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1 Introduction

This document presents Biscuit, a new multivariate Digital Signature Scheme (DSS) based on the
hardness of solving a set of hard structured algebraic equations. Biscuit is in the lineage of the
MQDSS [24, 23] and Picnic [21, 68] signature schemes that were submitted to the previous NIST

post-quantum cryptography (PQC) standardization process [22, 62]. The high-level framework of
Biscuit is similar to MQDSS and Picnic. It is derived from a Zero-Knowledge Proof-of-Knowledge
(ZKPoK) using the Fiat-Shamir transform [38].

The central building block of MQDSS is a ZKPoK for the problem of solving a system of non-linear
quadratic equations over a finite field Fq (MQq problem). Biscuit differs from MQDSS as it relies on
special structured polynomials. The crucial hardness assumption underlying the design of Biscuit
is that structured equations considered in Biscuit, which are roughly power of random affine forms
(PowAff2 problem), are generics and as difficult to solve as random instances of MQq for Gröbner
bases algorithms [19, 18].

From Picnic, we borrow the uses of Multi-Party Computation (MPC) techniques, in particular the
so-called MPC-in-the-Head (MPCitH) approach [50, 46, 54], that was used to derive a ZKPoK for a
block-cipher key-recovery problem. Biscuit relies on a different hard problem, but borrows from
Picnic the uses of MPCitH-based proof system to derive ZKPoK. In particular, Biscuit is based on
MPCitH-based proof systems, BN [9] and some optimizations from BN++ [53], that allow generating
a ZK proof for the pre-image of an arbitrary arithmetic circuit defined over F.

The signature size of a DSS derived from a MPCitH-based proof system is usually related to the
number of multiplications required to evaluate the circuit. This motivates the use of systems of
algebraic equations generated by the power of affine forms. Such systems can be evaluated using a
much smaller number of multiplications than random algebraic equations while not being easier to
solve for generic algorithms. This leads to a scheme with the following practical features :

Name
Size (bytes) Performance (cycles)

sk pk sig keygen sign verify

biscuit128s 115 50 4 758 82 632 80 555 671 78 899 797
biscuit192s 158 69 11 349 210 159 724 466 241 714 947 231
biscuit256s 212 93 20 192 332 165 1 291 111 734 1 274 568 395

Table 1: Time performance of Biscuit-short.

Name
Size (bytes) Performance (cycles)

sk pk sig keygen sign verify

biscuit128f 115 50 6 726 82 505 9 653 412 8 734 302
biscuit192f 158 69 15 129 210 150 81 492 308 75 826 788
biscuit256f 212 93 27 348 353 223 147 099 575 137 359 832

Table 2: Time perfomance of Biscuit-fast.

After this introduction, the document is divided as follows.

4



• Section 2 presents notation and basic concepts.

• Section 3 introduces the hard problem considered in Biscuit, the so-called PowAff2 problem,
and provides a high-level description of the main components of Biscuit, including a new MPC

protocol for PowAff2.

• Section 4 is a detailed specification of Biscuit and also performance estimations.

• Section 5 considers various attacks against Biscuit and algorithms for solving PowAff2. In
particular, it leads to an improved method to compute the number of iterations required for
our MPC protocol.

• We conclude the document with a discussion on the advantages and limitations of Biscuit.

Acknowledgements. The Biscuit team would like to thank Daniel Escudero for spending a
significant amount of time in the initial preparation of Biscuit and discussions on the use of MPC in
multivariate cryptography.

The third author would like to thank Google which partially supported this work thanks to a gift
for supporting post-quantum research and Mohab Safey El Din for insightful discussions on the
hardness and genericity of PowAff2.

2 Notation and Basic Concepts

Notation

All over this document, we repetitively use the following notation:

• λ: the security parameter.

• Fq: a finite field of q elements.

• Fm
q : denotes the vector space of dimension m over Fq.

• Fq[x1, . . . , xn]: denotes the ring of polynomials in the variables x1, . . . , xn over the field Fq.

• [n]: the set {1, . . . , n} for an integer n.

• JaK: an additive sharing of an element a in a ring.

• JaKi: the i-th coordinate of a sharing JaK.

• a← A(x) : indicates that a is the output of an algorithm A on input x.

• a
$← S: means that a is sampled uniformly at random from a set S.

• Bold lower-case letters denote vectors. Given t ∈ Fm
q , then (t1, . . . , tm) ∈ Fm

q denotes the
vector of coordinates of t in the canonical basis.

• x + y: denotes the element-wise addition.
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• x⊙ y: denotes the element-wise product.

• ∥ the concatenation of two vectors or two byte strings.

In the whole document, we use the following concepts.

Multi-party computation

• A multi-party computation(MPC) protocol is a protocol executed by a set of N parties knowing
a public function f . Its goal is to compute an image z = f(x1, . . . , xN ), where the value xi is
only known by the i-th party. An MPC protocol is considered secure and correct if, at the end
of the protocol, every party i knows z, and no information about its secret input value xi is
revealed to the other parties.

• An additive sharing of an element a in a ring is a tuple JaK := (JaK1 , . . . , JaKN ) such that

a =
∑N

i=1 JaKi. Each JaKi is called a share of a. Throughout this document, we use the word
sharing to refer to additive sharing.

• A set of N parties shares an element a: Every party i knows a value JaKi, and the tuple
JaK = (JaK1 , . . . , JaKN ) is a sharing of a.

• We say that a set of parties open a shared value α to indicate that every party i broadcasts
its own share JαKi to the other parties. Hence, all the parties obtain α.

• Let a, b, and c be elements in a ring. Suppose a and b are shared between a set of N parties,
and all the parties know c. Then, the parties can compute sharings of a + b and c · a by
the following procedure: Every party i ∈ [N ] computes JaKi + JbKi and c · JaKi, respectively.
However, to compute a sharing of a + c, the party i ̸= 1 holds its share JaKi, and only the
party i = 1 computes JaK1 + c.

• We say that the triple (JzK , JxK , JyK) ⊂ Fq is a multiplicative triple if it holds that z = x · y.

MPC-in-the-Head

The MPC-in-the-Head (MPCitH) technique is a widely used method to build signature schemes from
MPC protocols. It was introduced in 2007 by Ishai, Kushilevitz, Ostrovsky, and Sahai in [49]. They
showed how to build robust Zero-Knowledge Proof-of-Knowledge (ZKPoK) for various computational
problems originating from MPC protocols. Then, the ZKPoK is turned into a Digital Signature Scheme
(DSS) by using the classical Fiat-Shamir transformation [38]. Biscuit follows this design strategy.

3 High Level Description

This section provides a general view of the design of Biscuit.
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3.1 The PowAff2 Problem

The primary hard problem considered in Biscuit is the problem of solving multivariate equations
defined as the product of two affine forms. This problem is parameterized by a tuple of positive
integers (n,m, q), denoted as PowAff2.

Definition 1 (The PowAff2 problem). Given t = (t1, . . . , tm) ∈ Fm
q and affine forms

Ak,j(x1, . . . , xn) ∈ Fq[x1, . . . , xn] with k ∈ [m] and 0 ≤ j ≤ 2, i.e.,

Ak,j = a
(k,j)
0 +

n∑
i=1

a
(k,j)
i xi, with a

(k,j)
0 , . . . , a(k,j)n ∈ Fq. (1)

The PowAff2 problem asks to find – if any – a vector (s1, . . . , sn) ∈ Fn
q such that:

f1(s1, . . . , sn) = t1, . . . , fm(s1, . . . , sn) = tm,

where fk(x1, . . . , xn) = Ak,0(x1, . . . , xn) +
∏2

j=1Ak,j(x1, . . . , xn), for all k ∈ [m]

PowAff2 problem can be seen as a structured variant of the problem of solving m quadratic equations
in Fq[x1, . . . , xn], i.e. the Multivariate Quadratic (MQq) problem. It is known to be NP-Hard [44],
and its hardness, in the average case, has been widely studied in the literature [10]. Hence, solving
random instances of MQq is widely considered as a hard computational problem.

When m = n and for a sufficiently big field, we prove that polynomials as in the PowAff2 problem
behave as generic quadratic polynomials (see Theorem 3). This is also expected to be the case for
m > n [61], which is the setting considered in Biscuit. However, a formal proof of that is equivalent
to solving the Fröberg conjecture [39, 4, 1], which is a long-standing problem in commutative
algebra. Thus, solving random instances of the PowAff2 problem would be as hard as random
instances of the MQq problem against generic algorithms.

Being secure against generic algorithms for the MQq problem does not exclude the possibility of
having potentially new faster algorithms that take into account the structure of the equations or
the knowledge of the affine maps Ai,j . For instance, we can do a faster exhaustive search (see
Section 5.2.2). However, polynomial systems with the structure of the PowAff2 problem have
been extensively studied before in post-quantum cryptography. They appear on algebraic attacks
assumption against the Learning With Errors (LWE) problem with binary errors [1, 2] (which reduces
to standard LWE [60], one of the main problems in lattice-based cryptography). Therefore, we are
confident in the hardness of the PowAff2 problem.

3.2 Multi-Party Protocol for PowAff2

In this section, we describe our MPC protocol to verify a solution of the PowAff2 problem given
quadratic polynomials f = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]m and a target vector t ∈ Fm

q as defined in
Definition 1.

The protocol is described in Figure 1, and it is run by N parties sharing a vector s ∈ Fn
q . It is

assumed that every party knows the target vector t and the affine forms Ak,0, Ak,1 and Ak,2 such
that fk = Ak,0 +Ak,1 ·Ak,2, for each k ∈ [m]. At the end of the protocol, the parties output accept
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Inputs : Each party knows t ∈ Fm
q and the linear polynomials A1,0, . . . , Am,2 ∈ Fq[x1, . . . , xn]

such that f = (f1, . . . , fm), and fk = Ak,0 +

2∏
j=1

Ak,j . The i-th party knows JsKi ∈ Fn
q ,

JaKi ∈ Fm
q , where a

$← Fm
q , and JcKi ∈ Fm

q , where ck = Ak,1(s) · ak.

