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CHAPTER 1

Introduction

This document presents a detailed description of the digital signature scheme SQIsign, whose security is based on the
presumed hardness of finding isogenies between supersingular elliptic curves. The scheme is based on the original
construction of [DKL+20], and includes several subsequent improvements.

Compact keys and signatures. SQIsign offers both very compact public keys and signatures (see Table 1). To our
knowledge, SQIsign has the smallest combined size of public key and signature of any post-quantum signature scheme.

Confident tuning of security parameters. The complexity of the fastest known attacks against SQIsign is well un-
derstood. It allows for straightforward, precise estimation of concrete attack costs, hence confident tuning of security
parameters. While this complexity has been very stable, it is worth recalling that the history of the scheme is short. The
best known attacks amount to solving the endomorphism ring problem1; while arithmeticians were already looking at
this computational problem thirty years ago, it has only recently received the spotlight of cryptography.

Relatively simple and fast verification. The verification procedure is reasonably efficient and simple to implement,
involving mostly elementary elliptic curve arithmetic, and the computation of low-degree isogeny chains à la SIKE.

A complex signing procedure. The main drawback of SQIsign is the intricacy of the signing procedure, in terms of
mathematical sophistication and diversity of objects being manipulated. This renders the signature relatively difficult
to implement, and signing is much slower than competing post-quantum schemes.

The present specifications of SQIsign start in Chapter 2 with an overview of the different mathematical objects
used in SQIsign, and a precise description of the algorithms to manipulate them. Then, Chapter 3 details the com-
ponents of SQIsign itself (generating keys, signing, and verifying), and provides the parameter sets. The following
chapters discuss the choice of parameters, performance, and security.

1.1. High level description of SQIsign
SQIsign is designed as a proof of knowledge (a sigma protocol), turned into a signature by the Fiat-Shamir transform.
The sigma protocol proves knowledge of an elliptic curve endomorphism.

1Note that the endomorphism ring problem, hence the security of SQIsign, is not affected by the polynomial-time attacks [CD23, MMP+23,
Rob23] against the SIDH [JD11] key exchange. While SIDH also belonged to the "isogeny-based" family, it relied on a weaker variant of the
fundamental isogeny problems.

Table 1. SQIsign key and signature sizes in bytes for each security level.

Parameter set Public key Secret key Signature
NIST-I 64 782 177

NIST-III 96 1138 263
NIST-V 128 1509 335
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1.2. DIFFERENCES WITH THE ORIGINAL SQIsign ARTICLE 5

We consider a collection of objects called elliptic curves. Two elliptic curves may be connected by maps called
isogenies. We write φ : E1 → E2 for an isogeny φ connecting an elliptic curve E1 to an elliptic curve E2. The
foundational problem of isogeny-based cryptography is essentially the following isogeny path problem: given two
elliptic curves E1 and E2, find an isogeny E1 → E2.

Now, given an elliptic curve E, an endomorphism of E is an isogeny φ : E → E. The collection of all endomor-
phisms ofE is called the endomorphism ring ofE, writtenEnd(E). The endomorphism ring problem is the following:
given E, compute End(E). For so-called supersingular elliptic curves, this problem is known to be equivalent to the
isogeny path problem under polynomial time reductions [EHL+18, Wes22]. In fact, we have that

• given E1, E2, End(E1) and End(E2), one can find an isogeny E1 → E2 in polynomial time, and
• given E1, E2, End(E1), and an isogeny E1 → E2, one can compute End(E2) in polynomial time.

The sigma protocol now works as follows. The prover has as public key an elliptic curve EA, and their secret is
the associated endomorphism ring End(EA). With EA public, the goal of the prover is to convince the verifier that
they know End(EA). They proceed as follows.

(1) For the commitment phase, the prover generates a random pair (E1,End(E1)), and sends E1 to the verifier.
(2) For the challenge phase, the verifier generates a random isogeny φchall : E1 → E2 and sends it to the prover.
(3) Given End(E1) and φchall : E1 → E2, the prover can compute End(E2). Now, given the secret End(EA)

and the freshly computed End(E2), the prover can compute an isogeny φresp : EA → E2, and send it to the
verifier.

(4) The verifier checks that φresp is indeed an isogeny from the public key EA to the challenge curve E2.
The idea is that to compute the response, the prover must use their knowledge of End(EA). Intuitively, the protocol
asks for the prover to compute isogenies from EA to a somewhat random curve E2, and that relates to knowledge
of End(EA) thanks to the computational equivalence between the isogeny path problem and the endomorphism ring
problem. However, this idea does not immediately work, and the protocol, as sketched above, is insecure: a cheating
prover could generate the commitment E1 by choosing a random isogeny φcheat

com : EA → E1. They may not be able
to compute End(E1), but it does not matter. In response to φchall : E1 → E2, they would simply respond with
φcheat

resp = φchall ◦ φcheat
com : EA → E2.

There is a simple fix to this issue, by ensuring that φchall is not a “sub-isogeny” of φresp. With this fix, one can
actually prove that this protocol proves knowledge of at least some non-trivial part of End(EA), which is believed to
be as hard as knowing the full End(EA).

The SQIsign protocol described in detail in Chapter 3 follows the above outline. There is a notable cosmetic differ-
ence: we fix a public reference pair (E0,End(E0)), and instead of thinking of the keys as a random pair (EA,End(EA)),
we think of them as a random isogenyφsecret : E0 → EA. Similarly, we generate the commitment via a random isogeny
φcom : E0 → E1 instead of a random pair (E1,End(E1)). Both approaches are computationally equivalent, but in
order to generate a random pair (E,End(E)), one would typically start by computing a random isogeny E0 → E.

1.2. Differences with the original SQIsign article
The main difference between the present version of SQIsign and the original publication [DKL+20] is the inclusion
of the improvements described in [DLLW23]. In addition, we propose new parameter sets for the security levels
NIST-I, NIST-III, and NIST-V. Finally, the size of the signatures has been further reduced by improving the compres-
sion and decompression algorithms. Note that compared to [DKL+20, DLLW23], the code has been written from
scratch (without dependences to PARI/GP), and some of the finest optimizations are not yet present in the reference
implementation. Future optimizations are expected to reach at least the performance of [DLLW23].



CHAPTER 2

Basic operations

SQIsign is based on a mathematical correspondence between two seemingly distant mathematical worlds: super-
singular elliptic curves and isogenies defined over finite fields on one side, maximal orders and ideals of quaternion
algebras on the other side. A complete implementation of SQIsign must be capable of representing all these objects
and manipulating them. We describe finite fields, elliptic curves and isogenies in Sections 2.1–2.3; this is as much
as is needed for verification. Sections 2.4 and 2.5 describe quaternion algebras and related concepts; Section 2.6 de-
scribes algorithms for moving between the world of quaternions and that of elliptic curves. They are all needed for
key-generation and signature.

2.1. Finite fields
We follow the presentation in [JAC+20]. A finite field is a finite set of elements equipped with an addition and
multiplication operation. In particular, addition and multiplication are closed, there exist additive resp. multiplicative
neutral elements 0 resp. 1, and additive resp. multiplicative inverses of each element, with the exclusion of the only
non-multiplicatively-invertible element 0.

Finite fields of cardinality q exist if and only if q is a prime power, i.e., q = pr for some prime number p and
positive integer r. Such finite fields of cardinality q have a unique representation up to isomorphism, and are denoted
by Fq . For q = pr, we call char(Fq) = p the characteristic of Fq . SQIsign uses fields of special characteristic p,
satisfying p ≡ 3 (mod 4) as detailed in Chapter 5.

2.1.1. The finite field Fp

We uniquely represent the elements of the finite field Fp by the integers {0, . . . , p− 1}. The algebraic operations are
defined as follows:

Addition: For a, b ∈ Fp, the sum c = a + b is given by the unique integer c ∈ {0, . . . , p − 1} that satisfies
c ≡ a+ b (mod p).

Additive inverse: For a ∈ Fp, its additive inverse −a is given by the unique integer (−a) ∈ {0, . . . , p − 1}
satisfying a+ (−a) ≡ 0 (mod p).

Multiplication: For a, b ∈ Fp, the product c = a · b is given by the unique integer c ∈ {0, . . . , p − 1} that
satisfies c ≡ a · b (mod p).

Multiplicative inverse: For a ∈ Fp, a ̸= 0, its multiplicative inverse a−1 is given by the unique integer
a−1 ∈ {0, . . . , p− 1} satisfying a · a−1 ≡ 1 (mod p).

Quadratic residuosity: Let a ∈ Fp, decide whether a is a square, i.e., whether there is an element b ∈ Fp with
b2 = a. This is done by computing the Legendre symbol a

p−1
2 , which equals 1 if a is a square,−1 otherwise.

Square root: Let a ∈ Fp be a square in Fp. Since we restrict to primes satisfying p ≡ 3 (mod 4), we compute
the canonical square root of a as

(1)
√
a = a

p+1
4 (mod p).

Additionally, we define an ordering on elements of Fp by lifting them to the interval [0, p − 1] and comparing
integers.

6



2.2. ELLIPTIC CURVES 7

2.1.2. The finite field Fp2

Since we will only use finite fields of characteristic p ≡ 3 (mod 4), we can define the field extension Fp2 as Fp2 =
Fp(i) with i2 + 1 = 0. We uniquely represent the elements of Fp2 as a = a0 + a1 · i with a0, a1 ∈ Fp. The algebraic
operations are defined as follows:

Addition: For a, b ∈ Fp2 , their sum is given by c = c0 + ci · i with c0 = a0 + b0 and c1 = a1 + b1, using
additions in Fp.

Additive inverse: For a ∈ Fp2 , its additive inverse −a is given by −a = (−a0) + (−a1) · i, using additive
inversions in Fp.

Multiplication: For a, b ∈ Fp2 , their product is given by c = c0 + ci · i with c0 = a0b0 − a1b1 and c1 =
a0b1 + a1b0, using additions, additive inversions, and multiplications in Fp.

Multiplicative inverse: For a ∈ Fp2 , a ̸= 0, its multiplicative inverse is given by a−1 = (a0N
−1) +

(−a1N−1) · i, where N = a20 + a21 ∈ Fp, using additions, additive inversions, multiplications and mul-
tiplicative inversions in Fp.

Quadratic residuosity: Let a ∈ Fp2 , decide whether a is a square. This is the case if and only if ap+1 =
a20 + a21 ∈ Fp is a square in Fp.

Square root: Let a ∈ Fp. If a is a square in Fp, we define its square root as in Eq. (1); otherwise−a is a square
in Fp and we define

√
a =

√
−a · i. Finally, let a ∈ Fp2 \Fp be a square in Fp2 , i.e., there is an element

b ∈ Fp2 with b2 = a. We use [ARH14, Algorithm 8] to define a canonical square root of a = a0 + a1 · i as√
a = x0 + x1 · i, where

(2) x0 =

√
a0 ±

√
a20 + a21
2

, x1 =
a1
2x0

,

knowing that only one of
(
a0 +

√
a20 + a21

)
/2 and

(
a0 −

√
a20 + a21

)
/2 will have a canonical square root

in Fp.
Additionally, we define a lexicographic ordering on elements of Fp2 by

(3) a0 + a1 · i < b0 + b1 · i iff a0 < b0 or (a0 = b0 and a1 < b1).

2.2. Elliptic curves
In the following, we assume that Fq is a finite field with char(Fq) > 2. We recall here some key facts on supersin-
gular elliptic curves in Montgomery form necessary to the implementation of SQIsign. For a an extensive review of
Montgomery curves and their properties, see [CS18].

2.2.1. Montgomery curves

Let A,B ∈ Fq such that B(A2 − 4) ̸= 0. The Montgomery curve EA,B over Fq is an elliptic curve defined by the
equation

(4) By2 = x3 +Ax2 + x.

That is, it consists of the set of points P = (x, y) that satisfy the curve equation (for x and y in any extension of the
field Fq), and the point at infinity∞. We often writeEA,B/Fq to emphasize that the curve is defined over the field Fq .
We also write EA when B = 1, and we write E for a generic Montgomery curve. Furthermore, we write EA,B(Fq)
to denote the set of points of EA,B (defined over Fq). The coefficient A is often called a Montgomery A-invariant.

Two Montgomery curves are said to be isomorphic over Fq if there is a linear change of coordinates (x, y) 7→
(D(x + R), Cy), with D,C,R ∈ Fq that maps one onto the other. When EA,B and EA′,B′ are not isomorphic over
Fq , but they are over a finite extension of Fq , we say that they are the twist of one another. In particular, EA,B and
EA,B′ are always the quadratic twist of one another by taking C =

√
B/B′, and are isomorphic if and only if B/B′

is a square in Fq .
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Let N be the number of solutions to Equation (4) (including the point ∞). When N = 1 mod char(Fq), we
say that EA,B is supersingular. We are only interested in supersingular curves defined over Fp2 with p = 3 mod 4.
In this case, any supersingular curve EA/Fp2 (with B = 1) has exactly (p + 1)2 points, whereas its quadratic twists
EA,γ/Fp2 , where γ is an arbitrary quadratic non-residue in Fp2 , have exactly (p− 1)2 points and are all isomorphic.
SQIsign always manipulates pairs (EA, EA,γ) of supersingular curves with a quadratic twist, where γ can be taken as
a fixed non-residue across all curves.1

2.2.1.1. Isomorphism class and canonical representative. For a Montgomery curve EA,B we define its j-invariant

(5) j(EA,B) =
256(A2 − 3)3

A2 − 4
.

The j-invariant characterizes isomorphism classes of elliptic curves over the algebraic closure, i.e., two curves have
the same j-invariant if and only if they are isomorphic or are twists of one another. To a pair (EA, EA,γ), SQIsign
associates their common j-invariant j(EA) (note that j does not depend onB) as a unique identifier for the isomorphism
class of the pair.

To a single supersingular j-invariant are associated six Montgomery A-invariants, defining isomorphic curves.
Among these six isomorphic choices some of SQIsign’s routines need to choose one in a way that only depends on
the isomorphism class. This is done using Algorithm MontgomeryNormalize below.

Algorithm 1 MontgomeryNormalize(A)

Input: A Montgomery A-invariant A
Output: A normalized MontgomeryA-invariantA′ in the same isomorphism class, an isomorphism fromEA toEA′ .

1: Let
Z0 := A2, Z1 :=

9−A2

2
+

A3 − 3A

2
√
A2 − 4

, Z2 :=
9−A2

2
− A3 − 3A

2
√
A2 − 4

;

2: Let Z = z0 + z1 · i be the lexicographically smallest (see Eq. (3)) among Z0, Z1, Z2;
3: A′ :=

√
Z;

4: if A′ = A then
5: R := 0, U := 1;
6: else if A′ = −A then
7: R := 0, U := i;
8: else
9: R := (A2+A′2−6)A

A2+2A′2−9 ;

10: U :=
√

A′

A−3R ;
11: end if
12: return A′ and the isomorphism (x, y) 7→ (U2(x+R), U3y).

2.2.2. The group law

The set of points of a Montgomery curve, equipped with the addition operation defined in Sections 2.2.2.1 and 2.2.2.2,
forms an abelian group. Under this addition law, each point P = (x, y) has an inverse −P = (x,−y), and∞ is the
identity element.

In what follows, for a point P ̸= ∞, we refer to its x-coordinate as xP , and to its y-coordinate as yP , i.e.,
P = (xP , yP ). Note that optimized implementations typically use projective coordinates (X : Y : Z) with x = X/Z
and y = Y/Z in order to avoid inversions in the point addition and isogeny formulas below (see, e.g., [CS18]).

1Optimized implementations may ignore γ and just store A.
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2.2.2.1. Point addition. Let EA,B/Fq be a Montgomery curve, and P = (xP , yP ) and Q = (xQ, yQ) points on
EA,B with P ̸= ±Q. Then we compute their sum R = P +Q with R = (xR, yR) as

xR = Bλ2 − (xP + xQ)−A,

and
yR = λ(xP − xR)− yP ,

where λ = (yP − yQ)/(xP − xQ).
The point at infinity is the neutral element of the law, so P +∞ =∞+ P = P .

2.2.2.2. Point doubling. Let EA,B/Fq be a Montgomery curve, and P = (xP , yP ) a point on EA,B with P ̸= −P .
We compute its double [2]P = P + P = (x[2]P , y[2]P ) as

x[2]P =
(x2P − 1)2

4xP (x2P +AxP + 1)
,

and

y[2]P = yP ·
(x2P − 1)(x4P + 2Ax3P + 6x2P +Axp + 1)

8x2P (x
2
P +AxP + 1)2

.

If P = −P , we set [2]P =∞.

2.2.2.3. Scalar multiplication. Using the addition and doubling operations defined above, we can define a scalar
multiplication [k] : E → E for k ∈ Z: For positive k, it maps a point P ∈ E to the point [k]P = P + P + · · ·+ P ,
summing k copies of P . For negative k, we set [k]P = −[|k|]P . For k = 0, we set [0]P =∞.

For efficiency, a scalar multiplication is usually performed as a sequence of point doublings and point additions.
Using the Montgomery ladder (see, e.g., [CS18]), the number of elliptic curve point operations is logarithmic in k.

For a point P ∈ E, we call the smallest positive integer m such that [m]P =∞ the order of P .

2.2.3. Torsion subgroups and deterministic basis computation

For m ∈ Z and E/Fp2 a supersingular curve, we define E[m] to be the m-torsion subgroup of E, which contains all
points P ∈ E(Fp2) such that [m]P =∞. For m2|#E(Fp2), we have E[m] ∼= Z /mZ×Z /mZ, and thus E[m] has
cardinality m2. Furthermore, there are non-unique points R,S ∈ E[m] that generate E[m], i.e., ⟨R,S⟩ = E[m], and
we call (R,S) a basis of E[m].

GivenE/Fp2 of orderN2 = #E(Fp2) (recallN is either p+1 or p−1), SQIsign needs to generate bases (R,S)
of E[m] for some m|N . The algorithm essentially takes arbitrary R and S of order m until a pair defining a basis is
found. In some other cases, SQIsign already has a point R of order m and needs a second point S that completes it to
a basis of E[m]. These algorithms are described in detail in TorsionBasis and CompleteBasis below.2

2.2.4. Discrete logarithms

Given a pointP and a multiple [k]P on an elliptic curveE for an unknown k ∈ Z, the discrete logarithm problem (DLP)
asks to recover k. For points of large prime order, this problem is suspected to be hard for classical computers, and
underlies the security of traditional elliptic curve cryptography like Elliptic Curve Diffie–Hellman (ECDH). However,
for points P of extremely smooth order, this problem can be efficiently solved.

In particular, in SQIsign we consider points P ∈ E of order ℓf for ℓ ∈ {2, 3} and some f > 0. Given a basis
(R,S) of E[ℓf ], we can write P = [a]R + [b]S for some a, b ∈ Z with 0 ≤ a, b < ℓf . This, combined with the
deterministic bases of E[ℓf ] defined previously, lets us represent any P ∈ E of order ℓf by two integers of ⌈f log2(ℓ)⌉
bits.

2Some implementations of SQIsign, such as the reference implementation, may represent a basis (R,S) by a triplet (xR, xS , xRS) of x-
coordinates, for efficiency. Technically, this defines (R,S) up to a global sign, i.e., the representation is the same for (R,S) and (−R,−S). These
implementations may simply forego the computation of the y-coordinates in TorsionBasis and CompleteBasis; being compatible with them is the
reason behind the somewhat convoluted computation of y in line 7 of CompleteBasis.
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Several algorithms exist to solve discrete logarithms in E[ℓf ], all tracing back to Pohlig–Hellman [PH78]. Here
is an example of one such recursive algorithm:

(1) If f = 1 solve the problem by exhaustive search; otherwise
(2) Let e = ⌊f/2⌋;
(3) Let R′ = [ℓf−e]R, S′ = [ℓf−e]S and P ′ = [ℓf−e]P ;
(4) Recursively compute w, z such that P ′ = [w]R′ + [z]S′ on points of order ℓe;
(5) Let R′′ = [ℓe]R, S′′ = [ℓe]S and P ′′ = P − [w]R− [z]S;
(6) Recursively compute x, y such that P ′′ = [w]R′′ + [z]S′′ on points of order ℓf−e;

Algorithm 2 CompleteBasism,N (EA,B , R, [x = 1])

Input: A Montgomery curve EA,B of order N2, with m|N ;
Input: A point R = (xR, yR) ∈ EA,B(Fp2) of order m;
Input: A starting value x ∈ Fp2 , by default x = 1.
Output: A basis (R,S) of EA,B [m].

1: while True do
2: x := x+ i;
3: if x does not define the absissa of a point on EA,B then
4: Continue;
5: end if
6: xRS :=

2AxRx+(xRx+1)(xR+x)+
√

(2AxRx+(xRx+1)(xR+x))2−(xRx−1)2(xR−x)2

(xR−x)2 ;
7: y := (xR−x)(xRS+2(xRx−1)(xR+x)+4AxRx)

4yR
;

8: S :=
(
x, y
)
∈ EA,B(Fp2);

9: S := [N/m]P ;
10: if [m/x]S =∞ for any divisor x|m then
11: Continue;
12: end if
13: if (R,S) is a basis of EA,B [m] then
14: Break;
15: end if
16: end while
17: return (R,S).

Algorithm 3 TorsionBasism,N (EA,B)

Input: A Montgomery curve EA,B with order N2, with m|N
Output: A basis (R,S) of EA,B [m].

1: x := 1;
2: while True do
3: x := x+ i;
4: if x does not define the absissa of a point on EA,B then
5: Continue;
6: end if
7: R :=

(
x,
√
(x3 +Ax2 + x)/B

)
∈ EA,B(Fp2);

8: R := [N/m]P ;
9: if [m/x]R =∞ for any divisor x|m then

10: Continue;
11: end if
12: Break;
13: end while
14: return CompleteBasism,N (EA,B , R, x).
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(7) a = w + xℓe and b = z + yℓe is the solution.

For compatibility with optimized implementations, SQIsign only computes the discrete logarithm up to a global
sign, i.e., a pair of integers a, b such that either P = [a]R + [b]S or P = [−a]R + [−b]S. Because of the ambiguity
in the output, we define a normalized representation of the pair (a, b) up to sign in Algorithm NormalizedDlog.

Algorithm 4 NormalizedDlogℓf (E, (R,S), P )

Input: A basis (R,S) of E[ℓf ], a point P ∈ E[ℓf ] .
Output: Normalized integers a, b such that [a]R+ [b]S = ±P .

