimed at finding low-weight words. (prange, 1962)
In a nutshell: guess information set to reveal (error) positions.

Several improvements over the years:

e Carefully allocating positions (e.g. allow errors in IS).
e Looking for collisions.

e Using representations (e.g. 1 +1 = 0).
e Considering nearest neighbors.

Running time is 2”W(1+°(1)) , Wwhere depends on rate R and w/n. (canto Torres, Sendrier, 2016)
When w = o(n), asymptotically « is the the same for all algorithms:

k = —loga(1 —R)

28/33

Information-Set Decoding

5 Considerations

An iterative procedure aimed at finding low-weight words. (prange, 1962)
In a nutshell: guess information set to reveal (error) positions.

Several improvements over the years:

e Carefully allocating positions (e.g. allow errors in IS).
e Looking for collisions.

e Using representations (e.g. 1 +1 = 0).

e Considering nearest neighbors.

Running time is 2”W(1+°(1)) , Wwhere depends on rate R and w/n. (canto Torres, Sendrier, 2016)
When w = o(n), asymptotically « is the the same for all algorithms:

k = —loga(1 —R)

Improvements to Prange are only polynomial in n. They also come at a high memory cost.

28/33

Information-Set Decoding

5 Considerations

An iterative procedure aimed at finding low-weight words. (prange, 1962)
In a nutshell: guess information set to reveal (error) positions.

Several improvements over the years:

e Carefully allocating positions (e.g. allow errors in IS).
e Looking for collisions.

e Using representations (e.g. 1 +1 = 0).

e Considering nearest neighbors.

Running time is 2”W(1+°(1)) , Wwhere depends on rate R and w/n. (canto Torres, Sendrier, 2016)
When w = o(n), asymptotically « is the the same for all algorithms:

k = —loga(1 —R)

Improvements to Prange are only polynomial in n. They also come at a high memory cost.

Easy to adapt “early” variants to Iy, q > 3, e.g. Stern’s.(peters, 2010)

28/33

Information-Set Decoding

5 Considerations

An iterative procedure aimed at finding low-weight words. (prange, 1962)
In a nutshell: guess information set to reveal (error) positions.

Several improvements over the years:

Carefully allocating positions (e.g. allow errors in IS).
Looking for collisions.

Using representations (e.g. 1 + 1 = 0).

Considering nearest neighbors.

Running time is 2”W(1+°(1)) , Wwhere depends on rate R and w/n. (canto Torres, Sendrier, 2016)
When w = o(n), asymptotically « is the the same for all algorithms:

k = —loga(1 —R)

Improvements to Prange are only polynomial in n. They also come at a high memory cost.
Easy to adapt “early” variants to Iy, q > 3, e.g. Stern’s.(peters, 2010)
Gain from advanced techniques deteriorates quickly for increasing values of q.(Meurer, 2013)

28/33

Design Considerations

5 Considerations

We parametrize using latter type of attacks, following conservative criterion. Namely, we
pick n, k, q so that, for any d and any w, we have:

VNg(w) - Cl(sdg(n,k,q,w) > 2N,

29/33

Design Considerations

5 Considerations

We parametrize using latter type of attacks, following conservative criterion. Namely, we
pick n, k, q so that, for any d and any w, we have:

VNg(w) - Cl(sdg(n,k,q,w) > 2N,

The design of LESS allows for high degree of flexibility and customizable features
according to goal.

29/33

Design Considerations

5 Considerations

We parametrize using latter type of attacks, following conservative criterion. Namely, we
pick n, k, q so that, for any d and any w, we have:

VNg(w) - Cl(sdg(n,k,q,w) > 2N,

The design of LESS allows for high degree of flexibility and customizable features
according to goal.

We select two parameter sets per category level:

29/33

Design Considerations

5 Considerations

We parametrize using latter type of attacks, following conservative criterion. Namely, we
pick n, k, q so that, for any d and any w, we have:

VNg(w) - Cl(sdg(n,k,q,w) > 2N,

The design of LESS allows for high degree of flexibility and customizable features
according to goal.