MPC Protocol:

for k ∈ [m]

1 : The parties locally compute JzkK← tk −Ak,0(JsK), JxkK← Ak,1(JsK), and JykK← Ak,2(JsK) .

2 : The parties get a random matrix εk
$← Fq.

3 : The parties locally set JαkK← (JxkK · εk + JakK).
4 : The parties open JαkK so that they all obtain αk.

5 : The party locally compute JvkK = JykK · αk − JzkK · εk − JckK.
6 : The parties open JvkK to obtain vk.

The parties output accept if vk = 0 for all k = 1, . . . ,m and reject otherwise.

Figure 1: MPC protocol to check that t = f(s).

indicating they are convinced that the shared vector s satisfies t = f(s). Otherwise, they output
reject.

Our MPC protocol consists of m iterations of the somewhat standard MPC protocol introduced in [9]
(along with the optimization given in [53, Section 2.5]) to check multiplicative triples of sharing.

The following is exactly Lemma 2 from [53] in the special case C = 1.

Lemma 1. Let xk, yk, zk, ak and ck be in Fq. Suppose that a set of N , with input
(JxkK , JykK , JzkK , JakK , JckK) from step 2 to step 6. Thus, if zk ̸= xkyk or ck ̸= xkak, then vk = 0
with 1/q.

Proposition 1. Suppose that a set of N parties genuinely follow the MPC protocol given in Figure 1

with inputs t ∈ Fm
q ,f = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]m, and JsK ∈

(
Fn
q

)N
. Let u be the number

of indexes for which tk ̸= fk(s). If u = 0, i.e., t = f(s), then the parties accept. Otherwise, if
t ̸= f(s), then the parties accept with probability 1/qu.

Proof. The proof follows directly from Lemma 1.

3.3 The Biscuit Digital Signature Scheme

The Biscuit Digital Signature Scheme (DSS) results from applying the MPCitH technique to the MPC

protocol given in Figure 1.

In Algorithm 1, we provide a high-level description of the Biscuit signing process of a message
msg. A more detailed pseudocode of the signature generation is given in Algorithm 12. Roughly
speaking, the signing process consists of a proof of τ honest message-dependent executions of the
protocol given in Figure 1 all with accept as output.

Overall, the signing of a message msg is divided into 5 phases:
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Algorithm 1 Signature (high-level description)

Require: t = f(s) ∈ Fn
q such that fk = Ak,0 + Ak,1 · Ak,2 for all k ∈ [m] and A1,0, . . . , Am,2 ∈

Fq[x1, . . . , xn] are affine forms.
1: procedure Sign(msg, s, (t,f))

Phase 1: Setting parties inputs for MPC protocols.

2: salt, root(1), . . . , root(τ)
$← {0, 1}2λ

3: for e ∈ [τ ] do
4: seed(e,1), . . . , seed(e,N) ← GetSeeds(root(e), salt)
5: for i ∈ [N ] do

6: JsK(e)i , JcK(e)i , JaK(e)i ← PRF(seed(e,i)) and com(e,i) ← Commit(salt, e, i, seed(e,i))
7: end for
8: a(e) ←

∑N
i=1 JaK(e)i , c(e) ← (Ak,1(s) · ak)k∈[m]

9: ∆s(e) ← s−
∑N

i=1 JsK(e)i and ∆c(e) ← c(e) −
∑N

i=1 JcK(e)i .

10: JsK(e)1 ← JsK(e)1 + ∆s(e) and JcK(e)1 ← JcK(e)1 + ∆c(e)

11: end for
12: σ1 ←

(
com(e,i) : (e, i) ∈ [τ ]× [N ]

)
.

Phase 2: Challenges for the protocols

13: h1 ← H1(salt,msg, σ1) and
(
ε
(e)
k : (e, k) ∈ [τ ]× [m]

)
← PRF(h1)

Phase 3: Simulation of checking protocols

14: ∀(e, i) ∈ [τ ] × [N ], use JsK(e)i , JcK(e)i , JaK(e)i and ε
(e)
k to simulate the i-th party in the MPC

protocol in Figure 1.

15: σ2 ←
(
JαkK

(e)
i ∥ JvkK

(e)
i : (e, i, k) ∈ [τ ]× [N ]× [m]

)
Phase 4: Challenging the views of the MPC protocol

16: h2 ← H2(salt, h1, σ2) and i1, . . . , iτ ← PRF(h2)
Phase 5: Opening the views of the checking protocol

17: path(e) ←
(
seed(e,i)

)
i ̸=ie

, ∀e ∈ [τ ]

18: σ ← salt∥h1∥h2∥
(
path(e)∥com(e,ie)∥∆s(e)∥∆c(e)∥ JαK(e)

ie

)
▷ JαK(e)

ie
= (JαkK

(e)

ie
)k∈[m]

19: return σ
20: end procedure

• Phase 1. The signer samples a random salt, generates the inputs of all the N parties to run
τ executions of the MPC protocol, and commits to these values. The inputs of the i-th party
in the e-th execution of the protocol are generated from seed(e,i), the commit com(e,i) is the
output of the commitment scheme Commit() on input (salt, e, i, seed(e,i)).

• Phase 2. The signer uses a hash function H2 and a pseudo-random function PRF to generate
the τm challenges for the τ executions of the MPC protocol.

• Phase 3. The signer performs the computations of every party i on every round e with the

corresponding inputs to compute JαkK
(e)
i and JvkK

(e)
i . Notice these are the only values open

in the protocol.

• Phase 4. The signer first uses a hash function H2 to hash the values computed in phase 3.
Then, it uses the PRF to obtain the party inputs ie that it won’t open to the verifier of the
e-th execution.
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• Phase 5. Finally, the signature is assembled. It contains the salt, the hashes h1, h2, and all
the necessary information to verify the computations of any party i ̸= ie all the executions of
the MPC protocol.

Algorithm 2 Verification (high-level description)

Require: t = f(s) ∈ Fn
q such that fk = Ak,0 + Ak,1 · Ak,2 for all k ∈ [m] and A1,0, . . . , Am,2 ∈

Fq[x1, . . . , xn] are affine forms and σ = h1∥h2∥
(
path(e)∥com(e,ie)∥∆s(e)∥∆c(e)∥ JαK(e)

ie

)
e∈[τ ]

.

1: procedure Verify(msg, σ, (t,f))

2:

(
ε
(e)
k : (e, k) ∈ [τ ]× [m]

)
← PRF(h1)

3: i1, . . . , iτ ← PRF(h2)
4: for e ∈ [τ ] do

5: ∀i ∈ [N ] \ {ie} compute JsK(e)i , JcK(e)i , JaK(e)i , and com(e,i) as in Algorithm 1.
6: end for
7: σ1 ←

(
com(e,i) : (e, i) ∈ [τ ]× [N ]

)
8: h′1 ← H1(salt,msg, σ1)

9: ∀(e, i, k) ∈ [τ ]× ([N ] \ {ie})× [m]) compute (JαkK
(e)
i ∥ JvkK

(e)
i ) as in Algorithm 1.

10: for e ∈ [τ ] do

11: (JαkK
(e)

ie
)k∈[m] ← JαK(e)

ie
and JvkK

(e)

ie
= −

∑
i∈[N ]\{ie} JvkK

(e)
i

12: end for
13: σ2 ←

(
JαkK

(e)
i ∥ JvkK

(e)
i : (e, i, k) ∈ [τ ]× [N ]× [m]

)
14: h′2 ← H2(salt, h′1, σ2)

15: if (h1
?
= h′1) and (h2

?
= h′2) then

16: return valid
17: end if
18: return invalid
19: end procedure

A high-level description of the verification process is given in Algorithm 2. First, the verifier
extracts the challenges used in all the executions of the MPC protocols. Second, it computes com(e,i)

for every e ∈ [τ ] and i ̸= ie, and it computes h′1, as in step 8, using the com(e,ie) given in the
signature. Then, for every execution e ∈ [τ ], it extracts the inputs of each party i ̸= ie and follows

the MPC to obtain JαkK
(e)
i and JvkK

(e)
i . Finally, it uses the JαkK

(e)

ie
)k∈[m] given in the signature and

the missing JvkK
(e)

ie
to compute h′2 as in step 15. The verifier outputs valid if and only if h1 = h′1

and h2 = h′2. Otherwise, it outputs invalid.

4 Biscuit Specification

4.1 Parameter Space

The main parameters involved in Biscuit are:

• λ: security parameter of Biscuit,

10



• q: size of the finite field,

• n: number of variables in the public equations,

• m: number of public equations,

• τ : number of executions of the MPC protocol,

• N : number of parties in the MPC protocol.

4.2 Chosen Parameters

We specify two sets of parameters in this document:

• One achieving small signature while being slower to execute

• One achieving faster execution but with slightly larger signature.

Both sets use q = 16. By taking the field to be of characteristic 2, we take advantage of the fact
that the addition of an element is an XOR that can be efficiently vectorized in the implementation.
The parameters are given in Table 3 and Table 4.

In Section 5.4, we specify precisely how these parameters achieve a security level λ ∈ {128, 192, 256}.

Name
Parameters Size (bytes)

q n m τ N sk pk sig

biscuit128s 16 64 67 18 256 115 50 4 758
biscuit192s 16 87 90 30 256 158 69 11 349
biscuit256s 16 118 121 40 256 212 93 20 192

Table 3: Parameters of Biscuit-short.

Name
Parameters Size (bytes)

q n m τ N sk pk sig

biscuit128f 16 64 67 34 16 115 50 6 726
biscuit192f 16 87 90 54 16 158 69 15 129
biscuit256f 16 118 121 73 16 212 93 27 348

Table 4: Parameters of Biscuit-fast.

4.3 Data Representation

As described in Section 3.2, one iteration of the MPC protocol consist in m parallel execution of the
multiplication checking protocol. These m can be done in parallel by representing elements of Fq

as vectors. In this specification, we exclusively such vectors.

The Biscuit algorithms mainly use two types of data:
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• byte strings for hashes, commitments, seeds, . . .