1: Find integers a, b such that [a]R+ [b]S = ±P using a Pohlig–Hellman-style algorithm;
2: if a >

⌊
ℓf/2

⌋
then

3: a = ℓf − a;
4: b = ℓf − b;
5: else if a ∈ {0,

⌈
ℓf/2

⌉
} and b >

⌊
ℓf/2

⌋
then

6: b = ℓf − b;
7: end if
8: return (a, b).

2.3. Isogenies
For two elliptic curves E1 and E2 over Fq , an isogeny is a non-constant map φ : E1 → E2 defined coordinate-wise by
polynomial fractions over Fq , that satisfiesφ(∞) =∞. In particular, φ is a group homomorphismφ : E1 → E2. Such
curves E1 and E2 that are connected through an isogeny are called isogenous. A characterization for this property is
given by the group orders: Two curves E1/Fq and E2/Fq are isogenous over Fq if and only if #E1(Fq) = #E2(Fq).

An isogeny can be almost uniquely characterized by its kernel, i.e., the set ker(φ) = {P ∈ E | φ(P ) = ∞}.
Concretely, given a subgroup G ⊂ E1 of cardinality N , there is, up to post-composition with isomorphisms, a unique
elliptic curve E2 and isogeny φ : E1 → E2 of degree N with ker(φ) = G. Thus, given a generator Q of G, we can
represent isogenies with kernel G = ⟨Q⟩ by a single point. Furthermore, for each isogeny φ : E1 → E2 there is a
unique dual isogeny φ̂ : E2 → E1 of the same degree N , such that the composition φ̂ ◦ φ resp. φ ◦ φ̂ is the scalar
multiplication map [N ] on E1 resp. E2.

For the explicit computation of an isogeny φ over Fq , we can write it as a pair of rational maps f(x) and g(x) over
Fq , such that φ((x, y)) = (f(x), y · g(x)). We can express these functions as ratios of coprime polynomials over Fq ,
e.g., f(x) = f1(x)/f2(x), such that the degree deg(φ) = max{deg(f1),deg(f2)}.

Given a point Q of order N , Vélu’s formulas [Vél71] provide a way to compute these rational maps for the corre-
sponding isogeny φ with ker(φ) = ⟨Q⟩. Vélu’s formulas and variants have complexity polynomial inN , thus they are
only practical for relatively small values of N . When N is large and composite, we decompose φ into smaller-degree
isogenies: Let N =

∏
ℓeii be the prime factorization of N . Then we can compute φ as a composition of e1 isogenies

of degree ℓ1, e2 isogenies of degree ℓ2, et cætera. In particular, we compute φ through φ = φ∑
ei ◦ · · · ◦ φ2 ◦ φ1.

Since each isogeny φj has some prime degree ℓi | N , this is computationally feasible if the degree N is smooth, i.e.,
if N only contains sufficiently small prime factors ℓi.

We now give explicit formulas for isogenies of small prime degree. We stress once again that the kernel only
defines the isogeny up to post-composition with an isomorphism. The literature abounds in formulas for isogenies of
Montgomery curves, however these may disagree on the equation of the image curve. A compliant implementation
of SQIsign must implement the isogeny formulas given below. Failing to do so risks producing mathematically
meaningful but invalid signatures.

Although we give formulas in affine (x, y) coordinates, implementations are free to use projective coordinates
and/or discard the y-coordinates completely, for implementation purposes.
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2.3.1. 2-isogenies

Let Q ∈ EA,B be a point of order 2 generating the kernel of a 2-isogeny φ : EA,B → EA′,B′ . We must distinguish
two cases:

Q = (0, 0): Then the isogeny is defined by

φ(x, y) =

(
1√

A2 − 4

x2 +Ax+ 1

x
,

1
4
√
A2 − 4

· y · x
2 − 1

x2

)
,

and the image curve is defined by

(A′, B′) =

(
− 2A√

A2 − 4
, B

)
.

Q = (xQ, 0) with xQ ̸= 0: In this case we follow [Ren18, JAC+20] and define

φ(x, y) =

(
xQx

2 − x
x− xQ

,
√
xQ · y ·

xQx
2 − 2x2Qx+ xQ

(x− xQ)2

)
,

and
(A′, B′) =

(
2(1− 2x2Q), B

)
.

In both cases, the point (0, 0) on EA′,B′ is in the kernel of the dual isogeny φ̂. This ensures that the first formula
is only used at the start of a (non-backtracking) chain of isogenies.

2.3.2. 4-isogenies

For efficiency purposes, some implementations may prefer to use 4-isogeny formulas instead. For compatibility, these
must be equivalent to the compositions of the 2-isogeny formulas above. Let Q ∈ EA,B be a point of order 4 and let
φ : EA,B → EA′,B′ be the associated 4-isogeny. We distinguish three cases.

Q = (1, yQ): Then [2]Q = (0, 0). Composing the first formula with the second one we get:

φ(x, y) =

(
1

A− 2

(x+ 1)2(x2 +Ax+ 1)

x(x− 1)2
,

1
3
√
A− 2

· y · (x+ 1)(x4 − 4x3 − 2x2 − 4Ax2 − 4x+ 1)

x2(x− 1)3

)
and

(A′, B′) =

(
2
6 +A

2−A
,B

)
.

Q = (−1, yQ): Then, likewise:

φ(x, y) =

(
1

A+ 2

(x− 1)2(x2 +Ax+ 1)

x(x+ 1)2
,

1
3
√
A+ 2

· y · (x− 1)(x4 + 4x3 − 2x2 + 4Ax2 + 4x+ 1)

x2(x+ 1)3

)
and

(A′, B′) =

(
2
6−A
2 +A

,B

)
.

Q = (xQ, yQ) with xQ ̸= ±1: Then

φ(x, y) =

(
(x(x2Q + 1)− 2xQ)(xxQ − 1)

2
x

(2xxQ − x2Q − 1)(x− xQ)2
,

x2Q

√
2(x3Q + xQ) · y ·

(xxQ − 1)
(
8x2x2Q + (x2Q + 1)(x4 − 4x3xQ + 2x2x2Q − 4xxQ + 1)

)
(x− xQ)3(2xxQ − x2Q − 1)2

)
and

(A′, B′) = (2− 4x4Q, B).

Note that these formulas differ in a sign from those made popular in [CLN16, JAC+20] for SIKE.
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2.3.3. Other odd-degree isogenies using Vélu’s formulas

We use the adaption of Vélu’s formulas [Vél71] to Montgomery curves from [CH17, MR18] to compute odd prime
degree isogenies with complexity O(ℓ). We follow the exposition of [BDLS20].

Let ℓ be an odd prime andQ ∈ EA,B a point of order ℓ. We write x[i]Q for the x-coordinate of [i]Q. For computing
the unique (up to isomorphisms) isogeny φ : EA,B → EA′,B′ with kernel ker(φ) = ⟨Q⟩, we define the polynomial

hS(x) =
∏
s∈S

(x− x[s]Q)

with S = {1, 2, . . . , (ℓ− 1)/2}. Then we can compute the codomain curve by A′ = 2(1 + d)/(1− d) with

d =

(
A− 2

A+ 2

)ℓ

·
(
hS(1)

hS(−1)

)8

, and B′ = B.

Given a point P /∈ ker(φ) with P = (xP , yP ), we can compute its image as

P ′ = φ(xP , yP ) = (f(xP ), βyP f
′(xP )) ,

where β = hs(0) ·
∏(ℓ−1)/2

i=1 x[i]Q, f ′(x) is the derivative of f(x), and

f(x) =
xℓ · hS(1/x)2

hS(x)2
.

In particular, we compute all necessary kernel points Q, [2]Q, . . . , [(ℓ− 1)/2]Q and evaluate the formulas above
at a total cost of O(ℓ)

2.3.4. Odd-degree isogenies using
√

élu

Following [BDLS20], we can compute and evaluate ℓ-isogenies in asymptotic complexity Õ(
√
ℓ) through an asymptot-

ically faster evaluation of hS(x). In practice, the threshold for which
√

élu outperforms the formulas from Section 2.3.3
lies around ℓ ≈ 100.

The evaluation of hS(x) follows a baby step-giant step approach. We deviate from the choice of S from Sec-
tion 2.3.3 and set S = {1, 3, . . . , ℓ − 2}. For our purposes and input points of order ℓ, these choices are equivalent.
We define an index system (I, J) for S using m = ⌊

√
ℓ− 1/2⌋, and m′ = 0 if m = 0 resp. m′ = ⌊(ℓ+ 1)/4m⌋. We

set
I = {2m(2i+ 1) | 0 ≤ i ≤ m′} and J = {2j + 1 | 0 ≤ j < m}.

With I ± J := (I + J) ∪ (I − J), we then have S\(I ± J) = K with K = {4mm′ + 1, . . . ℓ− 3, ℓ− 1}. If m > 0,
we have #I = m′ ≤ m+ 2, #J = m, and #K ≤ 2m− 1, hence all cardinalities are in O(

√
ℓ).

Furthermore we define the following biquadratic polynomials:

F0(x1, x2) = (x1 − x2)2,
F1(x1, x2) = 2 ((x1x2 + 1)(x1 + x2) + 2ax1x2) ,

F2(x1, x2) = (x1x2 − 1)2.

Using these definition, in
√

élu the evaluation of hS for an input α proceeds in the following steps:
(1) Compute the polynomial hI(x) =

∏
i∈I(x− x[i]Q).

(2) Compute the polynomial DJ(x) =
∏

j∈J F0(x, x[j]Q).
(3) Compute the resultant ∆I,J = Resx(hI , DJ) ∈ Fq .
(4) Compute the polynomial EJ(x) =

∏
j∈J

(
F0(x, x[j]Q)α

2 + F1(x, x[j]Q)α+ F2(x, x[j]Q)
)
.

(5) Compute the resultant R = Resx(hI , EJ) ∈ Fq .
(6) Compute hK =

∏
i∈K(α− x[i]Q) ∈ Fq .

(7) Output hS(α) = hK ·R/∆I,J .
When using efficient polynomial arithmetic, computing polynomials through product trees, and resultants through
multi-point evaluation via remainder trees, all of these steps can be computed in complexity Õ(

√
ℓ). For details we

refer to [BDLS20].
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2.4. Quaternions and ideals
Quaternion algebras are generalizations of Hamilton’s quaternions. These are 4-dimensional vector spaces generated
by four elements {1, i, j, k}, and non-commutative algebras with the following multiplication rules:

i2 = a, j2 = b, ij = −ji = k,

where a and b are elements of the base field. The case of interest in SQIsign is that of quaternion algebras over the
rational numbers Q ramified at a prime p and ∞. These algebras being all isomorphic, we speak of the quaternion
algebra ramified at p and∞, denoted by Bp,∞. The prime p in SQIsign is precisely the same as the characteristic of
the finite field discussed above. Because p ≡ 3 (mod 4), the basis of Bp,∞ can be taken such that

i2 = −1, j2 = −p, ij = −ji = k.

Then, elements of Bp,∞ are represented as 5-tuples of integers (a, b, c, d, r) ∈ Z5, representing

a+ bi+ cj + dk

r
,

where a canonical representation is obtained by reducing the common denominator.

2.4.1. Big integers

SQIsign needs to represent big integers of variable size. The maximum size reached by the integers depends on the
system parameters, however it is difficult to estimate, especially for intermediate results. For this reason, a dynamic
multi-precision integer library such as GMP3 is recommended. Future versions of this specification may determine
exact bounds on the largest representable integer and thus enable the used of fix-precision big integers.

The operations SQIsign needs to perform on big integers are part of most big integer libraries, and we will thus
list them without details:

• Basic arithmetic (addition, multiplication, . . . ) of integer and rational numbers;
• Uniform sampling of integers from an interval;
• Approximate and exact integer square roots;
• Pseudo-primality testing using the Miller–Rabin test;
• Extended greatest common divisor: given (a, b), find integers (u, v) such that ua+ bv = gcd(a, b);
• Arithmetic modulo integers;
• Chinese remainder theorem (CRT): given integers (a1, . . . , an) and coprime moduli (m1, . . . ,mn), compute

0 ≤ a < m1 · · ·mn such that a = ai mod mi;
• Legendre, Jacobi and Kronecker symbols;
• Square roots modulo primes.

With the exception of CRT and modular square roots, all these algorithms are implemented in GMP, which is the
big integer library used by SQIsign’s reference implementation.

2.4.2. Basic integer linear algebra

SQIsign needs to manipulate several integer matrices of small dimension. The most common operations are on 2× 2
and 4× 4 matrices, with occasional computations on 4× n or n× 4 matrices for larger n (up to n = 16).

Depending on the use case, these matrices may be seen as having coefficients in Z, in Z /qe Z for some prime q
and some exponent e, or in Z /dZ for some integer d with unknown factorization.

3https://gmplib.org/

https://gmplib.org/
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2.4.2.1. Basic operations on integer vectors and matrices. Basic operations such as matrix-vector and matrix-
matrix multiplication can be implemented using the schoolbook method.

For determinants and inversion of 2× 2 matrices the standard formulas can be used:

det

(
a b
c d

)
= ad− bc,

(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

For determinants and inversion of 4× 4 matrices a similar Laplacian formula [Ebe08] computes the determinant and
the adjugate matrix using 78 ring operations.

2.4.2.2. Hermite normal form. The Hermite normal form (HNF) is a generalization of the reduced echelon form
for matrices with integer coefficients. A matrix H is said to be in (column-style) HNF if it satisfies the following
conditions:

• It is upper triangular (i.e., hij = 0 for j < i) and any columns of zeros are located to the left;
• The leading coefficient, or pivot, of a nonzero column is always strictly below of the leading coefficient of

the column before it; moreover, it is positive.
• The elements to the left of pivots are zero and elements to the right of pivots are nonnegative and strictly

smaller than the pivot.

A matrix A is said to haveH for HNF ifH is in HNF and there exists a unimodular matrix U such that AU = H .
Then, A and H have the same column space, and H is unique, thus giving a canonical representation for A’s column
space. An algorithm for computing the HNF of arbitrary matrices is presented in [Coh93, § 2.4.2]. In SQIsign this
algorithm is used on 4× 4 and 4× 8 integer matrices.

2.4.2.3. Kernels of modular integer matrices. SQIsign needs to compute right kernels of matrices with coefficients
in Z /2e Z, Z /q Z (prime q) and Z /dZ, i.e., given a matrix A, find a matrix K such that AK = 0.

For the case ofZ /q Zwith prime q, computing a echelon form (see [Coh93, § 2.3.1]) is sufficient. However a more
general algorithm is needed for matrices modulo an arbitrary integer d: the Howell normal form is a generalization of
the HNF for matrices over Z /dZ. Like the HNF, it preserves the column space and is canonical. A simple algorithm to
compute the Howell form is described in [SM98, § 3]: given a matrixA it computes its Howell formH and a matrix U
such that AU = H . Unlike the HNF, H may have more columns than A. Once H is computed, it is easy to compute
its kernel K ′, and then K = UK ′ is the kernel of A.

2.4.2.4. LLL. Finally, SQIsign needs to compute Lenstra–Lenstra–Lovász (LLL) reduced forms of 4 × 4 integer
matrices. Given a matrix B with columns b1, . . . ,bn, define its Gram-Schmidt vectors as

b⋆
i = bi −

i−1∑
j=1

µi,jb
⋆
j ,

where

µi,j =
⟨bi,b

⋆
j ⟩

⟨b⋆
j ,b

⋆
j ⟩

and ⟨·, ·⟩ denotes a norm (for example the usual Euclidean norm, or the reduced norm of Bp,∞). Then B is said to be
LLL-reduced if

• |µi,j | < 1/2 for 1 ≤ j < i ≤ n, and
• |b⋆

i | ≥ (3/4− µ2
i,i−1)|b⋆

i,j |2.

In SQIsign, LLL bases are used to produce short and/or close vectors. The LLL algorithm takes as input an arbitrary
matrix and produces an LLL-reduced one using column operations. See, for example [Coh93, § 2.6.1].
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2.4.3. Close vector enumeration in 2-dimensional lattices

The “strong approximation” algorithm 13 described in Section 2.5.1.4 requires enumerating vectors in a 2-dimensional
integral lattice L close to a given target vector t, until one satisfying a certain condition is found. The distance is
expressed in this case by a norm Nq defined as x2 + qy2 with q a given small positive integer.

SQIsign first finds a short basis of L using Gauss’ method as described in [Coh93, § 1.3.4]. Then it finds a vector
v0 close to the target using Babai’s nearest plane algorithm [Bab86]. Finally it enumerates short vectors v ∈ L using
the Fincke-Pohst algorithm [FP85] (see also [Coh93, § 2.7.3]), and outputting v0 + v.

We now give more details on each of the steps.

2.4.3.1. Finding a short basis. Algorithm 1.3.14 in [Coh93, § 1.3.4] finds a single short vector. It is easily adapted
to output a short basis for the normNq , as described in Algorithm 5. We denote by ⌊x⌉ the rounding of x to the nearest
integer. When u = (u0, u1) is a 2-vector,Nq(u) is the value of the norm u20+qu

2
1, and we denote byBq the associated

bilinear form.

Algorithm 5 ShortBasis(b0, b1)

Input: b0, b1 an integral lattice basis, q positive integer
Output: β1, β0 short basis of the same lattice for norm Nq , with Nq(β1) ≤ Nq(β0)

1: β0, β1 := b0, b1
2: if Nq(β0) < Nq(β1) then
3: β0, β1 := β1, β0
4: end if
5: while True do
6: r :=

⌊
Bq(β0,β1)
Nq(β1)

⌉
7: γ := β0 − rβ1
8: if Nq(γ) < Nq(β1) then
9: β0, β1 := β1, γ

10: else
11: Break
12: end if
13: end while
14: if Nq(γ) < Nq(β0) then
15: β0 := γ
16: end if
17: return (β1, β0)

2.4.3.2. Finding the closest vector. After a reduced basis β1, β0 of L has been computed, we find vectors in L close
to a target vector t using Babai’s nearest plane algorithm [Bab86], which in dimension 2 consists of only 2 projections,
as described in Algorithm 6.

Algorithm 6 ClosestVector(β1, β0, q, t)

Input: q a positive integer, β1, β0 a reduced integral lattice basis such that Nq(β1) < Nq(β0), t a vector with integer
coefficients

Output: c vector in lattice generated by β1, β0 close to t for Nq

1: µ1 := Nq(β1)β0 −Bq(β0, β1)β1

2: c := t−
⌊
Bq(µ1,t)Nq(β1)

Nq(µ1)

⌉
β0

3: c := c−
⌊
Bq(β1,c)
Nq(β1)

⌉
β1

4: return c
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2.4.3.3. Enumerating close vectors. The last step is the enumeration of short vectors in the lattice for the norm Nq .
For this SQIsign uses the Fincke-Pohst (see algorithm 2.7.5 in [Coh93, § 1.3.4]). Our variant, described in Algorithm 7,
takes as input a lattice basis for L, a target vector t, and a vector c close to t, and enumerates short vectors v ∈ L to
find close vector c + v to t. Other arguments are a bound B on the largest distance from t, and a bound m on the
maximum number of vectors returned. We denote by

√
x the lower integer part of the positive square root of x. We

use the Python-generators-inspired yield keyword to indicate that the algorithm outputs a vector and then continues
the enumeration.

Algorithm 7 EnumerateCloseVectors(L, q, t, c,m,B)

Input: q positive integer, L = (b0, b1) a lattice, t target vector, c ∈ L a vector close to t, m maximal number of tries,
B norm bound

Output: A list of vectors v ∈ L close to t
1: i := 0
2: d := t− c
3: a, b, c := Nq(b0), 2Bq(b0, b1), Nq(b1)
4: if 4ac− b2 ≤ 0 then
5: Abort
6: end if
7: Be := B
8: if B −Nq(d) > 0 then
9: e := B −Nq(d)

10: end if
11: By :=

⌊√
4a2Be+1√
4aac−b2

⌋
+ 1

12: y := −By − 1
13: while (y < By) and (i < m) do
14: y := y + 1

15: Bx :=

⌊
2a(1+

√
4a2Be+4ca2y2−b2y2)−by

√
4a3

2a
√
4a3

⌋
+ 1

16: x := −
⌊

2a(1+
√

4a2Be+4ca2y2−b2y2)+by
√
4a3

2a
√
4a3

⌋
− 2

17: while (x < Bx) and (i < m) do
18: x := x+ 1
19: i := i+ 1
20: if Nq(d− xb0 − yb1) ≤ B then
21: yield c+ xb0 + yb1
22: end if
23: end while
24: end while

2.4.4. Quaternions and lattices

SQIsign keeps track of elements α ∈ Bp,∞ and of full-rank lattices α1 Z+α2 Z+α3 Z+α4 Z where (α1, . . . , α4) is
a vector-space basis of Bp,∞. We now describe how these objects are represented and manipulated.

2.4.4.1. Basic quaternion arithmetic. We already mentioned quaternions are represented by 5 integers as

α =
a+ bi+ cj + dk

r
.

The basic arithmetic operations (addition, multiplication, etc.) are handled according to the usual rules, reducing
common denominators where necessary. Multiplication follows from the three axioms i2 = −1, j2 = −p, ij =
−ij = k; we report the multiplication table in Figure 2.4.4.1.
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1 i j ij
1 1 i j ij
i i −1 ij −j
j j −ij −p pi
ij ij j −pi −p

Figure 1. Multiplication table for Bp,∞, the quaternion algebra ramified at a prime p and +∞.

Some other specific operations are as follows. The conjugate ᾱ of α is the element

ᾱ =
a− bi− cj − dk

r
.

Their reduced trace is
tr(α) = tr(ᾱ) = α+ ᾱ =

2a

r
,

and their reduced norm is
nrd(α) = nrd(ᾱ) = αᾱ =

a2 + b2 + p(c2 + d2)

r2
.

2.4.4.2. Lattices. A lattice is defined by a basis (α1, α2, α3, α4) of Q-linearly independent quaternions. By conven-
tion throughout this specification elements are represented as columns of a matrix L, so that

(α1 α2 α3 α4) = (1 i j k) · L
is the row vector describing the basis.4

The dual of a lattice L is defined as
L⋆ = {f ∈ (span(L))⋆ | ∀x ∈ L, f(x) ∈ Z}.

