" -'-H NATIONAL BUREAL OF STANOARDS:
D NATIONAL COMPUTER SECURITY CENTER

NATILNAL COMPUTER SECURITY CENFERENCE

15-18 SEPTEMBER 1986

ROC

WELCOME

The Institute for Computer Sciences and Technology and the National
Computer Security Center are pleased to welcome you to this Annual
‘,ComputerfSecurity Conference. The past eight conferences have stimulated

-the sharing of information and the app]icatibn of new technology.

This year's confebencé theme -- Computer Security - Today ... and |
Tomorrow -- reflects the growth of computer security‘awareness and a
maturation of the technology and its use. The efforts of the National
‘Bureau of Standards, the National Computer Security Center, computer
users, and industry have helped to bring about the progress that has been
made in the past few years. The commitment of the Federa],governmént.and
brivate,ﬁndustry to improve computer security continues to ‘grow, and

trusted systems and 6ther technd]ogies are becoming available.

But much more needs to be done. Federal government executive and
Tegislative initiatives for computer.security show the extent of national
concern. We must strengthen our efforts to make managefs, executives,
and computer users strong advocates for computer security, and we must

make full use of the best affordable technology.

Your participation in this meeting can help to achieve this goal.
Let's continue to exchange ideas and then go back to our organizations

with renewed purpose and commitment to improve the security of our systems.

MES H. BURROWS PATRICK R. GALLAGHER, JR.
Director Director

Institute for Computer Sciences National Computer Security
and Technology Center

TABLE OF CONTENTS
Title

A Brief Summary of a Verification Assessment Study,
Mr. R.‘ Kemmerer . - . . L) o‘ [) . L] . L] L] L) L] [) *® . . -

A Network Security Perspective, Mr. J. Millen

"Smart" Terminals for Trusted Computer Systems,
Mr. M. Gabriele . L] L] L] L] - L] L] L] [] - L] L] * L] ‘. L] L] [

Database Systems‘and the Criteria: Do They Relate?,
Mr. B. Hubbard, Lt. S. Walker & Ms. R. Henning . . .

Towards Practical MLS Database Management Systems Using
the Integrity Lock Technology, Ms, R, Burns

Integrity in Trusted Database Systems, Dr. R. Schell &
MS. D Dennlng [] L] L] - L] ® L 2 * L] ® L] L] L] * L] L] . * L]

Trusted Database Design, Mr. P. Troxell « « « &

The Challenge After Al A View of the Security Market,
MrC LO Fraim L] L] . ® L] L] * * L] L] L] L] L] L] L] L] * L] L] L]

SE/VMS: Implementing Mandatory Security in VAX/VMS,
Mr. S. Blotcky, Mr. K. Lynch & Mr., S. Lipner

A Verified Labeler for the Secure Ada Target,
Mr. W. Young, Mr. P. Telega & Mr. W, Boebert

Limitations_of Dial-Up Security Devices, Mr., E. Troy . .

Automated Analysis of Computer System Audit Trails for
Security Purposes, Mr. L. Halme & Mr. J. Van Horne .

Managing Exposure to Potentially Malicious Programs,
MS. M. POZZO & Mr. To Gra,y 3] . - . . . [3 . - . [) []

Security On Unclassified Sensitive Computer Systems,
Mr. H. Feinstein L] L] [] [] [] [2 .. L] * L] ® L] L] L] L] L] - *

Towards a Discipline for Developing Verified Software,
Mr. W. Farmer, Mr. D. Johnson & Mr. F., Thayer

The National Bureau of Standards Message Authentication
Code (MAC) Validation System, Mr. M. Smid, Ms. Elaine
Barker & Mr, D, BalensSon . . « ¢ « o = o s o o o o o

Using Software Analysis Tools to Analyze the Security
Characteristics of HOL Programs, Mr. A, Schultz . . .

ii

Page

16
21
25

30
37

41
47

55
62

71
75
81

91

929

108

Title
Interpretatlon of the Bell-LaPadula Model in Secure
Xenix, G. Luckenbaugh, V. Gligor, L. Dotterer,
C. Chandersekaran & N, Vasudevan . . « ¢« « « o o o o o o

Informal Verification Analysis, Mr. B. Stauffer &
Mr. ROger FUjii L . e L) o . L] « .

Al Assurance for an Internet System: Doing the Job,
P. Baker, G. Dinolt, J. Freeman, M. Krenzin & R. Neely .

On the Interactions of Security and Fault-Tolerance,
R. Turn & J. Habibi * L] * L] L] L] L] -* L] ® - L] L] * L] L L] L] L]

User Definable Domains as a Mechanism for Implementing the
Least Privilege Principle, T. Smith ¢ ¢ &« ¢ &« « &

The AcceSS Path, Ms. J. O'Neil'—Dunne e ® 8 e e e o e & e o »

Risk Analysis and Computer Security: Bridging the
Cultural Gaps, Mr. L. Hoffman . . ¢« ¢« &« ¢« ¢« ¢ ¢ ¢ o o = &

Managing Diffuse Risks from Adversarial Sources (DR/AS)
with Special Reference to Computer Security, Dr. R. Brown

"Advice Most Needed..." The Assessment and Advice Effort,
Ms - D claxton » N] [] [] L] - L] [] [] L] L] [] [] * [] [] L]] . L] L]

A Model of Information, Mr. D, Sutherland « « « « &
A Semantics of Read, Mr. L. Marcus & Mr. T. Redmond

A Standard Notation in Computer Security Models,
Mr. O. Saydjari &« Mr. T. Kremann . . « + « o o o« o o o o

Research Toward Intrusion Detection Through Automated
Abstraction of Audit Data, Mr., J. Kuhn « « « . .

Trust Issues of Mach-l1l, Dr. M. Branstad, Ms. P. Cochrane,
Dr. D. Bell & Mr, S. Walker . . v v o ¢ o e o o o o o o o«

An Overview of the DoD Computer Security RDT&E Program,
V Mr. L. caStro L] L] L] L] . L] L] . L] L] *® L] L L] L] L] L] . * L] L] L]

Computer Architectures and Database Security,
Ms. R, Henning & Mr. S. Walker . . . « ¢ ¢ o o o o o o &

Guidelines and Standards, Ms., C. Jordan . . « « o o o o o &«

iii

Page

113
126
130
138

143
149

156
162

168
175
184

194
204
209
213

216
231

Title - Page
Panel on Database Management System Security Requirements,

Dr. J. Campbell, Ms. D. Denning, Mr. K. Eggers,

Dr. R, Schell &§ Mr. C., Testa . « ¢ o« o« o o o o o o o o o o 234

Panel Discussion NCSC and Verification . . ¢« ¢« ¢ o o o o o o o 235

Panel Discussion Using the Criteria in Acquisitions 236

An Economically Feasible Approach to Contingency Planning, :
Mr ® R. Courtney' Jr * L] L] L] L] L] L] L] L 2 . - L] L] L] L] L] L] L] * L] 237

iv

A Brief Summary of a
Verification Assessment Study

Richard A. Kemmerer

Department of Coimputer Science
University of California
Santa Barbara, California 93106

Introduction

This paper is a brief summary of a
verification assessment study that was
begun in November 1984 and lasted for
approximately nine months., ' The final
report (Kem 86), which consists of five
volumes, can be obtained from the
National Computer Security Center.

The main goal of this effort was a
technology interchange among the developers
of four established verification systems.
The systems investigated were i) Affirm
(General Electric Company, Schenectady,

New York), ii) FDM (System Development
Corporation - A Burroughs Company,

Santa Monica, California), iii) Gypsy

(the University of Texas at Austin, Austin,
Texas), and iv) Enhanced HDM (SRI
International, Menlo Park, California).
There was some comparative work on examples,
but the main idea was for the developers

to learn the details of each other's system
as a basis for future development.

It was not the goal of this study to
rate the verification systems that were
investigated. It was also not the intent
of the study to justify the need for
formal specification and verification
systems or to justify the necessity for
research in this area.

~ The next section gives an overview of
the study. This is followed by a summary
of some of the issues raised by and
conclusions drawn from the study.

Overview of the Verification Assessment
Study

The approach taken for this study was
first to select a suitable set of example
problems to be used to investigate the
established systems. Each of the systems
in turn was used to specify and verify
these problems. The specification and
verification was performed by the
development team for each system. One
member of each system's development team
was picked as the "representative" for that
particular system. The system
representatives were well established with
regard to their in-depth knowledge of the
particular verification system. In most
cases the representative was one of the
original developers of the system. The
AFFIRM representative was Dave Musser,
currently with the Computer Science Branch
at the General Electric Company's Corporate
Research and Development Center in
Schenectady, New York., The FDM
representative was Deborah Cooper from

System Development Corporation's

Santa Monica Research Center in

Santa Monica, California. The Gypsy
representative was Don Good from the
Institute for Computing Science at the
University of Texas at Austin in Austin,
Texas. The HDM representative was

Karl Levitt from SRI International's
Computer Science Laboratory in Menlo Park,
California. 1In addition to the system
representatives, the assessment team also
included two independent participants:

Dan Craigen from I.P. Sharp Associates in
Ottawa,_Canada, and Dick Kemmerer.

Tad Taylor, the sponsor's technical
liaison, also participated in the process.

At the initial meeting the group
agreed on the set of example problems that
would be specified and verified using each
of the systems. The point of these
examples was to determine how the system
developers would proceed in solving the
problem, It was hoped that ideas as to
how these problems should be solved, using
the various methodologies, would arise.

In addition, it was expected that the
strengths and weaknesses of the systems
and supporting languages and methodologies
would also be uncovered. Finally, it was
the hope of the sponsoring agent that
these examples would provide insight into
how a common set of problems might be used
for comparing verification systems,

For each of the four systems, the
specification and verification of the
example problems was done by the
development team for that particular
system. The nonresident members of the
assessment group then visited the home
site of each system to study the system
and the solutions to the
problemns.

During the site visits, each
participant was allowed to study the
system in any way he or she wished.
Usually, this meant that the participant
defined a favorite problem and
investigated the effects that the system
had on the development of a solution.
For example, Don Good and Dan Craigen
teamed up, for the last three visits,
and worked with a micro-modulator example,
and Dick Kemmerer worked with a secure
terminal example on each of the four
systems.

Moreover, the participants

concentrated their efforts on areas in
which they were particularly interested

and tried to understand those parts
thoroughly. Dave Musser, for example
directed his attention to the theorem
proving aspects of the systems.

Dan Craigen was interested in language
and methodological concerns, and

Dick Kemmerer was interested in
specifying a large and "real" example.

Through this technical interchange
members of both the assessment group and
development teams presented their system
while the nonresident participants
observed the approaches used to specify
and verify the example problems,

After visiting a site, each of the
nonresident participants prepared a
critique of the particular system., After
all the site visits had been completed,
the assessment team convened at the
University of California in Santa Barbara,
to compare their findings, to discuss the
relevant verification technology issues
that were raised during the study, and to
propose future directions for verification
research, ‘

Technology Interchange

The technology interchange that was
the primary goal of this study did occur.
One type of technology transfer that
occurred was the result of the nonresident
participants exercising the systems and
discovering bugs and weaknesses for the
developers. The value of this type of
information is documented in the
individual critiques and the responses to
the critiques (contained in Volumes II-V
of the final report for thlS study
(Kem 86)).

Another type of interchange was from
system to system. Several of the
developers mentioned during the later
visits that they had incorporated (or
planned to incorporate) changes to their
systems based on what they had learned
from the site visits. This was
particularly evident during the SRI visit
because it was th€ last visit and because
the Enhanced HDM system is in an early
stage of development.

The strengths and the weaknesses of
the four systems that were observed also
served as a basis for formulating the
components of a state-of-the-art
verification system and for identifying
areas that need further research, For
example, the move toward a more friendly
user interface that was apparent in all
of the systems clearly demonstrated the
desirability of such interfaces, It also
revealed the need to continue to move in
this direction incorporating the power
of bit mapped graphic displays and
windowing capabilities into the
verification systems.

Example Problems

One of the conclusions drawn from this
study is that the example problems were
not "benchmarks". That is, they could not
be used to measure the "quality" of a
verification system, This result is not
surprising, particularly since all of the
specification languages are based on
first-order predicate calculus, and one
can, therefore, specify the same kinds of
properties in all of them. -

It is also a well known fact that any
testing other than exhaustive testing is
not complete., The example problems were
five test cases that were tried on each of
the verification systems. This is not
exhaustive testing.)

On the positive side it should be
noted that the five examples did provide
some common ground for comparing and
contrasting the four systems. The
individual critiques discuss some of the
strengths and weaknesses of the systems
and. languages that were revealed when
reviewing the solutions to the example
problems.

Formal Verification for Secure Systems

The security community has been a
major source of funding for the
application of formal technologies and the
development of formal verification systems
for the last ten years. Their interest is
in the use of formal verification to
increase their confidence in the security
of the systems they are building.

Ever since the Anderson Study defined
the reference monitor in 1972 (And 72),
security kernels have been an integral
part of most secure systems. It is the
desire to achieve the third requirement
of a reference monitor (it must be small
enough to be subjected to analysis and
test) that has motivated the security
community to embrace formal verification
technologies. That is, one form of
analysis is formal verification. 1If one
looks up the definition of a security
kernel in the Dod Trusted Computer System
Evaluation Criteria (commonly referred to
as the "Orange Book") (DoD 83) the third
requirement has been replaced by "be
verifiable as correct". Furthermore, the
difference between the highest level of
trust (Al) and the next lower level (B3)
is "the analysis derived from formal
design specification and verification
techniques and the resulting high degree
of assurance that the TCB (Trusted
Computing Base) is correctly implemented.”

The reason that the security community
turned to formal verification for this
added assurance is that testing techniques
are not sufficient for giving the desired
confidence in the systems being built.

One must keep in mind, however, that
that secure systems are just one class of
reliable systems (those whose reliability
ig defined in terms of security
requirements). Therefore, the benefits
of formal verification are the same as
for any reliable software development
project. The use of formal verification
techniques helps to avoid sloppy thinking
and the verification systems keep one
"honest". That is, by using formal
specifications one can precisely document
the requirements of a system in
unambiguous terms. Furthermore, because
the specifications are written in a
formal -notation, one can reason about the
specifications and one can also analyze
them using computerized tools, Thus,
properties can be proved about the
specifications.

In summary, the security community's
motivation for using formal verfication
techniques is no different than those of
anyone wanting reliable software. There
is a difference, however, in the
properties proved.

Formal Semantics and Mathematical
" Justification

One of the issues that was raised
during the study was the need for formal
sematics for the specification and
programming languages and a mathematical
justification for the proof approach
being used. There was a consensus within
the group that formal semantics and a
mathematical justification would be good
to have. However, there was a difference
of opinion about the role of these
mathematical foundations in verification
system development. The question raised
by the assessment group was "is it
necessary to have the formal semantics
and the mathematical justification all
rigorously defined before building a
system or is it better to begin building
a system while having only a partial
formulation of its foundations?" This
issue was not resolved during the study.
Some participants felt that it is
necessary to have the formal semantics
play an active role during the design of
the specification languages, programming
languages, and the underlying logic.
Therefore, the formal semantics should be
fully defined before going off to build a
verification system. Other team members
felt that if one insisted on formal
semantics before anything else, the
verification system might never get built,
and that one can have useful systems
without fully defining the formal
semantics., The four verification
systems that were investigated in this
study were built without the formal
semantics being fully defined (if
defined at all). However, Don Good
remarked that he thought that not
having developed a formal semantics for
Gypsy as a part of the language
development was one of the most serious
mistakes made in the Gypsy effort.

Design Verification

Another issue that was raised during
the study is "what is design verification
and of what use is it."™ The DoD Trusted
Computer System Evaluation Criteria
requires design verification for systems
rated at the highest level of confidence
(Division A systems). The orange book
(DoD 83) defines design verification as

"the process of using formal proofs
to demonstrate the consistency
between a formal specification and a
formal security policy"."

An identical definition is given in the
COMPUSECese Computer Security Glossary
(DoD 85).

After much discussion the issue was
reduced to whether "design" verification
is the appropriate term. What is being
verified is a specification and not a
design, although the specification may be
part of the design process. The group was
also concerned that the term "design"
carries a connotation of being complete
vwhile a specification is often incomplete.

To help settle the gquestion the
available software engineering texts
(approximatly ten of them) were consulted
to determine the appropriate definition of
"design". The hypothesis was that design
was a well understood term in the software
engineering community. The surprising
result of this search was that most of the
definitions of design were ambiguous, and
of those that were not ambiguous, there
was little agreement as to what
constitutes a design., Because the
investigation revealed that the term
design was not as well understood as was
originally thought, the group decided to
take a fresh look at the process that was
being defined to determine if there was a
more accurate term for the process.

The consensus was that a specification
was a description of some property(ies) of
a system. Furthermore, security models
are high level specifications. The group
also agreed that it was useful to prove
properties about specifications, and that
testing and proving properties about
specifications (possibly even incomplete
specifications) is pne way of gaining
confidence that the specifications satisfy
some desired properties.

The conclusion was that what was
taking place were proofs about
specifications. Therefore, the term
"specification verification" more
accurately describes the process commonly
referred to as "design verification".

Is Formal Verification a Stagnant Field?

It has been suggested, especially
during the last verification workshop,
that the field of formal verification is
in a state of stagnancy. The particular

observation made at VERkshop III (Ver 85)
was that very little seems to have been
accomplished since the previous workshop
(held four years earlier).

Computing science in general, and
formal verification in particular, are
addressing some very real and difficult
problems. Formal verification is a
multidisciplinary field, It requires
understanding of programming and
specification languages, programming and
specification methodologies, mathematics
(both for reasoning about programs and
and systems and for describing languages),
and system interfaces. To engineer these
technologies into a cohesive whole is
extremely difficult, but the payoffs could
be substantial. If the development of
verification systems has been slow, it is
because of these fundamental challenges.

A Production Quality Verification
Systen

The four verification systems examined
in this study represent the leading edge
of mechanical verification technology.
This mechanical support is useful, if not
necessary, when applying formal
verification to real applications.
However, each of these systems has been
built primarily as a research vehicle for
exploring different ways of implementing
and applying formal verification. None
of them has been designed or implemented
as the kind of production quality system
that is needed to support wide-spread
application of verification to real
software systems., There is much that
needs to be done to progress from where
the systems are now to a truly production
quality verification system.

The most important requirement for a
production quality verification system is
soundness. Soundness for a verification
system means that if the verification
system claims that an application is
proved and the assumptions underlying the
verification system are true (correct
hardware, compiler, etc). then the
application actually will exhibit the
properties that the verification system
claims to have proved about it. Without
soundness, the results of a verification
(be it mechanical or otherwise) cannot
be trusted. If a verification system
is to be used in any important application,
soundness must be given top priority.

Bach of the research prototypes that
were studied has some areas of
unsoundness., Often the cause of this
unsoundness simply is that the
implementations of the existing systems
are incomplete in some important way.
These problem areas usually can be avoided
or finessed by an expert user; but this
level of expertise cannot be assumed for
the potential user community of a
production system., As mentioned above,
one way in which all of the four systems
are incomplete is that none of them have a
fully developed, mathematically precise
definition of the semantics of the
languages they process. This is the
standard against which a rigorous
determination of the soundness must be
made. -

A production quality verification
system must be well engineered. It needs
to have a high quality user interface. It
must perform efficiently. It must be
robust, well documented, maintainable,
etc. It should be built with the best
methods available for software
engineering, quality control,
configuration management, etc. Generally,
these issues have not been given a high
priority in the implementation of the
research prototypes, and all of them have
major deficiencies in some of these areas.
The current systems have been developed
primarily to demonstrate the feasibility
of i) mechanizing formal verification
and ii) applying it to real software
systems., They have served that purpose
well, but they are far from being.
production quality systems.

A production quality system that is
to be used by a large community must be
hosted on equipment that is readily
available to that community. The
National Computer Security Center has
taken a first step in this direction by
making the FDM, Gypsy, and HDM (both
the original and the enhanced)
verification systems and the
Boyer—-Moore theorem prover available
a Multics system on the ARPAnet. This
is a reasonable first step; however,
due to the limited Multics user
community (as compared to TOPS20, or
UNIX) and the dissatisfaction of
having to work over the ARPAnet, some
other means of reaching a wider audience
must be found. -

1f a production quality system is to

be made available on a wide~spread basis,
education of the potential user community
"will also be required. This community
will need to be educated in the
fundamentals of verification as well in
the use of mechanical verification tools.
The existing research prototype systems
can play a useful role here. They can be
used to help educate the community, and
they can be used to explore a wider
variety of applications of formal
verification. Demonstrating the
effectiveness of verification on an
increasing variety of important
applications probably is the best way

of drawing the attention of the

software engineering community to
verification, and thereby accelerating
its development.

Verifiability of Ada

Currently, there is a significant
degree of interest in determining
whether the programming language of Ada
is amenable to formal program
verification techniques. This interest
is particularly evident in the security
community. This interest in Ada
Verification is most likely the result
of the following line of reasoning.

DoD Directive 5000.31 states that Ada is
to be used for all mission critical
embedded systems software. It is
reasonable to assume that secure
systems are mission critical.
Furthermore, secure systems that are to
be certified at the Al level require
formal verification. Therefore, it is
reasonable to assume that Ada '
verification may be required for secure
systems,

This line of reasoning may seem
plausible; however, it should be noted
that no DoD requirement for code
verification exists. At the Al level
the requirement is for a manual or
other mapping between the formal
specification and the source code, to
provide evidence of correct
implementation.

While it was the collective opinion
of the assessment group that a verifiable
subset of Ada can be found, the group
also believed that it was necessary to
note some important observations and
concerns.

The main problem noted is that Ada is
a particularly complex language. As a
result, finding a useful and easily
determinable axiomatizable subset of Ada
is a difficult task. The group concluded
that before building an Ada verification
system time should be spent trying to
understand the components of Ada that
contribute to its complexity.

Research Directions

It was concluded that what is needed
to make a significant advance in the use
of formal verification for reliable
software is a variety of "exploratory
applications™ that explore the potential
utility of verification technology. This
experimentation shuld result in a variety
of publicly visible examples that show the
benefits of formal verification. It would
also be desirable to have a technology
that gets accepted without being mandated
by the National Computer Security Center
or the government in general. That is,
one would like the general public to view
the examples and conclude that this is how
they would like to build their systems.

To achieve success would require
experimentation on a wide variety of
examples. It would be beneficial to have
the academic, industrial, and government
communities all involved in this
experimentation. To carry out the
examples would require a long term
commitment from funding agencies.

One of the side effects of these
experiments is that the limits of the
verification techniques would be made
known and the areas in need of further
research would be exposed. Another
benefit of the experiments would be
production guality systems, for without
them there would be no hope of public
acceptance,

Conclusions

It should be noted that the
conclusions contained in this paper are
the result of looking at four verification
systems, Although the assessment team
members brought a large amount of formal
verification knowledge to the study, the
reader should be aware that this is a
view of the total field of formal
verification. It was evident from this
study that although it is possible to gain
valuable insight and understanding during
a one week visit, it is impossible to
fully understand a system in such a short
time,

Acknowledgements

I would like to thank the members of
the assessment team for their dedication
to this study. They approached the study
with open minds that provided a refreshing
academic atmosphere for exchanging ideas.
and knowledge.

I would also like to thank the
associations that hosted each of the site
visits for giving so generously of their
time and facilities. Particular thanks
goes to the development teams for each of
the systems who made each of the site
visits an enjoyable learning experience.

References

(And 72)

(Dob 83)

(DoD 85)

(Kem 86)

(Ver 85)

Anderson, J.P., Computer Security
Technology Planning Study,
ESD-TR-73-51, Vol. I, AD-758 206,
BESD/AFSC, Hanscom AFB, Bedford,
Massachusetts, October 1972

Department of Defense Trusted
Computer System Evaluation
Criteria, CSC-STD-001-83, .
Department of Defense Computer
Security Center, Fort George
Meade, Maryland, August 1983

COMPUSECese Computer Security
Glossary, NCSC-WA-001-85,

_National Computer Security

Center, Fort George Meade,
Maryland, October 1985

Kemmerer, R.A., Verification
Assessment Study Final Report,
Volumes I - v, C3-CR01-86,
National Computer Security
Center, Fort George Meade,
Maryland, January 1986

Proceedings of VERkshop III --

A Formal Verification Workshop,
Pajaro Dunes Conference Center,
Watsonville, California,

February 1985, Software
Engineering Notes, Vol. 10, No. 4,
August 1985

A NETWORK SECURITY PERSPECTIVE

Jonathan K. Millen
The MITRE Corporation: -
Bedford, MA 01730

1. INTRODUCTION
BACKGROUND

Network security is roughly at the same stage ADP
system security was about ten years ago, when prototypes of
the first multilevel secure systems were being built. Systems
with some degree of security already existed, but it was
important to have systems that were more flexible (including
the ability to support DoD needs), and which provided an
assurance of security based on more than a limited amount of
testing and a firm handshake.

