
ASqirrels A

Square Unstructured Integer Euclidean Lattice
Signature

Thomas Espitau, Guilhem Niot, Chao Sun, Mehdi Tibouchi

Sqirrels Contents

Contents

1 Introduction 3

1.1 Context and motivation . 3
1.1.1 Structured vs. unstructured lattices 3

1.2 The choice of unstructured lattices 4

2 Design rationale 5

2.1 The Gentry–Peikert–Vaikuntanathan Framework 5
2.1.1 Provably secure lattice signatures 5
2.1.2 From GGH to GPV . 5
2.1.3 Beyond GPV . 6

2.2 On co-cyclic lattices . 6
2.3 Security assumptions . 7

2.3.1 SIS-hash in the co-cyclic case. 7
2.3.2 Generalized SIS and hardness assumptions. 8
2.3.3 Regularity of the keygen output. 9

2.4 The Sqirrels family . 9
2.4.1 Sqirrels secret keys . 10
2.4.2 Public key derivation . 10
2.4.3 Signature sampling . 11
2.4.4 Fast verification . 11

3 Advantages and limitations 11

3.1 Advantages . 11
3.2 Limitations . 12

4 Security considerations 13

4.1 Heuristic modelization of lattice reduction, GSA and beyond . . . 13
4.1.1 On the core-SVP model 13
4.1.2 Modelization of the output of reduced bases. 14
4.1.3 From lattice reduction blocksize to bitsec estimates. 14

4.2 Key Recovery attack . 14
4.2.1 Basic projection attack . 15

4.3 Hybridizing the attack for sparse secrets 16
4.3.1 Good guess probability estimation. 16
4.3.2 Volume of intersection. 17
4.3.3 Putting it all together . 17

1

Sqirrels Contents

4.3.4 On sparsity. 17
4.4 Signature forgery by BDD reduction. 18

4.4.1 Additional “BUFF” Security Properties 19

5 Specification 19

5.1 Notations and useful definitions 19
5.2 Public parameters . 21
5.3 Keys . 22

5.3.1 Private Key . 22
5.3.2 Public Key . 22

5.4 Key pair generation . 23
5.4.1 Generation of the first vectors 23
5.4.2 Computation of the last secret vector 24
5.4.3 Public Key derivation . 27

5.5 Hashing . 30
5.6 Signature generation . 32
5.7 Sampler Over the Integers . 33
5.8 Signature verification . 37
5.9 Encoding formats . 37

5.9.1 Bits and bytes . 37
5.9.2 Integers and doubles . 37
5.9.3 Compressed Gaussian vectors 37
5.9.4 Signatures . 41
5.9.5 Private Keys . 41
5.9.6 Public Keys . 41

5.10 Recommended Parameters . 42
5.10.1 Interplay between parameters 42
5.10.2 Concrete parameters . 44

6 Performance 45

6.1 Description of the Reference implementation 45
6.2 Evaluation on the NIST x64 Reference Target 46
6.3 Evaluation on x64 AMD . 47

A Additional notions 52

A.1 Preimage samplable function (PSF) 52
A.2 Lattices and related notions . 53

A.2.1 Lattice and their invariants 53

2

Sqirrels

A.2.2 Discrete Gaussian distribution over a lattice 53
A.2.3 Smoothing parameter. 54

B Fixed determinants 54

1 Introduction

1.1 Context and motivation

In the rapidly advancing field of post-quantum cryptography, significant progress
has been achieved over the past decade. The recognition of its criticality has ex-
tended beyond the academic community to the general sphere, leading to a grow-
ing awareness of the need for robust cryptographic solutions. As a result, a di-
verse range of designs has emerged, reaching a level of maturity that enables their
practical deployment.

A notable testament to the progress made in this field is the recent standard-
ization efforts undertaken by the National Institute of Standards and Technol-
ogy (NIST). In recent years, NIST standardized the stateful hash-based signature
schemes XMSS and LMS [10], and selected 3 lattice-based schemes (the Kyber
KEM and the signatures Dilithium and Falcon [41, 16]) and 1 stateless hash-based
signature (SPHINCS [8]) for upcoming standardization, further demonstrating
the increasing significance and practicality of post-quantum cryptographic prim-
itives.

However, given the significant challenges associated with the costly and time-
consuming deployment of entirely new cryptographic systems, coupled with the
need to ensure the longevity of these systems over decades, there are application
domains where adopting a conservative approach to selecting a post-quantum can-
didate scheme is preferable. In light of the unpredictable trajectory of quantum
computing technology and quantum cryptanalysis in years to come, practitioners
with valuable data requiring long-term confidentiality and authenticity guaran-
tees may want to prioritize security and simplicity over premature optimization.
In that perspective, the question of which class of hard problem to rely on is crit-
ical.

1.1.1 Structured vs. unstructured lattices

The security of public-key cryptosystems relies on the assumption that certain
computational problems are difficult to solve. In lattice-based cryptography, two

3

Sqirrels 1.2 The choice of unstructured lattices

related important problems are the Learning with Errors (LWE) and the Short In-
teger Solution (SIS) problem. The former involves solving a noisy, random linear
system over the ring Z/qZ, whereas the latter asks to find a short solution to a
linear system, again over Z/qZ. Both problems can also be interpreted as approx-
imate close vector problems (i.e., the problems of decoding errors of a certain size)
in random q-ary lattices.

Variants of these problems include algebraically structured versions such as
Ring-LWE [33] and Module-LWE [30], as well as problems associated with the so-
called NTRU lattices. These variants correspond to decoding problems in lattices
over rings of algebraic integers (endowing the lattices themselves with additional
algebraic structure). Cryptosystems based on those structured assumptions and
structured lattices generally offer greater efficiency, since the corresponding lat-
tices admit more compact representations, and typically benefit from the faster
arithmetic of the underlying rings. In principle, however, the additional structure
could also, introduce vulnerabilities that do not exist in the unstructured setting.

The current state of the art indicates that the recommended parameteriza-
tions for algebraically structured lattice problems do not appear to exhibit specific
weaknesses when compared to plain lattice versions. However, the (quantum)
complexity of certain related problems on specific types of algebraic lattices is
lower than their counterparts on general lattices (see, e.g., [11, 12]). Whether new
cryptanalytic techniques may in the future improve and extend those stronger at-
tacks that exist in the structured setting to the point of meaningfully reducing the
security of cryptosystems based on NTRU or structured variants of LWE and SIS
remain to be seen. Uncertainty in this matter does however make unstructured
lattices appear as a clearly more conservative choice.

1.2 The choice of unstructured lattices

Given the uncertain long-term prospects of algebraically structured lattices and
the need for post-quantum standards to remain secure, our proposal is based on
plain lattice problems, i.e., without additional algebraic structure. We choose to
employ conservative parameterizations for enhanced security. While this choice
incurs some efficiency trade-offs compared to algebraic variants, we believe it
ensures robustness against potential weaknesses in the future.

Furthermore, the use of plain lattices presents minimal restrictions on param-
eter choices, making it possible to reach specific security levels in a fine-grained
manner.

4

Sqirrels

2 Design rationale

2.1 The Gentry–Peikert–Vaikuntanathan Framework

2.1.1 Provably secure lattice signatures

In 2008, Gentry, Peikert, and Vaikuntanathan [25] introduced a provably secure
lattice-based signature scheme under the SIS assumption. The framework relies
on the existence of a trapdoor basis, which serves as the secret key and exhibits
excellent properties for Gaussian sampling to generate a lattice point close to the
hash of the message. The verification process involves checking whether the sig-
nature belongs to the lattice using linear algebra techniques and ensuring that the
distance between the lattice point and the message hash is sufficiently small. Over
time, this robust framework has undergone enhancements to offer highly compact
and efficient signature schemes, most notably resulting in the NIST-standardized
Falcon [23] and variants such as Mitaka [19]. Before further ado, let us give a
bit more details on the GPV framework, starting with its ancestor, the Goldreich-
Goldwasser-Halevi signature.

2.1.2 From GGH to GPV

The GGH signature scheme [26] operates by mapping a message m to a random
point c in the Euclidean space and then sampling a lattice point s that is in close
proximity to c using a “good” secret basis that is both short and nearly orthogonal.
Verification involves checking whether s is a lattice point close to c using a “bad”
public basis that is independent of the secret basis. However, this construction
leaks the shape of the secret basis.

In contrast, the GPV signature scheme represents an improvement over the
GGH signature scheme by randomizing the choice of the close lattice point. It
generates a signature that is statistically close to a discrete Gaussian distribution
centered around the hashed message. This statistical property ensures that the
output distribution becomes statistically independent of the secret basis, thereby
providing the security of the signature.

The GPV signature can be described as follows:

• The public key is a full-rank matrix A ∈ Zm×n
q (m < n).

• The secret key is a matrix B ∈ Zn×n
q with short entries such that B ·AT =

0.

5

Sqirrels 2.2 On co-cyclic lattices

• Given a message m′, we first hash it to H(m′) where H is a hash function
defined as {0, 1}∗ → Zn

q . A signature is a short s ∈ Zn
q such that s ·AT =

H(m′). It is straightforward to check the validity of v by verifying that s
is indeed short and s ·AT = H(m′).

• To generate a signature, first a preimage c0 ∈ Zn
q is computed such that

c0 ·AT = H(m′), then B is used to find a vector c in the lattice spanned
by B that is close to c0. The difference s = c0 − c is a valid signature,
because s ·AT = c0 ·AT − c ·AT = H(m′).

2.1.3 Beyond GPV

The GPV signature, originally designed for SIS-like lattices, presents a flexible and
adaptable framework that can be extended to various lattice types while accom-
modating varying underlying assumptions. The core concept of the GPV signa-
ture simply involves the existence of a randomized sampler to generate a signa-
ture that closely approximates a discrete Gaussian distribution. This adaptability
allows the GPV framework to serve as a versatile tool in the domain of lattice-
based cryptography. Notably, Falcon [23] implemented GPV over NTRU lattices,
whereas we propose to maintain an unstructured approach relying on plain lat-
tices. To ensure efficient verification, akin to the Falcon verification equation, we
focus on a broad class of plain lattices known as co-cyclic lattices.

2.2 On co-cyclic lattices

The structure of the quotient group Zn/L, where L is an integer lattice, holds
significant importance in the study of lattices. It provides insights into the av-
erage complexity of lattice problems, as highlighted in works such as [3] and its
generalization [24]. In particular, when this quotient group is cyclic, meaning it is
spanned by a single element, we refer to the lattice as co-cyclic. Notably, co-cyclic
lattices exhibit a natural density of approximately 85% [37]. Moreover, Paz and
Schnorr demonstrated in [39] that the worst-case hardness problems, such as SVP
(Shortest Vector Problem) and CVP (Closest Vector Problem), on co-cyclic lattices
are as challenging as those on unconstrained lattices.

Another equivalent characterization, as described in [39], involves the exis-
tence of a vector w such that L = {x | ⟨x,w⟩ mod d = 0}. In other words, the
lattice L can be defined as the set of all vectors x for which the inner product of
x and w modulo d yields a specific value. This characterization also relates to the

6

Sqirrels 2.3 Security assumptions

row Hermite Normal Form (HNF) of the lattice, which takes the following form:[
In−1 vT

check
0 ∆

]
(1)

where ∆ = det(L).
This characterization is very interesting from a practical point of view as it

allows us to perform efficient lattice membership check. Computing the row HNF
allows to find such a vector w: w = (vcheck,−1). Indeed, given a point c ∈ Zn

and the HNF of a co-cyclic lattice L:

c = (c1, ..., cn) ∈ L ⇐⇒ ∃Y = (y1, ..., yn) | Y · HNF(L) = c

⇐⇒ ∃Y | c1 = y1, c2 = y2, ..., cn−1 = yn−1,

cn =
∑

1⩽i⩽n−1

yi · vcheck,i + yn ·∆

⇐⇒ cn =
∑

1⩽i⩽n−1

ci · vcheck,i mod ∆ (2)

Hence, in the context of GPV-type signatures, we can achieve efficient verifi-
cation when the underlying lattice is co-cyclic. To fully capitalize on this obser-
vation and create a practical signature scheme, our focus lies in the construction
of reliable trapdoors specifically designed for co-cyclic lattices. By successfully
addressing this aspect, we can develop an effective and secure signature scheme
that harnesses the advantages of co-cyclic lattices.

2.3 Security assumptions

2.3.1 SIS-hash in the co-cyclic case.

As previously mentioned, the GPV framework is a versatile framework that can be
instantiated to different classes of lattices. The underlying hardness assumptions
however vary with this choice. In our case, Sqirrels relies on co-cyclic lattices
instead of the uniform SIS-like lattices presented in [25] or NTRU lattices [23, 19].

The GPV framework constructs a signature scheme from a preimage sam-
plable function f that is supposed to be collision resistant. We recall the formal
definition of this class of function in Appendix A.1. The prototype of such function
is the SIS hash e 7→ A ·e mod q, where A is the public matrix of the scheme, and
e follows a Gaussian distribution of standard deviation s ⩾ ηε(L), the smoothing
parameter of this lattice.

7

Sqirrels 2.3 Security assumptions

This can be adapted seamlessly to Sqirrels by taking:

f : Dn → Z∆

x 7→ x ·AT mod ∆

with Dn = {e ∈ Zn | ||e|| ⩽ β}, the input distribution of e is DZn,β/
√
n and

A = (vcheck,−1) the public key of Sqirrels. Lemma 5.2 of [25] adapts directly
to prove that when e follows DZn,β/

√
n with β/

√
n ⩾ ηε(L), f(e) is statistically

close to U(Z∆). To get possible instantiation, we need to estimate the smoothing
parameter of the latticeL. It appears that for the class of co-cyclic we will relate to,
it will be a constant factor in the smoothing of Zn with overwhelming probability,
as we discuss in Section 2.3.3.

Then, we define the (sampleable) inversion function f−1(u) for u ∈ Z∆ as
follows: we chose via linear algebra a t ∈ Zn

∆ such that t ·AT = u, then sample v
from DL,u,−t using the Klein sampler with the secret basis, and output e = t+v.

Now the proof of theorem 5.9 of [25] translates in asserting that f forms a
preimage samplable function under a variant of ISIS, the Group-SIS GISISZ∆,β

with cyclic group Z∆, for a uniform syndrome u ∈ Z∆. It is collision-resistant
under the hardness of the corresponding GSISn,Z∆,2·β problem.