In practice, because all lattices we consider have full rank, the matrix representing L⋆ is the transpose of L−1.
To ensure a canonical representation and simplify operations, the SQIsign reference implementation puts all lat-

tices in HNF. Given this representation, several operations on lattices are straightforward to compute [Coh93, § 2.4.3]:
Equality: Check that L1 and L2 have the same HNF.
Union: If L1 and L2 are lattices, concatenate their matrices L1|L2 and compute the HNF to obtain L1 + L2.
Intersection: If L1 and L2 are lattices, compute their dual lattices L⋆

1 and L⋆
2; then L1 ∩ L2 is the dual of

L⋆
1 + L⋆

2.
Multiplication: If L1 and L2 are lattices, their product L1L2 is computed, e.g., by writing the right multipli-

cation matrices A1, . . . , A4 of the generators α1, . . . , α4 of L2, and then computing the union
A1L1 +A2L1 +A3L1 +A4L1.

Containment: Given an element α ∈ Bp,∞ and a lattice L, checking whether α ∈ L is done by solving a
linear system LX = α and verifying that X has integer entries. Having L in HNF further simplifies the
linear solving. The same algorithm can be used to check that a lattice L′ is contained in L.

Index: When L1 ⊂ L2, the index of L1 in L2, denoted by [L2 : L1] is the order of the finite quotient group
L2/L1. This value equals |det(L1)/det(L2)| and is straightforward to compute given L1 and L2 in HNF.

Right transporter (colon lattice): This is the most complex operation SQIsign needs to perform on lattices.
The right transporter, also known as colon lattice, is the lattice T of elementsα ∈ Bp,∞ such thatL1·α ⊂ L2,
which can be understood as an inverse to lattice multiplication [Voi21, Chap. 15]. We first compute the
lattices

A1 = L1, Ai = L1 · i, Aj = L1 · j, Ak = L1 · k
using the algorithm for lattice multiplication. Then we compute the dual lattice L⋆

2 and evaluate Bx =
L⋆
2(Ax) for each Ax, which amounts to computing the matrix product L−1

2 Ax. Then T consists of those
elements a+bi+cj+dk such that aB1+bBi+cBj+dBk is integral. Because we know that this module is

4In practice the reference implementation takes common denominators and represents L as an integer matrix M and a common denominator
r, so that L = M/r. This can be considered as an implementation detail.
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contained in 1/ det(L1)·Z4, we can find it as the kernel of the mapping (a, b, c, d) 7→ aB1+bBi+cBj+dBk

mod num(det(L1)), using the algorithms described in Section 2.4.2.3.

2.4.5. Quaternion orders and ideals

An order is a lattice of Bp,∞ that is also a subring. Elements of an order O are said to be integral, since they have
reduced norm and trace in Z. An order is called maximal when it is not contained in any other larger order.

An integral ideal, henceforth only called an ideal, is a sublattice of an order. The left order of an ideal is defined
as OL(I) = {α ∈ Bp,∞ | αI ⊂ I} and similarly for the right order OR(I). Then I is said to be a left ideal of OL(I).
An ideal with left order OL and right order OR is called a connecting ideal of OL and OR. The norm of an ideal I
is the greatest common divisor of the norms of its elements; it is an integer equal to

√
[OL(I) : I] =

√
[OR(I) : I].

Any ideal can be written as I = OL(I)α+OL(I)nrd(I) for some α ∈ OL(I), and similarly forOR(I). We simplify
this notation by writing Oα+ON = O⟨α,N⟩ for any order O.

The product IJ of ideals I and J satisfying OR(I) = OL(J) is the ideal generated by the products of pairs in
I × J . It follows that IJ is also an (integral) ideal and OL(IJ) = OL(I) and OR(IJ) = OR(J). The ideal norm is
multiplicative with respect to ideal products.

We define an equivalence on orders by conjugacy and on left O-ideals by right scalar multiplication. Two orders
O1 and O2 are equivalent if there is an element β ∈ B⋆p,∞ such that βO1 = O2β. Two left O-ideals I and J are
equivalent if there exists β ∈ B⋆p,∞, such that I = Jβ. If the latter holds, then it follows that OR(I) and OR(J) are
equivalent since βOR(I) = OR(J)β.

2.4.5.1. Basic operations on ideals. We represent ideals by their lattices and compute equality, membership, union,
intersection and multiplication like for them. We can use these elementary operations to compute the ideal O⟨α,N⟩:
use lattice multiplication to compute Oα and ON , then lattice union to compute O⟨α,N⟩. Inversely, a generator α
such that I = O⟨α,N⟩ can be found by taking arbitrary elements in I until one such that gcd(nrd(α), N2) = N is
found.

The left and right order of an ideal: The right (resp. left) order of an ideal I is by definition the right (resp.
left) transporter of I into itself.

Computing isomorphism of ideals: Two left O-ideals I, J are isomorphic as O-modules if and only if they
are equivalent, i.e. if there exists a β ∈ B⋆

p,∞ such that I = Jβ. Given equivalent left O-ideals I and J ,
finding an element β such that I = Jβ can be done by first computing the right transporter T such that
JT ⊂ I , followed by finding a short vector β in T (e.g., using LLL); all vectors in T are multiples have norm
a multiplie of N(I)/N(J), and a vector in T of norm exactly N(I)/N(J) exists if and only if I and J are
equivalent.

Computing a connecting ideal: Given two orders OL and OR, we compute a connecting ideal as

I = (OL +OLOR)N

, where N = nrd(OL ∩ OR).
Pullback and pushforward of ideals: We recall two definitions from [DKL+20, Lemma 3]. Given two ideals
I, J , such that OR(J) = OL(I) and having coprime norm, we define the pullback ideal to be the OL(J)-
ideal

[J ]∗I = JI + nrd(I)OL(J).

Similarily, when I, J are two left O-ideals of coprime norm, we define the pushforward ideal to be the left
OR(J)-ideal

[J ]∗I = J−1(J ∩ I).

It is readily verified that [J ]∗([J ]∗I) = I . The motivation for these definitions comes from the correspon-
dence between ideals and isogenies (see Section 2.6), where the corresponding definitions are more natural.
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2.4.5.2. Finding equivalent ideals of small norm. Given an integral ideal I , we SQIsign often need to find an
equivalent ideal J (i.e., I = Jα, where α ∈ B⋆p,∞) with different norm. To do so, we will employ the surjection

χI(α) = I
α

nrd(I)

from I\{0} to the set of ideals J equivalent to I .
One example of this, is when SQIsign needs equivalent ideals, whose norm is prime and bounded. This is done

with RandomEquivalentPrimeIdeal, which is given in Algorithm 8. The algorithm samples constants ci and constructs
β =

∑4
i=1 ciαi where the αi is a reduced basis of I , before outputting J = χI(β) if the norm of J is prime. This

process is repeated a maximal number of KLPT_equiv_num_iter times.

Size of outputs. Heuristically, we can expect the norm of the output ideal to be ≈ √p. However, this heuristic fails
whenever there exists an equivalent ideal of I (for instance I itself) of norm significantly smaller than √p. This has
implication in, for instance SpecialEichlerNorm (Algorithm 15), where we do not run RandomEquivalentPrimeIdeal
on ideals that have too small norm.

Algorithm 8 RandomEquivalentPrimeIdeal(I)

Input: I a left O-ideal
Output: J ∼ I of small prime norm
Output: found a boolean indicating whether computation was successful

1: Initialise counter := 0 and found := False
2: Compute a LLL-reduced basis α1, α2, α3, α4 of I
3: while not found and counter < KLPT_equiv_num_iter do
4: counter := counter+ 1
5: Sample c1, c2, c3, c4 from [−b, . . . , b], for bound b := KLPT_equiv_bound_coeff
6: β :=

∑4
i=1 ciαi

7: J := χI(β)
8: if nrd(J) is prime then
9: found := True

10: end if
11: end while
12: return J , found

2.5. Solving norm equations
An important part of both the key generation and signing procedure in SQIsign, is the ability to solve norm equations
quaternion orders and ideals. Throughout this section, O0 will refer to a p-extremal maximal order, i.e. a maximal
order with a distinguished quadratic subring R, so that

R+ jR ⊆ Op,

while O refers to an arbitrary maximal order. Further, several constants (defined in Chapter 7) will be used as part of
the algorithms; these constants are of the form KLPT_xxx.

In Section 2.5.2, we will define the three KLPT-based procedures for solving norm equations. Specifically, Key-
GenKLPT is used during key generation, and solves a norm equation in a left O0-ideal, SpecialEichlerNorm solves a
norm equation inO, while finally, SigningKLPT solves a norm equation in a leftO-ideal. Before that, in Section 2.5.1,
we describe the necessary subroutines that make up the three algorithms.

2.5.1. Building blocks

In this section, we describe the necessary building blocks for solving norm equations in quaternion orders and ideals.
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2.5.1.1. Cornacchia’s algorithm. Cornacchia’s algorithm [Cor08] allows us to efficiently solve norm equations of
the form x2 + ny2 = m, provided we know the factorization of m. In SQIsign, the function Cornacchia checks
whether m is easy to factor first, before possibly running Cornacchia’s algorithm to find x, y (see also [MN90]). The
whole algorithm, depicted in Algorithm 9, returns x, y and found, a boolean indicating whether or not a solution was
found.

Algorithm 9 Cornacchia(m)

Input: m ∈ Z
Output: x, y such that x2 + y2 = m
Output: found a boolean indicating whether a solution was found

1: x := 0, y := 0, found := False
2: Find the 100-smooth part m′ of m using trial division
3: if m/m′ is prime then
4: Run Cornacchia’s algorithm to find x, y such that x2+ y2 = m, and set found := True if a solution was found
5: end if
6: return x, y, found

2.5.1.2. Representing integers by the special extremal order. Cornacchia’s algorithm allows us to efficiently solve
norm equations of the form x2 + ny2 = m. This makes it straight forward to solve norm equations in the suborder
R+ jR ⊆ O0 (where R = Z[i] is the distinguished quadratic subring of O0), whose norm form is given by

F (t, x, y, z) = x2 + y2 + p(z2 + w2).

The general idea is to sample z, w, before using Cornacchia to see if we can find x, y such that x2+y2 = T−p(z2+w2)
This algorithm is depicted in Algorithm 10, together with an extension introduced in [DLLW23, §6], which samples
solutions in the whole order O0. As pointed out in [DLLW23], finding solutions in the full order is essential for
zero-knowledge in SQIsign (see also Chapter 9).

Algorithm 10 FullRepresentInteger(M)

Input: M ∈ Z such that M > p
Output: γ ∈ O0 with nrd(γ) =M
Output: found a boolean indicating whether a solution was found

1: Initialise counter := 0 and found := False
2: while not found and counter < KLPT_repres_num_gamma_trial do
3: Sample z′ from [−m, . . . ,m] for m :=

⌊√
4M
p

⌋
4: Sample w′ from [−m′, . . . ,m′] for m′ :=

⌊√
4M−z′2

p

⌋
5: Set M ′ = 4M − p((z′)2 + (w′)2)
6: x′, y′, found := Cornacchia(M ′)
7: if found = 0 or x′ ̸= w′ mod 2 or z′ ̸= y′ mod 2 then
8: found := False
9: counter := counter+ 1

10: end if
11: end while
12: if found then
13: Set k to be the biggest scalar such that γ/k ∈ O0

14: γ := (x′ + iy′ + jz′ + kw′)/k
15: else
16: γ := 0
17: end if
18: return γ, found
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2.5.1.3. Reduction to linear systems. The higher level norm equation algorithms always involve solving some linear
system of equations. The general algorithm for this step is given in EichlerModConstraint; further, another similar
subroutine is FindLinearCombination, used as part of the IdealToIsogenyEichlerℓ• algorithm (see Section 2.6). Both
algorithms use linear algebra in Z /N Z to find a quaternion of a special form, satisfying some constraint.

In EichlerModConstraint, we consider quaternion elements α = x+yi+zj+wk with [x, y, z, w] ∈ Z4 as integer
column vectors (note that by clearing out the denominators, all coefficients really lie in Z). In FindLinearCombination,
we instead compute a basis ⟨α1, α2, α3, α4⟩ = O, and compute vectors [x, y, z, w] ∈ Z4 corresponding to α ∈ O,
given by α = xα1+ yα2+ zα3+wα4. In theory, the representation in EichlerModConstraint is just a special case of
this for elements in the order ⟨1, i, j, k⟩, however, we make the distinction in these algorithms explicit, as, in SQIsign,
quaternions are already represented as a decomposition along the basis 1, i, j, k.

Note also that in EichlerModConstraint, it may be a necessary constraint for the output µ0 = γj(C + iD)δ to
satisfy µ0 ∈ I (which is stronger than µ0 ∈ Z+I). This happens automatically if nrd(γ) is divisible by nrd(I);
hence, in all cases where this constraint is necessary, we run the algorithm with this additional condition in mind. The
algorithm also takes as input a bit divisible, which indicates if this condition is true.

Algorithm 11 EichlerModConstraint(I, γ, δ, Divisible)

Input: I a left O-ideal of norm N
Input: γ, δ ∈ Bp,∞
Input: Divisible a boolean indicating whether N | nrd(γ)
Output: C,D ∈ Z such that γj(C + iD)δ ∈ Z+I

1: Let d1 be the denominator of γjiδ
2: Let d2 be the denominator of I
3: Let d3 be the denominator of γjδ
4: Let β1, β2, β3, β4 denote a basis of I in Hermite normal form
5: if Divisible then
6: M := [γjδd1d2, γjiδd2d3, β2d1d3, β3d1d3] ∈M4×4(Z /N Z)
7: Compute [C,D, _, _]T ∈ kerM
8: else
9: M := [γjδd1d2, γjiδd2d3, d1d2d3, β2d1d3, β3d1d3] ∈M4×5(Z /N Z)

10: Compute [C,D, _, _, _]T ∈ kerM
11: end if
12: return C,D

Algorithm 12 FindLinearCombination(β, I,K)

Input: β ∈ O
Input: I,K left O ideals of norm ℓf

Output: C,D ∈ Z such that α(C +Dβ) ∈ K and gcd(C,D, ℓ) = 1, where I = O⟨α, ℓf ⟩
1: Compute α such that I = O⟨α, ℓf ⟩
2: Let β1, β2, β3, β4 denote a basis of I in Hermite normal form
3: Let A = [α1, α2, α3, α4] denote a basis of O
4: Compute vα ∈ Z4 such that Avα = α
5: Compute vαβ ∈ Z4 such that Avαβ = αβ

6: Compute vβ2
∈ Z4 such that Avβ2

= β2
7: Compute vβ3

∈ Z4 such that Avβ3
= β3

8: M := [vα,vαβ ,vβ2 ,vβ3 ] ∈M4×4(Z /N Z)
9: Compute [C,D, _, _]T ∈ kerM

10: return C,D
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2.5.1.4. StrongApproximation. The final step of every high level norm equation algorithm is to go from an element
µ0 := j(C + iD) satisfying γµ0δ ∈ L where L is the (multiplicative) lattice we want to solve the norm equation in,
to an element µ := λµ0 + Nµ1, where λ ∈ Z, µ1 ∈ O0, which automatically satisfies the same constraint and also
solves the norm equation. The original idea is to look for µ1 := x1 + y1ω + j(z1 + w1ω) ∈ R + jR, solving for the
particularly simple norm form

nrd(µ) := N2f(x1, y1) + pf(C +Nz1, D +Nw1),

by first solving it modulo N . Algorithm 13 shows how to do this, including an improvement by [PS18] for finding
shorter solutions, and by [DLLW23] for finding µ1 in the whole order.

Algorithm 13 FullStrongApproximationNµ
(O0, N,C,D, λ, max_tries,Kopt)

Input: O0 a p-extremal maximal order with distinguished suborder Z[
√
−q] + j Z[

√
−q]

Input: N a prime
Input: C,D ∈ Z
Input: λ satisfying λ2 = Nµ/p(C

2 + qD2) (mod N)
Input: max_tries a number bounding the number of tries
Input: Kopt an optional left O-ideal
Output: µ = λj(C + Di) + Nµ1 with µ1 ∈ O0, such that nrd(µ) = Nµ. Additionally, if Kopt is given, then the

output also satisfies µ ̸∈ Z+Kopt
Output: A boolean indicating whether a solution was found

1: c0 := 2pλC
2: c1 := (2pλDq)−1 (mod N)
3: c2 := (T ′ − λ2nµ0

)/N
4: c3 := −c0c1 (mod N)

5: L :=

(
N c3N
0 N2

)
∈M2×2(Z)

6: v := [λC, λD +Nc1c2]
7: v′ := ClosestVector(L, q,v)
8: B := min(⌈log2(Nµ/p)⌉, 3⌈log2(N)⌉+ 10)
9: for µ in EnumerateCloseVectors(L, q,v,v′, max_tries, B) do

10: if µ/2 is primitive in O0 and µ ̸∈ Z+Kopt if Kopt is given then
11: return µ/2, True
12: end if
13: end for
14: return _, False

2.5.2. The KLPT algorithm and generalisations

Given aO0-ideal I with nrd(I) = N , the goal of the KLPT algorithm is to find an equivalent ideal J of norm dividing
T . This is done by finding an element α ∈ I of nrd(α) | T , and then setting J := χI(α), in other words, by solving a
norm equation in I . This is done as follows:

(1) Find an element γ ∈ O0 having norm dividing NT (using FullRepresentInteger).
(2) Find C,D ∈ Z such that µ0 = j(C + iD) satisfies γµ0 ∈ I (using EichlerModConstraint).
(3) Compute µ = λµ0 +Nµ1 of norm dividing NT/nrd(γ) (using FullStrongApproximation).
(4) Output γµ.

In SQIsign, the original KLPT algorithm is used as part of the key generation procedure, here denoted as KeyGenKLPT.
See Algorithm 14 for a detailed description. This algorithm follows a similar structure to the standard KLPT algorithm
specialised to our application of key generation.
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Algorithm 14 KeyGenKLPT(I)

Input: I a left O0-ideal of small prime norm (bitsize is KLPT_secret_key_prime_size ≈ log(p)/4)
Output: Generator β of equivalent ideal J ∼ I of norm 2KLPT_keygen_length

Output: found a boolean indicating whether a solution was found
1: NI := nrd(I)
2: Initialise counter := 0 and found := False
3: k := ⌈log2(p)⌉ − ⌊log2(NI)⌋+ KLPT_gamma_exponent_center_shift
4: Nγ := 2k

5: Nµ := 2KLPT_keygen_length−k

6: while not found and counter < KLPT_keygen_num_gamma_trial do
7: counter := counter+ 1
8: γ, found := FullRepresentInteger(NINγ)
9: if not found then

10: Continue
11: end if
12: C,D := EichlerModConstraint(I, γ, 1,True)
13: Compute α := j(C + iD)
14: if Nµ/nrd(α) is not a square mod NI then
15: Continue
16: end if
17: Set λ to be the square root of 4Nµ/nrd(α)
18: max := KLPT_signing_number_strong_approx
19: µ, found := FullStrongApproximation4Nµ

(O0, NI , C,D, λ, max)
20: if not found then
21: Continue
22: end if
23: end while
24: return γµ, found

Repeating a bounded number of times. The KeyGenKLPT algorithm loops through (with new values of γ) a maximal
number of KLPT_keygen_num_gamma_trial times. If at this point, the algorithm still has not managed to find a valid
output, the algorithm fails. In this case, the key generation procedure must be restarted. For details on how this constant
is chosen, see Chapter 7.

2.5.2.1. Solving norms using Eichler orders. While the key generation procedure requires solving norm equations
in O0-ideals, hence requiring the original KLPT algorithm, we now describe a simpler algorithm, which solves norm
equations in any maximal order O. The idea is to solve the norm equation in the Eichler order O0 ∩ O. Writing I
for the connecting (O0,O)-ideal, we know that O0 ∩ O = Z+I [DKL+20, Proposition 1], allowing us to solve the
norm equation in Z+I , which is a bigger lattice than what KLPT solves for. The result of this, is that the output (i.e.
the minimal sized norm which we can solve for) of this procedure is smaller than the output of the original KLPT
algorithm.

Note also, that we can easily replace O0 by other p-extremal maximal orders O′
0, in case of failure. SQIsign

uses several such p-extremal maximal orders that are stored in a list extremal_order_list. If the algorithms is
not able to find a solution for any of these alternate orders, the algorithm (which is denoted SpecialEichlerNorm, see
Algorithm 15) fails. Note that while this is possible, the parameters can be tuned to make this even extremely rare.

Solving for an isomorphic order. Writing I for the connecting (O0,O)-ideal, we will in practice find some equivalent
ideal J = Iα of small, odd norm (unless I already has small, odd norm, in which case we simply try J = I , see
Subsection 2.4.5.2). This induces an isomorphism OR(J) = αOα−1, which allows us to solve the norm equation in
OR(J) ∩ O = Z+J , before transporting the solution back to O using the isomorphism between O and OR(J).



2.5. SOLVING NORM EQUATIONS 25

Constraint on output. We require our output β to be in O\(Z+K). The reason for this constraint has to do with
where SQIsign applies Algorithm 15; in Section 2.6, we show how it is used a subroutine of IdealToIsogenyEichlerℓ•
(Algorithm 19). The condition that β ∈ O\(Z+K) ensures that the ideal-to-isogeny algorithm is correct and termi-
nates [DLLW23, Lemma 8].

Algorithm 15 SpecialEichlerNormT (O, I,K)

Input: I a (O0,O)-ideal
Input: K a left (O)-ideal of norm ℓ
Output: β ∈ O\(Z+K) of norm dividing T 2

Output: found a boolean indicating that a solution was found
1: if nrd(I) odd and nrd(I) < KLPT_eichler_smallnorm_bitsize then
2: J := I
3: µ, found := SpecialEichlerNormFixedT (O0, J,K)
4: end if
5: if nrd(I) > KLPT_eichler_smallnorm_bitsize then
6: counter := 0
7: while not found and counter < KLPT_eichler_num_equiv_ideal do
8: J := RandomEquivalentPrimeIdeal(I)
9: µ, found := SpecialEichlerNormFixedT (O0, J,K)

10: counter := counter+ 1
11: end while
12: end if
13: if not found then
14: for O′

0 ∈ extremal_order_list do
15: I := I(O′

0,O)
16: counter := 0
17: while not found and counter < KLPT_eichler_num_equiv_ideal do
18: J := RandomEquivalentPrimeIdeal(I)
19: µ, found := SpecialEichlerNormFixedT (O′

0, J,K)
20: counter := counter+ 1
21: end while
22: end for
23: end if
24: Compute α ∈ J so that I = Jα
25: return αµα−1, found

2.5.2.2. Generalised KLPT for signing. Finally, the signing procedure of SQIsign requires solving norm equations
inO-ideals. This is done by the generalised KLPT algorithm, introduced in [DKL+20]. Writing Iτ for the connecting
(O0,O)-ideal, and O = O0 ∩ O this algorithm is based on the fact that when β ∈ I ∩O, we have the equality

[Iτ ]
∗(Iβ/N) = ([Iτ ]

∗I)β/N.