We select two parameter sets per category level:

e Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.

29/33

Design Considerations

5 Considerations

We parametrize using latter type of attacks, following conservative criterion. Namely, we
pick n, k, q so that, for any d and any w, we have:

VNg(w) - Cl(sdg(n,k,q,w) > 2N,

The design of LESS allows for high degree of flexibility and customizable features
according to goal.

We select two parameter sets per category level:
e Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.

e Short: sacrifices PK size to push for smallest signature.

29/33

Design Considerations

5 Considerations

We parametrize using latter type of attacks, following conservative criterion. Namely, we
pick n, k, q so that, for any d and any w, we have:

VNg(w) - Cl(sdg(n,k,q,w) > 2N,

The design of LESS allows for high degree of flexibility and customizable features
according to goal.

We select two parameter sets per category level:
e Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.

e Short: sacrifices PK size to push for smallest signature.

We use SHAKE as our PRNG and SHA-3 for the collision-resistant hash function Hash.

29/33

Design Considerations

5 Considerations

We parametrize using latter type of attacks, following conservative criterion. Namely, we
pick n, k, q so that, for any d and any w, we have:

VNg(w) - Cl(sdg(n,k,q,w) > 2N,

The design of LESS allows for high degree of flexibility and customizable features
according to goal.

We select two parameter sets per category level:
e Balanced: yields similar sizes for PK and signature, e.g. minimizing their sum.

e Short: sacrifices PK size to push for smallest signature.

We use SHAKE as our PRNG and SHA-3 for the collision-resistant hash function Hash.

We compactly generate and transmit seeds using a seed tree structure.

29/33

Sizes and Timings

5 Considerations

Protocol parameters (t, w, s) infer performance profile:

30/33

Sizes and Timings

5 Considerations

Protocol parameters (t, w, s) infer performance profile:

Seed Tree
Yes No
NIST Parameter Code Params. Prot. Params. Prot. Params.
Cat. Set n k q t w s PK (kB) Sig (kB) t w s PK (kB) Sig (kB)

Balanced | 252 126 127 | 1053 18 2 13.7 6.1 247 30 2 13.7 10.8
Short 252 126 127 | 1263 9 64 | 862.4 3.3 46 15 64 | 862.4 4.2

Balanced | 468 234 31 | 1776 26 2 33.7 14.8 377 44 2 33.7 26.5
Short 400 200 127 | 1297 14 64 | 2167.2 8 72 22 64 | 2167.2 10.3

Balanced | 636 318 31 | 2518 34 2 62.1 27.5 525 57 2 62.1 49.7
Short 506 253 509 | 2300 18 64 | 4447.9 14.6 116 28 64 | 4447.9 19.3

30/33

Sizes and Timings

5 Considerations

Protocol parameters (t, w, s) infer performance profile:

Seed Tree
Yes No
NIST Parameter Code Params. Prot. Params. Prot. Params.
Cat. Set n k q t w s PK (kB) Sig (kB) t w s PK (kB) Sig (kB)

Balanced | 252 126 127 | 1053 18 2 13.7 6.1 247 30 2 13.7 10.8
Short 252 126 127 | 1263 9 64 | 862.4 3.3 46 15 64 | 862.4 4.2

Balanced | 468 234 31 | 1776 26 2 33.7 14.8 377 44 2 33.7 26.5
Short 400 200 127 | 1297 14 64 | 2167.2 8 72 22 64 | 2167.2 10.3

Balanced | 636 318 31 | 2518 34 2 62.1 27.5 525 57 2 62.1 49.7
Short 506 253 509 | 2300 18 64 | 4447.9 14.6 116 28 64 | 4447.9 19.3

Runtime is dominated by RREF computation, for both Keygen and Sign/Verify.