Secure networks, in some sense, are all around us. The
- ARPANET has been used to carry classified information,
using PLI’s (BBN’s Private Line Interface) to provide end-to-
end encryption. Circuit-switched networks employ link
encryption devices to set up secure channels. Banks use DES-
based encryption to protect funds transfers. But modern
packet-switching networks present many opportunities and
problems that have not yet been fully explored.

The phased development and growth of DDN as a
backbone network to carry classified information, and the
development of distributed application-level networks such as
SACDIN and DoDIIS that will make use of its services, make
it necessary to understand and plan for the more advanced
capabilities envisioned for the future, as well as the concerns
arising from the interconnection of a wide variety of ADP
systems in a common internet environment.

Many important network security issues were brought
out in a Spring, 1985 DoD Workshop organized by the
National Computer Security Center (NCSC) [1]. The
objective of the Workshop was to provide the NCSC with
input for the development of trusted network evaluation
criteria, ‘analogous to the Trusted Computer System
Evaluation Criteria (TCSEC) [2]. The network criteria would
provide technical guidance for the DoD in the evaluation and
acquisition of networks in which security needs are
significant. It was clear that much of the organization and
content of the TCSEC applied to network evaluation, but
also that the TCSEC was deficient or inapplicable in some
respects for this purpose. The TCSEC needed to be revised,
replaced, extended, or at least reinterpreted for network
evaluation.

A number of issues discussed in the Workshop are stili
unresolved. Some of the unresolved issues are very basic,
such as whether the current state of the art is adequate to
certify any networks as secure at an “A” level, implying a
high assurance of security comparable to A-level standalone

systems. . Another. basic concern is the scope of the criteria;
what exactly is a network, and what kinds of networks can
reasonably be evaluated? '

ISSUES OVERVIEW

The need for certain significant additions and changes
in the TCSEC to adapt it for metwork evaluation emerged
from the Workshop. Some of the more notable
characteristics of network evaluation that distinguish it from
the standalone system ‘evalution are summarized below.
While each of these characteristics is a response to issues that
demanded attention; there are, in some cases, disagreements
about how to deal with them; those disagreements are
indicated below as well.

The characteristies touchedv upon in this subsection
are: the global vs.. component-view of a network, trusted
paths; interconnection rules,” communications integrity and
denial of service, treatment of non-host components, and
encryption. The following subsection begins the main topic
of this report, the relation between security policy and
protocol layering, and how it should affect network
evaluation.

One pervasive theme of the Workshop was the need to
view a network both as a global entity with a single security
policy, and as a collection of components that must be
individually specified and evaluated. For secure operation, a
network is bound to have certain standards, restrictions, and
conventions that must be obeyed and enforced network-wide
to obtain assurances that all users can count on. In
particular, some networks will have centralized facilities like
access control centers and repositories of audit information
whose proper use must be specified and enforced globally.

At the same time, networks are normally developed by
connecting together a variety of different components with
different functions, many of which existed independently prior
to the network or were off-the-shelf commercial products. It
is important to foster the development of future products of
this sort by understanding how to evaluate their designs on
their own, to the extent possible, out of the context of any

specific network.

The trusted path requirement is an extension of an
authentication requirement found in secure operating systems.
[n a standalone system, there are times when a human user
must communicate directly with trusted software, without
any possibility of undetected interference or forgery by

untrusted software. This occurs, for example, when a user is
presenting a password for login, since it should be read only
by trusted software; and when a privileged operation is being
requested, since the request should be honored only from an
authorized person. In a network, there are times when
trusted processes in different sites must share a similarly
protected channel. For example, one host may relay a local
user’s password to a remote host, or send security-related

reconfiguration = instructions from a local network
administrator to a remote site.
The interconnection rules are a statement of

mandatory access control policy at a level of abstraction (or a
layer of protocol) for which the network provides data links
between potentially multilevel components. These rules are
an explicit assurance to host administrators that their data
will not be sent to other hosts that are not accredited to
receive it. The current rules assume that data links are
bidirectional, because of the usual need for acknowledgements
and other two-way coordination when setting up connections.
In some applications there is a need for true one-way data
flow, and there is a question whether one-way data links
should be recognized by the interconnection rules, or whether
they should be treated as something that occurs invisibly
inside a trusted component.

The requirements relating to .communications integrity
and denial of service result from the general feeling that these
concerns, while already present for standalone computer
systems, are more serious in a network context, because of
the greater vulnerability of communications links to random
errors, wiretapping, and other threats affecting data in
transit. Hence, though they are- not mentioned explicitly in
the TCSEC, some security requirements of these types should
be imposed on networks. However, the Workshop results
indicated that the definition of “denial of service” is mission
dependent, and hence it would be difficult to define general
requirements for countermeasures against it. Similarly, while
communications integrity can be quantified statistically, it is
difficult to state universally acceptable requirements for
transmission accuracy.

The idea of trying to apply the TCSEC to network
components seems to work well when the component is a
multilevel host, but is less plausible when the component has
a more limited or special function; such as an encryption
device or a switching node. Even hosts, multilevel or
otherwise, are not evaluated in the same way for network
purposes when the network connection is limited to a single
security level, or when the hosts has special trusted functions
introduced to support the network connection,

Encryption plays an important part in network
security, but it is not clear to what extent requirements for
particular encryption methods, and for the associated
software and hardware, can be specified in a document
analogous to the TCSEC. The reason for this is the division

of responsibility between the NCSC, which is competent to

evaluate trusted software, and those parts of NSA and other
organizations that are competent to evaluate cryptosystems.

LAYERING SECURITY POLICY

There are a number of terms and concepts in the
TCSEC that are difficult to interpret in a network context.
Two of the more troublesome ones are subject and object .
Even for standalone computer system evaluation, it is not
always clear what the subjects and objects of a system are.
Subjects are usually human users or processes; but sometimes
I/O ports can be regarded as subjects. Objects are usually
files; but sometimes I/O devices, temporary internal buffers,
and subjects are considered to be objects.

In practice, subjects and objects are identified in the
context of a particular system in conjunction with the access
policy it is designed to support. In other ‘words, the
interpretation is a judgment call. If it turns out that certain
repositories of information have been neglected as candidates
for being objects, transfers of information through them will
be regarded as covert channels. Since covert channel analysis
is part of TCSEC evaluation, the situation is reasonably
under control. .

The situation is more complex in a network
environment. There are many more options for the
interpretation of subjects and objects. Hosts, nodes,
gateways, switches, front end processors, and subnets might
also be subjects; and messages, packets, virtual circuits,
connections, chanmnels, links, headers, plus the new subjects
just named, might also be objects. The prospect of devising
an access control policy for an internet that delineates the
roles of many of these players, and performing a. covert
channel analysis that takes care of the ones that were left
out, is daunting.

Network
Subject

Network
Subject

Network
Subject

Figure 1, Are They All Network Subjects?

A problem related to the interpretation of subjects was
discussed in the Accountability ‘group at the Workshop, and
its conclusion hinged on the concept of protocol layering.
The group mnoted that individual identification and
accountability across a network is a service provided by a
high layer of protocol. . Individual accountability is not
possible in networks that only provide services up to the
transport layer. A transport service is host-to-host; it-has no
way of knowing whether a particular user is receiving data
from a particular file.

The point is that whether a security policy makes sense
depends on the service provided by the network, as specified
by the user interface to a particular protocol layer. The
binding of a security policy requirement to a protocol layer is
quite natural in a network context, and it should provide
some insight, not only into how to interpret policy
requirements, but also how to structure the evaluation
process.

It is not necessary to-confine the security policy for a
given network to a single protocol layer interface.
Requirements on different. layers will certainly be called for.
For example, all information on communication links should
be protected from undetected eavesdropping or other
interference, by physical protection or link encryption.' That
requirement clearly applies to the logical link layer.or below,
and exists independently of higher level requirements on
access control.

Stratifying security requirements into protocol layers
has the. principal benefit of preventing interpretations that
are nonsensical, or fundamentally incompatible with the way
networks are designed, because they cross layers. It also has
implications for
how to define what a network is, for purposes of evaluation,
and how to identify and evaluate its components.

To quote Tanenbaum, ‘“The peer process abstraction is
crucial to all network design” [3, p. 13]. Peer processes
communicate with one another following certain rules
defining message types, formats, and conventions for various
activities such as opening and closing connections, error
correction, and so on. In order to send a message to a peer, a
process uses a lower protocol layer, sending the message
downward through an interface; and the other process will
receive it when it pops up through the interface at the
destination. Although the two communicating processes may
be a considerable distance from one another, the interface to
the lower protocol layer forms a single conceptually global
shell, enclosing a system that is itself a network.

We might visualize peer processes as heads of pins,
which are all stuck in the same pincushion.. The pincushion
is hollow, however, and inside there is another pincushion
complete with pins, whose heads form the shell of the outer
one. Similarly, the peer processes in the higher layer may
support a higher level network service. We are, therefore,
equating a network with the service provided by a protocol
layer, and observing that networks can be nested within
others, by virtue of the protocol layering.

This layering of networks is not merely an abstraction;
network services are actually built by adding components
supporting a higher level protocol to an existing network.
This sort of network construction suggests that the entire
existing network should be thought of as a single component
of the new, higher-level one, since it was one of the ‘“‘pieces”
used to put it together.

THE 1ISO MODEL

We will make use of much of the ISO reference model
terminology because of its wide familiarity. In that model,
the architecture of a network has seven layers, and those
layers will be characterized briefly below. It should be kept
in mind that the existence of layers, and the occurrence of
certain common functions, are more important than the
particular grouping of functions into the ISO layers. Few, if
any, networks have natural separations between layers at the
exactly the same places envisioned by the ISO committee,
and many networks have additional functions that do not
seem to belong inside any of the seven layers, but occupy
layers of their own. Nevertheless, the seven ISO layers are
helpful as a starting point.

Peer

Figure 2. Protocol Layering

In layer 1, the physical layer, the peer entities are
simple transmission and reception devices such as modems.
For each of them, the network is only a single wire leading to
another modem. A modem is also conscious.of a user- who
communicates with it over a connector, acting as a input and
output for voltage levels. Voltage levels at some of the pins
on the connector are simple cqmmaﬁds to 'start, walt, ete.
Security concerns at the physical layer are limited to physical
protection of the link medium
electromagnetic eavesdropping.

from tapping or

In layer 2, the data link layer, the peer entities are
processes who see the network as a kind of two-ended modem
(a modemedom?) that can be used to transmit individual 8-
bit characters, or perhaps longer data ‘units, to a
corresponding process at the other end of the modem. These
data link processes may be located in a host or in a separate
network interface unit. Their users are sources and sinks of
character streams. A data link process may have some
responsibilities for error detection and retransmission. Link
encryption is typically applied at the lower edge of the data
link layer.

In layer 3, the network layer, the peer entities are
processes who see the network as a collection of
communicating processes - this is the first layer that knows
that a network has more than two ends. Let us refer to each
of these processes as a ““node”. A node understands that it is
connected directly via data links to only a few other,
neighboring, nodes, and often plays the role of a relay station,
passing on packets received from other nodes. Its user, if
any, is a host process. A packet is a sequence of characters

with source and destination addresses, plus some error
detection information relating to the packet as a whole.
Some communications integrity concerns are addressed at the
network layer.

In layer 4, the transport layer, the peer entities are
processes representing hosts. A host process is actually less
aware than the layer-3 nodes of the network topology; it
knows the addresses of other hosts, but it doesn’t know which
ones, if any, are its néighboi‘s. The host process divides its
user input into packets. If necessary, it attaches a sequence
number to the packeté, so that its peer entity will know when
packets have arrived out of order, and thus can reorder them,
and detect when packets are missing. End-to-end encryption
can be applied at the bottom of the normal transport layer.

Tn layer 5, the session layer, the peer entities are
processes Wwhose wusers are application: programs. An
important function of a session-layer process is to set up a

connection by going through a login procedure; which may .

involve communication with a peer entity in an access control
center host. . When end-to-end encryption is used with
automatic key distribution, a session-layer process uses
transport layer services to obtain and distribute. the
encryption key.

The two higher layers; the presentation layer‘(ﬁ) and

application layer (7), differ greatly from system to system. In .

a distributed system, where the user is not forced to
distinguish between local resources and remote resources,

processes at these layers translate user requests that require.
remote resources into requests for session layer services. Most . .

network security concerns are addressed at lower layers,
though end-to-end encryption could, in principle, be applied
in any layer from 4 to 7.

In an internet environment, host addresses accepted by
the transport layer have a network component, so that hosts
in other networks may be addressed. Internet communication

is accomplished by forwarding- packets from one network to

another via gateway hosts. A protocol layer is needed to
translate the compound net/host addresses into- an
appropriate host or gateway address within a network. The
internet layer is also concerned with fragmenting .and
reassembling packets at gateways for travel through networks
with different packet sizes. Since the internet layer is used by
the transport layer and, in turn, uses the network layer, it is
between layers 3 and 4, as described above, and it is viewed
as the upper part of layer 3.

2. A SEQUENCE OF EXAMPLES
INTRODUCTION
The importance of protocol layering in evaluati‘ng

networks will be illustrated with a sequence of examples
based loosely on the evolving DDN architecture. We will look

- normally only to the addressed destinations.

at several networks, each one built on top of a preceding one.

In each case we will perform an off-the-cuff evaluation of the

network under a reasonable interpretation of the TCSEC,

with respect to .compromise protection. The -examples are

intended to -bear a ‘general’ ‘architectural resemblance . to

certain real networks, such as the ARPANET. In some cases,
the names of the corresponding real networks will be used for

the examples to suggest the connection, but it-should also be

kept -in mind that many details and features of the real -
networks have been omitted or altered. :

Security - policy requirements will be applied to the
network service provided by the outermost protocol layer,
while architectural . requirements will be apphed -where
approprlate, to network components.

ARPANET

We begin with a simplified version of the ARPANET.
The basic -components of this ARPANET are- the IMPs
(Interface Message Processors, which are switching nodes) and
the trunks, providing a network-level host-to-host service.
The network provides discretionary access control, as required -
for division C, in the sense that messages are delivered
This seems to
satisfy the requirement for access control at the granularity of
a single host.

The discretionary access control requirement actually
refers to “users”, but the network provides only host-to-host
service, so the only proper interpretation for ‘‘user” here is
“host”. Identification and authentication in the usual sense
are obviated with this interpretation for “user”.

Looking at the architectural requirements for class C1,
one- could say that the TCB (Trusted Computing Base)
operates in its own ‘“domain”, since we could include all the
software in each IMP in the TCB; there
programming” on this system.

is no ‘‘user

Yet this ARPANET has a serious security ‘problem:
any individual could obtain information destined for any host
by eavesdropping, via wiretaps on suitable trunk lines. There
is, of course, no reference to this kind of vulnerability in the
TCSEC. Should we disqualify this network for division C, or
just say that it is good enough for C1 but not for C2? One
way to pursue this question is to look at a similar network
that addresses this vulnerability.

e

PRIVATENET

‘Suppose that link encryption devices are added to
trunks between IMPs, and at the same time we place the
IMPs into secure areas. The net effect of these measures is to
protect semsitive information from exposure to the outside
world. Although the host interface to the network is the
same, its link-layer service component has been replaced with

a more secure one. This makes it a new network; call it
PrivateNET.

The most startling difference between ARPANET and

" PrivateNET is that the latter could operate in a dedicated or

system-high mode with classified information, (assuming that
the link encryption system was approved) while the former
icould not, unless it were a local-area network entirely
enclosed in a protected facility. It is true that any standalone
computer could process classified information if it were
enclosed in a protected environment, without raising its
" evaluation class.. Nevertheless, it is argued here that
encryption should be regarded as an architectural feature of
the network and not an environmental add-on, because it
‘changes the nature of the service offered to users. This is
perhaps not so compelling in the case of link encryption. since

the associated encryption devices are relatively simple. In
more advanced schemes, however, in which access control is
interwoven with key distribution, it is clear that the
architecture of the encryption system is a large and
significant part of the network design, with substantial
trusted software, and it must receive correspondingly great
attention during the évaluation.

LE = Link Encryptor
. 1MP = Interface Message
Processor

Figure 3. PrivateNET

Is ARPANET or PrivateNET in class C2? Possibly.:

The requirement for ‘“‘resource isolation” suggests that special
provisions are necessary to prevent messages from getting
mixed up inside switching nodes:. It is unclear whether the
IMPs satisfy this requirement. However, the software that
keeps messages separate is no worse than the software that
supports the discretionary access control requirement by
preventing misdelivery, so there does not appear to be a
reason to reject it. Another factor to consider is the
maintenance of an adequate audit trail.

IPLI-DDN

On top of the PrivateNET basic transport service we
can superimpose a layer that provides end-to-end encryption,
initially with IPLI’s (Internet Private Line Interfaces). This is
a new network, also with an interface to 2 layer 3 service. To
ensure that a message will be kept secret from all hosts other
than the desired destination, one arranges (ahead of time) for
the IPLI's at one’s own host and the destination host to share
a key that is not available at any other. Or, one could
arrange for group-level access control by distributing keys on
a community basis. This scheme.is very much like one of the

architectures suggested for a pre-Blacker phase of DDN,
although subsequently discarded. Let us call it IPLI-DDN.

IPLI = Internet Private Line
) Interface

Figure 4. 1PLI-DDN

End-to-end encryption gives us much greater assurance
that messages will not be compromised by . either
eavesdropping or misdelivery. But the network is still only in
division C,.because it knows nothing about security level
labels. Given the large amount of additional expense and -
effort that went into it, relative to PrivateNET, and-its
greater level of protection, it deserves a higher ranking.

With IPLI-DDN we have network complex enough so
that we need to take a close look at its components. What
are the components of IPLI-DDN? The IPLI's are certainly
components; and it is suggested that the entire PrivateNET
be taken as the only other component. The TCSEC has
security policy, accountability, assurance, and documentation
requirements for a TCB that have' implications for each
component. These requirements could reasonably be
supported by an IPLI, though some effort and perhaps some
new documentation would be necessary to establish that
claim. Some of the requirements, especially those relating to
accountability, apply rather obliquely when a host is a
network subject.

The PrivateNET component needs to be trusted only
to support discretionary distinctions between hosts in the
same key community. But this property may be inferred
from its prior ‘“‘evaluation” as a network in its own right.
This illustrates how certain short cuts are possible when a
subnet can be regarded as a single component of a higher-
level network.

DNSIX

As an example of a network supporting mandatory
access control, consider multilevel security facilities such as
those planned for DoDIIS (DoD Intelligence Information
System). Let us assume, for our purposes, that DoDIIS will
depend on IPLI-DDN for backbone communication over long
distances. A DoDIIS node consists of one or more hosts with
a common interface to IPLI-DDN. DoDIIS hosts generally
bandle compartmented information, but only some operate in
true compartmented mode, while others are system high, and
still others are dedicated to a single compartment.

11

DoDIIS
host

NFE = Network Front End

%ob I3
hest

Dobk

host

Figure 5. DNSIX

The network security architecture being developed for
DoDIIS is intended to support controlled access by users at
terminals to FTP and Telnet services at remote hosts. The
security policy has implications for (1) restrictions on creating
cross-network sessions and (2) security labels on datagrams.
The policy is to be enforced by a additional protocol layer (or
layers) called DNSIX (DoDIS Network Security for
Information eXchange). The DNSIX software is split
between each DoDIIS host and its associated NFE (Network
Front End), which contains the TCP/IP software.

When DoDIIS against division B
requirements, the network service we are actually evaluating
is the DNSIX interface, which provides the remote services.
The requirements for DNSIX do appear to match closely with
B requirements. ‘

evaluating

The components of DNSIX are (1) the DoDIIS hosts,
since they have trusted DNSIX software; (2) the NFE’s, since
they also have trusted DNSIX software; and (3) IPLI-DDN.
Considered as components, each of these has certain specific
functions it must support, and its evaluation is with respect
to these functions rather than the overall mandatory security
policy which they support. While the compartmented DoDIIS
hosts will probably be B-division systems with respect to the
TCSEC, that fact is not relevant to their evaluation as
DNSIX components, except insofar as their architecture
assures the protection of the DNSIX software they contain.
Similarly, even though IPLI-DDN is only division C, it can be
a component of an B network, because its function is only to
isolate connections; the mandatory access policy is taken care
of by the DNSIX protocol layer.

It should be kept in mind that installing DNSIX
software in a DoDIIS host may have repercussions on the
TCSEC rating of that host. For example, the DNSIX host
software may have privileges such as kernel-domain access to
communications ports. If so, it is trusted not only in the
network sense, but also for the host
Recertification of the host may be needed.

evaluation.

It is also reasonable to try to evaluate DoDIIS itself,
rather than its network interface DNSIX. DoDIIS can be
regarded as a distributed system, providing access to both
local and remote services. The interface to the trusted part
of the system, which should be identical to the TCB interface

12

in each host, is very much like a protocol layer. Distributed
system evaluation is discussed further in the next section.

BLACKER-DDN

Another major step in upgrading DDN is to use
Blacker for end-to-end encryption instead of TPLI's. Like
IPLI-DDN, 2 Blacker-DDN is built by putting a protocol
layer on top of PrivateNET. Blacker-DDN components
include not only the Blacker Front End (BFE) in place of the
IPLL but also a Key Distribution Center (KDC), and an
Access Control Center (ACC). The subnet component is
PrivateNET. The functional advantage of Blacker over IPLI's
is that keys are distributed in such a way as to enforce
security level separation as well as community separation. It
is also more convenient because keys are distributed
automatically over the network.

Because Blacker-DDN enforces interconnection rules
based on security levels, it should be targeted for division B
or A. In the TCSEC, the step from B to A comes primarily
from the use of more rigorous methods to verify that the
compromise protection policy is upheld.

BFE = Blacker Front End
KDC = Key Distribution Center
ACC = Access Control Center

Figure 6. Blacker-PDN

Suppose for a moment that the additional verification
effort were not made to raise Blacker-DDN from B to A. We
would then have two networks, Blacker-DDN and DNSIX,
both in B, but with significant architectural differences
between them. Although Blacker-DDN and DNSIX both
support a mandatory access control policy, the special
Blacker components will be designed with more attention to
the separation of security-critical modules from the rest of the
system. Another way of summarizing the difference is to say
that Blacker components can be evaluated under the TCSEC
as B3 or Al systems, while the DoDIIS hosts and NFE’s are
probably only B2 at most. This means that there are
environments (or distributed systems) for which Blacker
would be satisfactory and DNSIX unsatisfactory. - This
suggests that it is reasonable to maintain the distinction
between B2 and B3 in a network context on the basis of
architectural requirements, so that Blacker-DDN could be
distinguished from DNSIX. '

AUTO-DDN

There is an alternative to using end-to-end encryption.
We could, instead, upgrade PrivateNET by replacing the
IMPs by special packet switching nodes (PSN’s) that inspire
greater confidence, by virtue of their architecture and
development environment. They might, for example, contain
security kernels and be evaluated under the TCSEC at a
relatively high level, perhaps even Al. Let us call this
hypothetical network AUTO-DDN; it is reminiscent of
AUTODIN II, whose development was discontinued in favor
of DDN.

AUTO-DDN is not built on top of either PrivateNET
or ARPANET. Like PrivateNET, it is built on an encrypted
link layer.
and the link layer. If it were evaluated, its rating would
depend on the functionality and architecture of the PSN’s.
Let us suppose that the PSN’s support mandatory access
controls, so that, say, a Secret datagram will be delivered
only to a host accredited for Secret information.

If we compare AUTO-DDN to Blacker-DDN, they are
similar in the quality of their components, but there is a
striking difference in the protection of message data in
switching nodes: it is protected by end-to-end encryption in
Blacker-DDN IMPs, while it is in the clear and protected only
by the operating system access controls in AUTO-DDN
PSN’'s. This is certainly a large enough increment in
compromise protection to warrant evaluating Blacker-DDN at
a higher rating.

Comparing AUTO-DDN with DNSIX is more difficult;
we seem to be comparing apples and oranges. Since DNSIX
is built on IPLI-DDN, it provides end-to-end encryption of
message data in IMPs; but AUTO-DDN PSN’s employ a more
trustworthy architecture (by assumption) than the DoDIIS
hosts and NFE’s with their DNSIX software. The crucial
observation here is that the data is still in the clear while in
the DoDIIS hosts and NFE's; the IPLI's provide only
community isolation. Consequently, the risk of mislabelling
message data is greater in DNSIX. This argument supports
the contention that DNSIX, AUTO-DDN, and Blacker-DDIN
(before verification) exemplify three classes within division B.

