
eMLE-Sig 2.0: A Signature Scheme based on Embedded
Multilayer Equations with Heavy Layer Randomization

Dongxi Liu, Raymond K. Zhao

CSIRO Data61, Australia

30 May 2023

1 Introduction

eMLE-Sig 2.0 is a signature scheme based on a new version of Embedded Multilayer
Equations (eMLE) problem. This new eMLE improves the security and efficiency of
old eMLE [16] as introduced below.

Let d indicate the number of layers in eMLE and p be a list of d integers as the
modulus of each layer. The bottom layer has p[0] as its modulus, the top layer has
modulus p[d− 1], and so on. All integers in p are co-prime, and p[i] < p[j] holds for
0 ≤ i < j < d. Let n be the integer indicating the dimension of all vectors in this
report.

The following is an example of new eMLE with three layers (i.e., d = 3), where
only h ∈ Zn

p[2] and gl ∈ Zn
p[l] (l ∈ {0, 1, 2}) are public.

h = g2 ⊗ x+ h1 mod p[2]
h1 = (g1 ⊗ x+ h0 mod p[1]) + k1 ∗ p[1]
h0 = (g0 ⊗ x mod p[0]) + k0 ∗ p[0]

The operator ⊗ in the new eMLE above means the convolution product of two vectors
[18]. Given two vectors v1 and v2, let v = v1 ⊗ v2. Then, v[i] (0 ≤ i ≤ n − 1) is
defined below.

v[i] =
∑n−1

j=0 v1[j] ∗ v2[(i− j) mod n]

The⊗ operation is associative; that is, (g⊗x)⊗c = g⊗(x⊗c). It is also commutative
but not realy needed by the signature scheme. Compared with old eMLE [16], new
eMLE enhances its security (i.e., hardness of finding secret vector x) and efficiency
from the following aspects.

– Randomize internal layers h1 and h0 with random noises in k1 and k0. Compared
with x, the entries in k1 can contain much bigger random integers. Hence, random
and big k1 makes the expected solution vector not a short one in the solution space;

– Use vector convolution to define values of each layer to allow much higher dimen-
sion of vectors (i.e., bigger n), without increasing much of signature sizes;

– Secret vector x can be configured to contain small values to reduce signature sizes
and increase hardness.

1.1 Hardness of New eMLE – Overview

Based on Panny’s attack to old eMLE1, the new eMLE shown above can be flattened
into the following form, from which the adversary attempts to find x by lattice reduc-
tion.

h =
∑2

l=0 gl ⊗ x+ k′
0 ∗ p[0] + k′

1 ∗ p[1] mod p[2]

In the above form, k′
1 can be as large as required by security requirements by configur-

ing big enough top layer modulus p[2], while elements of x are fixed to small integers.
As such, (x,k′

0,k
′
1) is not a short integer (or shortest) solution to the flattened equa-

tions; the norm of (x,k′
0,k

′
1) is dominated by random and big k′

1. Lattice reduction

1 Proposed by Lorenz Panny in NIST’s PQC forum on 13 Oct 2021

1

based attack is then less effective to attack new eMLE. That is, there are solutions that
have smaller norm than (x,k′

0,k
′
1) but with different values for their x, which is not

a valid secret key in the signature scheme.

Moreover, an arbitrary solution to x for the above flattened equations, irrespective
of its size, may not generate correct signatures because such x may lead to h0 and h1

that contain elements too big compared with upper layer modulus. If the adversary adds
extra constrains on x in the above flatten equations to limit the elements in h0 and h1,
then x in the solution will become bigger, as to be confirmed later with experiments. In
the eMLE algorithm to be defined below, random entries in h1 could contain random
big values that can be close to top modulus p[2]. Hence, it is hard for the adversary to
express accurate constrains on the elements in h1. In old eMLE, all elements in h1 are
bounded by p[1], so the constraints can be effectively expressed in Panny’s attack.

1.2 Notations

A lower-case boldface letter denotes a vector (e.g., p). An upper-case boldface letter
indicates a list of vectors (e.g., G) or a matrix (e.g., A). Given two integers a and b
with a < b, [a, b] means the set of integers {a, ..., b}. x ← [a, b] means the uniformly
sampling of integer x from the set [a, b] at random. 0 is the zero vector of n-dimension.
1 is the vector in which all elements are 1. [] means an empty list.

Algorithm 1: eMLE Algorithm (eMLE)

input : n , d, c_max , p, G, x, o, a
output: h, F, sumR

1 h = 0; F = [];
2 for l = 0 to d− 1 do
3 if l = 0 then
4 h = h+G[l]⊗ (x+ o) mod p[l]
5 else
6 h = h+G[l]⊗ x mod p[l]
7 end
8 if l < d− 1 then
9 if l = d− 2 then

10 h, sumR = randomize(n, d, c_max ,p,G,h, l, a)
11 end
12 F[l] = h

13 end
14 end
15 return h, F, sumR

2

Algorithm 2: eMLE Layer Randomization (randomize)

input : n , d, c_max , p, G, h, l, a
output: h, sumR

1 num = ⌊p[l+1]−
∑n−1

i=0 h[i]∗(c_max−1)

c_max∗p[l]
⌋

2 if num < 0 then
3 num = 0
4 end
5 if a = 1 then
6 num = 2 ∗ num
7 end
8 t = num; w← Z⌊n

2
⌋

n

9 for j = 0 to ⌊n
2
⌋-2 do

10 i = 0
11 if ⌊ num

⌊n
2
⌋−j
⌋ > 1 then

12 i← Z⌊ num
⌊n

2
⌋−j

⌋

13 end
14 h[w[j]] = h[w[j]] + i ∗ p[l]
15 num = num − i

16 end
17 h[w[⌊n

2
⌋ − 1]] = h[w[⌊n

2
⌋ − 1]] + num ∗ p[l]

18 w0 ← Zn;w1 ← Zn; i← Z⌊ t
3
⌋

19 for j = 0 to n− 1 do
20 if h[(w0 + j) mod n] < p[l] then
21 h[(w0 + j) mod n] = h[(w0 + j) mod n]− i ∗ p[l]
22 break
23 end
24 end
25 i = ⌊ t

3
⌋ − i

26 for j = 0 to n− 1 do
27 if h[(w1 + j) mod n] < p[l] and h[(w1 + j) mod n] ≥ 0 then
28 h[(w1 + j) mod n] = h[(w1 + j) mod n]− i ∗ p[l]
29 break
30 end
31 end
32 sumR = 0
33 for j = 0 to n− 1 do
34 if h[j] < p[l] and h[j] ≥ 0 then
35 if a = 1 then
36 i← [−32 ∗ n, 32 ∗ n]
37 else
38 i← [−16 ∗ n, 16 ∗ n]
39 sumR = sumR + i

40 end
41 h[j] = h[j] + i ∗ p[l]
42 end
43 end
44 return h, sumR

3

2 New eMLE Algorithm

New eMLE used by the signature scheme is defined in Algorithm 1. This algorithm
will be called by the signature scheme during key generation with a = 0, and signing
with a = 1. The input G is a list of d vectors, each of which is n-dimensional. With
the eMLE example above, we have G[l] = gl for 0 ≤ l ≤ d − 1. Hence, G is public.
The input c_max is an integer, which is a parameter for the signature scheme to be
introduced later. The vector o is a public value, which is embedded at the bottom layer
and can contain values like the hash of public key and message being signed.

