
SNOVA
Proposal for NISTPQC: Digital Signature Schemes project

May 25, 2023

Contents

1 Algorithm specification (2.B.1) 3

1.1 Introduction . 3

1.2 Preliminaries . 5

1.2.1 Notations and conventions . 5

1.2.2 Basic notions . 6

1.2.3 NIST security level. 7

1.2.4 Unbalanced Oil and Vinegar signature (UOV) scheme 7

1.3 Parameter space of the SNOVA scheme 8

1.4 Design rationale . 9

1.5 SNOVA signature scheme . 9

1.5.1 Description . 9

1.5.2 Key generation process of SNOVA 11

1.5.3 To attain EUF-CMA security 12

1.6 Implementation details . 12

1.7 Constants and tables . 14

1.8 Algorithms . 15

1

1.8.1 Algorithms for key generation 15

1.8.2 Algorithms for signature generation 17

1.8.3 Algorithms for signature verification 22

1.9 Parameters settings . 24

1.9.1 List of our parameters . 24

1.9.2 How the performance are affected by parameters 25

2 Performance analysis (2.B.2) 25

2.1 Platforms used in the estimation . 25

2.2 Time . 26

2.3 Space . 26

3 Expected Security Strength (2.B.4) 27

3.1 Security strength . 27

4 Analysis With Respect To Known Attacks (2.B.5) 28

4.1 A note of our analysis . 28

4.2 Preliminaries . 30

4.2.1 Solving MQ systems and complexity estimation 30

4.2.2 MinRank problem and Support-Minors modeling 31

4.3 Forgery attacks . 32

4.3.1 Direct attack . 32

4.3.2 Collision attack . 34

4.4 Key Recovery Attacks . 35

4.4.1 Quadratic forms over ring and MinRank attacks 35

4.4.2 Reconciliation Attack . 37

4.4.3 Kipnis-Shamir attack (UOV attack) 37

4.4.4 Intersection attack . 38

2

4.4.5 Equivalent key attack . 40

5 Advantages and limitations (2.B.6) 41

5.1 Advantages . 41

5.2 Limitations . 42

1 Algorithm specification (2.B.1)

In the following Introduction and Preliminaries, we borrow paragraphs and slightly
modify them from Wang et al. [51].

1.1 Introduction

We propose a simple noncommutative-ring based UOV signature scheme with key-
randomness alignment: SNOVA (or Simple NOVA, which can be viewed as a simplified
version of NOVA [50]). Both NOVA and SNOVA are multivariate cryptosystems over
noncommutitive rings which is indicated by the letter N. The letters O and V stand for
oil and vinegar variables, respectively, as in the Unbalanced Oil and Vinegar signature
(UOV) scheme. The letter A denotes that key-randomness alignment is employed.

Before NOVA [50], all known multivariate cryptosystems are systems of nonlinear
polynomial equations in several variables over a finite field, say Fq. The security of
these multivariate schemes is based on the MQ problem: for m quadratic polynomials
P1(x1, . . . , xn), P2(x1, . . . , xn), . . . , Pm(x1, . . . , xn) in n variables x1, x2, . . . , xn over the
chosen base finite field Fq of order q, to find a vector (a1, a2, . . . , an) ∈ Fn

q such that
P1(a1, . . . , an) = P2(a1, . . . , an) = · · · = Pm(a1, . . . , an) = 0. The MQ problem is proven
to be NP-hard [23]. The private key of a usual multivariate scheme consists of three
maps: S : Fm

q → Fm
q , F : Fn

q → Fm
q , T : Fn

q → Fn
q where F is a plausibly invertible poly-

nomial map (called the central map) and S, T are easily invertible maps (usually linear
maps) to hide the structure of the central map F . The public key is the composite map
S ◦ F ◦ T .

Among the above multivariate schemes, by its simplicity, UOV is worth more explaining.
The central map of UOV scheme F : Fn

q → Fm
q is as below.

3

F =

F1
...
Fi
...

Fm

 =

v∑
j=1

n∑
k=j

f1,jkxjxk

...
v∑

j=1

n∑
k=j

fi,jkxjxk

...
v∑

j=1

n∑
k=j

fm,jkxjxk

where fi,jk’s are the coefficients chosen randomly from Fq. Thus F consists of m
homogeneous quadratic polynomials in n variables over Fq and Fi = #—x t [Fi]

#—x with
#—x = (x1, · · · , xn)

t. Note that, for j, k = v + 1, · · · , n, each Fi does not contain xjxk

terms. This kind of phenomenon is analogous to that oil and vinegar won’t mix com-
pletely and this enables us to invert F easily.

The variables x1, · · · , xv are called the vinegar variables, and xv+1, · · · , xn oil variables.
It is required that v > o in order to resist the K-S attack[28] on the OV scheme[36].
This is the reason why the scheme is called Unbalanced Oil and Vinegar (UOV).

The design of UOV chooses S in the usual private key (S, F, T) to be the identity map.
Thus, for UOV, the private key is only the pair (F, T) where F is the central map
above, and T : Fn

q → Fn
q is an invertible linear map which is randomly chosen.

The composite map P = F ◦ T : Fn
q → Fm

q consisting of m homogeneous quadratic
polynomials in n variables over Fq is the public key. Note that the i-th public polynomial
Pi can be written in a quadratic form, that is, Pi =

#—u t [Pi]
#—u where #—u = (u1, · · · , un)

t

and [Pi] = [T]t [Fi] [T] where [T] is the matrix corresponding to T .

Although simple, UOV suffers extremely large public key sizes in order to be secure.
Thus it is not practical if nothing new is done. It is quite a challenge to overcome it.
Both NOVA and SNOVA take on the challenge by choosing the coefficients of the poly-
nomials used in the multivariate quadratic system of UOV in a noncommutative ring,
and also employs the technique of key-randomness alignment [39] and some particular
designs. As a result, both NOVA and SNOVA successfully solve the problem of large
public key size suffered by UOV.

One particular design in NOVA is the use of “self-canceling” perturbation technique.
Although the use of perturbation trick is creative in designing, the security analysis
becomes more complicated, thus we try to find an alternative way to design NOVA
by skipping the perturbation trick and cook up the Simple NOVA (may also be called
SNOVA where S denotes “Simple”). By skipping the perturbation trick, not only the
security analysis is now more clear, but also the key generation process is shortened and
both the signing and verification are accelerated. In response to the Criterion 4.B.5 of
the New Call of NIST [33], we decide to submit SNOVA instead of NOVA to the New
Call.

4

1.2 Preliminaries

1.2.1 Notations and conventions

The following Tables 1, 2 are tables that list some symbols fixed with specific meaning
and some conventions on notations, respectively.

Table 1: The table of notations used in this paper.

Symbol Description
Fq finite field of order q

R Matl×l(Fq), matrix ring consisting of l × l matrices over Fq

v number of vinegar variables
o number of oil variables
S symmetric matrix in R with irreducible characteristic polynomial

n = v + o number of variables
m = o number of equations

F = [F1, · · · , Fm] central map of the signature scheme
[Fi] matrix corresponding to Fi in F

T invertible linear map in signature scheme
[T] matrix corresponding to T

[T−1] matrix corresponding to the map T−1

P = [P1, · · · , Pm] public key of the signature scheme
[Pi] matrix corresponding to Pi in P

D document to be signed
digest hash value of the document D, Hash(D)

O oil space of the central map F

T−1(O) oil space of the public key P

MQ(N,M, q) complexity of a MQ system of M equations in N variables over Fq

5

Table 2: The table of conventions in this paper.

Description The font denoted with Example
Integers lower case letters n, m and l

Elements in R upper case letters A, S and Q

Variables over R upper case letters X1, · · · , Xn

Elements in Fq lower case letters a0, · · · , al−1

Variables over Fq lower case letters x1, · · · , xn

Vectors of any dimension boldface letters with arrow
on top

#—

X and #—x

Vector spaces and rings calligraphic font O and R
The (j, k)-th entry of the
matrix [Fi], [T] and [Pi],
respectively

subscript j, k Fi,jk, Tjk and Pi,jk

Block form of matrices [T] upper case letters [T] =

[
T 11 T 12

T 21 T 22

]
Block form of matrices [Fi] upper case letters [Fi] =

[
F 11
i F 12

i

F 21
i 0

]
Block form of matrices [Pi] upper case letters [Pi] =

[
P 11
i P 12

i

P 21
i P 22

i

]

1.2.2 Basic notions

MQ problem. Let Fq be a finite field of order q. Given M quadratic polynomials
P (#—x) = [P1(

#—x), · · · , PM(#—x)] in N variables #—x = (x1, · · · , xN)
t and a vector #—y ∈ FM

q ,
to find a vector #—u ∈ FN

q such that P (#—u) = [P1(
#—u), · · · , PM(#—u)] = #—y . This problem

is known to be NP-hard [23]. Note that, it is generically expected to be exponentially
hard in the case N ∼ M and it can be solved in polynomial time for M ≥ N(N+1)

2
or

N ≥M(M + 1) [7].

In this paper, we use MQ(N,M, q) to denote the complexity of solving such an MQ
problem. There are several algorithms to solve a multivariate quadratic system of M
equations in N variables over finite fields such as F4 [20], F5 [21] and XL variants
[15, 52].

Polar forms. The polar form of a homogeneous multivariate quadratic map P (#—x) =
[P1(

#—x), · · · , PM(#—x)], consisting of M multivariate homogeneous quadratic polynomial
in n variables, is defined to be the map

P ′(#—x , #—y) = [P ′
1(

#—x , #—y), · · · , P ′
M(#—x , #—y)]

6

where the polar form of Pi(
#—x) is defined by

P ′
i (

#—x , #—y) = Pi(
#—x + #—y)− Pi(

#—x)− Pi(
#—y)

which is symmetric and bilinear. Note that if [Pi] is the matrix related to Pi, i.e.,
Pi(

#—x) = #—x t [Pi]x, then the matrix related to P ′
i is [P ′

i] = [Pi] + [Pi]
t

1.2.3 NIST security level.

In [32], NIST suggested several security levels for post-quantum cryptosystem design.
In the new call for additional digital signature scheme project, NIST slightly modified
their security level request. Herein, we focus on levels I, III, and V. The NIST security
levels I, III and V require that a classical attacker needs 2143, 2207 and 2272 classical
gates to break the scheme, and 261, 2125 and 2189 quantum gates for a quantum attacker,
respectively.

The number of gates required for an attack against digital signature scheme can be
computed by

♯gates = ♯field multiplication · (2 · (log2 q)2 + log2 q)

with the assumption that one field multiplication in the field Fq needs about (log2 q)
2

bit multiplications and same for bit additions and for each field multiplication in the
computation, it also needs an addition of field elements, each takes log2 q bit additions.

Table 3: NIST Security Level.

Security Level Classical gates Quantum gates
I 143 61
III 207 125
V 272 189

1.2.4 Unbalanced Oil and Vinegar signature (UOV) scheme

The Unbalanced Oil and Vinegar (UOV) signature scheme [27] signature scheme is a
slight modification of the Oil and Vinegar (OV) [36] signature scheme, proposed by
Patarin in 1997. This scheme is based on a trapdoor map F which is easily inverted
and it also can resist the K-S attack [28] on OV.

A (v, o, q) UOV signature scheme with v > o is defined with a triple of positive integers
so that the number of variables n = v+ o, the number of equations m = o, and over Fq.

Central map. The central map of UOV scheme is F = [F1, · · · , Fm] : Fn
q → Fm

q where

7

each Fi is of the form

Fi =
v∑

j=1

n∑
k=j

fi,jkxjxk.

The coefficients fi,jk’s are chosen randomly from Fq. Note that each Fi is a homogeneous
quadratic polynomials in n variables which has no terms xjxk for j, k = v + 1, · · · , n
over Fq. The variables x1, · · · , xv are called the vinegar variables and xv+1, · · · , xn are
called the oil variables.

Private key and Public key. The private key of UOV is the pair (F, T) where
T : Fn

q → Fn
q is an invertible linear map which is randomly chosen. The map P =

F ◦ T : Fn
q → Fm

q where Pi = Fi ◦ T . The quadratic form of Pi is Pi =
#—u t [Pi]

#—u where
#—u = (u1, · · · , un)

t and [Pi] = [T]t [Fi] [T] where [T] is the matrix related to T .