• vectors of elements in Fq for circuit evaluation and multiplication checking protocol.

We represent a vector of n elements in Fq as string of n ⌈log2(q)⌉ bits, where binary representation
of an element in Fq is represented with the least significant bit first.

Sometimes, one or several vectors have to be represented as byte strings (for output keys/signatures
or input of hash functions for instance). When necessary, we represent a vector of n elements as a
string of k = n ⌈log2(q)⌉ bits (b1, . . . , bk), each group of ⌈log2(q)⌉ representing one element in Fq.
From this, we obtain K = ⌈k8⌉ bytes (B1, . . . , BK) such that Bi =

∑8
j=1 b(i−1)·8+j · 2(j−1) for all

i ∈ [k] with the convention that b(i−1)·8+j = 0 if (i− 1) · 8 + j > k.

This procedure is executed by the function pack(v). It will allow to to pack together the concate-
nation of several vectors into one byte string (e.g. pack(v(1)∥v(2)∥ . . . )).

4.4 Auxiliary Functions

We use the SHAKE256 [31] extendable-output function (XOF) as a basic block to build the hash
functions, the key-derivation and the pseudo-random functions. It takes as input a pair (input bytes,
output len), where input bytes is a string of bytes, and it outputs a string of output bitlen bits which
shall be a multiple of 8. We use the notation output bitlen =∞ to indicate that the function returns
a tape object (typically, a finalized SHAKE256 state) that can be used to generate an arbitrary
number of bits later on.

Let enc16() be the encoding of an integer on 2 bytes with the least significant byte first. We define:

• Commit(salt, e, i, seed): SHAKE256(0x00∥salt∥enc16(e)∥enc16(i)∥seed, 2λ)

• H1(salt,msg, σ1): SHAKE256(0x01∥salt∥msg∥σ1, 2λ)

• H2(salt, h1, σ2): SHAKE256(0x02∥salt∥h1∥σ2, 2λ)

• ChildSeeds(salt, e, k, j, seed): SHAKE256(0x03∥salt∥enc16(e)∥enc16(k)∥enc16(j)∥seed, 2λ)

• ExpandTape(salt, e, i, seed): SHAKE256(0x04∥salt∥enc16(e)∥enc16(i)∥seed,∞)

• PRF(input, k): SHAKE256(input, k)

4.4.1 Seed generation using trees

During signature, the signer must generate a set of N seeds and reveal N −1 of them to the verifier
for each iteration. The verifier then uses these seeds to check that the MPC protocol was correctly
simulated. A binary tree structure allows generating the seeds using one root seed from a binary
tree. Instead of sending N − 1 seeds in the signature, this allows sending only ⌈log2N⌉ seeds that
will be used to reconstruct all N − 1 seeds required.

We describe in Algorithm 3 how to build all N seeds from a single root seed. In Algorithm 4, how
to build a path of log2N values that will allow to recover all N seeds except one. Basically, it

12



consists in giving the root of all the subtrees that the excluded seed does not belong to. Finally
Algorithm 5 describe how to effectively recover the N − 1 seeds from a path.

Algorithm 3 Get N seeds from a root seed

1: procedure GetSeeds(root, salt, e,N)
2: seeds← [root]
3: for k in {1, . . . , ⌈log2N⌉} do
4: newseeds← ∅
5: j ← 0
6: for s in seeds do
7: seed1, seed2 ← ChildSeeds(salt, e, k − 1, j, s)
8: newseeds← newseeds∥[seed1, seed2]
9: j ← j + 1

10: end for
11: seeds← newseeds
12: end for
13: return seeds
14: end procedure

Algorithm 4 Get the path to recover all the seeds except the i-th one from a root seed

1: procedure GetPath(root, salt, e, i, N)
2: path← ∅
3: s← root
4: for k in {1, . . . , ⌈log2N⌉} do
5: j ←

⌊
i−1

2⌈log2(N)⌉−k⌉

⌋
▷ the k most significant bits of (i− 1)

6: seed1, seed2 ← ChildSeeds(salt, e, k − 1, ⌊j/2⌋, s)
7: if j mod 2 = 1 then
8: path← path∥seed1
9: s← seed2

10: else
11: s← seed1
12: path← path∥seed2
13: end if
14: end for
15: return path
16: end procedure
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Algorithm 5 Get N seeds using a path for i

1: procedure GetPathSeeds(path, salt, e, i, N)
2: Extract path1, . . . , path⌈log2 N⌉ form path
3: seeds← [?]
4: for k in {1, . . . , ⌈log2N⌉} do
5: newseeds← ∅
6: j ← 0

7: j ←
⌊

i−1
2⌈log2(N)⌉−k⌉

⌋
▷ the k most significant bits of (i− 1)

8: for s in seeds do
9: if s ̸= ? then ▷ equivalent to j = ⌊j/2⌋

10: seed1, seed2 ← ChildSeeds(salt, e, k − 1, j, s)
11: newseeds← newseeds∥[seed1, seed2]
12: else
13: if j mod 2 = 1 then
14: newseeds← newseeds∥[pathk, ?]
15: else
16: newseeds← newseeds∥[?, pathk]
17: end if
18: end if
19: j ← j + 1
20: end for
21: seeds← newseeds
22: end for
23: return seeds ▷ seeds has ’?’ at the i-th position
24: end procedure

4.4.2 Generate values in specific sets

In Biscuit, it is required to generate many values belonging to mathematical structures like Fq or
Fq[x1, . . . , xn]. These values have to be sampled uniformly from bit strings. This is done with
rejection sampling (for odd characteristics). We describe below the required algorithms. It has
to be noticed that when q is a power of 2 as in the chosen parameters from Section 4.2, then the
rejection is not required. It is still described here for completeness.

Algorithm 6 describes how to extract one vector of n values in a set E from a tape (e.g. provided by
ExpandTape). When several separate vectors are required, we use the Expand function described
in Algorithm 7. A special case of this is when we need to generate the coefficients of a whole
polynomial system from a seed. This is described in Algorithm 8.
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Algorithm 6 Sample n values from a set E from an infinite tape

Require: map is any bijective mapping from {0, . . . , |E| − 1} to E .
Ensure: A multiple of 8 bits are extracted from tape to sample one vector.
1: procedure Sample(tape, E , n)
2: ℓ← ⌈log2(|E|)⌉
3: if n

?
= 1 then

We are sampling an index in E = {1, . . . , N}
4: Let ℓ8 = 8 · ⌈ℓ/8⌉
5: repeat
6: (b0, . . . , bℓ8−1)← next ℓ8 bits of tape and update tape
7: v1 ←

∑ℓ−1
k=1 bk 2k ▷ Use only the ℓ first bits

8: until v1 < |E|
9: u1 ← map(v1, E)

10: else
We are sampling a vector of elements in E = Fq

11: γ ← 0 ▷ to count the total number of consumed bits
12: for j in{1, . . . , n} do
13: repeat
14: (b0, . . . , bℓ−1)← next ℓ bits of tape and update tape
15: γ ← γ + ℓ
16: vj ←

∑ℓ−1
k=1 bk 2k

17: until vj < |E| ▷ Always true if q is a power of 2
18: uj ← map(vj , E)
19: end for
20: if γ mod 8 ̸= 0 then
21: Consume 8− (γ mod 8) next bits of tape and update tape
22: end if
23: end if
24: return u = (u1, . . . , un)
25: end procedure

Algorithm 7 Expand k values using Sample from a seed

1: procedure Expand(seed, k, E , n)
2: tape← SHAKE256(seed,∞)
3: for i in {1, . . . , k} do
4: v(i) ← Sample(tape, E , n)
5: end for
6: return v(1), . . . ,v(k)

7: end procedure
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Algorithm 8 Expansion of a system from a seed

Ensure: f = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]m with fk = Ak,0 + Ak,1 · Ak,2 for all k ∈ [m] and
A1,0, . . . , Am,2 ∈ Fq[x1, . . . , xn] are affine forms as in Equation (1).

1: procedure ExpandCircuit(seedF,Fq, n,m)
2: tape← SHAKE256(seedF,∞)
3: for j in {1, 2, 0} do ▷ Ai,0’s are sampled sampled last
4: b(j) ← Sample(tape,Fq,m) ▷ Gather the constant terms for efficient evaluation
5: for k in {1, . . . ,m} do
6: a(k,j) ← Sample(tape,Fq, n)

7: a
(k,j)
0 ← b

(j)
k

8: end for
9: end for

10: fk ←
(
a
(k,0)
0 +

∑n
i=1 a

(k,0)
i xi

)
+
∏2

j=1

(
a
(k,j)
0 +

∑n
i=1 a

(k,j)
i xi

)
, for k ∈ [m]

11: return f = (f1, . . . , fm)
12: end procedure

4.4.3 Circuit evaluations

Biscuit is based on the evaluation of a circuit, more precisely the evaluation of structured quadratic
polynomials as in Definition 1. In our case, each party has to evaluate the linear parts of the circuit
on their shares. In Algorithm 9, we describe the algorithm to evaluate the linear parts of the circuit.
The output of the algorithm is the input shares of the occuring multiplications in x and y, as well
as the expected output shares in z. As the circuit also has an affine part, the index of the party
performing the computation is required too so that the affine part is taken into account only for
one of the parties.