2.3.2 Generalized SIS and hardness assumptions.

The problems mentioned above are formally defined as the following generaliza-
tion of the (I)SIS problems when the structure of the quotient Zn/L is prescribed:

• GSISn,Z∆,β : Given a random lattice L of dimension n such that Zn/L =

Z∆, find a vector x such that ||x|| ⩽ β and x ·AT = 0 mod ∆.

• GISISn,Z∆,β : Given a random lattice L of dimension n such that Zn/L =

Z∆ and a uniform u ∈ Z∆, find a vector x such that ||x|| ⩽ β and x ·AT =

u mod ∆.

The security of GSIS for co-cyclic lattices with determinant ∆ is supported
by an average to worst-case reduction in any integer lattice in [24]. The high
density of co-cyclic lattices among the moduli space of all integer lattices (without
the determinant constraint) also allows reducing the average GISIS on co-cyclic
lattices to average ISIS on all integer lattices. This gives us confidence that our
two hardness assumptions are as hard as on any full-rank integer lattices.

8

Sqirrels 2.4 The Sqirrels family

2.3.3 Regularity of the keygen output.

To fully follow the security proof of GLP, we hence only need to assume that
the lattices sampled by our key generation algorithm “behave as if” they were
sampled randomly from the family above. More precisely, we make the following
assumption:

• SQR-PRλ: The public matrixA = (vcheck,−1) output byKeyGen(1λ) (Al-
gorithm 1) is computationally indistinguishable from a uniformly random
element of Zn−1

∆ × {−1}

This assumption is very natural from the construction and is the exact non-
structured analog of the NTRU assumption (the NTRU assumption over the ring
Z would coincide exactly with our assumption as the normal form of the NTRU
lattice would be exactly the Hermite form of the basis). Under this assumption, it
is straightforward to prove that the smoothing parameter of the lattices used in
Sqirrelsis as announced: a constant factor off from the smoothing of the cubic
lattice Zn (see Appendix A.2.3 for proof of this claim).

2.4 The Sqirrels family

We present the Sqirrels family, a collection of lattice-based digital signature
schemes for each of the five NIST security level requirements. These schemes
adopt a hash-and-sign structure construction and rely on unstructured co-cyclic
lattices as their foundation. At the core of these schemes is an integral matrix of
dimensions n× n, serving as a trapdoor sampling basis for the lattice, which we
will require to be co-cyclic. This matrix consists of a set of n short and relatively
orthogonal vectors, with constraints on their so-called Gram-Schmidt norm to
ensure good sampling properties. On the other hand, a public basis, expressed
in the Hermite Normal Form (HNF), is made available to enable the membership
test for this lattice. Unlike NTRU lattices, the secret basis employed in Sqirrels
cannot be easily compressed due to the absence of strong geometric properties.
It is worth noting that this is a drawback inherent to any plain lattice scheme.
Indeed, we are sampling our keys from a distribution that is computationally in-
distinguishable from the distribution of maximal entropy for the dimension and
size involved.

The sampler used to produce signatures is the so-called Klein sampler [29],
already used in the original GPV proposal [25].

9

Sqirrels 2.4 The Sqirrels family

2.4.1 Sqirrels secret keys

Even though signatures generation still relies on the Klein sampler, the generation
of the trapdoor differs significantly from earlier work, including the original GPV,
or even from the more recent Falcon and Mitaka signatures. We start with the
observation that the quality of signatures generated by the Klein sampler [29,
25] depends on the maximal norm of the Gram-Schmidt vectors of the trapdoor
basis. It follows that we would like to generate trapdoors with such Gram-Schmidt
norm as small as possible. However, as we fix the determinant both to address the
fact that the problem is essentially scale-invariant and for efficiency purposes, we
rather want trapdoor basis vectors to have their Gram-Schmidt norms to differ
as little as possible from the geometric mean imposed by the determinant. To
construct such a basis, we depart from the usual approach of sampling a trapdoor
with random Gaussian vectors and testing its quality afterward, as in [25, 23].
Instead, our key pair generation sequentially samples secret vectors from regions
of the space that are carefully crafted to provide a well-controlled Gram-Schmidt
norm. These vectors should ideally be short and close to orthogonal for the best
possible sampling quality, but not too short and orthogonal so as not to jeopardize
security with respect to key recovery attacks. Hence, at each step the algorithm
samples a vector of controlled norm close to the orthogonal subspace of the vector
subspace spanned by the previous vectors. It finally selects the last vector in such
a way that the resulting matrix matches the prescribed determinant.

2.4.2 Public key derivation

To derive an efficient public key, we require additionally that the sampled lattice
has to be co-cyclic, i.e., we can find a vector w = (vcheck,−1) such that c ∈
L ⇐⇒ ⟨c,w⟩ = 0 mod ∆ as seen in section 2.2. We choose a square-free
determinant, as described in appendix B. This minor check actually automatically
enforces the co-cyclicity of the lattice, so in practice we do not need to reject
lattices because they are not co-cyclic.

The vector vcheck can be computed from the row HNF of the secret basis. The
HNF can be computed in polynomial time from any lattice and thus gives a basis
of the lattice that is “as bad as can be”. The public key of Sqirrels is chosen to
be the vector vcheck.

10

Sqirrels

2.4.3 Signature sampling

As explained previously, signature generation consists in first hashing the mes-
sage to sign, along with a random nonce, into a vector h, whose coefficients are
uniformly mapped to integers in the 0 to q − 1 range. Then, the signer uses his
knowledge of the secret lattice basis to produce a vector c belonging to the lattice
that is close to h. The signature s properly is c − h. Sampling a vector in the
lattice (very) close to an arbitrary point is in general a hard problem, but here we
rely on the fact that the secret basis is a basis of the lattice composed of short vec-
tors. Klein’s Gaussian sampler [29, 25] is used to efficiently sample this Gaussian
vector.

2.4.4 Fast verification

The verification procedure first recomputes the hash of the message h, and the
lattice point c = s+h. It verifies that s is a short vector, and that c actually belongs
to the lattice. Efficient membership checks are possible using the properties of
co-cyclic lattices from section 2.2. We simply need to verify the equation 2 using
vcheck. Fixing the determinant of the lattice to a fixed product of primes allows
to work modulo small primes, thanks to the Chinese remainder theorem, in the
verification procedure, instead of modulo∆, and makes the verification procedure
more efficient.

3 Advantages and limitations

3.1 Advantages

Confidence in unstructured lattices. One concern about Falcon is its use of
NTRU lattices which might be vulnerable to specialized and more powerful at-
tacks than the generic attacks on lattices. Our scheme samples lattices with no
strong geometric property and bases its security on generic lattice problems. These
problems have been studied for decades, notably with average-to-worst-case re-
ductions, which give strong confidence in their security.

Compact signatures. Despite leveraging an unstructured problem, our scheme
still manages to generate remarkably compact signatures. The byte-size of our sig-
natures falls within the range of Falcon and Dilithium, both of which are renowned
for producing concise signatures in the post-quantum setting.

11

Sqirrels 3.2 Limitations

Efficient signature generation and verification. Sqirrels is also very com-
petitive in terms of signature generation and verification efficiency. On a personal
laptop, it is capable of generating several dozens to hundreds of signatures per sec-
ond, while also verifying thousands of signatures within a single second.

Simple signature verification. The signature verification process is remarkably
straightforward, primarily consisting of a hash computation and the verification
of a single linear equation. Its simplicity streamlines the verification procedure
without compromising the security of the scheme.

3.2 Limitations

Slow key generation. One aspect that warrants consideration is the relatively
slow key generation procedure employed in our scheme. This process involves
computationally expensive operations on high-dimensional matrices, such as de-
terminant calculations and HNF (Hermite Normal Form) computations. Conse-
quently depending on the target hardware and security level desired, generating
a single keypair can take anywhere several dozen seconds. The acceptability of
this duration depends on the specific application at hand. However, it may prove
to be prohibitive if the application necessitates a high frequency of rotation of
signature keys. This is a direct consequence of the choice of using unstructured
lattices: every non-trivial linear algebra operation is at the very least quadratic in
the dimension of the lattice.

Large public keys. Due to the absence of structure in the lattices we sample,
it is not possible to compress the public key in a manner similar to Falcon. As a
result, our public keys are larger by a factor of O(n), weighing several hundred
kilobytes to a few megabytes. This increase in size should be taken into considera-
tion, particularly when storage or transmission constraints are significant factors
in the system’s design. Once again, this can not be improved when dealing with
unstructured lattices, as the entropy of the matrix representing the keys is essen-
tially maximal for their size and dimensions.

Floating-point arithmetic. It is important to note that our signature scheme
utilizes floating-point arithmetic during both key generation and signature gen-
eration procedures. While this choice contributes to the scheme’s effectiveness,

12

Sqirrels

it may pose a significant limitation when implementing the scheme on very con-
strained devices with limited computational capabilities or limited support for
floating-point operations. Careful consideration must be given to the feasibil-
ity and the practicality of implementing our scheme in such environments. We
stress that verification, on the other hand, does not rely on floating point arith-
metic, so the more common use case where signatures only need to be verified on
constrained devices (e.g., bootloader signing) is supported without issue.

4 Security considerations

To assess the concrete security of the Sqirrels scheme, we proceed using the
usual cryptanalytic methodology of estimating the complexity of the best attacks
against key recovery attacks on the one hand, and signature forgery on the other.
We first give a quick discussion on the modelization of practical lattice reduction
algorithms.

4.1 Heuristic modelization of lattice reduction, GSA and beyond

4.1.1 On the core-SVP model

To accurately assess the hardness of the underlying problems and ensure secu-
rity in terms of bits, it is necessary to model the behavior of a practical oracle
that approximates the Shortest Vector Problem (SVP). Our problems involve find-
ing relatively short vectors in various lattices. For this purpose, we will employ
the well-known (self-dual) Block Korkine-Zolotarev (BKZ) algorithm. The BKZ
algorithm, with a block size denoted as B, may require a polynomial number of
calls to an SVP oracle in dimension B, with a heuristic estimation of the number
of calls being essentially linear. To account for potential future improvements in
this reduction technique, we will only consider the cost of a single call to the SVP
oracle. This conservative estimation is referred to as ”core-SVP hardness.” This
cautious approach is motivated by the fact that there are methods to amortize the
cost of SVP calls within BKZ, particularly when sieving is employed as the SVP
oracle. Sieving is getting the de facto standard for larger cryptographic block sizes
(we for instance refer to [4] for more details on the practical challenges raised by
the use of sieving within lattice reduction).

13

Sqirrels 4.2 Key Recovery attack

4.1.2 Modelization of the output of reduced bases.

In all of the following and to ease the presentation, we follow the so-called Ge-

ometric series assumption (GSA), asserting that a reduced basis sees its Gram-
Schmidt vectors’ norm decrease with geometric decay. More formally, it can be
instantiated as follows for self-dual BKZ (DBKZ) reduction algorithm of Miccian-
cio and Walter [36]: an output basis (b1, . . . ,bn) yielded by DBKZ algorithm with
block size B on a lattice L of rank n satisfies

∥b̃i∥ = δ
d−2(i−1)
B det(L)

1
n , where δB =

(
(πB)

1
B ·B

2πe

) 1
2(B−1)

,

for b̃i being the i-th Gram Schmidt vector of the basis.
To obtain a more accurate estimation when computing actual figures, it is

beneficial to enhance this analysis by employing the probabilistic simulation pro-
posed in [14]. This simulation provides a more precise determination of the Block
Korkine-Zolotarev (BKZ) block size B required for a successful attack, surpassing
the coarse estimation based on the Geometric series assumption (GSA). By in-
corporating this probabilistic simulation, we can consider the widely recognized
”quadratic tail” phenomenon of reduced bases [44], thereby improving the preci-
sion of our calculations.

4.1.3 From lattice reduction blocksize to bitsec estimates.

This analysis translates into concrete bit-security estimates following the method-
ology of NewHope [5] (so-called “core-SVP methodology”). In this model, the bit
complexity of lattice sieving (which is asymptotically the best SVP oracle) is taken
as ⌊0.292B⌋ in the classical [7] setting and ⌊0.257B⌋ in the quantum setting[9]
in dimension B.

As the whole methodology is restated, we now turn to the fine-grained secu-
rity of key recovery and then forgery.

4.2 Key Recovery attack

The key recovery attack aims at finding (at least) one of the short vectors of the
secret basis, from the knowledge of the public key. A direct approach to key recov-
ery is to do lattice reduction on a public basis, aiming at finding a relatively short
vector in the spanned lattice: such attacks are addressed in Section 4.2.1. How-
ever, when the key becomes sparse ternary because of its length, combinatorics

14

Sqirrels 4.2 Key Recovery attack

and more importantly hybrid attacks (combining lattice reduction and meet-in-
the-middle approach) can be considered as a potential threat. This effect is quite
similar to the caveats raised in [21] on distorted hash-and-sign signatures.

4.2.1 Basic projection attack

This technique, initially described in the Falcon specification [23] and subsequently
utilized in Mitaka [19] , operates by examining the lattice formed by the public
basis, which is encoded in the public key as the Hermite Normal Form of the lat-
tice in our scheme. It then finds vectors of the secret basis by listing all possible
lattice vectors of norm less than gmin. The attack avoids listing all lattice vectors
in that sphere by restricting the search space to a projection.

More precisely, we fix B the block size of the DBKZ algorithm [36], and we
first reduce the public basis using DBKZ to obtain a reduced basis [b1, . . . ,bn].
Then, we consider the lattice projected on P = Span(b1, . . . ,bn−B−1)

⊥. If we
can find a projection of a secret vector in P , we can efficiently lift it to a vector
of the target norm using Babai Nearest Plane algorithm [6]. Running a classical
sieve (see [17] for instance) on P will list all vectors of norm smaller than

√
4
3ℓ,

where ℓ if the norm of the n − B-th Gram-Schmidt vector of the reduced basis.
Under the GSA assumption, we have:

ℓ = covol(L)
1
n · δ2B+2−n ≈ covol(L)

1
n ·
(

B

2πe

)1− n
2B

Assuming that secret vectors behave as random vectors of norm gmin, their
projection on P is roughly:

∥πP (bi)∥ =
√

B

n
· gmin

Thus, we will retrieve the projection among the sieved vectors if
√

B
n · gmin ⩽√

4
3ℓ, that is if the following condition is fulfilled:

gmin ⩽

√
4n

3B
· covol(L)

1
n

(
B

2πe

)1− n
2B

. (3)

Remark. • This approach is similar to the one used in the security evaluation

of [5] , but we use all the vectors given by the last step of sieving, resulting in

a slightly stronger attack and as such more conservative parameters choices.