3. DISTRIBUTED SYSTEMS
INTRODUCTION

One of the conundrums discussed at the Workshop
was whether to think of a network as simply a
communications service joining independent hosts, or as a
distributed system into which hosts and communications are
integrated.

The term ‘‘distributed system” is normally reserved for
a network that offers application-layer services, and controls

The components of AUTO-DDN are the PSN’s

access to both local and remote resources. DoDIIS and
SACDIN are examples of distributed systems. At the smaller
end of the scale, there are distributed systems on local-area
networks (LANs). There are many examples of workstations
on a LAN sharing a global file system, in which a file located
at another workstation or a file server can be loaded as easily
as one stored locally.

The term ‘“distributed system” can also be used in a
broader sense to apply to any network, inclusive of the hosts
that are connected to it. It is convenient for us to use the
term in this broader sense, since we have restricted
“network” to mean a protocol layer interface. In this section
we will look at .concerns that arise from the way hosts are
connected to networks to form distributed systems.

In a “true” distributed system, network access to
remote resources is viewed as an extension of the local

resources provided by each host. It was stressed earlier that

a global network security policy should be stated in the
context of the service interface to one or more protocol layers,
so that the appropriate subjects, objects, and access control
requirements can be identified. When thinking in terms of a
distributed system that manages both local and remote
resources, we should still be able to identify a distribuied
service interface in terms of which to state the policy, even
though it is not strictly a protocol layer interface.

For true distributed systems it is reasonable to follow
our general prescription for applying the TCSEC to nétworks:
apply security policy requirements to the global interface, and
architectural requirements to the components, including, in
this case, the hosts. But the implementation of this approach
will not be smooth sailing. The principal difficulty will be in
deriving its implications for non-host components.

COMPONENTS

It will be mnecessary to limit security policy
requirements of non-host components to match their specific
functions. @ The design specification and
requirements for division B and A components can be seen as
limited to security properties needed to support a global
policy. This means excluding TCSEC requirements for
security labels that may be inappropriate for some trusted
components. A switching node, for example, must be trusted
to separate messages from one another, and prevent message
data from leaking into headers; but it can do so with no need
to maintain security labels.

verification

The perspective espoused in this paper suggests that it
would be very desirable to view subnets as components; the
problem is that TCSEC architectural requirements are really
applicable only to standalone computers. As an expedient
one might say that, when a distributed system is built on top
of a subnet, like PrivateNET or IPLI-DDN, all of the
components of the subnet (and all of their components, etc.)

13

are elevated to the status of components of the distributed
system, down to every IMP, gateway, and modem; but it
would be conceptually simpler, and more in tune with the
precepts of network architecture, if that were not necessary.
The above considerations suggest that special
requirements should be developed for various specific types of
components, including subnets. Security policy-related
requirements and architectural requirements would both be
tailored for the type of component.

Having separate requirements for different kinds of
components could also facilitate a more detailed consideration
of the security features appropriate for them. It might
become practical to implement the recommendation of the
Components Group at the Workshop, namely,
different features at different assurance levels.

to rate
A link-
encrypted wire, for example, as a subnet component, provides
host-granularity discretionary security (a C-division feature)
with an extremely high (A-division) assurance.

COMPLEX SYSTEMS

A host attached to a network has schizophrenic roles
as a provider of both local services and network services.
True distributed systems integrate hosts coherently into the
network, but in others the network connection is an
afterthought. In the latter case, it may be impractical to
identify a distributed system service interface that supports a
coherent security policy.

Systems like SACDIN and I-S/A AMPE, whose hosts
a single architecture rating, can
reasonably be expected to support a coherent global security
policy, and can thus be evaluated as true distributed systems.

have and evaluation

But what should we do about complex systems
comprised of dissimilar hosts of different evaluation classes,
operating in different security modes? It should be possible,
for example, for a multilevel, Al host to communicate with a
dedicated, C-division host over a private connection, given
that the single security level of the latter is within the
accreditation range of the former.
imagine a single, distributed system security policy that
covers user separation by security level in the multilevel host,

It boggles the mind to

discretionary security in the network with host granularity,
and discretionary security with user granularity within each
of the hosts.

It is our contention that such a complex system should
not be evaluated as a distributed system, with an overall
TCSEC evaluation. Instead, one should look at it as a
collection of hosts with access to a separately evaluated
network service. Under these circumstances, the appropriate
goal is to examine the individual host and network evaluation
ratings, in order to justify continued accreditation of the

14

hosts for their current mode of operation, in the face of their
attachment to the network.

The environments guidance document associated with
the TCSEC, called the ‘“Yellow Book” [4], addresses the
relation between the evaluated rating of an ADP system and
the range of classifed information it can handle, on the basis
of characteristics of its environment, such as the minimum
clearance of users. An analogous document addressing the
issues associated with connecting a host to a network is
currently being developed by the NCSC with support from
MITRE.

THE CASCADING PROBLEM

An example of an accreditation issue that needs to be
considered in a complex system context was brought up by
Steve Walker. Suppose that two ADP systems are operating
in controlled mode at two adjacent security levels, but one
has the range TS-S and the other has the range S-C. They
could be connected by a trivial network consisting of a single,
physically protected wire Jjoining S-level ports on both
systems. The problem is that the network connection has
created a risk of introducing TS information into the C-S
system, whose accreditation only qualifies it to handle the
two lower levels.

From the point of view of the TCSEC, the network
connection has merely introduced a single-level-S resource to
both hosts. No new software has been added to either host,
so their evaluation classes have not been affected.

(Ts)

® ®

©)

Figure 7. The Cascading Problem

What went wrong? Evidently, the environment of the
hosts changed by connecting them to the network. We could
say that the set of human users was expanded, but there is a
more precise way of characterizing the problem, relating to
the trustworthiness of security labels placed by a computer
system on classified objects. In general, the object level is
determined from two influences:

Object Level = Source Level + Contributions.

When information enters the system from outside, the
security level of its source is known and trusted. Thereafter,
while information is held within the system, the correct level
is maintained by system software. When computations cause
information to flow into an object from another, access
controls ensure that the level of the object remains consistent
with the level of information contributed to it by those
computations.

The TCSEC rating of a system is a measure of the
trustworthiness of system software in maintaining object
levels during computations; but how trustworthy is the
determination of source level? In a standalone ADP system
environment, the normal external source of information is
human users. If a human user says that certain input
information is Secret, high confidence may be placed in that
assignment. For, if the user is only cleared to Secret, he does
not have any higher-level information to introduce; and if he
is cleared to a higher level, he can be trusted to give the
proper level for information at that level or lower.

When an ADP system is connected to a network, the
network becomes a new source of information, and it often
cannot be trusted to the extent that human users are. This is
one point that must be taken into consideration when writing
an Environments document for networks, or a distributed
system evaluation guide.

A similar problem can occur even for a standalone
system. Again, consider the two controlled-mode systems,

one at TS-S and the other at S-C, but do not connect them.
Can we make a tape on the higher-level system with S-level
filess on it, and carry it to the lower-level system? No,
because the tape is an external source of information, and its
security label, determined by the other controlled mode
system, cannot be trusted any more than if the information
came across a- wire. Such a tape transfer would be
permissible only if a responsible individual has reviewed the
material on the tape and confirmed the correctness of its
marking, or if the tape was produced on another system that
did not handle higher-level information.

Problems like this can be solved by imposing
additional restrictions on interconnection. For example, as
Walker has suggested, one ecan insist that all mutually
connected systems operating over the same size security level
range (two adjacent levels, in the example) share the same
maximum level.

When an accrediting agency wishes to place more
severe restrictions on certain information than called for by
normal environmental guidelines, the natural approach would
be to set up a community of hosts satisfying the tighter
restrictions. Communities like this can be implemented by
discretionary access controls or encryption.

4. SUMMARY

e Protocol layering is important In network
architecture, and it has consequences for network security
evaluation. A network is viewed as a global service provided

by the user interface to its outermost protocol layer.

e In attempting to use the TCSEC to evaluate a
petwork, a rtough strategy is to apply security policy

requirements to the network globally, and architectural
requirements to the network components.

e Network global security policies should be stated in
terms of concepts supported by a particular protocol layer.
Requirements on more than one layer may be called for. The
global policy has implications for derived functional
requirements on individual components, to support it.

e Examples of networks providing varying features
and levels of assurance have suggested that the use of
encryption should be regarded as an architectural feature of a
network, affecting the evaluation class.

e Separate requirements documents or -appendices
should be published for specific types of network components.
In particular, it should be possible to consider entire subnets
as network components. TCSEC requirements need radical
reinterpretation for application to components, so that they
do not exclude, or place unreasonable requirements on,
specialized components or subnets. Component evaluation
could assign separate assurance levels to various features
appropriate for the component.

e A true distributed system has a global user interface
whose security policy can be evaluated by the TCSEC.

e Complex distributed systems consisting of dissimilar
hosts are not practical to evaluate as true distributed
systems. Instead, the goal of evaluation for such systems is
twofold: to evaluate the network itself, and to justify
continued accreditation of the hosts for their current mode of
operation after attachment of the network. An environments
document is needed to facilitate this. The fact that a
network brings new, less trusted sources of information to a
host is an important environmental consideration.

REFERENCES

1. “Proceedings of the Department of Defense Computer
Security Center Invitational Workshop on Network
Security,” New Orleans, LA, March 19-22, 1985.

2. DoD Computer Security Center, ‘“‘Department of Defense
Trusted Computer System Evaluation Criteria,” CSC-
STD-001-83 (the ““Orange Book”).

Ya

3. Tanenbaum, A. S., Computer Networks , Prentice-Hall,

Inc., Englewood Cliffs, N. J., 1981.

4. DoD Computer Security Center, ‘“Computer Security
Requirements,” CSC-STD-003-85 (the “Yellow Book”).

This work was supported by the U.S. Government
under contract no. F19628-86-C-0001.

ngmart" Terminals for Trusted Computer Systems

by Mark D. Gabriele

Abstract
“Smart" terminals are increasingly
popular, as they can increase individual
productivity immensely. However, such

terminals are not presently desirable from the
point of view of building a secure multi-level
computer system, as they open avenues for
spoofing, covert channels, and relabeling of
sensitive data. This paper is an overview of
the problems and the possible solutions to the
problems created by using "smart" terminals in
trusted systems. Among those solutions are:

1) don't use smart terminals; that is,
restrict trusted systems to "dumb" terminals
exclusively; 2) use only terminals which are

"configurably dumb;" 3) alter existing "smart"
terminals to remain "smart" while becoming
"trustable;" and 4) use secure workstations as
"smart" terminal emulators. Each is examined
and weighed.

Introduction

The user community has recognized a need
for some method of accessing secure systems
which will increase individual productivity.
This is accomplished on non-secure systems by
the use of "smart" terminals. This paper will
focus on what types of terminals may be used
for accessing secure host systems without
jeopardizing their security. Perhaps some of

-the types of secure terminal mentioned here
will be researched and developed, and
eventually integrated into the secure systems
of the future.

These several generic types of terminal
range from "dumb" to "“smart" to the secure
workstation of the future. The advantages,
drawbacks, and security relevant aspects of
each will be discussed. Methods for securing
each type of terminal will be suggested, as
well as possible problems which may need to be
overcome. The end result will be that the
reader will have some idea about the state of
secure terminals today, and where they may be
going in the future.

There are some matters which are not
addressed in this report. The foremost is
emanation security (the Tempest problen).
Other exceptions will be mentioned as they
occur.

Disclaimer: The views expressed in this
paper are exclusively those of the author
based on experience gained as a commercial
products security evaluator at the National
Computer Security Center (NCSC). This paper
does not necessarily represent official policy
of the National Computer Security Center.

16

Terminology

Before beginning this discussion, a number
of definitions are in order. First, we need
to define our conception of a 'smart"
terminal:

A "smart" or "intelligent" terminal is
a terminal which possesses some form
of volatile or non-volatile
programmable memory, and allows the
host system to perform read and write

operations on the data in that

memory.

In contrast, a "dumb" terminal has no
programmable memory. A Veonfigurably dumb®

terminal is a unit which may have unlimited
data processing and storage capabilities, but
these can be disabled to render the machine
"dumb,® according to the above definition.

A "trustable" terminal is considered to be
a device which can be relied upon to relay to
the user exactly what was received, transmit
exactly what the user entered for
transmission, and to_provide separation across
all security levels.

With these definitions as a basis, there
must now be a distinction made between what
constitutes a terminal and what constitutes a
network node. If such a distinction is not
made, then one can simply argue that any
intelligent terminal attached to a host
constitutes a network, and should be dealt
with as such from a security standpoint.

An explicit definition of "network node"

is needed to alleviate this problem. Owing
to the increasing complexity of computer
networks, a node is a difficult thing to
characterize; but for the purposes of this
paper, a node is:
"A device which provides CPU cycles in
support of some activity which is
invoked at some other point on the
network."
Where a network 1is simply defined as an

interconnection of two or more nodes.

Note that while a personal computer may
physically be able to comply with the above
definition, should this capability be
neutralized or defeated by some mechanism,
then that unit is no longer acting as a node.
As an example: if a personal computer is
running a communications package which
includes a file transfer protocol, that
machine is acting as a terminal, not a node,
until such time as the host requests that file
transfer protocol is activated and the machine
enters server mode. At that point, the
personal computer is providing support to a
remotely activated activity (file transfer, in
this case), and is considered to be a node.

1 as appeared in response 147 in the
DOCKMASTER computer system Criteria Discussion
forum, entered by Vidmar.CPE.

Ibid.

Dumb Terminals

The first configuration which will be
addressed is that of "dumb" terminals. These
are secure simply because they have no means
by which they could compromise or subvert
sensitive data. This type of terminal is
exemplified by the generic term "glass TTY,"
although many types of printing terminals
would certainly gqualify. A truly dumb
terminal would include no buffer memory,
although many contemporary terminals which are
considered to be dumb do contain some memory.
Just because a terminal is considered to be
dumb does NOT mean that it must be
inconvenient or cumbersome to work with;
however, any "intelligence" which the terminal
exhibits must be provided by the host machine.
This requirement severely limits the utility
of a dumb terminal. 2all dumb terminals suffer
from similar problems, to varying degrees,
regardless of their apparent intelligence at
their user interface.

One drawback is that of independence of
components. When working with a dumb terminal
which must rely on a host for even the
simplest of chores, all work must be done
while the user is on-line with the host. This
creates dependence on one central host; should
that host fail, or suffer from poor response
time, the user is unable to work. Entire
offices or even corporations can be stymied by
a host failure; if all computing is done via
dumb terminals, NO work can be done on. the
terminal until the host service is restored.

Hosts which support a generous user
interface on a dumb terminal may unfortunately
be slowed by processing delays. The host
processor may incur a great deal of overhead
doing menial, terminal-support tasks, slowing
system response; again, user productivity
suffers. Even the best dumb-terminal systems
have these faults.

Examples of very popular dumb terminal
systems may be found in many configurations of
the IBM 327x series of terminals and terminal
control units. The 3278 terminal supports
very limited local functionality: basically,
only the ability to position the cursor, and
send up to one screen of information back to
the host at a time. Virtually no processing
of the data is done locally; although there is
some slight 1local intelligence, the 3278
terminal is essentially dumb. The 3274 (and
related type) device controller, while
supporting error detection and correction,
does not add to the local functionality of the
terminal. Almost all terminal support, such
as buffered screen memory, various screen set-
up options, etc. must be done by the host.
The host software support for the terminal
must therefore be trusted code in order for
this configuration to be considered secure.
Even though this arrangement does provide some
of the functionality of a smart terminal with
few security-relevant drawbacks, it is obvious
that it is not the most economical method in
terms of host CPU time, in addition to the
disadvantages listed above.

All NCSC-evaluated systems require the use
of "trustable" terminals in their evaluated
configurations. Dumb terminals are considered
intrinsically safe because they cannot aid a

malicious user in attacking the system by any
known means. They are therefore defined to be

"trustable". They also tend to offer fewer
features than contemporary computer users
would 1like. However, at the present time

there are no "trustable" smart terminals. So,
the user of a secure computer system must
currently use a dumb terminal in order for the
system to remain secure.

Configurably Dumb Terminals

The modern user of a secure system, in
order to have his system running in its
evaluated configuration, may need to have two
separate devices on his desk: a terminal for
communications with the host machine, and a
personal computer for use with spreadsheets,
word processors, etc. This tends to be an
impractical, as well as an inconvenient
solution, so in many instances, a personal
computer (PC) may be used as a terminal
device. This is normally accomplished by
running some type of terminal emulation
software. Regardless of the software being
run, this is almost never a secure
configuration. Too many possibilities of
subversion exist: the PC can "spoof" a user
into divulging his or her password, keep a
record of the entire conversation with the
host for later retrieval by another party,
open enormous covert channels, relabel
sensitive data, or destroy any trusted path
which may exist. Unfortunately, great numbers
of PCs are being used as terminal emulators:
so some action should be taken to render them
secure enough to be used as trusted terminals.

The path by which this may be done is to
render them "configurably dumb." What this
means is that the user may invoke some action
which causes the PC to lose those things which
make it untrustable. As an elementary
example, one may install an extra processing
card in a generiec PC which, when activategd,
causes the machine to reboot from a trusted
ROM on that card, and immediately execute a
trusted terminal program, also contained in
ROM. When the card is active, the personal
computer functionality of the PC is gone; it
is only capable of acting as a terminal. That
terminal will be trusted at the level of the

software and hardware modifications. It
should be a goal of the NCSC to develop
component evaluation criteria which can

address machines of this ilk,
allow the user to fashion his PC into a
trusted terminal. This terminal could be
either smart or dumb. If it is to be made
smart, then it will be covered by the
discussion of smart terminals which follows;
if it is to be made dumb, then it must exhibit
none of the functionality of a PC; it must be
trustable in exactly the same manner as any
other dumb terminal. Note that switchably
rendering an expensive computer incapacitated
except for basic terminal emulation functions
may sound somewhat ludicrous; but if a dumb
terminal is all that is needed, it may be more
economical to arrange to equip a PC with such
a device, so that it may serve both stand-
alone and terminal emulation purposes equally
well,

as they would

17

Smart Terminals

An alternative to the use of a dumb
terminal in a secure computer system is to
employ a trusted smart terminal device. This
is a very favorable alternative in many cases
because of the great functional enhancements
which many smart terminals incorporate.
are able to do high resolution graphics, while
others allow great ease in manipulation of
-text, several pages of conversation buffer,
multiple concurrent terminal sessions, or even
multiple sessions on different machines which
are physically plugged into the same terminal.
A few terminals allow all of these things and
nore. Needless to say, these devices can
increase the productivity of the mainframe
user immensely, while presenting the user with
a much nicer machine interface. Apparently,
everyone wins. Unfortunately, this is not
true from the viewpoint of someone trying to
secure a system which uses smart terminals for
communication with a mainframe.

There are several features of smart
terminals which can pose major threats to
security. Foremost among these are: the
threat of spoofing, the ability to relabel
sensitive data, the ability to open extremely
high-bandwidth covert channels, and - the
ability of such a terminal to interfere with a
trusted path. Object reuse can present a
readily exploitable threat. Each one of these
flaws could be used to compromise sensitive
data across all 1levels of the trusted
computing base (TCB).

The spoofing attack could be employed by
writing a program which runs on the smart
terminal device. This program simulates a
successful connection to the host machine and
a logon banner. The program then prompts the
user for their password, and stores the
password for later retrieval by some malicious
user. The attack 1is identical to the
classical spoofing attack, but is carried out
by the terminal rather than the host. This
can make it more difficult to 1locate the
perpetrator. This problem goes hand in hand
with the problem of trusted path, which is not
addressed by the Department of Defense Trusted
Computer System Evaluation Criteria (TCSEC)
until the B2 1level. Once one has a trusted

path, a spoofing attack from the terminal
level is no longer a problem; however, in a
smart terminal which features user-

programmable keys, the "secure attention" key
may be reprogrammed by a malicious user to
destroy trusted path and allow a spoofing
attack to take place. Thus, the secure smart

terminal must have at least one key - the
"secure attention" key - which CANNOT be
reprogrammed. This ey should send some
unchangeable signal to the host, which the

host must interpret as a request for trusted
path establishment. In addition, the terminal
must have no way of generating that signal
except via the "secure attention" key.

A smart terminal may also have some
“"conversation buffer;" that is, some memory of
the transactions between the user and the
host. In many systems, everything the user
inputs and everything the host machine outputs
is saved, up to the limits of memory included
in the terminal. 1In this conversation buffer
there is great potential for subversion of

Some-

data. The user password may be saved in
plaintext, or any sensitive information which
the user may have been working with may be
able to be recalled by the touch of a single
button. This can be a great convenience and
enormous time-saver to the legitimate user,
but if that user logs off and leaves his or
her terminal without clearing the terminal's
memory then the problem of object reuse
occurs. The object is, in this case, the
terminal's memory; this memory must be cleared
between users, so that there is no possibility
that one user can get at another user's data.
The clearing of memory must therefore take
place after the termination of each terminal
session, as well as any other time where
failure to do so could violate system security
policy, such as downward level changes.

Since any smart terminal must have some

ability to 1locally process data, another
attack may be effected. This one is
substantially more difficult and intricate
than those mentioned thus far, but is

certainly as compromising. If the terminal
software in a smart terminal is modified by a
malicious user, the terminal could be used to
relabel sensitive data by intercepting and
modifying - input 1lines according to its
programming, allowing it to downgrade or
otherwise compromise sensitive data. This is
a classic example of a "Trojan Horse" attack,
applied through the use of a terminal.

The final method of attack which will be

‘detailed here applies only to a terminal which

supports multiple concurrent terminal
sessions, either on one host or across many
hosts. This 1is the problem of covert
channels. Covert channels have 1long been

recognized as a means of downgrading sensitive
data on. a host system, and could be used to
downgrade information on a terminal as well.
on a mainframe, the covert channel is often
related to monitoring of wuse of system
resources. In a smart terminal, a covert
channel. could - take the form, for example, of
the use of ACK and NACK signals between the
terminal and the host, each signaling to
another concurrent process either a one or
zero bit of information. This is a simple
operation, but an effective one nonetheless.

Regardless of all of the possible attacks
which might be made on a computer system
through the use of a smart terminal, the risks
are not insurmountable. All of the above
security weaknesses which smart terminals may
exploit can be done away with in properly
designed and installed smart terminal devices.

The major problem revolves around trusted
path. If the user can be assured that he or
she is in contact with trusted software at
both the host and the terminal, many of the
opportunities for defeating the security of
the terminal can be removed. All trusted path
mechanisms require the physical integrity of
all devices which are part of the trusted
path. This is readily accomplished at the
mainframe 1level, but can be difficult to
assure at each terminal, particularly when
terminals are distributed throughout a
complex. One method is to seal shut the
casing of the terminal with some protective
and unforgeable seal; this seal would show any

18

sign of tampering, and wusers would be
instructed not to use any terminal which had
been tampered with, and report it immediately.
Physically locking down the terminal in a
-manner in which it could not be easily
tampered with is another solution. One major
objective of either of these methods is to
insure the integrity of the secure attention
key, which would generate a non-maskable
interrupt to both the host and the smart
terminal, and guarantee to the user that the
software at both ends of his or her connection
was trusted. The other major objective of
physical protection of the terminal device is
to insure the integrity of the terminal's
trusted software. This software is often ROM-
resident, and with the replacement of a single
chip, a malicious user could compromise the
entire system.

One example of a way to cut down on the
amount of trust placed in a ROM-based terminal
program in the smart terminal is to cause the
terminal program to be downloaded from the
host when the user hits the secure attention
key. Assuming the integrity of the secure
attention key, this provides the ‘user with
good assurance that he is using trusted
software; it also allows upgrades to be made
to the terminal program very easily, and much
less expensively than replacing the ROMs in
every smart terminal at the installation.

The problem of object reuse in a smart
terminal can be partially solved by erasing
the conversation buffer as soon as
connection to the host computer is terminated.
This may be accomplished by instructing the
hardware or the firmware in the smart terminal
that the conversation buffer is to be emptied,
say, every 10 seconds if the terminal is not
connected to a host. The terminal may also be
programmed to erase the conversation buffer
upon receipt of a given signal from the host.
This signal would then be sent at any time the
conversation buffer should be cleared (e.q.
downward level changes). These instructions
should be encoded in hardware or firmware so
that they cannot be defeated by the user
reprogramming the smart terminal in the course
of his or her terminal session.

Relabeling of sensitive data may be seen
as an extension of the trusted path problem.
If the user is assured that he or she is using
trusted software, then relabeling is no longer
a problem, because the trusted software will
not allow it. Covert channels also become no
threat, provided that the trusted - software
takes measures to insure that they are
rendered harmless. What is crucial is that
the smart terminal software be trusted, and
that the user be able to confirm that he or
she is actually using the trusted software at
any given time.