The eMLE algorithm calculates the value of each layer, from bottom layer 0 (l = 0)
to top layer (l = d−1), with the value of layer l added into the value of layer l+1. The
top layer value h is returned, together with F, which contains the values of d− 1 lower
layers. In the signature algorithm, h is made public, while F is kept secret as a part of
private key.

As shown by line 10 in the Algorithm 1, layer d−2 is randomized (only layer d−2
is randomized for the signature scheme). Before randomization, the value of layer d−2
has each of its elements bounded by p[d− 2]. The randomization algorithm is given in
Algorithm 2. The general idea of randomizing layer d−2 is to add multiples of p[d−2]
into randomly selected entries in h at layer d − 2. The randomisation is carried out in
the following three parts.

– Line 1 – Line 17: num multiples are randomly distributed to ⌊n2 ⌋ random entries of
h, permitting repeated selection of entries. The variable num is doubled if eMLE
is called from signing.

– Line 18 – Line 31: ⌊num3 ⌋ multiples of p[l] are split randomly and subtracted from
two random entries of h (not overlapped with entries with multiples of p[l] added
in the above step).

– Line 32 – Line 43: all other entries not randomized above are randomized. For key
generation, random numbers are summarized into sumR and returned.

The value of num and the constants like 16 and 32 in the randomisation algorithm
are determined in experiments for the signature scheme by allowing as much as possible
noises without sacrificing too much efficiency of key generation and signing.

2.1 Examples of Randomisation

As an example, let d = 3, n = 64, p = [5, 557, 67108864], c_max = 4, and x have
integer elements from [−4, 4]; this is a parameter set proposed later for Category I
security. The following are two examples of the noises for layer 1 (i.e., corresponding
to roughly k1 in the above eMLE example).

noise distribution at layer 1 (num = 30098) :
690,−667, 752, 425, 423, 586,−4,−231, 130, 1963, 834,−692,−406,−77,−236,
4448, 1532,−592, 752, 581, 421, 5, 1335, 835, 375,−37,−157, 308, 607, 264,−3679,
−1008, 290, 327,−742,−788,−1, 401,−451, 555,−64, 1256, 321,−6353,−267,
534, 58,−470, 1797,−294,−934, 562, 1493, 616, 428, 1158,−6, 237, 584, 270, 4385,
1841, 515, 2517

4

noise distribution at layer 1 (num = 30094) :
−177, 1091, 552, 958, 887, 2309,−825, 1124,−189, 1236, 242, 559, 729,−650,−637,
−446, 222,−419, 46, 216, 565, 2435, 873,−481,−290,−1139, 1624,−806, 488, 1200,
−420, 443, 139, 228,−421, 873, 1720, 1862,−8892, 502,−138, 0, 383,−687, 371,
−607, 43, 517,−129,−176, 81, 477,−972, 559, 143, 679,−927, 477, 312, 8625, 412,
−560, 992, 404

Note that the variable num becomes bigger by configuring bigger top layer modulus
p[d − 1], with the size of x fixed. Hence, bigger p[d − 1] means better security of x
if all other parameters are the same, since layer d − 2 is randomized with more noises
and the norm of the solution vector (x,k0,k1) is dominated by big random values in
k1. Bigger top modulus increases the size of public keys and signatures.

Continue with the above example, increasing p[2] from 67108864 to 4294967296
leads to the following noise distribution at layer 1 (In the randomisation algorithm, the
constant 16 can be increased too for more noises when p[2] is increased; this example
does not reflect this). The noise vector at layer 1 obviously has bigger norm than the
above ones.

noise distribution at layer 1 (num = 1927699) :
200106,−407,−417, 700, 829, 975,−444, 908, 77266,−351, 867,−629,−97, 48139,
131889, 596, 761,−93,−138, 53795,−456, 25, 813, 966, 1003, 49361, 617, 776,
−624803,−82, 97074, 537, 297245, 91075, 4840, 19058, 61253,−340, 63166, 100, 567,
−17763, 735, 901, 43628, 8218, 880,−258, 627, 931, 22283, 107628, 960,−867,
−433, 58896, 30767, 240608, 55160, 69351, 13560,−85,−884, 83333

3 Signature Scheme over eMLE

In this section, we present the signature scheme eMLE-Sig 2.0, constructed over new
eMLE. This signature scheme is defined over the following parameters, some of which
have been introduced above:

– n : the default dimension of all vectors;
– d : the number of layers in eMLE, fixed to 3 in this report;
– p : a list of d positive co-prime integers, with p[l] being the modulus for layer l for
0 ≤ l ≤ d− 1;

– G : a list of d vectors, with G[l] used to build the value of layer l;
– x_max : an integer indicating the maximum of absolute values of elements in the

secret vector x;
– c_max : an integer limiting the elements in a challenge vector used in signing and

verification algorithms;
– vc : a list consisting of four integers, used to check the sizes of values in signature

verification;
– H : a hash function, such as SHA3-256.

The signature scheme eMLE-Sig 2.0 consists of three algorithms: key generation,
signing, and verification.

5

Algorithm 3: Key Generation (keyGen)

input : n , d, x_max , c_max , p, G
output: x1, x2, F1, F2, h1, h2, pkh

1 while true do
2 x1 ← [−x_max , x_max]n

3 x2 ← [−x_max , x_max]n

4 sumX = Σn−1
i=0 (x1[i] + x2[i]))

5 if |sumX | < n
2

then
6 break
7 end
8 end
9 while true do

10 h1,F1, sumR1 = eMLE(n, d, c_max ,p,G,x1,G[1], 0)
11 h2,F2, sumR2 = eMLE(n, d, c_max ,p,G,x2,G[1], 0)
12 if |sumR1 + sumR2| < n ∗ n then
13 break
14 end
15 end
16 pkh =H(h1,h2)
17 return x1, x2, F1, F2, h1, h2, pkh

3.1 Key Generation

The key generation algorithm keyGen in Algorithm 3 starts by generating two ran-
dom vectors x1 and x2. Each element in x1 and x2 is uniformly sampled from the set
[−x_max, x_max] at random. The absolute value of x1 and x2’s sum is required less
than half of n, otherwise a resampling is needed.