15

Sqirrels 4.3 Hybridizing the attack for sparse secrets

• (On the size of the enumeration window.) In the previous description we only

considered the space P , orthogonal to span(b1, . . . , b2d−B−1). It is natural

to want to extend its dimension and choose the optimal one. It appears that

for the specific parameters of our work, this optimization would only result in

a difference of less than a single bit of security. Besides, on the one hand, by

using the exact block size beta we can extract the vectors we need to sieve for

free from the preliminary run of DBKZ, avoiding the need for an additional

sieving pass. On the other hand, using a larger dimension for the additional

sieving pass adds a non-negligible cost. Note that this is a consequence of the

Core-SVPmethodology which ignores the polynomial overhead cost of (D)BKZ.

4.3 Hybridizing the attack for sparse secrets

We now show that we can improve this baseline when one of short vectors (in
practice, the fist one) is in fact sparse. Indeed, if the sparsity level – the number
of zeros in the vector – is high, then with a reasonable probability we can cor-
rectly guess the positions of some zeros of the vector. With such a good guess of
positions, say all indices I ⊂ {1, . . . , n}, then we only need to restrict our search
for the secret keys out outside this guess, that is to say, we intersect the public
lattice L with ZI . (where I refers to the complement of the set I in the overset
{1, · · · , n}). In this lattice, we can apply readily the methodology of Section 4.2.1
to retrieve the intersected secret and as such the secret itself. This new lattice has
dimension n− |I| and its covolume is likely to be the same as the one of L. (see
infra for a discussion of this phenomenon). As a result, the normalized covolume
of the intersection lattice is bigger than previously, and its dimension of course
smaller. As such, this final lattice reduction part is now easier and thus faster.
Hence, there exists a trade-off between the probability of right guessing (the more
zeroes to guess, the harder it becomes to correctly guess their positions) and the
time required by the lattice reduction. We now turn to the estimation of the cost
of this hybrid attack.

4.3.1 Good guess probability estimation.

Before further ado, we need an estimate of the probability of making such suc-
cessful guesses of the zero coefficients. Set the sparsity level of the first secret
vector to be 0 < κ < n and that |I| = g. Then, over the randomness of the secret,
the probability of getting a correct guess for a given secret vector vi is equal to
the probability of I being a subset of the set of zeros of vi, i.e. is

(
κ
g

)
/
(
n
g

)
.

16

Sqirrels 4.3 Hybridizing the attack for sparse secrets

4.3.2 Volume of intersection.

We now need to estimate the volume of the remaining part of the lattice, that is to
say of an intersection ZI ∩ L. Remark that when denoting by πI the orthogonal
projection onto (ZI)⊥ = ZI :

covol
(
ZI ∩ L

)−1
= covol

((
ZI ∩ L

)∨)
= covol

(
πI · L∨

)
=

covol (L∨)
covol (L∨ ∩ ZI)

Hence, we now need to evaluate the volume of the dual L∨ ∩ ZI . By defi-
nition of primitivity, if the set of vectors defined by ZI is primitive in L∨, this
intersection is exactly ZI , meaning that its volume is exactly 1. Remark that this
condition is realized if and only if there exists an integer matrix X ∈ Zg×n with
the gcd of its principal minors equal to 1 and such that X · B∗ = [ei]i∈I , for
the dual basis B∗ associated to a basis B. Hence, we have X = BT [I]. This is
equivalent to requiring BT [I] to be primitive in Zn. With probability essentially
1, the intersection has volume 1 for card(I) ⩽ 2n

3 (see for instance [22]). As such,
the normalized volume of the intersection can be considered to be covol(L)

1
n−g ,

which is slightly larger than the original volume.

4.3.3 Putting it all together

The attack rationale can then be summarized as follows:

1. While a secret vector is not discovered do

(a) Randomly guess the positions I ⊂ {1, . . . , n} of g zeros

(b) Compute the lattice L′ = L ∩ ZĪ

(c) Reduce L′ using BKZ-B algorithm.

(d) Enumerate all vectors of length smaller than
√

4
3∥b̃n−B∥ where b̃i is

the n−B-th Gram Schmidt vector of the basis obtained at step (c).

(e) For each such v , lift it as a vector of L′ using Babai’s nearest plane
algorithm and check if it is shorter than gmax and return it.

4.3.4 On sparsity.

We can evaluate the sparsity level of secret vectors by modeling them as following
a discrete Gaussian centered in zero, and of standard deviation σmodel = gmin/

√
n

- which ensures an average norm gmin in the continuous setting.

17

Sqirrels 4.4 Signature forgery by BDD reduction.

Given Φ(x) = 1+erf(x/
√
2)

2 , the cumulative distribution function of the normal
distribution, each coefficient is zero with probabilityP (vi = 0) = Φ(0.5/σmodel)−
Φ(−0.5/σmodel).

Then, we evaluate the number of zero coefficients in one secret vector:

κ = n · P (v0 = 0) = n · (Φ(0.5/σmodel)− Φ(−0.5/σmodel))

With the promise that the parameter B is large enough so that the condition
of equation 3 is non vacuous, the expected whole complexity of the attack is,
therefore:

CBKZB
(n− g)×

(
n
g

)(
κ
g

)
Finding the optimal parameters g and B is done by an exhaustive search to mini-
mize the previous quantity while still ensuring correctness. It appears in practice
between this hybridized technique and the standard attack is less than a few bits,
meaning that the vectors are not too sparse to deteriorate meaningfully the secu-
rity of the scheme.

Remark. Remark that we supposed here that we analyzed the attack using the most

pessimistic-case possible, i.e., when the sparsity is as large as possible. As this level

is likely to be smaller in practice, the hybrid attack might be worse than the naive

attack. Despite this, we have made a conservative decision to incorporate the hybrid

attack in our parameter selection methodology to maintain a high level of security,

even in the event of advancements in lattice reduction techniques.

4.4 Signature forgery by BDD reduction.

As a Hash-and-Sign paradigm signature, forging a signature stems from feeding
a lattice point v at a bounded distance from a random space point x (in prac-
tice which is actually (H(r∥m)). This bounded distance decoding (BDD) problem
can be solved using the so-called Nearest-Cospace framework developed in [20].
Under the Geometric Series assumption, Theorem 3.3 of [20] states that under the
condition: ∥x−v∥ ⩽

(
δnB covol(L)

1
n

)
, the decoding can be done in time Poly(n)

calls to a CVP oracle in dimension B.

Remark. On the contrary to Falcon and Mitaka, we manage to reduce the secu-

rity gap between forgery and key recovery to only a few bits (even less than 1 for

Squirrels-128), thanks to the flexibility of the choice of parameters.

18

Sqirrels

4.4.1 Additional “BUFF” Security Properties

In [13] Cremers et al. discuss three additional security properties that go be-
yond the security requirement of existentially unforgeable digital signatures with
respect to an adaptive chosen message attack (EUF-CMA). These properties are
not necessarily implied by EUF-CMA or by each other. However, following the
analysis of [13] we can easily prove that Sqirrels provides the message-bound

signatures (MBS) property, as Falcon does. In order to ensure malicious strong uni-
versal exclusive ownership (M-S-UEO) and no re-signing without message (NR)
one can readily apply the so-called BUFF transform to retrieve these properties at
the cost of a very slight increase in the signature size (around 5%).

5 Specification

5.1 Notations and useful definitions

General notations. We use the following notations throughout this document:

• Vectors are denoted with bold lower-case letters (e.g. a,v), matrices are
denoted in bold upper-case letters (e.g. A,M). For a set D, the set of n-
dimensional vectors with coordinates in D is denoted Dn, the set of matri-
ces of n rows, m columns with coordinates in D is denoted Dn×m.

• Given an n-dimension vector v, its i-th coordinate is written vi for 1 ⩽ i ⩽

n.

• Given an n-by-m matrix A, its (i, j)-th coordinate (the coordinate in its
i-th row, j-th column) is written Ai,j for 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m.

• The matrix multiplication is denoted A ·B. It is extended to n-dimensional
vectors by interpreting them as a 1-by-n matrix.

• The transpose of the matrix A is denoted AT . Its orthogonal space is de-
noted A⊥ = {x | ∀y, ⟨x,y ·A⟩ = 0}

• The ring of integers is denoted Z. For a positive integer q, we denote the
quotient ring of integers modulo q as Zq = Z/qZ.

• For a finite set S, we denote the uniform distribution over S as U(S).

• The floor of a real number a, i.e., the largest integer less than or equal to a,
is denoted by ⌊a⌋.

19

Sqirrels 5.1 Notations and useful definitions

• For a real vector v ∈ Rn, its euclidean norm (i.e. ℓ2) is denoted ||v||.

• For an integer a, and a positive integer p, we denote the reduction of a
modulo p by a mod p ∈ [0, p− 1].

• For twon-dimensional vectors a,b over a common ring, their inner product
is denoted by ⟨a,b⟩ =

∑n
i=1 ai · bi.

• A lattice over the ring of integers is denoted as L. A basis of the lattice is
represented by the matrix B ∈ Rm×n, where each row of B corresponds
to one vector of the basis. Then, L = {y ·B | y ∈ Zn}.

• Given a lattice L, and some basis B, its covolume is denoted covol(L) =

covol(B) = Volume(Rn/L) = det(B).

• The dual of a lattice is denoted L∨ = {c ∈ Span(L) | ∀x ∈ L, ⟨c,x⟩ ∈ Z}

• The discrete Gaussian distribution over set S, with standard deviation σ is
denoted DS,σ .

The Gram-Schmidt orthogonalization: Given a matrix B, write

B = L · B̃,

where L represents a lower triangular matrix with 1’s on the diagonal, and the
rows b̃i of B̃ satisfy ⟨b̃i, b̃j⟩ = 0 for i ̸= j. This particular decomposition, known
as the Gram-Schmidt orthogonalization (or GSO), is unique when B is full-rank.

The Gram-Schmidt norm of B can be defined as follows:

||B||GS = max
b̃i∈B̃

||b̃i||

Here, ||b̃i|| represents the norm of each row b̃i in B̃. The Gram-Schmidt norm
provides a measure of the magnitude of the rows after the orthogonalization pro-
cess, which will be useful as being the right measure of quality for the Klein sam-
pler (see infra.).

LLL reduction: ForB = [b1| · · · |bn] a matrix, the definition of an LLL-reduced
basis is as follows: define µi,j =

⟨bib̃j⟩
⟨b̃j ·b̃j⟩

for any 1 ≤ j < i ≤ n. We say that B is
δ LLL-reduced for a parameter δ ∈ (14 , 1) if the following holds:

• Size-reduced: for 1 ≤ j < i ≤ n: |µi,j | ≤ 1
2 .

20

Sqirrels 5.2 Public parameters

• Lovász condition: for k = 2, · · · , n, δ||b̃k−1||2 ≤ |b̃k||2 + µ2
k,k−1|b̃k−1||2.

The celebrated LLL [31] algorithm outputs an LLL-reduced basis. In practice, the
fplll [15] library is used, which is an implementation of the lazy floating-point
quadratic variant (called L2) of LLL [38].

Remark. Although this form is not unique and its usage in the key generation could

make it differ in behavior depending on the reduction algorithm used, we consider

that the usage of fplll is quite generalized and offers a reliable way of LLL-reducing

matrices in a deterministic way. If preferred or required by the usecase, the use of

LLL in the key generation could be totally removed at the cost of a slightly slower

keygen (see infra.).

Hermite Normal Form (HNF): Any m-by-n matrix M can be factored as U ·
H with U being an m-by-m unimodular matrix, and H is an m-by-n matrix
verifying:

• H is upper triangular with positive coefficients, and rows of zeros are below
any non-zero row.

• The first non-zero entry in row i, called the pivot and noted ei = Hi,ji is
strictly to the right of the non-zero entry of the previous row: ji > ji−1.

• The pivot of each row is strictly larger than all entries above it in the same
column: ∀1 ⩽ i′ < i,Hi′,ji < Hi,ji .

This definition uniquely defines the HNF of any matrix. Any algorithm com-
puting it can thus be used in our procedure.

Our implementation uses Pernet-Stein [40] which we observed to be the fastest
for large matrices, but other algorithms exist notably using lattice basis reduction
[27].

5.2 Public parameters

Sqirrels uses public parameters in its algorithms:

1. n the dimension of the lattices sampled.

2. Bounds gmin < gmax on the Gram-Schmidt norms accepted during the key
generation after rounding the vectors.

21

Sqirrels 5.3 Keys

3. Bounds g0,min < g0,max on the norms of the vectors sampled in key gener-
ation, before rounding.

4. Bound eδ controls the distance to the target determinant of the sampled
basis at each step of the key generation.

5. A target determinant ∆ =
∏

p∈P∆
p. With P∆ a set of primes in [230, 231].

We also define ldet =
log(∆)

n , which corresponds to the target Gram-Schmidt
norm.

6. A bound q ∈ N∗ on coefficients of hashed messages during signature gen-
eration. Messages are hashed in [0, q − 1]n.

7. A real bound ⌊β2⌋ > 0 on the square norm of signatures.

8. Standard deviations σ and σmin < σmax used in Klein’s sampler.

9. Integers sigsize and sigrate used to compress the signatures.

5.3 Keys

5.3.1 Private Key

The private key in Sqirrels is a matrix of size n× n. Each row is a vector of B.
It is a “good” basis of the underlying lattice in the sense that it verifies the

following—geometric—assumptions:

1. ∀b̃i ∈ B̃, we have gmin ⩽ ||b̃i|| ⩽ gmax.

2. det(B) = ∆.

3. B is co-cyclic, i.e. its HNF is of the form 1.

The private key may be recomputed dynamically from seed, but it is an ex-
pensive process so we expect that at least the last vector of B, which is computed
using extensive arithmetic, will be stored alongside the seed.

5.3.2 Public Key

The Public Key is a representation of vcheck modulo every prime p ∈ P∆:

pk = (vcheck,i mod p)1⩽i⩽n−1,p∈P∆

Note that we don’t need to store the last coordinate of vcheck in PK as it is
the determinant which is a fixed parameter.

22

Sqirrels 5.4 Key pair generation

5.4 Key pair generation

Keypair generation splits in three main steps:

1. First, we generate the first n− 1 vectors of the secret basis.

2. Then, we compute the last secret basis vector so that the basis has the target
determinant.

3. Finally we compute the row HNF of the secret basis and derive the public
key from it.

During the whole process, we must carefully control the norm of the Gram-
Schmidt vectors, and the expected distance to the target determinant so that the
norm of the last vector is also bounded.

This procedure is described in algorithm 1.