In particular, this means that β ∈ [Iτ ]
∗I ∩ O. Since [Iτ ]

∗I is an O0-ideal, solving for β in this lattice can be solved
by the original KLPT-algorithm, while solving for β in O can be solved by the discussion in the previous section.
Roughly speaking, SigningKLPT combines the constraint solutions via the Chinese remainder theorem, before using
FullStrongApproximation to solve the norm equation. We denote by CRTM0,M1(x0, x1) the function which outputs x
satisfying x ≡ x0 (mod M0) and x ≡ x1 (mod M1), using the Chinese remainder theorem.

The algorithm SigningKLPT (see Algorithm 17) is based on this generalised KLPT algorithm, specialised for the
target application of signing.
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Algorithm 16 SpecialEichlerNormFixedT (O0, J,K)

Input: O0 a special p-extremal maximal order
Input: J a (O0,O)-ideal of norm NJ

Input: K a left O-ideal of norm ℓ
Output: β ∈ O\(Z+K) of norm dividing T 2

Output: found a boolean indicating that a solution was found
1: C,D := EichlerModConstraint(J, 1, 1,False)
2: Set listNβ to be a list of size KLPT_eichler_number_mu_norm, containing integers Nβ | T 2 such that
Nβ/(p(C

2 + qD2)) is a square mod NJ , and satisfying Nβ > pN32KLPT_eichler_strong_approx_log_margin

3: Initialise counter := 0 and found := False
4: while not found and counter < KLPT_eichler_number_mu_norm do
5: Nβ := listNβ [counter]

6: Set λ to be a square root of 4Nβ/(p(C
2 + qD2)) (mod NJ)

7: max := KLPT_eichler_number_strong_approx
8: β, found := FullStrongApproximation4Nβ

(O0, NJ , C,D, λ, max,K)
9: counter := counter+ 1

10: end while
11: return β, found

2.6. Converting between ideals and isogenies
In this section, we describe the algorithm for converting between ideals and isogenies. These operations constitutes
the computationally most expensive part of the signing procedure in SQIsign.

2.6.1. The correspondence between ideals and isogenies

Given an elliptic curve E, an endomorphism of E is an isogeny φ : E → E. The collection of all endomorphisms of
E is called the endomorphism ring of E, written End(E). If we now let E be a supersingular elliptic curve over Fp2 ,
End(E) is isomorphic to a maximal order O in the quaternion algebra Bp,∞. Fixing an isomorphism O ∼= End(E),
an element α ∈ O corresponds to an endomorphism of E, and we write, by slight abuse of notation, α(P ) for P ∈ E
to denote the image of α under a (fixed) isomorphism evaluated at P ∈ E, and similarly, we write kerα to denote the
kernel of the image of α.

Given the curve E, the order O, and an isomorphism O ∼= End(E), we obtain a bijection between:
• left ideals of O of norm coprime to p, and
• finite subgroups of E (kernels of separable isogenies from E).

Explicitly, this correspondence is given by sending an ideal I to the finite subgroup

E[I] := {P ∈ E | α(P ) =∞,∀α ∈ I},
which, when I is written as I = O⟨α,N⟩, simplifies to

E[I] := kerα ∩ E[N ]

Given such an I , we denote the corresponding separable isogeny with kernel E[I] by φI . Reciprocally, given a sepa-
rable isogeny φ from E, we denote the corresponding ideal by Iφ, which can explicitly be given as

Iφ = {α ∈ O | α(P ) =∞,∀P ∈ kerφ}
In SQIsign, we will always use a prime p ≡ 3 (mod 4). In this case, the curve

E0 : y2 = x3 + x

is supersingular, with endomorphism ring isomorphic to

O0 = Z ⊕ iZ ⊕ i+ j

2
Z ⊕ 1 + k

2
Z
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Algorithm 17 SigningKLPT2e(K, Iτ )

Input: K a left O-ideal
Input: Iτ a (O0,O)-ideal of prime norm Nτ , coprime to nrd(K)
Output: Generator β of equivalent ideal J ∼ I of norm 2e

Output: found a boolean indicating whether a solution was found
1: L := RandomEquivalentPrimeIdeal(K)
2: L′ := [Iτ ]

∗L
3: I := RandomEquivalentPrimeIdeal(L′) and let δ be such that I = χL′(δ)
4: NI := nrd(I)
5: k := ⌈log2(p)⌉ − ⌊log2(NI)⌋+ KLPT_gamma_exponent_center_shift
6: Nγ := 2k

7: Nµ := 2e−k

8: Initialise counter := 0 and found := False
9: while not found and counter < KLPT_signing_num_gamma_trial do

10: counter := counter+ 1
11: γ, found := FullRepresentInteger(NINγ)
12: if not found then
13: Continue
14: end if
15: C0, D0 := EichlerModConstraint(I, γ, 1,True)
16: Compute α0 := j(C0 + iD0)
17: if Nµ/nrd(α0) is not a square mod NI then
18: Continue
19: end if
20: Set λ0 to be the square root of Nµ/nrd(α0) mod NI

21: C1, D1 := EichlerModConstraint(Iτ , γ, δ, False)
22: Compute α1 := j(C1 + iD1)
23: if Nµ/nrd(α1) is not a square mod Nτ then
24: Continue
25: end if
26: Set λ1 to be the square root of Nµ/nrd(α0) mod Nτ

27: λ := 2 · CRTNI ,Nτ
(λ0, λ1)

28: Nµ := 4Nµ

29: C := CRTNI ,Nτ
(C0, C1), D := CRTNI ,Nτ

(D0, D1)
30: max := KLPT_signing_number_strong_approx
31: µ, found := FullStrongApproximationNµ

(O, NINτ , C,D, λ, max)

32: if tr(γµδ) ≡ 0 mod 2 then
33: found := False
34: end if
35: end while
36: return γµ, found

The isomorphism is given by sending j to the Frobenius endomorphism (x, y)→ (xp, yp), and i to the automorphism
(x, y) → (−x,

√
−1y) on E0. For the remainder of this document, we fix this choice of E0,O0 and isomorphism

End(E0) ∼= O0, while O refers to an arbitrary maximal order (not necessarily distinct from O0). Whenever we are
given an isogeny φ : E0 → E and the corresponding (O0,O)-ideal I , the isomorphism O0

∼= End(E0) naturally
induces an isomorphism O ∼= End(E). In the following algorithms, we will either work with E0, or with some E for
which we know such a pair (φ, I). So we do not explicitly mention which isomorphism we use for the correspondence:
we use the implicitly defined isomorphism O ∼= End(E).
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2.6.2. Converting O0-ideals to isogenies

The simplest translation of ideals to their corresponding isogeny happens for O0-ideals, whose corresponding kernel
is can be defined over Fp2 , by using both quadratic twists of E0 (i.e. ideals whose norm divides p2 − 1). We depict
this in Algorithm 18. When translating the ideal I := O0⟨α,D⟩, the algorithm works by finding the action of

α = x1 + x2i+ x3
i+ j

2
+ x4

1 + k

2
, xi ∈ Z .

on a fixed basis of PD, QD ∈ E[D], where the action of i, i+j
2 , 1+k

2 are precomputed, and recovering kerα ∩ E[D].
Explicitly, one can recover the action Mα ∈M2(Z /DZ) as

Mα = x1I+ x2Mi + x3M i+j
2

+ x4M 1+k
2
,

before computing some vector [a, b]T ∈ kerMα, which gives the corresponding generator [a]PD + [b]QD of the
desired isogeny.

Outputting the push-through isogeny. In SQIsign, Algorithm 18 is used as a subroutine in IdealToIsogenyEichlerℓ• ,
and when computing the commitment isogeny. In both these cases, we are typically interested in computing the push-
through [φ]∗φI , for some isogeny φ of coprime degree (i.e. the isogeny with kernel φ(kerφI)).

This push-through comes for free by directly applying the coefficients found to the basisP ′
D, Q

′
D := φ(PD), φ(QD).

This comes from the fact that

φ(kerφI) = φ([a]PD + [b]QD) = [a]φ(PD) + [b]φ(QD) = [a]P ′
D + [b]Q′

D.

Because of this, Algorithm 18 takes in a basis P ′
D, Q

′
D of E[D] (where E may be distinct from E0), where this basis

is the image of the fixed D-torsion basis on E0 under some isogeny φ of coprime degree to φI .

Kernel to isogeny. In Algorithm 18 and several other places throughout this document, we will denote by Kernel-
ToIsogeny a function which takes as input an elliptic curve point, and outputs the separable isogeny, whose kernel is
generated by that point, for instance using the appropriate choice of Vélu or

√
élu (see Section 2.3).

Algorithm 18 IdealToIsogenyD(I, P ′
D, Q

′
D)

Input: I a left O0-ideal of norm dividing D
Input: P ′

D, Q
′
D the image of the precomputed basis of E[D], under some isogeny φ

Output: [φ]∗φI

1: Compute α such that I = O0⟨α,nrd(I)⟩
2: Let A = [1, i, i+j

2 , 1+k
2 ] denote a basis of O

3: Compute vα := [x1, x2, x3, x4]
T ∈ Z4 such that Avα = α

4: Mα := x1I+ x2Mi + x3M i+j
2

+ x4M 1+k
2

5: Compute [a, b]T ∈ kerMα

6: K := [a]P ′
D + [b]Q′

D

7: return KernelToIsogeny(K)

2.6.3. Converting O-ideals of large prime power norm

In the key generation and signing procedure of SQIsign, the ideal that is translated to the signature isogeny is an O-
ideal of large ℓ-power norm. This translation happens using IdealToIsogenyEichlerℓ• (Algorithm 19) to translate such
an ideal to its corresponding isogeny. This algorithm has of two main phases; one consisting of purely quaternion
operations, and one for doing the elliptic curve operations. The goal of the first phase is to compute the quaternions
βi ∈ Oi (using SpecialEichlerNorm, Algorithm 15), needed for the isogeny translation in phase two. From each step
of phase one, we save the ideals Li, Ri, encoding information about βi, as well as the integer values Ci, Di, and ti, the
reduced trace of βi. Phase two translates the ideals Ii to their corresponding isogenies, by using the ideals Li, Ri, and
the values Ci, Di, ti saved during phase one. Figure 2 shows how the involved ideals relate.
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Algorithm 19 IdealToIsogenyEichlerℓ•(I, J,BA,T , Q)

Input: I a left O-ideal of norm ℓe, where e = fg
Input: J a (O0,O)-ideal of norm ℓ•

Input: BA,T , a basis of EA[T ]
Input: Q, a point of EA[ℓ

f ]
Output: φI corresponding to I
Output: zip = (b, s1, s2, . . . , sg) compressed φI

Output: found a boolean indicating that the computation was successful
1: Set J1 := J, I1 := I + ℓfO, I ′1 := I−1

1 I,O1 := O,K1 := J̄ + ℓfO
2: for i ∈ {1, . . . , g} do
3: Li, Ri, Ci, Di, ti, found := IdealStep(Ii,Ki, Ji)
4: if not found then
5: return _, _, found
6: end if
7: Ji+1 := JiIi
8: Ki+1 := Īi
9: Oi+1 := OL(I

′
i)

10: Ii+1 := I ′i + ℓfOi+1

11: I ′i+1 := I−1
i+1I

′
i

12: end for
13: Set Qℓf := Q
14: Let PT , QT := BA,T

15: φI := [1] ∈ End(EA)
16: φIi , Qℓf , s1, b := IsogenyStep(Li, Ri, Ci, Di, ti, Qℓf , PT , QT ,True)
17: for i ∈ {2, . . . , g} do
18: PT , QT := φIi−1

(PT ), φIi−1
(QT )

19: φI := φIi−1 ◦ φI

20: φIi , Qℓf , si, _ := IsogenyStep(Li, Ri, Ci, Di, ti, Qℓf , PT , QT ,False)
21: end for
22: φI := φIg ◦ φI

23: zip := (b, s1, s2, . . . , sg)
24: return φI , zip, found

O0

Oi−1 Oi Oi+1 OR(I)

Ji−1

RiLi

Ki Ii I′
i

Figure 2. The ideals involved in each iteration the first phase of IdealToIsogenyEichlerℓ• . Note that
Ji = Ji−1K̄i. Further, Li and Ri are ideals of norm dividing T , Ji and I ′i are ideals of norm ℓ•,
while Ki and Ii are ideals of norm ℓf .

Choice of ℓ. In verification, we will need to compute chains of ℓ-isogenies, and therefore we choose ℓ = 2 to obtain
efficient verification. In the search for SQIsign friendly primes p, described in Chapter 5, this means we require a large
power of 2 to divide p2 − 1

Handling Failures. IdealToIsogenyEichlerℓ• may fail as a result of SpecialEichlerNormT failing to find a solution.
Because of this, the algorithm does all necessary executions of SpecialEichlerNormT first, before doing any costly
elliptic curve operations. In case of failure, the signing procedure must be restarted.
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Algorithm 20 IdealStep(I,K, J)

Input: I a left O-ideal of norm ℓf

Input: K a left O-ideal of norm ℓf

Input: J an (O0,O)-ideal of norm ℓ•

Output: L,R left O0-ideals of norm dividing T with OR(R) = OR(L)
Output: C,D ∈ Z
Output: found a boolean indicating that a solution was found

1: β, found := SpecialEichlerNormT (O,K + ℓO)
2: C,D := FindLinearCombination(β, I,K)
3: t := trd(β)
4: Write nrd(β) = n1n2, with ni | T and n2 | T
5: H1 := Oi⟨βi, n1⟩
6: H2 := Oi⟨β̄i, n2⟩
7: L := [Ji]

∗H1

8: R := [Ji]
∗H2

9: return L, R, C, D, t, found

Algorithm 21 IsogenyStep(L,R,C,D, t,Qℓf , PT , QT ,FirstStep)

Input: L,R left O0-ideals of norm dividing T with OR(R) = OR(L)
Input: C,D ∈ Z
Input: t the trace of β
Input: Qℓf a point of order ℓf (generating the dual of the previous isogeny)
Input: PT , QT a T -torsion basis
Input: FirstStep a boolean to indicate the first step
Output: φ generated by P + [s]Q
Output: Q′, a generator of φ̂
Output: s a scalar s expressing the kernel generator as a linear combination of a deterministically generated basis
Output: A bit b, indicating a swapped basis

1: (Qℓf , Pℓf ) := CompleteBasisℓf ,p+1(E,Qℓf )
2: Mβ := EndomorphismAction(L,R, t, Pℓf , Qℓf , PT , QT )
3: [a0, a1]

T := [C, 0]T +Mβ [D, 0]
T

4: G := [a0]Pℓf + [a1]Qℓf

5: b := 0
6: if FirstStep: then
7: (Q′

ℓf , P
′
ℓf ) := TorsionBasisℓf ,p+1(E)

8: a0, a1 := NormalizedDlogℓf (E, (P ′
ℓf , Q

′
ℓf ), G)

9: if a0 ≡ 0 (mod ℓ) then
10: Swap P ′

ℓf and Q′
ℓf

11: Swap a0 and a1
12: b := 1
13: end if
14: end if
15: s := a−1

0 a1 (mod ℓf )
16: φ := KernelToIsogeny(G)
17: Q′ := φ(Q)
18: return φ, Q′, s, b
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Compression. The compression of the output isogeny φI is computed together with φI . See Paragraph 3.5 for more
detailed description, as well as the decompression procedure.

Endomorphism Evaluation. As part of the subroutine IsogenyStep, one needs to evaluate β(Pℓ), for some point
Pℓ ∈ kerφK , from the isogenies φ1, φ2 satisfying β = φ̂2 ◦φ1. A naïve way to do this is to simply push Pℓf through
φ̂2 ◦ φ1. While this works, it is very expensive to compute φ̂2 from φ2, since φ2 will be of degree T . To avoid this,
note that solving

φ̂2 ◦ φ1(Pℓf ) = [x′1]Pℓf + [x′2]Qℓf

is essentially the same as solving
φ1(Pℓf ) = [x1]φ2(Pℓf ) + [x2]φ2(Qℓf ),

up to multiplying by degφ2. Hence, we can avoid computing the dual by instead directly computing the decomposition
of φ̂2 ◦ φ1(Pℓf ) on a fixed basis. To do this, we need to make sure the codomain of ϕ1 and ϕ2 are equal (not just
isomorphic). This can be done by using the implicit function Canonical, see Section 3.3 for more details.

An additional complication comes from sign ambiguity which arises from the definition of NormalizedDlog (Al-
gorithm 4). This can be fixed by recovering the whole action of β, and checking that the trace is correct (see Algo-
rithm 22).

Algorithm 22 EndomorphismActionℓf (L,R, t, Pℓf , Qℓf , PT , QT )

Input: L,R left O0-ideals of norm dividing T with OR(R) = OR(L)
Input: t trace of β
Input: Pℓf , Qℓf ℓ

f -torsion basis on E
Input: PT , QT T -torsion basis on E
Output: Mβ the matrix corresponding to the action of β (up to some invertible scalar multiple)

1: φ1 : E → F := IdealToIsogenyT (L,PT , QT )
2: φ2 : E → F ′ := IdealToIsogenyT (R,PT , QT )
3: Compute the isomorphism ω : F → F ′.
4: x1, x2 := NormalizedDlogℓf (F ′, (φ2(Pℓf ), φ2(Qℓf )), ω ◦ φ1(Pℓf ))
5: x3, x4 := NormalizedDlogℓf (F ′, (φ2(Pℓf ), φ2(Qℓf )), ω ◦ φ1(Qℓf ))
6: Try a, b ∈ {1,−1} until (ax1 + bx4) degφ2 ≡ t (mod ℓf ).

7: Mβ :=

(
ax1 ax2
bx3 bx4

)
8: return Mβ

2.6.4. Converting isogenies to ideals

Translating isogenies to their corresponding ideals is comparatively more straightforward. To find the ideal correspond-
ing to the isogeny generated by a point P of order D is to create a basis ⟨P, θ(P )⟩ = E[D] for some endomorphism θ
(often called a distortion map), and decomposing η(P ) (where η is orthogonal to θ) along this basis, i.e. solving

[a]P + [b]θ(P ) = η(P ),

which means that α = a+ bθ−η sends the point P to the identity, and hence I = O⟨α,D⟩ is the corresponding ideal.

Using a decomposition along a fixed basis. In SQIsign, we only ever translate points on E0 to their correspond-
ing ideals, hence we fix the choice θ = j + 1+k

2 and η = i. Further, instead of taking as input a kernel point P ,
KernelDecomposedToIdeal (Algorithm 23) takes in the decomposition of P along a fixed, precomputed basis, i.e.
P = [a]PD + [b]QD. By having again precomputed the action of θ and η on this basis (similar to the simplest ideal to
isogeny translation), we obtain the required ideal without requiring any discrete log computations.
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Algorithm 23 KernelDecomposedToIdealD(c1, c2)

Input: a, b ∈ Z defining a point [a]PD + [b]PD on E0 of order D generating an isogeny ϕ
Output: Iϕ a left O0-ideal

1: Set v1 := [c1, c2]
T

2: v2 := Mθv1

3: M := [v1,v2] ∈M2×2(Z /DZ)
4: [a, b]T := M−1Miv1

5: I := O0⟨a+ b(j + 1+k
2 )− i,D⟩

6: return I



CHAPTER 3

Signature

In this chapter we describe the key generation, signing and verification procedure in SQIsign. At the end, we list
the concrete parameter sets implemented in SQIsign for all three security levels.

3.1. Σ-protocols and the Fiat–Shamir Heuristic
Our signature scheme SQIsign is constructed from a Σ-protocol using the Fiat–Shamir heuristic. For completeness,
we recall the relevant definitions, which will also be used to prove the security of SQIsign in Chapter 9.

Σ-protocols. We begin by defining a Σ-protocol. Recall that a Σ-protocol for an NP-language L is a public-coin
three-move interactive proof system consisting of two parties: a verifier and a prover. The prover is given a witness w
for an element x ∈ L, their goal is to convince the verifier that they know w.

Definition 3.1.1 (Σ-protocol). A Σ-protocol ΠΣ for a family of relations {R}λ parameterized by security pa-
rameter λ consists of PPT algorithms (P1,P2,V). Throughout this section, we assume that the prover algorithms P1

and P2 share state (and hence avoid explicitly passing state between these algorithms). We also assume throughout
that the final verification algorithm V is deterministic. The protocol proceeds as follows:

(1) The prover, on input (x,w) ∈ R, returns a commitment com← P1(x,w) which is sent to the verifier.
(2) The verifier uniformly randomly samples a challenge string chall ← {0, 1}λ and sends the challenge to the

prover.
(3) On receiving the challenge chall from the verifier, the prover runs resp = P2(chall) and returns the response

resp to the verifier.
(4) The verifier runs the final verification algorithm V(x, com, chall, resp) and outputs a bit b ∈ {0, 1}.

We refer to the tuple (com, chall, resp) as a transcript of the Σ-protocol. A transcript (com, chall, resp) is said
to be valid, or accepting, if V(x, com, chall, resp) outputs 1. Certain desirable properties of a Σ-protocol include: (1)
correctness, if a prover knows (x,w) ∈ R and behaves honestly, then the verifier will output 1; (2) special soundness,
if a cheating prover only knows statement x and not a corresponding witness w, they cannot force an honest verifier to
accept the proof; (3) honest-verifier zero-knowledge, no malicious verifier cannot extract additional knowledge from
the prover. These are defined in more detail in Chapter 9.

The Fiat-Shamir Transform. We now describe the standard transformation from a Σ-protocol (P1,P2,V) with a
random instance generator Gen into a digital signature scheme Γ = (GenSig,Sign,Ver) via the Fiat–Shamir trans-
form [FS87]. The transformation uses a hash function H : {0, 1}∗ → {0, 1}λ (modeled as a random oracle) and
works as follows.