Oil space, O. The special structure of F in UOV scheme indicates that F vanishes
on the linear space O = { #—x ∈ Fn

q : x1 = · · · = xv = 0} called the oil space of central
map F , and hence the oil space of public key P will be the space T−1(O).

Public key generation and drawback. A. Petzoldt [38] and Rainbow [16] of the
third-round of NIST proposal realized that the part of the randomness of the private key
can be transferred to the public key and then a large part of public key can be generated
by a PRNG. This reduces the public key size of UOV to the order O(m3·log q). However,
the size of the public key of UOV scheme is still too large to be a practical scheme, for
example, to meet the security levels I, III, and V in the PQC project of NIST [32].

1.3 Parameter space of the SNOVA scheme

The parameter set of a SNOVA scheme is completely described by a quadruple (v, o, q, l)
of positive integers with induced parameters m = o and n = v + o as explained below.

• v is the number of vinegar variables over the noncommutative ring R.

• o is the number of oil variables over the noncommutative ring R and we require
that o < v.

• q is the order of the underlying finite field Fq of characteristic two.

• l indicates the size of the noncommutative ring R = Matl×l(Fq).

• m = o is the number of quadratic equations over R in the public key.

• n = v + o is the number of variables over R in the public key.

8

1.4 Design rationale

We believe that multivariate cryptosystems are useful in cryptography. However, for
multivariate cryptosystems over fields, there are abundance of cryptanalysis tools avail-
able such as F4, F5, XL [20, 21, 15]. Also, the problem of suffering large public key size
makes their application less practical. Therefore we are determined to design multivari-
ate cryptosystems over noncommutative rings and also to solve the problem of suffering
large public key size.

Due to its simplicity, UOV [27] is an ideal test ground of these ideas. Although the idea
of using noncommutative rings applies to general noncommutative rings, we decide
to start from the matrix ring R = Matl×l(Fq). And also using finite fields not of
characteristic two is possible, using finite fields of characteristic two enjoys the benefits
of possible tricks of speeding in computation.

It would be not wise to simply generalize UOV over finite fields to over noncommutative
rings, which means those skills in attacking UOV over finite fields might be applicable
to UOV over noncommutative rings (may be called ring UOV). Therefore, we adopt
multiplication with other random matrices before and after the ring UOV and summing
them together. Also, by viewing each element in R = Matl×l(Fq) as l2 elements in Fq,
we may regard our system as a multivariate system over finite fields but with the
explosion of the number of variables and the number of equations. In doing so, the
structure of multiplication of matrices may result in the sparsity of the product matrix
with entries in Fq. The multiplication with other random matrices and then summing
together happens to scramble the entries in Fq and hence make the sparsity disappear.

The above is done with a trade-off in computation speed, which we think it is justifiable.

Also, to further solve the problem of large public key size, we find that the technique of
shifting the randomness of the private key to a part of the public key [38] (which may
be called key-randomness alignment) and in combination of using PRNG with seeds
applicable to multivariate cryptosystems over noncommutative rings. The result is an
amazing success in reducing the key sizes substantially at the same security level.

The designing process is actually a long process of “try-and-err”. We have done our
best to ensure the security of our design of SNOVA against all known major attacks.
For details, please refer to the part of security analysis.

1.5 SNOVA signature scheme

1.5.1 Description

Let v, o be positive integers with v > o and Fq be of characteristic 2. For example, we
choose Fq = GF(16) for our implementation. Let n = v + o and m = o. A (v, o, q, l)

9

SNOVA signature scheme is defined as the following.

Subring Fq[S] and elements in Fq[S]. Let S be a l × l symmetric matrix with
irreducible characteristic polynomial. The subring Fq[S] of R is defined to be

Fq[S] = {a0 + a1S + · · ·+ al−1S
l−1 | a0, a1, · · · , al−1 ∈ Fq}

and note that the elements in Fq[S] are also symmetric and they all commute.

Central map. Let Ω = {(j, k) : 1 ≤ j, k ≤ n} \ {(j, k) : m + 1 ≤ j, k ≤ n}. The
central map of SNOVA scheme is F = [F1, · · · , Fm] : Rn → Rm and for i = 1, · · · ,m,
Fi is defined to be

Fi =
l2∑

α=1

Aα ·

 ∑
(j,k)∈Ω

X t
j (Qα1Fi,jkQα2)Xk

 · Bα

where Fi,jk’s are randomly chosen from R, Aα and Bα are invertible elements randomly
chosen from R, and Qα1, Qα2 are invertible matrices randomly chosen from Fq[S].

Due to the noncommutativity of matrix ring R, the matrix [Fi] over R corresponding
to Fi is of the form

[Fi] =

[
F 11
i F 12

i

F 21
i 0

]
,

where F 11
i , F 12

i and F 21
i are matrices over R of size v× v, v× o and o× v, respectively.

Invertible linear map. The invertible linear map in SNOVA scheme is the map
T : Rn →Rn related to the matrix

[T] =

[
I11 T 12

0 I22

]
,

where T 12 is a v × o matrix consisting of nonzero entries Tij chosen randomly in Fq[S].
Note that Tij is symmetric and commutes with other elements in Fq[S]. The matrices
I11 and I22 are the diagonal matrices with all diagonal entries being the l × l identity
matrix, i.e. the unity in R. Therefore, [T] is invertible and hence T .

Private key. The private key of SNOVA is (F, T), i.e., the matrix [T] and the matrices
[Fi] for i = 1, 2, . . . ,m.

Public key. Let P = F ◦ T be the public key of SNOVA scheme. For i = 1, 2, . . . ,m,
Pi = Fi ◦ T . The relation #—

X = [T] · #—

U with the variable #—

U = (U1, · · · , Un)
t implies that

Pi(
#—

U) = Fi(T (
#—

U)) =
l2∑

α=1

n∑
dj=1

n∑
dk=1

Aα · U t
dj
(Qα1Pi,djdkQα2)Udk · Bα

where Pi,djdk =
∑
Ω

Tj,dj ·Fi,jk ·Tk,dk by the commutativity of Fq[S]. Therefore, the public

key consists of the corresponding matrices

[Pi] = [T]t [Fi] [T] , i = 1, · · · ,m

10

and the matrices Aα, Bα and Qαk for α = 1, 2, . . . , l2 and k = 1, 2.

Signature. Let D be the document to be signed and Hash(D) =
#—

Y = (Y1, · · · , Ym)
t ∈

Rm be its hash value. We compute the signature #—

U step by step. First, we assign
values to vinegar variables X1, · · · , Xv randomly and the resulting system can be seen
as a linear system over the Fq-entries of oil variables Xv+1, · · · , Xn. The remaining is
the same as in UOV scheme. Secondly, the signature is #—

U = T−1(
#—

X) ∈ Rn.

Verification. Let #—

U = (U1, · · · , Un)
t ∈ Rn be the signature to be verified. If

Hash(D) = P (
#—

U), then the signature is accepted, otherwise rejected.

Structure of SNOVA. A (v, o, q, l) SNOVA over R can be regarded as an (l2v, l2o, q)
UOV scheme over Fq. The noncommutativity of matrix ring R implies that we can not
write the public key of SNOVA into a quadratic form Pi(

#—

U) = (
#—

U)t [Pi]
#—

U over R.

1.5.2 Key generation process of SNOVA

We give the standard key generation process of SNOVA and the key generation process
with key-randomness alignment technique. Note that in SNOVA scheme, Fq is of the
characteristic 2.

Standard key generation process. For i = 1, 2, . . . ,m, the matrix [Pi] is obtained
by relation

[T]t [Fi] [T] = [Pi] =

[
P 11
i P 12

i

P 21
i P 22

i

]
.

Then, we have the following

P 11
i = F 11

i

P 12
i = F 11

i T 12 + F 12
i

P 21
i = (T 12)tF 11

i + F 21
i

P 22
i = (T 12)t ·

(
F 11
i T 12 + F 12

i

)
+ F 21

i T 12.

Therefore, to generate the public key we generate the matrices [Fi], [T] from a seed
sprivate at first and then compute the public key [Pi] for i = 1, · · · ,m with the formulas
above.

Key generation with randomness alignment. The following are steps of key
generation process of SNOVA with key randomness alignment.

First Step: Fix an l× l symmetric matrix S with irreducible characteristic polynomial.
Generate P 11

i , P 12
i and P 21

i for i = 1, · · · ,m from public seed spublic. Generate [T]
from private seed sprivate. We also generate the matrices Aα, Bα, Qα1 and Qα2 for
α = 1, 2, . . . , l2 from spublic.

Second Step: Compute the matrix F 11
i , F 12

i , F 21
i , P 22

i for i = 1, · · · ,m as below.

11

For i = 1, 2, . . . ,m, we have

[Fi] =
[
T−1

]t
[Pi]

[
T−1

]
.

Therefore, the following equations hold

F 11
i = P 11

i

F 12
i = P 11

i T 12 + P 12
i

F 21
i = (T 12)tP 11

i + P 21
i

0 = F 22
i = (T 12)t ·

(
P 11
i T 12 + P 12

i

)
+ P 21

i T 12 + P 22
i .

In other words, we then have

P 22
i =

(
T 12
)t · (P 11

i T 12 + P 12
i

)
+ P 21

i T 12.

1.5.3 To attain EUF-CMA security

For practical considerations, we use a random binary vector, called salt in order to
achieve Existential Unforgeability under Chosen Message Attack (EUF-CMA) Security
[34, 41].

Signature. Let D be the document to be sign, we randomly choose salt and then
generate a signature for the hash value #—

Y = Hash(spublic||Hash(D)||salt) where spublic
is the seed used to generate the public key of SNOVA scheme.

Therefore, the corresponding signature with salt is of the form #—σ = (
#—

U||salt) where #—

U

is the signature of #—

Y generated by the SNOVA signer. Note that we want almost no
salt is used for more than one signature. Therefore, the length of salt is chosen to be
16 Bytes under the assumption of up to 264 signatures being generated with the system
[33].

Verification. If P (
#—

U) = Hash(spublic||Hash(D)||salt), the signature is accepted,
otherwise rejected.

1.6 Implementation details

In this section, we describe the details about implementations.

For all parameter settings, we implement two variants of SNOVA scheme:

- SNOVA-ssk: In this variant, the suffix “ssk” stand for “seed-type secret key”.
Secret key only stores the information of seeds. This means the private key
expansion and the expansion of the random part of the public key are included

12

in both the key generation procedure and the signing procedure of the signer. In
other words, the Algorithms 3, 4, 6 are part of both key generation process and
signing process.

- SNOVA-esk: In this variant, the suffix “esk” represents “expanded secret key”.
Therefore, the private key expansion is only a part of key generation procedure
and then the expanded secret key is stored and directly accessed when the signer
intend to sign. That is, the Algorithms 3, 4, 6 are only used in key generation
process.

In SNOVA scheme, several hash functions and PRNG are needed. We categorize the
parts that needed hash functions and PRNG and explain which instance we take in
each case:

- The length of private key seed, |sprivate|: 32 bytes.

- The length of public key seed, |spublic|: 16 bytes.

- The length of salt, |salt|: 16 bytes.

- The hash function which is used to generate private key T : SHAKE256.

- The hash function which is used to generate the random part of public key:
AES128.

- The digest of the document D: digest = Hash(D).

- The hash function which is used to to generate the hash value to be signed
HashSHAKE256(spublic||Hash(D)||salt): SHAKE256.

- The hash function which is used to generate vinegar values we used in signature
generation, HashSHAKE256(sprivate||digest||salt||numsig): SHAKE256.

To generate the longer random part of the public key efficiently, we have adopted
AES128-CTR encryption. This involves using the public key seed as the encryption
key and encrypting a zero plaintext block with a zero nonce. The resulting ciphertext
serves as the pseudo-random output for generating the random part of the public key.

It is important to note that the provided implementation uses OpenSSL’s AES128-
CTR. When implementing this method, it is crucial to follow cryptographic security
best practices. By utilizing trusted cryptographic libraries, we can ensure proper im-
plementation of the encryption algorithm and enhance security.