Algorithm 1 Keygen()
Ensure: A secret key sk, a public key pk
while True do

B← GenVectors(n− 1) ▷ Sample the n− 1 first vectors of the basis
vlast ← ComputeLastVector(B) ▷ vlast such that det(B ∪ {vlast}) = ∆

if vlast = ⊥ then

continue

end if

sk← B ∪ {vlast}
pk← ComputePK(sk) ▷ Verify the lattice co-cyclicity, and derive pk
if pk = ⊥ then

continue ▷ The sampled lattice is not co-cyclic
end if

return sk, pk
end while

5.4.1 Generation of the first vectors

The first step generates n − 1 vectors, with Gram-Schmidt norms between gmin

and gmax. Additionally, to bound the norm of the last Gram-Schmidt vector, as
we have ||b̃n|| = ∆∏

1⩽i⩽n−1 ||b̃i||
, we control the value δ :=

∑
1⩽j<i log(||b̃j ||)−

23

Sqirrels 5.4 Key pair generation

log(∆)
n · (i− 1) at each step i so that it remains small in absolute value.

This procedure works sequentially and at each step, it samples a candidate
vector v = vB + vB⊥ verifying:

• vB⊥ is uniformly distributed among the vectors ofB⊥ with a norm bounded
between blow and bup.

• vB follows a Gaussian distribution in B of standard deviation gmax√
n

.

The vector v is then rounded to an integral vector by rounding each of its co-
ordinates. This rounding introduces an error on the norm of the resulting Gram-
Schmidt vector, but parameters are chosen so that when sampling in [g0,min, g0,max],
the Gram-Schmidt vector after rounding will have a norm in [gmin, gmax] with
probability at least 90%. Thus, by default, we take blow = g0,min and bup = g0,max

and reject vectors if their Gram-Schmidt norm is not in [gmin, gmax] after rounding.
As noted before, we also control the distance to the target determinant at each

step. At step i, we define the drift δ =
(∑

1⩽j<i log(||b̃j ||)
)
− ldet · (i−1). If δ >

eδ , then we update bup =
bup+3·blow

4 . If δ < −eδ , then we update blow =
3·bup+blow

4 .
This leads to algorithm 2.

5.4.2 Computation of the last secret vector

Once we have the n−1 first vectors, we determine a vector vlast such that the de-
terminant of the extended basis is∆ and with a Gram-Schmidt norm in [gmin, gmax].

We recall that given a matrix B ∈ Rn×n, we can expand its determinant on
its last row using minors:

det(B) =
∑

1⩽i⩽n

(−1)i+1Bn,i ·Minorn,i(B)

where Minorn,i(B) is the determinant of the matrix B where we removed line n

and column i.
If we can find a set of Minorn,i which are co-prime, using Euclid’s extended

algorithm we can find ci such that
∑

1⩽i⩽n ci ·Minorn,i = 1. Multiplying by ∆

gives us a relation
∑

1⩽i⩽n c
′
i · Minorn,i = ∆. We can then simply take vlast =

((−1)i+1c′i)1⩽i⩽n.

Remark. For efficiency, we compute only the last 4 minors: (Minorn,n+1−i)1⩽i⩽4.

We evaluated that there are co-prime with probability close to 42%, so we can restart

24

Sqirrels 5.4 Key pair generation

Algorithm 2 GenVectors(k)
Require: A number k of vectors to generate
Ensure: k vectors, with Gram-Schmidt norms between gmin and gmax

B← [] ▷ Contains the sampled basis
B̃← [] ▷ Contains the Gram-Schmidt orthogonalization of B
for i = 1, ..., k do

while True do

δ ←
(∑

1⩽j<i log(||b̃j)||
)
− ldet · (i− 1) ▷ Compute the drift

bup ← g0,max

blow ← g0,min

if δ > eδ then

bup ← bup+3·blow
4

end if

if δ < −eδ then
blow ←

3·bup+blow
4

end if

c← SampleOrthogonal(B, blow, bup)

v← Round(c) ▷ Round each coordinate (round-to-nearest-even)
ṽ← GramSchmidt(B,v)

if gmin ⩽ ||ṽ|| ⩽ gmax then

B← B ∪ {v}
B̃← B̃ ∪ {ṽ}
break

end if

end while

end for

return B

25

Sqirrels 5.4 Key pair generation

Algorithm 3 SampleOrthogonal(B, blow, bup)

Require: B a set of ℓ independent vectors, blow < bup two bounds
Ensure: A vector v = vB + vB⊥ such that vB is a Gaussian vector with

mean 0 and standard deviation gmax√
n

, and vB⊥ ∈ B⊥ uniform verifying blow ⩽

||vB⊥ || ⩽ bup

v← SampleNormal(gmax/
√
n, n) ▷ Sample a Gaussian vector

vB⊥ ← GramSchmidt(B,v) ▷ First, sample a direction in B⊥

vB ← v − vB⊥

x← a random double uniform in [0, 1]

r ← blow ·
(
x ·
((

bup
blow

)n−ℓ
− 1

)
+ 1

)1/(n−ℓ)

▷ Sample a target norm

return vB +
v
B⊥

||v
B⊥ || · r

the key generation in case they are not without affecting the scheme security. In

practice, the speedup gained by only computing 4 minors instead of n − 1 is non-

negligible, even with the restarts (about 2 on average).

We also want the vector vlast to have small coefficients for efficiency so we
need to reduce it:

1. we reduce the c′i using the algorithm ComputeReducedXGCD from [34] so
that their absolute value is lower than max((|Minorn,n+1−i|/2)1⩽i⩽4,∆).

2. we reduce the c′i further by putting the following matrix into an LLL-reduced
form (see definition in paragraph 5.1) and retrieving the row with the last
coefficient equal to ∆ after reduction:

c′1 c′2 c′3 c′4 ∆

m1/ gcd(m1,m2) −m2/ gcd(m1,m2) 0 0 0

m1/ gcd(m1,m3) 0 −m3/ gcd(m1,m3) 0 0

m1/ gcd(m1,m4) 0 0 −m4/ gcd(m1,m4) 0

0 m2/ gcd(m2,m3) −m3/ gcd(m2,m3) 0 0

0 m2/ gcd(m2,m4) 0 −m4/ gcd(m2,m4) 0

0 0 m3/ gcd(m3,m4) −m4/ gcd(m3,m4) 0


(4)

26

Sqirrels 5.4 Key pair generation

Remark. As stated previously, to put a matrix into LLL-reduced form, in

practice the library fplll [15] is used. The use of LLL in this step of the key

generation is not strictly necessary to sample lattices of the desired shape, but

it speeds up the computation of the last vector.

3. we apply Babai Nearest Plane algorithm [6] to (0, ..., 0, c′4,−c′3, c′2,−c′1) to
reduce the part of the vector inB. The part of the vector inB⊥ is guaranteed
to be small by the control of the drift δ in the GenVectors algorithm.

The pseudo-code of this procedure is in Algorithm 4.

Algorithm 4 ComputeLastVector(B)

Ensure: vector vlast, with Gram-Schmidt norm between gmin and gmax, and such
that B ∪ {vlast} has determinant ∆.
m← []

for k = 1, ..., 4 do

m← m ∪ {det((Bi,j)i∈[1,n−1],j∈[1,n]\{n+1−k})} ▷ Computes Minorn,k(B)

end for

if gcd(m) ̸= 1 then

return ⊥ ▷ We won’t be able to find a combination of the minors equal to
∆

end if

c′ ← ComputeReducedXGCD(m,∆) ▷ Algorithm from [34]

M ← matrix given in equation 4
c′′ ← LLL(M)[−1] ▷ Reduced coefficients will be the last row of the LLL
reduced matrix

vlast ← (0, ..., 0, c′′4,−c′′3, c′′2,−c′′1)
return Reduce(vlast) ▷ Reduce vlast with Babai Nearest Plane

5.4.3 Public Key derivation

This procedure computes the row HNF of the complete secret basisB, verifies that
it is of the form 1, i.e. that the lattice is co-cyclic, and finally extracts the public

27

Sqirrels 5.4 Key pair generation

Algorithm 5 Reduce(v,B)

Require: v a vector, B =


b1

...
bn

 a basis

Ensure: a vector reduced using the basis B and with coefficients fitting on 32
bits signed integers, or ⊥

m← 0

mprev ← −1
whilem ̸= mprev do

mprev ← m

m← MaxBits(v) ▷ Number of bits to represent the values |vi|
a← (0, 0, ...) ▷ Approximation of v fitting on doubles
for i = 1, ..., n do

t, e← DoubleRepr(vi) ▷ Double t ∈ [0, 1] such that vi ≈ t · 2e

ai ← t · 2min(53,m)−(m−e)

end for

for i = n− 1, ..., 1 do

c←
⌊

⟨b̃i,a⟩
⟨b̃i,b̃i⟩

⌉
▷ Rounding with round-to-nearest-even rule

v← v − c · bi · 2m−min(53,m)

end for

end while

if m < 31 then

return v

else

return ⊥
end if

28

Sqirrels 5.4 Key pair generation

Algorithm 6 ComputeReducedXGCD(m,∆)

Require: vector of minors m = (m1,m2,m3,m4) such that gcd(m) = 1

Ensure: coefficients c = (c1, ..., c4) such that |ci| ⩽ max(|mi|/2,∆) and∑4
i=1 ci ·mi = ∆

k1, k2, g1 = xgcd(m1,m2)

k3, k4, g2 = xgcd(m3,m4)

x1, x2, g = xgcd(g1, g2) ▷ x1 · g1 + x2 · g2 = g, and g = 1 by input constraint

x1 ← x1 ·∆ ▷ We multiply the last equation by ∆

x2 ← x2 ·∆
x1, x2 ← x1 + g2 · ⌊x2

g1
⌉, x2 − g1 · ⌊x2

g1
⌉

k1 ← k1 · x1
k2 ← k2 · x1
c1, c2 ← k1 +m2 · ⌊ k2m1

⌉, k2 −m1 · ⌊ k2m1
⌉

k3 ← k3 · x2
k4 ← k4 · x2
c3, c4 ← k3 +m4 · ⌊ k4m3

⌉, k4 −m3 · ⌊ k4m3
⌉

return c = (c1, c2, c3, c4)

29

Sqirrels 5.5 Hashing

key values. We use Pernet-Stein [40] algorithm to efficiently compute a row HNF,
but any algorithm can be used as the row HNF is unique.

This is done in ComputePK.

Remark. ComputePK verifies that the lattice is co-cyclic for explicitness although

this is not required as we enforce a square-free determinant when fixing public pa-

rameters, as described in the appendix B, which automatically makes the lattice co-

cyclic.

Algorithm 7 ComputePK(B)

Require: B a matrix of size n× n, with determinant ∆
Ensure: verify that B corresponds to a co-cyclic lattice, and returns the corre-

sponding public key pk

A← RowHNF(B) ▷ In practice we use Pernet-Stein algorithm from [40]

Verify that A is of the form
[
In−1 vT

check
0 ∆

]
if not of the above form then

return ⊥ ▷ B does not correspond to a co-cyclic lattice
end if

return (vcheck,i mod p)1⩽i⩽n,p∈P∆

5.5 Hashing

A hash-and-sign signature scheme hashes the message before signing or verify-
ing it. In Sqirrels, we need to derive a vector in Zn from the message. In our
procedure, we use an approved extendable-output hash function (XOF), as spec-
ified in FIPS 202 [18]. It needs to have a security level at least equal to the one
targeted by our signature scheme, we use the same for all levels: SHAKE-256.

• SHAKE-256-INIT() initializes a SHAKE-256 hashing context.

• SHAKE-256-Inject(ctx,m) injects the bytes m in the hashing context ctx.

• SHAKE-256-Extract(ctx, b) extract b bits of pseudo-randomness from the
hashing context ctx.

HashToPoint (algorithm 8) hashes a message into a vector of [0, q − 1]n−1 ×
{0}. It is defined for powers of two q = 2ℓ ⩽ 216. It extracts pseudo-random

30

Sqirrels 5.5 Hashing

integers from a SHAKE-256 context, interpreted in big-endian convention, and
takes their modulo q to obtain pseudo randomness in [0, q − 1].

In the original GPV framework, this hash h is used to draw a syndrome from
Z/L and the public matrix A is then used to find a target vector c such that
A · c = h. In this scheme, we directly use h as the target vector, and take as
syndrome u = A · h as inverting is too costly with the lattices we sample. We
can however show that the distribution (A,U([0,∆])) is indistinguishable from
(A,

(
U([0, q − 1]n−1 × {0})

)
·AT).

We have A =

(
vT

check
−1

)
. The underlying assumption of our scheme, SQR-PR

(see Section 2.3.3) asserts that vcheck is indistinguishable from a random vector in
Z∆.

We can see that the function

h :
(
Zn−1
∆ × {−1}

)
×X −→ Z∆

(A,x) 7−→ x ·AT mod ∆

with X = [0, q − 1]n−1 × {0}, is a 2-universal hash function.
Indeed, given x,x′ and i0 such that xi0 ̸= x′i0 , and assuming q is lower than

all the prime factors of ∆, we have:

Puniform A(x ·AT = x′ ·AT) = P ((x− x′) ·AT = 0 mod ∆)

= P ((xi0 − x′i0) ·Ai0 = −
∑
i ̸=i0

(xi − x′i) ·Ai mod ∆)

=
1

∆

indeed, as (xi0 − x′i0) is invertible mod∆, (xi0 − x′i0) ·Ai0 is uniform.
Then, we can apply the leftover hash lemma [28], the guessing probability ofX

being 1
qn−1 , we obtain that the distinguishing advantage between (A,U([0,∆]))

and (A,
(
U([0, q − 1]n−1 × {0})

)
·AT) is bounded by:

1

qn−1
· |∆|

which is lower than 2−6000 for all the instanciations of our scheme.
As our scheme public matrix, A is assumed indistinguishable from U(Zn−1

∆ ×
{−1}), and up to Qs application of the above indistinguishability result ensures
that this change from the original GPV framework does not affect the security of
our scheme.

31

Sqirrels 5.6 Signature generation

Algorithm 8 HashToPoint(m, q, n)

Require: A message m, size of hashing space q ⩽ 216 (assumed to be a power of
two), dimension n

Ensure: A vector v in [0, q − 1]n−1 × {0}.
ctx← SHAKE-256-INIT()
SHAKE-256-Inject(ctx, m)
for i = 1, ..., n− 1 do

t← SHAKE-256-Extract(ctx, 16)
▷ Sample a 2-byte number, interpreted with big-endian convention

vi ← t mod q ▷ Uniform in [0, q − 1] as q is a power of two
end for

vn ← 0

return v

5.6 Signature generation

To sign a message m, Sqirrels first hashes m with a salt r to a point h in [0, q−
1]n−1 × {0} using HashToPoint.