With x1 and x2, the eMLE algorithm is called to generate h1,h2, F1, F2, sumR1,
and sumR2. The absolute value of sumR1+sumR2 is required less than n∗n, otherwise
eMLE algorithm is invoked again. The parameter o in eMLE takes G[1] as input, and
a takes 0, indicating it is called from key generation.

The private key includes four vectors: x1, x2, F1, and F2. The public key is h1 and
h2. The hash of h1 and h2 is stored into pkh and is also returned.

3.2 Signing

The signing algorithm is given in Algorithm 4. In addition to public parameters, it takes
the private key (x1, x2, F1, and F2), the hash of public key pkh, the message m, and
its length mlen. The signature consists of two vectors s and u.

The algorithm starts with calculating the sum of negative integers sumXn and the
sum of the positive integers sumXp in x1 and x2, respectively. It then hashes the mes-
sage m and pkh into two vectors c′1 and c′2.

In a while loop, the algorithm samples the random vector y, with which eMLE al-
gorithm called to generate u and F. Then, u, m, and pkh are hashed into two challenge
vectors, c1 and c2, each element of which is from 0 to c_max− 1. The hash algorithm

6

hashVec relies on hash function H to generate a bit stream and then splits the bit
stream into the expected vectors c1 and c2. Then, the signature component s is gener-
ated and passed to the check algorithm, which is defined in Algorithm 5 and will be
explained below. If the check is valid, the signature consisting of two vectors s and u is
returned.

Each element of vector y is required to be in a range from y_min to ⌊n∗x_max∗c_max
2 ⌋−

y_gap. This requirement is to reduce the number of loop repetitions in the signing al-
gorithm because the check algorithm asks each element of s is in a particular range,
no matter whether x1 and x2 contain more positive element or negative elements. Note
that y_min and y_gap changes for each iteration in the while loop.

The check algorithm uses checkS defined in Algorithm 6 to check the validity s
against the following conditions:

– each element of s must lie in between 0 and ⌊n∗c_max∗x_max
2 ⌋ − 1;

– the variance of s (or variant of variance) is in between vc[0] and vc[1].

Algorithm 4: Signing (sign)

input : n , d, x_max , c_max , p, G, vc, x1, x2, F1, F2, pkh, m , mlen
output: u, s

1 Let sumXn be the sum of negative integers in x1 and x2

2 Let sumXp be the sum of positive integers in x1 and x2

3 c′1, c
′
2 = hashVec(n, c_max ,m,mlen, null, pkh)

4 while true do
5 if sumXp > |sumXn| then
6 y_min← [⌊ |sumXn|∗c_max

10
⌋, ⌊ |sumXn|∗c_max

8
⌋]

7 y_gap← [⌊ sumXp∗c_max
7

⌋, ⌊ sumXp∗c_max
5

⌋]
8 else
9 y_min← [⌊ |sumXn|∗c_max

7
⌋, ⌊ |sumXn|∗c_max

5
⌋]

10 y_gap← [⌊ sumXp∗c_max
10

⌋, ⌊ sumXp∗c_max
8

⌋]
11 end
12 y← [y_min, ⌊n∗x_max∗c_max

2
⌋ − y_gap]n

13 u,F, _ = eMLE(n, d, c_max ,p,G,y, c′1 + c′2, 1)
14 c1, c2 = hashVec(n, c_max ,m,mlen,u, pkh)
15 s = x1 ⊗ c1 + x2 ⊗ c2 + y
16 v = check(n, d, x_max , c_max ,p,G,vc,F1,F2,F, s, c1, c2, c

′
1 + c′2)

17 if v = true then
18 break
19 end
20 end
21 return s, u

After checking s, for each internal layer (i.e., l ≤ d−2), the check algorithm checks
at line 8 whether each element of t is non-negative and does not touch the modulus
of upper layer. This check is for ensuring correctness of signatures when layers are

7

removed from top to bottom during verification. At the bottom layer (i.e., l = 0), k is
calculated at line 14 by subtracting t by G[0]⊗ (s+ g+ c′) mod p[0] and then divided
by p[0]; this division is an exact division for a correct signature. The variance of k is
then checked. Note that this k is not the same as k0 in the flattened form of eMLE in
Section 1.1, though they both contain coefficients of p[0]. At line 13, g is calculated in
that way because G[1] is embedded in the layer 0 of the public key and during signature
verification the embedded G[1] is convoluted with c1 and c2.

Algorithm 5: Signature Validity (check)

input : n, d, x_max , c_max ,p,G,vc,F1,F2,F, s, c1, c2, c
′

output: true or false

1 v = checkS(n, d, x_max , c_max ,vc, s)
2 if v = false then
3 return false

4 end
5 for l = d− 2 to 0 do
6 t = F1[l]⊗ c1 + F2[l]⊗ c2 + F[l]
7 for j = 0 to n− 1 do
8 if t[j] < 0 or t[j] ≥ p[l + 1] then
9 return false

10 end
11 end
12 if l = 0 then
13 g = G[1]⊗ (c1 + c2) mod p[0]

14 k = t−(G[0]⊗(s+g+c′) mod p[0])
p[0]

15 a = ⌊
∑n−1

i=0 k[i]

n
⌋

16 k = k− 1 ∗ a
17 if (

∑n−1
i=0 (k[i] ∗ k[i]) < vc[2]) or (

∑n−1
i=0 (k[i] ∗ k[i]) > vc[3]) then

18 return false

19 end
20 end
21 end
22 return true

3.3 Verification

The verification algorithm is defined in Algorithm 7. This algorithm returns true if the
signature s and u can be verified against message m with public key h1 and h2.

The algorithm starts by generating the hash values pkh , c′1, c′2, c1 and c2 with the
same method and parameters as done in key generation and signing. The validity of s is
checked with the algorithm checkS. And then t is initialized to h1 ⊗ c1 + h2 ⊗ c2 +
u mod p[d − 1]. In a loop, each layer of t is removed from top to bottom. Layer 2 and

8

Algorithm 6: Validity of s in Signature (checkS)

input : n, d, x_max , c_max ,vc, s
output: true or false

1 for j = 0 to n− 1 do
2 if s[j] < 0 or s[j] > ⌊n∗c_max∗x_max

2
⌋ − 1 then

3 return false

4 end
5 end

6 a = ⌊
∑n−1

i=0 s[i]

n
⌋

7 s′ = s− 1 ∗ a
8 if (

∑n−1
i=0 (s

′[i] ∗ s′[i]) < vc[0]) or (
∑n−1

i=0 (s
′[i] ∗ s′[i]) > vc[1]) then

9 return false

10 end
11 return true

layer 1 are removed at line 15, respectively. Layer 0 is removed at line 13. Moreover for
layer 0, k is calculated and checked in the same way as done in the signing algorithm.

If all conditions on s and k are satisfied, and t is a zero vector after all layers are
removed, then the verification algorithm returns true.