In the future, we may explore alternative methods for generating the random part of
the public key if more efficient implementation approaches are discovered.

13

1.7 Constants and tables

The finite field F16. Fix an irreducible polynomial f(x) = x4 + x + 1 over F2 and
consider that the finite field F16 consists of the polynomials ax3 + bx2 + cx+ d ∈ F2[x]
modulo f(x). The elements of F16 are stored in 4 bits and then the addition of two
elements in F16 is equal to the bitwise XOR of them. For simplicity, we convert binary
elements of F16 to decimal numbers. In particular, an element ax3 + bx2 + cx + d of
F16 is converted to an integer 23a + 22b + 2c + d. For multiplications of F16, we fix a
generator 2 of the multiplicative group F×

16 and create a list

F× := {2i | 0 ≤ i ≤ 15} = {1, 2, 4, 8, 3, 6, 12, 11, 5, 10, 7, 14, 15, 13, 9}.

Then we create a multiplication table mt of F16 as follows

mt(F×[i], 0) = mt(0,F×[i]) := 0 for 1 ≤ i ≤ 15 and
mt(F×[i],F×[j]) := F×[i+ j (mod 15)] for 1 ≤ i, j ≤ 15.

The matrix S. When we fix the finite field F16 := F2[x]/ < x4 + x+1 > and with the
same notation as above, we fix the matrices S as follows:

S =

[
8 7
7 6

]
if l = 2,

S =

8 7 6
7 6 5
6 5 4

 if l = 3,

S =

8 7 6 5
7 6 5 4
6 5 4 3
5 4 3 2

 if l = 4.

One can check that the characteristic polynomials of these matrices S are irreducible
over F2.

Generate elements of F16[S]. Recall that the subring F16[S] of R is defined to be

F16[S] = {a0 + a1S + · · ·+ al−1S
l−1 | a0, a1, · · · , al−1 ∈ F16}

and the entries of the matrix T 12 are nonzero matrices randomly chosen from F16[S]. In
order to generate nonzero matrices from F16[S], we will modify the leading coefficient
al−1 if al−1 = 0. Given inputs l elements a0, . . . , al−1 of F16. If al−1 = 0, then we
modify the leading coefficient al−1 := 16− a0 when a0 ̸= 0 and al−1 := 15 when a0 = 0.
Note that 16− a0 is a difference between two integers and it is not compatible with the
difference between elements of F16.

14

Algorithm 1: Generate elements of F16[S]

input : l elements a0, . . . , al−1 of F16

output: a nonzero element of F16[S]
1 if al−1 = 0 then
2 if a0 ̸= 0 then
3 al−1 ← 16− a0
4 else
5 if a0 = 0 then
6 al−1 ← 15
7 end
8 end
9 end

10 return a0 + a1S + · · ·+ al−1S
l−1

Generate invertible matrices. Let l = 2, 3 or 4 and M ∈ Matl×l(F16) any l × l
matrix over F16. Since the polynomial det(M + xS) in the variable x has at most l
roots, there exists an element a of F16 such that the matrix M + aS is invertible. We
use this property to generate invertible matrices as follows.

Algorithm 2: Generate invertible matrices
input : a l × l matrix M
output: an invertible matrix M

1 if det(M) = 0 then
2 for a from 1 to 15 do
3 if det(M + aS) ̸= 0 then
4 M ←M + aS
5 break
6 end
7 end
8 end
9 return M

1.8 Algorithms

1.8.1 Algorithms for key generation

For convenience, we always start the index with zero in our algorithms. The key gen-
eration process with key-randomness alignment technique is as follows.

First Step: Fix an l × l symmetric matrix S as in Sec. 1.7. Generate [T] from private
seed sprivate. Generate P 11

i , P 12
i and P 21

i for 0 ≤ i < m from public seed spublic. We
also generate the matrices Aα, Bα, Qα1 and Qα2 for 0 ≤ α < l2, and P 11

i , P 12
i and P 21

i

for 0 ≤ i < m from spublic.

15

Algorithm 3: Generate the linear map T

input : SNOVA parameters (v, o, l)
private seed sprivate

output: the matrix [T 12]
1 (coefficients of S-polynomials for entries in T 12)← HashSHAKE256(sprivate)

▷ HashSHAKE256 is instantiated as SHAKE256 throughout
2 Generate entries of T 12 using Algorithm 1
3 return [T 12]

Algorithm 4: Generate the random part of public key
input : SNOVA parameters (v, o, l)

public seed spublic
output: the matrices (Aα, Bα, Qα1 and Qα2 for 0 ≤ α < l2)

the matrices (P 11
i , P 12

i , P 21
i for 0 ≤ i < m)

1

(entries of (P 11
0 || · · · ||P 11

m−1)||(P 12
0 || · · · ||P 12

m−1)||(P 21
0 || · · · ||P 21

m−1))||
(entries of (A0|| · · · ||Al2−1)||(B0|| · · · ||Bl2−1))||
(coefficients of S-polynomials for entries in (Q01|| · · · ||Q(l2−1)1)||(Q02|| · · · ||Q(l2−1)2))

← HashAES128(spublic)
▷ HashAES128 is instantiated as AES128 throughout

2 for α from 0 to l2 − 1 do
3 let Aα, Bα, Qα1 and Qα2 be invertible using Algorithm 2
4 end
5 return (Aα, Bα, Qα1 and Qα2 for 0 ≤ α < l2) and (P 11

i , P 12
i , P 21

i for 0 ≤ i < m)

Second Step: Compute the matrix F 11
i , F 12

i , F 21
i , P 22

i for 0 ≤ i < m as below.

For 0 ≤ i < m, we have
[Fi] =

[
T−1

]t
[Pi]

[
T−1

]
.

Note that [T−1] = [T]−1 = [T] since F16 is of the characteristic 2. Therefore, the
following equations hold

F 11
i = P 11

i

F 12
i = P 11

i T 12 + P 12
i

F 21
i = (T 12)tP 11

i + P 21
i

0 = F 22
i = (T 12)t ·

(
P 11
i T 12 + P 12

i

)
+ P 21

i T 12 + P 22
i .

In other words, we then have

P 22
i =

(
T 12
)t · (P 11

i T 12 + P 12
i

)
+ P 21

i T 12.

16

Algorithm 5: Generate Public key
input : SNOVA parameters (v, o, l)

public and private seeds (spublic, sprivate)
output: public key (spublic, P

22
i)

1 Generate T 12 using Algorithm 3
2 m← o
3 Generate (P 11

i , P 12
i , P 21

i for 0 ≤ i < m) using Algorithm 4
4 for i from 0 to m− 1 do
5 P 22

i ← (T 12)
t · (P 11

i T 12 + P 12
i) + P 21

i T 12

6 end
7 return (spublic, P

22
i for 0 ≤ i < m)

Algorithm 6: Generate private key
input : SNOVA parameters (v, o, l)

public and private seeds (spublic, sprivate)
output: private key (T 12, F 11

i , F 12
i , F 21

i for 0 ≤ i < m)
1 Generate T 12 using Algorithm 3
2 m← o
3 Generate (P 11

i , P 12
i , P 21

i for 0 ≤ i < m) using Algorithm 4
4 for i from 0 to m− 1 do
5 F 11

i ← P 11
i

6 F 12
i ← P 11

i T 12 + P 12
i

7 F 21
i ← (T 12)tP 11

i + P 21
i

8 end
9 return (T 12, F 11

i , F 12
i , F 21

i for 0 ≤ i < m)

1.8.2 Algorithms for signature generation

Let D be the document to be signed, we randomly choose salt and then generate a
signature for the hash value #—

Y = Hash(spublic||Hash(D)||salt) where spublic is the
public seed of SNOVA scheme. First, we randomly assign values to vinegar variables
X0, · · · , Xv−1 depending on the number of sign numsig as follows

Algorithm 7: Assign values to vinegar variables
input : SNOVA parameters (v, o, l)

digest of the document digest = Hash(D)
the number of sign numsig

salt
output: vinegar values (X0, . . . , Xv−1)

1 (X0, . . . , Xv−1)← Hash(sprivate||digest||salt||numsig)
2 return (X0, . . . , Xv−1)

17

Second, we compute the vinegar part values Fi,V V of the central map Fi for 0 ≤ i < m.
Recall that the vinegar part values Fi,V V of the central map Fi is

Fi,V V =
l2−1∑
α=0

Aα ·

(
v−1∑
j=0

v−1∑
k=0

X t
j (Qα1Fi,jkQα2)Xk

)
· Bα

where Fi,jk’s are elements randomly chosen from R, Aα and Bα are invertible matrices
randomly chosen from R, and Qα1, Qα2 are invertible matrices randomly chosen from
Fq[S]. Note that we write the central map Fi as of the form

[Fi] =

[
F 11
i F 12

i

F 21
i 0

]
,

and we also write
F 11
i [j][k] = Fi,jk for 0 ≤ j, k < v.

We now can compute the vinegar part values Fi,V V of the central map Fi by the following
algorithm.

Algorithm 8: Compute the vinegar part of the central map
input : SNOVA parameters (v, o, l)

private key (F 11
i for 0 ≤ i < m)

public key (Aα, Bα, Qα1, Qα2 for 0 ≤ α < l2)
vinegar values (X0, . . . , Xv−1)

output: the vinegar part (Fi,V V for 0 ≤ i < m)
1 for α from 0 to l2 − 1 do
2 for j for 0 to v − 1 do
3 Leftα[j]← Aα ∗X t

j ∗Qα1 ▷ the left term of F 11
i [j][k]

4 Rightα[j]← Qα2 ∗Xj ∗Bα ▷ the right term of F 11
i [j][k]

5 end
6 end
7 m← o
8 for i from 0 to m− 1 do
9 Fi,V V ← 0

10 for α from 0 to l2 − 1 do
11 for j from 0 to v − 1 do
12 for k from 0 to v − 1 do
13 Fi,V V ← Fi,V V + Leftα[j] ∗ F 11

i [j][k] ∗Rightα[k]
14 end
15 end
16 end
17 end
18 return (Fi,V V for 0 ≤ i < m)

The resulting system can be seen as a linear system of the oil variables over the finite
filed Fq. In order to write down this linear system, we need to define the vectorization

18

of a matrix. For M = (mij)l×l ∈ R with mij ∈ Fq, the vectorization of the matrix M
is defined by

—

M =
(
m00,m01, · · · ,m0(l−1),m11,m12, · · · ,m1(l−1), · · · ,m(l−1)(l−1)

)t ∈ Fl2

q .

For convenience, we also write M [i][j] instead of mij. Let L = (ltitj)0≤ti,tj<l and R =
(rtitj)0≤ti,tj<l ∈ R. Let X = (xtitj)0≤ti,tj<l be a l × l matrix with variables xtitj . Write

—

LXR = M
#—

X,

where M =
(
mtitj

)
0≤ti,tj<l2

∈ Matl2×l2 (Fq). We find nice formulas between matrices
L,R and the matrix M . For example, l = 2, one has

—

LXR =

r00l00x00 + r10l00x01 + r00l01x10 + r10l01x11

r01l00x00 + r11l00x01 + r01l01x10 + r11l01x11

r00l10x00 + r10l10x01 + r00l11x10 + r10l11x11

r01l10x00 + r11l10x01 + r01l11x10 + r11l11x11

 ,

and then

M =

r00l00 r10l00 r00l01 r10l01
r01l00 r11l00 r01l01 r11l01
r00l10 r10l10 r00l11 r10l11
r01l10 r11l10 r01l11 r11l11

 .

For l = 2, one has

M [ti][tj] = L[ti/l][tj/l]R[tj%l][ti%l] for 0 ≤ ti, tj < l2, (1.1)

where t/l and t%l denote the quotient and the remainder of the division of t by l. In
fact, the equation (1.1) holds for all l. Similarly, if we write

—

LX tR = M
#—

X,

then one can compute directly that

M [ti][tj] = L[ti/l][tj%l]R[tj/l][ti%l] for 0 ≤ ti, tj < l2. (1.2)

Recall that the central map Fi including the oil variable Xk is of the form

l2−1∑
α=0

Aα·

(
v−1∑
j=0

X t
j (Qα1Fi,jkQα2)Xk

)
·Bα+

l2−1∑
α=0

Aα·

(
v−1∑
j=0

X t
k (Qα1Fi,kjQα2)Xj

)
·Bα (1.3)

We now use the equations (1.1), (1.2) to find the coefficient matrix Mik of the variables
—

Xk in the central map Fi as follows.