Then, we use Klein’s trapdoor sampler to find a point in the lattice close to h.
The Sign procedure is described in algorithm 14.

Algorithm 9 KleinSampling(sk, t, σ)
Require: A private key sk, a target vector t ∈ Zn

Ensure: A lattice vector close to t, with distribution DL,σ,t

tn ← t

vn ← 0

for i = n, ..., 1 do

di ← ⟨ti, b̃i⟩/||b̃i||2

σi ← σ/||b̃i||
zi ← SamplerZ(di, σi) ▷ Gaussian sampling in Z with mean di, std σi

ti−1 ← ti − zi · bi

vi−1 ← vi + zi · bi

end for

return v0

32

Sqirrels 5.7 Sampler Over the Integers

5.7 Sampler Over the Integers

This part is essentially the same as Falcon [41], but for completeness, we include
the materials.

Let 1 ≤ σmin ≤ σmax. The objective here is to demonstrate the secure sam-
pling of Gaussian samplers z ∼ DZ,µ,σ for any σ ∈ [σmin, σmax] and µ ∈ R.
To achieve this, we utilize the SamplerZ algorithm (Algorithm 10), which incor-
porates the BaseSampler (Algorithm 11) and BerExp (Algorithm 12) algorithms.
In our notation, we denote bitwise right-shift and AND operations as≫ and &,
respectively. Additionally, we introduce the notations S and UniformBits:

For any logical proposition P, S(P) = 1 if P is true, S(P) = 0 otherwise. (5)

∀k ∈ Z+,UniformBits(k) samples z uniformly in {0, 1, · · · , 2k − 1} (6)

BaseSampler. Let pdt be as in Table 5.7. Our first procedure is BaseSampler
(algorithm 11). It samples an integer z0 ∈ Z+ according to the distribution χ of
support {0, · · · , 18} uniquely defined as:

∀i ∈ {0, · · · , 18}, χ(i) = 2−72 · pdt[i] (7)

The distribution χ is extremely close to the “half-Gaussian” DZ+,σmax in the sense
that R513(χ||DZ+,σmax) ≤ 1 + 2−78, where R∗ is the Rényi divergence. For com-
pleteness, table 5.7 provides the value of:

• the (scaled) probability distribution table pdt[i];

• the (scaled) cumulative distribution table cdt[i] =
∑

j≤i pdt[j];

• the (scaled) reverse cumulative distribution tableRCDT[i] =
∑

j>i pdt[j] =

272 − cdt[i].

33

Sqirrels 5.7 Sampler Over the Integers

i pdt [i] cdt[i] RCDT [i]
0 1 697 680 241 746 640 300 030 1 697 680 241 746 640 300 030 3 024 686 241 123 004 913 666
1 1 459 943 456 642 912 959 616 3 157 623 698 389 553 259 646 1 564 742 784 480 091 954 050
2 928 488 355 018 011 056 515 4 086 112 053 407 564 316 161 636 254 429 462 080 897 535
3 436 693 944 817 054 414 619 4 522 805 998 224 618 730 780 199 560 484 645 026 482 916
4 151 893 140 790 369 201 013 4 674 699 139 014 987 931 793 47 667 343 854 657 281 903
5 39 071 441 848 292 237 840 4 713 770 580 863 280 169 633 8 595 902 006 365 044 063
6 7 432 604 049 020 375 675 4 721 203 184 912 300 545 308 1 163 297 957 344 668 388
7 1 045 641 569 992 574 730 4 722 248 826 482 293 120 038 117 656 387 352 093 658
8 108 788 995 549 429 682 4 722 357 615 477 842 549 720 8 867 391 802 663 976
9 8 370 422 445 201 343 4 722 365 985 900 287 751 063 496 969 357 462 633
10 476 288 472 308 334 4 722 366 462 188 760 059 397 20 680 885 154 299
11 20 042 553 305 308 4 722 366 482 231 313 364 705 638 331 848 991
12 623 729 532 807 4 722 366 482 855 042 897 512 14 602 316 184
13 14 354 889 437 4 722 366 482 869 397 786 949 247 426 747
14 244 322 621 4 722 366 482 869 642 109 570 3 104 126
15 3 075 302 4 722 366 482 869 645 184 872 28 824
16 28 626 4 722 366 482 869 645 213 498 198
17 197 4 722 366 482 869 645 213 695 1
18 1 4 722 366 482 869 645 213 696 0

Algorithm 10 SamplerZ
Require: A mean value µ, standard deviation σ such that σ ∈ [σmin, σmax]

Ensure: An integer z ∈ Z sampled from a distribution very close to DZ,µ,σ .
r ← µ− ⌊µ⌋
ccs← σmin/σ

while True do

z0 ← BaseSampler()
b← UniformBits(8) & 0x1

z ← b+ (2 · b− 1)z0

x← (z−r)2

2σ2 −
z20

2σ2
max

if BerExp(x, ccs) = 1 then

return z + ⌊µ⌋
end if

end while

BerExp andApproxExp. BerExp (algorithm 12) and its subroutine ApproxExp
(algorithm 13) serve to peform rejection sampling.

34

Sqirrels 5.7 Sampler Over the Integers

Algorithm 11 BaseSampler
Require:

Ensure: An integer z0 ∈ {0, 1, · · · , 18} such that z ∼ χ

u← UniformBits(72)
z0 ← 0

for i = 0, 1, · · · , 17 do
z0 ← z0 + S(u < RCDT[i])

end for

return z0

Algorithm 12 BerExp(x,ccs)
Require: Floating point values x, ccs ≥ 0

Ensure: A single bit, equal to 1 with probability ≈ ccs · exp(−x).
s← ⌊x/ ln(2)⌋
r ← x− s · ln(2)
s← min(s, 63)

z ← (2 · ApproxExp(r, ccs)− 1)≫ s

i← 64

while True do

i← i− 8

w ← UniformBits(8)− ((z ≫ i) & 0xFF)

if w ̸= 0 or i ≤ 0 then break
end if

end while

return S(w < 0)

35

Sqirrels 5.7 Sampler Over the Integers

Algorithm 13 ApproxExp(x,ccs)
Require: Floating point values x ∈ [0, ln(2)] and ccs ∈ [0, 1]

Ensure: An integral approximation of 263 · ccs · exp(−x)
C = [0x00000004741183A3, 0x00000036548CFC06, 0x0000024FDCBF140A,

0x0000171D939DE045, 0x0000D00CF58F6F84, 0x000680681CF796E3,

0x002D82D8305B0FEA, 0x011111110E066FD0, 0x0555555555070F00,

0x155555555581FF00, 0x400000000002B400, 0x7FFFFFFFFFFF4800,

0x8000000000000000]

y ← C[0]

z ← ⌊263 · x⌋
for u = 1, · · · , 12 do

y ← C[u]− (z · y)≫ 63

end for

z ← ⌊263 · ccs⌋
y ← (z · y)≫ 63

return y

Algorithm 14 Sign(m, sk, ⌊β2⌋)
Require: A message m, a secret key sk, a bound ⌊β2⌋
Ensure: A signature (r, s) of m
r ← {0, 1}320 uniformly
h← HashToPoint(m||r, q, n)
while true do

c← KleinSampling(sk,h, σ)
sig← c− h

if ||sig||2 > ⌈β2⌉ then
continue ▷ If signature produced is not short enough

end if

s← Compress(sig, sigsize − 41, sigrate) ▷ 40 bytes for salt r, 1 byte for header
if s ̸= ⊥ then

return (r, s)

end if

end while

36

Sqirrels 5.8 Signature verification

5.8 Signature verification

To verify a signature, we first recompute the corresponding hashed point h from
the input message m and salt r using HashToPoint. Then we verify that the sig-
nature s has a Euclidean norm smaller than ⌊β⌋ and that s + h is indeed part of
the lattice using the public key.

To verify the lattice membership of s+h, we use the equation 2, and leverage
the fact that ∆ is a product of distinct fixed primes with the Chinese Remainder
Theorem to only do computations modulo each p ∈ P∆:

c ∈ L ⇐⇒ cn =

n−1∑
i=1

ci · vcheck,i mod ∆

⇐⇒ ∀p ∈ P∆, cn =

n−1∑
i=1

ci · vcheck,i mod p

This results in the Algorithm Verify.

5.9 Encoding formats

5.9.1 Bits and bytes

A byte is a sequence of 8 bits. Bits in a byte are ordered from left to right, and we
associate the value

∑8
i=1 2

8−i · bi to the byte (b1, ..., b8).

5.9.2 Integers and doubles

Signed little-endian 32-bit integer: We represent 32-bit signed integers in
little-endian representation and the first bit of the last byte represents the sign,
i.e. the memory representation in bytes (b0, b1, b2, b3) encodes the integer 224 ·
(b3&01111111

2
) + 216 · b2 + 28 · b1 + b0 − 231 · (b3 >> 7).

Double: A double represents an approximation of a real value using 64 bits
of memory. In this specification, we consider that doubles are encoded following
IEEE-754 specification [2].

5.9.3 Compressed Gaussian vectors

The signature procedure of Sqirrels samples vectors which coefficients are dis-
tributed around 0 following a Gaussian distribution of standard deviation σ ⩽

37

Sqirrels 5.9 Encoding formats

Algorithm 15 Verify(m, (r, s), pk, ⌊β2⌋)
Require: A message m, a signature (r, s), a public key pk = (vcheck,i mod

p)1⩽i⩽n−1,p∈P∆
, and a bound ⌊β2⌋

Ensure: Accept or reject
h← HashToPoint(m||r, q, n)
sig← Decompress(s, sigsize − 41, sigrate) ▷ 40 bytes for salt r, 1 byte for header
if sig = ⊥ then

return “reject”
end if

c← s+ h

result← “accept”
for p ∈ P∆ do

sum← 0

for 1 ⩽ i ⩽ n− 1 do

sum← sum + ci · (vcheck,i mod p)

end for

if sum− cn ̸= 0 mod p then

result← “reject”
end if

end for

if ||sig||2 > ⌊β2⌋ then
return “reject”

else

return result
end if

38

Sqirrels 5.9 Encoding formats

τsig · ηε(Zn) · gmax ≲ 1.5 · gmax. Due to the shape of a Gaussian, coefficients are
quite concentrated in a small interval, and having large coefficients happen rarely.

Based on this observation, it is interesting to have short representations for
small coefficients and larger representations for the less likely big coefficients.
The compression of signature vectors works as follows:

1. Each coefficient si is compressed into stri as follows:

(a) The first bit is the sign of si
(b) Then, the next sigrate bits are the sigrate least significant bits of |si|. We

preserve their order, i.e. from the most to the least significant.

(c) The remaining bits of |si| are encoded in unary, i.e. if ⌈si/2sigrate⌉ = k,
the encoding is 0k1.

2. The full signature is the concatenation str1||...||strn, padded with zeros to
have slen bytes.

This compression algorithm is very similar to the one used in Falcon [23],
except that they fix sigrate = 7 for all the security levels.

The algorithm is specified in Compress. The corresponding decompression
procedure is described in Decompress.

Algorithm 16 Compress(s, slen, rate)
Require: A vector s = (s1, ..., sn), a bit-length slen, a compression rate
Ensure: A compressed representation str of s, or ⊥
for i = 1, ..., n do

str← str||b, where b = 1 if si < 0, else b = 0

str← str||brate−1...b0, where bj = (|si| >> j) & 1

k ← si >> rate
str← str||0k1

end for

if |str| > 8 · slen then

return ⊥
end if

return str||08·slen−|str|

39

Sqirrels 5.9 Encoding formats

Algorithm 17 Decompress(str, slen, rate)
Require: A bit-string str = str[0]...str[|str|−1], a bit-length slen, a compression

rate.
Ensure: A vector s = (s1, ..., sn), or ⊥
if |str| ≠ slen then

return ⊥ ▷ We enforce a fixed bit-length
end if

for i = 1, ..., n do

s′i ←
∑rate−1

j=0 2rate−1−j · str[1 + j] ▷ We recover the lowest bits of |si|
k ← 0 ▷ We recover the highest bits of |si|
while str[rate + 1 + k] = 0 do

k ← k + 1

end while

si ← (−1)str[0] · (s′i + 2ratek)

if si = 0 and str[0] = 1 then

return ⊥ ▷ Ensures unique encoding if si = 0

end if

str← str[rate + 2 + k, ..., |str| − 1] ▷ Removes bits that were encoding si

end for

if str ̸= 0|str|
then

return ⊥
end if

return s = (s1, ..., sn)

40

Sqirrels 5.9 Encoding formats

5.9.4 Signatures

Signatures are composed of two strings r (salt) and s (compressed Gaussian vec-
tor). We define an encoding that includes both.

The first byte of the encoding is a header following the format:

0 0 1 0 0 n n n

where the bits n n n encodes the target NIST security level (1 to 5).

5.9.5 Private Keys

The private key encoding contains B and B̃. B̃ could be recomputed in the sig-
nature procedure, but that would significantly degrade its performance.

Coefficients of B are encoded as signed little-endian 32-bit integers. Coeffi-
cients of B̃ are encoded as doubles, as defined in IEEE 754 [2].

The encoding algorithm is described in EncodeSK.

Algorithm 18 EncodeSK(sk)

Require: A secret basis B, and its Gram Schmidt orthogonalization B̃. Bi,j is
the j-th coefficient of the i-th vector of the basis.

Ensure: A bit-string representation of sk
s← {}
for i = 1, ..., n do

for j = 1, ..., n do

s← s||Bi,j ▷ Concatenate 32-bit signed little-endian representation
end for

end for

for i = 1, ..., n do

for j = 1, ..., n do

s← s||B̃i,j ▷ Concatenate double representation from IEEE-754
end for

end for

return s

5.9.6 Public Keys

The public key encoding contains each coordinates of vcheck modulo p ∈ P∆.
We use signed little-endian 32-bit integers for this. The p in P∆ are in the range

41

Sqirrels 5.10 Recommended Parameters

[230, 231] so that the coefficients modulo pi always fit in a signed 32-bit integer.
The public encoding procedure is described in EncodePK.

Algorithm 19 EncodePK(pk)
Require: The vector vcheck
Ensure: A binary representation of pk
s← {}
for p ∈ P∆ do ▷ Order follows the one from Appendix B

for i = 1, ..., n− 1 do

s← s||(vcheck,i mod p) ▷ 32-bit signed little-endian representation
end for

end for

return s

5.10 Recommended Parameters

Our scheme has a large number of public parameters, described in section 5.2,
that can be tuned to precisely achieve a given security level. For each security
level defined by NIST, we explored a grid of these parameters and minimized the
final signature size. The selection process is reproducible and can be found in
Supporting Documentation/additional/params.py.