Since the major threats caused by the use
of a smart terminal have been addressed, the
question becomes one of proving that a given
terminal device is trustable. 1In the case of
a smart terminal, different threats can be
mapped to different levels of trust in the
Department of Defense Trusted Computer System
Evaluation Criteria. The TCSEC does not
address terminals as such; but by mapping the
applicable Criteria requirements to terminal
devices, it may be possible at some point in

the.

19

policies,

the future to define "levels of trust" within
the realm of terminals and terminal emulation
progranms. One could then speak of a "B2-
trustable" terminal, for example. Such a
terminal would meet B2-level requirements for
all relevant features, among which would be
object reuse, covert channels, mandatory flow
and trusted path. A B2-trustable
terminal would also require such things as B2-
level configuration management and design
documentation. It would, however, omit
requirements which do not apply to a terminal
device, such as discretionary access controls
and auditing. A terminal of this sort could
be used to run concurrent sessions at multiple
levels (say, Secret and Top Secret) and be
trusted to enforce the mandatory flow policies
of the system, depending upon the 1level of
trust bestowed upon the terminal.

If this methodology were to be uniformly
applied, it could be said that a C2-level
smart terminal one which handled object
reuse and some spoofing problems could be
connected to any C2 system which could be
adapted to handle its special protocols, etc.
without placing the system in grave danger of
compromise. The same could be said of systems
at any level of the Criteria; if we have a B2-
level terminal device, then it should be
trusted enough that we can connect it to not
just one but two or more B2-level hosts which
fall within the same range of trust, and rely
on our terminal device to maintain the
integrity of data 1labels. This involves
placing a great deal of trust in terminal

devices. To this point, the NCSC has not
evaluated them; however, this will have to
change if the NCSC wishes to provide 1its
clientele with an Evaluated Products List

(EPL) full
equipment.

of modern and user-friendly

Secure Workstations as Smart Terminals

Perhaps the optimal solution to the need
for secure smart terminals may be solved by
the use of the forthcoming secure workstation
as a smart terminal. This gives the user the
best of both worlds; the power of a mainframe
when needed, with the convenience of smart
terminal features; and the ability to do
stand-alone processing for those jobs where a
secure microcomputer workstation will suffice.
A configuration such as this also makes
possible many useful and security-relevant
events which require some analysis.

To begin with, in order to rely on and
trust the terminal software of the secure
workstation, we must include it in the Trusted
Computing Base (TCB) of the workstation. This
will allow the terminal software to be trusted
at the same level as the workstation. That
is, a B2-level workstation may possess up to
B2~-level smart terminal trustability; it could
therefore be used as one would use a B2-level
smart terminal. In addition, when not in use
as a terminal, it would retain the
functionality of a secure workstation, within
certain limits.

One important limit would be caused by the
range of trust which is given to trusted
computer systens. In the example given above
of a B2-level trusted workstatioen, the

terminal software could be trusted up to a B2
level. Thus, the secure smart
terminal/workstation as a whole would have a
range of trust identical to a B2 system. If
the machine were connected to a host (or
hosts) which contained Confidential and Secret
information, and the workstation was used to
process Unclassified and Confidential
information locally, the range of information
accessible by that machine would span the
range of Unclassified-Secret. That range is
too great to be entrusted to a B2-level
trusted system, according to the Computer
Security Requirements document. Care must be
taken that systems of this type are not
inadvertently trusted beyond what can
reasonably be expected from themn.

It is also important to realize that a
host cannot be considered secure at a level
higher than that of its lowest terminal or
workstation, unless the entire configuration
has been specifically evaluated and it has
been shown that that is the case. A B3-level
trusted host may be subverted through use of
covert timing channels on a B2-level trusted
workstation, for example. Basically, all of
the security problems which may plague a smart
terminal exist for a secure workstation
running smart terminal emulation software.
Any further problems relate to the addition of
some form of permanent storage in the secure
"~ workstation. If the smart terminal emulator
takes advantage of the abundance of storage
(typically several megabytes of hard disk) to
provide additional features for the uploading
and downloading of data, extreme care must be
taken that the security policies of the system
cannot be violated through its use. Again,
the trusted terminal software will have to be
evaluated by the NCSC along with the rest of
the workstation in order to provide assurance
that the security of the system will not be
compromised.

Conclusion

It is obvious that a smart terminal can

greatly increase the productivity of the
typical mainframe user. It is also obvious
that a smart terminal can significantly

jeopardize the security of its host machine
through many and varied mechanisms. However,
these risks can and should be overcome if the
user community is to be expected to 'switch
over to using secure computer systems. If
presented with an ergonomic and pleasant user
interface, the user will not have to sacrifice
efficiency and ease of use in order to use a
secure system rather than a non-secure system.
This should increase user acceptance of secure
computer systems dramatically. Since it is
imperative that both government and industry
implement the use of secure computer systens,
it is only logical that a comfortable user
interface be provided. The use of smart
terminals in

secure computer systems can
provide this interface, and perhaps encourage
many hesitant prospective users to "go
secure."

20

Bibiliography
Brotzman, Robert L. Computer Security
Requirements -- Guidance For Applying The

Department Of Defense Trusted Computer System
Evaluation Criteria In Specific Environments.

CSC-STD~003-85; Library No. 8S=-226,727. 25
June 1985.

Latham, Donald C. Department Of Defense
Standard Department of Defense Trusted
Computer System Evaluation Criteria.

DOD 5200.28-STD; Library No. 8225,711.

December 1985.

Database Systems and the Criteria:
Do They Relate ?

Brian S. Hubbard

Lt. Swen A.

Walker

Ronda R. Henning

National Computer Security Center
9800 Savage Road
Fort Meade, MD 20755-6000
(301)859-4488

ABSTRACT

There
whether or
Evaluation
management
objectives
database management systems.

systems.

is much debate in the computer security community as to
not the Department of Defense Trusted Computer Systems
Criteria (the Criteria) can be applied to database

In this paper we will examine the basic control
of the Criteria and the fundamental security concerns of
We will compare the two and show that,

while the control objectives of the Criteria are applicable to
database management systems, they do not encompass all of the security

concerns in database management.

The views and opinions expressed in this paper are those of the
authors and do not necessarily reflect official National Computer

Security Center positions.

INTRODUCTION

The need for secure database management
systems stems from the fact that, within the
Department of Defense (DoD) and in
corporations around the world, there is an
increasing amount of information being
manipulated through database management
systems. The databases usually contain some
classified or otherwise sensitive
information, forcing these systems to operate
in a system-high or dedicated mode. A user
may need to access data of differing
classification levels at the same time:
consequently, data must be duplicated on
separate machines for different security
levels and compartments. This duplication of
data on separate machines causes
inconsistencies in the data. There is an
urgent need within the DoD to replace these
systems with multilevel secure systems.
Additionally, other commercial customers such
as financial institutions, would also be able
to take advantage of the protection these
systems can offer.

Computer security research and
development began in the late 1960's. The
earliest work concentrated on the area of
multilevel secure operating systems with
database management security research and
development receiving relatively little
attention. One of the main reasons for this
lack of attention was the perception that one
could not credibly implement a secure
database management system which was
dependent on the security controls of an
untrusted operating system. At that time,
secure operating systems were, for the most
part, nonexistent. Since then, a few
multilevel secure operating systems have been
developed by commercial vendors; however, a
secure multilevel database management system

21

still does not exist. Present day database
management systems do not provide adequate
security controls and mechanisms to ensure
that users are allowed to access only that
data for which they have been granted a
clearance and have a specific "need to know."

A major conclusion of a 1982 Summer Study
on "Multilevel Data Management Security"+ was
that computer security technology had
advanced to the point where certifiable
multilevel database management systems could
be built for several specific applications in
three to five years. However, there is no
metric to evaluate "secure" database
management systems against. It has been
proposed that the DoD Trusted Computer
Systems Evaluation CriteriaZ (the Criteria)
is sufficient as a database management systen
securlty criteria. We do not subscribe to
this view.

In this paper we will examine the basic
objectives and requirements of the Criteria
to discover where they may fall short of the
requirements for security in a database
management system. The views expressed in
this paper are those of the authors and are
not intended to be taken as policy. This
paper is an attempt to raise the readers
awareness of the issues vital to database
security that have not been adequately
addressed.

CRITERIA

. We begin by pointing out that, when the
Criteria was published in 1983, it was
defined to apply to both trusted general-
purpose and trusted embedded systems, not for
direct application to database management
systems. With that fact in mind, the
Criteria was developed for a number of
reasons:

. © To provide users with a_metric with
which to_evaluate the degree of trust that
can be placed in computer systems for the
secure processing of classified and other
sensitive information.

© To provide guidance to manufacturers
as to what security features to build into

their new and planned, commercial products in
order to provide widely available systems
that satisfy trust requirements for sensitive
applications.

© To provide a basis for specifying

security requirements in acquisition
specifications.

In order to meet these goals, the
Criteria sets forth three basic control
objectives which are concerned with security
policy, accountability, and assurance.

The first of these, the security policy
control objective, requires that a statement
of intent with regard to control over access
to, and dissemination of information must be
precisely defined and implemented for each
system that is used to process sensitive
information. The security policy must
accurately reflect the laws, regulations, and
general policies from which it is derived.

In systems processing classified or
other specifically categorized sensitive
information, provisions must be included for
the enforcement of mandatory access control
rules. These provisions must include a set
of rules for controlling access based
directly on the comparison of an individual's
clearance or authorization for the
information and the classification or
sensitivity designation of the information
being sought. These rules should also
control access based indirectly on
considerations of physical and other
environmental factors of control.

Systems designed to enforce a mandatory
security policy must store and preserve the
integrity of classification or other
sensitivity labels for all information.
Labels exported from the system must be
accurate representations of the corresponding
internal sensitivity labels.

These systems must also include
provisions for the enforcement of
discretionary access control rules. That is,
they must include a consistent set of rules
for controlling and limiting access based on
identified individuals who have been
determined to have a need-to-know for the
information.

The accountability control objective.
requires that systems processing or handling
classified or other sensitive information
must assure individual accountability
whenever either mandatory or discretionary
security policies are invoked. Futhermore,
to assure accountability the capability must
exist for an authorized and competent agent
to access and evaluate accountability
information by a secure means, within a
reasonable amount of time and without undue
difficulty.

The assurance control objective requires
that systems processing or handling
classified or other sensitive information
must be designed to guarantee correct and
accurate interpretation of the security
policy and must not distort the intent of
that policy. Assurance must be provided that
correct implementation and operation of the
policy exists throughout the system's life-
cycle.

We believe that, for the most part,
these control objectives have a great deal of
merit when put in the context of database
systems. However, they are not quite enough
to cover all of the concerns that are faced
when attempting to develop a secure database
management system. We must consider data
integrity, inference, aggregation, and many
other problems not addressed in the Criteria.
We must also expand on the concepts of
labeling and auditing when dealing with
database systenms.

EXAMPLE

In order to make the security concerns
associated with securing a database
management system more evident, we will use
the sample database shown in Figure 1 to
provide examples of the issues discussed
below. The sample database will consist of
personnel information. The database record
will contain the employee's name,. social
security number (ssn), sex, salary, and
department.

NAME SSN SEX SALARY DEPT
+ + e tm———t
|John |123456789| M | 50000] A |
+ + | + +
|Ronda |268034721| F | 25000| B |
i +- o +
|Brian |106638528| M | 17000| C |
+ e b tm———t
|Larry |186539679| M | 35000| A |
R o ———— e Fm———t
|Bruce |873595357| M | 44900| B |
e tmm - s + +
FIGURE 1.

DATA INTEGRITY

In the Criteria's control objectives,
integrity is only discussed as it relates to
sensitivity labels and system integrity. For
database management systems, we must extend
the notion of integrity to address the issues
of accidental or unauthorized modification of
data and integrity checking for the accuracy
or correctness of data within the database.
The first integrity issue is that some system
data may need to be viewable by all security
levels but only modifiable by certain trusted
programs or authorized users®. This is
exemplified by the case of a user examining
the sample database for the first time and
wanting to view the structure of the record
in the system catalog. We want him to have
access for examining the structure of this
table but not access for modifying it. We
would want this access to be regulated -
through a mandatory policy. The mandatory
policy of the Criteria only addresses the
improper disclosure of information, not its

£

modification. An integrity policy
requirement is needed to enforce the
prevention of unauthorized or unintentional
modification or destruction of data or other
essential, database-related information. It
must be precisely defined and implemented for
each system processing sensitive information
and nmust work in concert with the system
security mechanisms and controls.

In order to ensure that the data in our
database remains correct "integrity
constraints" must be imposed on individual
transactions being performed on our database.
A simple example of an integrity constraint
for the sample database in figure 1 would be
that all salary values must be greater than
zero. The data integrity problem is
exemplified in the above database when a user
wishes to charige the department of John to Z.
Assuming that the user has authorized
discretionary access rights, the issue to be
addressed is whether or not the value to be
placed in the field is an acceptable value.
In other words, does a Z department exist
within this organization? Another problem
that can arise from the lack of data
integrity controls is that a user may be able
to write a large quantity of false or
incorrect data to the above database,
rendering any queries on this database
useless. Although some commercial systems do
provide some integrity checking, most
integrity constraints are weak or
nonexistent4. Most integrity checking today
is still done by user-written procedural code
executed outside the control of the database
management system.

As mentioned by Date, many systems
claiming to provide data integrity are
actually using the term to mean concurrency
control. Systems that provide "integrity" in
this sense typically guarantee only that
interference between two concurrently
executing transactions cannot occur; they do
not concern themselves with the question of
whether individual transactions are correct
in themselves.

Under the Criteria's extension of the
assurance control objective, there is a
requirement for "System Integrity." The
system integrity requirement states that:
"hardware and/or software features shall be
provided that can be used to periodically
validate the correct operation of the on-site
hardware and firmware elements of the Trusted
Computing Base (TCB)." Does this requirement
have -any application in the database
management system world, or is it sufficient
to rely on the operating system to handle
system integrity? Does this requirement
apply to software releases of database
- management systems, or only hardware
modification?

INFERENCE

The inference problem is defined as the
compromise or increased probability of
compromise by deduction of unauthorized
information due to combinations of the
possession, known existence, known absence,
chronology, and location of authorized
information. It may be considered a covert
channel of database management systems. It
is a serious problem that must be reconciled
before a database management system can be

23

regarded as secure. As an example of the
inference problem, consider the following: if
the guantity (gq) of some manufactured item is
classified, then either the total production
budget (b) or the cost per item (c) must be
classified, since quantity (g) could be
derived as q = b/c. .)

. There are many unanswered questions in
the area of inference control. For instance,
can the problem be addressed or quantified .in
a general way, or must it be addressed case
by case for each site processing sensitive
data or each specific application? - Should
metrics be developed to describe and quantify
an acceptable level of inference control? .
Should we reguire that abstract tools be
provided in a database management system so
that inference control can be builtin at each
site? If inference is actually another
covert channel, should it or could it be
audited in the conventional sense of the
Criteria?

Since it is unlikely that the general
algorithms can be defined for limiting the
inference problem, we believe it would be
wrong to require that a complete solution to
the problem be built into a database
management system. However, metrics should
be developed to define acceptable bandwidths
of possible inference attacks, and mechanisms
should be required to be available within a
system which will allow the inference problen
to be restricted to an-acceptable level.
These restrictions could then be implemented
by each site as the need arose. The audit
mechanism must also be able to audit possible
inference attacks.

AGGREGATION and CONTEXT

The classifications assigned to data
must account for the data's associations or
relationships with other data. For example,
the unclassified data describing a flight may
be classified when the flight itself becomes
explicitly associated with a particular
mission, cargo, or passenger.

Because classification can increase with
context, an assemblage of data items may have
a sensitivity far higher than that of an
individual item in the assemblage. For
example, the location of one particular
submarine is likely to be less sensitive than
the location of all submarines. Another
example is that a single phone number may be
less sensitive than a complete telephone
directory.

Since classification depends on context,
it is not enough to store labels with the
physical data records in the database.
Methods are also needed for determining the
classification of data when it is associated
with other data and for managing
modifications in these associations. General
algorithms for context classification and
data aggregation may only be possible on a
per application basis, it may not be possible
to maintain these relationships on a general
database management system level. However,
mechanisms can and should be provided so that
labels can be enforced on aggregated data
once it is identified in a particular
application.

LABELING

Labeling is an area in which the
Criteria may fall short of as well as exceed
the needs of database systems. It falls
short in that there are no requirements for
labeling according to the context of the
data. It may exceed our needs in that a
database system does not operate devices and,
therefore, should be able to rely on the
operating system for exportation of data to
the proper devices. However, if the database
system operates on data objects which are
smaller than those which the operating system
works on (e.g., the operating system may
operate on a file, while the database
management system operates on records within
a file), an interface must be defined such
that the lower levels of labeling can be
supported and employed.

There are some very difficult issues
which must be addressed in the area of
labeling. If the labels are to be maintained
at the entity level, is the data then labeled
at the user's current security level, or can
labels exist at the discretion of the user?
How do we keep data from migrating to the
user's highest classification and, thereby,
having data which is over-classified? How
are data labels maintained during rollback
and recovery? How are labels affected by
changes made to the data?

We believe that mechanisms should be
required which allow data to be labeled to
whatever granularity is required by an
application and that the mechanism ensure the
integrity of these labels. We also feel that
mechanisms should be regquired which allow
proper labeling of aggregated data.

AUDITING

Under the accountability control
objective of the Criteria there is a
requirement that "the TCB be able to create,
maintain, and protect from modification or
unauthorized access or destruction an audit
trail of accesses to the objects it
protects." Auditing is, of course, very
important in database management systems; the
issue is what do we audit? The types of
events that should be audited are
logon/logoff, creation/deletion/modification
of objects, access to objects, and actions
taken by database administrators and system
security officers. This list is open to any
additions, but we feel that this is the
minimum set of events that should be audited
in a database management system. For each of
these events the audit record should identify
the date and time of the event; user; type of
event; success or failure of the event; the
user's security level; level of the object
accessed; and, where applicable, before and
after image of the object. Since the objects
of the database management system can be at
such a fine granularity, the audit trail
could become quite large very quickly and,
therefore, quite useless without very
sophisticated audit-reduction tools.
would seem reasonable to make auditing
possible to the finest granularity level of
the data but also allow the individual sites
the discretionary control to audit whatever

It

24

level of granularity would be most useful to
them. The Criteria also requires that the
"system administrator shall be able to
selectively audit the actions of any one or
more users based on individual identity
and/or object security level." This is a
very useful mechanism to have in place.
However, in a database management system it
would also be very useful to be able to
selectively audit the actions taken on any
object based on the operation and/or the
user's or object's security level.

CONCLUSION

Because there is a great need for
security in database management systems and
the security requirements for various sites
differ, it is very important to have a metric
with which to evaluate the degree of trust
that can be placed in database management
systems. It is also very important to
provide a basis for specifying those security
requirements in acquisition specifications.
However, in performing these evaluations, or
when generating system requirements, we must
consider all of the security relevant issues.
Because the Criteria was originally defined
to apply to trusted general-purpose and
trusted embedded systems, the control
objectives of the Criteria (while valid when
applied to database management systems), are
not quite sufficient to encompass all of the
security concerns in database management
system. We must consider the problems which
have been discussed in this paper as well as
any other yet-to-be-discovered problems in
the area of secure database management
systems. Only after these issues are
discovered, fully understood, and dealt with
properly can database management systems be
considered secure.

REFERENCES

1. Committee on Multilevel Data Management
Security, "Multilevel Data Management
Security," Technical report, Air Force
Studies Board, National Research Council,
1982.

2. DoD Computer Security Center, Departmept

of Defense Trusted Computer System Fvaluation
Criteria, Fort George G. Meade, Maryland, 15

August 1983, CSC-STD-001-83.

3. Biba, K., "Integrity Considerations for
Secure Computer Systems," ESD/AFSC, Hanscom
AFB, Mass., April 1977 (NTIS AD 039324), ESD-
TR-76-372.

4, Date, C. J. An Introduction to Database
Systems, 4th ed. Reading, MA: Addison-Wesley,
1986.

TOWARDS PRACTICAL MLS DATABASE MANAGEMENT SYSTEMS
USING THE INTEGRITY LOCK TECHNOLOGY

Rae K. Burns
The MITRE Corporation
Burlington Road
Bedford, Massachusetts 01730

This paper explores some practical
considerations for using the integrity lock
technology to provide multilevel secure
(MLS) database management systems. A
prototype architecture is described which
minimizes the source code modifications
necessary to retrofit the integrity lock
mechanism into an existing database
management system (DBMS). The INGRES
relational DBMS is used to demonstrate the
architecture. 1In addition to securing
user-defined relations, the integrity: lock
software secures the INGRES data dictionary
relations, thereby supporting classification
at the record, relation, view, and index
levels. .

' Funding for this work was provided by
the U. S. Air Force Electronic Systems
Division,

INTRODUCTION

The integrity lock technology has been
demonstrated as a feasible near-term
solution to the need for multilevel secure
database management systems [1]. The work
described in this paper derives from a
current Air Force project to field this
technology for use in a production
environment. The questions are no longer
ones of feasibility, but rather questions of
a more practical nature. This paper
addresses two such general questions:

1. How can the integrity lock be
retrofit into a commercial off-
the-shelf (COTS) DBMS without
impacting DBMS maintainability?
Could the integrity lock technology
be used even if machine-readable
source code were not available, or
is access to source code a
prerequisite for the use of the
technology? '

2. Can the integrity lock technology
be used to address any of the
database inference and aggregation
issues? Can database views be
secured with the integrity lock
technology? How might secure views
be implemented and used?

These two questions translate into the
implementation -goals for the INGRES
prototype:

1. Implement the integrity lock
technology with minimal changes to
DBMS source code.

2. Use the integrity lock filter to
secure the data dictionary and
thereby extend the scope of data
protection within the database to
include relations and database
views.

INTEGRITY LOCK TECHNOLOGY

The integrity lock concept is described
in detail in references [2] and [3].
Basically, each record (or other database
object) is tagged with its classification.
Then an unforgeable cryptographic checksum
for the entire record is computed and stored
in the database with the record. This
effectively "seals" the data, and any
unauthorized modifications to the data or
its security tag can subsequently be
detected. 1In addition, access to individual
records (or other objects) can be restricted
based on some specific security policy. To
implement the integrity lock mechanism, a
trusted filter monitors the operations of an
existing untrusted database management
system.

Security Architecture

The integrity lock architecture divides
the DBMS software into two separate
executable components: one which interacts
with a user and one which accesses the
database files. All communication between
the two components is monitored by a trusted
software component which is independent of
the DBMS software. The implementation
requires three separate execution domains:
the trusted monitor (FILTER), the portion of
the DBMS which interacts with the user
(USER), and the portion which accesses the
data files (FILE). Figure 1 illustrates the
interactions among these environments.

physical
files

/]\ security information

sealed

queﬂcsl
update/

retrieve
USER
(DBMS)

data

FILE
(DBMS)

Figure 1. .Integrity Lock Architecture

The operating system (or Trusted
Computing Base (TCB)) within which these
three components are executing must enforce
some basic security requirements. The
security characteristics of each domain are
as follows:

FILE The FILE component executes at
the security classification of
the database files. The FILE
is the only executable module
which has any access to the
database files. It is
prohibited from accessing any
output devices or files at a
lower security classification
(i.e., a mandatory security
policy is enforced by the
TCB).

USER The USER executes at the
security clearance of the
individual using the database.
The USER is prohibited from
accessing objects at a higher
security classification and
from accessing any output
devices or files at a lower
security classification, as
specified by the TCB's
mandatory security policy.
FILTER The FILTER executes at the
security classification of the
database files. However, it
is privileged to initiate the
execution of the USER (at a
potentially lower security
classification) and to
communicate with it. It also
uses operating system trusted
functions to determine the
relevant security
classifications and to audit
security-related activities.
The TCB has sufficient
mechanisms to assure that the
FILTER software is
tamperproof.

26

The prototype was implemented within
the context of the INGRES data base
management system and the UNIX* operating
system (BSD 4.2). The design makes use of
several UNIX security-related features.
However, since current implementations of
UNIX are vulnerable in a number of areas
[4], the implementation is not intended to
be secure within existing UNIX environments.