19

Algorithm 9: Compute the coefficient matrix of the oil variable
input : SNOVA parameters (v, o, l)

private key (F 12
i , F 21

i) for some 0 ≤ i < v
public key (Aα, Bα, Qα1, Qα2 for 0 ≤ α < l2)
vinegar values (X0, . . . , Xv−1)
k, the index of oil variables where 0 ≤ k < o

output: the coefficient matrix Mik

1 for α from 0 to l2 − 1 do
2 for j for 0 to v − 1 do
3 Leftα[j]← Aα ∗X t

j ∗Qα1 ▷ the left term of Fi,jk

4 Rightα[j]← Qα2 ∗Xj ∗Bα ▷ the right term of Fi,jk

5 end
6 end
7 for ti from 0 to l2 − 1 do
8 for tj from 0 to l2 − 1 do
9 Mik[ti][tj]← 0

10 end
11 end
12 for α from 0 to l2 − 1 do
13 for j for 0 to v − 1 do
14 LeftXk

← Leftα[j] ∗ F 12
i [j][k] ∗Qα2 ▷ the left term of Xk

15 RightXk
← Bα ▷ the right term of Xk

16 for ti from 0 to l2 − 1 do
17 for tj from 0 to l2 − 1 do
18 Mik[ti][tj]←Mik[ti][tj] + LeftXk

[ti/l][tj/l] ∗RightXk
[tj%l][ti%l]

19 end
20 end
21 end
22 end
23 for α from 0 to l2 − 1 do
24 for j for 0 to v − 1 do
25 LeftXk

← Aα ▷ the left term of X t
k

26 RightXk
← Qα1 ∗ F 21

i [k][j] ∗Rightα[j] ▷ the right term of X t
k

27 for ti from 0 to l2 − 1 do
28 for tj from 0 to l2 − 1 do
29 Mik[ti][tj]←Mik[ti][tj] + LeftXk

[ti/l][tj%l] ∗RightXk
[tj/l][ti%l]

30 end
31 end
32 end
33 end
34 return Mik

We are now ready to write down the linear system of the oil variables over the finite
filed Fq. We put the coefficient matrices Mik and the vinegar part values Fi,V V of the

20

central map into the augmented matrix G of the system as follows.

Algorithm 10: Build the augmented matrix of the system
input : SNOVA parameters (v, o, l)

the vinegar part values (Fi,V V for 0 ≤ i < v)
the coefficient matrices (Mik for 0 ≤ i < v and 0 ≤ k < o)
digest of the document digest = Hash(D)
length of the digest |digest|
public seed spublic
salt

output: the augmented matrix G
1 m← o
2 (G[0][m ∗ l2], . . . , G[m ∗ l2 − 1][m ∗ l2])← HashSHAKE256(spublic||digest||salt)

▷ Put the hash value in the last column of G
3 for i from 0 to m− 1 do
4 for j from 0 to l − 1 do
5 for k from 0 to l − 1 do
6 G[i ∗ l2 + j ∗ l + k][m ∗ l2]← G[i ∗ l2 + j ∗ l + k][m ∗ l2] + Fi,V V [j][k]
7 end
8 end
9 end

10 for i from 0 to m− 1 do
11 for k from 0 to m− 1 do
12 for ti from 0 to l2 − 1 do
13 for tj from 0 to l2 − 1 do
14 G[i ∗ l2 + ti][k ∗ l2 + tj]←Mik[ti][tj]
15 end
16 end
17 end
18 end
19 return G

In the signature algorithm, we will use Gaussian elimination to solve the linear system
G. For convenience, we define the function Gauss as follows. The function Gauss(G)
returns a binary value flag_redo ∈ {TRUE,FALSE} indicating whether the sign
procedure needs to sign again by assigning a different set of vinegar values, and if not
so Gauss(G) also returns the solution of the system.

21

Algorithm 11: Signing
input : SNOVA parameters (v, o, l)

public and private seeds (spublic, sprivate)
digest of the document digest = Hash(D)
length of the digest |digest|
salt

output: the signature sig and salt
1 Generate Aα, Bα, Qα1 and Qα2 for 0 ≤ α < l2) using Algorithm 4
2 m← o
3 Generate (T 12, F 11

i , F 12
i , F 21

i for 0 ≤ i < m) using Algorithm 6

4 [T]←
[
I11 T 12

0 I22

]
5 numsig ← 0
6 repeat
7 numsig ← numsig + 1
8 Assign vinegar values (X0, . . . , Xv−1) using Algorithm 7
9 Compute (Fi,V V for 0 ≤ i < m) using Algorithm 8

10 Compute (Mik for 0 ≤ i < m, 0 ≤ k < o) using Algorithm 9
11 Build the augmented matrix G using Algorithm 10
12 flag_redo, (X̃0, X̃1, . . . , X̃o−1)← Gauss(G)
13 if flag_redo==FALSE then
14 sig← [T](X0, . . . , Xv−1, X̃0, . . . , X̃o−1)

t ▷ Note that T−1 = T
15 end
16 until flag_redo==FALSE;
17 return (sig, salt)

1.8.3 Algorithms for signature verification

Recall that the public key P = [P0, · · · , Pm−1] : Rn →Rm, where

Pi(
#—

U) =
l2−1∑
α=0

n−1∑
dj=0

n−1∑
dk=0

Aα · U t
dj
(Qα1Pi,djdkQα2)Udk · Bα

with the variable #—

U = (U0, . . . , Um−1)
t. For the signature verification, we write the

signature sig = (U0, . . . , Um−1)
t ∈ R and sig[i] = Ui for 0 ≤ i < m. The algorithm for

evaluating the public map at a signature sig is as follows.

22

Algorithm 12: Evaluate the public map
input : SNOVA parameters (v, o, l)

public key (Aα, Bα, Qα1, Qα2 for 0 ≤ α < l2)
public map (P 11

i , P 12
i , P 21

i , P 22
i for 0 ≤ i < m)

the signature sig
output: The evaluation hashs of P at sig

1 m← o
2 for α from 0 to m− 1 do
3 for j from 0 to n− 1 do
4 Leftα[j]← Aα ∗ (sig[j])t ∗Qα1 ▷ the left term of Pi,djdk

5 Rightα[j]← Qα2 ∗ sig[j] ∗Bα ▷ the right term of Pi,djdk

6 end
7 end
8 for i from 0 to m− 1 do
9 hashs[i]← 0

10 for α from 0 to l2 − 1 do
11 for dj from 0 to v − 1 do
12 for dk from 0 to v − 1 do
13 hashs[i] = hashs[i] + Leftα[dj] ∗ P 11

i [dj][dk] ∗Rightα[dk]
14 end
15 end
16 for dj from 0 to v − 1 do
17 for dk from 0 to o− 1 do
18 hashs[i] = hashs[i] + Leftα[dj] ∗ P 12

i [dj][dk] ∗Rightα[v + dk]
19 end
20 end
21 for dj from 0 to o− 1 do
22 for dk from 0 to v − 1 do
23 hashs[i] = hashs[i] + Leftα[v + dj] ∗ P 21

i [dj][dk] ∗Rightα[dk]
24 end
25 end
26 for dj from 0 to o− 1 do
27 for dk from 0 to o− 1 do
28 hashs[i] = hashs[i] + Leftα[v + dj] ∗ P 22

i [dj][dk] ∗Rightα[v + dk]
29 end
30 end
31 end
32 end
33 hashs ← (hashs[0], . . . ,hashs[m− 1])t

34 return hashs

23

Algorithm 13: Signature verification
input : SNOVA parameters (v, o, l)

public key (spublic, P
22
i for 0 ≤ i < m)

digest of the document digest = Hash(D)
length of the digest |digest|
salt

output: Accept or Reject
1 Generate Aα, Bα, Qα1 and Qα2 for 0 ≤ α < l2) using Algorithm 4
2 m← o
3 Generate (P 11

i , P 12
i , P 21

i for 0 ≤ i < m) using Algorithm 4
4 hashd ← HashSHAKE256(spublic||digest||salt)
5 Compute hashs using Algorithm 12
6 if hashs == hashd then
7 return Accept
8 else
9 return Reject

10 end

1.9 Parameters settings

In this section, we propose our parameters aiming at three security levels in the new
call of NISTPQC project [33] levels I, III and V, respectively.

1.9.1 List of our parameters

The key-size and the length of the signature are shown as below. Herein, the notation
Sizepk denotes the public key size and Sizesig denotes the signature size. Note that
the 16 Bytes salt is also indicated in the size of SNOVA signature (in order to attain
EUF-CMA) and 16 Bytes seed length is included in the size of public key size.

24

Table 4: Table of key-sizes and lengths of the signature of SNOVA parameter settings
(in bytes).

SL (v, o, q, l) Sizepk Sizesig Sizeesk/Sizessk

I
(28, 17, 16, 2) 9826(+16) 90(+16) 60008(+48)/48
(25, 8, 16, 3) 2304(+16) 148.5(+16) 37962(+48)/48
(24, 5, 16, 4) 1000(+16) 232(+16) 34112(+48)/48

III
(43, 25, 16, 2) 31250(+16) 136(+16) 202132(+48)/48
(49, 11, 16, 3) 5989.5(+16) 270(+16) 174798(+48)/48
(37, 8, 16, 4) 4096(+16) 360(+16) 128384(+48)/48

V
(61, 33, 16, 2) 71874(+16) 188(+16) 515360(+48)/48
(66, 15, 16, 3) 15187.5(+16) 364.5(+16) 432297(+48)/48
(60, 10, 16, 4) 8000(+16) 560(+16) 389312(+48)/48

1.9.2 How the performance are affected by parameters

The size of main term in public key is

m ·m2 · l2 · log2 q
8

.

We can see the size of public key is mainly related to m, the number of ring equations,
which is also the number of ring oil variables, the parameter o. Note that, the lower
bound of m to achieve fixed security level is mainly determined by the attack in Sec.
4.3.2 and the number of vinegar variables is mainly determined by the analysis in Sec.
4.4.1. Therefore, for a fixed security level, by increasing the parameter l, we can further
reduce value of m. Therefore, for larger l, we will have smaller public key size. On the
other hand, the larger the l will make the signature size larger. It is a trade-off between
small public key or small signature. Also, for larger l, the key generation will be more
efficient, but the signing and verification will be less efficient, while still practical. We
propose three parameter settings that allow the selection of a range of possible size
and performance trade-offs. For the sake of security, we have chosen very conservative
parameters.

2 Performance analysis (2.B.2)

2.1 Platforms used in the estimation

The benchmarking results of implementations are shown in Table 5. The reported
values are the median cycles of 1000 executions compiled with “gcc− O3” with version

25

10.2.1. Our benchmarking is operated on a PC with an Intel Core i7-6700 CPU @ 3.40
GHz.

Note that, our optimized implementations only focus on multiplication of matrices
without AVX2 hardware acceleration. We can expect faster implementation with AVX2
acceleration.

2.2 Time

Table 5: Benchmarking result of implementations (in CPU cycles).

SL Schemes KeyGen Sign Verify

I

(28, 17, 16, 2)-ssk 9595012 10964945 3161199
(28, 17, 16, 2)-esk 9515984 4387586 3161199
(25, 8, 16, 3)-ssk 3232587 12408096 3959869
(25, 8, 16, 3)-esk 3232636 9825797 3959869
(24, 5, 16, 4)-ssk 2441908 19681409 8086815
(24, 5, 16, 4)-esk 2447831 17538089 8086815

III

(43, 25, 16, 2)-ssk 44658255 47587816 9443639
(43, 25, 16, 2)-esk 44767410 15031152 9443639
(49, 11, 16, 3)-ssk 23236343 60561733 18853861
(49, 11, 16, 3)-esk 23264092 41138270 18853861
(37, 8, 16, 4)-ssk 15295383 81382976 31084401
(37, 8, 16, 4)-esk 15315591 68739319 31084401

V

(61, 33, 16, 2)-ssk 166196633 158443732 25289616
(61, 33, 16, 2)-esk 166462440 36468696 25289616
(66, 15, 16, 3)-ssk 81275417 172139775 47936266
(66, 15, 16, 3)-esk 81451921 104229173 47936266
(60, 10, 16, 4)-ssk 59318482 237150613 90472932
(60, 10, 16, 4)-esk 59367845 186358881 90472932

2.3 Space

We summarize the estimations of key sizes of SNOVA scheme as follows.