5.10.1 Interplay between parameters

We describe below relations and constraints on our parameters to ensure the cor-
rectness and security of our scheme.

Number of queries Qs, targeted security level λ. The first parameters
are the maximal number of signing queries Qs, and the targeted security level λ.
According to [1], we take Qs = 264, and:

λ = 128 for NIST level I and II
λ = 192 for NIST level III and IV
λ = 256 for NIST level V

Bounds on sampled norms gs0,min and gs0,max, and lattice determinant

∆. We wish to have the bounds g0,min and g0,max as close to each other as the
greater the lower bound, the greater the key recovery security, and as the lower
the upper bound, the lower the length of signatures. We are however constrained

42

Sqirrels 5.10 Recommended Parameters

by the correction of the determinant drift: we need to ensure we can sample vec-
tors with a norm smaller or larger than n

√
∆ as desired.

To correct the drift δ in the GenVectors, we sample vectors with a norm lower
than 3·g0,min+g0,max

4 to reduce the drift, or higher than g0,min+3·g0,max
4 to increase the

drift. For this correction to be effective, we enforce that after sampling two-thirds
of the vectors the parameters verify:

3 · g0,min + g0,max
4

+ eround <
n
√
∆ <

g0,min + 3 · g0,max
4

− 0.5

where eround is an upper bound on the rounding error after sampling two
third of the bases.
We chose as a determinant a product of large primes verifying the above inequal-
ities.

Bounds on accepted Gram-Schmidt norms gmin and gmax. These bounds
extend the interval [g0,min, g0,max] to take into account the rounding error and ac-
cept rounded vectors with high probability. Knowing these bounds in advance
allows us to have a more precise security analysis of our scheme.

Standard deviation σ of the signatures. Signatures follow a discrete Gaus-
sian distribution and are sampled using Klein’s sampler. To ensure we lose at
most O(1) bits of security by using this sampler instead of a perfect distribution,
it suffices to take ε ⩽ 1/

√
Qs · λ, and:

σ =
1

π
·
√

log(2n(1 + 1/ε))

2
· gmax

⩾ ηε(Zn) · ||B||GS

Maximal norm β of the signatures. Signatures have an expected norm
of
√
n · σ. We reject too large signatures by using a tail-cut τsig i.e. we reject

signatures of norm larger than β = τsig ·
√
n · σ.

We take τsig = 1.1. Lemma 4.4 of [32] ensures that rejection happens only
with a small probability.

Signature byte-length sig
size

and sig
rate

. Given a sigrate, we evaluate the
corresponding sigsize as the average compressed signature size of vectors of norms
β. We choose the sigrate ∈ {4, 5, 6, 7} giving the smallest sigsize.

43

Sqirrels 5.10 Recommended Parameters

5.10.2 Concrete parameters

Sqirrels-I Sqirrels-II Sqirrels-III

Target NIST Level I II III
Lattice dimension n 1034 1164 1556
Size of hash space q 4096
Lower bound g0,min 27.9 29 33.8
Upper bound g0,max 30.1 31 36.2
Lower bound gmin 27.898036819196015 28.998036819196017 33.798036819196014
Upper bound gmax 31.491273142076107 32.52421298740167 37.94718416834481

Bound eδ 0.01
ldet and ∆ See Appendix B

Standard deviation σ 40.24667610603854 41.64307184026483 48.955191460637074
σmin 1.2780263257208286 1.2803713915043962 1.2900875923614654
σmax 1.8205

Max signature square norm ⌊β2⌋ 2026590 2442439 4512242
Signature rate sigrate 4 5 5

Key-recovery:
BKZ block-size B

Core-SVP hardness (C)
Core-SVP hardness (Q)

433 491 666
126 143 194
114 130 176

Hybrid Key-recovery:{
Core-SVP hardness (C)
Core-SVP hardness (Q)

124 141 192
112 128 174

Forgery:
BKZ block-size B

Core-SVP hardness (C)
Core-SVP hardness (Q)

431 499 709
125 145 207
114 132 187

Public key byte-length 681 780 874 576 1 629 640
Signature byte-length 1 019 1 147 1 554

44

Sqirrels

Sqirrels-IV Sqirrels-V

Target NIST Level IV V
Lattice dimension n 1718 2056
Size of hash space q 4096
Lower bound g0,min 27.8 30.7
Upper bound g0,max 30.2 33.3
Lower bound gmin 27.798036819196014 30.698036819196012
Upper bound gmax 32.47328023599738 35.78439165303195

Bound eδ 0.01
ldet and ∆ See Appendix B

Standard deviation σ 41.956477667696724 46.460893820222594
σmin 1.2920307823164412 1.2983563971328835
σmax 1.8205

Max signature square norm ⌊β2⌋ 3659372 5370115
Signature rate sigrate 5 5

Key-recovery:


BKZ block-size B

Core-SVP hardness (C)
Core-SVP hardness (Q)

736 887
214 259
195 235

Hybrid Key-recovery:
{

Core-SVP hardness (C)
Core-SVP hardness (Q)

211 256
192 232

Forgery:


BKZ block-size B

Core-SVP hardness (C)
Core-SVP hardness (Q)

784 968
228 282
207 256

Public key byte-length 1 888 700 2 786 580
Signature byte-length 1 676 2 025

6 Performance

6.1 Description of the Reference implementation

The submission package includes a reference implementation written exclusively
in portable C, supporting all five security levels and adapted using a compilation
flag.

45

Sqirrels 6.2 Evaluation on the NIST x64 Reference Target

These implementations use dynamically linked libraries, used only in the key
generation for big integer and matrix computations:

• GMP [43]

• Flint [42]

• fplll [15]

All the computations in the key generation requiring big integers or matrix
manipulations are performed using Flint structures, this includes notably com-
putations of matrix determinant and HNF. The reference implementation also in-
cludes an efficient function to compute several minors at a time inspired by the
DoubleDet algorithm from [40].

In the Verify procedure, we note that the variable sum always fits on 64-bits
signed integers:

• vcheck,i mod p is in [0, 231)

• ci = si + hi ∈ [−4096, 8192) as |si| ⩽ β < 4096 and hi ∈ [0, q) (in case
|si| > β the result is rejected later during norm checking in the procedure).

• there are n < 4096 = 212 summations of products ci · (vcheck,i mod p)

So we need no more than 31 + 13 + 12 = 57 bits to store the variable sum, plus
one bit for the sign. For efficiency, we thus directly compute it on a 64-bit signed
integer and reduce it modulo reduction p only once.

Due to their large or varying size, many structures of our implementations go
on the heap.

6.2 Evaluation on the NIST x64 Reference Target

In this section, we summarize our performance evaluation on a 2018 laptop Lenovo
Y530, equiped with Intel Core i5-8300H (8 CPU threads at 2.3GHz), 32 GB of phys-
ical RAM and running Manjaro 22.1.

The benchmark program is compiled with GCC version 12.2.1 with flags
-03 -march=native -Ofast and calls the NIST API crypto_sign_keypair(),
crypto_sign(), and crypto_sign_open(). We then ran it on one CPU thread.
Execution time was measured with clock POSIX calls, number of cycles was mea-
sured with rdtsc instruction.

46

Sqirrels 6.3 Evaluation on x64 AMD

keygen sign vrfy

seconds RAM (kB) cycles/sign sign/s cycles/vrfy vrfy/s

Sqirrels-I 74 189 776 4 230 444 545.1 201 737 11429.8
Sqirrels-II 120 236 356 5 305 045 434.8 244 573 9427.3
Sqirrels-III 306 410 152 8 977 892 257.2 430 609 5375.5
Sqirrels-IV 425 433 164 10 693 130 215.6 481 334 4789.2
Sqirrels-V 1175 626 824 41 512 206 55.6 1 048 477 2207.4

6.3 Evaluation on x64 AMD

In this section, we evaluate the performance on a 2022 Lenovo Thinkpad P14s
equiped with a Ryzen Pro 7 5850U (16CPU threads at 3GHz), boost disabled, and
running Manjaro 22.1.

The benchmark program was compiled with GCC version 12.2.1 with flags
-03 -Ofast -march=native and ran on one CPU thread.

keygen (s) sign vrfy

cycles/sign sign/s cycles/vrfy vrfy/s

Sqirrels-I 34 3 164 772 601.6 145 351 13099.4
Sqirrels-II 52 3 732 387 509.0 159 887 11871.9
Sqirrels-III 127 7 139 278 266.2 287 974 6594.4
Sqirrels-IV 179 9 097 631 208.7 329 066 5765.5
Sqirrels-V 351 10 670 614 177.9 481 938 3937.5

References

[1] Call for Proposals - Post-Quantum Cryptography: Digital Signature Schemes
— CSRC — CSRC — csrc.nist.gov. https://csrc.nist.gov/projects/
pqc-dig-sig/standardization/call-for-proposals.

[2] IEEE standard for floating-point arithmetic. Standard IEEE Std 754-2008,
IEEE Computer Society, New York, NY, USA, August 2008.

[3] M. Ajtai. Generating hard instances of lattice problems (extended abstract).
In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of

47

https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals

Sqirrels References

Computing, New York, NY, USA, 1996. Association for Computing Machin-
ery.

[4] Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Ea-
monn W. Postlethwaite, and Marc Stevens. The general sieve kernel and
new records in lattice reduction. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 717–746. Springer,
Heidelberg, May 2019.

[5] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - A new hope. In Thorsten Holz and Stefan Savage,
editors, USENIX Security 2016, pages 327–343. USENIX Association, August
2016.

[6] László Babai. On lovász’ lattice reduction and the nearest lattice point prob-
lem. Comb., 6(1):1–13, 1986.

[7] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions
in nearest neighbor searching with applications to lattice sieving. In Robert
Krauthgamer, editor, 27th SODA, pages 10–24. ACM-SIAM, January 2016.

[8] Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott R. Fluhrer,
Stefan-Lukas Gazdag, Andreas Hülsing, Panos Kampanakis, Stefan Kölbl,
Tanja Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen,
Christian Rechberger, Joost Rijneveld, and Peter Schwabe. SPHINCS+ sub-
mission to the NIST post-quantum project. 2017.

[9] André Chailloux and Johanna Loyer. Lattice sieving via quantum random
walks. In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021,

Part IV, volume 13093 of LNCS, pages 63–91. Springer, Heidelberg, December
2021.

[10] David A. Cooper, Daniel C. Apon, Quynh H. Dang, Michael S. Davidson,
Morris J. Dworkin, and Carl A. Miller. Recommendation for Stateful Hash-
Based Signature Schemes. NIST Special Publication SP 800-208, October
2020.

[11] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short
generators of principal ideals in cyclotomic rings. In Proceedings, Part II, of

the 35th Annual International Conference on Advances in Cryptology — EU-

ROCRYPT 2016 - Volume 9666, Berlin, Heidelberg, 2016. Springer-Verlag.

48

Sqirrels References

[12] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short stickelberger
class relations and application to ideal-svp. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017,
2017.

[13] Cas Cremers, Samed Düzlü, Rune Fiedler, Marc Fischlin, and Christian Jan-
son. Buffing signature schemes beyond unforgeability and the case of post-
quantum signatures. In 2021 IEEE Symposium on Security and Privacy (SP),
pages 1696–1714, 2021.

[14] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE
with side information: Attacks and concrete security estimation. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume
12171 of LNCS, pages 329–358. Springer, Heidelberg, August 2020.

[15] The FPLLL development team. fplll, a lattice reduction library, Version: 5.4.4.
Available at https://github.com/fplll/fplll, 2023.

[16] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-dilithium algorithm
specifications and supporting documentation. 2017.

[17] Léo Ducas. Shortest vector from lattice sieving: a few dimensions for free.
Cryptology ePrint Archive, Paper 2017/999, 2017. https://eprint.iacr.
org/2017/999.

[18] Morris Dworkin. Sha-3 standard: Permutation-based hash and extendable-
output functions, 2015-08-04 2015.

[19] Thomas Espitau, Pierre-Alain Fouque, François Gérard, Mélissa Rossi, Akira
Takahashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu. Mitaka: A sim-
pler, parallelizable, maskable variant of falcon. In Advances in Cryptology –

EUROCRYPT 2022: 41st Annual International Conference on theTheory andAp-

plications of Cryptographic Techniques, Trondheim, Norway, May 30 – June 3,

2022, Proceedings, Part III, page 222–253, Berlin, Heidelberg, 2022. Springer-
Verlag.

[20] Thomas Espitau and Paul Kirchner. The nearest-colattice algorithm. Cryptol-
ogy ePrint Archive, Report 2020/694, 2020. https://eprint.iacr.org/
2020/694.

49

https://github.com/fplll/fplll
https://eprint.iacr.org/2017/999
https://eprint.iacr.org/2017/999
https://eprint.iacr.org/2020/694
https://eprint.iacr.org/2020/694

Sqirrels References

[21] Thomas Espitau, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu. Shorter
hash-and-sign lattice-based signatures. Cryptology ePrint Archive, Paper
2022/785, 2022. https://eprint.iacr.org/2022/785.

[22] Felix Fontein and Pawel Wocjan. On the probability of generating a lattice.
Journal of Symbolic Computation, 64:3–15, 2014. Mathematical and computer
algebra techniques in cryptology.

[23] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. Falcon: Fast-fourier lattice-based compact sig-
natures over ntru. 2019.

[24] Nicolas Gama, Malika Izabachène, Phong Q. Nguyen, and Xiang Xie. Struc-
tural lattice reduction: Generalized worst-case to average-case reductions
and homomorphic cryptosystems. In Marc Fischlin and Jean-Sébastien
Coron, editors, Advances in Cryptology – EUROCRYPT 2016, 2016.

[25] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In Proceedings of the fortieth

annual ACM symposium on Theory of computing, pages 197–206, 2008.

[26] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosys-
tems from lattice reduction problems. In Burton S. Kaliski Jr., editor,
CRYPTO’97, volume 1294 of LNCS, pages 112–131. Springer, Heidelberg, Au-
gust 1997.

[27] George Havas, Bohdan S Majewski, and Keith R Matthews. Extended gcd
and hermite normal form algorithms via lattice basis reduction. Experimental

Mathematics, 7(2):125–136, 1998.

[28] Corrigan-Gibb Henry, David J. Wu, and Kim Sam. CS 355, lecture 10: Inho-
mogeneous SIS and the LWE problem - Stanford University, 2018.