30/33

Sizes and Timings

5 Considerations

Protocol parameters (t, w, s) infer performance profile:

Seed Tree
Yes No
NIST Parameter Code Params. Prot. Params. Prot. Params.
Cat. Set n k q t w s PK (kB) Sig (kB) t w s PK (kB) Sig (kB)

Balanced | 252 126 127 | 1053 18 2 13.7 6.1 247 30 2 13.7 10.8
Short 252 126 127 | 1263 9 64 | 862.4 3.3 46 15 64 | 862.4 4.2

Balanced | 468 234 31 | 1776 26 2 33.7 14.8 377 44 2 33.7 26.5
Short 400 200 127 | 1297 14 64 | 2167.2 8 72 22 64 | 2167.2 10.3

Balanced | 636 318 31 | 2518 34 2 62.1 27.5 525 57 2 62.1 49.7
Short 506 253 509 | 2300 18 64 | 4447.9 14.6 116 28 64 | 4447.9 19.3

Runtime is dominated by RREF computation, for both Keygen and Sign/Verify.

This yields timings with contrasting behavior. For our reference code:

30/33

Sizes and Timings

5 Considerations

Protocol parameters (t, w, s) infer performance profile:

Seed Tree
Yes No
NIST Parameter Code Params. Prot. Params. Prot. Params.
Cat. Set n k q t w s PK (kB) Sig (kB) t w s PK (kB) Sig (kB)

Balanced | 252 126 127 | 1053 18 2 13.7 6.1 247 30 2 13.7 10.8
Short 252 126 127 | 1263 9 64 | 862.4 3.3 46 15 64 | 862.4 4.2

Balanced | 468 234 31 | 1776 26 2 33.7 14.8 377 44 2 33.7 26.5
Short 400 200 127 | 1297 14 64 | 2167.2 8 72 22 64 | 2167.2 10.3

Balanced | 636 318 31 | 2518 34 2 62.1 27.5 525 57 2 62.1 49.7
Short 506 253 509 | 2300 18 64 | 4447.9 14.6 116 28 64 | 4447.9 19.3

Runtime is dominated by RREF computation, for both Keygen and Sign/Verify.

This yields timings with contrasting behavior. For our reference code:
e Balanced, Cat. 1: Keygen =~ 8 Mcycles, Sign/Verify ~ 834 Mcycles

30/33

Sizes and Timings

5 Considerations

Protocol parameters (t, w, s) infer performance profile:

Seed Tree
Yes No
NIST Parameter Code Params. Prot. Params. Prot. Params.
Cat. Set n k q t w s PK (kB) Sig (kB) t w s PK (kB) Sig (kB)

Balanced | 252 126 127 | 1053 18 2 13.7 6.1 247 30 2 13.7 10.8
Short 252 126 127 | 1263 9 64 | 862.4 3.3 46 15 64 | 862.4 4.2

Balanced | 468 234 31 | 1776 26 2 33.7 14.8 377 44 2 33.7 26.5
Short 400 200 127 | 1297 14 64 | 2167.2 8 72 22 64 | 2167.2 10.3

Balanced | 636 318 31 | 2518 34 2 62.1 27.5 525 57 2 62.1 49.7
Short 506 253 509 | 2300 18 64 | 4447.9 14.6 116 28 64 | 4447.9 19.3

Runtime is dominated by RREF computation, for both Keygen and Sign/Verify.

This yields timings with contrasting behavior. For our reference code:
e Balanced, Cat. 1: Keygen =~ 8 Mcycles, Sign/Verify ~ 834 Mcycles
e Short, Cat. 1: Keygen =~ 205 Mcycles, Sign/Verify ~ 115 Mcycles

30/33

Performance Considerations

5 Considerations

The flexibility of LESS allows multiple options for deployment.

"This is optimized code.

31/33

Performance Considerations

5 Considerations

The flexibility of LESS allows multiple options for deployment.

For instance, can fit on a microcontroller (PK + Sig < 20 kB) or push for ~ 3 kB signature.

"This is optimized code.

31/33

Performance Considerations

5 Considerations

The flexibility of LESS allows multiple options for deployment.
For instance, can fit on a microcontroller (PK + Sig < 20 kB) or push for ~ 3 kB signature.