Public key size. The reduced size of the public key of SNOVA using alignment is

Sizepk =
m ·m2 · l2 · log2 q

8
+ |spublic| =

m ·m2 · l2 · log2 q
8

+ 16

bytes.

26

Expanded private key size. The size of private key is

Sizeesk =
(m(n2 −m2)l2 + l2vo+ 4l4) · log2 q

8
+ |spublic|+ |sprivate|

=
(m(n2 −m2)l2 + l2vo+ 4l4) · log2 q

8
+ 48

bytes.

Seed-type private key size. The size of the compressed private key is

Sizessk = |spublic|+ |sprivate| = 32 + 16 = 48

bytes.

Signature size. The size of a signature of SNOVA scheme is

Sizesig =
n · l2 · log2 q

8
+ |salt| = n · l2 · log2 q

8
+ 16

bytes.

3 Expected Security Strength (2.B.4)

We give the expected security strength of our parameters aiming at three security levels
in the new call of NIST PQC project [33] levels I, III and V, respectively.

3.1 Security strength

The following table shows the complexity of respective attacks against our parameters.
“Dir.”, “K-S.”, “Int.”, “[T−1].”, “MinRank.” and “Col.” denote direct attack in Sec. 4.3.1,
K-S attack in Sec. 4.4.3, intersection attack in Sec. 4.4.4 and equivalent key attack in
Sec. 4.4.5, the complexity for the MinRank problem mentioned in Sec. 4.4.1 and the
collision attack in Sec. 4.3.2, respectively.

In any pair of complexity the left one denotes the complexity in classical gates and the
right one denotes in quantum gates, respectively. The lowest complexity is marked in
bold fonts.

27

Table 6: Table of complexity in log2(♯gates).

SL (v, o, q, l) Dir. K-S. Int. [T−1]. MinRank. Col.

I
(28, 17, 16, 2) 171/124 181/93 275 192/192 151 151
(25, 8, 16, 3) 175/126 617/311 819 231/231 148 159
(24, 5, 16, 4) 188/134 1221/613 1439 286/286 150 175

III
(43, 25, 16, 2) 240/175 293/149 439 279/ 279 212 215
(49, 11, 16, 3) 230/162 1373/689 1631 530/530 215 213
(37, 8, 16, 4) 291/214 1861/933 2192 424/424 217 271

V
(61, 33, 16, 2) 308/224 453/229 727 386/386 279 279
(66, 15, 16, 3) 307/220 1841/923 2178 707/707 280 285
(60, 10, 16, 4) 355/255 3205/1605 3602 812/812 278 335

4 Analysis With Respect To Known Attacks (2.B.5)

To start with, when working with an equation over matrix ring R, we can observe
that the components will give us l2 equations over the ring variables’ entry elements
in Fq. For instance, when l = 2, we consider A,B ∈ R and ring variables X,Y . The
components on both sides of the ring equation[

x1 x3

x2 x4

] [
a1 a2
a3 a4

] [
y1 y2
y3 y4

]
= X tAY = B =

[
b1 b2
b3 b4

]
give us 4 = 22 quadratic equations over Fq.

Therefore, SNOVA can be considered both a UOV-like signature scheme over the matrix
ring R and a UOV over Fq. The security analysis are presented from two different
aspects: over the ring R and over the finite field Fq.

4.1 A note of our analysis

The target of this section is to explore various methods of attacking the SNOVA and
assess their feasibility. The key observation is that when a signature scheme is based
on a quadratic form over ring (as in the case of SNOVA), its private key T is shared
with another signature scheme over ring whose structure is much simpler. To conduct
a comprehensive and prudent security analysis, we start with the following notions.

Ring UOV. Notice that the central map of SNOVA is of the form, i = 1, . . . ,m,

Fi(X1, . . . , Xn) =
l2∑

α=1

Aα ·

 ∑
(j,k)∈Ω

X t
j (Qα1Fi,jkQα2)Xk

 · Bα

28

and the public key is generated via the congruence relation [Pi] = [T]t [Fi] [T] , i =
1, . . . ,m. Therefore, we can construct a UOV scheme over R that shares the same
private key T with SNOVA scheme. Namely, the UOV scheme over R whose central
map has the form, i = 1, . . . ,m,

F̃i(X1, . . . , Xn) =
∑

(j,k)∈Ω

X t
jFi,jkXk

and the corresponding public key P̃ =
[
P̃1, · · · , P̃m

]
where

P̃i = F̃i ◦ T

and T is private key of SNOVA. Then, if an attacker recovers the private key T by
attacking this ring UOV over R then he also find an equivalent key of SNOVA scheme
since both schemes generate their public key through the same congruence relation
[T]t [Fi] [T].

Key recovery attacks. As we already seen, a (v, o, q, l) SNOVA scheme shares its
private key T with the corresponding (v, o, q, l) ring UOV scheme. Therefore, for key
recovery attacks, the security of SNOVA is evaluated by analyzing the complexity of
such attacks against the associated ring UOV scheme.

To our best knowledge, we do not find a complete key recovery attack against this
ring UOV. On the other hand, this ring UOV still induces a UOV over field. Some
complexity estimations of the related problems of this ring UOV and its corresponding
UOV over field will be discussed in 4.4.1. Attacks against some UOV-like schemes will
also be mentioned in 4.4.1. We will analyze the structure utilized in these attacks as well
as their main insight, and then discuss their potential feasibility for attacking SNOVA.

Forgery attacks. Finding the preimage of the public map for the hash value of a
message is what constitutes signature forgery. However, the public maps of SNOVA
and ring UOV are only weakly connected as a result of the use of l2 copies with different
Aα, Qα1, Qα2, and Bα in Fi of SNOVA. Consequently, solving the equations derived
from the public map of ring UOV does not aid in solving the equations produced by
the public map of SNOVA for the purpose of forgery attacks. Therefore, the security of
forgery attacks will be analyzed with respect to the public key of the SNOVA scheme.

Except these, one may directly forge valid fake signature of SNOVA overR not returning
to field level. This approach will suffer from the fact that there is no efficient algorithm
like F4, F5 and XL to solve multivariate quadratic system over the noncommutative
ring R. Based on this fact, we will return to the field level and estimate the associated
complexity.

For our parameter sets, the critical attacks are direct attack 4.3.1, collision attack 4.3.2,
MinRank attack 4.4.1 and equivalent key attack 4.4.5. The complexity estimations of
K-S attack 4.4.3 and intersection attack 4.4.4 show that they are not the most crucial
to our parameter sets.

29

4.2 Preliminaries

In this section, we briefly describe the tools that we used to estimate the complexity of
solving a MQ problem and a MinRank problem, respectively.

4.2.1 Solving MQ systems and complexity estimation

There are several algorithms to solve a quadratic system of M equations in N variables
over finite fields such as F4 [20], F5 [21] and XL variants [15, 12, 52].

Solving MQ problem. The complexity of solving M homogeneous quadratic equa-
tions in N variables [6, 12] can be estimated by

MQ(N,M, q) = 3 ·
(
N − 1 + dreg

dreg

)2

·
(
N + 1

2

)
field multiplications where dreg is the degree of regularity of a semi-regular polynomial
system and it is equal to the smallest positive integer such that the coefficient of td

term in the series generated by
(1− t2)M

(1− t)N

is non-positive.

Hybrid approach. The hybrid approach [5] randomly guesses k variables before
solving the MQ system and the corresponding complexity is qk ·MQ(N−k+1,M, q) field
multiplications for the classical case and qk/2 ·MQ(N−k+1,M, q) field multiplications
when applying Grover’s algorithm [24] for the quantum case.

Methods solving underdetermined MQ. On the other hand, Thomae and Wolf
[46], Furue, Nakamura and Takagi [22], Hashimoto [25] provide several methods to solve
an underdetermined multivariate quadratic system P of M equations in N variables
over a finite field, i.e., N > M . The main idea is to find a particular invertible linear
map S converting the first αk equations into a special form where k is the number of
guessing in the hybrid approach. We can then remove (N −M) + αk variables and αk

equations from system P .

Therefore, an underdetermined MQ(N, M, q) problem reduces to an MQ(M−k−αk+
1, M − αk, q) problem and hence can by solved using the hybrid approach [5]. Note
that different methods obtain different optimal values αk due to how they convert P
into different forms. Therefore, the formulas for estimation of complexity of [46, 22, 25]
are the same but with different optimal values αk. Hence, the main term of complexity
of solving MQ system under this technique is given by

min
k

qk ·MQ(M − k − αk + 1, M − αk, q)

30

field multiplications in the classical case and

min
k

qk/2 ·MQ(M − k − αk + 1, M − αk, q)

in the quantum case with different optimal values αk corresponding to different methods.

The optimal values αk of [46, 22] are αTW = ⌊N
M
⌋−1, αF = ⌊N−k

M−k
⌋−1, respectively, and

αHMa = ⌊ N
M−k
⌋ − 1, αHMb is the maximal integer such that N ≥ M − (αk + k −M)αk

holds, where αHMa and αHMb are corresponding to the two algorithms proposed in [25],
respectively. Note that, the estimation of the direct attack in Sec. 4.3.1 would be the
sharpest one among [46, 22, 25].

Algorithms for super-underdetermined MQ. Note that, [28, 14, 31, 13] indicate
that when the number of variables N is sufficiently larger than the number of equations
M in a MQ problem then we can solve this MQ in polynomial time. Please refer to the
table in [25] for more information. Note that these four algorithms are not applicable
to the parameter settings of SNOVA.

4.2.2 MinRank problem and Support-Minors modeling

MinRank problem. For M1, · · · ,Mk ∈ FM×N
q and a target rank r, the MinRank

problem asks to find a non-trivial linear combination of the matrices which has rank at
most r. That is, to find a vector #—x = (x1, · · · , xk)

t ∈ Fk
q such that

rank

(
k∑

i=1

xiMi

)
≤ r.

Solving MinRank problem. Notice that the MinRank problem is NP-hard [11] and
it plays a central role in the cryptanalysis of MPKC. Recently, Bardet et al. proposed
the Support-Minors (SM) modeling algorithm [3] to solve MinRank problem. This
powerful algorithm transform the rank condition into a large bilinear system which
is sparse and then use the linearization method to solve it. The complexity of this
algorithm is estimated by

MinRank(M,N, k, r) = 3 · k(r + 1) ·
((

N

r

)(
k + b− 1

b

))2

where b is the smallest positive integer such that(
N

r

)(
k + b− 1

b

)
− 1 ≤

b∑
i=1

(−1)i+1

(
N

r + i

)(
M + i− 1

i

)(
k + b− i− 1

b− i

)
holds.

Moreover, Bardet et al. point out that one may choose to use the first N ′ ≤ N columns
when applying their algorithm and for some optimal N ′ so that r + 1 ≤ N ′ ≤ N the

31

cost of computation can be further reduced. Our security analysis will also consider
this technique in our estimations.

Superdetermined MinRank problem. Superdetermined MinRank problem is de-
fined in [47] as the MinRank problem with k < rM . Moreover, in [1] Bardet and Bertin
indicate that the modeling in [47] can be seen as a special case of SM modeling and
the best complexity will be the one that solving the associated Macaulay matrix by
linearization. If we consider the minors as new variables, the system can be solved
whenever M(N − r) ≥ k(r + 1), i.e., b = 1. Moreover, with Plücker coordinates, the
Macaulay matrix has a special form and this can help us to solve the problem more
quickly. For 1 ≤ d ≤ r − 1, if

m

(
n− r

d+ 1

)(
r

d

)
≥ k

(
n− r

d+ 1

)(
r

d+ 1

)
+ k

(
n− r

d

)(
r

d

)
− 1,

then with overwhelming probability the solution can be obtained [1].