[29] Philip Klein. Finding the closest lattice vector when it’s unusually close.
In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Al-

gorithms, SODA ’00, page 937–941, USA, 2000. Society for Industrial and
Applied Mathematics.

[30] Adeline Langlois and Damien Stehle. Worst-case to average-case reduc-
tions for module lattices. Cryptology ePrint Archive, Paper 2012/090, 2012.
https://eprint.iacr.org/2012/090.

50

https://eprint.iacr.org/2022/785
https://eprint.iacr.org/2012/090

Sqirrels References

[31] Arjen K Lenstra, Hendrik Willem Lenstra, and László Lovász. Fac-
toring polynomials with rational coefficients. Mathematische annalen,
261(ARTICLE):515–534, 1982.

[32] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EU-

ROCRYPT 2012, pages 738–755, Berlin, Heidelberg, 2012. Springer Berlin Hei-
delberg.

[33] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Henri Gilbert, editor, Advances in Cryp-

tology – EUROCRYPT 2010, 2010.

[34] Bohdan S. Majewski and George Havas. The complexity of greatest common
divisor computations. In Leonard M. Adleman and Ming-Deh Huang, edi-
tors, Algorithmic Number Theory, pages 184–193, Berlin, Heidelberg, 1994.
Springer Berlin Heidelberg.

[35] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions
based on Gaussian measures. In 45th FOCS, pages 372–381. IEEE Computer
Society Press, October 2004.

[36] Daniele Micciancio and Michael Walter. Practical, predictable lattice basis
reduction. In Marc Fischlin and Jean-Sébastien Coron, editors, LNCS, volume
9665, pages 820–849, Vienna, Austria, 2016. Springer, Heidelberg, Germany.

[37] Phong Q. Nguyen and Igor E. Shparlinski. Counting Co-Cyclic Lattices.
SIAM Journal on Discrete Mathematics, 30(3):1358–1370, July 2016.

[38] Phong Q Nguyen and Damien Stehlé. An lll algorithm with quadratic com-
plexity. SIAM Journal on Computing, 39(3):874–903, 2009.

[39] Azaria Paz and Claus-Peter Schnorr. Approximating integer lattices by lat-
tices with cyclic factor groups. In International Colloquium on Automata,

Languages and Programming, 1987.

[40] Clément Pernet and William Stein. Fast computation of hermite normal
forms of random integer matrices. Journal of Number Theory, 130(7):1675–
1683, 2010.

[41] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William

51

Sqirrels

Whyte, and Zhenfei Zhang. Falcon. Post-Quantum Cryptography Project

of NIST, 2020.

[42] The FLINT team. FLINT: Fast Library for Number Theory, 2023. Version 2.9.0,
https://flintlib.org.

[43] The GMP team. GNU Multiple Precision Arithmetic Library, 2023. Version
6.2.1, https://gmplib.org/.

[44] Yang Yu and Léo Ducas. Second order statistical behavior of LLL and BKZ.
In Carlisle Adams and Jan Camenisch, editors, SAC 2017, volume 10719 of
LNCS, pages 3–22. Springer, Heidelberg, August 2017.

A Additional notions

A.1 Preimage samplable function (PSF)

We start by recalling the definition of collision-resistant preimage sampleable (trap-

door) functions, which are given by a tuple of probabilistic polynomial-time algo-
rithms (Trapgen, SampleDom, SamplePre). A collection of one-way preimage
sampleable functions (PSFs) satisfies the following:

1. Generating a function with trapdoor: Trapgen(1n) outputs (a, t), where a

is the description of an efficiently-computable function fa : Dn → Rn (for
some efficiently-recognizable domain Dn and range Rn depending on n),
and t is some trapdoor information for fa.
For the remaining properties, fix some (a, t)← Trapgen(1n).

2. Domain sampling with uniform output: SampleDom(1n) samples an x

from some (possibly non-uniform) distribution over Dn, for which the dis-
tribution of fa(x) is uniform over Rn.

3. Preimage sampling with trapdoor: for every y ∈ Rn, SamplePre(t, y)
samples from the conditional distribution of x← SampleDom(1n), given
fa(x) = y.

4. One-wayness without trapdoor: for any probabilistic polynomial-time al-
gorithm A, the probability that A(n, a, y) ∈ f−1

a (y) ⊆ D is negligible,
where the probability is taken over the choice of a, the target value y ← Rn

chosen uniformly at random, and A’s random coins.

52

https://flintlib.org
https://gmplib.org/

Sqirrels A.2 Lattices and related notions

5. Preimage min-entropy: for every y ∈ Rn, the conditional min-entropy of
x← SampleDom(1n) given fa(x) = y is at least ω(log n).

6. Collision resistance without trapdoor: for any probabilistic polynomial-
time algorithm A, the probability that A(n, a) outputs distinct x, x′ ∈ Dn

such that fa(x) = fa(x
′) is negligible, where the probability is taken over

the choice of a and A’s random coins.

A.2 Lattices and related notions

A.2.1 Lattice and their invariants

A (real) lattice L is a finitely generated free Z-module, endowed with a Euclidean
norm ∥.∥ on the real vector space LR := L ⊗Z R. By definition, there exists
a finite family (b1, . . . ,bn) ∈ Ln of linearly independent elements such that
L =

⊕n
i=1 biZ, and we write L = L(B), with the matrix B = [b1, . . . ,bn]. It

is called a basis of L. Every basis has the same number of elements rk(L), called
the rank of the lattice. We let λ1(L) be the Euclidean norm of a shortest non-zero
vector in L. The (co)volume is detL =

√
detBTB, for any basis B of L.

In this work, when dealing with lattices embedded in Rn, we only consider
the standard Euclidean norm, corresponding to the canonical inner product ⟨, ⟩,
but we stress that most of our algorithms are agnostic to the choice of the norm.
The dual of a lattice L is the lattice L∨ = {x ∈ LR | ⟨x,v⟩ ∈ Z, ∀ v ∈ L}, and
we always endow it with the same norm as L. If L is a full-rank lattice of basis
B, then B−T is a basis of L∨; if it is not full rank, B(BTB)−1 is a basis of L∨.

A.2.2 Discrete Gaussian distribution over a lattice

Let Σ be a positive definite matrix. We define ρΣ(x) = exp(−πxTΣ−1x) as
the Gaussian kernel of covariance Σ. Equivalently, we could call it the standard
Gaussian mass for the norm induced byΣ−1. In that case, one sees that a Gaussian
function is always isotropic, i.e., its value only depends on the designated norm of
its input. When Σ = s2In, the subscript Σ is shortened1 in s2 and s is called the
width.

Let now Λ ⊂ Rm of rank n ⩽ m. The discrete Gaussian distribution over L
1Most of the folklore literature uses s or

√
Σ, that is, an analog of standard deviation instead of

the covariance.

53

Sqirrels

with center c ∈ LR and covariance Σ ∈ Rm×m is defined by the density

DL,c,Σ(x) =
ρΣ(x− c)

ρΣ(L − c)
, ∀x ∈ L.

When c = 0, we omit the script c.

A.2.3 Smoothing parameter.

For a lattice L and real parameter ε > 0, the smoothing parameter ηε(L) is the
smallest s > 0 such that ρ 1

s2
(L∨) ⩽ 1 + ε.

Proposition A.1. Let ε > 0, ∆ be a fixed integer bigger than 2 and n > 1. Let

u a uniform vector of Zn−1
∆ . Then with overwhelming probability in n, the smooth-

ing parameter of the ∆-orthogonal to u, that is to say L = {v ∈ Zn|⟨u, x⟩ = 0

mod ∆} is a Θ(ηε(Zn)).

Proof. (sketch) Using lemma 3.3 of [35], we know that ηε(L) ⩽
√

ln(2n(1+1/ε))
π λ∞

1 (L∨).
Remark that the dual of L can be described as u∆−1Z + Zn, so that its shortest
vector is u

∆ . By definition of u, its largest coefficient follows the order statistics of
order n−1 for the uniform distribution on {0, . . . , ∆−1

∆ }. As such the probability
that its infinity norm is lower than 1

2 is bounded by the probability of each coef-
ficients to be lower than 1

2 , which is a Θ(2−n). Hence, with probability at least
1− 2−n, we have λ∞

q (L∨) ⩾ 1
2 .

B Fixed determinants

To avoid dealing with big integers in the verification procedure, we fix the deter-
minant to a product of large prime integers. We choose them all distinct so that
we can do the computations modulo each of this prime, and conclude on a value
modulo the determinant due to Chinese Remainder Theorem.

We want the n-th root of the determinant to be in the interval given in the
parapraph 5.10.1. We target the middle of this interval, that we note t. We sample
products of large primes (with p ∈ [230, 231] using a pseudo-random generator
until |log(∆)− n · log(t)| < 0.3.

We obtain the following determinants for each instance of our scheme:
Sqirrels-I: (ldet = 3.383648132136603)

[1082849167, 1083150197, 1096975571, 1116936539, 1117258837, 1120904671, 1131206801, 1131626053,
1140174487, 1141771781, 1145176871, 1179753499, 1186833079, 1194969773, 1197479849, 1205496491,

54

Sqirrels

1235961239, 1238028503, 1244100863, 1251340723, 1257590617, 1257859357, 1279650991, 1282937839,
1297120687, 1309168739, 1315178947, 1316478539, 1323389993, 1334183941, 1336785727, 1340128807,
1340972107, 1341934127, 1359972973, 1361739607, 1366698379, 1375400783, 1376077739, 1376535361,
1390372631, 1393772297, 1423430357, 1425027137, 1427978467, 1429520359, 1430069009, 1433253103,
1434713299, 1437348049, 1438256957, 1441700537, 1465612283, 1466591447, 1479434207, 1493508659,
1496250131, 1499976899, 1522112533, 1532593187, 1539070391, 1541156371, 1542752803, 1546166197,
1547595683, 1554265021, 1560616399, 1570489429, 1570535201, 1575840923, 1576535707, 1583174881,
1584936173, 1590119071, 1594809691, 1595421929, 1608753659, 1615299551, 1617331757, 1620356761,
1624998763, 1629175039, 1638175603, 1648544069, 1655236447, 1655627299, 1661300761, 1662943273,
1663542823, 1665766643, 1667748001, 1667854973, 1670638121, 1674345791, 1680892093, 1683937427,
1687878809, 1711056827, 1715166247, 1721655589, 1728028147, 1738698383, 1741433987, 1765244093,
1790315321, 1811237629, 1816543997, 1818795521, 1833440711, 1841104289, 1844828147, 1852874651,
1860470987, 1869343913, 1870736327, 1877054999, 1882045987, 1886014657, 1890532213, 1894340417,
1899233621, 1900376393, 1924522573, 1930931809, 1938795811, 1947253261, 1949541851, 1961026967,
1963399481, 1968432881, 1970806261, 1971228491, 1971726683, 1977648139, 1978001489, 1978102057,
2002754837, 2003826413, 2004535817, 2007684103, 2009441053, 2020874759, 2024420599, 2029924843,
2035508857, 2039996743, 2040125897, 2044757833, 2058941611, 2067378259, 2068584179, 2069139211,
2072445043, 2087925011, 2106678449, 2114727497, 2116937629, 2122307311, 2124313783, 2124842983,
2127157261, 2129072927, 2130204781, 2135681707, 2146505059]

Sqirrels-II: (ldet = 3.416887402501479)

[1076678539, 1084546769, 1084837181, 1086295073, 1092141923, 1104651083, 1108968319, 1113832081,
1118557801, 1121935567, 1123602631, 1134350887, 1140609749, 1162171067, 1162562743, 1167887597,
1172204497, 1178242309, 1185427673, 1193032891, 1196551507, 1201802411, 1213374641, 1216908071,
1222278229, 1223973593, 1225421831, 1227166877, 1251629963, 1261329779, 1262321033, 1263078491,
1269964117, 1280979787, 1281981023, 1293707647, 1294628449, 1294755233, 1295067931, 1296605083,
1299460157, 1311763199, 1312605757, 1320914611, 1322401939, 1322682497, 1324808267, 1329503041,
1334423917, 1345468127, 1346906917, 1348031159, 1369826537, 1371017147, 1387171927, 1396166789,
1401650267, 1405585813, 1406704157, 1408396469, 1408794487, 1408913749, 1410139897, 1411093129,
1412444431, 1415220857, 1419442049, 1419596621, 1421212907, 1428177481, 1428362227, 1431228647,
1431352651, 1432535851, 1432894069, 1435965397, 1436512919, 1439346011, 1446484433, 1454226437,
1457672131, 1458030943, 1462575761, 1480380457, 1487783119, 1491911591, 1493910157, 1509658963,
1510554847, 1510794781, 1512845617, 1513662061, 1519617637, 1524018073, 1536262291, 1540689133,
1546212739, 1560783541, 1563662509, 1578177739, 1585623521, 1586164351, 1590374843, 1596116563,
1601452367, 1610228339, 1617348101, 1617707653, 1620897449, 1625886173, 1634241751, 1639486643,
1639510189, 1645174943, 1653853207, 1659092359, 1667207741, 1677651673, 1678549967, 1685427451,
1689670861, 1703608141, 1706711221, 1714307117, 1725552847, 1726343063, 1732590767, 1733346379,
1733775509, 1734261623, 1739255387, 1748827921, 1752631249, 1759332103, 1774685183, 1782373013,
1786341307, 1796363893, 1800744679, 1801284869, 1806551653, 1810351957, 1818710801, 1818752491,
1821839419, 1826277571, 1827478361, 1830260513, 1845082147, 1853781539, 1858775777, 1859870611,
1859905319, 1865554283, 1869117487, 1873005287, 1882891937, 1889956973, 1908354209, 1908840499,
1910425481, 1916628761, 1926720977, 1934667173, 1938453533, 1950861337, 1956914731, 1957911493,
1958767717, 1978488521, 1981098463, 1992801821, 1993703639, 2028477119, 2030110793, 2038586387,
2047173979, 2048726557, 2051540167, 2070252491, 2070739291, 2073201373, 2080343479, 2101530833,

55

Sqirrels

2106335447, 2113114147, 2119980839, 2120508163]

Sqirrels-III: (ldet = 3.57120554551052)