Note that t at line 5, which is h1 ⊗ c1 + h2 ⊗ c2 + u mod p[d − 1], could have
a flattened expression as that in Section 1.1. However, the vector k at line 9 of the
verification algorithm is not the same as k0 in the flattened expression. Hence, in the
flattened format of t, k does not appear, making it hard to express the variance condition
on k in lattice-based attack.

3.4 Correctness

The signature scheme eMLE-Sig 2.0 is correct in terms that for any key generated by
Algorithm 3, and for any message m and its signature s,u generated by Algorithm 4,
the verification Algorithm 7 should return true.

The signing algorithm and the verification algorithm have the same way to check s
and the value k at layer 0. So if the conditions hold in the signing algorithm (it should
because of the application of check algorithm in signing), then conditions are also
satisfied in the verification algorithm. Moreover, the conditions from line 6 to line 10
in the check algorithm ensures the values of lower layers in h1 ⊗ c1 + h2 ⊗ c2 +
u mod p[d− 1] are not affected by removing the upper layer. Hence, after all layers are
removed, a zero vector is returned.

4 Parameter Configurations

Three sets of parameters are provided for three security levels: 128-bit security level
(Security Level I), 192-bit security level (Security Level III), and 256-bit secu-
rity level (Security Level V). In the configuration, p is prepared in the following way,

9

Algorithm 7: Verification (verify)
input : n , d, x_max , c_max , p, G, vc, h1, h2, s, u, m , mlen
output: true or false

1 pkh = H(h1,h2)
2 c′1, c

′
2 = hashVec(n, c_max ,m,mlen, null, pkh)

3 c1, c2 = hashVec(n, c_max ,m,mlen,u, pkh)
4 v = checkS(n, d, x_max , c_max ,vc, s)
5 t = h1 ⊗ c1 + h2 ⊗ c2 + u mod p[d− 1]
6 for l = d− 1 to 0 do
7 if l = 0 then
8 g = G[1]⊗ (c1 + c2) mod p[0]

9 k =
t−(G[0]⊗(s+g+c′1+c′2) mod p[0])

p[0]

10 a = ⌊
∑n−1

i=0 k[i]

n
⌋

11 k = k− 1 ∗ a
12 v = v and (

∑n−1
i=0 (k[i] ∗ k[i]) ≥ vc[2]) and (

∑n−1
i=0 (k[i] ∗ k[i]) ≤ vc[3])

13 t = t−G[l]⊗ (s+ g + c′1 + c′2) mod p[l]

14 else
15 t = t−G[l]⊗ s mod p[l]
16 end
17 end
18 v = v and (t = 0)
19 return v

where p_max indicate the number of bits of the top layer modulus p[2], next_prime
is a function returning the next prime of its input, and d is 3. p_max takes the value 26,
28, and 30, respectively, for the three security levels.

p[l] =

next_prime(c_max), if l = 0
2p_max, if l = d− 1
next_prime(⌊n2 ⌋ ∗ (c_max− 1) ∗ p[l − 1] + p[l − 1] + n), otherwise

The parameter G hard-coded in the reference implementation (named as GG64,
GG96, GG128 for three security categories) is calculated in the following way for the
kth element at layer l: SHA3-256(l, k, n, d, c_max, x_max,p) mod p[l]. The param-
eters G and p are calculated in the accompanying SageMath implementation and then
hard-coded in reference implementation.

The parameter vc is also hard-coded in the reference implementation, taking the
following variable names and values: vc64 = [503673, 952989, 557, 1120], vc96 =
[1756408, 2988441, 1336, 2368], and vc128 = [4229853, 6822141, 2507, 4079]. Briefly,
vc is determined by generating 500 key samples and signing 20 messages for each key,
and then selecting the condition values for satisfying majority of signing and verifica-
tion operations. The SageMath code generating vc is provided. Note that vc each time
generated in the sage code is similar but not exactly the same due to randomness.

10

Security n d x_max/c_max vc p G

Level I 64 3 4 vc64 [5, 557, 67108864] GG64
Level III 96 3 4 vc96 [5, 823, 268435456] GG96
Level V 128 3 4 vc128 [5, 1097, 1073741824] GG128

Table 1: Parameter Configurations

Suppose the security level is 128 bits. The parameters are required to satisfy the
following basic conditions.

– n ∗ log2(p[0]) ≥ 128, such that more than 128 bits of t are checked at line 18 of
Algorithm 7.

– n ∗ log2(2 ∗ x_max+ 1) ≥ 128, such that x1 or x2 has enough bits.
– 2 ∗ n ∗ log2(c_max) ≥ 256, that is, a stream of 256 bits should be generated from

hash function H, with 128 bits taken by vector c1, and the other 128 bits assigned
to c2.

– d ≥ 3, such that there are at least two internal layers, layer d − 2 for containing
big random numbers and layer 0 for checking the variance of k at line 12 of the
verification algorithm. Layer 0 is not randomized in eMLE, so k has small variances
as reflected by the last two parameters in vc.

The next section will give more analysis and evaluation on the proposed parameters.

5 Security Analysis and Evaluation

eMLE is defined with vector convolution. To compare with Short Integer Solution (SIS)
problem and the application of Panny’s attack, we need to replace vector convolution in
eMLE with matrix and vector multiplication.

Given a n-dimensional vector v = (v1, v2, ..., vn), let ←→v denote the following
matrix. 

v1 vn vn−1 ... v2
v2 v1 vn ... v3
...

vn−1 vn−2 vn−3 ... vn
vn vn−1 vn−2 ... v1


Then, we have v⊗ v′ =←→v ∗ v′. Let g =

∑d−1
l=0 G[l] and A =←→g ∥(I ∗ p[0])∥...∥(I ∗

p[d − 2]), which means A is a n ∗ (d ∗ n) matrix obtained by concatenating←→g , and
d − 1 identity matrices I each multiplied by p[l] for l from 0 to d − 2. If h, _, _ =
eMLE(n, d, c_max,p,G,x,o, a), then the following equation can be obtained by flat-
tening eMLE.

A ∗ s = (h− (G[0]⊗G[1] mod p[0]) mod p[d− 1],

where the first n elements in s correspond to x. Recall that G[1] is embedded at the
bottom layer of the public key, so G[0] ⊗G[1] mod p[0] is removed from the public
key.

11

5.1 Comparison with Short Integer Solution (SIS)

The Short Integer Solution problem is defined over the equation ASIS∗sSIS = t mod q,
which is similar in format as the flattened eMLE. In SIS, the solution vector sSIS is
required to contain small integers. Compared with SIS, s in eMLE contains very big
integers in its last n elements; it is not hard to find a solution s that has first n elements
small. However, to make the first n elements a valid private key in eMLE-Sig 2.0, only
its small size is not sufficient, and it has to make different layers not interfering with
each other for passing signature verification. Hence, with the above flattened format,
the first n elements in solution s must be the original private key.