SM modeling with hybrid technique. In [2], Bardet et al. show that we can
solve a MinRank(M,N, k, r) problem by performing qαr attacks on those much more
smaller MinRank(M,N − α, k− αm, r) instances where α is a positive integer so that
k − αm ≥ 0 and then only one of them has the solution. Therefore, the complexity of
SM modeling with hybrid technique is

min
α≥0

qαr ·MinRank(M,N − α, k − αm, r).

4.3 Forgery attacks

4.3.1 Direct attack

For a quadratic multivariate polynomial system P = [P1, · · · , Pm] consisting of m equa-
tions in n variables over Fq and #—y ∈ Fm

q , an attacker can directly try to solve the
solution #—u of the system P (#—u) = #—y algebraically with Gröbner basis approach such as
[20, 21, 15, 12, 52]. In the case of UOV (n > m), the public key is underdetermined,
the methods of solving underdetermined MQ are applicable. Therefore we can assign
the values to n−m variables in the system P (#—u) = #—y = Hash(digest||salt) randomly
and then obtain a MQ system of m equations in m variables which can be solved with
high probability. Once the system can be solved, the solution #—u will be a valid fake
signature and hence P (#—u) = #—y .

In the case of SNOVA, to produce a fake signature, an attacker need to regard a (v, o, q, l)
SNOVA as a (l2v, l2o, q) UOV and then forge a signature for this UOV. Each equation
over R yields l2 equations over Fq and then the system over ring R, P (

#—

U) =
#—

Y, will
result in an MQ system consisting of l2m equations in l2m field variables.

Table 7 gives comparison of the degree at the first step degree falls or goes flat using F4

algorithm [20], which is strongly connected to the degree of regularity [18], in Magma

32

algebra system [9] that starts to go either down or flat among all step degrees of the
quadratic system obtained by SNOVA and a random quadratic system respectively.

In random systems, the first fall step degree is generally equal to the degree of regularity.
Table 7 indicates that the first fall step degrees of SNOVA systems and random systems
are identical for small size parameter sets. Thus, we can expect that the degree of
regularity of SNOVA systems, the first fall step degree, and the degree of regularity of
random systems are the same. For Gröbner bases algorithms such as F4/5 and XL, the
size of the Macaulay matrix employed in solving quadratic systems is determined by
the degree of regularity. The complexity of solving quadratic systems is determined by
the difficulty of solving the sparse Macaulay matrix using the Wiedemann solver [53].
As a result, the complexity of a direct attack on SNOVA is estimated by the complexity
of a direct attack on random systems.

The complexity estimations of classical direct attack are

CompDirect; ClassicalSNOVA = min
k

qk ·MQ(l2m− k − αk + 1, l2m− αk, q)

and with Grover’s algorithm [24].

CompDirect; QuantumSNOVA = min
k

qk/2 ·MQ(l2m− k − αk + 1, l2m− αk, q)

field multiplications where αk is obtained by the technique in [46, 22, 25].

33

Table 7: Table of comparison of the degree at the first step degree falls or goes flat
between SNOVA and random systems. Our experiment shows that in the case of small
size parameter sets such a quadratic system over field induced by SNOVA public key
behaves like a random systems of l2 ·m equations in l2 ·m variables over a Fq.

(v, o, q, l, k) SNOVA system random system
(6, 1, 16, 2, 1) 3 3
(6, 2, 16, 2, 1) 5 5
(6, 2, 16, 2, 2) 4 4
(6, 2, 16, 2, 3) 3 3
(6, 3, 16, 2, 1) 7 7
(6, 3, 16, 2, 2) 6 6
(6, 3, 16, 2, 3) 5 5
(6, 4, 16, 2, 2) 7 7
(6, 4, 16, 2, 3) 6 6
(6, 1, 16, 3, 2) 4 4
(6, 1, 16, 3, 3) 4 4
(6, 1, 16, 3, 4) 3 3
(6, 2, 16, 3, 3) 7 7
(6, 2, 16, 3, 4) 6 6
(6, 2, 16, 3, 5) 5 5
(6, 1, 16, 4, 1) 9 9
(6, 1, 16, 4, 2) 7 7
(6, 1, 16, 4, 3) 6 6
(6, 1, 16, 4, 4) 5 5
(6, 1, 16, 4, 5) 5 5

4.3.2 Collision attack

To forge a fake signature, an attacker can try to obtain the values M signatures # —

Uj

where j = 1, · · · ,M and N hash values Hash(digest||saltk) where k = 1, · · · , N , if
there exists a collision P (

—

Uj) = Hash(digest||saltk) then it would be a valid fake
signature.

Thus, M signature computations and N hash values computations are involved. There-
fore, according to the estimation of [10], the cost of collision attack would be

M · (l2m) ·
(
2(log2 q)

2 + 3 · log2 q
)
+N · 217

gates in the sense that regarding SNOVA as a UOV scheme.

34

Note that the lower bound of the complexity of collision attack is

2 ·
(
M(l2m)

(
2(log2 q)

2 + 3 · log2 q
)
·N217

)1/2
gates.

If MN = ql
2m, then this lower bound turns into

2 ·
(
ql

2m(l2m)
(
2(log2 q)

2 + 3 · log2 q
)
· 217

)1/2
,

and the collision exists with probability

1−

(
ql

2m −M

ql2m

)N

= 1−
(
MN −M

MN

)N

= 1−
(
1− M

MN

)N

≈ 1− e(
1
N)N

= 1− e−1.

4.4 Key Recovery Attacks

4.4.1 Quadratic forms over ring and MinRank attacks

In this subsection, we will analyze the structure of ring UOV corresponding to SNOVA
and estimate the complexity when solving related MinRank problem.

Kernel of ring UOV. The central map F of UOV is an multivariate quadratic map
vanished on the oil (linear) space O. We discover that if we regard a (v, o, q, l) ring
UOV as a (l2v, l2o, q) UOV scheme over Fq, then the matrices corresponding to central
map of this UOV (induced by the ring UOV), say M1, · · · ,Ml2o, are sparse.

We can see that for each 1 ≤ i ≤ l2o, the matrix Mi vanishes on a linear space Wi such
that O ⊆ Wi and dimO ≤ dimWi. However, the intersection ofWi is still the oil space
O (we can easily see this phenomenon in toy examples).

Therefore, we conclude that this (l2v, l2o, q) UOV will not vanish on a linear space
which is larger than the oil space O. This observation provides us with some confidence
in the security of this UOV against traditional key recovery attacks, such as the Kipnis-
Shamir attack [28], reconciliation attack [19], and intersection attack [7] in the sense
that this UOV has an oil-vinegar structure similar to the original UOV.

No multi-layer structure. One may worry that this sparsity will lead to some
structures that are known to be broken, such as, multi-layer structure. In [7, 6], Beullens

35

proposed a series of MinRank attack against Rainbow [17] scheme based on its multi-
layer structure. Such multi-layer structure will result in nested structure of oil spaces
[7] and the low-rankness can be used to find a vector in the linear space T−1(O) and
hence an equivalent key.

Another attack that uses multi-layer structure is the MinRank attack proposed by
Thomae [45] against NC-Rainbow [56] which is a variant of Rainbow which is based
on Quaternion ring over a finite field Fq of characteristic 2. If an attacker regards an
NC-Rainbow scheme as a Rainbow scheme over Fq, then the rank of the corresponding
matrix to the central map F of NC-Rainbow will be lower than original Rainbow.
This low-rankness of central map matrices comes from its sparse form caused by the
special structure of multiplication of Quaternion ring. Then, this low-rankness makes
the MinRank attacks that attacking multi-layer structure more efficient.

Although some of matrices among M1, · · · ,Ml2o may have rank lower than the others,
there is no multi-layer structure in their relation. That is, SNOVA has no multi-layer
structure, we can not regard a SNOVA scheme (and similarly the corresponding ring
UOV scheme) as a Rainbow scheme.

Consequently, attacks [7, 6, 45] that rely on the multi-layer structure have no security
impact on the UOV induced by the quadratic form over ring and thus will not affect
the security of SNOVA.

Intersection of the null spaces of public key differential. In [35], Park broke the
Matrix-based UOV scheme [44] which is proposed by Tan and Tang.

The main insight of this attack is: when an attacker regards the matrices of the differ-
ential of the central map and the public key of Matrix-based UOV as linear operators,
the sparsity of some of these matrices makes the intersections of the corresponding null
spaces non-trivial, while general UOV do not have this phenomenon. Park also showed
that any basis of this non-trivial intersection can be used to build an equivalent private
key.

Note that the null spaces of the differential of the central map and the public key of the
ring UOV corresponding to SNOVA have no structure same as that in Matrix-based
UOV. Therefore, the attack in [35] is not applicable to this ring UOV and hence the
attack will not affect the security of SNOVA.

Matrices may have low rank. When we regard this (v, o, q, l) ring UOV as a
(l2v, l2o, q) UOV scheme over Fq, we discover that some corresponding matrices has
rank at most lv. To our best knowledge, we do not find a complete key recovery attack
against Ring UOV scheme based on this MinRank problem.

However, this phenomenon still induces a MinRank(l2n, l2n, l2m, lv) MinRank prob-
lem. For the sake of security, we estimate the complexity of solving this MinRank
problem using Support-Minors algorithm and take this into account when we choose
our parameter settings of SNOVA scheme.

36

CompMinRankSNOVA = MinRank(l2n, l2n, l2m, lv).

If there were a key recovery attack using this MinRank problem, then its complexity
should be greater than this MinRank problem. Hence the security of our parameter
setting will not be affected.

Superdetermined and hybrid approach. The MinRank(l2n, l2n, l2m, lv) instance
above is superdetermined and then the technique in [1] can be applied to this instance.
Note that [1] also shows that executing the computation at the smallest degree and with
the smallest number of variables will not always be the best estimation. In conclusion,
our complexity estimations take both strategies, the technique in [1] and solving system
in higher degree b > 1 [3], into consideration. As a result, the approach in [1] will not
affect the security of our parameters.

On the other hand, note that the hybrid approach in [2] is not applicable to the instance
above since the MinRank problem is required to be underdetermined. Therefore, these
two approaches are not crucial for our parameters.

4.4.2 Reconciliation Attack

The reconciliation attack proposed by [19] against UOV is trying to find a vector #—o ∈
T−1(O) by solving the system P (#—o) = 0 and hence the basis of T−1(O) can be recovered.
This implies that P (#—o) = 0 is a quadratic system that having a solution space of
dimension m. To expect a unique solution, we can impose m linear constraints with
respect to the components of #—o . Hence the complexity of this attack is mainly given
by that of solving the quadratic system of m equations in v variables.

A reconciliation attack on SNOVA, if considered over field, is as an attack on UOV,
thus we are in the case of solving the quadratic system of l2m equations in v > o =
l2m variables. Hence the reconciliation attack usually will not outperform the direct
attack on the public key of SNOVA in which the complexity comes from solving l2m
quadratic equations in l2m variables. Furthermore, the direct attack on the public key
will appear to be more efficient due to the technique that solving underdetermined
quadratic equations 4.3.1.

4.4.3 Kipnis-Shamir attack (UOV attack)

The K-S attack [28] is trying to find an equivalent private key by finding an equivalent
invertible linear map T and hence the corresponding matrix [T]. Once we have an
equivalent [T], we can recover equivalent [Fi] by the relation [Fi] = [T−1]

t
[Pi] [T

−1].
Note that [28] shows that T−1(O), the oil subspace of the public key P of UOV, induces
an equivalent key.

37

In [28, 7], it shows that T−1(O) is an invariant subspace of [P ′
i]
−1 [P ′

j

]
. The K-S attack

is trying to find a vector in T−1(O). Once one such vector is found, then we expect
that the whole space T−1(O) can be recovered efficiently by using method in [7]. A
vector in T−1(O) can be expected to be found with qn−2m attempts. Note that if there
are [P ′

i]’s not invertible, then we can replace [P ′
i] with invertible linear combinations of

[P ′
i]’s randomly chosen and the cryptanalysis of K-S attack remains the same.