• GenSig(1
λ): Generate (x,w) ← Gen(1λ). Output the signing key sk = (x,w) and the verification key

pk = x.
• Sign(sk,msg): On input the signing key sk = (x,w) and a message msg ∈ {0, 1}∗, sample

com← P1(x,w), chall = H(com ∥msg), resp = P2(chall),

and output the signature σ = (com, resp).
• Ver(pk,msg, σ): On input the verification key pk = x, a message msg ∈ {0, 1}∗ and a signature σ =
(com, resp), output 1 (i.e., valid) if for chall = H(com ∥msg)

V (x, com, chall, resp) = 1,

33
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else output 0 (i.e., invalid).
To highlight the connection with an interactive Σ-protocol, we will describe SQIsign signature in terms of the three
stages: commitment, challenge, and response.

3.2. Precomputation
The SQIsign algorithm assumes some precomputed data given the global parameter p, a prime determined as described
in Chapter 5. The precomputed values include:

• The odd, smooth value T determining the “accessible torsion”, satisfying T | p2 − 1, and T > p5/4.
• The largest integer f such that 2f | p+ 1.
• The largest integer g such that 3g | T .
• The degree of the commitment isogeny Dcom, satisfying Dcom | T . For the provided parameter sets, we

define it as Dcom = T/3g .
• The degree of the challenge isogenyDchall, satisfyingDchall | T and gcd(Dcom, Dchall) = 1. For the provided

parameter sets, we define it as Dchall = 2f3g .
• B0,T = [PT , QT ], a basis of E0[T ].
• B0,T = [PDcom , QDcom ], a basis of E0[Dcom].
• B0,T = [PDchall , QDchall ], a basis of E0[Dchall].
• The action of θ = j + (1 + k)/2 on B0,Dcom .
• The action of α ∈ {i, j, k, i+j

2 , 1+k
2 } on B0,T and B0,Dchall .

• A list extremal_order_list of alternate p-extremal maximal orders.
• Constants required by the various quaternion-related algorithms (more details on these constants is given in

Section 7).

Torsion on curve and on twist. In practice, SQIsign uses x-only arithmetic to avoid going to higher extension fields
than Fp2 . However, this also means that one has to split the torsion basis up in a part defined over the curve itself, and its
twist. Specifically, let T = T+T−, where T± | p±1. We compute and store a basisB0,T+ = ⟨P0,T+ , Q0,T+⟩ of order
T+ on E0 and a basis B0,T− = ⟨P0,T− , Q0,T−⟩ of order T− on its twist. All computations requiring the T -torsion
basis, must then be split into a computation on both the T+ and T− basis. This includes the relevant precomputation,
such as computing the action of certain endomorphisms (see Section 2.6) on the T -torsion basis. The same happens
for Dcom. However, for ease of exposition, we only refer to the T -torsion basis in this (and the previous) chapter.

3.3. Key generation
The key generation algorithm SQIsign.KeyGen (Algorithm 25), takes input 1λ (where λ is the security parameter),
and outputs a secret signing key sk and public verification key pk. At a high level, the goal of the key generation is to
produce the public key, a random curve EA, and the secret key, data required compute with End(EA).

For efficiency, the secret key includes some additional data (technically not necessary to recover End(EA)) that
will be useful to generate signatures. More concretely, the secret key contains :

(1) a quaternion element α, generating the two ideals Isecret, Jsecret corresponding to the secret key isogenies.
(2) a basis BA,T , which is the image of the basis B0,T through an isogeny φsecret : E0 → EA of degree 2•.
(3) A point Q ∈ EA[2

f ] corresponding to the dual of the kernel of the last 2f isogeny composing φsecret.
More specifically, the key generation proceeds by first sampling a random secret leftO0-ideal Isecret of secret prime

norm Dsecret ≡ 3 mod 4 of size ≈ p1/4. This ideal will be used to compute the input to SigningKLPT in the signing
procedure. Subsequently, the key generation computes an equivalent ideal Jsecret ∼ Isecret of norm 2• (using KeyGen-
KLPT), before translating Jsecret to its corresponding isogeny φsecret : E0 → EA, using IdealToIsogenyEichler2• . The
ideal Jsecret, and corresponding isogeny φsecret, as well as the image BA,T of the precomputed basis B0,T under φsecret
and the kernel of the dual of the last step of φsecret are all used to translate the output of SigningKLPT in the signing
procedure to its corresponding isogeny.
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Sampling random ideals. In the key generation procedure of SQIsign, sampling the random secret ideal is done by
first sampling a random secret primeDsecret ≡ 3 mod 4 of size≈ p1/4. One then finds γ ∈ O0 of normDsecret2

⌈log2(p)⌉

using FullRepresentInteger. Finally, sampling a random scalar 0 < a < Dsecret, one can output the ideal O0⟨γ(a +
i), Dsecret⟩. Note that nrd(a+ i) = a2 + 1, which cannot be divisible by Dsecret since Dsecret ≡ 3 (mod 4), hence the
output ideal does indeed correspond to an isogeny of degree Dsecret.

Handling failures. As noted in Chapter 2, several procedures used in SQIsign.KeyGen and SQIsign.Sign may fail.
The failures are handled by retrying with different randomness. The number of tries are bounded by two constant
SQIsign_keygen_attempts and SQIsign_response_attempts.

Deterministic choice of Montgomery coefficient. The correspondence between ideals and isogenies (see Section 2.6)
is only defined up to isomorphism. Because different ways of computing isogenies may lead to different Montgomery
equations, MontgomeryNormalize is used to define models that only depend on the isomorphism class. We extend this
normalization to isogenies through Algorithm Normalized.

Algorithm 24 Normalized(ϕ)

Input: An isogeny ϕ : E1 → E2

Output: A normalized curve E′
2 isomorphic to E2

Output: An isogeny ϕ′ : E1 → E′
2 equal to ϕ up to post-composition by an isomorphism.

1: E′
2, ι := MontgomeryNormalize(E2)

2: return E′
2, ι ◦ ϕ

Algorithm 25 SQIsign.KeyGen(1λ)

Input: 1λ where λ is the security parameter
Output: Secret signing key sk and public verification key pk

Output: found a boolean indicating whether computation succeeded
1: Set found := False counter := 0
2: while found = False and counter < SQISIGN_keygen_attempts do
3: counter := counter+ 1
4: Select a random KLPT_secret_key_prime_size-bit prime Dsecret ≡ 3 mod 4
5: Set Isecret to be a random ideal of norm Dsecret
6: α, found := KeyGenKLPT2•(Isecret)
7: if not found then
8: Continue
9: end if

10: Jsecret := χIsecret(α)
11: φsecret, _, found := IdealToIsogenyEichler2•(Jsecret,O0, B0,T )
12: end while
13: if found then
14: α := ᾱ
15: EA, φsecret := Normalized(φsecret)
16: BA,T := φsecret(B0,T )
17: Let P be a point generating kerφsecret ∩ E0[2

f ]
18: (P,Q) := CompleteBasis2f ,p+1(E0, P )
19: Q := φsecret(Q)
20: Set pk := EA

21: Set sk :=
(
α,BA,T , Q

)
22: end if
23: return sk, pk, found
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E0 E1

EA E2

φsecret

φresp

φchall

φcom

Figure 1. The SQIsign protocol with three phases: commitment φcom, challenge φchall and response φresp.

3.4. Signing
The SQIsign signing algorithm can naturally be divided into three stages: commitment phase, challenge phase and
the response phase. To apply this transformation, one applies an appropriate hash function H , which takes as input a
message msg and a normalized Montgomery curve E, and outputs a kernel generator Kchall ∈ E of order Dchall.

This signing procedure SQIsign.Sign (Algorithm 26) takes as input a secret key sk and message msg, and outputs
a signature σ. At a high level, the commitment phase consists of computing a random isogeny φcom : E0 → E1, and
the ideal Icom. The challenge phase consists of hashing the commitment E1 and the message to a point generating the
challenge isogeny φchall : E1 → E2, and computing the ideal Ichall. Finally, the response phase consists of computing
an equivalent ideal J ∼ Isecret · Icom · Ichall, and translating J to its corresponding isogeny ϕJ . Below, we give more
detail on each phase of the signing procedure.

Commitment. The commitment starts by sampling a random commitment ideal Icom of normDcom and then comput-
ing the isogeny φcom : E0 → E1 corresponding to ideal Icom. The commitment isogeny has to be composed with an
isomorphism to the normalized Montgomery curve for the isomorphism class of E1. Finally, the commitment phase
ends with pushing the basis B0,Dchall through this composition, to obtain P1, Q1.

Challenge. The challenge phase starts by hashing the message msg and normalized Montgomery curve E1 to obtain
the kernel Kchall of the challenge isogeny φchall : E1 → E2. We define the hash function H as follows: on input a
message msg and a curve E1, compute a = SHAKE256(msg ||j(E1)). Then, compute R1, S1 a deterministic basis of
E1[Dchall] and set the output Kchall = R1 + [a]S1.

Similarly to φcom, φchall also needs to be composed with an isomorphism to the normalized Montgomery curve
corresponding to the isomorphism class of E2. Kchall is then decomposed along the basis P1, Q1 obtained during
the commitment phase. From this decomposition, we obtain the corresponding ideal Ichall (by using KernelDecom-
positionToIdeal). Next, the commitment computes a compression of the dual of the challenge isogeny. This is done
by computing a generator P ′ of ker φ̂chall, before decomposing this along a deterministically computed Dchall-torsion
basis, on the normalized Montgomery curve E2. Finally, the challenge phase ends with deterministically computing a
generator Q of φchall (essentially by computing a generator of the dual of the dual of φchall), and computing a scalar r,
such that [r]Q = Kchall.

Response. The response phase consists of first finding an equivalent ideal J ∼ Isecret · Icom · Ichall of 2• norm, using
SigningKLPT. This is repeated until the output of SigningKLPT is cyclic. Once this output is cyclic, the (compressed)
isogeny zip corresponding to J is computed.

The final signature is then output as (zip, r, s), together with a boolean indicating whether or not the signing
procedure succeeded.

3.5. Verification
The final algorithm to describe is the verification algorithm, which takes in the message, signature and public key of
the signer, and checks whether the signature is valid. The verification consists of recomputing the response isogeny
φresp : EA → E2, the (dual of the) challenge isogeny φ̂chall : E2 → E1, before checking that the hash of E1 and the
message indeed generates the challenge isogeny.
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Algorithm 26 SQIsign.Sign(sk,msg)

Input: Secret signing key sk and message msg ∈ {0, 1}∗
Output: Signature σ
Output: found a boolean indicating whether computation succeeded

1: Parse sk as
(
α,BA,T , Q

)
2: Compute n(α) := 2eDsecret
3: Compute Isecret := O0⟨ᾱ,Dsecret⟩
4: Compute Jsecret := O0⟨α, 2e⟩

Commitment.
5: Sample a, b at random from interval [1, Dcom] until gcd(a, b,Dcom) = 1
6: Icom := O0⟨a+ bθ̄,Dcom⟩
7: Kcom := aP0 + bθ(P0), where P0 ∈ B0,Dcom

8: E1, φcom := Normalized(KernelToIsogeny(Kcom)), where φcom : E0 → E1

9: B1,Dchall = φcom(B0,Dchall). Write B1,Dchall = (P1, Q1)

Challenge.
10: Kchall := H(msg, E1)
11: E2, φchall := Normalized(KernelToIsogeny(Kchall)), where φchall : E1 → E2

12: a, b := NormalizedDlogDchall
(E1, (P1, Q1),Kchall)

13: Ichall := [Icom]∗KernelDecomposedToIdealDchall
(a, b)

14: (K,P ) := CompleteBasisDchall,p+1(E1,Kchall)
15: P ′ := φchall(P )
16: (P2, Q2) := TorsionBasisDchall,p+1(E2)
17: b1 := 0, b2 := 0
18: a0, a1 := NormalizedDlog2f (E2, ([3

g]P2, [3
g]Q2), [3

g]P ′)
19: If a0 ≡ 0 (mod 2), swap a0 and a1 and set b1 := 1
20: s1 := a−1

0 a1 (mod 2f )
21: a0, a1 := NormalizedDlog3g (E2, ([2

f ]P2, [2
f ]Q2), [2

f ]P ′)
22: If a0 ≡ 0 (mod 3), swap a0 and a1 and set b2 := 1
23: s2 := a−1

0 a1 (mod 3g)
24: E′

1, φ̂chall := Normalized(KernelToIsogeny(P ′)), where E′
1 = E1

25: s := (b1, s1, b2, s2)
26: Use s to compute deterministically a point Q′ so that ⟨P ′, Q′⟩ = E2[Dchall]
27: Q := φ̂chall(Q

′)
28: Compute r such that Kchall = [r]Q

Response.
29: K := Isecret · Icom · Ichall
30: e := KLPT_signing_klpt_length
31: found := False
32: counter := 0
33: while not found and counter < SQIsign_response_attempts do
34: counter := counter+ 1
35: J, found := SigningKLPT2e(K, Isecret)
36: if not found then
37: Continue
38: end if
39: Compute α such that J · Ichall = ⟨α, 2eDchall⟩
40: if If α/k ∈ OR(Isecret) for any k > 1 then
41: Continue
42: end if
43: end while
44: _, zip, found := IdealToIsogenyEichler2•(J, Jsecret, BA,T , Q)
45: σ := (zip, r, s)
46: return σ, found
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Algorithm 27 SQIsign.Verify(msg, σ, pk)

Input: A message msg, signature σ and pk the public key
Output: verified a boolean indicating whether the verification passed

1: zip, r, s := σ
2: E2, Q2 := Decompressresp(zip, pk)
3: verified := DecompressAndCheckchall(s, E2, Q2, r,msg)
4: return verified

On compression/decompression. Both the response isogeny and the dual of the challenge isogeny are compressed
during signature generation, and made part of the signature. Both will be decompressed during verification. For the
response isogeny, compression is given by factoring the isogeny into steps of length 2f , then expressing each factor as
an isogeny generated by P + [si]Q for some deterministically generated basis P,Q of E[2f ]. In general, this requires
potentially swapping P and Q; this is potentially done in the first step, indicated by the bit b. After the first step, we
can take Q to be an element generating the dual of the previous step. Since the isogeny is not backtracking, this is
sufficient to guarantee that the next kernel can be generated by an element of the form P + [si]Q. Additionally, the
decompression, must return a point Q2 of order 2 generating the dual of the last 2-isogeny computed. This is used to
verify that the composition φ̂chall ◦ φresp is cyclic.

The dual of the challenge isogeny consists only of a single step, of degree Dchall. Since Dchall is not a prime
power, there is no guarantee that a point can be written as P + [si]Q or Q + [si]P , where P,Q denote generators of
E[Dchall]. Hence, we factor Dchall up into its prime power parts (in practice, a power of 2 and a power 3), and proceed
as before. Finally, to check that the signature is valid, we check that the composition is cyclic, by checking that ˆφchall
does not factor through the isogeny generated by Q2, before checking that the hash of E1 and the message generates
the challenge isogeny.

Algorithm 28 Decompressresp(E, s)

Input: E a normalized Montgomery curve
Input: s = (b1, s1, s2, . . . , se) a compression of the isogeny φ
Output: E the codomain of φ (where E is a normalized Montgomery curve)
Output: Q ∈ E a point generating the 2-isogeny φ′ such that φ = φ̂′ ◦ φ′′

1: (P2f , Q2f ) := TorsionBasis2f ,p+1(E)
2: b, s′ := s
3: if b1 = 1 then
4: swap P2f , Q2f

5: end if
6: for si in s′ do
7: K := P2f + [si]Q2f

8: φ := KernelToIsogeny(K)
9: E := φ(E)

10: Q2f := φ(Q2f )
11: (Q,P2f ) := CompleteBasis2f ,p+1(E,Q2f )
12: end for
13: E′, ψ := MontgomeryNormalize(E)
14: Q := (0 : 0 : 1) ∈ E
15: return E′, ψ(Q)

3.6. Parameter sets
In this section, we list parameter sets for the security levels NIST-I, NIST-III and NIST-V. A parameter set consists in
a choice of prime p (the characteristic of the field), and a bound B on the prime factors of T (so T is defined as the
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Algorithm 29 DecompressAndCheckchall(E, s,Q, r,msg)

Input: E a normalized Montgomery curve
Input: s = (b1, s1, b2, s2) a compression of the isogeny φ
Input: Q ∈ E a point of order 2
Output: verified a boolean indicating whether verification should pass

1: (PDchall , QDchall) := TorsionBasisDchall(E)
2: P2, Q2 := [3g]PDchall , [3

g]QDchall

3: P3, Q3 := [2f ]PDchall , [2
f ]QDchall

4: if b1 = 1 then
5: swap P2, Q2

6: end if
7: if b2 = 1 then
8: swap P3, Q3

9: end if
10: K2 := P2 + [s1]Q2

11: if [2f−1]K2 = Q then
12: return False
13: end if
14: K3 := P3 + [s2]Q3

15: φ2 := KernelToIsogeny(K2)
16: K3 := φ2(K3)
17: φ3 := KernelToIsogeny(K3)
18: φ := φ3 ◦ φ2

19: E,φ := Normalized(φ)
20: Use s to compute deterministically Q′ such that ⟨kerφ,Q′⟩ = E[Dchall]
21: P := H(msg, E)
22: return P = [r]φ(Q′)

largest odd integer dividing p2 − 1 whose prime factors are at most B). All other parameters can be deduced from p,
B, and the above specification; for convenience, we also list below the values of f and the factorisations of T .

Chapter 5 gives more details on parameter requirements, searches, and choices.

NIST-I:

pI
1973 = 0x34e29e286b95d98c33a6a86587407437252c9e49355147ffffffffffffffffff

BI = 2000

f = 75

T = 336 · 74 · 11 · 13 · 232 · 37 · 592 · 89 · 97 · 1012 · 107 · 1092 · 131 · 137 · 1972 · 223 · 239
· 383 · 389 · 4912 · 499 · 607 · 7432 · 1033 · 1049 · 1193 · 19132 · 1973

NIST-III:

pIII
47441 = 0x3df6eeeab0871a2c6ae604a45d10ad665bc2e0a90aeb751c722f669356ea468

4c6174c1ffffffffffffffffffffffff

BIII = 48000

f = 97

T = 368 · 5 · 712 · 114 · 13 · 474 · 89 · 113 · 1574 · 173 · 233 · 239 · 241 · 443 · 5094 · 569 · 7614

· 1229 · 2393 · 3371 · 4517 · 5147 · 5693 · 5813 · 9397 · 26777 · 39679 · 47441
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NIST-V:
pV
318233 = 0x255946a8869bc68c15b0036936e79202bdbe6326507d01fe3ac5904a0dea65fa

f0a29a781974ce994c68ada6e1ffffffffffffffffffffffffffffffffffff

BV = 320000

f = 145

T = 372 · 5 · 7 · 136 · 17 · 37 · 416 · 53 · 676 · 73 · 1036 · 127 · 151 · 4616 · 643 · 733 · 739 · 8276 · 1009
· 2539 · 4153 · 5059 · 7127 · 10597 · 13591 · 14923 · 15541 · 15991 · 18583 · 23227 · 48187
· 63247 · 65521 · 318233

3.7. Binary format
For the purpose of transmitting the mathematical objects involved in the signature scheme over the wire, we have to
specify how they are encoded into bytes. The following types of component objects are involved:

• Elements of Fp are encoded as unsigned integers between 0 and p − 1, in little-endian, using the smallest
number of bytes capable of representing all elements of Fp, i.e., ⌈log256(p)⌉ bytes.

• Elements of Fp2 are encoded by simply concatenating the encoding of the real part with the encoding of the
imaginary part.

• Integers in Z are encoded in little-endian two’s complement representation; the number of bytes is fixed on
a per-instance basis by the specification.

• Quaternions are encoded by storing the encodings of five integers: The denominator, followed by four coef-
ficients for the basis 1, i, j, k.

• Elliptic-curve points are encoded as the encoding of the x-coordinate. Torsion bases (P,Q) are encoded by
concatenating the encodings of P,Q, P−Q.

Secret keys. The secret key is encoded by concatenating the encodings of the following objects, in order:
• the associated public key;
• the quaternion α defined in Algorithm 25;
• a point generating the kernel of the dual of φsecret;
• the “curve” part BA,T+ of the torsion basis BA,T ;
• the “twist” part BA,T− of the torsion basis BA,T .

Public keys. The public key is encoded as a single element of Fp2 , the A-coefficient of the normalized Montgomery
curve in the isomorphism class of the public-key curve.

Signatures. The signature is encoded by concatenating the encodings of the following objects, in order:
• the compressed form zip of the isogeny φI , encoded as a single byte with value b, followed by the integers
s1, ..., sg represented using ⌈f/8⌉ bytes each, notation from Algorithm 19;

• the integer r from Step 28 of Algorithm 26;
• the tuple s from Step 25 of Algorithm 26, encoded as a single byte with value (b1 +2b2), followed by

the encodings of the integers s1 and s2 using the minimal number of bytes required to represent values in
{0, ..., Dchall, even−1} resp. {0, ..., Dchall, odd−1}.



CHAPTER 4

Known answer test values

The folder KAT of the submission media file contains KAT files for SQIsign parameters of level NIST-I, NIST-III
and NIST-V. Each KAT file contains values for secret keys (sk), public keys (pk), signatures concatenated with mes-
sages (sm) and seeds (seed).
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CHAPTER 5

Parameter search and choices

This chapter describes parameter requirements, searches, and choices for the instantiations of SQIsign in the
NIST-I, NIST-III, and NIST-V security levels. We emphasize that the specific choice of parameters within the require-
ments below has no impact on the security of SQIsign (see Chapter 9).

5.1. Parameter requirements
The most expensive computational task in SQIsign is the computation of isogenies. We work with supersingular
elliptic curves over Fp2 for a prime p with cardinality (p+1)2, and their twists of cardinality (p−1)2. As described in
Chapter 2, we can compute isogenies of any smooth degreeN | (p2−1) efficiently without moving to field extensions
of Fp2 . Hence, the efficiency of SQIsign hinges on choosing a prime p of suitable size, such that (p2 − 1) contains
sufficiently many smooth prime factors.

As detailed in Chapter 9, the following sizes are prescribed for security parameter λ:

• Prime sizes of log2(p) ≈ 2λ.
• The degree Dcom of the commitment isogeny φcom of size approximately 22λ ≈ p.
• The degree Dchall of the challenge isogeny φchall of size approximately 2λ ≈ p1/2.
• The degree ℓe of the signature isogeny φresp of size approximately p15/4.
• The degree T of isogenies used in Algorithm 19 of size approximately p5/4.