The hardness of eMLE can be increased by increasing the amount of noise at layer
d − 2, the dimension n, or both, while the hardness of SIS can ony be increased by
choosing bigger n, when the range of sSIS is fixed. Hence, for eMLE-Sig 2.0, we can
have n that is small to allow the efficient application of current lattice reduction algo-
rithm for concrete security evaluation, but the big noises to ensure the required security
level. This makes cryptanalysis to eMLE-Sig 2.0 accessible to a large community.

In [17], a variant of SIS is defined with ASIS being a n ∗ (2 ∗ n) matrix. This
SIS variant can be roughly changed into an eMLE instance by extending ASIS into a
n ∗ (3 ∗ n) matrix after concatenating with I ∗ p[1] (with q used as top modulus p[2])
and extending sSIS with n random big integers selected by the adversary. Hence, if
the eMLE problem can be efficiently solved (in terms that original private key can be
recovered), then this algorithm could be used to attack that SIS variant.

This comparison does not attempt to be a security reduction, because the parameter
set proposed in last section (i.e., n = 64, n = 96, and n = 128) is too small to be secure
for SIS problem, and the reduction cannot reflect the feature of eMLE that hardness can
be increased by adding more noises to layer d − 2. However, the structure similarity
could mean that since there are no efficient quantum algorithms to attack SIS, there
should be no such algorithms to attack eMLE.

5.2 Comparison with Schnorr Signature and Σ Protocol

Schnorr signature is a well-studied signature scheme. The signature scheme eMLE-Sig
2.0 has exactly the same pattern of construction as Schnorr signature except for the dif-
ference of underlying hardness problems. In both schemes, the signer selects a random
value (i.e., y in eMLE-Sig 2.0), and then generates a commitment to this value as one
signature component (i.e., u in eMLE-Sig 2.0 defined over eMLE); with the hash of the
commitment and the message (and public keys in eMLE-Sig 2.0), the second signature
component is defined by multiplying the secret key with the supposedly-random hash
and then blinding it with the random number from the first step.

Based on the hardness of discrete log, Schnorr signature is strongly unforgeable
under chosen-message attacks (i.e., SUF-CMA secure). eMLE-Sig 2.0 should also be
SUF-CMA secure, given the hardness of eMLE to be evaluated more in the next section.

By modeling the hash function as a Random Oracle Model, eMLE-Sig 2.0 can be
regarded as an instance of Σ protocol. The knowledge extractor in Σ protocol usually
takes the re-winding strategy to let the prover reuse the random number in the first
message, and then extract the witness or private key from the conversation scripts.

12

If the prover is in a quantum state, the re-winding strategy is not reasonable for a
proof of special soundness property [6]. Then, if the prover can be in a quantum state,
the security of post-quantum signature schemes based on Σ protocol and Fiat-Shamir
transformation needs to be re-analyzed with the Quantum Random Oracle Model (QROM).
However, re-winding could be avoided for eMLE-Sig 2.0.

Given the random number y, the prover in eMLE-Sig 2.0 can directly produce mul-
tiple (or two) u because eMLE is probabilistic and for each u a fresh challenge can
be generated (even still with hash function) and the prover responds with the corre-
sponding third message for each challenge. The same random number y is reused in
the conversation scripts, without re-winding the prover.

5.3 Evaluation of eMLE’s Concrete Security

The concrete security of eMLE-Sig 2.0 will be evaluated below with the attack pro-
posed by Panny 2. Panny’s attack to eMLE uses lattice reduction. Based on the above
comparison with SIS, this should be the most efficient way to attack eMLE. On the other
hand, the proposed parameters (i.e., n = 64, n = 96, and n = 128) make the current
lattice-reduction algorithms efficient enough to do the concrete evaluation. The Sage-
Math implementation of eMLE-Sig 2.0 is used in the evaluation, with all experiment
code provided for repeating and refining the evaluation.

Given the dimension n (no matter whether it is big or small), the principle underling
the security of eMLE is that (x,k0, ...,kd−2) is not a short integer solution in the
solution space. This security requirement is achieved by selecting big enough p[d− 1].
In other words, a simple strategy to increase the security of the signature algorithm is
to increase p[d−1]. As an example, all three p[2]s in Table 1 can be securely increased
to 232 for better performance on a 32-bit platform, at the cost of bigger public keys and
signatures.

5.3.1 Effectiveness of the adapted attack method To apply Panny’s attack, the vec-
tor convolution in new eMLE needs to be replaced by matrix and vector multiplication
as illustrated above. The evaluation method is to limit the noises added to layer d−2 of
the public key and then recover the private key by solving the equations of the flattened
eMLE.

The noises added to the public key at layer d − 2 in Algorithm 2 are limited by
replacing i at lines 14, 21, 28, and 41 with (i mod q), and replace num at line 17 with
(num mod q), where the value of q varies.

When q is small (e.g., q = 256 for n = 64 and n = 96), the private key can be
recovered certainly. This experiment confirms the attack method is adapted correctly to
new eMLE. When q is big enough (e.g., q = 712), the private key cannot be found in
our experiment. The bigger n also makes it harder to find the private key. For example,
when n = 64 and q = 512, the private key can be found, white it is not the case for
n = 96.

This experiment is needed later when determining the concrete security level of
each parameter set.

2 Panny’s code available at https://yx7.cc/files/emle-attack.tar.gz, announced in PQC Forum

13

5.3.2 Resilience to key recovery attack from public key This experiment is to
check whether the proposed parameters can ensure (x,k0,k1) used in the definition
of the public key is not a short integer solution to the flattened eMLE equation, or to
check whether the attack method can return a solution s that is shorter than (x,k0,k1).

For the convenience of experiments, the norm of (x,k0,k1) is calculated with the
norm of k1 because k1 dominates the norm. Moreover, k1 itself is approximated by
considering only i at lines 14, 21, 28, 41, and num at line 16 of Algorithm 2 as entry
values. The SageMath code gives the explicit calculation of the approximated k1 and
its norm. Table 2 listed the Euclidean norms obtained in the experiments. The norm of
k1 is rounded to the smallest norm found in the experiments, while the norm s takes the
biggest one. For the proposed parameters, the norm of k1 is bigger than that of s. Hence,
the security requirement that (x,k0,k1) is not a short integer solution is satisfied by the
parameters.

n Norm(k1) Norm(s)

64 11000 2900

96 27000 11000

128 76000 45000

Table 2: Comparisons of Norms

Moreover, only the equation A∗s = h cannot ensure that each element in
∑1

l=0 G[l]⊗
s[0 : n] + k0 ∗ p[0] + k1 ∗ p[1] is non-negative and less than p[2], and each element in
G[0]⊗s[0 : n]+k0∗p[0] is non-negative and less than p[1]. Thus, if this s[0 : n] is used
to generate a signature, it fails to satisfy the condition t = 0 at line 18 of Algorithm 7,
let along other conditions in the verification algorithm, as shown in our experiment.