In addition, we also describe in Algorithm 10 the algorithm to evaluate the circuit on the unmasked
secret and output the ciphertext t as well as on the multiplication input vector that will be usefull
in the protocol.
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Algorithm 9 Evaluation of the linear part of the circuit

Require: f = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]m with fk = Ak,0 + Ak,1 · Ak,2 for all k ∈ [m] and
A1,0, . . . , Am,2 ∈ Fq[x1, . . . , xn]

Ensure: (x,y, z) are the correct multiplication triples
1: procedure LinearCircuit(s, t, idx,f)

2: if idx
?
= 1 then ▷ Keep the constant part only for the first party

3: A′
k,j ← Ak,j for k ∈ [m], j ∈ {0, . . . , 2}

4: else
5: A′

k,j ← Ak,j − a
(k,j)
0 for k ∈ [m], j ∈ {0, . . . , 2}

6: end if
7: x←

(
A′

1,1(s), . . . , A′
m,1(s)

)
8: y ←

(
A′

1,2(s), . . . , A′
m,2(s)

)
9: if idx

?
= 1 then

10: z ← −
(
A′

1,0(s), . . . , A′
m,0(s)

)
11: else
12: z ← t−

(
A′

1,0(s), . . . , A′
m,0(s)

)
13: end if
14: return x,y, z
15: end procedure

Algorithm 10 Evaluation of the circuit with multiplications results

Require: f = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]m with fk = Ak,0 + Ak,1 · Ak,2 for all k ∈ [m] and
A1,0, . . . , Am,2 ∈ Fq[x1, . . . , xn]

Ensure: zℓ = xℓ · yℓ, for ℓ ∈ [m] are the multiplications occurring during an evaluation
1: procedure EvalCircuit(s,f)
2: x← (A1,1(s), . . . , Am,1(s))
3: y ← (A1,2(s), . . . , Am,2(s))
4: z ← x⊙ y ▷ Element-wise product
5: t← z + (A1,0(s), . . . , Am,0(s))
6: return y, t
7: end procedure

4.5 Biscuit Key-Generation

The secret-key is a random vector s ∈ Fn
q and the public-key is a pair

(
f = (f1, . . . , fm), t =

f(s)
)
∈ Fq[x1, . . . , xn]m × Fm

q such that for all k ∈ [m]:

fk(x1, . . . , xn) = Ak,0(x1, . . . , xn) + Ak,1(x1, . . . , xn) ·Ak,2(x1, . . . , xn),

where A1,0, . . . , Am,2 ∈ Fq[x1, . . . , xn] are random affine forms as Equation (1). This implies that
the set of polynomials f can be generated from a seed. We summarize the public-key/secret-key
generation in Algorithm 11. As the secret key is not very long, we include during key generation
the computation of the value y that will be used during signature, and we include it to the private
key, along with the value of the public value t. If shorter key is mandatory, note that we could also
store only seedS, and derive the values s, t and y in the signature procedure.
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Algorithm 11 Key Generation

Require: λ, q, n,m the Biscuit parameters
1: procedure Biscuit.KeyGen( )

2: seedF
$← {0, 1}λ

3: f ← ExpandCircuit(seedF,Fq, n,m)

4: seedS
$← {0, 1}λ

5: s← Expand(seedS, 1,Fq, n)
6: y, t← EvalCircuit(s,f)
7: sk← seedF, pack(s∥t∥y)
8: pk← seedF, pack(t)
9: return sk, pk

10: end procedure

4.6 Biscuit Signing Process

Given a message msg, and a secret-key pk, the detailed signing procedure Biscuit.Sign that follows
from the high-level description of Section 3.3 is given in Algorithm 12. It takes as input a message
msg ∈ {0, 1}∗ and a secret-key sk.
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Algorithm 12 Signature

Require: λ, τ,N, q, n,m the Biscuit parameters, C = m, the number of multiplications occurring
in the circuit.

1: procedure Biscuit.Sign(msg, sk)
2: Extract seedF, s, t,y from sk
3: f ← ExpandCircuit(seedF,Fq, n,m)

Phase 1: Committing to the seeds and views of the parties.

4: rnd
$← {0, 1}2λ ▷ Use rnd← ∅ for deterministic signature

5: salt, root(1), . . . , root(τ) ← PRF(rnd∥sk∥msg, 2λ + τ · λ)
6: for e ∈ [τ ] do
7: seed(e,1), . . . , seed(e,N) ← GetSeeds(root(e), salt, e,N)
8: for i ∈ [N ] do
9: com(e,i) ← Commit(salt, e, i, seed(e,i)) tape(e,i) ← ExpandTape(salt, e, i, seed(e,i))

10: JsK(e)i ← Sample(tape(e,i),Fq, n)

11: JaK(e)i ← Sample(tape(e,i),Fq, C)

12: JcK(e)i ← Sample(tape(e,i),Fq, C)
13: end for
14: ∆s(e) ← s−

∑N
i=1 JsK(e)i

15: ∆c(e) ← y ⊙
∑N

i=1 JaK(e)i −
∑N

i=1 JcK(e)i

16: JsK(e)1 ← JsK(e)1 + ∆s(e)

17: JcK(e)1 ← JcK(e)1 + ∆c(e)

18: for i ∈ [N ] do

19: JxK(e)i , JyK(e)i , JzK(e)i ← LinearCircuit(JsK(e)i , i, t,f)
20: end for
21: end for
22: σ1 ←

(
(com(e,i))i=1,...,N∥pack(∆s(e))∥pack(∆c(e))

)
e=1,...,τ
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Phase 2: Challenging the checking protocol
23: h1 ← H1(salt,msg, σ1)
24: ε(1), . . . , ε(τ) ← Expand(h1, τ,Fq, C)

Phase 3: Commit to simulation of checking protocol
25: for e ∈ [τ ] do
26: for i ∈ [N ] do

27: JαK(e)i ← JxK(e)i ⊙ ε(e) + JaK(e)i

28: end for
29: α(e) ←

∑N
i=1 JαK(e)i

30: for i ∈ [N ] do

31: JvK(e)i ← JyK(e)i ⊙α(e) − JzK(e)i ⊙ ε(e) − JcK(e)i

32: end for
33: end for
34: σ2 ←

(
pack((JαK(e)i )i=1,...,N )∥pack((JvK(e)i )i=1,...,N )

)
e=1,...,τ

Phase 4: Challenging the views of the MPC protocol
35: h2 ← H2(salt, h1, σ2)
36: i1, . . . , iτ ← Expand(h2, τ, [N ], 1)

Phase 5: Opening the views of the checking protocol
37: for e ∈ [τ ] do
38: path(e) ← GetPath(root(e), salt, e, ie, N)
39: end for
40: σ ← salt∥h1∥h2∥

(
path(e)∥com(e,ie)

)
e=1,...,τ

∥pack(
(
∆s(e)∥∆c(e)

)
e=1,...,τ

∥
(
JαK(e)

ie

)
e=1,...,τ

)
41: return σ
42: end procedure

In more detail, the signer :

1. First expands the seed from his secret key in order to derive the structured polynomial
equations f ∈ Fq[x1, . . . , xn]m as in Definition 1. The signer also gets the secret input as well
as the values y of the occurring multiplications.

2. Generates a 2λ bit salt as well as τ root seeds of λ bits. The root(e) values will be used to
derive all randomness in the MPC protocol for each iteration e ∈ [τ ].

These values are obtained from a PRF seeded with sk and msg. At this step, it is possi-
ble to have a randomized signature by pre-pending a fresh 2λ bits random value rnd, or a
deterministic signature by skipping this randomness.

Note that the values salt and root(e) may be obtained by any implementation-dependent pro-
cedure (e.g. non-deterministic random generator, other PRF function, . . . ) without affecting
interoperability.

3. Starts the first part of the protocol and repeats the following procedure τ times:

(a) Derive N seeds seed(e,i) from root(e) for i ∈ [N ]. Each of them will be used to sample
random values for one of the N MPC party.

(b) Compute a commitment of each of the N seeds and use the seed to derive the party’s

input secret share JsK(e)i . In the same way, we derive random shares JaK(e)i and JcK(e)i as
inputs and outputs for the multiplication checking protocol.
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(c) For now, only random shares have been distributed to the parties. Let c(e) =

open
(
JaK(e)

)
⊙ y. To make the sharing correct, we compute ∆s(e) (reps. ∆c(e)) to

correct the first share JsK(e)1 (resp. JcK(e)1 ) such that when we open JsK(e) (resp. JcK(e))
we obtain s (resp. c(e)).

(d) Finally, for each party, we can simulate the circuit verification. From JsK(e)i , the party
evaluates the circuit. Each time a multiplication should be performed, the input is

written in JxK(e)i and JyK(e)i . The expected output of the multiplications is computed

backward from t and JsK(e)i .

4. The first phase is done. Prepares in σ1 the values that should be checked by a verifier, namely,
the commitments on all N seeds, and the correcting values ∆s(e), and ∆c(e).

5. σ1 is hashed together with the salt and the message to produce h1 that will be used to generate
the challenges for the checking protocol.

6. Use the challenges for the second part of the protocol. We repeat τ times the following
procedure:

(a) Compute for all parties compute the values JαK(e)i that will be broadcast.

(b) Open α(e) and compute the value JvK(e)i for the verification.

At this point, it holds that open(JvK(e)) = 0.

7. The third phase is done. Prepare in σ2 the values that would have been sent to the verifier,
namely, the N shares of α(e) and the N shares of e.

8. σ2 is hashed together with the salt and the h1 to produce h2 that will be used to generate
the challenges for opening the views.

9. For all iterations, compute the seed generation path path(e) that allows to recover all seeds
except the ie-th one.

10. Finally, output in the signature the paths, the commitment values for ie and the missing
share of α(e) as well as the correcting values ∆s(e) and ∆c(e).

4.7 Biscuit Verification process

Given a message msg, a signature sig and a public-key pk, the detailed verification process corre-
sponding to the high-level description Section 3.3 is given in Algorithm 13. The verification process
is very similar to the signature process as the verifier has to replay the MPC protocol for each of the
τ participants except one.
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Algorithm 13 Verification

Require: λ, τ,N, q, n,m the Biscuit parameters, C = m, the number of multiplications occurring
in the circuit.