Therefore the complexities of K-S attack and quantum K-S attack are

CompK-S; classicalUOV = qn−2m−1

field multiplications and

CompK-S; quantumUOV = q(n−2m−1)/2

field multiplications, respectively.

From the design of central map F of SNOVA and the noncommutativity of R, there
does not exist the notion of oil space of F over R analogous to the space O of UOV and
hence the notion of T−1(O) in the sense that regarding T−1(O) as a left-module or a
right-module over R. Such a requirement is necessary for K-S attack, since to execute
K-S attack over R, the consistency of multiplication over R given by a left-module or
a right-module over R is needed. Therefore, K-S attack is not applicable to SNOVA
over R. Note that [36] also proposes two methods to find an invariant subspace: the
Linearization method and the Characteristic Polynomial method. These two methods
become invalid over R since they still suffer from the noncommutativity of R.

However, an attacker may treat the ring UOV which is corresponding to the (v, o, q, l)
SNOVA scheme over R as an (l2v, l2o, q) UOV system over Fq and then carry out the
K-S attack over Fq.

Then we have
CompK-S; classicalSNOVA = ql

2n−2l2m−1

field multiplications for classical attack and

CompK-S; quantumSNOVA = q(l
2n−2l2m−1)/2

field multiplications for quantum attack.

4.4.4 Intersection attack

In [7], Beullens proposed the intersection attack to attack UOV scheme. It uses the
polar form of the public key P , that is, P ′ = [P ′

1, · · · , P ′
m] with P ′

i (
—u1,

—u2) =
—u1

t [P ′
i]

—u2

where [P ′
i] = [Pi] + [Pi]

t.

38

The intersection attack is trying to first find a vector #—y in the subspace, namely the
intersection

(
[P ′

i] (T
−1O)

)
∩
([

P ′
j

]
(T−1O)

)
where [P ′

i] ,
[
P ′
j

]
are invertible, and then

to obtain an equivalent key by recovering the subspace T−1(O).

Since ([P ′
i]
−1) #—y , (

[
P ′
j

]−1
) #—y ∈ T−1(O), we obtain the following system.

P
((

[P ′
i]
−1) #—y

)
= 0

P
(
(
[
P ′
j

]−1
) #—y
)
= 0

P ′
(
([P ′

i]
−1) #—y , (

[
P ′
j

]−1
) #—y
)
= 0

Whenever 2.5m < n < 3m. If 2.5m < n < 3m, there is a 3m − n dimensional sub-
space of solutions. To obtain a unique solution with high probability, we can add 3m−n
linear random equations. Hence the complexity of solving the system is equivalent to
that of solving quadratic system with M = 3m equations and N = n − (3m − n) =
2n− 3m variables. Then the complexity is

CompIntersectionUOV = MQ(N + 1, M, q)

field multiplications.

Whenever n < 2.5m. If n < 2.5m, the attack can become more powerful by seeking
a vector #—y in the intersection of k subspaces [P ′

i]
−1 (T−1O) with k ≥ 2. The complexity

of this case is equal to the complexity of that solving the quadratic system with M =(
k+1
2

)
m− 2

(
k
2

)
equations and N = nk − (2k − 1)m variables.

Therefore, when n < 2.5m, we have N = nk − (2k − 1)m, M =
(
k+1
2

)
m− 2

(
k
2

)
, and

CompIntersectionUOV = MQ(N + 1, M, q)

field multiplications.

In case of intersection attack against SNOVA, due to our construction, we can not
write the public polynomial Pi of SNOVA in quadratic form, namely # —u1

t [P ′
i]

—u2, when
considered as over R. Thus, the implementation of intersection attack still face the
same problem as in direct attack, that is, there is no efficient algorithm like F4, F5 and
XL to compute.

From our perspective, to implement intersection attack against SNOVA, an alternative
suitable strategy is regarding the ring UOV corresponding to SNOVA as a UOV system
over Fq and then solve a system over Fq. Therefore, the complexity is estimated by the
following

Whenever n < 2.5m. If n < 2.5m, we have N = (l2n)k − (2k − 1)(l2m), M =(
k+1
2

)
(l2m)− 2

(
k
2

)
, and

CompIntersectionSNOVA = MQ(N + 1, M, q)

39

field multiplications.

Whenever 2.5m < n < 3m. In the case 2.5m < n < 3m, N = 2(l2n)− 3(l2m), M =
3(l2m), and

CompIntersectionSNOVA = MQ(N + 1, M, q)

field multiplications.

Whenever n ≥ 3m. If n ≥ 3m, then there is no guarantee that the subspace, namely
the intersection

(
[P ′

i] (T
−1O)

)
∩
([

P ′
j

]
(T−1O)

)
will exist. Therefore, the intersection

attack becomes a probabilistic attack against SNOVA. In this case, the complexity is

CompIntersectionSNOVA = q(l
2n)−3(l2m)+1 ·MQ(N + 1, M, q)

field multiplications where N = l2n,M = 3(l2m).

Our experiment shows that the quadratic system induced by intersection attack on
ring UOV will not degenerate, e.g., in the toy example (v, o, q, l) = (3, 2, 16, 2), that
is, behaves like a semi-regular system. We consider this result to be natural since the
kernel of ring UOV is the oil space T−1(O) which is similar to the original UOV scheme
as mentioned in 4.4.1 and this is the space that the intersection attack tries to detect.

4.4.5 Equivalent key attack

An attacker may try to find the submatrix (T−1)12 of matrix [T−1] in the top right
corner by algebraic attacks. Once the matrix [T−1] is found, the central map F can be
recovered. This can be done by considering the system P (T−1(#—x)) = F (#—x) and solve
for [T−1] by comparing both sides of equation at ring level. Then it induces a system
of m ·m2 · l2 quadratic equations in lvo variables over Fq and hence can be solved by
F4, F5 and XL.

Therefore, the complexity is

CompT−1SNOVA = MQ(lvo+ 1, m3l2, q)

field multiplications.

Note that the multivariate quadratic system constructed by this attack is overdeter-
mined, hence [27, 14, 31, 13, 46, 22, 25] are not applicable.

On the other hand, one may consider that executing equivalent key attack that regards
a (v, o, q, l) SNOVA as an (l2v, l2o, q) UOV then inducing a quadratic system of M =
(l2m) · (l2m) · l2m+1

2
equations in N = lvo variables over Fq. However, our experiments

show that this formulation does not increase the number of independent equations.

With the table 8, we hope to provide some information and the trend of dreg on this
equivalent key attack when l increasing.

40

Table 8: Trend table of changes in degree of regularity.

(v, o, q, l) N M dreg

(28, 17, 16, 2) 952 19652 11
(25, 8, 16, 3) 600 4608 16
(24, 5, 16, 4) 480 2000 23
(19, 6, 16, 4) 456 3456 13

5 Advantages and limitations (2.B.6)

5.1 Advantages

The main advantages of SNOVA are as follows.

- Small public key sizes and signature sizes: As an MQ-problem based signa-
ture scheme, the signature sizes of SNOVA are tiny as usual. However, SNOVA
also enjoys very small public key sizes. Even for NIST security level three, we
could have a pair of public key size 4112 bytes and signature size 376 bytes.

- Modest computational requirements: During the signing and verification,
we only need to do simple matrix operations over a finite field. Thus, it can be
easily implemented on mobile devices.

- Small secret key: We may use two seeds together as our seed-type secret key
which is as small as 48 bytes.

- A wide security margin: We are very conservative in our security analysis,
thus leaving a wide security margin.

- Simple arithmetic: Although the core idea of SNOVA is the use of noncommu-
tative ring, the underlying basic operations to achieve the goal are really linear
algebra. Therefore, once understanding the nuance of the delicate design, the
simplicity of the SNOVA is really almost UOV, plus noncommutativity.

It is worth mentioning that, the protocol TLS, which is used to protect our web brows-
ing, will be no longer secure due to the impact of quantum computers as pointed out
in [54, 55]. Making TLS post-quantum is an important task, but such a fundamental
change could take years and be quite costly if we do not have a quantum-resistant
signature that is relatively well compatible with the existing framework. In particular,
[55] gives the corresponding condition: six times signature size and two times of public
key size fit in 9KB. According to the specification of SNOVA, SNOVA could be a more
practical general-purpose signature scheme.

41

5.2 Limitations

- No provable security: SNOVA, like all known MQ-based cryptosystems, has
no provable security. However, if we take our coefficients in the noncommutative
ring to be solely in the center of it, then SNOVA is reduced to a small UOV. Since
UOV is a well-studied case, therefore we have strong confidence in the security of
SNOVA.

- Performance trade-off: Unavoidably, there is a trade-off between public key
size and performance. Under the premise of being conservative about security,
the parameter sets we proposed are still practical.

- Choices on l in Matl×l(Fq): Our actual implementation shows that the l in
Matl×l(Fq) will influence the size of public key and signatures. Keeping the same
level of security, the bigger l will result in smaller public key size but larger
signatures. However, larger l will give a draw back on performance. Currently,
the parameter l are limited to 2, 3, and 4 in our design.

Also, to avoid possible potentially weak keys, we may require that Aα’s, Bα’s, Qα1’s,
Qα2’s being invertible, although it is not a requirement for the scheme to work properly.

References

[1] Bardet, M., Bertin, M.: Improvement of Algebraic Attacks for Solv-
ing Superdetermined MinRank Instances. In: Cheon, J.H., Johans-
son, T. (eds) Post-Quantum Cryptography. PQCrypto 2022. Lecture Notes
in Computer Science, vol 13512. Springer, Cham. https://doi.org/10.1007/
978-3-031-17234-2_6

[2] Bardet, M., Briaud, P., Bros, M., Gaborit, P., Tillich, J.P.: Revisiting Algebraic
Attacks on MinRank and on the Rank Decoding Problem. Available at
https://eprint.iacr.org/2022/1031.pdf.

[3] Bardet, M., Bros, M., Cabarcas, D., Gaborit, P., Perlner, R.A., Smith-Tone, D,
Tillich, J.P., Verbel, J.A.: Improvements of algebraic attacks for solving
the rank decoding and MinRank problems. In Shiho Moriai and Huaxiong
Wang, editors, ASIACRYPT 2020, Part I, volume 12491 of LNCS, pages 507–536.
Springer, Heidelberg, December 2020.

[4] Bardet, M., Faugère, J. C., Salvy, B., Yang, B. Y.: Asymptotic behavior of the
index of regularity of quadratic semi-regular polynomial systems. In 8th
Interna- tional Symposium on Effective Methods in Algebraic Geometry (MEGA),
pp. 1–14 (2005).

42

https://doi.org/10.1007/978-3-031-17234-2_6
https://doi.org/10.1007/978-3-031-17234-2_6
https://eprint.iacr.org/2022/1031.pdf

[5] Bettale, L., Faugère, J.-C., Perret, L.: Hybrid approach for solving multi-
variate systems over finite fields. Journal of Mathematical Cryptology 3, pp.
177–197 (2009).

[6] Beullens, W.: Breaking Rainbow Takes a Weekend on a Laptop. Cryptology
ePrint Archive, Report 2022/214, 2022. https://eprint.iacr.org/2022/214.
pdf.

[7] Beullens, W.: Improved cryptanalysis of UOV and Rainbow. Cryptology
ePrint Archive, Report 2020/1343, 2020. https://eprint.iacr.org/2020/1343.
pdf.

[8] Beullens, W.: MAYO: Practical Post-Quantum Signatures from Oil-and-
Vinegar Maps. Cryptology ePrint Archive, Report 2021/1144, 2021. https://
eprint.iacr.org/2021/1144.pdf.

[9] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The
user language. Journal of Symbolic Computation 24(3-4), pp. 235–265 (1997)

[10] Bouillaguet, C., Chen, H.C., Cheng, C.M., Chou, T., Niederhagen, R., Shamir,
A., Yang., B.Y.: Fast exhaustive search for polynomial systems in F2. In
Stefan Mangard and François-Xavier Standaert, editors, CHES 2010, volume 6225
of LNCS, pages 203–218, Santa Barbara, CA, USA, August 17–20, 2010. Springer,
Heidelberg, Germany.