If extra constrains are added to consider the above two conditions (these extra con-
straints have been supported in Panny’s attack code), then t = 0 at line 18 of Algorithm
7 can be satisfied, but elements of s[0 : n] become much bigger (extra constraints can
only increase the size of the existing solutions) and hence cannot satisfy other checks
in Algorithm 7.

5.3.3 Resilience to key recovery attack via signatures Given a valid signature, the
experiment is to check whether original y (the secret vector randomly sampled during
signing) can be recovered from u in the signature by solving A ∗ v = u − (G[0] ⊗
(c′1 + c′2) mod p[0]) mod p[2], where c′1 and c′2 are defined as at line 2 of Algorithm 7.
If original y can be found from two signatures, then x1 and x2 in the secret key can be
simply recovered from s in these signatures.

Note that during signing y is allowed to contain big elements, leading to bigger
norm of (y,k0,k1). Our experiment shows that original y cannot be recovered from u
because k1 is bigger enough for the proposed parameter sets and y itself is also big.

In addition, the value of each y’s element is sampled in a range that is not known to
the adversary and is bigger than the element of x1⊗c1+x2⊗c2. Hence, x1⊗c1+x2⊗c2
is statistically hiding in s.

14

5.3.4 Strong Unforgeability under Chosen Message Attacks A signature in eMLE-
Sig 2.0 consists of two vectors s and u. If the hash functionH used to generate c1 and c2
is collision-resistant and is modeled as a random oracle, then a new message (different
from messages that have signatures available) leads to new random c1 and c2, and
hence s in existing signatures cannot be reused. If a different signature is expected for
an existing message, u must be different, and it thus leads to new random c1 and c2,
causing a different s needed (i.e., s from the existing signatures not useful).

In addition, given u, public key h1 and h2, let the hash values of u and message
m and other parameters is c1 and c2. An experiment is carried out to check whether a
valid signature component s (i.e., v[0 : n]) can be recovered by solving the following
equation.

A ∗ v = h1 ⊗ c1 + h2 ⊗ c2 + u−w mod p[d− 1],

where w = G[0]⊕ (G[1]⊕ (c1 + c2) + c′1 + c′2) mod p[0] and c′1, c
′
2 are defined as at

line 2 of Algorithm 7.
Similar to the second evaluation case above, when v[0 : n] and u is used as the

fake signature, the condition t = 0 at line 18 of Algorithm 7 does not hold, let along
other verification conditions. This is because the lower layers have values exceeding the
modulus of upper layer. If extra constrains are added, v[0 : n] will become much bigger
and cannot pass other conditions in the verification algorithm.

The experiment is also carried out by limiting the noises in the public key as in the
first experiment. Even with q = 128, a valid s cannot be generated. Recall that when
q = 128, the first experiment can recover the private key. The condition value at line 12
of the Algorithm 7 cannot be linearly expressed, making it harder for attacks based on
lattice-based reduction to forge a valid v[0 : n]. Hence, the most efficient way for the
adversary to forge a signature is to recover the private key from the pubic key.

5.4 Analysis of Security Levels

The parameters given in Table 1 are analyzed for their security levels in this section. The
analysis is from two aspects: guessing the noises distributed at layer d−2 and guessing
x1 and x2 directly. The first aspect is hinted by the first experiment above because it
shows when the noises in layer d − 2 become small enough (e.g., after some guessing
and reducing), the original x can be recovered.

Let k1 contains noises added to the corresponding entries to h. Then, Algorithm 8
is used to estimate security level from the first aspect. In the first experiment above, we
have discussed when q = 712, the attack method cannot recover the private key. When
calculating security level with this algorithm, 912 is used as the threshold. That is, a
noise is counted when its absolute value is bigger than 912. Note that the attacker needs
to guess the positions of noises bigger than 912 in order to reduce them and also guess
how much of noises needs to remove.

Table 3 gives the security levels obtained by guessing noises at layer d − 2 and
guessing the private key (x1 or x2) directly. Note that the security level of the first
aspect calculated by Algorithm 8 is random because k1 is random. The security level of
guessing noises in Table 3 is the smallest security level observed by running Algorithm
8 for each parameter category a number of times.

15

Algorithm 8: Security Level Estimation by Guessing Noises
input : n , k1

output: SL

1 c = 0
2 SL = 0
3 for i = 0 to n− 1 do
4 if |k1[i]| > 912 then
5 c = c+ 1
6 SL = SL+ log2(|k1[i]| − 912)

7 end
8 end
9 SL = SL+ log2(

(c+n−1)!
c!∗(n−1)!

)

10 return SL

By taking the smaller security levels obtained by guessing noises or by guessing
private key, the security level for the three security categories are 145 bits, 304 bits, 405
bits.

n = 64 (Level I) n = 96 (Level III) n = 128 (Level V)

Security Level (bits) 145 530 978

Security Level (bits) 202 304 405

Table 3: Security Levels By Guessing Noises at Layer d− 2 or Private Key

5.5 Security beyond Unforgeability

Security properties beyond unforgeability are formalized in [8]. These extra security
properties include exclusive ownership, message-bound signatures, and non re-signability.

Briefly, eMLE-Sig 2.0 has all these three properties because both s and u are con-
structed with the hash of public keys and messages.

6 Implementation and Performance Evaluation

6.1 Pseudorandom Generator and Hash Function

We employ the AES-256 CTR mode as the pseudorandom generator (PRG). For the
hash functionH in hashVec, we use SHA3-256, SHA3-384, and SHA3-512 for Level I,
Level III, and Level V, respectively. Using AES as the PRG also enables the AES-
NI hardware instructions on x64 CPUs [10], which significantly accelerates the Key
Generation and Signing processes (see Table 4 in Section 6.4).

16

Let SHA3 be the SHA3 hash function for the corresponding security level as
above. Since SHA3 will generate exactly n/2 bytes of output, the hashVec func-
tion is implemented as follows. Let hc be the hash output of SHA3(m||pkh||u),
where the vector u is packed as bytes of the concatenation of its coordinates i.e.
u[0]||u[1]|| . . . ||u[n − 1], such that each u[i] is represented as log2(p[2]) bits un-
signed integer in little endian form without padded 0 in the most significant bits.
The output vectors c1, c2 have c1[4i + j] = (hc[i] >> 2j) mod 4, c2[4i + j] =
(hc[n/4 + i] >> 2j) mod 4, for i = 0, 1, . . . , n/4− 1, j from 0 to 3, where >> is the
right shift operation. SHA3 can be replaced with SHA2 for the same hash output length
in the implementation of hashVec function.

6.2 Uniform Sampling

To generate uniformly random integers in [a, b] for arbitrary inputs a, b ∈ Z, we use the
following rejection sampling method. Let m = b− a+ 1, k = ⌈log2(m)⌉. Then, let z
be a random x bytes integer drawn from the PRG such that 8(x − 1) < k ≤ 8x. Let
z′ = z mod 2k. We output z′ + a as the result when z′ < m, or discard z′ otherwise.