1: procedure Biscuit.Verify(sig,msg, pk)
2: Extract seedF, t from pk
3: f ← ExpandCircuit(seedF,Fq, n,m)
4: Extract salt, h1, h2 from sig
5: ε(1), . . . , ε(τ) ← Expand(h1, τ,Fq, C)
6: i1, . . . , iτ ← Expand(h2, τ, [N ], 1)
7: for e ∈ [τ ] do

8: Extract path(e), com(e,ie) from sig
9: Extract ∆s(e),∆c(e) from sig

10: seed(e,1), . . . , seed(e,N) ← GetPathSeeds(path(e), salt, e, ie, N)
11: for i ∈ [N ] \ {ie} do
12: com(e,i) ← Commit(salt, e, i, seed(e,i)) tape(e,i) ← ExpandTape(salt, e, i, seed(e,i))

13: JsK(e)i ← Sample(tape(e,i),Fq, n)

14: JaK(e)i ← Sample(tape(e,i),Fq, C)

15: JcK(e)i ← Sample(tape(e,i),Fq, C)

16: if i
?
= 1 then

17: JsK(e)1 ← JsK(e)1 + ∆s(e)

18: JcK(e)1 ← JcK(e)1 + ∆c(e)

19: end if
20: JxK(e)i , JyK(e)i , JzK(e)i ← LinearCircuit(JsK(e)i , t, i,f)
21: end for
22: Extract JαK(e)

ie
from sig

23: for i ∈ [N ] \ {ie} do
24: JαK(e)i ← JxK(e)i ⊙ ε(e) + JaK(e)i

25: end for
26: α(e) ←

∑N
i=1 JαK(e)i

27: for i ∈ [N ] \ {ie} do
28: JvK(e)i ← JyK(e)i ⊙α(e) − JzK(e)i ⊙ ε(e) − JcK(e)i

29: end for
30: JvK(e)

ie
← −

∑N
i=1,i ̸=ie

JvK(e)i

31: end for
32: σ1 ←

(
(com(e,i))i=1,...,N∥pack(∆s(e))∥pack(∆c(e))

)
e=1,...,τ

33: h′1 ← H1(salt,msg, σ1)

34: σ2 ←
(
pack((JαK(e)i )i=1,...,N )∥pack((JvK(e)i )i=1,...,N )

)
e=1,...,τ

35: h′2 ← H2(salt, h1, σ2)

36: if (h1
?
= h′1) and (h2

?
= h′2) then

37: return Valid
38: end if
39: return Invalid
40: end procedure
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In more detail, the verifier :

1. Recovers the expected challenges ε(e)ℓ and ie by expanding the value. h1 and h2 of the
signature.

2. Iterates the following procedure τ times:

(a) Derive N seeds seed(e,i) from path(e) for i ∈ [N ] except ie. Each of them will be used to
recover the random values for one of the N MPC party.

(b) Replay the signature process for all opened N MPC party

(c) Compute the commitment for each of the N − 1 seeds and use the seed to derive the

party’s input secret share JsK(e)i , and the random shares JaK(e)i and JcK(e)i for the multi-

plication checking protocol. For participant number 1, correct the share JsK(e)1 and JcK(e)1

using the ∆s(e) and ∆c(e) from the signature.

(d) Finally, for each party, simulate the circuit verification. From JsK(e)i , the party evaluates
the circuit. Each time a multiplication should be performed, the input is written in

JxK(e)i and JyK(e)i . The expected output of the multiplications is computed backward

from t and JsK(e)i .

(e) Start the multiplication checking protocol by recovering the missing JαK(e)
ie

from the

signature, and computing the other JαK(e)i , i ̸= ie in order to recover α(e). Then use

this value to compute the verification value JvK(e)i , , i ̸= ie. The missing shares JvK(e)
ie

is

recovered from the others by supposing that the sum of the JvK(e)i should be 0.

3. Checks that all opened seeds were correct by checking h1.

4. Checks that multiplications were correct by checking h2.

4.8 Performances and Memory Consumption

In this section, we show the performance and memory consumption of our instances. We present
two implementations: one generic code optimized for generic little-endian 64-bit CPU, and one
using vectorized instructions.

The code is compiled with GCC version 10.2.1 on Debian GNU/Linux. Number of cycles was
measured by counting PERF HW COUNT CPU CYCLES events on an 11th Gen Intel(R) Core(TM)

i7-1185G7 @ 3.00GHz CPU. Even if frequency modification should not affect this metric, we deac-
tivated Intel’s TurboBoost feature anyway. The number of cycles is averaged over 1000 executions.

Table 5 and Table 6 give the figures for the generic 64-bit implementation generic64. Table 7 and
Table 8 give the figures for the sse2 optimized implementation. For this implementation, the code
is the same as the sse2 implementation except that we work with native 256-bit integer type and
the compiler automatically issues vectorized instructions.

Several points can be noted:

• RAM consumption of the verification procedure is significantly lower than the signature.
Indeed, the signature procedure can perform both parts of the algorithm independently for
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each iteration. We do not have to keep in memory all the intermediate values, only the one
relative to the current iteration. This saves approximately a factor τ

• The sse2 optimized implementation uses more RAM. Indeed, the granularity of the inner
datatype is now 256-bits instead of 64-bits. Every vector element has to be encoded in a
multiple of 256-bits element.

Name
Memory (bytes) Performance (cycles)

keygen sign verify keygen sign verify

biscuit128s 448 1 093 072 83 520 110 419 106 256 349 105 028 599
biscuit192s 448 2 245 344 106 896 274 275 775 763 124 770 260 803
biscuit256s 496 3 982 752 148 000 417 886 1 453 937 743 1 462 615 033

Table 5: Time performance and memory consumption of Biscuit-short on generic64 impl.

Name
Memory (bytes) Performance (cycles)

keygen sign verify keygen sign verify

biscuit128f 448 137 040 14 400 108 608 12 991 223 11 995 363
biscuit192f 448 265 632 20 496 256 728 87 269 078 81 529 919
biscuit256f 496 477 120 32 800 419 094 167 453 309 155 923 813

Table 6: Time performance and memory consumption of Biscuit-fast on generic64 impl.

Name
Memory (bytes) Performance (cycles)

keygen sign verify keygen sign verify

biscuit128s 512 1 657 200 125 392 82 632 80 555 671 78 899 797
biscuit192s 512 2 868 336 135 920 210 159 724 466 241 714 947 231
biscuit256s 512 3 982 800 148 016 332 165 1 291 111 734 1 274 568 395

Table 7: Time performance and memory consumption of Biscuit-short on sse2 impl.

Name
Memory (bytes) Performance (cycles)

keygen sign verify keygen sign verify

biscuit128f 512 207 728 21 712 82 505 9 653 412 8 734 302
biscuit192f 512 339 504 26 480 210 150 81 492 308 75 826 788
biscuit256f 512 477 168 32 848 353 223 147 099 575 137 359 832

Table 8: Time performance and memory consumption of Biscuit-fast on sse2 impl.
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5 Security Analysis of Biscuit

This part is dedicated to the security analysis of Biscuit against key-recovery and forgery attacks.
Let

(
f = (f1, . . . , fm), t = f(s)

)
∈ Fq[x1, . . . , xn]m × Fm

q be a Biscuit public-key and s ∈ Fn
q be the

corresponding secret-key (Section 4.5).

A key-recovery attack against Biscuit consists of solving the system defined by

t = f(x), with x = (x1, . . . , xn). (2)

In Section 5.1, we review generic algorithms for solving MQq in the classical (Section 5.1.1 and
Section 5.1.2) and quantum (Section 5.1.3) settings. Then, we introduce in Section 5.1.2 the tool
we used to derive the parameters of Biscuit: MQEstimator [10]. Section 5.2 presents more specific
results on the hardness of PowAff2. Namely, we justify and introduce the assumption about the
semi-regularity of PowAff2 instances (Section 5.2.1). A new algorithm for solving PowAff2 that
exploits the specific structure of the equations is presented in Section 5.2.2.

A forgery attack consists of finding message msg and a valid signature σ, where msg was not signed
by the holder of the secret key. A forgery attack against Biscuit can be made by solving a subset
of the equations (2) of size m− u, where u is a parameter to optimize, as explained in Section 5.3.

Then, we present in Section 5.4 the parameters used for Biscuit, as well as the corresponding security
levels, that result from the analysis of this section. Section 5.5 concludes this part and discusses
the EUF-CMA security of Biscuit. Finally, Section 5.6 is about side channel attacks.

5.1 Generic Algorithms for Solving MQq

5.1.1 Complexity of computing Gröbner bases

Gröbner basis [19, 18] is the classical technique for solving MQq. The historical method for computing
such bases – known as Buchberger’s algorithm – has been introduced by B. Buchberger in his
PhD thesis [19, 18]. Many improvements on Buchberger’s algorithm have been done leading – in
particular – to more efficient algorithms such as the F4 and F5 algorithms of J.-C. Faugère [34, 35].

The fundamental conceptual breakthrough that leads from the historical Buchberger’s algorithm to
Faugère’s algorithms is the intensive use of linear algebra. The bridge has been established by D.
Lazard [56] who proved that computing a Gröbner basis for a system of homogeneous polynomials
f1, . . . , fm ∈ Fq[x1, . . . , xn] is equivalent to perform Gaussian elimination on so-called Macaulay
matrices. Given such a set of homogeneous polynomials f1 . . . , fm, the associated Macaulay matrix
Macaulay

D,m (f1 . . . , fm) of degree D ≥ min
(
deg(f1), . . . ,deg(fm)

)
is defined as the coefficient matrix

of (ti,j · fi) where i ∈ [m] and ti,j runs through all monomials of degree D − deg(fi).

Theorem 1 ([56]). Let f1, . . . , fm ∈ Fq[x1, . . . , xn] be homogeneous polynomials. There exists a

positive integer D0 for which a row echelon computation on all Macaulay
D,m (f1, . . . , fm) matrices for

min
(
deg(f1), . . . ,deg(fm)

)
≤ D ≤ D0 computes a DRL-Gröbner basis of ⟨f1, . . . , fm⟩.

It is clear that the complexity of computing a Gröbner basis will be related to the maximum degree
reached in Theorem 1 which corresponds to the degree of regularity.
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Definition 2. Given a positive integer D, we denote by RD (resp. Fq[x1, . . . , xn]D) the Fq-vector
spaces of homogeneous polynomials of degree D in R = Fq[x1, . . . , xn]/⟨xq1− x1, . . . , x

q
n− xn⟩ (resp.