[1074596759, 1091834951, 1100703061, 1105274353, 1106015381, 1108184081, 1126934713, 1134403783,
1143221021, 1148115503, 1148518513, 1151474713, 1163181377, 1166575027, 1166935283, 1168538419,
1171498739, 1172200669, 1180646473, 1184049523, 1190909429, 1196719031, 1199389531, 1201145089,
1205086453, 1207882969, 1209898489, 1211058379, 1212788573, 1217939389, 1219434883, 1221910523,
1235014331, 1235692169, 1239227887, 1248927599, 1255745597, 1264517491, 1268799599, 1270011653,
1280402969, 1281777089, 1288420403, 1292617727, 1293746687, 1305635951, 1307897659, 1309011833,
1312550677, 1313900789, 1314276967, 1316086901, 1318521593, 1320914051, 1322373263, 1337780011,
1341501437, 1344937049, 1348393357, 1350184499, 1353038131, 1358013721, 1364512481, 1367160163,
1368041371, 1372089041, 1372118309, 1374219013, 1383734323, 1388463971, 1391440979, 1393251403,
1408008299, 1422490291, 1426883771, 1433871371, 1436563537, 1439193377, 1441794521, 1444481567,
1445171059, 1446358567, 1448022959, 1448809051, 1449299087, 1452967687, 1456543169, 1457926697,
1459637479, 1468643129, 1470005707, 1481576959, 1484280823, 1495641761, 1496060681, 1496075003,
1508157641, 1514639717, 1520733607, 1524933229, 1531809023, 1537643929, 1539369103, 1541158291,
1544947081, 1547071951, 1564365637, 1564944737, 1567973483, 1574737211, 1586939059, 1589311897,
1590398143, 1593804631, 1601310397, 1603032251, 1617138287, 1618488841, 1621381469, 1621882931,
1629171493, 1633134973, 1633200677, 1634318111, 1639608731, 1640093179, 1640711669, 1645296943,
1645444091, 1653888827, 1659622103, 1663988323, 1673223901, 1674627749, 1676123489, 1677063151,
1678134041, 1678356727, 1679218501, 1683423073, 1683814063, 1685068141, 1686528251, 1691353129,
1696929347, 1698073807, 1700051933, 1725150001, 1735814831, 1738830179, 1739801123, 1747775671,
1748499679, 1751045563, 1759811737, 1762231637, 1769727647, 1775175133, 1778468339, 1780745149,
1780759369, 1786096369, 1798069909, 1801503659, 1808902549, 1813514581, 1813669943, 1819960421,
1822669727, 1823786033, 1829302633, 1830852941, 1835534089, 1842700781, 1844642479, 1848026053,
1867069559, 1870562923, 1873784657, 1875766117, 1876371401, 1878427741, 1883724883, 1888956583,
1894782623, 1897180877, 1906119013, 1908457183, 1916774747, 1926761219, 1934779403, 1943435651,
1949029079, 1956237727, 1958327537, 1959198077, 1959881953, 1961914921, 1970396321, 1972303591,
1976731717, 1979309887, 1996420567, 2000668093, 2002974047, 2006242639, 2011788341, 2013196181,
2022544919, 2025963701, 2030934413, 2030992903, 2036491181, 2039065277, 2046210407, 2047668347,
2051108441, 2051676727, 2051987089, 2053193231, 2053592773, 2053930919, 2057284211, 2057360449,
2059444649, 2059832629, 2060405869, 2066526367, 2067955787, 2069396789, 2069655121, 2070275299,
2070924913, 2078941321, 2086903297, 2090536759, 2092830853, 2093038901, 2093382001, 2095813367,
2102626171, 2105908549, 2106702277, 2107305253, 2108978981, 2111270911, 2114557111, 2115059657,
2119853083, 2121777149, 2122711603, 2128599853, 2131236049, 2133880013, 2134333007, 2139119491,
2142288223, 2143696103, 2145728093, 2146519457, 2147055941, 2147284747]

Sqirrels-IV: (ldet = 3.3897981925509293)

[1078128517, 1087938437, 1090337467, 1090513979, 1091425859, 1092503603, 1095144587, 1107900851,
1110016591, 1110642887, 1122302351, 1127275309, 1132910113, 1135469273, 1136195329, 1140855239,
1141177369, 1145823167, 1146575531, 1149497417, 1160456861, 1164337637, 1168668121, 1169817533,
1170444721, 1174864739, 1180399021, 1180660939, 1184367923, 1184584243, 1189360631, 1191431977,
1192522571, 1193888383, 1197332429, 1208416939, 1212739097, 1214924273, 1219677577, 1219876751,

56

Sqirrels

1220365637, 1226832799, 1235989037, 1237475749, 1239139961, 1241593757, 1243270663, 1247686871,
1250564207, 1253033333, 1254736369, 1255839301, 1258373671, 1259826877, 1260207259, 1263499849,
1266189571, 1267786171, 1270903213, 1271808623, 1272112433, 1280845619, 1281029467, 1290057667,
1291973863, 1292529577, 1297207573, 1300663963, 1311011159, 1324300933, 1324571467, 1328413477,
1331069107, 1333324673, 1348581193, 1355931107, 1363177931, 1364689933, 1364731579, 1366534501,
1369704871, 1374986311, 1390047881, 1397745289, 1405358231, 1415614987, 1426150631, 1427918147,
1433107909, 1434026623, 1437251657, 1443325153, 1443645871, 1452121483, 1454226259, 1456850627,
1458208249, 1463464927, 1463721697, 1465444699, 1466857993, 1471471319, 1478753777, 1480703797,
1483022687, 1497401677, 1499277979, 1500655097, 1502946961, 1508467333, 1516988947, 1521113149,
1523969899, 1526986969, 1532203843, 1533736657, 1540331759, 1542119407, 1545295139, 1551422689,
1552219399, 1554194753, 1556250103, 1556800717, 1564686713, 1565142373, 1565449531, 1566239329,
1571910007, 1574180891, 1574651797, 1580832697, 1582983881, 1583568803, 1588386169, 1590210257,
1592121527, 1595609293, 1597006577, 1607088817, 1608736951, 1610939137, 1611782773, 1616188727,
1618531913, 1619044787, 1628338427, 1633719179, 1640523629, 1641140531, 1642854659, 1669024289,
1671610201, 1674517211, 1682673329, 1684356467, 1692536159, 1703732941, 1715083841, 1715233939,
1715484893, 1715728153, 1717163813, 1717762009, 1721422837, 1723605613, 1727761039, 1734851249,
1743265061, 1749964693, 1750559753, 1752629167, 1756643443, 1758887681, 1761766553, 1762432757,
1764363803, 1765364753, 1765394317, 1769223721, 1773403537, 1773743201, 1779497981, 1782074909,
1784610643, 1790522827, 1791396799, 1794384407, 1796270263, 1797290977, 1800104893, 1800850781,
1802269709, 1802871401, 1807131659, 1813932091, 1815514669, 1819126951, 1822731641, 1835500231,
1838425133, 1839467407, 1839976067, 1850846197, 1863733043, 1864079263, 1865083037, 1867220323,
1868447239, 1872404917, 1886507383, 1889335183, 1889942629, 1891068847, 1898711951, 1899734917,
1899745759, 1912028023, 1914345403, 1924024513, 1925781227, 1925894609, 1926577171, 1929001693,
1930906343, 1934170753, 1948142323, 1961266777, 1963775113, 1980191351, 1980558467, 1986438577,
1989887377, 1990377929, 1990949803, 1993328191, 1993643459, 1994664907, 1996817057, 1997560127,
2003456993, 2007738833, 2007957151, 2014400177, 2016242453, 2018251343, 2026439999, 2027622907,
2030570629, 2031734863, 2037536477, 2038909349, 2039262751, 2042692129, 2047046921, 2056855531,
2063010281, 2075425151, 2076387011, 2085558599, 2088901769, 2095740667, 2097847471, 2108397601,
2118952867, 2120156893, 2121090691, 2121264349, 2121604451, 2122129649, 2122883351, 2127818509,
2130503807, 2141045869, 2146083341]

Sqirrels-V: (ldet = 3.488127515563797)

[1079946877, 1081459969, 1092099691, 1095194153, 1095388979, 1102018369, 1102670357, 1106171071,
1106603033, 1109797763, 1110190127, 1112195629, 1113097829, 1117791617, 1118803067, 1119350753,
1122806029, 1130613167, 1133572201, 1142596321, 1143466171, 1156172387, 1156910219, 1159990549,
1161256639, 1162157627, 1162958789, 1171821367, 1172023807, 1173828881, 1175043679, 1176798443,
1181376611, 1185841883, 1186036853, 1189200413, 1189749863, 1189917413, 1191835247, 1192150537,
1194403943, 1195722067, 1196490089, 1197993887, 1198262393, 1198984357, 1199801657, 1201331921,
1203885373, 1204174259, 1210655729, 1216157291, 1216248743, 1216339261, 1222802047, 1222937477,
1223927437, 1225056611, 1227112111, 1231307191, 1231675933, 1231953647, 1232614853, 1235165171,
1237179467, 1240107343, 1241353571, 1242003407, 1247729837, 1248453431, 1249776089, 1250768719,
1251659009, 1252273777, 1255671097, 1255776217, 1261126333, 1267445713, 1267667263, 1269451861,
1270931143, 1271242571, 1272231509, 1280165371, 1286334977, 1287773897, 1290437957, 1296433267,
1296608809, 1302411421, 1311762761, 1312444451, 1314076573, 1314441347, 1316576153, 1328405269,

57

Sqirrels

1331057401, 1331246099, 1332208651, 1338410299, 1338852971, 1341903943, 1341978481, 1346399029,
1349114329, 1349659277, 1350234661, 1351168141, 1351289087, 1351643791, 1352338577, 1353006133,
1354440947, 1357660673, 1363484567, 1366760539, 1381130087, 1388743303, 1394356267, 1398527693,
1399272691, 1400258677, 1409526047, 1411868963, 1412221667, 1412746243, 1416477529, 1420218809,
1430971079, 1442480257, 1444779143, 1446331097, 1446475001, 1448979503, 1449840043, 1452189463,
1456357219, 1459279517, 1461154421, 1463609249, 1465439869, 1469776589, 1474113479, 1481057267,
1481284279, 1484311343, 1490150339, 1492643227, 1493978251, 1494905011, 1496850317, 1498077169,
1500375011, 1503507277, 1509081869, 1514442217, 1515555893, 1520520427, 1522779373, 1525135361,
1527767743, 1528632421, 1530062273, 1532783683, 1533809677, 1538155343, 1542866951, 1543515583,
1545122899, 1548658387, 1554761179, 1554794621, 1554994537, 1566175697, 1566789661, 1569172991,
1569685693, 1573761347, 1576945613, 1578707113, 1584043421, 1584330073, 1590422657, 1595323337,
1598555417, 1600783369, 1603580141, 1605032537, 1606450217, 1607404223, 1609925579, 1610775773,
1610971343, 1611068497, 1618767151, 1620010477, 1620400843, 1623489619, 1636482493, 1636547669,
1640346613, 1645225339, 1649818189, 1652533061, 1664213669, 1665305539, 1669871557, 1684106701,
1693338277, 1697967377, 1700734579, 1711114931, 1712690611, 1714900639, 1718697293, 1723369541,
1730685937, 1734000661, 1735591733, 1739451457, 1744830697, 1746433357, 1747672259, 1751903281,
1755161459, 1756186123, 1757298113, 1763350261, 1769925629, 1771024201, 1773746467, 1778535653,
1778988839, 1781556613, 1784142247, 1785764683, 1793195533, 1797406469, 1799850137, 1804965527,
1805239699, 1805761271, 1805967451, 1812214903, 1812879293, 1817027659, 1821029543, 1822023319,
1822911913, 1826240389, 1827570599, 1828465159, 1831249529, 1843157971, 1844910731, 1846903997,
1851213433, 1851618599, 1854042109, 1854104519, 1856135597, 1857104971, 1857744613, 1858130927,
1858397963, 1859225891, 1862936443, 1867235779, 1868373011, 1868708287, 1872303547, 1873720889,
1883080279, 1886257369, 1887742231, 1888501891, 1890661657, 1901870039, 1903420201, 1905187967,
1915314377, 1918278731, 1919263933, 1924364699, 1925579221, 1925754071, 1930960027, 1932735419,
1933320229, 1936304291, 1947131887, 1949404757, 1950668197, 1951497893, 1951539323, 1952573453,
1955534821, 1958831491, 1964086759, 1971674329, 1976925143, 1980128929, 1992070477, 1997525029,
2001255479, 2002916957, 2003114923, 2005999217, 2012604947, 2015267599, 2015581691, 2018635609,
2019884627, 2021742241, 2022692407, 2025227719, 2030897851, 2031634909, 2033313097, 2035746233,
2035842773, 2036979887, 2049007073, 2055246779, 2064774073, 2065106947, 2067772019, 2076616753,
2083591271, 2090308141, 2092051667, 2093442763, 2107489127, 2109605053, 2119371857, 2120126543,
2120160541, 2125289717, 2129853763]

58

	Introduction
	Context and motivation
	Structured vs. unstructured lattices

	The choice of unstructured lattices

	Design rationale
	The Gentry–Peikert–Vaikuntanathan Framework
	Provably secure lattice signatures
	From GGH to GPV
	Beyond GPV

	On co-cyclic lattices
	Security assumptions
	SIS-hash in the co-cyclic case.
	Generalized SIS and hardness assumptions.
	Regularity of the keygen output.

	The Squirrels family
	Squirrels secret keys
	Public key derivation
	Signature sampling
	Fast verification

	Advantages and limitations
	Advantages
	Limitations

	Security considerations
	Heuristic modelization of lattice reduction, GSA and beyond
	On the core-SVP model
	Modelization of the output of reduced bases.
	From lattice reduction blocksize to bitsec estimates.

	Key Recovery attack
	Basic projection attack

	Hybridizing the attack for sparse secrets
	Good guess probability estimation.
	Volume of intersection.
	Putting it all together
	On sparsity.

	Signature forgery by BDD reduction.
	Additional ``BUFF'' Security Properties

	Specification
	Notations and useful definitions
	Public parameters
	Keys
	Private Key
	Public Key

	Key pair generation
	Generation of the first vectors
	Computation of the last secret vector
	Public Key derivation

	Hashing
	Signature generation
	Sampler Over the Integers
	Signature verification
	Encoding formats
	Bits and bytes
	Integers and doubles
	Compressed Gaussian vectors
	Signatures
	Private Keys
	Public Keys

	Recommended Parameters
	Interplay between parameters
	Concrete parameters

	Performance
	Description of the Reference implementation
	Evaluation on the NIST x64 Reference Target
	Evaluation on x64 AMD

	Additional notions
	Preimage samplable function (PSF)
	Lattices and related notions
	Lattice and their invariants
	Discrete Gaussian distribution over a lattice
	Smoothing parameter.

	Fixed determinants