However, the acceptance rate m/2k in this sampling process may leak secret infor-
mation when m is derived from secret e.g. when generating i during the eMLE layer
randomization (Algorithm 2) and y in the signing (Algorithm 4). To mitigate the leak-
age, we adapt a similar countermeasure to the isochronous sampler used by the Falcon
signature [9, 11]. We perform another rejection on each sample with acceptance rate
ccs = 2k−1/m i.e. the sampler outputs z′ + a when both z′ < m and r < ccs hold for
random real number r ∈ [0, 1). The acceptance rate becomes ccs ·m/2k = 1/2, which
is independent of m.

To avoid generating a uniformly random real r with high absolute precision, we
use the comparison technique from the FACCT sampler [20]. Assume an IEEE-754
floating-point value f ∈ (0, 1) with (δf + 1)-bit precision is represented by f =(
1 +mantissa · 2−δf

)
·2exponent, where integer mantissa has δf bits and exponent ∈

Z−. To check r < f , one can sample rm ←↩ {0, 1}δf+1, re ←↩ {0, 1}l uniformly,
and check rm < mantissa + 2δf and re < 2l+exponent+1 for some l such that
l + exponent+ 1 ≥ 0. By 2k−1 < m ≤ 2k, we have ccs ∈ [1/2, 1), exponent ≥ −2,
and l ≥ 1 (we assume ccs may contain relative error less than 1/2).

Additionally, when modifying any coordinate of h in randomize (Algorithm 2),
since the randomly generated indices are secret, to avoid leakage due to caching, we
always access every coordinate in h and use the constant-time select [2] to set the value.
We also adapt the constant-time select [2] when the branch condition depends on the
secret.

6.3 Convolution

We use the Karatsuba+schoolbook polynomial multiplication to realize the convolution.
This approach is similar to the bottom layers of the polynomial multiplications in the
Saber KEM [5]. Because the schoolbook multiplication outperforms Karatsuba when
the polynomial degree is less than 20 [12], we use the schoolbook method instead of
extra Karatsuba layers at the bottom of the recursion after the polynomial degree is

17

reduced to less than 20. Plantard’s modular reduction [19] is used for the mod operation.
We do not perform the if check in the Plantard’s reduction, which reduces the output
x to 0 when x is equal to the modulus p. We have checked that our modified modular
reduction will output the correct reduction result x ∈ [0, p−1] for every positive integer
input less than about 230 when p = p[0], and this holds for every positive integer input
less than 232 when p = p[1]. When mod p[2], since p[2] is power of 2, we use the
bitwise and operation with (p[2]− 1) instead.

Additionally, we adapt the Kronecker substitution [7] to accelerate the polynomial
multiplication with modulus p[0] = 5 as follows. Assume the input vectors a,b ∈
[0, 4]n. Let c be the polynomial multiplication of a,b without mod 5. We have c[i] ≤
n ∗ 42. Let k = ⌈log2(16n + 1)⌉. Thus, by Kronecker substitution, we can evalu-
ate a(2k),b(2k), compute the integer multiplication a(2k) ∗ b(2k), and unpack the
result. To implement a(2k) ∗ b(2k) where both a(2k),b(2k) have nk bits, we use
the aforementioned Karatsuba+schoolbook multiplication, with coefficient size w close
to the machine word size and lower input polynomial degree ⌈nk/w⌉ compared to n
in the naive multiplication of a,b. For example, when n = 64, we have k = 11.
Both a(2k),b(2k) have nk = 704 bits. We select w = 29 and get the input polyno-
mial degree ⌈nk/w⌉ = 25 in the Karatsuba+schoolbook big integer multiplication.
Let c′ be the multiplication result before processing the carries. We check c′[i] ≤
25 ∗ (229 − 1)2 < 263 i.e. coefficients in the intermediate result of the multiplication
will not exceed the machine word size. In this example, the input polynomial degree is
reduced to 39% compared to the naive polynomial multiplication.

6.4 Performance Evaluation

We evaluate the speed of our reference implementation (i.e. without hand-optimized
CPU-specific instructions such as AVX-2) by measuring the CPU cycles on a laptop
running Linux operating system with an Intel i5-11400H CPU at 2.70GHz and 64 gi-
gabytes memory. We use the gcc 12.2.0 with option −O3 to compile the code.3 We
measure the average number of CPU cycles consumed by 1000 iterations of keyGen,
sign, and verify algorithms, respectively. Hyper-threading and Turbo Boost are dis-
abled during the benchmark. Results are summarized in Table 4. In the KeyGen Speed
and Sign Speed columns, the two values are the measured number of CPU cycles with-
out/with using the AES-NI hardware instructions in the PRG, respectively.

Public key and signature sizes (bytes) are summarized in the PK Size and Sig Size
columns in Table 4. Coordinates h1[i],h2[i] of the public key and u[i] of the signature
are log2(p[2]) bits unsigned integers. By checkS (Algorithm 6), coordinates s[i] of
the signature are in [0, n ∗ c_max ∗ x_max/2 − 1]. For n = 64, s[i] has 9 bits, and
for n = 96, 128, s[i] has 10 bits. Similar to the representation of u in hashVec, we
pack these vectors as bytes of the concatenation of their coordinates, such that each
coordinate is represented in little endian form without padded 0 in the most significant
bits.

From Table 4, for the same security categories, the Sign/Verify speed of our ref-
erence implementation is already on par with the hand-optimized AVX-2 implementa-

3 Run make benchmark to compile the benchmark program.

18

Security n KeyGen Speed Sign Speed Verify Speed PK Size Sig Size SK Size
Level I 64 272630/56310 192723/52597 21755 416 280 800
Level III 96 375701/88465 272574/80653 38175 672 456 1200
Level V 128 455837/112167 343007/114965 63110 960 640 1600

Table 4: Performance Summary

tions of Dilithium [4] and Falcon [9] signatures. The KeyGen speed of our reference
implementation is on par with the reference implementation of Dilithium. In addition,
our KeyGen/Sign implementations with the AES-NI hardware instructions have the
fastest speed compared to the NIST selected signature schemes for standardization im-
plemented with hardware instructions on x64 platforms (Dilithium [4] with AVX-2 and
AES-NI, Falcon [9] with AVX-2 and FMA, and SPHINCS+ [3] with Haraka [14] and
AES-NI). Note that since the CPU in our benchmark platform supports the AVX-512
instruction set, the compiler may generate AVX-512 or VAES instructions during the
benchmark. However, we did not write any hand-optimized AVX-512 assembly codes
in our implementation.

For the same security categories, our signature scheme also has smaller signature
size and smaller sum of public key and signature sizes compared to the NIST selected
signature schemes for standardization (Dilithium [4], Falcon [9], and SPHINCS+ [3]).