Our parameter choices mainly prioritize fast verification, while maintaining reasonable signing performance.
Since the verifier computes the isogenies φresp and φ̂chall, we choose the respective degrees to be as smooth as possible.
In particular, we fix ℓ = 2, such that φresp is of degree 2e. Since T has to be coprime to the degree of φresp, this yields
the requirement T ′ = 2f · T | (p2 − 1). We present our more specific requirements below, and refer to Section 3.6 for
explicit choices.

(1) Optimized implementations of finite field arithmetic benefit from at least two bits of distance to the next
multiple of the wordlength of 64 bits. Hence, we aim for primes p of at most 254, 382, resp. 510 bits for
NIST security levels I, III, resp. V.

(2) For efficient computation of T -isogenies, we require the odd factor T ≈ p5/4 to be B-smooth for B as small
as possible. Since values of T close to p5/4 may lead to frequent failures, we require T > p1.27 for security
levels I and III, resp. T > p1.26 for security level V as a failure margin.

(3) We restrict to primes p ≡ 3 (mod 4), since this less general case significantly simplifies implementations
and is beneficial for fast field arithmetic over Fp2 .

(4) The signature isogeny φresp of degree 2e is computed as a composition of ⌈e/f⌉ isogenies of degree 2f ,
where 2f is the maximal power of two dividing p+1. Since the bottleneck is the generation of kernel points
for each of the 2f -isogenies, we require f to be as large as possible, in order to reduce the number of kernel
point generations.

(5) To optimize the cost for computing the challenge isogeny φchall, we set Dchall = 2f · 3g of size roughly p1/2,
and require Dchall | (p2 − 1).

(6) To simplify the kernel point generation during the recomputation of the challenge isogeny, we additionally
require that Dchall|(p + 1). We note that allowing 3g | (p − 1) instead would not have a large impact on
performance, but slightly complicate the implementation.
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These requirements induce a certain conflict between requirements (2) and (4): Larger values of f leave a smaller
factor of p2 − 1 (of log2(2p − f − 1) bits), from which we can pick smooth factors for T . As mentioned above, we
aim at fast verification, thus prioritizing (4) over (2).

Cost metric. For the initial assessment of parameters, we use a cost metric. For signing, the main bottleneck is the
repeated computation of T -isogenies, where the number of computation depends on the size of f . Hence, for the prime
factorization T =

∏
ℓeii we estimate the cost of a T -isogeny through

Cisog(T ) =
∑

ei ·min{CVélu(ℓi), C
√

élu(ℓi)},

where we use the cost estimates of [ACR23] for optimized Vélu-, resp.
√

élu-isogenies as

CVélu(ℓ) = 6ℓ and C√
élu(ℓ) = 37mlog2(3) + 5m log2(m) + 6 log2(m) +
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m+

77

6

for m = ⌊
√
ℓ− 1/2⌋. To account for the number of repetitions of T -isogenies during signing, we use the signing cost

metric

CS(p) =
Cisog(T )

f
.

This represents a more fine-grained metric compared to the metric
√
B/f from [DLLW23].

The performance estimate for verification only considers the size of f .

5.2. Finding parameters
In this section we discuss the different approaches to searching for suitable parameters. We note that other methods
from the literature find somewhat SQIsign-friendly primes, but fail to satisfy all of our requirements simultaneously. In
particular, the methods from [Cos20, DKL+20, DLLW23] find parameters with reasonable powers of two and three,
and smoothness boundsB, but fail to satisfy (2f ·3g) | (p+1). The method from [CMN21] finds smooth parameters,
but does not provide large powers of two and three. The method from [BSC+22] finds smooth parameters and large
powers of two, but does not provide large powers of two and three together.

5.2.1. Sieve-and-boost

We search for primes of the form
p = 2(2f

′
3g

′
x)n − 1

for a smooth number x, and for different values of f ′, g′ such that 2nf
′ ·3ng′ ≥ √p, to ensure thatφchall can be computed

as a chain of 2-isogenies and 3-isogenies. This idea is adapted from [Cos20], which is based on the observation that
when pn(x) := 2xn − 1, then

pn(x)
2 − 1 = 4xn

∏
d|n

Φd(x),

where Φd denotes the d-th cyclotomic polynomial (see [BSC+22]).
When searching for primes of bitsize smaller than 256, 384 and 512 bits, respectively, the search space for x is

roughly of size log2(p)/2n bits. For suitable values of n, we can exhaust the full search space of potential smooth
values of x, but in other cases, we artificially reduce the size of x by increasing the size of log2(2f

′ · 3g′
).

The algorithm starts by identifying smooth numbers in the search interval for x, using the sieve implementa-
tion from [CMN21]. For each smooth x and suitable values of f ′, g′, we store the primes of the form p(x) =

2(2f
′
3g

′
x)nlvl − 1, before simultaneously computing the B-smooth parts of p2 − 1 by using a product tree [Ber04].

The numbers nlvl ∈ {nI, nIII, nV} are chosen to give primes suitable for the three security levels.
Note that the balance between the sizes of f ′ and g′ represents the balance between requirement (2) and (4) as

discussed above.
For an overview over what ranges we sieved over, and values of n, see Table 1. The probabilities of finding large

enough smooth T are shown in Table 2. Note that for large values of n, the search space is not sufficient to expect to
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Sieve range nI for NIST-I nIII for NIST-III nV for NIST-V
[245, 246] - 4 -
[241, 242] 3 - 6
[231, 232] 4 6 8
[220, 221] 6 9 12
[215, 216] 8 12 16
[29, 210] 12 18 24

Table 1. List of ranges that have been exhausted for parameters using the sieve-and-boost approach.

n log2(r)

Probability of pn(r)2 − 1

having odd B-smooth T ≈ p5/4n

given r = 2f
′
3g

′
x

NIST-I
B = 211

log2(p) = 254

f = 64

2 127.0 ≈ 2−34.1

3 84.7 ≈ 2−35.3

4 63.5 ≈ 2−28.7

6 42.3 ≈ 2−24.4

8 31.8 ≈ 2−26.7

NIST-III
B = 215

log2(p) = 382

f = 96

2 191.0 ≈ 2−39.4

3 127.3 ≈ 2−40.7

4 95.5 ≈ 2−33.4

6 63.7 ≈ 2−28.6

8 47.8 ≈ 2−31.1

NIST-V
B = 218

log2(p) = 510

f = 128

2 255.0 ≈ 2−46.1

3 170.0 ≈ 2−47.5

4 127.5 ≈ 2−39.2

6 85.0 ≈ 2−33.7

8 63.8 ≈ 2−36.5

Table 2. Assuming that r = 2f
′
3g

′
x where x is B-smooth and p has log2(p) bits, we display the

probability of p = pn(r)
2 − 1 having a B-smooth divisor 2fT | (p2 − 1) with T ≈ p5/4.

find SQIsign-friendly primes. Especially for the NIST-I security level, the success probabilities of this approach are
limited.

We ran this approach with all choices of f ′ ∈ {⌊50/nI⌋, . . . , ⌊100/nI⌋]}, and for each such f ′, setting g′ to be
the an appropriate size satisfying 2nf

′+1 · 3ng′ ≥ √p. We sieved for 210-smooth numbers as inputs x. The smooth-
ness bound B of T was chosen per value of f ′ and nlvl, such that

√
B/f ′ < cost_boundlvl for cost_boundlvl ∈

{1, 2.5, 5} corresponding to the security levels, estimating signing cost in the rough metric
√
B/f from [DLLW23].

5.2.2. XGCD-and-boost

For the smaller choices of n, where we cannot exhaust the full search interval, we use the technique of [BSC+22] to
improve the probabilities of finding suitable parameters by first generating pairs (r, r − 1) of smooth numbers and
using them as inputs to p(x). Since both xn and x− 1 are divisors of pn(x)2 − 1, we are guaranteed a smooth factor
T ′ of n+1

n (log2(p)− 1) + 2 bits in this case.
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We use this technique specifically for NIST-I parameters and n = 2, requiring roughly 128-bit (r, r − 1). This
guarantees a smooth factor T ′ ≈ p3/2, which is sufficient when f ≈ log2(p)/4.

For finding suitable inputs, we adapt the techniques of [Cos20, DKL+20] using the extended Euclidean algorithm
(XGCD). We fix smooth coprime integers a, b such that ab ≈ 2128. Then the XGCD allows us to find s, t ∈ Z with
st ≈ ab such that as+ bt = 1. We pick (r, r− 1) = (|as|, |bt|), resp. (r, r+ 1) = (|as|, |bt|), which are B-smooth if
and only if s and t are B-smooth. The probability for this can be determined through the Dickman-De Bruijn function
(see [CMN21]). In our context, this is maximized by choosing a ≈ b ≈ 264, such that s ≈ t ≈ 264, and is roughly
2−29.7 for B = 211, resp. 2−25.6 for B = 212.

In order to satisfy the SQIsign requirements, we pick a = 2f
′ · 3g′

, such that potential primes p = p2(r) satisfy
a2 = 22f

′ · 32g′ | (p+ 1) and f ≥ 2f ′ + 1. For b, we sample six (not necessarily distinct) 210-smooth primes ℓi, and
find suitable powers of 5 and 7, such that b = 5k

∏6
i=1 ℓi ≈ 264, resp. b = 7k

∏6
i=1 ℓi ≈ 264. This results in a search

space of roughly 236.1 per choice of (f ′, g′).
Furthermore, we can increase the search space by iterating through multiple XGCD solutions of appropriate size

(see [Cos20]). Given the solution (s, t), there is an infinite number of solutions of the form (sj , tj) = (s+ jb, t− ja)
with j ∈ Z. However, only a limited number of these solution is suitable for our purposes due to the size requirement
of r = |asj | < 2128. On average, this increases the search space by factor 4 in our configuration. Given the success
probabilities above, we thus expect to find enough suitable pairs (r, r ± 1) for B = 211.

Concretely, our implementation does not require (r, r ± 1) to be fully smooth. Instead, for reasons of efficiency,
we first check if p2(r) is prime. If it is, we check p2(r)2 − 1 for a large enough odd smooth factor T . This allows for
r ± 1 to have non-smooth factors, in case r ∓ 1 contains enough smooth factors for T to be large enough. Thus, this
increases the chances for finding suitable parameters.

Furthermore, a variant of this approach first samples one resp. two small primes factors ℓ1 (and ℓ2), and sets
a = 2f

′ ·3g′ ·ℓ1 resp. a = 2f
′ ·3g′ ·ℓ1 ·ℓ2. In contrast, we sample only five resp. four small primes factors and compute

b as above, such that a ≈ b ≈ 264. Since r = |as| ≈ 2128, this reduces the size of s, and thus increases the smoothness
probability for r. This is beneficial, since we have r2 | (p2(r)2 − 1), while the factor r ∓ 1 can compensate for the
worse smoothness probabilities of r ± 1.

We ran this approach with various choices of f ′ ∈ [32, 40] and appropriate g′ ∈ [15, 20], such that 22f
′ ·32g′ ≈ 264.

The smoothness bound B was chosen as B = 211 for f ′ ≤ 35, and B = 212 for f ′ ≥ 36, representing the tradeoff
between smoothness of T and size of f . Due to the sampling of small primes, this approach is probabilistic. Given the
relatively small search spaces and the number of trials performed, we expect to have covered the full search space for
the given parameters.

5.2.3. Results

We collected a list of primes found by the described searches. In a postprocessing step, we assembled a shortlist of the
best potential parameters per security level in the following logic. The shortlist starts from the prime with the largest f
and corresponding smallest signing cost metric CS(p). We then go through all sizes of f in descending order, adding
at most one prime per f , for which CS(p) is smaller than for any other prime on the shortlist, and the smallest among
all primes featuring this f . We give the best primes from the resulting shortlists in reverse order, displaying primes in
hexadecimal form.

As expected from Table 2, the sieve-and-boost method performed especially well for NIST-III and NIST-V, using
nIII ∈ {4, 6},1 resp. nV = 6. For NIST-I, XGCD-and-boost is superior, as discussed above.

As shown in Section 3.6, we chose the primes pI
1973, pIII

47441, resp. pV
318233 for our instantiations for security levels I,

III, resp. V. These choices feature large enough f for fast verification, with small enough smoothness boundsB to keep
signing reasonably efficient.

We note that since all values of f in our instantiations satisfy 2f > p1/4, our implementations do not consider
various special cases that may arise for values of f such that 2f < p1/4.

1Note that nIII = 6 leads to a relatively small search space.
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5.2.3.1. NIST-I.
• pI

1223 = 0xea6a4dda9518e5c5d50ccdfbd97e4c49efe85e0e09039c7ffffffffffffffff

log2(p
I
1223) ≈ 251.9

f = 67
T = 338 · 53 · 76 · 114 · 13 · 19 · 31 · 47 · 592 · 89 · 1372 · 139 · 173 · 197 · 2572 · 281 · 311 · 3472

· 353 · 359 · 4394 · 577 · 733 · 853 · 983 · 1223
log2(T )/ log2(p

I
1223) ≈ 1.274

CS(p
I
1223) ≈ 594.6

Method: XGCD-and-boost (f ′ = 33, g′ = 19, B = 211, one extra factor ℓi in a, powers of 5 in b)

• pI
1973 = 0x34e29e286b95d98c33a6a86587407437252c9e49355147ffffffffffffffffff

log2(p
I
1973) ≈ 253.7

f = 75
T = 336 · 74 · 11 · 13 · 232 · 37 · 592 · 89 · 97 · 1012 · 107 · 1092 · 131 · 137 · 1972 · 223 · 239

· 383 · 389 · 4912 · 499 · 607 · 7432 · 1033 · 1049 · 1193 · 19132 · 1973
log2(T )/ log2(p

I
1973) ≈ 1.295

CS(p
I
1973) ≈ 743.8

Method: XGCD-and-boost (f ′ = 35, g′ = 18, B = 211, two extra factors ℓi in a, powers of 7 in b)

• pI
8011 = 0x31ebc32c245c72c40115748f25c4ba516cb58aaae247ffffffffffffffffffff

log2(p
I
8011) ≈ 253.6

f = 83
T = 330 · 52 · 77 · 172 · 31 · 61 · 712 · 1732 · 241 · 3492 · 409 · 521 · 5772 · 6532 · 761 · 8272

· 1283 · 2011 · 2017 · 25212 · 3181 · 3833 · 3931 · 8011
log2(T )/ log2(p

I
8011) ≈ 1.301

CS(p
I
8011) ≈ 1247.1

Method: XGCD-and-boost (f ′ = 40, g′ = 15, B = 212, two extra factors ℓi in a, powers of 7 in b)

5.2.3.2. NIST-III.
• pIII

5563 = 0x4cd95e35908847e31ac2953eb6d35610ccd37a339b81a09214ad43375dd1219f

9ed34f2a4ad05b5507fffffffffffff

log2(p
III
5563) ≈ 378.3

f = 55
T = 384 · 5 · 7 · 1312 · 19 · 29 · 43 · 476 · 79 · 109 · 229 · 277 · 433 · 4576 · 463 · 719 · 757 · 9536

· 1321 · 1399 · 1627 · 2179 · 2293 · 4357 · 5563
log2(T )/ log2(p

III
5563) ≈ 1.287

CS(p
III
5563) ≈ 1752.1

Method: Sieve-and-boost using n = 6

• pIII
22741 = 0x851b4a8ba9ca5268304fcfea6b20d3641c5982a3e888543d00f3741c8764bdb

ef38bf6a1531aa1fffffffffffffffff

log2(p
III
22741) ≈ 379.1

f = 69
T = 384 · 5 · 7 · 11 · 19 · 294 · 314 · 47 · 71 · 113 · 163 · 191 · 193 · 2294 · 2934 · 373 · 409 · 463

· 5714 · 5994 · 757 · 881 · 1033 · 1489 · 1753 · 8069 · 10831 · 22741
log2(T )/ log2(p

III
22741) ≈ 1.270

CS(p
III
22741) ≈ 1939.7

Method: Sieve-and-boost using n = 4

• pIII
47441 = 0x3df6eeeab0871a2c6ae604a45d10ad665bc2e0a90aeb751c722f669356ea468

4c6174c1ffffffffffffffffffffffff

log2(p
III
47441) ≈ 377.9
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f = 97
T = 368 · 5 · 712 · 114 · 13 · 474 · 89 · 113 · 1574 · 173 · 233 · 239 · 241 · 443 · 5094 · 569 · 7614

· 1229 · 2393 · 3371 · 4517 · 5147 · 5693 · 5813 · 9397 · 26777 · 39679 · 47441
log2(T )/ log2(p

III
47441) ≈ 1.298

CS(p
III
47441) ≈ 2987.3

Method: Sieve-and-boost using n = 4

• pIII
194581 = 0x2a61eff6f5b99e8a6531a3dd016bce053791af1d1f4c95da3643c770c28ca9

e1ffffffffffffffffffffffffffffffff

log2(p
III
194581) ≈ 381.4

f = 129
T = 360 · 5 · 7 · 13 · 193 · 294 · 372 · 41 · 594 · 89 · 113 · 139 · 277 · 353 · 4314 · 541 · 557 · 743

· 9678 · 3469 · 4993 · 6221 · 6761 · 8233 · 9521 · 25169 · 35869 · 54493 · 194581
log2(T )/ log2(p

III
194581) ≈ 1.293

CS(p
III
194581) ≈ 3932.1

Method: Sieve-and-boost using n = 4

5.2.3.3. NIST-V.
• pV

40609 = 0x1258a04d42f6b813d52a2b7a316c88f20e534878009f8262082fa9996b5bb08ed

14526e626a06c28e0388a0721ebd5514e072a9d10861ffffffffffffffffff

log2(p
V
40609) ≈ 504.2

f = 73
T = 3114 · 5 · 76 · 13 · 17 · 19 · 23 · 37 · 43 · 596 · 97 · 1136 · 211 · 2296 · 263 · 3736 · 487 · 547 · 9296

· 1021 · 1297 · 1511 · 2053 · 2593 · 2647 · 6217 · 19777 · 24103 · 30403 · 40609
log2(T )/ log2(p

V
40609) ≈ 1.264

CS(p
V
40609) ≈ 3804.4

Method: Sieve-and-boost using n = 6

• pV
66343 = 0x353849c34fc94533c0d441876a7a45402ba8961efb78f3aef29a679fc7623bfcc

519c82a014ac7fa64b2f97fa47d154b20f99af07ffffffffffffffffffffff

log2(p
V
66343) ≈ 505.7

f = 91
T = 3108 · 5 · 72 · 136 · 372 · 43 · 79 · 107 · 139 · 211 · 349 · 4216 · 4336 · 439 · 457 · 467 · 7396

· 9476 · 1433 · 1511 · 2287 · 3229 · 5153 · 5399 · 5953 · 9133 · 51637 · 61441 · 66343
log2(T )/ log2(p

V
66343) ≈ 1.272

CS(p
V
66343) ≈ 4282.2

Method: Sieve-and-boost using n = 6

• pV
141079 = 0xf18c5c8a0bafce13183dc4b177b859181420c5d9aa73483b708189cf1f67db4a

ec4488346a2cfe7fc41c079c2123aea07ffffffffffffffffffffffffffff

log2(p
V
141079) ≈ 499.9

f = 115
T = 390 · 56 · 712 · 13 · 19 · 2312 · 31 · 67 · 89 · 157 · 1976 · 2236 · 2516 · 373 · 433 · 487 · 571 · 659

· 757 · 769 · 983 · 991 · 4597 · 4937 · 5717 · 21757 · 28513 · 30931 · 73877 · 78193 · 141079
log2(T )/ log2(p

V
141079) ≈ 1.264

CS(p
V
141079) ≈ 4891.7

Method: Sieve-and-boost using n = 6

• pV
318233 = 0x255946a8869bc68c15b0036936e79202bdbe6326507d01fe3ac5904a0dea65fa

f0a29a781974ce994c68ada6e1ffffffffffffffffffffffffffffffffffff

log2(p
V
318233) ≈ 501.2

f = 145
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T = 372 · 5 · 7 · 136 · 17 · 37 · 416 · 53 · 676 · 73 · 1036 · 127 · 151 · 4616 · 643 · 733 · 739 · 8276 · 1009
· 2539 · 4153 · 5059 · 7127 · 10597 · 13591 · 14923 · 15541 · 15991 · 18583 · 23227 · 48187
· 63247 · 65521 · 318233

log2(T )/ log2(p
V
318233) ≈ 1.291

CS(p
V
318233) ≈ 5764.2

Method: Sieve-and-boost using n = 6



CHAPTER 6

Performance analysis

The submission package includes a reference implementation written in portable C (C99) and an additional,
assembly-optimized implementation targeting the Intel Broadwell architecture. Both implementations share the same
code base of the overall SQIsign library. The SQIsign library is built into several sub-modules that are linked to
libraries supporting the NIST Signature API:

• Protocols: implementing the signature key-generation, signing and verification protocols.
• Id2iso: implementation of ideal to isogeny algorithms.
• EC: elliptic curve and isogeny computation.
• KLPT: implementation of the KLPT algorithm.
• Precomp: module to pre-compute constants for the code package.
• Quaternion: module for quaternion computation.
• Intbig: arbitrary precision module based on GMP.
• Common: common dependencies.

The SQIsign library contains a test harness for self-tests and KAT verification, and a benchmarking application re-
porting CPU cycles. Each submodule contains further unit-testing suites. All build and test options are described in the
README.md file along with the submission package. While the implementation provides from scratch implementations
of all SQIsign building blocks except Intbig, it is not constant-time.

6.1. Key and signature sizes
Key and signature sizes are listed in Table 1 for each security level.

Table 1. SQIsign key and signature sizes in bytes for each security level.

Parameter set Public key Secret key Signature
NIST-I 64 782 177

NIST-III 96 1138 263
NIST-V 128 1509 335

6.2. Reference implementation
For benchmarking, the reference implementation is built with two configurations: (1) using the GMP system installation
on Ubuntu 22.04 LTS and (2) using a custom built version with disabled assembly code. The CMake build options
were:

(1) -DSQISIGN_BUILD_TYPE=ref -DCMAKE_BUILD_TYPE=Release
(2) -DSQISIGN_BUILD_TYPE=ref -DCMAKE_BUILD_TYPE=Release

-DENABLE_GMP_BUILD=ON -DGMP_BUILD_CONFIG_ARGS:STRING="–-disable-assembly"
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6.3. Optimized implementation
The optimized implementation is the same as the reference implementation.