Fq[x1, . . . , xn]). dimFq(Rd) represents the number of monomials in Fq[x1, . . . , xn] of degree D. The
degree of regularity of a sequence of homogeneous polynomials f1, . . . , fm ∈ Fq[x1, . . . , xn], denoted
by Dreg(f1, . . . , fm), is the minimum integer D0, if any, such that dimFq(ID0) = dimFq(RD0), where
Id = RD0 ∩ I, and RD0 is the set of elements in R of degree D0.

Remark 1. RD as defined in Definition 2 implicitly assumes that the field equations xq1 −
x1, . . . , x

q
n − xn are always added to the generator of the ideals. This is due to the fact that

we are only looking for solutions over the base field.

Definition 3. For non-homogeneous polynomials f1, . . . , fm ∈ Fq[x1, . . . , xn], the degree of regular-
ity is defined (see [4, 8]) from the homogeneous components fh

1 , . . . , f
h
m ∈ Fq[x1, . . . , xn] of highest

degree of the polynomials f1, . . . , fm. We have then Dreg(f1, . . . , fm) = Dreg(fh
1 , . . . , f

h
m).

Once this notation is fixed, we can rather easily establish a rough upper bound on the cost of
computing a Gröbner basis (see [58, 56, 4, 8, 6]).

Theorem 2. Let f1, . . . , fm ∈ Fq[x1, . . . , xn] be such that the system of homogeneous components
of highest degree fh

1 , . . . , f
h
m is a zero-dimensional and Dreg = Dreg(f1, . . . , fm). We can compute a

DRL-Gröbner basis of ⟨f1, . . . , fm⟩ in :

O

(
m ·

(
n + Dreg

Dreg

)ω)
arithmetic operations over Fq. (3)

More precise statements about the number of arithmetic operations performed in F5 can be found
in [4, 6]. The complexity of computing a Gröbner basis is exponential in the degree of regularity.
Unfortunately, this degree of regularity is difficult to compute in general (as difficult as computing
the Gröbner basis). There is a particular class of systems for which this degree can be computed
efficiently: regular and semi-regular sequences.

Regular sequences. The notion of regular sequences is classical (see [58, 59]), but restricted to
m ≤ n. Such constraint typically excludes the use of field equations.

For a reason that will become clear later, we state the next results for a general field F.

Definition 4. The sequence f1, . . . , fm ∈ F[x1, . . . , xn] of homogeneous polynomials is regular if:

1. ⟨f1, . . . , fm⟩ ≠ F[x1, . . . , xn],

2. for all i ∈ [m] and g ∈ F[x1, . . . , xn]: g · fi ∈ ⟨f1, . . . , fi−1⟩ ⇒ g ∈ ⟨f1, . . . , fi−1⟩.

Now, let f1, . . . , fm ∈ F[x1, . . . , xn] be affine polynomials of degrees d1, . . . , dm respectively. The
sequence f1, . . . , fm is regular if the sequence fh

1 , . . . , f
h
m is regular.

The algebraic behavior (i.e. degree of regularity, Hilbert series, . . .) of regular sequences is then
well understood.

Property 1 ([4, 58, 56]). Let f1, . . . , fm ∈ F[x1, . . . , xn] be a regular sequence of homogeneous
polynomials of degree d1, . . . , dm respectively. Then, it holds that:
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• The degree of regularity of a regular sequence is given by the so-called Macaulay bound, i.e.:

m∑
i=1

(di − 1) + 1.

• The Hilbert series of I = ⟨f1, . . . , fm⟩ is∑
d≥0

dimF (Rd/Id) zd =
(1− zdi)m

(1− zn)
,

where R = F[x1, . . . , xn] and Rd, Id are defined similarly than in Definition 2.

We will now prove that the instances of PowAff2 are regular. By definition, this reduces to consider
the homogeneous components of the highest degree of the polynomials considered in the PowAff2
problem (Definition 1), namely we consider the sequence :

fh
k =

(
n∑

i=1

a
(k,1)
i xi

)(
n∑

i=1

a
(k,2)
i xi

)
, with a

(k,1)
1 , . . . , a(k,2)n ∈ F, ∀k ∈ [m]. (4)

The precise statement is as follows:

Theorem 3. Let fh
1 , . . . , f

h
m ∈ F[x1, . . . , xn] be defined as in (4) and h = n − m. There exist

λi,j ∈ F such that the sequence g1 = fh
1 , g2 = fh

2 +
∑m

k=3 λ2,kf
h
k gk, g3 = f3+

∑m
k=4 λ3,kf

h
k gk, . . . , gh =

fh
h +

∑m
k=h+1 λh,kf

h
k gk, gh+1 = fh

h+1, . . . , gm = fh
m ∈ F[x1, . . . , xn] is such that :

• g1, . . . , gm generates the same ideal than fh
1 . . . , fh

m, and

• g1, . . . , gm is a regular sequence.

These properties hold for all λi,j ∈ F except for finitely many values.

Theorem 3 is a particular case of a more general result demonstrated, for instance in [4, Proposition
1.7.3, page 23], for any sequence of polynomials. These results are typically stated for characteristic
zero as they implicitly rely on the Zariski topology. It is the standard topology used in algebraic
geometry where topology, closed sets are the algebraic sets. This requires to be adapted in finite
fields, typically by using Schwartz-Zippel-DeMillo-Lipton lemma [28, 69, 65] (see discussion in
Remark 2).

We conclude by providing experimental results illustrating Theorem 3. Table 9, we compare the
degree of regularity Dreg of a system as in (6) with the theoretical degree of regularity of a regular
sequence of quadratic polynomials (that is, m + 1).

Semi-regular sequences. Semi-regular sequences have been introduced in [4, 8] to deal with
over-defined systems.

Definition 5 (Semi-regular sequences, [10]). A homogeneous sequence of quadratic polynomials
f1, . . . , fm ∈ Fq[x1, . . . , xn] is called semi-regular if m > n and∑

d≥0

dimFq (Rd/Id) zd =

[
(1− zq)n

(1− z)n

(
1− z2

1− z2q

)m]
+

, (5)
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m = m q d m + 1 Dreg

10 28 2 11 11

11 28 2 12 12

12 28 2 13 13

13 28 2 14 14

14 28 2 15 15

Table 9: Theoretical degree of regularity vs experimental degree of regularity Dreg computed with
Magma [15].

where I = ⟨f1, . . . , fm⟩ and [H(z)]+ means that the series H(z) is truncated from the first non-
positive coefficient.

This definition assumes that the field equations are always added to the sequence of quadratic
polynomials. It also allows computing explicitly the degree of regularity of semi-regular sequences
by expanding the power series (5) for specific values of m,n and q. We can also have asymptotic
information about the trend of regularity. For instance :

Theorem 4 ([4, 5, 8]). Let k ≥ 0 be a constant. The degree of regularity of a semi-regular sequence
f1, . . . , fn+k ∈ Fq[x1, . . . , xn]of quadratic polynomials behaves asymptotically as

n

2
+ αk

√
n

6
+ o(
√
n)

where αk is the biggest root of k-th Hermite polynomial.

Remark 2. A fundamental question in algebraic geometry is whether semi-regular sequences as
defined in Definition 5 indeed exists. For regular sequences (m ≤ n), the question is solved and
well understood [39]. The question remains open in the semi-regular case (m > n). A famous
conjecture of algebraic geometry is then attached to the existence of semi-regular sequences: the
so-called Fröberg conjecture [39]. The conjecture states that semi-regular sequences form a dense
subset among the set of all sequences. This is equivalent to proving that there exists a non-
constant polynomial F that vanishes the coefficients of non-semi-regular sequences. For semi-regular
sequences, it is not difficult to find such a polynomial. However, the delicate point is to prove that
the polynomial is not zero on the coefficients of a least one sequence of m polynomials. To prove
Fröberg’s conjecture, it is then sufficient to demonstrate that one particular family of m > n
polynomials in Fq[x1, . . . , xn] is semi-regular for any sufficiently big n and any m > n. In finite
fields, Zariski’s topology is meaningless since all sets are algebraic. However, the proof strategy
is essentially similar. Given the non-constant polynomial F , we can use Schwartz-Zippel-DeMillo-
Lipton lemma [28, 69, 65] to upper bound the probability that F vanishes; that is the probability
that a random sequence is not semi-regular.

5.1.2 Estimating the bit-complexity of MQq with the MQEstimator

Besides the Gröbner bases algorithms discussed in Section 5.1.1, there exists a considerable amount
of algorithms solving the MQq problems (see, for instance, [10] for an overview). The most relevant
algorithms include:
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• Algorithms for underdetermined systems. A system of equations is said to be under-
determined if it has more unknowns than equations, that is, in our notation, m < n. A first
naive approach consists in fixing the values of n −m unknowns and then solving the corre-
sponding square system of equations. When the system is extremely underdetermined, i.e.
m much smaller than n, then improved algorithms have been proposed, e.g. Kipnis, Patarin,
and Goubin [55], Thomae and Wolf [66] and more recently Furue, Nakamura, and Takagi [40].

• Fast exhaustive search. In [17, 16], the authors proposed a more efficient way to per-
form an exhaustive search over Fn

2 by enumerating the solution space with Gray codes. The
time complexity of finding one solution to the MQ2 problem with this algorithm is given by
4 log(n)2n. This approach can be extended to any field Fq using lexicographical ordering
instead of Gray codes [41] with time complexity is given by O(dqn).

• Gröbner basis-based algorithms. In addition to the Buchberger’s, F4 and F5 algorithms
mentioned in Section 5.1.1, there are many different approaches for computing Gröbner bases.
Typically, the popular XL algorithm [27] was later proved to be a redundant variant of the F4

algorithm [3]. More recently, a zoo of algorithms such as G2V [42], GVW [43], etc, flourished
building on the core ideas of F4 and F5. This literature is vast, and we refer to [32] for a
survey of these algorithms. In fact, [32] introduced a new general algorithmic framework –
called RB – that includes as a special version many algorithms such as F5, G2V, GVW, etc.