Security Policy

The security policy for access to the
information in the database is enforced by
the trusted FILTER. For the purposes of the
prototype, tuple {(or record) level
classification was used with a simple
mandatory security policy based on the 1982
Air Force Summer Study [5]. The following
is a summary of the policies (SC is security
classification, SSO is a function which is
true if the user is currently a System
Security Officer):

READ Record SC(user) dominates

SC(record)
APPEND Record if SSO(user) then
prompt for SC(record)
else SC(record) =
SC(user)
‘'UPDATE Record SC(user) dominates old
SC(record)
if SSO(user) then
prompt for new
SC(record)
else new SC(record) =
SC(user)
DELETE Record SC(user) dominates
SC(record)

There are no other mandatory or
discretionary access control policies for
the prototype. INGRES supports some
discretionary controls which may be used in
addition to the integrity lock mandatory
controls. Since the UNIX environment does
not support security clearances for users,
for this implementation, the applicableé
clearance is read from a ".secure" file
within the user's home directory.

PROTOTYPE ARCHITECTURE

The primary goal of the
integrity lock prototype was
the integrity lock mechanism without
changing substantial amounts of source code.
To achieve this, the INGRES object libraries
were split along functional boundaries into
two separate sets. The executable modules
were then re-linked into the USER and FILE
components of the integrity lock
architecture. This section describes the

INGRES
to implement

*UNIX is a trade/service mark of the Bell
System.

FILTER interface which mediates access
between the two sets of INGRES functions and
provides an implementation methodology for
developing an integrity lock version of a
COTS DBMS.

INGRES Functional Interface

The INGRES system is highly modularized
and contains a set of functions for low-
level access to relations. These functions
include relation open and close, get/put
tuple functions, and supporting buffer
management functions. The approach taken
for the prototype was to use this relation
access interface as the vehicle for the
FILTER to mediate access to the database.
Figure 2 represents the standard INGRES
get_tuple function as it would be invoked by
the INGRES query processor.

get_tuple (relation_desc, tuple_id, tuple)

where relation_desc the relation descriptor
tuple_id™ identifies a tugle
tuple a pointer for the returned tuple
query ——J UNIX database
processorr_ get_tuple ﬁ_ /0 files
Figure 2. INGRES Function Invocation

For use with the integrity lock filter,
the get_tuple function (along with all of
the relation-level functions) is replaced by
a substitute function which extracts the
parameters from the call, inserts them into
a message buffer, and communicates the
buffer (via UNIX pipes) to the FILTER. The
FILTER has an opportunity to perform any
security processing before conveying the
message on to the FILE process. The actual
INGRES get_tuple function is invoked by the
FILE process, and the tuple retrieved is
passed back to the FILTER. Here the FILTER
will recalculate the checksum and enforce
the mandatory security policy prior to
passing the tuple back to the USER process.
Finally, the USER process will store the
tuple into the location designated by the
original get tuple function invocation.
Figure 3 illustrates this process at a
conceptual level.

Development Methodology

For the operational version, only three
INGRES source modules (out of a total of
346) were modified. 1In addition, only 2700
lines of additional C code (including 1000
lines of trusted code) were needed to
implement the basic integrity lock

L
I 13
B
USER |r FILTER S| FILE
A
D
R
INGRES| y E | INGRES
UNIX UNIX
Pipe Pipe
Loaded with Loaded with
subsitute INGRES
library library

(18 functions)

Figure 3. INGRES Process Architecture

functions. The construction process was
done in five major phases. At the
conclusion of each phase, there was a
working version of the implementation up to
that point. This technique allowed the
problems encountered with each phase to be
resolved prior to the introduction of more
design detail. The five major phases were
as follows:

1. Simple Prototype

Simple versions of the USER,
FILTER, and FILE processes were
developed. These processes
interacted to read and write lines
of a standard UNIX data file,
During this phase, the details of
the inter-process communication
were worked out and shown to be
effective. Most of the issues
which relate to the operating
system environment were dealt with
in this phase.

2. DBMS Restructuring

This phase was spent
researching the INGRES
implementation, and dividing it
into two pieces. Once the
restructuring was complete, the
INGRES software was integrated into
the simple prototype from phase
one. Using the resulting
implementation, it was possible to
verify that the correct arguments
were being passed through the
FILTER. The result of this phase
was a working DBMS without any
security features.,

3. Security Processing

The next phase was coding the
security related functions and
integrating them with the results
of phase two.

4. ©UNIX Access Control
The fourth phase was to

develop an environment in which the
UNIX access control features could

be used to restrict the various
processes to access only the
appropriate files.

If the UNIX

operating system were robust enough
to resist security penetrations,
these access controls could provide
a basis for secure MLS databases.

5. Secure Data Dictionary

The final phase applied the

integrity lock technology to the

INGRES data dictionary.

The

results of this stage are the topic

of the next section.

SECURE DATA DICTIONARY

The final phase of the development
integrated security processing for the
relations which make up the INGRES data
dictionary; these were not secured initially
in order to simplify the implementation.
There are six relations in the data

dictionary:

relation

attribute

tree

prdtect

index

integrities

created.

The relation relation
contains a record for
each relation defined in
the database.

The attribute relation
contains a record for
each attribute of each
relation.

The tree relation
contains parsed query
trees which define
database views.

The protect relation
specifies INGRES
discretionary access
controls.

The index relation
contains a record for
each index which has been
created.

The integrities relation
is used to specify any
update integrity
constraints.

By including these relations within the
scope of the security processing, the
descriptive elements of the database are
tagged with a security level as they are
In other words,

if a relation is

created when the database administrator

(DBA),

or other authorized user, is
processing at the SECRET level, then the
data dictionary records for the relation
will also be tagged at the SECRET level.
Similarly, views, indexes, and other system
entities acquire mandatory security labels.

The primary result of this extension is
that relations acquire a security
clasgification independent of the level of

28

the records within the relation. However, a
user must have a clearance for the relation
level in order to access any records within
the relation. A second practical result is
the ability to associate a security level
with the definition of a database view.

Classified Views

A database view is simply a definition
of a subset of the database, usually
specified in the DBMS query language. When
a user query refers to a view, rather than a
relation, the result of the query is limited
to those records within the view. (With the
integrity lock, the result is further
limited to those records for which the user
has an appropriate clearance.) Views are
frequently used to provide discretionary
access controls, based on the content of the
data records. For instance, a sales manager
may be restricted to access only those sales
records for his/her region. There are
current research efforts to determine how
views might best be used to provide
mandatory access controls [6].

By providing for security labels for
database view definitions, it is possible to
limit users to views for which they have a
clearance in addition to limiting them to
individual records for which they have a
clearance. Figure 4 illustrates how a join
of two relations can be defined at a higher
classification than the individual
relations. (The range statement in the
INGRES QUEL language assocliates a query
variable, used in the where clause, with a
relation or a view; it is similar to a from
clause in SQL.)

In a SECRET session:

create Arelation (attrAl, attrA2 ... attrAn)
create Brelation (attrBl, attrB2 ... attrBn)

In a TOP SECRET session:

range of A is Arelation

range of B is Brelation

define view ABview (attribute sub-list)
where A.attrA2 = B.attrBS

Figure 4. Classified View Definition

The ABview is a join of the information
within the Arelation and the Brelation. The
join operation is based on the values found
in attrA2 and attrB5 that are equal in both
relations. The use of the view ABview is
limited to those users with a TOP SECRET
clearance, independent of the level of the
records within the view.

User Restrictions

The use of classified views requires
two restrictions within the user
environment:

http:restricted.to

1. A user may access only one view
within any query. This eliminates
the possibility of joining views.
If users were allowed to join views
together, additional inferences

would be possible.

2. Only the database administrator has
direct access to relations; all
other users must access the
information within the database
only through pre-defined views.

The database administrator defines
those views by direct references to
the underlying relations. "The full
power of the query language is
therefore available only to the
database administrator.

These two restrictions constrain the use of
the query language to reduce the potential
scope of inferences which can be made. They
restrict users to only those specific views
authorized by the database administrator.

Unresolved Issues

There are several uses of views which
would be helpful for multilevel secure
databases, but which are not supported by
this concept of classified views. For
instance, aggregations over an authorized
view cannot be further restricted. It is
not possible to classify the sum of the

values of a particular field accessible by
the view higher than the view itself.
Similarly, this type of classified view
cannot be used to sanitize information. The

data within the view is tagged with its
classification and will not be visible to
any less cleared user even within the
context of a pre-defined view.

The integrity lock technology is
vulnerable to sophisticated Trojan horses
within the untrusted DBMS [7]. This
vulnerability remains an issue and the use
of classified views introduces an additional
Trojan horse threat. While the integrity
lock assures that the classification of the
view can not be altered, it does not
automatically prevent the view definition
(called a query tree) from being tampered
with during the query processing. The query
tree is a fundamental INGRES data structure
and is, in fact, modified significantly
during the query processing. The scope of
the Trojan horse threat could be limited by
placing portions of the qguery tree under the
control of a trusted component.

CONCLUSIONS

Overall, the results of this effort
have met the initial goals. 1In total,
including the secure data dictionary, six
INGRES modules were modified and recompiled.
Two of these recompilations were due to
mixed functionality within the original
code. Both were initialization routines
which affected several different functional
areas; the modifications removed the code
not related to the functions needed within

29

the particular process. The third
modification was to support index relations.
Here, an assumption was made in the original
code that the "tid" would be the last
attribute in each tuple; however, with the
addition of the security attribute, that was
no longer true. One modification was made
to support the creation of a secured data
dictionary, and two modifications were
needed to put the user restrictions in
place. All other functionality was
implemented within the integrity lock
software itself.

The use of the integrity lock
technology to secure the data dictionary
extends the usefulness of the integrity lock
approach while providing a necessary feature
for any practical secure DBMS. The ability
to classify views provides a foundation upon
which to build a base of experience to
determine how views can best be used to
address mandatory access control needs in a
database environment.

It is hoped that the techniques and
processes developed for this implementation
will be helpful in future work with the
integrity lock mechanism and with other
efforts to develop multilevel secure
database management systems.

REFERENCES

Graubart, R.D., and Duffy, K.J.,
"Design Overview for Retrofitting
Integrity-Lock Architecture onto a
Commercial DBMS", Proceedings of the
1985 IEEE Symposium on Security and
Privacy, pp. 147-159.

2. Graubart, R.D., "The Integrity Lock
Approach to Secure Database
Management", Proceedings of the 1984
IEEE Symposium on Security and

Privacy, pp. 62-74.

3. Denning, D.E., "Cryptographic
Checksums for Multilevel Database
Security", Proceedings of the 1984
IEEE Symposium on Security and

Privacy, pp. 52-61.

4, Ritchie, D.M., "On the Security of
UNIX", Bell Laboratories.

5. Air Force Studies Board, Committee on
Multilevel Data Management Security,
MULTILEVEL DATA MANAGEMENT SECURITY,
National Academy Press, 1983.

Denning, D.E., Akl, S.G., Morgenstern,
M., Neumann, P.G., and Schell, R.R.,
"views for Multilevel Database
Security", Proceedings of the 1986
IEEE Symposium on Security and

Privacy, pp. 156-172.

Denning, D.E., "Commutative Filters
for Reducing Inference Threats in
Multilevel Database Systems",
Proceedings of the 1985 IEEE Symposium
on Security and Privacy, pp. 134-146.

INTEGRITY IN TRUSTED DATABASE SYSTEMS

Roger R. Schell
Gemini Computers, Inc.
P.O. Box 222417
Carmel, CA 93922

Dorothy E. Denning
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

INTRODUCTION

A trusted computer system is designed to be ‘secure’
with respect to some well-defined security policy. There are
two major classes of information security policy: (1) secrecy
policies, which govern the disclosure of information and (2)
integrity policies, which govern its modification. Although
much of the literature on computer security emphasizes
secrecy, for many systems integrity is of equal or greater
importance. The DoD Trusted Computer System Evaluation
Criterial is careful to encompass (although not require)
security policies that include integrity. A trusted computer
system is designed to protect ‘sensitive information,” which is
defined in the Criteria as information that must be protected
from ‘‘unauthorized disclosure, alteration, loss or
destruction.”

In databases, the term ‘integrity’ is interpreted broadly,
as illustrated by the following definition taken from Date?:

“The term infegrity is used in database
contexts with the meaning of accuracy,
correctness, or validity. The problem of
integrity is the problem of ensuring that the
data in the database is accurate — that is, the
problem of guarding the database against
invalid updates. Invalid updates may be
caused by errors in data entry, by mistakes on
the part of the operator or the application
programiner, by system failures, even by
deliberate falsification. The last of these,
however is not so much a matter of integrity as
it is of security ... The term ‘integrity’ is also
very commonly used to refer just to the special
situation ... in which it is possible that two
concurrently executing transactions, each
correct in itself, may interfere with each other
in such a manner as to produce incorrect
results.”

In this paper, we address all aspects of integrity in that all
are essential to the operation of secure database systems.

Classes of Integrity Policies

There are two distinguishable aspects of integrity
policies: whether a given modification of information is
authorized, and whether the modification results in
information that is in some sense consistent or correct.
Authorization is subdivided into two categories: (1)

30

mandatory integrity authorization, which is based on
integrity classifications, reflecting importance of data, and
clearances, reflecting user trustworthiness, and (2)
discretionary integrity authorization, which is based on
users’ needs to modify information. Both mandatory and
discretionary integrity controls can protect data from
malicious tampering and destruction as well as from
accidental modification and destruction through operator
errors (e.g., an operator may inadvertently attempt to delete
the wrong relation) or faulty software.

Consistency is subdivided into three categories: (1)
database integrity rules, which define correct states of a
database in terms of relationships among the data, (2)
recovery management, which returns the database to a
consistent state after failure, and (3) concurrency controls,
which ensure that concurrent transactions do not interfere,
thereby creating inconsistent states of the database.

We shall discuss each aspect of integrity in more depth
after first discussing assurance for these different aspects.

Assurance

The notion of a security perimeter is essential to
obtaining assurance that a security policy is actually enforced
by the Trusted Computing Base (TCB) of a system. As
stated in the Criteria “the bounds of the TCB equate to the
‘security perimeter’ "’ and “includes all those portions ...
essential to the support of the policy.” That is, the security
perimeter is with respect to the security policy being
enforced. Thus, the two categories of policy, viz., mandatory
and discretionary, may well have two distinct security
perimeters. This, of course, only applies to systems of Class
B1 or above, because Class C systems do not support a
mandatory policy.

The mandatory policy, for both secrecy and integrity,
can be enforced with a very high degree of assurance against
concerted attacks, including Trojan horses. As the evaluation
classes move from Bl to B2, B3, and finally Al, the primary
distinctions relate to the use of improved architecture,
specification, verification, and testing to increase the
assurance in the mandatory access controls enforced by the
TCB. It is expected that the higher evaluation classes will be
used to protect against users with a wider range of
authorizations.

In contrast, because of their richer policies,
discretionary access controls have inherent limitations
(known as the ‘safety problem’s) and more complex
mechanisms than mandatory controls. This is especially true
for database systems that protect data at the granularity of
individual elements and have powerful access mechanisms,
such as views, which rely on much of the database system for
their support. Because of the inherent as well as
technological limitations, little meaningful assurance of
discretionary controls can be obtained beyond that of Class
C2; in particular, one cannot obtain high assurance against
Trojan horses. Fortunately, this matches well the real-world
need for discretionary controls for need-to-know and
corresponding integrity enforcement. Moreover, because
discretionary controls operate within the confines of
mandatory controls, the damage that can result from their
failure is limited.

Because of the sharp distinction in the possible
assurance for mandatory versus discretionary controls in a
database system, the following discussion presumes that there
may be two distinct security perimeters for systems at Class
B2 and above: an inner perimeter (the ‘reference monitor’)
for mandatory controls, and an outer perimeter (or
perimeters) for discretionary and consistency controls. The
maximum assurance that seems required, and the maximum
practical; for the portion of the TCB outside the mandatory
perimeter appears to be that prescribed for Class C2.

As discussed later, the assurance requirements for Class
B2 and above, in particular the need to control covert
channels, affects the meaning of consistency and the
functionality of other aspects of a database system. However,
having separate security perimeters makes it possible to more
meaningfully address these problems.

AUTHORIZATION INTEGRITY

Mandatory Integrity Authorization

Mandatory security policies are particularly important
because they describe global and persistent properties that
are required for authorizations in a secure system. As
defined in the Criterial, mandatory policies employ a reliable
label to reflect the degree of protection required for
information and to reflect the authorization of a subject to
access information. When considering integrity, these labels
reflect what the Criteria refers to as the ‘sensitivity
designation of the information,’ or what is commonly termed
the integrity access class, or simply integrity class, of the
information objects. There is a comparable label that reflects
an individual’s ‘authorization for the information;’ this label
is assigned to corresponding subjects. The primary systems
of interest are those that can be represented by a Formal
Security Policy Model, as defined in the Criteria. For such a
system it is shown that if the initial state of the system is
secure with respect to the policy, then all future states of the
system will be secure.

For mandatory secrecy policies, the secrecy access
classes must form a lattice. This requirement may be
appropriate for mandatory integrity policies as well, although

nonlattice mandatory integrity policies have been proposed4.

For lattice-based policies, the integrity classes could
correspond to integrity levels (analogous to secrecy levels
such as SECRET), category sets of disjoint integrity
compartments (analogous to secrecy compartments such as
CRYPTO), or both.

Six mandatory security policies have been variously
proposed to deal with integrity. In the context of the above
concept of mandatory policy, each of these is examined as a
possible integrity policy for databases:

Strict integrity

Low-water mark

Ring policy

Multilevel security with no write-up
Program integrity

Domains and types

S N e

The first three policies were introduced by Biba® as
possible policies for multilevel-secure systems.

Strict Integrity Policy. This policy is an exact dual
of multilevel secrecy as defined in the Bell and LaPadula
model®. Each subject and object is assigned a fixed integrity
class taken from the lattice of integrity classes, and strict
integrity is preserved by prohibiting a subject from reading
down or writing up in integrity.

There are two distinct considerations in assigning
integrity classes to objects and subjects. First, the integrity
class of the object to be protected from unauthorized
modification must reflect the sensitivity of the information,
viz., the potential damage that could result. Second, the
integrity class of the subject must reflect its trustworthiness
for making modifications. However, it is essential to note
that the modifications by a subject are effected by the
programs it executes and the data that control the execution
of these programs. Thus, if a high integrity class is assigned
to objects (files or segments) containing programs and
program data, this assignment must reflect a determination
that the resulting execution will produce only acceptable
modifications.

The strict integrity model was initially introduced to
deal with the threat of deliberate falsification or
contamination of very sensitive information. One such
application in which high integrity is of great importance is
the preparation of targeting data that are used to control
ballistic missiles. The practical threat is not so much that an
unauthorized individual will be allowed to use such a system,
but rather that a program and/or data maliciously prepared
will be incorporated into a Trojan horse to retarget the
weapons towards inconsequential or even friendly targets.
This kind of Trojan horse could be implanted in what has
become popularly known as a ‘virus,” and strict integrity has
been recognized as one of the few effective defenses.

There is a growing body of experience with the
implementation and use of strict integrity in highly trusted
operating systems. For example, in the Honeywell SCOMP,
the first Class Al system on the Evaluated Products List,
strict integrity is included as part of the protection for
segments. This mechanism is used for the protection for

security related information such as audit data. In addition,
the Gemini GEMSOS’ has incorporated strict integrity as
part of the sensitivity label for all subjects, objects, and
devices; this approach has been found useful when designing
the integrity protection both of sensitive application
information and of system information used to support the
security controls themselves. Although there has been little
comparable experience in database systems, the LP. Sharp
multilevel database model® incorporates strict integrity along
with multilevel secrecy.

Low-Water Mark Policy. This policy is analogous
to the high-water mark security policy of the ADEPT-50
systemg. A subject’s integrity class is dynamic and decreases
as the subject reads data of lower integrity. If the integrity
classes of objects are static (as in the strict integrity policy), a
subject will be unable to write into an object with a higher
integrity class than it has read; if the object classes are
dynamic, then their integrity classes are possibly lowered if
the subject writes into the object. As summarized by Bibas,
“This policy, in practice, has rather disagreeable behavior. .
. . In a sense, a subject can sabotage (inadvertently) its own
processing by making objects necessary for its function
inaccessible (for modification). The problem is serious since
there is no recovery short of reinitializing the subject.” To
the best.of our knowledge, this policy has not been included
in any system design.

Ring Policy. By prohibiting read-downs in integrity
class, it seems the strict integrity policy and the low-water
mark policy could prove to be quite restrictive for most
systems, especially database systems. Because database
processes must have both read and write access to user data,
system tables, index files, logs, and other structures to answer
queries and update the database, it would appear that the
only workable assignment of integrity classes is system low.
Because of the restrictiveness of the two preceding policies,
Biba also introduced a more flexible policy called the ring
policy. Each subject and object has a fixed integrity class,
and a subject is only allowed to write into objects whose
integrity classes are dominated by the subject’s class. No
restrictions are placed on reading, so a subject can write high
integrity data even if it has read data of a lower integrity.
Unfortunately, the relaxation of this policy makes the
integrity class of the subject essentially meaningless, because
there are no restrictions on even what programs the subject
can execute. Thus, what would appear to be a high integrity
subject can, without restriction, be executing erroneous or
malicious programs that destroy the high integrity
information to which the subject has access. In reality, this
policy fails to meet the requirements for a mandatory policy.
Moreover, there is no real experience using this policy as a
basis for mandatory integrity.

Multilevel Security with No Write-Up. Extending
the Bell and LaPadula model to prohibit ‘writing-up’ in
secrecy class provides a limited form of mandatory integrity.
In particular, this extended policy model addresses the ‘write-
up’ problem of the mandatory secrecy policy, which allows a
subject to write up in secrecy class. The extended model
would prevent a SECRET subject, for example, from
inserting data labeled as TOP-SECRET into a multilevel
relation or from overwriting a TOP-SECRET element (which

32

it cannot observe). This approach appears to protect
subjects from lower-level subjects. Closer examination makes
it clear that this approach is a case of the ring policy just
addressed in which the secrecy labels, such as SECRET, are
also used as the integrity labels; the difference is thus only
syntactic with no difference in the results of the policy. Of
course, this policy also has the same weaknesses as the ring
policy.

Program Integrity Policy. The restrictions of the
strict integrity policy remain a concern, so it seems important
to try to identify a more flexible but useful policy. The real
world supports some notion of integrity class through job
levels and chain of command. However, the flows between
different levels (usually adjacent) are bidirectional, so
information flows both up and down in integrity class.
Moreover, the trust placed on the information provided by
any individual is often more a function of the individual than
position. The key to the effective protection in this context
is that the individuals are trusted to make only the desired
modifications of high integrity informaticn, even though they
have been exposed to information of lower integrity classes.

This same concept can be applied to software by
imposing more stringent requirements on assigning an object
containing executable code a high integrity class. It seems
unreasonable to assume that once a program has observed
data of low integrity that it is incapable of writing data of
higher integrity, or because data are entered by a user of low
integrity into a database, that indexes and other structures
on the database must be treated of low integrity also -- there
is little relationship between the quality of the data that go
into a database and the quality of the system structures that
represent it.

This problem has been approached by distinguishing
read access from execute access (which are treated identically
in the preceding policies). Based on this distinetion, Shirley
and Schell'® have defined a program integrity policy in which
a subject is only allowed to write into objects of less than or
equal integrity class and only allowed to execute objects of
greater than or equal integrity. As with the ring policy, there
are no restrictions on reading. This policy appears to be
better suited for databases because the database processes
could operate with a high integrity class, where they would
be able to read and update the entire database. Users and
application processes would be assigned integrity classes
reflecting their ‘trustworthiness’. Furthermore, Shirley has
shown not only that this is a mandatory policy but also that
it is the identical policy implemented by the hardware
protection ring mechanism of Multics and several other
systems (no connection with Biba's use of the term ‘ring’).
Thus there is a substantial body of experience with this
policy, and it has indeed been shown to be quite useful in
operating systems. There is no comparable body of direct
experience with database systems.

An even closer look at the program integrity policy
reveals the somewhat unexpected result that it is just a
special case of the strict integrity policy. To understand this,
it should be recalled that in the Bell and LaPadula model
there is the notion of a ‘trusted subject.” When interpreted
for integrity, as in the case of the strict integrity policy, a
trusted subject is trusted exactly to be able to read low

integrity information without damaging the integrity of high
integrity data. This notion of trusted subject is too coarse
for the problem at hand because a trusted subject can read
any integrity class. However, the notion has been refined in
the Gemini GEMSOS’ to identify a ‘multilevel subject’ that
has both a minimum and maximum class. Now, if the
subject in each protection ring is regarded as multilevel (with
respect to integrity classes) with a maximum integrity equal
to the ring of execution and a minimum integrity equal to the
least trusted ring, the strict integrity policy in this case
becomes the program integrity policy if the multilevel subject
is trusted not to execute any program with a lower integrity
class than its maximum.