Our balanced set is competitive with SPHINCS+. For Cat. 1:

"This is optimized code.

31/33

Performance Considerations

5 Considerations

The flexibility of LESS allows multiple options for deployment.
For instance, can fit on a microcontroller (PK + Sig < 20 kB) or push for ~ 3 kB signature.

Our balanced set is competitive with SPHINCS+. For Cat. 1:
e Sizes: signature 7.8 kB (“small”) or 17 kB (“fast”), public key very small.

"This is optimized code.

31/33

Performance Considerations

5 Considerations

The flexibility of LESS allows multiple options for deployment.
For instance, can fit on a microcontroller (PK + Sig < 20 kB) or push for ~ 3 kB signature.

Our balanced set is competitive with SPHINCS+. For Cat. 1:
e Sizes: signature 7.8 kB (“small”) or 17 kB (“fast”), public key very small.
e Timings: Keygen 9-1195 Mcycles, Sign 239-8995 Mcycles, Verify 4.7-28 Mcycles.

"This is optimized code.

31/33

Performance Considerations

5 Considerations

The flexibility of LESS allows multiple options for deployment.
For instance, can fit on a microcontroller (PK + Sig < 20 kB) or push for ~ 3 kB signature.

Our balanced set is competitive with SPHINCS+. For Cat. 1:
e Sizes: signature 7.8 kB (“small”) or 17 kB (“fast”), public key very small.
e Timings: Keygen 9-1195 Mcycles, Sign 239-8995 Mcycles, Verify 4.7-28 Mcycles.

Our short set compares well with e.g. Wave(let). For Cat. 1:

"This is optimized code.

31/33

Performance Considerations

5 Considerations

The flexibility of LESS allows multiple options for deployment.
For instance, can fit on a microcontroller (PK + Sig < 20 kB) or push for ~ 3 kB signature.

Our balanced set is competitive with SPHINCS+. For Cat. 1:
e Sizes: signature 7.8 kB (“small”) or 17 kB (“fast”), public key very small.
e Timings: Keygen 9-1195 Mcycles, Sign 239-8995 Mcycles, Verify 4.7-28 Mcycles.

Our short set compares well with e.g. Wave(let). For Cat. 1:
e Sizes: signature ~ 1 kB, public key ~ 3.1 MB.

"This is optimized code.

31/33

Performance Considerations

5 Considerations

The flexibility of LESS allows multiple options for deployment.
For instance, can fit on a microcontroller (PK + Sig < 20 kB) or push for ~ 3 kB signature.

Our balanced set is competitive with SPHINCS+. For Cat. 1:
e Sizes: signature 7.8 kB (“small”) or 17 kB (“fast”), public key very small.
e Timings: Keygen 9-1195 Mcycles, Sign 239-8995 Mcycles, Verify 4.7-28 Mcycles.

Our short set compares well with e.g. Wave(let). For Cat. 1:
e Sizes: signature ~ 1 kB, public key ~ 3.1 MB.
e Timings': Keygen 7400 Mcycles, Sign 1644 Mcycles, Verify 5 Mcycles.

"This is optimized code.

31/33

Performance Considerations

5 Considerations

The flexibility of LESS allows multiple options for deployment.
For instance, can fit on a microcontroller (PK + Sig < 20 kB) or push for ~ 3 kB signature.

Our balanced set is competitive with SPHINCS+. For Cat. 1:
e Sizes: signature 7.8 kB (“small”) or 17 kB (“fast”), public key very small.
e Timings: Keygen 9-1195 Mcycles, Sign 239-8995 Mcycles, Verify 4.7-28 Mcycles.

Our short set compares well with e.g. Wave(let). For Cat. 1:
e Sizes: signature ~ 1 kB, public key ~ 3.1 MB.
e Timings': Keygen 7400 Mcycles, Sign 1644 Mcycles, Verify 5 Mcycles.

There is ample room for improvement in our implementation:

"This is optimized code.