• Hybrid approaches. In a series of papers, e.g. [13, 12, 7, 51], the authors describe hybrid
techniques which combine exhaustive search and a Gröbner basis-like computations; leading to
asymptotically fast algorithms, e.g. Hybrid-(F4/F5) and Crossbed algorithms. The efficiency
of such approaches is related to the choice of a trade-off between these two methods. We
emphasize that all the complexity results for such hybrid techniques are obtained assuming
a natural algebraic hypothesis, roughly all sub-systems arising from the computations are
semi-regular (Definition 5).

• Probabilistic algorithms. In [57], Loskshtanov et al. were the first to introduce a proba-
bilistic algorithms that, in the worst case, solves MQq in time Õ(qδn), for some δ < 1 depending
only on q and the degree of the system, without relying on any unproven assumption. The
approach Lokshtanov et al., was then improved by Björklund et al. in [14] and Dinur [30]
for solving MQ2 and leading to the current fastest asymptotic algorithm whose complexity is
Õ
(
20.6943n

)
.

In order to ease the security analysis of MQq-based, R. Makarim, C. Sanna, and J. Verbel [10] in-
troduced a software tool called MQEstimator, that permits to derive the security level for solv-
ing a given MQq instance taking into account all possible known attacks. A summary of the
MQEstimator library is given in Table 10. Note that MQEstimator is part of the more general
library, CryptographicEstimators [33], that provides estimators for a large variety of crypto-
graphic hard computational problems1.

The time and space complexities of each algorithm are given, assuming a computational model
in which the operations of Fq (addition, multiplication, and division) are performed in constant
time O(1) and in which every element of Fq is stored in constant space O(1) (Fq-complexity). A
more detailed analysis could assume a computational model in which the operations at the bit-
level are performed in constant time O(1) and in which every bit is stored in constant space O(1)

1The code is accessible at https://github.com/Crypto-TII/CryptographicEstimators
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Multivariate Quadratic Estimator

Name MQEstimator

Parameters (n,m, q): No. of variables, No. of equations, field size
Elementary operation Fq multiplication
Memory unit Fq element
Bit complexity factor time (log2 q)θ, where θ ≥ 0
Bit complexity factor memory log2 q
No. of algorithms 12

Table 10: Overview of the MQq estimator

(bit-complexity). However, the bit-complexities of addition, multiplication, and division in Fq are
different (with the addition being the least expensive and division the most) and depend on the
algorithms implementing them, possible hardware optimizations, and eventually, q having a special
form, like q being equal to a power of 2 or a Mersenne prime (see [45] for a survey). Therefore,
there is no straightforward way to convert between Fq-time complexity and bit-time complexity.
Roughly, the bit-time complexity can be estimated by (log q)θ times the Fq-time complexity, with
θ ∈ [1, 2]. On the other hand, the bit-space complexity is simply equal to log q times the Fq-space
complexity. Of course, for q = 2 the Fq-complexity and the bit-complexity are equivalent.

5.1.3 Quantum algorithms

MQEstimator and the algorithms discussed before are classical techniques. Few quantum algorithms
have been developed in the past years for solving MQq.

• Quantum exhaustive search. The first quantum algorithm for MQ2 is due to P. Schwabe
and B. Westerbaan in [64]. The authors described a quantum version of exhaustive search
using Grover’s algorithm [47]. Precise resource estimates for their algorithms are derived,
demonstrating that a quantum computer can solve m binary quadratic equations in n binary
variables using O(m+n) qubits and requiring the evaluation of O

(
mn22n/2

)
quantum gates.

The authors also describe a variant using fewer qubits, i.e. O
(
n+ log2(m)

)
but with twice as

many quantum gates as the first approach.

• GroverXL. In [11], the authors proposed a quantized version of XL. More precisely, the authors
considered a variant of FXL [27, 67], that combines XL with an exhaustive search. The
principle of GroverXL is to combine FXL with Grover’s algorithm. GroverXL solves MQq with

time complexity 2

(
t+o(1)

)
n on a mesh-connected computer of area 2

(
a+o(1)

)
n. The values of t

and a can be explicitly computed for given parameters of the MQq instance considered.

• QuantumMQSolve. In a parallel but independent work from GroverXL, the authors of [36]
propose a slightly different approach for combining quantum algorithms and Gröbner bases.
To date, this is the fastest quantum algorithm known for solving MQq. Let m = ⌈αn⌉, with
α ≥ 1. It holds that:

– For q = 2, QuantumMQSolve has an average complexity of O(2

(
1
2
−0.0375α

)
n). In partic-

ular, this gives O(20.462n) for α = 1.
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– When n = m → ∞, q → ∞ and log2 (q) ≪ n, QuantumMQSolve has an average com-

plexity of O(2
n
(
2.76− 1.26

log2(
√
q)

)
).

The complexities provided below are asymptotic and not precise for given parameters (q, n,m)
. But the cost of QuantumMQSolve can be also explicitly computed by minimizing the tradeoff
and using a more precise form of the complexity.

• Quantum Gröbner bases algorithms. In [25, 26], the authors proposed a new approach
for solving MQ2 and more generally MQq in the quantum setting. The central idea of these
algorithms is to use the quantum algorithm due to A. Harrow, A. Hassidim and S. Lloyd (HLL)
for solving linear systems [48]. Ding et al [29] provided an improved complexity analysis of
[25, 26] and concludes that quantum exhaustive search will be almost always faster than the
HLL approach for MQ2 by Chen and Gao [25]. The authors of [29] also proposed an improved
variant of the Chen and Gao algorithm [25] for MQ2 whose complexity is exponential in the
Hamming weight. In particular, this version beats the quantum exhaustive search when the
Hamming weight of the solution is logarithmic in the number of variables.

5.2 Hardness Analysis of PowAff2

5.2.1 On the genericity of PowAff2

The fundamental assumption on which Biscuit relies is that random instances of PowAff2 behave
such as semi-regular sequences (Definition 5). We formalize this statement below.

Assumption 1. Let s ∈ Fn
q , A1,0, . . . , Am,2 ∈ Fq[x1, . . . , xn] be randomly sampled affine forms, i.e.

∀i ∈ [m] and ∀j, 0 ≤ j ≤ 2 Ai,j = ai,j0 +
∑n

k=1 a
(i,j)
k xk, with a

(i,j)
0 , . . . , a

(i,j)
n ∈ Fq. Let then:

fi(x1, . . . , xn) = Ai,0(x1, . . . , xn) + Ai,1(x1, . . . , xn)Ai,2(x1, . . . , xn),∀i ∈ [m],

and t = f(s) = (t1, . . . , tm) ∈ Fm
q . For any constant k > 0, the sequence f1(x1, . . . , xn) −

t1, . . . , fn+k(x1, . . . , xn)− tn+k ∈ Fq[x1, . . . , xn] is semi-regular.

Remark 3. The use of over-defined systems of equations is mainly motivated by the forgery attack
against Biscuit (Section 5.3). In particular, the number of extra equations k is a parameter allowing
us to optimize Biscuit signature size as it is directly related to the soundness of the MPC protocol
for PowAff2 (Section 3.2). It would be possible to derive secure parameters for regular instances
PowAff2, but this leads to large signature sizes. Typically, m − n = 3 the parameters selected in
Section 5.4).

Theorem 3 is proving the result in a restricted setting (m ≤ n and large fields). As discussed
in Remark 2, proving Assumption 1 for any m > n is challenging as it is equivalent to solving
Fröberg conjecture. However, we emphasize that a similar assumption was already used in [1] in
the complexity analysis of algebraic attacks against the Learning With Errors (LWE) problem [63].
Indeed, given (A = {ai,j}, c = sA + e) ∈ Fn×m

q × Fm
q where s ∈ Fn

q is a secret and e ∈ Fm
q is

an error vector, (search) LWE asks to recover the secret s. In [1, 2], the authors proved that LWE

reduces to solve the following algebraic system:

f1(x1, . . . , xn) = P (c1 −
n∑

k=1

ak,1xk) = 0, . . . , fm(x1, . . . , xn) = P (c1 −
n∑

k=1

ak,mxk) = 0, (6)
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where P depends on the error distribution. In particular, P (X) = X(X − 1) ∈ Fq[X] for binary
errors and [1] introduced the assumption that a system such as (6) behaves such as a semi-regular
sequence. Our assumption is essentially similar and, as discussed in [1] is supported by the fact
that the power of an affine of generic forms was already considered in the literature as a candidate
for proving Fröberg conjecture and a candidate for a semi-regular sequence [61].

A consequence of Assumption 1 is that solving PowAff(2) is not easier than a random system of
algebraic equations for generic algorithms. We can then rely on MQEstimator (Section 5.1.2) to
derive parameters that guarantee the security of Biscuit against the most efficient generic algorithms
solving MQq.

This assumption does not exclude the possibility to have potentially new faster algorithms that are
taking into account the structure of the equations. In the next part, we describe a new dedicated
algorithm for solving PowAff(2).

5.2.2 A specialized enumeration attack

We describe an enumeration attack specialized for systems as in Assumption 1. The main com-
plexity result is as follows:

Theorem 5. There exists an algorithm that solves PowAff(2) with parameters (n,m, q) whose
(heuristic) complexity is

O(q
3(n+1)

4 ).

Proof. We want to solve the quadratic system

f1(x1, . . . , xn) = t1, . . . , fm(x1, . . . , xn) = tm,

where f1, . . . , fm ∈ Fq[x1, . . . , xn] and t = (t1, . . . , tm) are defined as in Assumption 1. From now
on, we assume t has k < n non-zero coordinates. Without loss of generality, we assume that
t1, . . . , tk are non-zero.

1. For each i ∈ [m], compute the homogenized polynomial

f
(h)
i (x1, . . . , xn, h) = A

(h)
i,0 (x1, . . . , xn) +

2∏
j=1

A
(h)
i,j (x1, . . . , xn) ∈ Fq[x1, . . . , xn, h].

2. For each i ∈ [m], define

(a) Oi = {x ∈ Fn
q | A

(h)
i,0 (x) = A

(h)
i,1 (x) = 0}.