Domains and Types. Domains and types have been
proposed as a means to specify a mandatory integrity policy,
as illustrated by the Honeywell SAT system4. Here, each
object is typed, and each domain has a list of types that it
can observe and modify plus a list of domains that it can call.
Although this policy model is similar to discretionary policies
based on the access matrix model, the set of types, domains,
and rights cannot be altered. Because it is a relatively new
approach, its properties are not yet completely clear. So far,
there is no experience applying this type of policy to a
database system, although Honeywell is working on it.

Discretionary Integrity Authorization

Discretionary integrity authorization policies control
access to data at the user or user group level. The usual
approach to controlling access in database systems includes
authorization lists, which specify what operations a user (or
group) is authorized to perform on some set of data. For
integrity, the operations of interest include update, insert,
and delete.

The authorization lists of database systems are included .

in the data model at different layers of abstraction. At the
lowest layer, they are associated with files, records, or
elements. At the highest layer, they are associated with
views or subschema on the data. The high-level approach
has the advantage of specifying a context for access. The
context - i.e., exact set of elements that fall within the target
of a view -- is dynamic, changing as the underlying database
is updated. Because it is easier and more natural for users,
the high-level approach has proven to be far more useful than
the low-level approach, and is embodied in many systems
including SQL/DS, DB2, ORACLE, and INGRES (though in
a somewhat different form).

The discretionary security policy contained in the
Trusted Computer System Evaluation Criteria! is
appropriate for database systems as long as the concept of
object is interpreted to mean views (actually view
specifications or subschema) rather than just physical
elements, records; or files. Note that this does not mean that
discretionary controls cannot be associated with individual
records and elements; such controls are easily defined as
views on the database.

The Criteria specify that discretionary controls are to
be applied to ‘each named object.” There is no requirement
that the named objects be disjoint in memory, and in some
operating systems a file may be accessed via different path

33

names through different directories with different
discretionary authorizations placed on the different names.
Similarly, applying discretionary controls to views is
consistent with the Criteria because views are just a way of
naming objects. Also, there is no requirement that the
‘named objects’ of the discretionary policy be the same
objects or even at the same layer of abstraction as the
‘storage objects’ of the mandatory policy.

CONSISTENCY INTEGRITY

Database Integrity Rules

Database integrity rules protect a database from data
entry errors as well as from other errors made by the
operator or by software. They define the correct states of
the database and may specify actions to take if an update
would cause the database to enter an incorrect state. They
are similar to exception conditions built into programs,
except that the conditions are represented in the database (as
metadata) rather than in the application programs so that
they can be automatically applied to all transactions
updating the database.

In a relational system, there are two common types of
database integrity rules: domain integrity rules and
relational integrity rules. Domain integrity rules are
context-free rules specifying the allowable set of values (i.e.,
domain) for an attribute, e.g., DRIVER.AGE is greater than
16 but less than 100. Relational integrity rules are context~
sensitive rules specifying more global constraints on
individual tuples or sets of related tuples, e.g., that every
tuple in a PROGRAMMER relation has a corresponding
tuple in an EMPLOYEE relation (this is a form of ‘referential
integrity’). Many relational systems, e.g., INGRES, provide
mechanisms whereby users can define rather complex
integrity rules.

Integrity rules play a vital part in ensuring the integrity
of a database. Indeed, they are a very important part of
access controls because most systems are vulnerable to errors
as well as to sabotage.” It is probably fair to say that a
database system would not be regarded as a useful trusted
system if it does not support integrity rules.

There are, however, intrinsic problems associated with
integrity rules in a multilevel system that is rated at the
evaluation level of B2 or higher, arising from the requirement
to protect against covert channels. Because the
implementation of integrity rules is outside the mandatory
security perimeter, the database subjects that enforce the
integrity rules must be denied access to data that is classified
higher than the subject level. Thus, if the subjects are
processing a transaction on behalf of a user, the only data
visible to those subjects will be data that is classified at a
level dominated by the user’s level. H the database system
were given access to data not dominated by the user’s level,
then a Trojan Horse in the database system could leak the
unauthorized data -- that is, unless the database system (or a
large portion thereof) were part of the mandatory security
perimeter. Because the latter is neither feasible nor
desirable, in multilevel systems rated at the level of B2 or
higher, we are forced to consider integrity constraints as
constraints on the subset of the database dominated by the
user’s clearance.

To see how this revised interpretation of integrity
constraints affects the enforcement of integrity rules, consider
the relational model, which requires each tuple in a relation
to have a unique primary key. Suppose the tuples in a
multilevel relation are classified SECRET or TOP-SECRET,
and suppose the relation contains a TOP-SECRET tuple
with primary key FOO. This tuple will be invisible to
subjects operating on behalf of SECRET users. Thus, if a
SECRET user attempts to insert a new tuple, also with key
FOO, the system will accept the tuple. Because the access
class becomes the only means of distinguishing the tuples, the
class must then be considered to be part of the primary key.
We refer to the coexistence of multiple tuples with the same
primary key except for access class as polyinstantiated

Problems also arise with respect to referential integrity.
For example, suppose a TOP-SECRET user creates a TOP-
SECRET tuple in a relation T(ID, A), which is associated
with a SECRET tuple in a relation S(ID, B) through the join
attribute ID. The relation S represents the entities named by
the primary key ID. If a SECRET user deletes the
referenced tuple in S, referential integrity will be violated.
But because the SECRET user, as well as all subjects that
run on that user’s behalf, cannot know of the existence of the
TOP-SECRET tuple, this cannot be avoided.

As a third example of the problems that arise from
invisible data, consider a relation that contains the weights of
items on board various flights. - Suppose there is maximum
weight restriction of 5000 for any given flight and that some
of the items on board a flight are classified SECRET while
others are TOP-SECRET. If the integrity constraint is
specified simply as an upper bound of 5000 for the total of all
weights for a flight, a flight could be overloaded because the
TOP-SECRET weights would be invisible when the
constraint is applied at the SECRET level to determine
whether an additional SECRET item can be placed on board.
A possible solution is to have separate constraints for
SECRET and TOP-SECRET weights.

Thus, in B2 or higher systems, the consistency defined
by integrity constraints must be interpreted with respect to
the secrecy class of the subject applying the constraint.
However, whether there should be some notion of inter-level
consistency, or how this might be specified, is unclear. It is
also unclear how triggers fit into this notion since a trigger
activated by an operation on behalf of a user having one
secrecy class cannot read up or write down in secrecy class.
Finally, we note that if the database is polyinstantiated at
the tuple or element level, problems arise in applying the
integrity constraints because more than one tuple or element
with different values may be selected by the constraint, each
with different outcomes. Thus, the integrity rules must
specify which values to select-among polyinstantiated values.

In a multilevel system, the concept of integrity
constraints should also be extended to include constraints on
the classifications assigned to data. For relational systems,
we have found that several properties should hold:

o The complete definition (schema) for a relation,
including the names of all attributes, should have
a single access class that is dominated by the

access classes of all data that is to go into the
relation. Integrity rules that constrain the data
going into the relation should also be assigned this
access class.

o The attributes representing the primary key in a
relation should be uniformly classified -- that is,
within any given tuple, the elements forming the
primary key should have the same access class.

e The classification of the primary key should be
dominated by the classifications of all other
elements within a tuple.

In that integrity rules enforce constraints on the
relationships among data in the database, they can be
associated with inference problems. For example, if an
integrity constraint states that C = A + B for attributes A,
B, and C, where A and B are SECRET but C is TOP-
SECRET, then a SECRET user with access to A, B, and the
integrity constraint can infer C. In this particular case, the
best strategy for dealing with the problem may be to use the
integrity constraint to force classifications on the data to
prevent the inference -- e.g., classify A or B, or both, as
TOP-SECRET. In cases where the rule of inference is
complex and unknown, it may be more appropriate to
classify the integrity constraint (which can be viewed as an
inference rule).

In summary, although a multilevel secure database
system should provide database integrity rules, the
mandatory secrecy policy affects the interpretation and
application of integrity constraints.

Recovery Management

Another vital aspect of database integrity is protecting
the database from operator or software errors, including
system crashes. The accepted methed of dealing with such
errors and faults is based on the concept of a transaction,
which is a sequence of operations that behaves atomically --
that is, it either successfully completes (commits) all updates
or else it has no effect on the state of the database (rolls
back). The overall integrity policy for trusted systems should
include the concept of transactions with commit and roll-
back.

Multilevel updates raise some difficult issues regarding
transaction management. For example, if a trusted user can
simultaneously insert or update multilevel data (within the
user’s range of trust), it may be desirable to decompose these
updates into single-level updates represented as single-level
transactions and performed by single-level database subjects.
However, the unit itself must also be treated as a transaction,
so the concept of a multilevel transaction with single-level
nested transactions appears to be very useful. The problem
is rolling back the low portions of the transaction if the high
portions fail. ‘

Assuming recovery management is outside of the
mandatory security perimeter, it is not clear how the
database recovery log should be managed and processed in
systems that are rated at the level of B2 or higher. However,
some of the techniques used for general-purpose operating
systems to ensure the consistency of file systems during

backup and recovery may be useful.

Concurrency Controls

An important aspect of database integrity is ensuring
that concurrent transactions do not interfere with each other,
giving rise to inconsistent states of the database.
Serializability, which states that any transaction schedule
must be equivalent to one in which the transactions execute
serially, has been shown to be a necessary and sufficient
condition for global consistencylz, although there are systems
that enforce somewhat weaker policies. Some notion of
global consistency, however, is an essential aspect of the
overall integrity policy for trusted database management
systems. The concurrency policy should also address the
problems of deadlock, where multiple transactions cannot
proceed because they are waiting on each other, and livelock,
where a transaction never exits from a wait state, both of
which create denial-of-service problems.

In B2 or higher systems, the concurrency mechanisms
must use techniques other than simple locks because read-
write locks on multilevel data provide a signalling channel.
Event counters!® are not vulnerable to covert channels, but
require that higher-level transactions roll back when a lower-
level one causes an update that could interfere with its
behavior.

CONCLUSIONS

We do not know enough about the application of
mandatory integrity policies to databases to recommend any
one in particular or even state that one be mandated at all.
While the strict integrity policy without trusted subjects may
be appropriate for some threat environments, the more
flexible program integrity policy, which uses restricted
trusted subjects to manage a database, may be appropriate
for most environments. It would be premature to adapt a
particular mandatory policy in criteria for trusted database
systems until such a policy has been experimentally tried in
at least one operational environment and has been
demonstrably successful. On the other hand, a discretionary
policy along the lines of that given in the criteria is extremely
useful provided it is interpreted to apply to views rather than
just elements, records, or files.

Database integrity rules should be included in an
overall integrity policy because they provide users with
considerable assurance that the data is protected against
many errors. This is one of the best ways in which the users
themselves can greatly enhance the integrity of their data.
However, the interpretation and application of integrity rules
is constrained by the requirements for mandatory security.
Similarly, any trusted system should support the concepts of
atomic transactions, recovery, and noninterference, though
again the features are constrained by the mandatory security
requirements.

Although we believe it is vital for trusted systems to
support these different integrity policies, it is neither
necessary nor possible to have the same degree of assurance
in the enforcement of them all. Whereas Classes A and B are
appropriate for mandatory access controls, Class C2 is
appropriate for discretionary controls and consistency

35

controls, which are considerably more complex than
mandatory controls and require much of the database system
for their support.

To provide 2 high degree of assurance, the mandatory
integrity policy must beenforced by the reference monitor.
In addition to enforcing the mandatory secrecy policy, the
reference monitor ensures the integrity of all data in the
system, including the labels that represent the secrecy and
integrity access classes. If the data are vulnerable to
tampering during storage or transmission to and from the
reference monitor, cryptographic checksums may be used to
ensure the integrity of the data and its labels. For
cryptographic checksums to be meaningful, it is essential that
the processes that compute and validate the checksums and
manage the key be under the strict control of a reference
monitor.

ACKNOWLEDGMENTS

An earlier version of this paper was prepared for the
National Computer Security Center’s Invitational Workshop
on Database Security, where both authors participated in a
working group on integrity and inference. The current
version has benefited greatly from the group discussions, and
we would like to thank the other group members, namely
A. Arsenault, W. E. Boebert, D. Bonyun, D. Downs,

K. Jacobs, R. Miller, G. Raudnbaugh, J. Spain, and

S. Walker. We also thank T. Lunt, M. Heckman, and

P. Neumann for their comments on this paper. This research
was supported by the U.S. Air Force, RADC under contract
F30602-85-C-0243.

REFERENCES

1. Dept. of Defense, Computer Security Center,
Department of Defense Trusted Computer System
Evaluation Criteria, 1983, CSC-STD-001-83

2. Date, C. J., An Introduction to Database Systems,
Addison-Wesley, Vol. II, 1983.

3. Harrison, M. A., Ruzzo, W. L. and Ullman, J. D.,
“Protection in Operating Systems”, Comm. ACM,
Vol. 19, No. 8, Aug. 1976, pp. 461-471.

4. Boebert, W. E. and Kain, R. Y., ‘A Practical
Alternative to Hierarchical Integrity Policies”, Proc.
of the 8th DOD/NBS Computer Security Conf.,
1985, pp. 18-27.

5. Biba, K. J., “Integrity Considerations for Secure
Computer Systems”, Tech. report ESD-TR-76-372,
USAF Electronic Systems Division, Bedford, Mass.,
April 1977.

6. Bell, D. E. and LaPadula, L. J., “Secure Computer

Systems: Mathematical Foundations and Model”,
Tech. report M74-244, The MITRE Corp., Bedford,
Mass., May 1973.

7. Schell, R. R., Tao, T. F., and Heckman, M.,
“Designing the GEMSOS Security Kernel for Security
and Performance”, Proc. 8th Dod/NBS Computer
Security Conf., 1985, pp. 108-119.

8. Grohn, M. J., “A Model of a Protected Data
Management System’, Tech. report ESD-TR-76-289,
I P. Sharp Assoc. Ltd., June 1976.

10.

11

12.

13.

Weissman, C., “‘Security Controls in the ADEPT-50
Time-Sharing System”, Proc. Fall Jt. Computer
Conf., Vol. 351969, pp. 119-133.

Shirley, L. J. and Schell, R. R., “Mechanism
Sufficiency Validation by Assignment”, Proc. of the
1981 Symp. on Security and Privacy, Apr. 1981, pp.
26-32.

Lunt, T. F., Denning, D. E., Schell, R. R., Heckman,
M., “Polyinstantiation in a Secure Relational Database
System"”, Tech. report, SRI International, May 1986.

Rosenkrantz, D. J., Stearns, R. E., and Lewis, P. M.,
“Consistency and Serializability in Concurrent
Database Systems”, SIAM J. Comp., Vol. 13, No. 3,
Aug. 1984, pp. 508-530.

Reed, D. P. and Kanodia, R. K., “Synchronization
with Eventcounts and Sequencers””, Comm. ACM,
Vol. 22, No. 2, Feb. 1979, pp. 115-123.

36

TRUSTED DATABASE DESIGN

Peter J. Troxell

PAR Government Systems Corporation
220 Seneca Turnpike
New Hartford, New York 13413

INTRODUCTION

In January of 1981, the Department of Defense
Computer Security Center (DoDCSC) was formed
to study all aspects of computer security and to
promote the development of trusted computer
systems. Their first task was to develop a set of
criteria for defining what "trusted" meant, and for
assigning levels to define how "trusted" a system is.
Their first criteria, the "Department of Defense
Trusted Computer System Evaluation Criteria
[TCSEC]", was published in August of 1983. The
"Department of Defense Trusted Network
Evaluation Criteria [TNEC]", expected out in 1986,
deals with network security issues.

This paper will discuss the software and hardware
components which must be present in order for a
Database Management System (DBMS) to be
considered "trusted” in relation to the [TCSEC].
Distributed databases utilizing the TNEC will be
considered beyond the scope of this paper.

K rit ncept

Several concepts must be addressed before any
discussion of computer security can be made. The
following paragraphs provide a general overview of
these concepts so that later references to them may
be understood.

The term "Trusted Computer System" is defined in
the [TCSEC] as "a system that employs sufficient
hardware and software integrity measures to allow
its use for processing simultaneously a range of
sensitive or classified information.” In other words a
user running at the Unclassified level can share the
system with users running Top Secret, while
ensuring that each user can access only those
items for which they have permission.

The reference monitor concept developed from a
study performed for the Air Force by James P.
Anderson & Company. Simply stated, the concept
stipulated that was that "a reference monitor which
enforces the authorized access relationships
between subjects and objects of a system” should
exist. The mechanism that performs this concept is
called a validation mechanism, and must meet the
following three requirements:

a. "The reference validation mechanism
must be tamper proof.

37

b. The reference validation mechanism
must always be invoked.

c. The reference validation mechanism
must be small enough to be subject to
analysis and tests, the completeness of
which can be assured.”

This validation mechanism is given the name of the
Trusted Computing Base (TCB) and is sometimes
referred to as a security kernel.

The following excerpt from the mandatory security
control policy defined in the [TCSEC] adequately
defines the policy's meaning: "(the TCB) must
include a set of rules for controlling access based
directly on a comparison of the subject's clearance
or authorization for the information and the
classification or sensitivity designation of the
information being sought, and indirectly on
considerations of physical and other environmental
factors of control.”

Likewise, the control policy for discretionary
security policy states that the TCB "must include a
consistent set of rules for controlling and limiting
access based on identified individuals who have
been determined to have a need-to-know for the
information.”

TRUSTED COMPUTER SYSTEM
EVALUATION CRITERIA

While this does not primarily address database
security issues, it will be discussed since it presents
some key concepts that are applicable to any
multilevel secure software product.

Fundamental_Security Requirements

The criteria presents six fundamental computer
security requirements broken into three main
categories of policy, accountability, and assurance.
Each of these requirements is presented below with
its rationale.

The first two requirements deal with policy. The first
requirement states that there must be an explicit
and well-defined security policy enforced by the
system. As will be seen in the evaluation class,
there are two types of policy -- mandatory for
access rules to sensitive objects, and discretionary
for allowing access by groups or individual users.
For a mandatory security policy to work each object

within the system must have an associated security
label. This is the second requirement.

The third and fourth requirements focus on
accountability factors. The idea is that each subject
in the system will be identified and that
security-related actions can be audited and traced
back to the responsible party.

The last two requirements deal with assurance.
This means that there is some way to guarantee
that the first four requirements are enforced and that
they are continuously protected against tampering
and/or unauthorized changes.

Division Ratings

When a computer system is evaluated by the
DoDCSC, it is assigned a rating. The rating
consists of a division letter and a class number. The
heirarchy of division and class numbers is as
follows: the lower the division letter the higher the
protection the system gives. As the class numbers
increase within a division so does the security
rating. Thus a rating of B1 is higher than a rating of
C2 thus affording more protection. A key feature of
the security ratings is, that inherited in the
requirements for a particular class are all the
requirements for any clasess lower than it in the
hierarchy.

Division "D" contains only one class and is used
only when a system that is evaluated does not fall
in any of the higher classes.

All classes in division "C" implement some type of
discretionary security policy. This will enforce a
need-to-know type of protection on users and
objects. Accountability is another feature and
requires that certain audit capabilities be
implemented.

A division "B" rating requires addition of a
mandatory security policy. This policy requires
sensitivity labels for all objects to be part of the
major data structures of the system. Thus, the
mandatory security policy supplementary to the
discretionary policy developed for the division C
systems. In addition, the system developer must
provide the model of the security policy that the
TCB is based on, along with its specification. The
developer must also provide evidence that the
reference monitor concept has been implemented.

For a system to receive a division "A" rating, it is
required that the mandatory and discretionary
security policies can be formally proven. The TCB is
guaranteed that it meets its security requirements in
all phases of design, development, and
implementation. This guarantee is the result of
adding formal methods into the design process.

ED DATABASE DE

The need for a trusted DBMS arises from the fact
that the [TCSEC] enforces access controls only to

38

the granularity of a file. To make maximum use of a
computer and its associated databases, these
access controls must be expanded to arbitrate
accesses to a finer detail, such as to the field or
data element level.

The remainder of this paper will first discuss the
security threats to a DBMS, then proceed to present
some of the suggested approaches.

Security _Threat

Two security threats, inference and aggregation,
are prevalant in DBMS systems. In addition, there
are those threats which can be found in any type of
computer program, Trojan Horses and Covert
Channels.

Inference, as the name implies, occurs when the
user is able to infer some fact from the information
that has been presented. Suppose, for example,
that a database has two relations: AIRCRAFT, with
attributes ID and PAYLOAD; and WEAPONS, with
attribute TYPE and [ID.The fields
AIRCRAFT.PAYLOAD and WEAPONS.ID can be
joined. All records are SECRET unless the
WEAPON.TYPE is NUCLEAR in which case it'is
TOP SECRET. Now consider the following query:

RETRIEVE AIRCRAFT.ID
WHERE AIRCRAFT.PAYLOAD = WEAPON.ID
AND WEAPON.TYPE = "NUCLEAR"

The query would be processed and would return to
the SECRET user a list of all aircraft having a
nuclear payload, thus revealing TOP SECRET
information. This occurs because the computer
treats the information returned as SECRET since
the TOP SECRET portion was stripped away in the
selection.

Agaregation occurs when data combined from
different sources results in a data item that has a
higher classification than its individual components.
This can be the result of using one of the aggregate
operations, such as sum, or can be intrepreted as
the user, infering from different database requests,
the data at a "higher"security level. For instance, in
the previous example suppose that all records were
SECRET but the fact that a particular aircraft was
carrying a nuclear payload (i.e., the join relation) is
TOP SECRET. By placing two queries a SECRET
user could determine what the payload (TOP
SECRET) was.

Other Security Threats A DBMS would, like its
operating system counterpart, have to concern itself
with the problems of Trojan Horses and Covert
Channels. The [TCSEC] defines these two terms
as: .

Trojan Horse - "A computer program with an
apparently or actually useful function that
contains additional (hidden) functions that
surreptitiously exploit legitimate

http:WEAPON.ID
http:AIRCRAFT.ID
http:WEAPONS.ID

authorizations of the invoking process to the
detriment of security.”

Covert Channel - "A communication channel
that allows a process to transfer information
in a manner that violates the system's
security policy."

As can be seen from their definition care must be
taken to prevent the occurence of these security
threats.

Architectures

With the objective of having a Multilevel DBMS
(MDBMS) and knowing the types of threats to the
system, several potential architectures have been
put before the community as potential solutions.
These architectures are presented below.

It should be noted that whatever architecture is
used, the concepts defined in the [TCSEC] will
prevail. Each will contain, in some part, a TCB in
which resides the security-related code that is
guarenteed to work. Depending on the MDBMS, it
will contain code to enforce. mandatory and
discretionary security policies. Marvin Schaefer
[SCHAB8S5] states in his paper that the [TCSEC] is

sufficient in its current form to handle the multilevel.

database management problem, since each
operating system maintains some type of internal
database to keep track of its information.

Another key point is that all accesses to the
database must be through the DBMS; otherwise,
security is circumvented. This can be accomplished
by making the database a special classification that
can only be accessed from the DBMS which
operates at that level.

Views The concept of views has been around
since the early days of DBMS. In 1983, Billy
Claybrook [CLAY83] presented a method for using
views to enforce security requirements on a DBMS.
A view is defined in [CLAY83] as "a database
description (or definition), together with an instance
of the definition.” A view definition "is the process of
specifing the. attributes of a view and defining the
mapping between the view and the underlying
database.”

The concept that a view utilizes is that a user is
given access to a view but not the data itself so that
the user will only be able to access what the view
"sees." In addition, a view could be defined in terms
of another view allowing for a breakdown of the
component of the database tuples. The security
classification can be either static or dynamic
depending on to what depth the security labeling is
taken.

A problem with this architecture its side effects due
to the fact that the user only sees a part of the tuple.
For instance, if a user has delete permission to a
tuple and subsequently deletes a tuple that was in
the users view, what should be done with those

attributes that were contained in the actual view but
not "seen" by the user?

The [CLAY83] paper presents the author's method
for handling the inference and aggregation
problems. The solution to the inference threat was
to make sure that the user had the necessary
clearance for at least the highest object searched.
Likewise, the solution presented for aggregation
called for the user's clearance to match the highest
classification in the material searched.

Integrity-Lock Richard Graubart has presented
several papers ([GRAUB84], [GRAU85]) on an
architecture called Integrity-Lock. This architecture
was an outgrowth of the 1282 Summer Study on
Database Security sponsored by the Air Force
Studies Board. lts key architectural concept is to be
able to retrofit security onto existing DBMS instead
of recreating the DBMS from scratch.

The Integrity-Lock approach calls for the database
management system to be separated into three
components. Graubart's conception of this is shown
in Figure 1. The trusted code resides in the Trusted
Front End (TFE). The TFE is responsible for
authenticating the user, and verifying that only
information that the user is entitled to, is passed
back to him. The Untrusted Front End (UFTE) takes
care of parsing the queries and formatting the
output for the user. Lastly, the Untrusted DBMS
handles all the I/O access to the actual database.