[11] Buss, J.F., Frandsen, G.S., Shallit, J.O.: The computational complexity of
some problems of linear algebra. Journal of Computer and System Sciences
58(3), 572– 596 (1999).

[12] Cheng, C.M., Chou, T., Niederhagen, R., Yang, B.Y.: Solving quadratic equa-
tions with XL on parallel architectures. In Emmanuel Prouff and Patrick
Schaumont, editors, CHES 2012, volume 7428 of LNCS, pages 356–373. Springer,
Heidelberg, September 2012.

[13] Cheng, C.M., Hashimoto, Y., Miura, H., Takagi, T.: A polynomial-time al-
gorithm for solving a class of underdetermined multivariate quadratic
equations over fields of odd characteristics. In PQCrypto’14, LNCS 8772
(2014), pp.40–58.

[14] Courtois, N., Goubin, L., Meier, W., Tacier, J.-D.: Solving underdefined sys-
tems of multivariate quadratic equations. In PKC’02, LNCS 2274 (2002),
pp.211–227.

[15] Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for
solving overdefined systems of multivariate polynomial equations. In Bart
Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 392–407, Bruges,
Belgium, May 14–18, 2000. Springer, Heidelberg, Germany.

43

https://eprint.iacr.org/2022/214.pdf
https://eprint.iacr.org/2022/214.pdf
https://eprint.iacr.org/2020/1343.pdf
https://eprint.iacr.org/2020/1343.pdf
https://eprint.iacr.org/2021/1144.pdf
https://eprint.iacr.org/2021/1144.pdf

[16] Ding, J., Chen, M.S., Kannwischer, M., Patarin, J., Petzoldt, A., Schmidt, D.,
Yang, B.Y.: Rainbow. NIST Post-Quantum Cryptography Standardiza-
tion Round 3 Submissions, available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/round-3-submissions

[17] Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature
scheme. In International Conference on Applied Cryptography and Network Se-
curity, pages 164–175. Springer, 2005.

[18] Ding, J., Schmidt, D.: Solving Degree and Degree of Regularity for
Polynomial Systems over a Finite Fields. In: Fischlin, M., Katzenbeisser,
S. (eds) Number Theory and Cryptography. Lecture Notes in Computer Sci-
ence, vol 8260. Springer, Berlin, Heidelberg, 2013. https://doi.org/10.1007/
978-3-642-42001-6_4.

[19] Ding, J., Yang, B.Y., Chen, C.-O., Chen, M., Cheng, C.: New differential-
algebraic attacks and reparametrization of Rainbow. In: ACNS 2008,
LNCS, vol. 5037, pp. 242–257. Springer (2008).

[20] Faugère, J.C.: A new efficient algorithm for computing Gröbner bases
(F4). Journal of Pure and Applied Algebra, 139:61–88 (1999).

[21] Faugère, J.C.: A new efficient algorithm for computing Gröbner bases
without reduction to zero (F5). In Proceedings of the 2002 international sym-
posium on Symbolic and algebraic computation, pages 75–83, 2002.

[22] Furue, H., Nakamura, S., Takagi, T.: Improving Thomae-Wolf algorithm for
solving underdetermined multivariate quadratic polynomial problem. In
PQC’21, LNCS 12841 (2021), pp.65–78.

[23] Garey, M.-R., Johnson, D.-S.: Computers and intractability: a guide to the
theory of NP-completeness. W. H. Freeman (1979).

[24] Grover, L.-K.: A fast quantum mechanical algorithm for database search.
In STOC 1996, pp. 212–219. ACM (1996).

[25] Hashimoto, Y.: Minor improvements of algorithm to solve under-defined
systems of multivariate quadratic equations. Available at https://eprint.
iacr.org/2021/1045.pdf.

[26] Hu, Y.H., Wang, L.C., Yang, B.Y.: “A “Medium-Field” Multivariate Public-
Key Encryption Scheme.” Proc. 7th Cryptographer’s Track RSA Conference,
volume 3860, Lecture Notes in Computer Science, pages 132-149, 2006.

[27] Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature
schemes. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages
206–222. Springer, Heidelberg, May 1999.

44

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-642-42001-6_4
https://doi.org/10.1007/978-3-642-42001-6_4
https://eprint.iacr.org/2021/1045.pdf
https://eprint.iacr.org/2021/1045.pdf

[28] Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature
scheme. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages
257–266. Springer, Heidelberg, August 1998.

[29] Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G.,
Stehlè, D., Bai, S.: CRYSTALS-DILITHIUM. Technical report, National Insti-
tute of Standards and Technology, 2020. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.

[30] Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient
signature verification and message-encryption. In Advances in Cryptology
— EUROCRYPT 1988, volume 330 of Lecture Notes in Computer Science, pages
419–545. Christoph G. Günther, ed., Springer, 1988.

[31] Miura, H., Hashimoto, Y., Takagi, T.: Extended algorithm for solving un-
derdefined multivariate quadratic equations. In PQCryoto’13, LNCS 7932
(2013), pp.118–135.

[32] NIST: Post-quantum cryptography CSRC. Available at
https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization

[33] NIST: Post-Quantum Cryptography: Digital Signature Schemes. Avail-
able at https://csrc.nist.gov/projects/pqc-dig-sig/standardization/
call-for-proposals

[34] NIST: Submission Requirements and Evaluation Criteria for the Post-
Quantum Cryptography Standardization Process. Available at https:
//csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/call-for-proposals-final-dec-2016.pdf

[35] Park, C.M.: Cryptanalysis of Matrix-based UOV. In Finite Fields and Their
Applications, Volume 50, 2018, Pages 209-221, ISSN 1071-5797, https://doi.
org/10.1016/j.ffa.2017.11.012.

[36] Patarin, J.: The oil and vinegar signature scheme. In Dagstuhl Workshop
on Cryptography September, 1997.

[37] Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Poly-
nomials (IP) Two New Families of Asymmetric Algorithms. In EURO-
CRYPT’96, LNCS v. 1070, pp. 33-48.

[38] Petzoldt, A.: Selecting and reducing key sizes for multivariate cryptogra-
phy.

[39] Petzoldt, A., Thomae, E., Bulygin, S., Wolf, C.: Small public keys and fast
verification for Multivariate Quadratic public key systems. In Bart Preneel
and Tsuyoshi Takagi, editors, CHES 2011, volume 6917 of LNCS, pages 475–490,
Nara, Japan, September 28–October 1, 2011. Springer, Heidelberg, Germany.

45

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1016/j.ffa.2017.11.012
https://doi.org/10.1016/j.ffa.2017.11.012

[40] Prest, T., Fouque, P. A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin,
T., Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. Technical report,
National Institute of Standards and Technology, 2020. available at https://csrc.
nist.gov/projects/post-quantum-cryptography/round-3-submissions.

[41] Sakumoto, K., Shirai, T., Hiwatari, H.: On Provable Security of UOV
and HFE Signature Schemes against Chosen-Message Attack. In: Yang,
BY. (eds) Post-Quantum Cryptography. PQCrypto 2011. Lecture Notes in Com-
puter Science, vol 7071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/
978-3-642-25405-5_5.

[42] Shor, P. W.: Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. In SIAM Journal on Computing
26(5), pp. 1484-1509 (1997).

[43] Tao, C., Diene, A., Tang, S., Ding, J.: Simple matrix scheme for encryp-
tion. In Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp.231-242. Springer,
Heidelberg (2013).

[44] Tan, Y., Tang, S.: Two Approaches to Build UOV Variants with Shorter
Private Key and Faster Signature Generation. In: Lin, D., Wang, X.,
Yung, M. (eds) Information Security and Cryptology. Inscrypt 2015. Lecture Notes
in Computer Science(), vol 9589. Springer, Cham. https://doi.org/10.1007/
978-3-319-38898-4_4.

[45] Thomae, E.: Quo Vadis Quaternion? Cryptanalysis of Rainbow over non-
commutative rings. In SCN’12, Lect. Notes Comput. Sci. 7485, pp.361–363,
2012.

[46] Thomae, E., Wolf, C.: Solving underdetermined systems of multivariate
quadratic equations, revisited. In PKC’12, LNCS 7293 (2012), pp.156–171.

[47] Verbel, J., Baena, J., Cabarcas, D., Perlner, R., Smith-Tone, D.: On the com-
plexity of “Superdetermined” minrank instances. In: Ding, J., Steinwandt,
R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 167–186. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25510-7_10

[48] Wang, L.C., Chang, F.H.: Tractable Rational Map Cryptosystem Available
at http://eprint.iacr.org/2004/046.pdf.

[49] Wang, L.C., Hu, Y.H., Lai, F., Chou, C.Y., Yang, B.Y.: Tractable rational map
signature. In PKC, Serge Vaudenay, ed., Public Key Cryptography — PKC 2005,
(2005), pages 244–257. ISBN 3-540-24454-9.

[50] Wang, L.C., Tseng, P.E., Kuan, Y.L., Chou, C.Y.: NOVA, a Noncommutative-
ring Based Unbalanced Oil and Vinegar Signature Scheme with Key-
randomness Alignment, 2022. Available at https://eprint.iacr.org/2022/
665.

46

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-642-25405-5_5
https://doi.org/10.1007/978-3-642-25405-5_5
https://doi.org/10.1007/978-3-319-38898-4_4
https://doi.org/10.1007/978-3-319-38898-4_4
https://doi.org/10.1007/978-3-030-25510-7_10
http://eprint.iacr.org/2004/046.pdf
https://eprint.iacr.org/2022/665
https://eprint.iacr.org/2022/665

[51] Wang, L.C., Tseng, P.E., Kuan, Y.L., Chou, C.Y.: A Simple Noncommutative
UOV Scheme, 2022. Available at https://eprint.iacr.org/2022/1742.

[52] Wang, L.C., Wei, T.J., Shih, J.M., Hu, Y.H., Hsieh, C.C.:An algorithm for solv-
ing over-determined multivariate quadratic systems over finite fields. doi:
10.3934/amc.2022001

[53] Wiedemann, D.: Solving sparse linear equations over finite fields. IEEE
Trans. Inf. Theory IT-32, pp. 54-62, 1986.

[54] Wiggers, T.: Making protocols post-quantum. In the Cloudflare blog. Avail-
able at https://blog.cloudflare.com/making-protocols-post-quantum/

[55] Westerbaan, B.: Sizing Up Post-Quantum Signatures. In
the Cloudflare blog. Available at https://blog.cloudflare.com/
sizing-up-post-quantum-signatures/

[56] Yasuda, T., Sakurai, K., Takagi, T.: Reducing the Key Size of Rainbow
Using Non-Commutative Rings. In CT-RSA, volume 7178 of Lecture Notes
in Computer Science, pages 68-83. Springer, 2012.

47

https://eprint.iacr.org/2022/1742
https://blog.cloudflare.com/making-protocols-post-quantum/
https://blog.cloudflare.com/sizing-up-post-quantum-signatures/
https://blog.cloudflare.com/sizing-up-post-quantum-signatures/

	Algorithm specification (2.B.1)
	Introduction
	Preliminaries
	Notations and conventions
	Basic notions
	NIST security level.
	Unbalanced Oil and Vinegar signature (UOV) scheme

	Parameter space of the SNOVA scheme
	Design rationale
	SNOVA signature scheme
	Description
	Key generation process of SNOVA
	To attain EUF-CMA security

	Implementation details
	Constants and tables
	Algorithms
	Algorithms for key generation
	Algorithms for signature generation
	Algorithms for signature verification

	Parameters settings
	List of our parameters
	How the performance are affected by parameters

	Performance analysis (2.B.2)
	Platforms used in the estimation
	Time
	Space

	Expected Security Strength (2.B.4)
	Security strength

	Analysis With Respect To Known Attacks (2.B.5)
	A note of our analysis
	Preliminaries
	Solving MQ systems and complexity estimation
	MinRank problem and Support-Minors modeling

	Forgery attacks
	Direct attack
	Collision attack

	Key Recovery Attacks
	Quadratic forms over ring and MinRank attacks
	Reconciliation Attack
	Kipnis-Shamir attack (UOV attack)
	Intersection attack
	Equivalent key attack

	Advantages and limitations (2.B.6)
	Advantages
	Limitations