6.4. Intel Broadwell optimized implementation
The additional implementation uses assembly-optimized code targeting the Intel Broadwell architecture (or later) and
is provided for NIST-I. The assembly-optimizations are applied to the GF-module, while the remaining code base is
re-used from the reference implementation. For benchmarking, we used the following CMake options:
-DSQISIGN_BUILD_TYPE=broadwell -DCMAKE_BUILD_TYPE=Release.

6.5. Performance evaluation
Performance evaluation was performed on an Intel x86 64 bit CPU. All builds use the compile flags -march=native
-O3. Turbo Boost was turned off during benchmarking to get consistent timings. GMP was used in version 6.2.1.

The results are shown in Table 2.

Table 2. SQIsign performance in 106 CPU cycles on an Intel Xeon Gold 6338 CPU (Ice Lake),
compiled on Ubuntu with clang version 14. Results are the median of 10 benchmark runs.

Parameter set KeyGen Sign Verify

Reference implementation (with default GMP installation)
NIST-I 2’834 4’781 103

NIST-III 21’359 38’884 687
NIST-V 84’944 160’458 2’051

Reference implementation (with GMP –-disable-assembly)
NIST-I 3’728 5’779 108

NIST-III 23’734 43’760 654
NIST-V 91’049 158’544 2’177

Assembly-optimized implementation for Intel Broadwell or later
NIST-I 1’661 2’370 37



CHAPTER 7

Implementation details

This section introduces some implementation details and constants that are used in the various algorithms of the
protocols. We will explain their role and describe how they are computed. The value of some of those constants is
chosen to ensure that some failure probability is smaller than some value that we define as negl. The heuristics behind
the formula we used are the object of Chapter 8.

For the concrete computations, we take negl = 2−64.

7.1. Generic
Constants.

(1) KLPT_primality_num_iter: the number of Miller-Rabin tests used in to test pseudo-primality for the
equivalent ideal functionality. It should be such that 4−KLPT_equiv_primality_num_iter < negl (this is a common
upper-bound on the probability of failure of repetitions of Miller Rabin test).

(2) KLPT_random_prime_attempts: when looking for a random prime number of bitsize k, we try at most
k(KLPT_random_prime_attempts) random integers until one that is prime is found. Should ensure that

(1 + ln 2/k)
k(KLPT_random_prime_attempts) ≤ negl

This comes from the fact that a random number of bitsize k has a probability − ln 2/k of being a prime.

7.2. Variants of KLPT and sub-algorithms

7.2.1. RandomEquivalentPrimeIdeal

This concerns Algorithm 8.

Constants.
(1) KLPT_equiv_bound_coeff: bound on the absolute value of the coefficients of the linear combination of

the small basis used to find the equivalent ideal.
(2) KLPT_equiv_num_iter: maximum number of trials to find an equivalent ideal of prime norm.

These constants are chosen as follows. Let B := KLPT_equiv_num_iter, C := KLPT_equiv_num_iter. We
will take a value ofC roughly equal to the size of the search space, so this means takingC = (2B+1)3(B+1) ≈ 8B4

(we consider quaternion elements up to sign).
For a typical ideal, we have D ≈ p1/2. So this means we should choose of value of B such that

(1 + 2 ln 2/ log(p))
C ≤ negl

With this choice of constants, we can upper bound the bitsize of the norm of the ideals in output of the klpt_ideal_equiv
algorithm by log2(D) + 2 log2(B).
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7.2.2. FullRepresentInteger

This is about Algorithm 10. The implementation follows quite closely the algorithm FullRepresentInteger introduced
as [DLLW23, Algorithm 1]. The only real difference is that we make γ primitive. There is a constant KLPT_repres_num_
gamma_trial that defines the maximum number of attempts made in the algorithm FullRepresentInteger. Its value
is defined by the equation below, with respect to some value KLPT_gamma_exponent_center_shift defined later
with constants for the Signing KLPT algorithm.

KLPT_repres_num_gamma_trial = 2KLPT_gamma_exponent_center_shift

7.2.3. SigningKLPT

On the ideals given in input. In the implementation, we assume that all the ideals given in input are fixed (meaning
any randomization of the ideals is performed before calling the signing KLPT algorithm).

Constants.
(1) KLPT_signing_num_gamma_trial: number of different γ tried in signing KLPT until we try with another

ideal (to rerandomize the choice of γ).
(2) KLPT_gamma_exponent_center_shift: shifting the exponent used to compute γ to ensure a good prob-

ability of success of the represent integer subroutine.
(3) KLPT_signing_number_strong_approx: number of vectors tried for the strong approximation step inside

the signing KLPT algorithm.
(4) KLPT_signing_klpt_length: length of the output of the Signing klpt algorithm.

We fix these constants so that:

2−KLPT_signing_num_gamma_trial ≤ negl,

− log

(
1− 1

log(p)

)(
2KLPT_gamma_exponent_center_shift

−KLPT_signing_num_gamma_trial

)
≥ − log(negl),

(1− 4/(13 log(p)))KLPT_signing_number_strong_approx ≤ 1/64,

2−2·KLPT_signing_klpt_length−(15/4) log(p)−25 ≤ negl,

and KLPT_signing_klpt_length is a multiple of f .

7.2.4. KeyGenKLPT

Constants.
(1) KLPT_keygen_num_gamma_trial: number of different γ tried in keygen KLPT until we try with another

ideal (to rerandomize the choice of γ).
(2) KLPT_keygen_number_strong_approx: number of vectors tried for the strong approximation step inside

the KeyGenKLPT algorithm.
(3) KLPT_keygen_length: the length of the alternate secret key isogeny.

These constants can be fixed in the same way as for the KLPT signing algorithm, taking into account a different
quadratic residuosity condition and the fact that the input ideal has smaller norm. In practice, we define these constants
so that:

2KLPT_keygen_num_gamma_trial ≤ negl,

(1− 2/(5 log(p)))KLPT_keygen_number_strong_approx ≤ 1/64,

2−2·KLPT_keygen_klpt_length−(5/2) log(p)−25 ≤ negl,

and KLPT_keygen_klpt_length is a multiple of f .
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7.2.5. SpecialEichlerNorm

On the choice of the normsNβ . Given that T has numerous primes factors, there are several ways of selecting values
Nβ dividing T 2. The approach taken in the implementation is the following : we select values of the form T 2/(3eℓ)
where ℓ is either 1 or a non-square modulo N (depending on the quadratic residuosity condition required for Nβ).

On alternate orders. A list of KLPT_eichler_num_alternate_order p-extremal maximal orders is precomputed
for a given prime p. We select the smallest possible values of q (the only condition on q being that p must be inert in
the quadratic imaginary field Q

√
−q). Note that the case q = 1 mod 4 is exactly the same (up to replacing 1 by q

at a few selected places) as the case q = 1 which is detailed in this specification. When q = 3 mod 4, the situation
is slightly more complex because the order Z[

√
−q] is not maximal. This means that we need to divide by 2 to get a

primitive element. Thus, in the implementation we include several small additional steps in the case q = 3 mod 4 to
ensure that the final output of SpecialEichlerNormFixed is primitive.

Constants.
(1) KLPT_eichler_number_mu_norm: Maximum number of target norms tried for nµ.
(2) KLPT_eichler_smallnorm_bitsize: bound (in bitsize) on the norm of the ideal I given in input to the

eichler norm equation for which we use the ideal I to solve the norm equation inside the Eichler order Z+I
(and not an equivalent ideal that would a priori be bigger).

(3) KLPT_eichler_num_equiv_ideal: number of random equivalent ideals tried before aborting (in the generic
case this bound is applied twice : once for O0-ideals and once for O-ideals where O is an alternate special
extremal order).

(4) KLPT_eichler_number_strong_approx: maximum number of trials for the strong approximation step
inside the eichler norm algorithm.

(5) KLPT_eichler_num_alternate_order: number of precomputed alternate orders that we use.
These parameters are fixed as follows:

KLPT_eichler_num_alternate_order = 7

KLPT_eichler_smallnorm_bitsize = ⌈1/2 log(p)− 4/3(log(T )− 5/4 log(p))

KLPT_eichler_number_mu_norm = ⌈(log(T )− 5/4 log(p))/log(3)⌉
KLPT_eichler_num_equiv_ideal = ⌈log(p)/10⌉
KLPT_eichler_number_strong_approx = ⌈10 log(p)⌉

7.2.6. IdealToIsogenyEichler

The IdealToIsogenyEichlerℓ• algorithm as presented in Algorithm 19 does not exactly match the one that we imple-
mented. In particular, for efficiency reasons, the different ideals Ji, Ii, I ′i,Ki are not always computed (when some-
times their generators is enough for the purpose). Moreover, to reduce as possible the size of the coefficients of the
quaternion element we manipulate in this algorithm, we replace these ideals by equivalent ideals of smaller norm when
possible. These equivalent ideals are naturally computed with the RandomEquivalentPrimeIdeal algorithm during the
execution of SpecialEichlerNormFixed performed during each call to IsogenyStep.

7.2.7. Other protocol constants

(1) KLPT_secret_key_prime_size: bitsize of the secret key small prime. This should be ⌈log(p)/4⌉.
(2) SQISign_signing_total_length: A multiple of f . Equal to KLPT_signing_klpt_length.
(3) SQIsign_keygen_attempts : the maximum number of trials for the keygen computation.
(4) SQIsign_response_attempts: the maximum number of trials for the response phase of the signing algo-

rithm SQIsign.Sign.
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Estimating that each consecutive execution of KeyGenKLPT (resp. SigningKLPT) and IdealToIsogenyEichlerℓ•
in SQIsign.KeyGen (resp. SQIsign.Sign) has at most probability 1/2 to fail, we set SQIsign_keygen_attempts =
SQIsign_response_attempts such that

2SQIsign_response_attempts ≤ negl



CHAPTER 8

Heuristics and failure cases

SQIsign key generation and signature algorithms use the KLPT algorithm and its variants from [DKL+20, DLLW23],
whose terminations depend on (plausible) heuristics. Most of the heuristics involved amount to some variation of the
following assumption:

An integer number generated in a particular way behaves like a random number of the same size
with respect to some property.

The actual distributions involved are those occurring in the various KLPT subroutines, and will be quickly recalled
below. Relevant properties are primality and quadratic residuosity.

These types of assumptions are very common in number theory, and even though some may be very hard to
prove rigorously, they are usually true “unless there is a good reason for them to be false”, like a specific congruence
property. Following [Wes22], some assumptions can be removed under the Generalized Riemann Hypothesis (GRH)
but the price to pay is an increase of parameters and significant efficiency loss. SQIsign does not follow that approach.

In addition, we assume that the two-dimensional lattices appearing in the FullStrongApproximation algorithm
behave like random lattices of the same discriminant, and for the SpecialEichlerNorm algorithm, we assume that β
will be in K with probability 1/(ℓ+ 1) if that condition was not checked.

The heuristic assumptions are used to inform decisions on parameters (see Chapter 7), to argue correctness of
the overall algorithm, and to estimate runtime. More precisely, several KLPT subroutines generate integer numbers
under specific distributions until they satisfy some property. In practice, the number of possible attempts is bounded
to ensure termination and constant size signatures. The heuristic assumptions then allow to estimate the number of
attempts a priori needed to satisfy the property, and the residual probability of failure for a given number of attempts
made available.

SQIsign handles most failures in KLPT subroutines by re-randomizing these and earlier steps. This approach only
reduces the overall failure probabilities; we fix an acceptable “negligible” threshold and deduce SQIsign parameters
from a careful analysis.

Below, we first discuss the main assumptions and their general implications, then we review their role in the various
SQIsign subroutines.

8.1. Assumptions used and their implications

8.1.1. Primality

In several SQIsign subroutines, an integer number is generated according to some specific distribution. We generally
assume that the probability that these numbers are prime is identical to the probability that a random number of the
same size is prime.

That is, we assume that a number of b bits is a prime with probability − ln(2)
b .

8.1.2. Quadratic residuosity conditions

Success of strong approximation subroutine requires certain quadratic residuosity conditions to hold on numbers gen-
erated according to specific distributions. We assume that these conditions hold with the same probability as random
numbers.
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That is, we assume that these numbers are squares modulo N with probability 2−k where k is the number of
distinct prime factors of N .

8.1.3. Random lattices

Our full FullStrongApproximation subroutine searches for close vectors to a given target within a two-dimensional
lattice of discriminant N . We assume that these lattices are distributed like random lattices of the same discriminant.

The distance between the closest vector in the lattice and the target vector can be approximated by λ2, i.e. the norm
of the largest vector in a reduced basis. (The actual vector selected will also need to satisfy some related primality
condition, resulting in a slight increase of the distance.)

Random lattices of discriminantN are expected to satisfy λ1 ≈ λ2 ≈ N1/2. Following [AEN19, Section 4.1] we
can estimate the probability that the smallest vector is smaller by a factor B > 0.6826 compared to its expected value
by ∫ 1/2

x=−1/2

∫ ∞

y=( B
0.6826 )

2

3

πy2
dxdy = 0.4449B−2.

We deduce that the square norm of the CVP solution will be bigger than the expected size by a factorB with probability
0.4449B−1.

8.1.4. Ideal sizes

Given a random ideal I , we estimate the probability that its ideal class representative with the smallest prime norm has
norm larger than B by

Pr[N > B] ≈
∏

N prime,N<B

(
1− N

p/12

)
≈ e−

12
p

∑
N prime,N<B N ≈ e−

6B2

p lnB .

This probability is 2−λ for B such that
6B2

p ln(B)
= λ.

In particular, adding about 1
2 log λ bits to the expected ideal sizes ensures that ideals norms are within the bounds

with probability at least 1− 2−λ. For λ = 64 this is just 3 additional bits in ideal sizes.

8.2. Overview of subroutines

8.2.1. RandomEquivalentPrimeIdeal

This algorithm randomly generates small ideal elements with random linear combinations of a reduced lattice basis,
until one is found with prime reduced norm.

For analysis purposes, the norms are considered as random numbers of identical sizes. This allows to analyze
success probabilities, and fix parameters such that residual failure is negligible.

Since the coefficients of the linear combination are small, the norm of the output of RandomEquivalentPrimeI-
deal are related to the norm of the elements in the reduced basis of the ideal, this is related to the results detailed in
Section 8.1.4.

8.2.2. SigningKLPT

This algorithm generates quaternions γ (using FullRepresentInteger) until one is found that makes subsequent steps
work; in particular, a quadratic residuosity condition modulo a product of two primes must be satisfied, then a two-
dimensional lattice is constructed and lattice vectors close to a target are enumerated and corresponding integers de-
duced, until one is found that is prime. The generation of γ elements also involves searching for primes among numbers
distributed in particular way.
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For analysis purposes, the quadratic residuosity test is assumed to pass with probability 1/4, and the primality
conditions are assumed to be satisfied with the same probability as random numbers of the same size. The two-
dimensional lattice is also modeled as a random lattice with the same discriminant. These assumptions allow to analyze
success probabilities, and fix parameters such that residual failure is negligible.

8.2.3. KeyGenKLPT

Key generation uses one instance of KLPT algorithm. The analysis is similar to that of SigningKLPT, with a quadratic
residuosity condition modulo a prime instead of a product of two primes, and smaller sizes.

8.2.4. SpecialEichlerNorm

The SpecialEichlerNorm algorithm applies the SpecialEichlerNormFixed on ideals generated using RandomEquiva-
lentPrimeIdeal until one execution of SpecialEichlerNormFixed succeeds. Since FullStrongApproximation is the main
sub-routine of SpecialEichlerNormFixed, the analysis of SpecialEichlerRandom combines the analysis on FullStron-
gApproximation and RandomEquivalentPrimeIdeal.

If N is the norm of the ideal in output of RandomEquivalentPrimeIdeal given in output to SpecialEichlerNorm-
Fixed. Then, the FullStrongApproximation will look for vectors smaller than Nβ/p for some Nβ |T 2 inside a lattice
of dimension 2 and discriminant N3. This means that the size of N must not be too big compared to the size of T
and that the lattice must behave as a random lattice. We choose T to be big enough for this to work when N ≈

√
−p.

If N3 is bigger than T 2/p, then no solution can be found.
In addition, the algorithm needs to ensure that the final output is not in a certain order at distance ℓ; we heuristically

assume the probability of this happening is as if the output were random, namely (ℓ+ 1)−1.
Using these heuristics and the estimates of Section 8.1.3 and 8.1.4, it is possible to show that for our choices of

parameters, the failure probability of a given FullStrongApproximation inside SpecialEichlerNorm is big enough to
ensure a negligible failure probability of SpecialEichlerNorm through randomization with alternate orders.

8.2.5. IdealToIsogenyEichler (IdealSteps)

Because the IdealToIsogenyEichler will be called during key generation and signature on isogenies whose degrees are
too large to allow a direct ideal to isogeny translation, the IdealToIsogenyEichler algorithm is made of several steps,
where each step involves a call to the SpecialEichlerNorm algorithm followed by a dedicated ideal to isogeny algorithm.
The only source of failure is SpecialEichlerNorm.

8.2.6. Further randomization SQIsign main algorithms

Under the assumptions listed above, there is a non-zero overall failure probability for running SigningKLPT and
IdealToIsogenyEichler consecutively. This probability can be estimated as

ϵSigningKLPT +
(SQIsign_signing_total_length

f

)
· ϵSpecialEichlerNorm

where ϵSigning KLPT and ϵEichler norm are respectively the residual error probabilities in the SigningKLPT and SpecialE-
ichlerNorm. Parameter choices for these algorithms ensure that this probability is very small.

To handle residual failures, the SQIsign NIST submission introduces some randomization within the SigningKLPT
algorithm: by applying twice the RandomEquivalentPrimeIdeal algorithm at the beginning.

A similar issue affects key generation. In that case, the randomization is ensured by the choice of the secret key.



CHAPTER 9

Security analysis

This chapter discusses the security of SQIsign. In Section 9.1, we start by proving that weak honest-verifier
zero-knowledge and special soundness imply the security of Σ-protocols under passive impersonation attacks. Via the
Fiat–Shamir heuristic, this in turn implies that the corresponding signature scheme is existentially unforgeable against
chosen message attacks (EUF-CMA). We then show that the Σ-protocol used to build SQIsign satisfies the necessary
security properties under certain isogeny-based hardness assumptions. In Section 9.2, we analyse the resistance of
SQIsign to known attacks, which allows to tune the concrete security parameters. Finally, in Section 9.3, we conclude
with a discussion on various choices made for the parameters, and how these choices have no known impact on the
security.

9.1. Security reductions

9.1.1. Security of Σ-protocols

Recall the definition of a Σ-protocol from Chapter 3. We now describe properties that we want our Σ-protocol to
satisfy.

9.1.1.1. Correctness. Informally, we require that if the prover knows (x,w) ∈ R and behaves honestly, then the
verifier outputs 1. Formally, a Σ-protocol (P1,P2,V) is said to be correct if for any (x,w) ∈ R and any honest stateful
prover (P1,P2), letting com← P1(x,w), chall← {0, 1}λ, and resp = P2(chall), we have

V(x, com, chall, resp) = 1.

9.1.1.2. Special soundness. We recall the standard notion of special soundness for a Σ-protocol. Informally, sound-
ness captures the guarantee that a cheating prover that only knows a statement x and not a corresponding witness w
such that (x,w) ∈ R cannot force an honest verifier to accept a proof transcript. Formally, a Σ-protocol is said to
satisfy n-special soundness if there exists a polynomial-time extraction algorithm that, given a statement x and n valid
transcripts

(com, chall1, resp1), . . . , (com, challn, respn)

where challi ̸= challj for all 1 ≤ i < j ≤ n, outputs a witness w such that (x,w) ∈ R with probability at least 1− ε
for soundness error ε.

9.1.1.3. Special honest-verifier zero-knowledge (SHVZK). We also recall the standard notion of special honest-
verifier zero-knowledge (SHVZK) for a Σ-protocol. We do not use this security notion in our proofs, but mention it
for the sake of completeness. Informally, a Σ-protocol is said to be SHVZK if there exists a polynomial-time simulator
that, given a statement x and a challenge chall, outputs a valid transcript (com, chall, resp) that is indistinguishable
from a real transcript.

Definition 9.1.1. A Σ-protocol (P1,P2,V) is computationally special honest-verifier zero-knowledge if there
exists a probabilistic polynomial-time simulator S such that for all probabilistic polynomial-time provers (P1,P2) and
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for all probabilistic polynomial-time stateful adversaries A

Pr

A(com, chall, resp) = 1

∣∣∣∣∣∣
(x,w, chall)← A(1λ);
com← P1(x,w);
resp = P2(chall)


≈ Pr

[
A(com, chall, resp) = 1

∣∣∣∣ (x,w, chall)← A(1λ);
(com, resp)← S(x, chall)

]
.

9.1.1.4. Weak honest-verifier zero-knowledge (wHVZK). We also introduce a weaker notion of honest-verifier
zero-knowledge for Σ-protocols that suffices for our security proofs. Informally, a Σ-protocol is said to satisfy weak
honest-verifier zero-knowledge if there exists a polynomial-time simulator that, given any uniformly randomly sampled
statements x, outputs polynomially valid transcripts of the form (com, chall, resp) that are indistinguishable from real
transcripts between an honest prover and an honest verifier. We define this notion formally below.

Definition 9.1.2. A Σ-protocol (P1,P2,V) is computationally weak honest-verifier zero-knowledge (wHVZK)
with respect to a uniform instance generation algorithm Gen if for any Q = poly(λ), for all probabilistic polynomial-
time stateful provers (P1,P2) and for all probabilistic polynomial-time (honest) verifiers V , there exists a probabilistic
polynomial-time simulator S such that for all probabilistic polynomial-time distinguishers D

Pr

D (x, {comi, challi, respi}i∈[1,Q]

)
= 1

∣∣∣∣∣∣∣∣
(x,w)← Gen(1λ);{
comi ← P1(x,w);

challi ← {0, 1}λ;
respi = P2(challi)

}
i∈[1,Q]


≈ Pr

[
D
(
x, {comi, challi, respi}i∈[1,Q]

)
= 1

∣∣∣∣ (x,w)← Gen(1λ);{
(comi, challi, respi)← S(x)

}
i∈[1,Q]

]
.