31/33

Performance Considerations

5 Considerations

The flexibility of LESS allows multiple options for deployment.
For instance, can fit on a microcontroller (PK + Sig < 20 kB) or push for ~ 3 kB signature.

Our balanced set is competitive with SPHINCS+. For Cat. 1:
e Sizes: signature 7.8 kB (“small”) or 17 kB (“fast”), public key very small.
e Timings: Keygen 9-1195 Mcycles, Sign 239-8995 Mcycles, Verify 4.7-28 Mcycles.

Our short set compares well with e.g. Wave(let). For Cat. 1:
e Sizes: signature ~ 1 kB, public key ~ 3.1 MB.
e Timings': Keygen 7400 Mcycles, Sign 1644 Mcycles, Verify 5 Mcycles.

There is ample room for improvement in our implementation:
e This week: about 5x speed-up for Cat. 1 parameters by tuning 64-bit arithmetic.

"This is optimized code.

31/33

Performance Considerations

5 Considerations

The flexibility of LESS allows multiple options for deployment.
For instance, can fit on a microcontroller (PK + Sig < 20 kB) or push for ~ 3 kB signature.

Our balanced set is competitive with SPHINCS+. For Cat. 1:
e Sizes: signature 7.8 kB (“small”) or 17 kB (“fast”), public key very small.
e Timings: Keygen 9-1195 Mcycles, Sign 239-8995 Mcycles, Verify 4.7-28 Mcycles.

Our short set compares well with e.g. Wave(let). For Cat. 1:
e Sizes: signature ~ 1 kB, public key ~ 3.1 MB.
e Timings': Keygen 7400 Mcycles, Sign 1644 Mcycles, Verify 5 Mcycles.

There is ample room for improvement in our implementation:
e This week: about 5x speed-up for Cat. 1 parameters by tuning 64-bit arithmetic.
e Further gains exploiting e.g. vectorization.

"This is optimized code.

31/33

Additional Optimizations

5 Considerations

It is possible to further reduce signature size using a couple of additional techniques:

32/33

Additional Optimizations

5 Considerations

It is possible to further reduce signature size using a couple of additional techniques:

e Moving from monomials to permutations.

32/33

Additional Optimizations

5 Considerations

It is possible to further reduce signature size using a couple of additional techniques:

e Moving from monomials to permutations.

This requires a few small design modifications (e.g. using self-dual codes) and will be
integrated for the final submission (June).

32/33

Additional Optimizations

5 Considerations

It is possible to further reduce signature size using a couple of additional techniques:

e Moving from monomials to permutations.

This requires a few small design modifications (e.g. using self-dual codes) and will be
integrated for the final submission (June).

e Compact commitment and verification exploiting information sets.

32/33

Additional Optimizations

5 Considerations

It is possible to further reduce signature size using a couple of additional techniques:

e Moving from monomials to permutations.

This requires a few small design modifications (e.g. using self-dual codes) and will be
integrated for the final submission (June).

e Compact commitment and verification exploiting information sets.

Can transmit partial action and then reconstruct permutation/monomial.

32/33

Additional Optimizations

5 Considerations

It is possible to further reduce signature size using a couple of additional techniques:

e Moving from monomials to permutations.
This requires a few small design modifications (e.g. using self-dual codes) and will be
integrated for the final submission (June).

e Compact commitment and verification exploiting information sets.
Can transmit partial action and then reconstruct permutation/monomial.

This variant is already considered in our document, but not yet implemented.

32/33

Additional Optimizations

5 Considerations

It is possible to further reduce signature size using a couple of additional techniques:

e Moving from monomials to permutations.

This requires a few small design modifications (e.g. using self-dual codes) and will be
integrated for the final submission (June).

e Compact commitment and verification exploiting information sets.
Can transmit partial action and then reconstruct permutation/monomial.

This variant is already considered in our document, but not yet implemented.

Optimized implementations (e.g. ARM, possibly hardware) are also a target for June.

32/33

Thank you for listening!
Any questions?

33/33

	Background
	Code-based Signatures
	Group Actions
	LESS
	Considerations