The [GRAUB84] paper goes on to define the basic
theme of the Integrity-Lock architecture; that is each

tuple has at least one classification attribute and an

associated cryptographic checksum. This provides
a mechanism for labeling the classification of the
data and provides a way to detect unauthorized
modifications to the tuple. The checksum is
computed using the value of the tuple and its
classification as input to an "unbreakable”
encryption algorithm. The result is placed with the
tuple in the database. Should an unauthorized
modification be made to the data, the checksum will
not match and a security violation flagged. Dorothy
Denning, in her 1984 paper [DENN84], presents
just how these checksums can be computed along
with their strengths and weaknesses.

The granularity of the security level can be
increased anywhere from the tuple level to
individual attributes by the addition of
classification/checksum pairs. Of course the greater
the granularity, the greater the cost; in terms of CPU
power to compute the checksums, and the amount
of disk space require to save the database.

One of the key advantages of this architecture is
that the technology needed to implement it currently
exists. It can be retrofitted on to an existing DBMS
to reduce the cost and time required to have a
Multilevel DBMS in the marketplace.

USER

Untrusted Trusted | STAMP o
Untrusted
Front End [@————{ Front End DBMS
CHECK
(UTFE) (TFE) In—

Query parsing,
Output formatting

Creations,

User authentication,
Tuple formatting,
Verify data returned,
Projections,

Placement and

Verification of
Checksums

FIGURE 1 - INTEGRITY LOCK COMPONENTS

Database searching
Tuple selection,

Tuple insertion,

Tuple deletion,
Database reorganization

NCLUSION

This paper has presented an overview on the
development of "trusted databases." It has
discussed the threats to such a database and has
presented a brief overview of some of the current
ideas for a likely architecture. While each has its
own strengths and weaknesses, time will tell which,
if either, will be the final solution.

These designs have dealt with the implementation
of the mandatory security policy onto an existing
DBMS. Further work still needs to be done on how
to implement the discretionary security policy of
need-to-know onto a database, bé it either at the
database level or at the level of individual
attributes.

REFERENCES
[CLAY83] Claybrook, B. G., "Using Views in a
Multilevel Secure Database

Management System," Proceedings of
the 1983 Symposium on Security and
Privacy, |EEE Computer Society,
1983, pp 4-17.

[DENN84] Denning, D. E., "Cryptographic
Checksums for Multilevel Database
Security," Proceedings of the 1984
Symposium on Security and Privacy,
IEEE Computer Society, 1984, pp
52-61.

[DENN8S] Denning, D. E., "Commutative Filters
for Reducing Inference Threats in
Multilevel Database Systems,”
Proceedings of the 1985 Symposium
on Security and Privacy, |EEE
Computer Society, 1985, pp 134-146.

[FERR81] Fernandez, E. B., Summers, R. C.,
Wood, C., Database Security and
Integrity, Addison-Wesley Publishing
Company, Inc., Reading,
Massachusetts, 1981.

40

[GRAUS4]

[GRAUSS5]

[RADC75]

[SCHA85]

[TCSEC]

Graubart, R. E., "The Integrity-Lock
Approach to Secure Database
Management," Proceedings of the
1984 Symposium on Security and
Privacy, |EEE Computer Society,
1984, pp 62-74.

Graubart, R. E. and Duify, K. J,,
"Design Overview for Retrofitting
Integrity-Lock Architecture onto a
Commercial DBMS," Proceedings of
the 1985 Symposium on Security and
Privacy, |EEE Computer Society,
1985, pp 147-159.

Hinke, T. H. and Schaefer, M. "Secure
Data Management System,"
RADC-TR-75-266, Rome Air
Developement Center, Air Force
Systems Command, Griffiss Air Force
Base, New York, November 1975.

Schaefer, M., "On the Logical
Extension of the Criteria Principles to
the Design of Multilevel Database
Management Systems", Proc. of the
8th National Computer Security
Conference, DoD Computer Security
Center, 1985, pp 28-30.

Department of Defense Trusted
Computer System Evaluation Criteria.
Department of Defense,

~ CSC-STD-001-83, 15 August 1983.

[TNEC]

Department of Defense Trusted
Network Evaluation Criteria.
Department of Defense, DRAFT, 29
July 1985.

THE CHALLENGE AFTER Al
A VIEW OF THE SECURITY MARKET

Lester J. Fraim

Honeywell Information Systems
Federal Systems Division
7900 Westpark Drive

McLean, Virginia

INTRODUCTION

Honeywell Information Systems has the
only two commercial products on the National
Computer Security Center's (NCSC) Evaluated
Products List above class C2. The Multics
Product is rated as a class B2 and the Scomp
is the only system to receive the highest
rating of class Al. These systems are used
in a variety of applications where security is
a key requirement. Several new developments
are underway to further demonstrate the
effective use of the Scomp to meet a variety
of market needs.

As a result of the experience with
Multics and Scomp, Honeywell is developing a
strategy and product direction to expand our
segment of the evolving security market. The
security market c¢consists of several elements
which must be integrated into a coordinated
set of product and service offerings.

This paper will present a view of the
security market and discuss the initial
approach being taken to develop products to
meet these market needs.

BACKGROUND

Honeywell has long been committed to the
development of systems to meet the security
needs of government and industry. The de-
velopment in the early 1980's are key examples
of this effort. Bringing trusted products to
the marketplace has provided Honeywell with a
unique view of security market requirements.
The advent of the Trusted Computer System
Evaluation Criteria and overall awareness of
trusted system concepts has grown rapidly dur-
ing this period. The list of vendors now
working with the NCSC is a relative who's who
in the industry. Each vendor must decide the
position (i.e., rating) and type of products
to be offered. The end result will be that
all products will contain enriched security
mechanisms. Vendors will provide standard
products which meet a broad spectrum of
security and processing requirements.

As a leader in the class B2 to class Al
area of trusted products, Honeywell has
developed a basic strategy to meet the needs
of this market. The overall strategy in-
cludes the coordination of security related .
efforts through Honeywell. A high level
steering group reviews plans and requirements
to ensure that the technical security efforts
are directed with a unified goal in mind.
This group meets regularly to evaluate product
characteristics, program results, market
requirements and research directions. The
direction provided by this group ensures that

22102

the efforts of various organizations are all
directed to meet the security needs of the
Honeywell customers.

Key to Honeywell's effort is the inclu-
sion of enhanced security in both our large
and small commercial product bases. Without
basic products which meet the evolving
standards, it is quite unlikely that we can
provide completeé solutions to the high end of
the market. Another key element in the
strategy is to ensure that research is pro-
grammed into product enhancements. One
example of this is the inclusion of Scomp
hardware features in the DPS6 PLUS product,
which was announced in June this year. This
commercial hardware platform contains the
features to support the Scomp capability.
This will enable the evolution of enriched
security features to be implemented in .the
commercial operating system offering as well
as provide a new platform for Scomp. The
Secure Ada Target (SAT) Program is also being
managed such that this technology can be
planned for product offerings at the proper
time.

As the technology evolves, Honeywell will
insert product offerings which take advantage
of proven technology. This approach, however,
can produce some difficult challenges. With
each new innovation comes the need to define
the security impacts, implementation approach
and the application of the technology. These
are the challenges that make the trusted sys-
tem market interesting. The Scomp system was
a major technical accomplishment because it
demonstrated the ability to build a class Al
system. The challenge now is to build a
broad product offering, meeting high level
security requirements and providing all the
features available in the non-trusted market.
To understand these reguirements will require
a quick look at the characteristics of this
marketplace.

MARKET CHARACTERISTICS

The Boneywell experience with Scomp and
Multics has given us the opportunity to
evaluate a variety of system requirements.
Because these systems are very different with
respect to capacity, performance and capabil-
ity, we have observed requirements across a
broad spectrum. This experience has led us
to the definition of a marketplace model.
This model looks very similar to many system
and program requirements. It is not much
different from the model of the data process-
ing industry in general. Technology has
provided the capability to place large pro-
cessing capacity at user locations and provide

effective communications between these
processing elements.

A key element of the market, which is not
obvious from the model, is the need for
solutions oriented systems. These systems
must solve the users problem and provide the
level of trust necessary for the user environ-
ment. There is no attempt here to justify the
users security requirements. Security must be
an element of the specifications just as
communications interfaces and processing re-
quirements. The market requires systems
which solve user problems and protect thelr
processing assets.

The Market Model

Figure 1 illustrates the interconnections
of several classes of processing elements.
The elements are interconnected through a
Local Area Network (LAN). There are efforts
underway by several vendors to produce trusted
LAN products. This model does not depend on
their capability; however, these products
will enhance the vendor's ability to satisfy
the model requirements. The LAN is required
to provide efficient control between the
processing elements. The elements span the
spectrum of what is available in the market
today. The challenge is that all elements
need to be trusted at the class B2 to class
Al level.

To establish a common understanding of
these elements, it is necessary to describe
some of their features.

Trusted Work Stations - The requirement for
trusted work stations is quite straight
forward. Users desire the full capability of
work stations, including color graphics,
windowing, disk storage, a mouse and hard
copy capability. Work stations run a variety
of software including MS-DOS* and UNIX.**

The challenge is to provide these features,
meet the security requirements, and allow all
applications software to run without modifi-
cation.

Trusted Servers - These are departmental
size systems which provide a broad range of
processing resources. These systems manage
the data resource for the users. This data
management may be in the form of a relational
data base management system, document manage-
ment system, or file management capability.
This system manages the data resource for the
user, and enforces the security policy.

* MS is a trademark of Microsoft.

UNIX is a trademark of AT&T Bell
Laboratories.

* %

INTELLIGENT WORKSTATION

{ J

RnPHIC
tch

wd

MLS

GRRPHIC

R

1CB

L~ "~

— Y

RN

J./

DBMS -
outside
world
COMM

COMM,
TCB
tch

=
Jyas

a

COMMERCIAL OR MLS I‘ﬁNI

tch

]

| distributed workstation

—

Figure 1. Trusted System Market Model.

42

Trusted Gateways - This element of the model
provides access to the outside world. This
function allows users to access information
from external sources. Many requirements
exist to protect a local resource (i.e., LAN)
from unauthorized access. The Gateway pro-
vides this protection, and also allows
system users to gain access to other non-local
environments. In the Government, these
gateways will require TCP/IP capabilities.
In the commercial world, the gateways will
probably require ISO or SNA capabilities.

Trusted LAN Access - The development of
trusted LANs may preclude the need for this
element of the model; however, the functions
are still required. The trusted LAN access
element will ensure the separation of levels
on the LAN, and provide a trusted interface
to the LAN mechanism. The concept is to
provide an effective user interface to the
LAN.

Standards - This market model is driven by
standards. Everyone involved with system
requirements is quite familiar with both
official standards and the evolving standards
of practice. For example, there are several
standards for LAN connections. Most notably
are those of the IEEE. These standards are
very different from the evolutionary standards
of practice such as UNIX System V for depart-
mental processing and UNIX or MS-DOS for work
stations. To meet the requirements of the
market model, the vendor must identify the
standards to be supported and the standards
of practice which will be supported.

Application - One of the major lessons learned
with the Scomp product has to do with appli-
cations requirements. Everyone wants to see
applications running which perform functions
for the user. The challenge with applications
comes from several sources.

First, there are commodity applications
which users would like to use. These include
such things as data base management, spread-
sheet, word processing, transaction process-
ing, etc. So the first challenge is to be
able to support a variety of these existing
applications in the trusted environment.

Second, there are many applications which
require a security model which is different
from that supported by the basic trusted
system. Examples of these applications in-
clude guards, military message system and data
base management. These applications require
trusted elements which cannot just be ported
from commodity packages. The challenge is to
develop effective trusted interfaces which
meet a wide variety of market requirements.

And finally, there are applications which
must be trusted because they are required to
handle multi-level objects. An example of
this kind of application would be interfaces
to networks that contain multiple level
traffic. None of these exist today, with the
possible exception of AUTODIN. To meet this
challenge will require applications such as
trusted TCP/IP or X.25 capabilities.

43

Solutions -~ To meet the needs of the market
place requires a strong combination of pro-
duct and integration capabilities. The
products will provide a foundation for the
building of system solution. The vendor
must be committed to long term investment to
bring the technology and solutions to the
customer. To meet the needs of the market,
The vendor will have to combine the tradi-
tional vendor role with the system integra-
tion role. The key to success in this arena
is the commitment to meeting the customer
requirements. These solution oriented
systems will all require elements of the
model, and each may include a unique piece
that is only an emerging technology. A
strong technically oriented organization will
be the most successful in meeting these
solution needs.

THE FIRST STEP

As can be seen from this quick review of
the trusted market requirements, there is a
great deal of work ahead. There are also
many new and interesting challenges in bring-
ing these capabilities to the market. At
Honeywell, we have been working to take the
initial steps to begin to address the various
elements of the market model. By no means
do we have solutions for all the elements or
all the issues. That is the challenge to
this industry over the next several decades.

We plan on building on the technology of
the Scomp product by producing systems which
meet the requirements of the model. These
systems will then be used in our solution
oriented business to meet customer require-
ments. As new technology is advanced, it will
also be integrated into solutions. As other
vendors provide elements necessary to meet
our users' needs, we will integrate them into
sound technical solutions.

Because of the nature of Scomp, and the
type of system it provides, our initial capa-
bility will be in the departmental sized
system. It is well known that Scomp current-
ly resides on a 16 bit mini-computer hardware
platform. This hardware is modified to meet
the needs of building a trusted system.
Several years ago steps were taken to ensure
that these hardware characteristics would be
available in the future Honeywell hardware
platform. This was accomplished through
close working relationships between the
commercial hardware developers and the Scomp
development team. The results of this effort
are the newly announced DPS 6 PLUS product
set. This commercial product provides a long
term technically advanced base for the Scomp
system. Additionally, the Scomp hardware
features ensure that future versions of the
commercial operating system will be able to
provide enhanced security capabilities. It
is now planned that the future commercial
operating system will be targeted at class B2.

DPS6 PLUS

The DPS6 PLUS is a new generation of 32-
bit virtual memory computers. It is built
using Very Large Scale Integrated (VLSI)
chips as integral elements of the central
processor and the memory manager. The central

processor firmware is loaded via the System
Management Facility to control software
operation.

The major significance of the DPS6 PLUS
is that it provides a commercial hardware
platform, without the need for special hard-
ware to support the Scomp Trusted Operating
Program (STOP). The initialization of the
system will be achieved through the firmware
load mechanism of the System Management
Facility. This feature of the DPS6 PLUS will
provide a great deal of flexibility and a re-
duction in product cost.

Figure 2 lists several of the features of
the DPS6 PLUS and the Scomp. As can be seen,
the DPS6 PLUS provides a multi-processor
capability with a large virtual address per
process. The performance of the system is
enhanced by the integration of the Scientific
and Commercial Instruction Processors
(CIP/SIP). These processors were not avail-
able on the 16 bit Scomp implementation.
Additionally, the largest segment size and the
availability of twice as many segments perfor-
mance .

Because of the firmware load capability,
the DPS6 PLUS implementation of Scomp will be
able to use commercial Test and Verification
(T&V) routines. The current Scomp reqguires a
unique set of T&V's because of the hardware
differences. This will be a major cost sav-
ings in the DPS6 PLUS based product.

The firmware load capability is also
beneficial in providing the mechanisms
necessary to implement the one Scomp feature
not in the DPS6 PLUS hardware. The
commercial DPS6 PLUS only provides support for
physical Input/Output (IO). Firmware will be
added which supports the virtual IO capabili-
ties necessary for Scomp. Because of this
difference, only pre-mapped IO will be sup-
ported on the DPS6 PLUS. The mapped IO
feature of the current Scomp will not be
available.

STOP 3.0

The first version of the Scomp operating
system to be available on the DPS6 PLUS is de-
fined as STOP 3.0. This is the same operating
system which runs on the 16 bit Scomp except
that it is modified to support the features
of the DPS6 PLUS. These modifications in-
clude the larger segments, multiple process-~
ors, new 10 capability, and new ring crossing
mechanisms. The user interface to STOP will
remain the same, and the application inter-
face to the system will be the same.

Multiple Processor Support - The 16 bit Scomp
was implemented on a mono processor system.
The DPS6 PLUS supports single, dual and quad
processor configurations. The Scomp Kernel
is being redesigned to effectively support
the multiple processor environment. This is
a complex enhancement to the Scomp security
Kernel, and has taken the most effort to
design.

New IO Support - The current Scomp supports
user initiated IO capabilities. This will no
longer be true on the DPS6 PLUS implementa-
tion. The IO capability will be moved into a
more privileged ring (ring 1), and the system
will perform the IO on behalf of the user.
This change is required because of the follow-
ing. .

First, the IO environment on the DPS6
PLUS is quite different from that on Scomp.
There is no firmware support for some exist-
ing functions. Secondly, the development of
new smart device controllers requires the IO
mechanism to be protected from the user
environment.

SCOMP
WORD SIZE 16 Bit
SECURITY FEATURES

VIRTUAL ADDRESS SPACE

SEGMENTS/PROCESS 512

SEGMENT SIZE 4 Kilobytes
PAGE SIZE 256 Bytes
SIP/CIP SUPPORT None
MULTI-PROCESSOR Mono

PHYSICAL ADDRESS

FIRMWARE ROM

Add-On-Hardware
2 Mega Bytes

2 Megabytes

DPS6 PLUS
32 Bit

Commercial Hardware
2 Gigabytes

1024

2 Megabytes

2 Kilobytes

CPU - Supported
Mono-Dual-Quad

16 Megabytes

RAM

Figure 2.

DPS6 PLUS/SCOMP Features.

44

Application

The initial application to be supported
on the DPS6 PLUS Scomp will be the UNIPLEX II*
integrated office application. The implemen-
tation of UNIPLEX II is currently being
completed on the 16-bit Scomp System. UNIPLEX
II consists of word processing, file manage-
ment, data base management, spreas sheet and
mail. UNIPLEX II normally runs on UNIX based
systems, and has been ported to Scomp using
our evolving C standard application
environment.

Evaluation Goals

The DPS6 PLUS with STOP 3.0 will be built
in accordance with the class Al requirements.
The system's initial evaluation goal will be a
class B3 rating. The reason for this is that
it reduces the risk associated with verifi-
cation. There are many issues assoclated
with this product enhancement that need to be
addressed in the verification aspects of class
Al. An example of this is multiple processors
and smart controllers. Additionally, the
technology of verification has not advanced
significantly from the current Scomp product
to warrant major investment in this technol-
ogy at this time. Future versions of STOP,
however, will be validated at the class Al
level when it is required to meer the market
requirements. Nothing will be done in the
development of STOP 3.0 which would preclude
it from achieving the class Al rating.

Performance

The performance range of the DPS6 PLUS
extends the performance capability of the
SCOMP system. There will be additional per-
formance benefits gained from the largex
segment size and the integrated SIP/CIP capa-—
bility. Looking at the performance of the
DPS6 PLUS and the DPS6/75 produces the
following results:

o scoMmp (DPS6/75) = 1.0
o PS6 PLUS 1 = 1.7
o DPsS6 PLUS 2 = 3.2
o DPS6 PLUS 4 = 5.3

These performance ratios are based on the
basic hardware, and have not been factored to
reflect the impact of security.

THE FUTURE

STOP 3.0 is just the first of a planned
evolution of systems capability on the DPS6
PLUS platform. Additional interfaces and
applications will be developed to meet the
needs of the market model. These efforts will
come from both internal and project directed
funding. Several of these additions are being
planned at this time. They include a re-
lational data base management capability, DDN
capability, Ethernet* interface and additional
support tools.

* UNIPLEX is a trademark of Redwood Int. Ltd.
** Ethernet is. a registered trademark of
Xerox Corporation.

45

Application Environment

The market is driving the departmental
system toward the UNIX System V interface as
a standard. In line with this, the STOP
application interface is being enhanced to
make the porting of applications from UNIX as
easy as possible. This is the result of
several efforts to port UNIX based applica-
tions to Scomp. These applications include
TCP/IP, X.25, UNIPLEX II and a C-Compiler.

This is not an effort to emulate the UNIX
environment. It is purely a mapping of UNIX
interface calls to services provided by STOP.
Our approach is to provide a trusted system
which supports UNIX applications. Not all
applications will port easily.

Data Bage Management - It is not possible to
provide true MLS relational data base capa-
bilities today. However, the use of a
commercial RDBMS capability on a trusted
system is the first step toward realizing
many of the requirements of a RDBMS in a
trusted environment. Honeywell plans on ad-
dressing this need by providing basic data
management capabilities on future versions of
Scomp. The approach to meet this requirement
has not been fully defined. Work is con-
tinuing in several areas to address the data
base management requirements.

Other Products - The DPS6. PLUS Scomp is only
one element of the market model. Efforts are
underway at Honeywell to address the full
spectrum of the model requirements. These are
being addressed both in terms of product
capabilities and as evolving research issues.
The use of the DPS6 PLUS chip set is being
analyzed with respect to development of a
micro based capability which could meet the
needs of a work station or communications
device. These efforts are in their early
stages and should produce meaningful results
in the next several years.

Additionally, a key research activity
being performed by the Honeywell Secure
Computing Technology Center (SCTC) is being
monitored for inclusion in product oriented
solutions. The Secure Ada Target (SAT)
research provides a potential path to advanc-
ed security mechanisms. The timed inclusion
of the proven technology developed by SCTC
will be a key element in the development of
advanced products.

CONCLUSION

This paper has looked at the requirements
of the Trusted System market place. These
requirements cannot all be met with existing
product platforms and capabilities. This
market requires a strong solution oriented
approach combined with basic platforms to
meet the users security needs.

Honeywell has come a long way in achiev-
ing the Scomp and Multics evaluations. These
efforts, however, are only preliminary to our
eventual goal of providing a broad range of
product oriented solutions. The DPS6:PLUS is
the key element of. this evolutionary approach
to. trusted product development. The DPS6
PLUS, combined with standard interfaces and
applications environments, will provide a set
of guality solutions for systems users.

SE/VMS:

IMPLEMENTING MANDATORY SECURITY IN VAX/VMS

Steven Blotcky, Kevin Lynch, Steven Lipnef
Digital Equipment Corporation
Nashua, NH and Littleton, MA

ABSTRACT
Since the late seventies, Digital
Equipment Corporation has been pursuing a
development program aimed at improving the

of its computer system and network
The most visible product of this
program to date has been Version 4.2 of the
VAX/VMS operating system, which is under
evaluation as a candidate for Class C2 of the
Trusted Computer System Evaluation Criteria.

security
products.

In addition to implementing discretionary
access controls, VAX/VMS Version 4.2
incorporates latent support for mandatory
security controls at the 1level of internal
operating system routines and data
structures. This paper describes SE/VMS
(Security Enhanced VMS) , a set of
modifications that allow VAX/VMS users to
exploit the 1latent support for mandatory

security. The modifications provide
facilities that allow a system manager to set
up and administer the mandatory security
environment, and that allow users to operate
on labeled objects. The paper describes the
functions of SE/VMS that support user
registration and 1login, device and volume
management, file creation and access, and the
production of labeled printed output.
Discussions are provided of the techniques
that were used to implement SE/VMS, of the
system's limitations, and of plans to gain
user experience with SE/VMS. SE/VMS is
viewed as providing interim mandatory
security capability for VAX/VMS users, and
will not be submitted for evaluation at Class
Bl of the Criteria.

an

1 TINTRODUCTION

Since the late seventies, Digital
Equipment Corporation has been pursuing an
active development program aimed at improving
the security of our computer system and
network products. The primary focus of this
program has been a series of enhancements to
the security of the VAX/VMS operating system.
The most visible product of the program to
date has been VAX/VMS Version 4.2, which has

been submitted for evaluation at Class C2 of
the Trusted Computer System Evaluation
Criteria (TCSEC) .

This paper describes SE/VMS (Security
Enhanced VMS), modifications that have been
developed to provide an initial mandatory
security capability for VAX/VMS. These
modifications were developed by Digital's
Software Services organization to provide

security protection for

labeled VAX/VMS.
This work is intended to meet most of the
requirements for Class Bl of the TCSEC.

Because SE/VMS does not meet all requirements

and is dintended to provide only an interim
capability, it would not be a candidate for
submission for formal product evaluation at
Class Bl.

SE/VMS 1is not an "add-on" security
package in the sense of some of the products

on the National Computer Security Center's
Evaluated Products List., 1Instead it combines
latent capabilities of VAX/VMS, replacements
for some VAX/VMS components, and additional
components to achieve the overall objective
of providing labeled protection.