Remark 1. We note that the notion of wHVZK security as defined above is strictly weaker than the notion of
SHVZK security defined earlier as: (a) the wHVZK notion only holds for uniformly sampled instances (as opposed
to adversarially chosen instances in the case of SHVZK), and (b) the distinguisher in the wHVZK security game is
not provided with the witness (as opposed to the SHVZK security game where the distinguishing adversary knows the
witness).

9.1.1.5. Security under passive impersonation attacks (IMP-PA). Finally, we recall the notion of security under
passive impersonation attacks (IMP-PA) for any Σ-protocol (introduced originally in [AABN02]). Informally, security
against impersonation under passive attacks considers an adversary – here called an impersonator – whose goal is to
impersonate an honest prover on a uniformly random statement without the knowledge of the corresponding secret
witness. As outlined in [AABN02], such an adversary generally has access not only to the statement but also to
conversations between the real prover and an honest verifier, possibly via eavesdropping over the network.

Following the definition of IMP-PA security in [AABN02], we model this setting by viewing an impersonator as a
probabilistic algorithm I and giving to it the statement and the transcript-generation oracle defined above. This oracle
gives the impersonator I the ability to obtain some number of transcripts of honest executions of the protocol. After
reviewing the transcripts, the impersonator must then participate in the Σ-protocol with an honest verifier and try to
get the verifier to accept. We now recall the formal definition of IMP-PA security from [AABN02] below.

Definition 9.1.3. A Σ-protocol (P1,P2,V) satisfies security under passive impersonation attacks (IMP-PA) with
respect to a uniform instance generation algorithm Gen if for all probabilistic polynomial-time cheating (passive) im-
personators I = (I1, I2) (where the impersonator has access to a randomized transcript generation oracle TR defined
subsequently), we have

Pr

V (x, com, chall, resp) = 1

∣∣∣∣∣∣∣∣
(x,w)← Gen(1λ);

(st, com)← ITR(x,w)()
1 (x);

chall← {0, 1}λ;
resp← I2(st, chall)

 ≤ negl(λ),
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where TR(x,w)() is a randomized transcript generation oracle which takes no inputs and returns a random transcript of
an “honest” execution of the Σ-protocol w.r.t. (x,w), namely:

TR(x,w)() :

com← P1(x,w);
chall← {0, 1}λ;
resp = P2(chall)

9.1.1.6. Special-soundness + wHVZK =⇒ IMP-PA. We now state and prove the following theorem.

Theorem 9.1.4. Any Σ-protocol (P1,P2,V) that satisfies special-soundness and wHVZK also satisfies IMP-PA.

To prove this theorem, we first introduce a modified version of the transcript-generation oracle defined above that
generates random “simulated” transcripts of an “honest” execution given only the statement x, namely:

T̂R(x)() :

(com, chall, resp)← SwHVZK(x)

where SwHVZK is the simulator for the Σ-protocol as per the wHVZK security definition. We now state and prove the
following propositions.

Proposition 9.1.5. Let (P1,P2,V) be a sigma protocol that satisfies wHVZK. Suppose that there exists some
probabilistic polynomial-time cheating (passive) impersonator I = (I1, I2) such that

Pr

V (x, com, chall, resp) = 1

∣∣∣∣∣∣∣∣
(x,w)← Gen(1λ);

(st, com)← ITR(x,w)()
1 (x);

chall← {0, 1}λ;
resp← I2(st, chall)

 = ε.

Then, for all probabilistic polynomial-time cheating (passive) impersonators Î = (Î1, Î2) with access to the “simu-
lated” transcript generation oracle T̂R as defined above, we must have

Pr

V (x, com, chall, resp) = 1

∣∣∣∣∣∣∣∣∣
(x,w)← Gen(1λ);

(st, com)← Î
T̂Rx()

1 (x);
chall← {0, 1}λ;
resp← Î2(st, chall)

 ≤ ε+ negl(λ).

Proof. We prove this by contradiction. Suppose that there exists a cheating (passive) impersonator Î = (Î1, Î2)
such that

Pr

V (x, com, chall, resp) = 1

∣∣∣∣∣∣∣∣∣
(x,w)← Gen(1λ);

(st, com)← Î
T̂Rx()

1 (x);
chall← {0, 1}λ;
resp← Î2(st, chall)

 > ε+ negl(λ).

Then it is easy to see that we can use the impersonator I in the original IMP-PA security game (the “real” transcript
generation oracle TR(x,w)()) and the impersonator Î in the modified IMP-PA security game (with the “simulated”
transcript generation oracle T̂Rx()) to construct a probabilistic polynomial distinguisherD that distinguishes (with non-
negligible probability) the outputs of the “real” transcript generation oracle TR(x,w)() and the “simulated” transcript
generation oracle T̂Rx(). This immediately contradicts the assumption that Σ satisfies wHVZK. This completes the
proof of Proposition 9.1.5. □
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Proposition 9.1.6. Let (P1,P2,V) be a sigma protocol that satisfies special-soundness. Then, for all probabilistic
polynomial-time cheating (passive) impersonators Î = (Î1, Î2) with access to the “simulated” transcript generation
oracle T̂R defined above, we must have

Pr

V (x, com, chall, resp) = 1

∣∣∣∣∣∣∣∣∣
(x,w)← Gen(1λ);

(st, com)← Î
T̂Rx()

1 (x);
chall← {0, 1}λ;
resp← Î2(st, chall)

 ≤ negl(λ).

Proof. We again prove this by contradiction. Suppose that there exists a cheating (passive) impersonator (Î1, Î2)

Pr

V (x, com, chall, resp) = 1

∣∣∣∣∣∣∣∣∣
(x,w)← Gen(1λ);

(st, com)← Î
T̂Rx()

1 (x);
chall← {0, 1}λ;
resp← Î2(st, chall)

 > negl(λ).

Then we can use this impersonator Î to construct a probabilistic polynomial adversary A that forges (with non-
negligible probability) a valid transcript corresponding to an honest execution of Σ between a prover and a verifier
on an instance (x,w) given only the statement x. Note that the existence of such an adversary A immediately contra-
dicts the assumption that Σ satisfies special-soundness.

We construct the adversary A as follows. The adversary A, on input x, acts as the challenger in the modified
IMP-PA security game and proceeds as described below:

• On receipt of an oracle query from the impersonator (Î1, Î2), the adversaryA outputs a simulated transcript

(com, chall, resp)← SwHVZK(x).

• Eventually the impersonator algorithm Î1 outputs a commitment com∗. The adversary A poses as a honest
verifier and outputs a challenge chall∗ ← {0, 1}λ.

• Finally, the impersonator algorithm Î2 outputs a response resp∗. At this point the adversary A outputs the
following forged transcript:

(com∗, chall∗, resp∗) .

Note that the view of the cheating impersonator (Î1, Î2) in the above game is identical to that in the modified IMP-PA
security game. This completes the proof of Proposition 9.1.6. □

Note that propositions 9.1.5 and 9.1.6 immediately yield the following corollary.

Corollary 9.1.7. Let (P1,P2,V) be a sigma protocol that satisfies special-soundness and wHVZK. Then, for all
cheating (passive) impersonators I = (I1, I2), we must have

Pr

V (x, com, chall, resp) = 1

∣∣∣∣∣∣∣∣
(x,w)← Gen(1λ);

(st, com)← ITR(x,w)()
1 (x);

chall← {0, 1}λ;
resp← I2(st, chall)

 < negl(λ).

The proof of Theorem 9.1.4 is immediate from Corollary 9.1.7 (in fact, Corollary 9.1.7 is merely a re-statement
of Theorem 9.1.4). □

9.1.2. Digital signatures and the Fiat-Shamir Transform

In this section, we recall the standard notion of security for digital signatures (namely, existential unforgeability against
chosen message attacks, or EUF-CMA in short) and the standard transformation from sigma protocols to digital sig-
natures via the Fiat-Shamir transform/heuristic [FS87, PS00].
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9.1.2.1. EUF-CMA security of digital signatures. We begin by recalling the notion of existential unforgeability
against chosen message attacks (EUF-CMA) for a digital signature scheme. We define the security notion in the
presence of a random oracle H : {0, 1}∗ → {0, 1}λ, since this is the notion of security that we will eventually prove
for our SQIsign signature scheme (in fact, this is the standard notion of EUF-CMA security for any digital signature
scheme obtained via applying the Fiat-Shamir transform on a Σ-protocol).

Definition 9.1.8. A digital signature scheme Γ = (GenSig,Sign,Ver) is said to satisfy EUF-CMA security if for
all probabilistic polynomial-time forging adversariesA (whereA has access to a chosen-message signature generation
oracle and a random oracle H as described above), we have

Pr

[
Ver (pk,msg∗, σ∗) = 1

∣∣∣∣ (sk, pk)← GenSig(1
λ);

(msg∗, σ∗)← ASign(sk,·),H(·)(pk)

]
≤ negl(λ),

subject to the restriction that the adversary A has not issued a signing oracle query on the message msg∗.

9.1.2.2. From IMP-PA security to EUF-CMA security. We additionally recall the following theorem from [AABN02].

Theorem 9.1.9 (Imported from [AABN02]). LetΠΣ = (P1,P2,V) be aΣ-protocol, and letΓ = (GenSig,Sign,Ver)
be a digital signature scheme obtained from ΠΣ via the Fiat-Shamir transform as described above. IfΠΣ satisfies IMP-
PA security, then Γ satisfies EUF-CMA security (in the random oracle model).

We refer to [AABN02] for the detailed proof of Theorem 9.1.9. We now state the following corollary of Theo-
rems 9.1.4 and 9.1.9.

Corollary 9.1.10. Let ΠΣ = (P1,P2,V) be a Σ-protocol, and let Γ = (GenSig,Sign,Ver) be a digital signature
scheme obtained from ΠΣ via the Fiat-Shamir transform as described above. If ΠΣ satisfies special-soundness and
wHVZK, then Γ satisfies EUF-CMA security (in the random oracle model).

9.1.3. Security of SQIsign

In this section, we use the aforementioned theorems related to IMP-PA security of Σ-protocols, EUF-CMA security of
digital signature schemes, and the Fiat-Shamir transform to establish the EUF-CMA security of the SQIsign signature
scheme (in the random oracle model).

9.1.3.1. Special soundness of the SQIsign Σ-protocol. We summarize the special soundness guarantees of the
SQIsign Σ-protocol below. We begin by recalling the supersingular smooth endomorphism problem, which is the
hard problem underlying the special soundness guarantee of the SQIsign Σ-protocol.

Problem 9.1.11 (Supersingular Smooth Endomorphism Problem). Given a prime p and a supersingular elliptic
curve E over Fp2 , find a (non-trivial) cyclic endomorphism of E of smooth degree.

The following theorem (imported from [DKL+20]) formally captures the special soundness guarantee of the
SQIsign Σ-protocol.

Theorem 9.1.12 (Special Soundness of SQIsign Σ-protocol [DKL+20]). If there is a probabilistic polynomial
adversary that breaks the soundness of the protocol with probability w and expected running time r for the public
keyEA, then there is an algorithm for the Supersingular Smooth Endomorphism Problem onEA with expected running
time O(r/(w − 1/c)), where c is the size of the challenge space.

We refer the readers to [DKL+20] for the detailed proof and associated discussions.

9.1.3.2. wHVZK of the SQIsign Σ-protocol. Informally, wHVZK of the SQIsign Σ-protocol relies on the assump-
tion that the distribution of responses is computationally indistinguishable from random isogenies of the same degree
starting from the curve EA. Following [DKL+20, Proposition 11], this assumption follows from three other assump-
tions which can be studied separately.

• The first assumption (Assumption 1 in [DKL+20]) essentially states that the SQIsign signing algorithm
succeeds with overwhelming probability for the parameter choices taken.
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• In [DKL+20] it is shown that every SQIsign signature is the pushover of some isogeny ι in a certain set
PNDsecret

(Definition 2 in [DKL+20]), and moreover this set only depends onNDsecret (i.e. not on the particular
secret isogeny). The second assumption (Assumption 2 in [DKL+20]) is equivalent to assuming that for
uniformly random inputs to SigningKLPT algorithm, the distribution of the isogeny ι is statistically close to
uniform in PNDsecret

.
• Finally, the third assumption (hardness of Problem 2 in [DKL+20]) states that the pushover of ι through τ is

computationally indistinguishable from a random isogeny of the same degree starting from EA, even after a
polynomial number of queries to an oracle sampling elements from the first distribution.

The proof of Proposition 11 in [DKL+20] shows that these three assumptions together imply weak honest verifier
zero-knowledge. We note that [DKL+20] incorrectly claims that the Σ-protocol underlying SQIsign is honest verifier
zero-knowledge; this is not true because the distinguishing problem is easy given the secret key, but the incorrect proof
they provide actually proves weak honest verifier zero-knowledge. We also note that the second assumption above,
although statistical in [DKL+20], could be relaxed to a computational assumption with trivial changes to the proof.

We refer to [DKL+20] for additional discussion and formal statements of the first two assumptions, and only
reproduce Problem 2 from [DKL+20] below. Here, IsoD,j(E) represents the set of cyclic isogenies of degree D,
whose domain is a curve inside the isomorphism class of E.

Problem 9.1.13. Let p be a prime andD a smooth integer. Let τ : E0 → EA be a random isogeny drawn fromK,
and letNτ be its degree. Let PNτ

⊂ IsoD,j0 as in [DKL+20, Definition 2], and letOτ be an oracle sampling random
elements in [τ ]∗PNτ . Let σ : EA → ⋆ of degree D where either

(1) σ is uniformly random in IsoD,j(EA);
(2) σ is uniformly random in [τ ]∗ PNτ

.
The problem is, given p,D,K, EA, σ, to distinguish between the two cases with a polynomial number of queries toOτ .

9.1.3.3. EUF-CMA security of SQIsign. Since the SQIsignΣ-protocol satisfies both special soundness and wHVZK,
it follows immediately from Corollary 9.1.10 that the SQIsign signature scheme satisfies EUF-CMA security. We cap-
ture this in the following theorem.

Theorem 9.1.14. Assuming the computational hardness of problems 9.1.11 and 9.1.13, the SQIsign signature
scheme satisfies EUF-CMA security under the Fiat-Shamir heuristic.

9.2. Resistance to known attacks
SQIsign parameters are selected to satisfy the following requirements (amongst others – see Chapter 9):

• The primes p are chosen such that log p ≈ 2λ.
• The secret isogeny is chosen with degree a prime bounded by B, where B is chosen so that the number of

such isogenies is close to p1/2.
• The commitment isogeny degree Dcom is approximately 22λ ≈ p.
• The challenge isogeny degree Dchall is approximately 2λ ≈ p1/2.

Below, we discuss known attacks on SQIsign and show that these parameter choices offer at least λ bits of security
against all classical attacks and λ/2 bits of security against all quantum attacks. Throughout, for any function f , we
will write Õ(f) to mean O(fℓ(f)), where ℓ is any polylogarithmic function. Note that for several attacks below, these
logarithmic factors will contribute to more than a few bits of additional security.

9.2.1. Endomorphism ring and general isogeny computation

An algorithm to compute the endomorphism ring of a supersingular elliptic curve would break essentially all isogeny-
based cryptography schemes, including SQIsign [EHL+18]. Indeed, from the endomorphism ring one can compute
a corresponding maximal order in the quaternion algebra, and from there compute an isogeny between E0 and EA,
which can then act as an equivalent secret key.
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The endomorphism ring of a supersingular curve can be computed in time O
(
(log p)2p1/2

)
⊆ Õ(p1/2) and low

memory requirements using the algorithm from [EHL+20]. Using a quantum computer and Grover search, the time
becomes Õ(p1/4), still with low memory requirements.

For supersingular curves, the general isogeny problem (i.e., given two curves, finding an isogeny of arbitrary
degree between them) is equivalent to the endomorphism computation problem [EHL+18, Wes22], hence Õ(p1/2)

classically and Õ(p1/4) quantumly.

9.2.2. Key recovery

In SQIsign, the secret isogeny has secret degree a prime bounded by B, where B is chosen so that the number of
such isogenies is about p1/2. Note that the equivalence result between endomorphism ring computation and isogeny
computation does not apply here because of the degree bound. One could try exhaustive search instead; with our
parameter choices this is just as costly as endomorphism ring computation.

One can also recover a secret key in SQIsign by first computing the challenge isogeny between E0 and E1. In-
deed with that isogeny, the challenge isogeny and the signature isogeny, one deduces an “equivalent key”, namely an
isogeny from E0 to EA, which is sufficient to sign. As Dcom is smooth, a meet-in-the-middle strategy will also cost
about Õ(p1/2) classically, but with higher memory costs compared to other attacks. Quantumly, the cost is less clear
but well above Õ(p1/4). The best approach to compute the challenge isogeny seems to involve first computing the
endomorphism ring of E1 with the memory free algorithms mentioned above.

9.2.3. Soundness / forgery attacks

There is a trivial attack consisting in generating a random isogeny of the expected degree σ : EA → E2 for the
signature, a random isogeny φ̂ : E2 → E1 of the expected degree for the challenge, and hoping that the hash of E1 is
consistent with the challenge isogeny. Since Dchall ≈ p1/2, there are about as many challenge degree isogenies. The
cost of this attack is Õ(p1/2) classically and Õ(p1/4) quantumly.

By [DKL+20, Theorem 1], breaking soundness reduces to computing one non trivial endomorphism ofEA. Here,
heuristically, the distribution ofEA is statistically close to uniform (since the secret isogenyφsecret is essentially uniform
among isogenies of λ/2-bit prime degree). The best known attack for this task seems to be the subroutine used in the
endomorphism ring computation algorithm of [EHL+18], with roughly the same classical and quantum complexities,
namely Õ(p1/2) classically and Õ(p1/4) quantumly.

9.2.4. Zero-knowledge

Zero-knowledge of the underlying identification protocol relies on the assumption that the distribution of signatures
is computationally indistinguishable from random isogenies of the same degree from the curve EA. Note that this
assumption is computational: with the secret isogeny one can trivially distinguish signatures from random isogenies
of the same degree originating atEA. As argued above, the cost of computing the secret isogeny is Õ(p1/2) classically
and Õ(p1/4) quantumly.

This is an ad hoc assumption, introduced in [DKL+20]. Tentative algorithms to solve the distinguishing problem
are also discussed in [DKL+20, DLLW23]. We summarize some observations from there:

• A signature isogeny is the pushover through the secret isogeny of an isogeny in some setPNDsecret
(Definition 2

in [DKL+20]), where this set PNDsecret
only depends on Dsecret.

• Polynomially small sets PNDsecret
easily lead to distinguishing attacks, as one can then query signatures until

observing a collision (when Dsecret is known, this would even lead to an efficient key recovery attack). More
generally, one can note that |PNDsecret

|1/2 signature oracle calls will lead to two identical signatures by the
birthday paradox, whereas such a collision is only expected to appear afterD1/2

sig ≫ p5/8 for random isogenies
from EA.

• The size of PNDsecret
is Õ(Dsecret · p) (see [DKL+20, Remark 22]) hence the cost of the distinguishing attack

would be at least Õ(p5/8).
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• The original SQIsign algorithm from [DKL+20] computed γ in Z+Z i+Z j+Z k instead ofO0, therefore
introducing a bias in the signature distribution. This bias led to a distinguishing attack against the assumption,
which is countered by “properly” generating γ [DLLW23].

It can be noted that an attack against this assumption does not immediately imply an attack against the signature
scheme, as shown with the distinguishing attack on the original SQIsign scheme from [DLLW23].

9.2.5. Algorithm failures and their impact on security

There are numerous failure cases to the various subroutines used in SQIsign. Some happen with constant probability
(modularity conditions, last step in Eichler norm equation algorithm), some with small but non-negligible probabil-
ity (success in the strong approximation subroutine), and some with negligible probability (for example, a random
ideal having an exceptionally large minimal prime representative). The failure cases occurring with non-negligible
probability are mitigated by re-randomizing previous steps, and our parameter selection ensures that the overall failure
probability is negligible (under assumptions listed in Chapter 8). As a consequence, failures are not expected to affect
the unforgeability of SQIsign.

In a timing attack model or more generally given side-channel information, an adversary may be able to identify
internal failures to the algorithm and deduce secret information. We consider these attack models beyond the scope
of this submission, and we therefore do not discuss them further here. However, it is a matter of interest for future
versions, as the community is actively investigating this direction [JMRK23].

9.3. Nothing upon my sleeve
Here we provide some additional comments on our choices of parameters, arguing that these either have no impact on
security, or at least no known impact on security.

• We restrict our parameters to primes p congruent to 3 modulo 4. One could define SQIsign without that
restriction but as argued in Chapter 5, this choice significantly simplifies certain computations. Note that is a
standard choice in the literature, ensuring that 1728 is the j-invariant of a supersingular elliptic curve. This
choice only reduces the set of potential parameters by one half, and we are not aware that it affects any of the
computational assumptions SQIsign relies upon.

• We choose the curve E0 with j-invariant j = 1728. One could define SQIsign using any arbitrary curve
as a starting curve E0, but this would significantly affect efficiency. Indeed the signing algorithm gets im-
proved from the existence of a “small” degree isogeny between EA and a curve with a small non trivial
endomorphism. From a security point of view, replacing the curve E0 by any arbitrary supersingular curve
(with endomorphism ring known to the signer, as this is crucial to compute signatures) seems to have no
benefit. We are not aware that knowledge of one endomorphism ring would give any significant advantage
in computing the secret isogeny between E0 and EA (speedups could be obtained using automorphisms in
E0 in the context of SIKE, but those speedups are tiny). The other best attacks seem to involve computing at
least one endomorphism of a statistically random curve, and are indifferent to the choice of starting curve.

• We put very strong smoothness constraints on p2−1 for the primes used. As we argue in Chapter 5, this choice
is motivated by efficiency considerations, namely to avoid computations over field extensions of Fp2 . This
approach to optimizing the field arithmetic has long been standard in classical elliptic curve cryptography,
and more recently in isogeny-based cryptography (CSIDH, SIDH and their variants all use primes of some
special form), and has never been connected to any weakness. More generally, the primes we choose satisfy
multiple constraints for efficiency reasons, as detailed in Chapter 5. We are not aware of any cryptanalysis
approach to exploit the particular shape of the prime, beyond polynomial speedups provided by the faster
arithmetic over Fp2 .
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