7 Advantages and Limitations

7.1 Advantages

– Better Security Certainty: The condition underlying the security of eMLE-Sig
2.0 can be verified for the proposed parameters with experiments; if the condition
has been verified (i.e., an expected solution is not a short one), then this condition
will hold no matter how attack methods will be improved in the future.

– More accessible cryptanalysis: The proposed dimension parameter n makes the
current lattice reduction algorithms efficient enough to solve flattened eMLE equa-
tions.

– Compactness: Compared to the NIST selected signature schemes for standardiza-
tion, on the same security categories, our design has more compact signature and
smaller sum of public key and signature sizes.

– Simple Design: The main arithmetic component of our design is convolution,
which is simple and easy to understand. eMLE-Sig 2.0 is similar to Schnorr sig-
nature in structure and conceptually simple. Our design does not require develop-
ers knowledgeable in advanced techniques such as Number Theoretic Transform or
Merkle Tree. Using a naive implementation or existing arithmetic libraries for the
convolution is unlikely to affect the correctness of the implementation. In addition,
the convolution is highly parallelizable on platforms such as the GPU [15].

– Speed: On the same security categories, the speed of our reference implementa-
tion is significantly faster than the reference implementations of the NIST selected

19

signature schemes for standardization, and competitive compared to their hand-
optimized AVX-2 implementations. The Key Generation and Signing speed of our
implementation can be accelerated with the AES-NI hardware instructions on x64
CPUs, and the resulted implementation is faster than the NIST selected signature
schemes for standardization implemented with hardware instructions on x64 plat-
forms.

7.2 Limitations

– Necessity of 32-bit Integer Multiplication: Our design requires 32 × 32 bits in-
teger multiplication during the convolution with modulus p[2]. This may affect the
speed of the implementation on constrained devices (e.g. 16-bit or 8-bit microcon-
trollers) where such multiplication instructions may not be available on hardware.
On the other hand, if allowing a bit increase of the sizes of public keys and signa-
tures, the top layer modulus in all three proposed parameter sets can be increased
to 232 to make the shceme more efficient on 32-bit platform, since the reduction
mod 232 can be done implicitly.

– Side-channels: As discussed in Section 6, for timing/cache side-channels, although
we have adapted some countermeasures for platform-agnostic leakage, we did not
consider the platform or compiler specific leakage due to e.g. arithmetic such as di-
visions [1] or even multiplications [13] in our current implementation. In addition,
protections against other side-channels such as power analysis require future study.

References

1. Andrysco, M., Nötzli, A., Brown, F., Jhala, R., Stefan, D.: Towards verified, constant-time
floating point operations. In: CCS. pp. 1369–1382. ACM (2018)

2. Aumasson, J.P.: Guidelines for low-level cryptography software (2019)
3. Aumasson, J.P., Bernstein, D.J., Dobraunig, C., Eichlseder, M., Fluhrer, S., Gazdag, S.L.,

Hülsing, A., Kampanakis, P., Kölbl, S., Lange, T., et al.: Sphincs+-submission to the 3rd
round of the nist post-quantum project (2020)

4. Bai, S., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: Crystals-dilithium: Algorithm specifications and supporting documentation (version 3.1).
NIST Post-Quantum Cryptography Standardization Round 3 (2021)

5. Basso, A., Mera, J.M.B., D’Anvers, J.P., Karmakar, A., Roy, S.S., Van Beirendonck, M.,
Vercauteren, F.: Saber: Mod-lwr based kem (round 3 submission). Online publication (2020)

6. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random
oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. pp. 41–69
(2011)

7. Bos, J.W., Renes, J., van Vredendaal, C.: Post-quantum cryptography with contemporary
co-processors: Beyond kronecker, schönhage-strassen & nussbaumer. In: USENIX Security
Symposium. pp. 3683–3697. USENIX Association (2022)

8. Cremers, C., Düzlü, S., Fiedler, R., Fischlin, M., Janson, C.: Buffing signature schemes be-
yond unforgeability and the case of post-quantum signatures. IACR Cryptol. ePrint Arch. p.
1525 (2023), https://eprint.iacr.org/2020/1525

9. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T., Ricosset, T.,
Seiler, G., Whyte, W., Zhang, Z.: Falcon: Fast-fourier lattice-based compact signatures over
ntru, specification v1. 2. NIST Post-Quantum Cryptography Standardization Round 3 (2020)

20

10. Gueron, S.: Intel’s new AES instructions for enhanced performance and security. In: FSE.
Lecture Notes in Computer Science, vol. 5665, pp. 51–66. Springer (2009)

11. Howe, J., Prest, T., Ricosset, T., Rossi, M.: Isochronous gaussian sampling: From inception
to implementation. In: PQCrypto. Lecture Notes in Computer Science, vol. 12100, pp. 53–
71. Springer (2020)

12. Kannwischer, M.J., Rijneveld, J., Schwabe, P.: Faster multiplication in \mathbb z_2ˆm[x]
on cortex-m4 to speed up NIST PQC candidates. In: ACNS. Lecture Notes in Computer
Science, vol. 11464, pp. 281–301. Springer (2019)

13. Kaufmann, T., Pelletier, H., Vaudenay, S., Villegas, K.: When constant-time source yields
variable-time binary: Exploiting curve25519-donna built with MSVC 2015. In: CANS. Lec-
ture Notes in Computer Science, vol. 10052, pp. 573–582 (2016)

14. Kölbl, S., Lauridsen, M.M., Mendel, F., Rechberger, C.: Haraka v2 - efficient short-input
hashing for post-quantum applications. IACR Trans. Symmetric Cryptol. 2016(2), 1–29
(2016)

15. Lee, W., Seo, H., Hwang, S.O., Achar, R., Karmakar, A., Mera, J.M.B.: Dpcrypto: Accel-
eration of post-quantum cryptography using dot-product instructions on gpus. IEEE Trans.
Circuits Syst. I Regul. Pap. 69(9), 3591–3604 (2022)

16. Liu, D.: Embedded multilayer equations: a new hard problem for constructing post-quantum
signatures smaller than RSA (without hardness assumption). IACR Cryptol. ePrint Arch.
(2021), https://eprint.iacr.org/2021/1338

17. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T.
(eds.) EUROCRYPT 2012. Lecture Notes in Computer Science, vol. 7237, pp. 738–755.
Springer (2012)

18. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way func-
tions. Comput. Complex. 16(4), 365–411 (2007)

19. Plantard, T.: Efficient word size modular arithmetic. IEEE Trans. Emerg. Top. Comput. 9(3),
1506–1518 (2021)

20. Zhao, R.K., Steinfeld, R., Sakzad, A.: FACCT: fast, compact, and constant-time discrete
Gaussian sampler over integers. IEEE Trans. Computers 69(1), 126–137 (2020)

21