(b) Ki = RightKernel(Ai) and Ai ∈ Fn×n
q the matrix of rank 2 representing the polar form

of f
(h)
i .

(c) Wi = Oi ∩Ki.

3. W←W1 ∩ · · · ∩Wk.

4. fk ← (f
(h)
1 , . . . , f

(h)
k ) and zk ← (z1, . . . , zk), and set W⊤ to be the complement of W in Fn+1

q .
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5. P ← {x ∈W⊤ : fk(x) = zk}.

6. Exhaustively search x ∈ P and y ∈W such that

f
(h)
i (x + y) = zi, ∀i = k + 1, . . . , n, (7)

and return x + y. Return ⊥ if not vector x + y fulfilling Equation (7) is found.

Now we analyze the complexity of the enumeration attack described above. To this end, we upper-

bound the number of times a vector x ∈ Fn
q is evaluated either in fk or in (f

(h)
k+1, . . . , f

(h)
m ). Notice

all vector evaluations come from the steps 5 and 6. In step 5, we evaluate a total |W⊤| vectors

in fk, while in step 6, we evaluate a total of |P| · |W| in (f
(h)
k+1, . . . , f

(h)
n ). Therefore, we obtain an

expected complexity C(k) given by C(k) := |W|+ |P| · |W⊤|.

From the description of the attack, we know that, with high probability, dim(Wi) = n + 1− 3 for
each i ∈ [k]. Hence, we expect that dim(W) = n + 1 − 3k with high probability 2. So, |W⊤| is
expected to be q3k, and the one of |W| is qn+1−3k. Hence the complexity of the aforementioned
attack is given by C(k) = q3k + |P| · qn+1−3k.

Now, we focus on determining the expected value of |P|. Since every polynomial in fi ∈ f has a
randomly chosen linear polynomial summand. We expect fi(x) to be random for a random x ∈ Fn

q .

Hence the expected number of elements in the set P is q3k/qk = q2k.

Consequently, the expected number of vector evaluations by the algorithm described above is given
by C(k) = q3k + q2k · qn+1−3k, which is minimized when k = (n + 1)/4, and yield a minimum

complexity q
3(n+1)

4 .

The aforementioned algorithm successfully finds a solution to the input system whenever W⊤∩W =
∅. We tested experimentally that this is indeed the case with high probability.

The correctness of the algorithm follows from two facts. First, for any x,y ∈ Fn+1
q it holds

x⊤Aiy = f
(h)
i (x + y)− f

(h)
i (x)− f

(h)
i (y).

Second, with high probability Wi ⊆ Oi, where Oi := {x ∈ Fn+1
q | ℓ(h)i0

(x) = 0}. In this case, for

any y ∈Wi, it holds f
(h)
i (x + y) = f

(h)
i (x).

5.3 Forgery Attack

Let
(
f = (f1, . . . , fm), t = f(s)

)
∈ Fq[x1, . . . , xn]m × Fm

q be a Biscuit public-key. Here we analyze
the situation in which an attacker finds a vector s′ ∈ Fn

q that vanishes a subset of size m− u of the
system t = f(x). Without loss of generality, we assume s′ vanishes the first m − u polynomials
and not for the rest. That is, fk(s′) = tk, for k ∈ [m−u], and fk(s′) ̸= tk for k = m−u+ 1, . . . ,m.

By Proposition 1, a set of N parties that follows the MPC protocol in Figure 1 on inputs Js′K and
(f , t) will output accept with probability p1 = 1/qu. In the context of MPCitH, the value p1 is
referred in the literature as the false positive rate of the MPC protocol.

2We verified this fact experimentally.
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Thanks to the Kales-Zaverucha [52] forgery attack on 5-pass Fiat-Shamir, it is known that MPCitH-
based signature scheme that consist of τ repetitions of a MPC protocol with false positive rate p1
can be forged by computing of average

KZτ (p1, p2) = min
{τ1,τ2|τ1+τ2=τ}

{
1∑τ

i=τ1

(
τ
i

)
pi1(1− p1)τ−i

+
1

pτ22

}
,

calls to some hash functions, where p2 is the probability of guessing some of the views of parties
that remain unopened, e.g., p2 = 1/N for Biscuit.

Let Cu(q, n,m) denote the complexity of finding a preimage to a chosen subset S of the system
t = f(x) of size m − u and s′ a solution than vanishes the equations of S. Then, s′ might, by
chance, also be a solution of any of the equations in Sc, i.e., the equation is not in S. If there remain
k ∈ [u] incorrect values among u, then an attacker can try to mount an attack with complexity
KZτ (q−k, N−1).

Let (f , t) a Biscuit public-key selected uniformly at random, and let S be a subset of the equations
t = f(x) of size m − u selected uniformly at random. Then, a random solution s′ ∈ Fn

q of the
equations in S follows a uniform distribution. Hence, fℓ(s

′) is a uniform element in Fq. Therefore,
the probability that s′ is a solution of exactly j equations in Sc is

(
u
j

)
· (q−1)u−j/qu. Consequently,

if pk denotes the probability that s′ is not the solution of at most k equations in Sc, then,

pk =

∑u
j=u−k+1

(
u
j

)
· (q − 1)u−j

qu
.

In order to find proper parameters, we have to find a value (k, u) such that

1. KZτ (q−k, N−1) > 2λ, and

2. 1
pk
· Cu(q, n,m) > 2λ+Cλ ,

where Cλ is defined in the NIST call for additional signatures3 : Cλ = 15 for categories I and III,
Cλ = 16 for Category V.

5.4 Bit Security of Biscuit

Table 11 shows the parameters selected for Biscuit and the corresponding bit security against key-
recovery and forgery attacks.

3https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.

pdf
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Name
Parameters Security (classical) Security (quantum)

λ q n m τ N recovery forgery (u) recovery forgery (u)

biscuit128f 128 16 64 67 34 16 160 143 (17) 136 136 (0)
biscuit128s 128 16 64 67 18 256 160 143 (17) 136 136 (0)
biscuit192f 192 16 87 90 55 16 210 208 (8) 182 182 (0)
biscuit192s 192 16 87 90 31 256 210 208 (8) 182 182 (0)
biscuit256f 256 16 118 121 74 16 276 274 (8) 244 244 (0)
biscuit256s 256 16 118 121 42 256 276 274 (8) 244 244 (0)

Table 11: Bit security of Biscuit against key-recovery and forgery attacks.

The complexity of a key-recovery attack and the complexity Cu involved in the forgery attack of
Section 5.3 are obtained from the cost of solving a random instance of the PowAff2 problem with
parameters (n,m, q) and (n,m− u, q) respectively. As discussed before, we then use MQEstimator

to compute the bit security in the classical setting (Section 5.1.2). The quantum bit security has
been derived from quantum hybrid approaches (Section 5.1.3) and adding the complexity of these
algorithms into the MQEstimator. Finally, for the parameter u involved in the cost of the forgery
attack from Section 5.3, in the classical setting, we set k = u− 1, u = 17 for the biscuit128 and
u = 8 for biscuit192/biscuit256. For the quantum case, we found u = 0 is optimal for all the
parameter sets.

5.5 EUF-CMA Security

Existential unforgeability under adaptive chosen-message attacks (EUF-CMA) is the classical security
notion used for DSS. Since Biscuit is constructed using the MPCitH paradigm and Fiat-Shamir
transform, we get:

Theorem 6. Assuming the hardness of PowAff2, Biscuit is EUF-CMA-secure.

The proof follows from [37, Theorem 5] (which in turn is highly inspired by that of [20, Theorem
6.2]).

5.6 Security Against Side-Channel Attacks

In this section, we briefly discuss the possible side-channel vulnerabilities of our proposition, and
how to address them.

Timing Attacks. First of all, it is worth to notice that the signature procedure of Biscuit is
independent on the secret value as long as the field arithmetic and the hash functions do not
leak information on the manipulated data. Indeed, there are no branching that depend on the
value of any secret in the algorithm. This allows to make an isochronous, and even constant-time
implementation by focusing on the field arithmetic.
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Side-Channel Attacks. The most popular technique to prevent these attacks is to use masking :
we compute a sharing of the secret using fresh random value at each execution.

In our proposition, it happens that most of the time, the secret value s is already shared into
N shares due to the MPC protocol. Nevertheless, this does not guarantee security at order N − 1
because all the shares (except one) will finally become public during the verification process. This
sharing is not secure from a side-channel attacker point of view.

However, as our construction uses fields of characteristic, classical boolean masking techniques can
be applied throughout the scheme.

6 Advantages and Limitations

Since MQDSS and Picnic, the use of MPC and ZK techniques for designing DSS flourished in the
literature, e.g [54, 9, 52, 53, 37, 20]. This leads to improved techniques and more and more efficient
DSS. Typically, the performances of Picnic significantly improved between the first and third round
of the previous NIST post-quantum standardization process.

Biscuit takes advantage of this abundant literature and selected a problem that seems rather optimal
for current MPCitH-based proof systems. We believe that Biscuit has a rather interesting perfor-
mance profile compared to current post-quantum standards and is based on different hardness
assumption (multivariate-based). It can be noted that the signature+public-key size is comparable
to Dilithium and smaller than SPHINCS+.

Biscuit achieves EUF-CMA-security which is not really common in multivariate-based cryptography.
On the other hand, this security proof relies on the hardness of a non-standard problem : PowAff2.
As pointed out in the document, we assume that this problem is as hard as solving random equations
(and also prove the statement in some restricted cases). The use of such a problem was also
motivated by the fact that faster algorithms against PowAff2 would lead to faster algebraic attacks
against LWE.
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puting gröbner bases. J. Symb. Comput., 80:719–784, 2017.

[33] Andre Esser, Javier Verbel, Floyd Zweydinger, and Emanuele Bellini.
CryptographicEstimators: a software library for cryptographic hardness estimation.
Cryptology ePrint Archive, Paper 2023/589, 2023. https://eprint.iacr.org/2023/589.

[34] J.-C. Faugère. A new efficient algorithm for computing gröbner bases (F4). Journal of Pure
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