This paper begins with a review of the
security features of VAX/VMS Version 4.2, It
then summarizes the support for mandatory
security that was included in Version 4,2,
Next, the paper presents an overview of the
features of SE/VMS along with a sketch of the
techniques that were used to implement them.
Finally, we —conclude with a discussion of
areas for future development 1in providing
mandatory security for VAX/VMS.

2 SECURITY IN VAX/VMS

VAX/VMS was initially developed in the
mid seventies along with the VAX-11/780
32-bit superminicomputer. The VAX-11/780 was
developed as an upward-compatible extension
to the PDP-11 minicomputer family and
executes PDP-11 code directly. As the VAX
family grew out of the PDP-11, so VAX/VMS
grew out of the RSX-11/M operating system for
the PDP-11.

Initial releases of VAX/VMS actually
included a significant number of PDP-11
utility programs that were transported
unmodified from RSX. Thus the 1initial
VAX/VMS security design was an extended
"minicomputer" model and encompassed
passwords at login and
"gystem/owner/group/world" protection on
files, directories and a few other objects.
VAX/VMS has always supported one-way
encryption of user passwords, and over the

years a number of security auditing functions

were incorporated with the system's
accounting features.

In the late seventies and early
eighties, a major project was started with

the aim of upgrading the security of VAX/VMS.
The first product of this project was VAX/VMS

Version 4.9,
incorporated in Version 4.2.
paper discusses the features
describes
Version
implementation
incorporated
below will
cases.

were

been

dedicated
significant feature enhancements.)
currently

incorporates

and some additional enhancements
When this
of SE/VMS, it
enhancements to
the initial

of mandatory controls was
in Version 4.6, the paragraphs
refer to Version 4.0 in some
(0dd-numbered versions since 4.8 have
to "bug fixes" rather than
As it
Version 4,2
security

changes
4,2,

or
Because

exists, VAX/VMS

the following

enhancements:

o]

- login,

A number of "account management”
features including account expiration,
restrictions on days and times of
and restrictions on access to
accounts (no dialup, no network,
etc.).

A number
features
initial

of password management
including required change of
passwords for privileged
accounts, " password expiration,
minimum password length,
dual-password accounts, and a randon
pronounceable password generator.
Features directed toward systems
that support dialup lines or
networks including automatic hangup
and 1limits on unsuccessful 1login
attempts directed to an account.
Access control list and identifier
features allow the system manager to
define arbitrary groups of users,
and allow users to grant or deny
access to files by individual wusers or
defined groups.
Selective security auditing features
produce an audit trial of successful
and/or failed attempts at such
operations as user login, access to
files, and use of certain
privileges. The audit trail is
directed both to a terminal and a
log file, and can be analyzed by a
reduction procedure included in the
system.
Features introduced
Version 4.0 prevent "disk
scavenging" by 1insuring that disk
files are erased on deletion, or
that blocks newly allocated to files
are pre-erased. VAX/VMS systems
have always erased primary memory
pages before making them addressable to
a process, so the enhancement to disk
storage allocation eliminates the last
possibility for disclosure of
information by object reuse.
A "secure server" key prevents users
from implementing "password
grabbers™ by gquaranteeing that a
user of a hardwired terminal who
presses the break key will always
receive a 1login prompt from the
operating system. Equivalent
features are provided for users
whose terminals are attached to
terminal concentrators or VAX
network hosts.
A "Guide
Security"”
VAX/VMS

in VAX/VMS

to
was
Version

VAX/VMS
developed
4.9,

System
along with
and updated

48

for Version 4.2. The guide provides
detailed information for both users
and system managers.

The development of VAX/VMS
was started before the
final version of the TCSEC. Nonetheless, the
developers were awvare of the Criteria
development process, and tracked the content
of each draft of the TCSEC. A specific goal
of VAX/VMS Version 4.2 was that it meet the
requirements of Class C2, Controlled Access
Protection. VAX/VMS Version 4.2 has been
under formal evaluatio% as a candidate for
Class C2 since late 1985.

Version 4.9
completion of the

3 MANDATORY CONTROLS FOR VAX/VMS

While the primary security evaluation
goal for VAX/VMS Version 4.0 was to meet the
requirements of Class C2 of the TCSEC, it was
understood during the development process
that incorporation of mandatory security
controls was both a feasible and desirable
objective. Resource limitations and
time-to-market constraints prevented the
completion of the mandatory security
features. However, a good deal of work was
completed, and "latent support"™ for mandatory
security has been present in every release of
VAX/VMS since Version 4.40.

Early 1in the development of, VAX/VMS
Version 4.8, a decision was made that the
system . would support both the lattice
security and integrity models, with fields
allocated to support 256 levels and 64
categories for each of the security and
integrity models. The fields were encoded in
a conventional way - a byte each for security
and integrity levels, and a 64-bit quadword

for security and integrity category masks.
These fields, plus an additional 16-bit word
used as a filler, form a five longword
structure known as an "access <classification
block", or CLS Dblock. Thus, the total
storage required to represent a security
"access class" (levels and categories for
security and integrity) is 168 bits. As part
of the development of VAX/VMS Version 4.0,
CLS blocks were added to the data structures
for the system's subjects and objects.

The security properties of a subject are
recorded 1in a CLS block within an "Agent's
Rights Block", or ARB, that includes the
subject's current access class as well as
identity, group and privilege information
that 1is used for the other protection checks
performed by Version 4.¢. The only subjects
on a VMS system are processes.

The security properties of most objects
(files, "mailboxes", 1logical name tables,
devices, and global sections) that are active
(accessible or "opened”) in the system are
stored in “"Object's Rights Blocks" or ORBs.

An ORB contains two CLS blocks, specifying
minimum and maximum access classes for the
object, as well as discretionary access
control information. Other objects (e.g.

mounted disk volumes) have CLS blocks as part
of their control structure. While the major

storage objects are labeled with CLS blocks,
a few (less critical) interprocess
communication objects are not labeled.

The ORB and ARB are data structures that
apply to active subjects and objects in a
VAX/VMS system -- processes that are logged
in (ARB), and open files, 1logical name
tables, and so on (ORB's). For mandatory
security controls to be effective they must
also, of course, apply to permanent subjects
and objects - registered users, files,
directories and volumes. Thus the system's
permanent data structures were enhanced to
record access class information. The User
Authorization File (UAF) entry for a user
records that wuser's minimum and max imum
access class. The "volume home block" for a
disk volume records the minimum and maximum

access class for the volume, while the "file
. header"™ for weach file records the file's
access class. In all cases the standard
VAX/VMS 166-bit 'CLS block is wused to store
the access class.

Volumes and devices may be multilevel

(minimum and maximum access class may differ
for each object, as set by the system
manager) while a file always has a single
access class. Directories are files with
special ©properties and also have a single
access class. Additional process control and
communication objects (i.e. logical name
tables, global sections, "mailboxes") are
potentially multilevel objects. ‘

access class
objects, the

In addition to adding
information for subjects and

VAX/VMS Version 4.0 development project also
completed the code required to implement
mandatory controls for files, and extended

the executive's central protection checking
routine to reflect the access class of
subject and object in its decision to grant

or deny access. Access checks and
propagation of access classes were based
directly on the requirements of the
Bell-LaPadula model”. A subject may only

read an object if the subject's access class
dominates the object's access class (simple
security condition). A subject may only
write an object 1if the object's access class
dominates the subject's access class
(*-property or confinement property).

While the code that checks access was
part of VAX/VMS Version 4.0, no provision was
made to allow a subject to have a non-zero
access class. Only in the case of files was
a subject's access class propagated to
objects it created as required by the
Bell-LaPadula model's rules for <creation of
objects. Thus, there was no operational
ability to label objects, only a latent one.

A pair of privileges -~ downgrade and
upgrade - -- may be granted to a process to
exempt it from the security and integrity
*-properties respectively. The execution of
the mandatory security access check in
VAX/VMS Version 4.8 is conditioned on a
global "sysgen" parameter: when the
parameter is 1, <checking 1is enabled. The
sense of the encoding of access <classes |is
such that, as long as the entire access class

49

is zero, access is always granted. Thus a
user who sets the sysgen parameter
inadvertently will lose some processor time

to access checks but will not find his system
"broken".

The implementation of mandatory controls
in VAX/VMS Version 4.8 provides a relatively
complete set of structures and support in the
operating system kernel for labeled security
protection. However, no user (or system
manager) interface to the mandatory access
controls is provided, access <class 1is only
propagated for files, and mandatory access

checks are not made during some operations
(e.g. mounting disks). In addition, even
though file access failures caused by a

violation of mandatory security will appear
in the system's audit trail, the reason for
such failures (i.e. the incompatible access
classes) will not.

If an installation is to make use of the
mandatory security support in VAX/VMS, it
must have a way to associate character-string
names with 1levels and categories, to assign
"clearances" to users, to _allow users to
select an access «class at 1login, and to
display access class information on printed
output, in directory listings, and so on. 1In
addition, a system manager must have
facilities to set up a system, for example
defining the access class ranges of drives,
volumes, and terminals, and must have access
to access class-related information in the
system's audit trail.

A number of Digital's users have
"discovered"™ the mandatory security features
in VAX/VMS an% written their own software to
exploit them~. The experience of these
users seems to show both the viability of the
implementation of mandatory security controls
in VAX/VMS Version 4.2 and the critical need
of some users for these features.

4 SUPPORTING MANDATORY SECURITY IN VAX/VMS

This section describes the features and
implementation of SE/VMS. In the following
paragraphs, emphasis has been placed on the

SE/VMS features that support mandatory
security controls. As was mentioned above,
integrity labeling is also present and

supported in SE/VMS, but most mention of the
integrity model has been omitted from the
paragraphs below in an attempt to shorten and
simplify the presentation.

4.1 Objectives

) The discussion above has described the
support for mandatory security controls that
is present in VAX/VMS Version 4.2, as well as
the support that has not yet been completed.
The objective of the SE/VMS development was
to provide near-term support for mandatory
security. The ground rule of the development
effort was to provide a complete and usable
system, but to defer where necessary support
for features or facilities that would unduly

complicate or delay the
support., Specifically,
modify any of the ‘existing system data
structures. No effort was made to add
mandatory controls to any object that did not
already have a CLS block in its associated
data structures.

provision of basic
it was decided not to

4.2 Approach

The technical approach to the
development of ° SE/VMS was, as might be
expected, to build ‘on the support for
mandatory’ security in VAX/VMS Version 4,2,

and to add those components that were missing
or incomplete in Version 4.2. In practice,
this effort required a few <changes to ~ the
basic® Version 4.2 executive, the replacement
of some Version 4.2 modules with enhanced
ones, and the development of some entirely
new modules. Because - the VMS development
group enhanced the latent support for
mandatory security that had been present in
Version 4.2 by adding system service routines
to the executive for VAX/VMS Version 4.4, it
was then decided that SE/VMS would be
developed as ‘a set of enhancements to Vers1on
4.4,

The following sections describe the
features that were added by SE/VMS and the
general approaches to implementing those
features. An overview of the implementation
of SE/VMS is provided at the end of this
section. :

4.3 Names For Access Classes

VAX/VMS stores an access class -(in a CLS
block) as a purely numeric value. Therefore
a mapping between the alphanumeric name of: a
security or integrity level or category and
the corresponding encoded value 1is ‘needed
both for input (user registration, login,
etc.) and output (directory listing, printed
output) .

The VAX/VMS rights database supports
mapping between numeric values and
alphanumeric identifiers (names) as part of
the user group identifier mechanism mentioned
above. A range of binary identifier values
was reserved to hold the names of security
and integrity 1levels and categories. A
simple arithmetic conversion allows the VMS
executive to transform. the value
corresponding to a level or the bit position
corresponding to a category into a binary
identifier wvalue. Pre-existing mechanisms
for processing the rights database implement
the mapping between identifier wvalue and
alphanumeric name. VAX/VMS already provides
a utility to maintain the rights database, as

well as the User Authorization File
(Authorize); commands were added to this
utility that allow the system manager to

specify the names of security and integrity
levels and categories.

50

4.4 System Service Support

A uniform syntax was developed for the
specification of access classes by users
(Figure 1). This syntax allowed for the
specification of <classification information
by an alphanumeric string - (as described
above) , or by numeric - wvalue. The VMS
development group provided two new system
services in Version 4.4, one to parse ASCII

access class strings and translate them into
binary CLS blocks and a second to create an
ASCIT access class string from a CLS
block. . .
(LEVEL=SECRET)
(CATEGORY=27)
(LEVEL=TOP_SECRET,
CATEGORY= (BLUE,RED))
(LEVEL= (MINIMUM : SECRET;.
MAXIMUM: TOP SECRET),VCATEGORY RED)
(LEVEL=(MINIMUM: UNCLASSIFIED, '
MAXIMUM: 255) , CATEGORIES=(1,3))
Figure 1. Examples of Valid Access Class
Strings
A third system service was provided to set
and get the access classes of those objects
that have associated ORBs. These . are - the
services: that became available with VAX/VMS
Version 4.4, and motivated the ' decision ..to
implement SE/VMS under

that version .rather
than Version 4,2. . .

4.5 Authorizing Users

The system manager who wishes to add a
user to an SE/VMS system must be able to
specify a "clearance" for that user. The
VAX/VMS Authorize utility is normally used to
register users and specify -their security
attributes. Authorize was modified for
SE/VMS to accept user access class
information, A. syntax .for entering such
information was devised = that 1is consistent
with. normal -usage 1in VAX/VMS. and Authorize
(Figure 2). Because VAX/VMS already uses the
" /SECURITY" command qualifier for _.other
purposes, "/SECRECY" is used to specify the
mandatory security clearance property.

UAF>ADD MODEEN/SECRECY‘
(LEVEL: (MINIMUM: UNCLASSIFIED,
MAXIMUM:TOP_ SECRET),
CATEGORY : (MAXIMUM: (APPLE,BANANA)))

Figure 2. Specifying User Clearance

A user can be allowed a single
classification, or a range of
classifications.,
4.6 Logging In

The VAX/VMS LOGINOUT utility was
modified to assign an access class.to the
user's process, and to validate that access

class. When a user logs in interactively, an

access class for his or her
specified using
3). If none is specified, the
default to the user's maximum
access class.

process can be
the standard syntax (Figure
process will
authorized

USERNAME: LIPNER/SEC=(LEVEL:SECRET,

CATEGORY:(BANANA,GRAPE))

Figure 3. Login With Classification Specified

The LOGINOUT utility then validates that
the access class 1is between the user's
minimum and maximum (as well as validating
the login against the other information in
the UAF). It also validates the requested
access class for the login against the range
of access classes authorized for the terminal
(See below). LOGINOUT then stores the access
class in the process' ARB. In the case of a
non-interactive login, such as-a submitted

batch job, the process is assigned the user's
max imum access class and validation Iis
performed against the command, error and 1log
files specified by the user.
y
4.7 Volumes And Devices
The system manager of a SE/VMS system

will normally wish to specify the ranges of
access classes for mass storage devices and
volumes and for user ‘terminals. A new
command and associated utility program allow
the system manager to specify the necessary
parameters for objects with ORBs (Figure 4).

SET CLASS/OBJECT_TYPE=DEVICE/SECRECY=

(LEVEL: (MINIMUM:SECRET,

MAXIMUM:TOP SECRET),

CATEGORY:(MKXIMUM:(APPLE,BANANA)))

DUA1l:
Figure 4. Setting Device Access Class.
New switches (/SECRECY and /INTEGRITY)

have been added to the INITIALIZE command
(Figure 5) to allow a volume to be
initialized so that only files -within a
specified range of access classes can be
written to it. The INITIALIZE command
operates on a disk volume that is physically
mounted on the VAX system but not vet
logically accessible to application programs.
The access class is stored in the home block
of the disk.

INITIALIZE/SECRECY=(LEVEL: (MINIMUM:SECRET,
MAXIMUM:TOP_SECRET)) USERDISK@2
Figure 5. Setting Volume Access Class.
The SET CLASS commands may only be used

by the system manager or a privileged user to
change the classification of objects owned by

the system. Their effect 1is to set the
minimum and maximum access class values in
the ORB for the specified object. Because

the ORB is a transitory data structure, these
commands must be repeated each -time the
system is rebooted. They will normally be

51

included in command that

a procedure is
executed at system startup time before users
may log in. This use of a command procedure

is consistent with normal VAX/VMS practice.

When files on a volume are to be made
accessible to SE/VMS users and programs, an
option of the the SE/VMS MOUNT command
compares the access class ranges of device
and volume and, if the range of the volume is
"within®™ that for the device, allows the
mount to proceed. In this case, the MOUNT

command copies the access class range for the
volume into the device's ORB, saving the old
device access class information so that it
may be restored when the | volume is
dismounted. The MOUNT and SET CLASS commands
allow the system manager to mount a foreign
disk or tape volume at the access class of
the device where the volume is to be mounted.

4.8 Operations On Files And Directories

the discussion of
Version 4.0, the

and initial

As was mentioned in
mandatory controls in
operations of object . creation
access (file open) built into VAX/VMS
implement the requirements of . the
Bell-LaPadula model in a straightforward
fashion. A newly created file or directory
inherits the access. class of the creating
process. Opens for reading and writing are
subject to the constraints of the simple
security condition and *-property.

As with any system that implements the
lattice model and a hierarchical file systenm,
SE/VMS enforces a "compatible" ' hierarchy in
which the security classes of files and
directories are monotonically non-decreasing
(and integrity classes non-increasing) as one
proceeds away from a volume's root directory.
Any user can create an "upgraded"”
directory via the SET CLASS command, but will

then be unable to gain access to the new
directory without logging in at a higher
access class. The files within a given
directory will normally be at a wuniform
access class and only directories will ' be
upgraded.

Any user who owns or uses files at

multiple access classes will require a way to
discover what files and directories are
present. at various access classes. The VMS
DIRECTORY/FULL and DIRECTORY/SECURITY
commands (requiring read access to the
directory) have been modified for SE/VMS to
produce a listing of file and directory names
and access classes for user review.

The VAX/VMS BACKUP utility was modified

to preserve the classifications of files and
directories when they are backed up to tape
or disk. Access checks are made during both

backup and restore operations.

4.9 Additional Objects

Because of the structure of VAX/VMS, any
object that has an associated ORB will be
protected by the system's mandatory controls.

Logical name tables (used to translate names
used by programs and the VAX/VMS command
language) , global sections (used to map files

into shareable areas of main memory), and
"mailboxes"™ (used for interprocess
communication 1like Unix(tm) pipes) have
associated ORB's and thus are protected by

the system's mandatory controls.

These additional objects are created
dynamically by processes in execution. The
VMS executive was modified to set the access
class of a newly created object of any of
these types to the access class of the
creating process, except 1in the case of a
global section "backed" by a disk file; in
that case the global section is given the
access class of the file. The access classes
of objects of these types may be altered by
the SET CLASS command (given sufficient wuser
privilege) and displayed by the corresponding
SHOW CLASS command.

4.1 Labeling Output

For many users, the "bottom line" of a
system that implements mandatory controls is
the ability to produce properly labeled
printed output. As part of the SE/VMS
development, a print symbiont was developed
that verifies the requesting user's mandatory
.access to a file, then produces a 1listing
with labeled header and trailer pages and
optional top and bottom labels on each page.

The layout. of the header, trailer, top and
bottom labels are customizeable. A SE/VMS
utility allows the format to be defined for

each unique combination of security level and
categories.

4,11 Auditing

The VAX/VMS security auditing facilities
seemed to audit the "right things" for
SE/VMS, but were insensitive to mandatory
security access classes. For SE/VMS, the
existing racilities were enhanced to record
access class information where appropriate

(login, file access).

To allow a reasonable 1level of audit
selectivity at audit trail collection time
and avoid flooding the system's audit 1log

file, the VAX/VMS executive was modified to
allow system manager selection of auditing of
all file access. at or above a selected
security class. A command, SAUDIT, was
implemented as part of SE/VMS to allow a
system manager to select the access class
threshold for auditing (Figure 6).

SAUDIT/ENABLE/SECRECY=(LEVEL:SECRET,
CATEGORIES: (APPLE,GRAPE))
Figure 6. Selecting the Audit Threshold Access
Class

52

4.12 Mail

The VAX/VMS MAIL utility is used to send
messages between users., As distributed with
Version 4.2, it would only be possible to
send mail between users at the unclassified
level. The SE/VMS development project
modified MAIL so that a message can be sent
from a process to any user who could read a
file at the sending process' access class,
In some cases, the receiver's copy of the
message may have its access class raised to
the receiver's minimum access class. The
receiving process can only respond with a
message built into the mail program that says
"user HAS READ YOUR MESSAGE",.

4,13 Implementation Considerations

The implementation of SE/VMS was
simplified by the 1level of support for
mandatory security already present in
Versions 4.2 and 4.4 of VAX/VMS, and by the
structure of VAX/VMS. The normal functions

of an operating system kernel are performed
by the VAX/VMS executive. The executive
performs such functions as opening files and
checking access. Support functions are
performed by programs (images) that are part
of the operating system, but run in the
context of the process that invokes them., In

some cases, these operating system images may
have privileges of their own; more often they
inherit any special privileges of the user on
whose behalf they operate.

SE/VMS implements mandatory
controls in VAX/VMS by first enabling the
mandatory control support features that are
always ©present in the VAX/VMS executive. In
a few cases, the executive has been modified
(patched) to add features not yet supported
by VAX/VMS. For example, selective auditing
by security access class, and filling in ORBs

security

with classification information are
implemented by patches to the executive.
A number of the user and system manager

support functions 1in SE/VMS are implemented
by images that are present, but do not
support mandatory controls, in the standard
VMS product. In these cases, SE/VMS simply
modifies the source programs for the images,
then replaces these images at SE/VMS
installation time. This is the case for the
Authorize, LOGINOUT, and Directory utilities.
In each case, the required modifications are

localized to small segments of the image in
question.

Finally, some of the components of
SE/VMS required the development of entirely
new programs (though perhaps based on
existing VAX/VMS software). For example, the
labeling print symbiont of SE/VMS and the
SAUDIT command are in this category. In this
case, too, SE/VMS simply installs the new
program in a directory where it will be

available to the system manager.

5 LIMITATIONS, EXPERIENCE AND FUTURE
DIRECTIONS
5.1 Limitations And Support
The sections above should have made
clear the fact that SE/VMS is intended to

provide an initial mandatory control facility
for VAX/VMS. This section considers what is
"not provided" with SE/VMS.

4.4

The combination of VAX/VMS Version

with SE/VMS provides a fairly complete set of

mandatory control facilities at the operating
system 1level, Users' processes can create,
delete, read, and write objects at the
operating system level, and those operations
will be constrained by and consistent with
the requirements of the mandatory security
controls.

Two major system objects -
clusters and 1lock blocks - are not labeled.
Event flag clusters are sets of 32 bits,
normally used for posting events, that can be
used for interprocess communications. A
process can access two shared event flag
clusters at a time. Lock blocks are
structures wused to control access to shared
resources. They can optionally be associated
with a 16-byte value block that can be used
to communicate information among processes
sharing the resource. Both lock blocks and
and event flag clusters are allocated
dynamically by the system.

event flag

There are a few feature shortfalls that
might be expected to be resolved 1in a
full-fledged system. For example:

o Terminals associated with terminal

servers (such as DECserver-18#s) can

not be assigned access classes
individually; all such terminals
must be given the same access class as

a group.

o Some of the auditing facilities are
relatively coarse and not well-tuned
for the mandatory controls. For
example, one cannot tell from the
error coding in the " audit trail
whether a file access attempt was
rejected because of the mandatory
controls or the discretionary
controls.

These and other equivalent shortcomings
demonstrate that SE/VMS is still an evolving
system at the operating system level, rather
than a completely finished one.

The area where SE/VMS will present the
greatest challenge to its users 1is not in the
domain of operating system features, but in
application ' structure. It is clear that an
ordinary unprivileged VAX/VMS application
program that does not attempt to cross access
class boundaries will function correctly
under SE/VMS. It 1is equally clear that a
complex application that operates on multiple
files, perhaps of different access classes,
may find itself broken by SE/VMS.

Some
installed

must be
VAX/VMS

complex
"with

applications
privilege" in a

53

N

Those
power

system.
sufficient

applications

to defeat SE/VMS,
eliminating part of the benefit of the
mandatory controls. On the other hand, some
privileged applications (MAIL is an example)
may not have enough power to overcome the
mandatory controls. The key point 1is ' that
there 1is a significant amount of engineering
required to make complex applications operate

may have

-correctly in an environment where mandatory
security controls are being enforced, and
that engineering has not yet been done for

the applications that may be asked to operate
under SE/VMS.

SE/VMS may interact in unexpected - ways
with VAX/VMS applications. A pool of
specialists has been trained in mandatory
controls in general and in SE/VMS in
particular so they might understand their
effects on applications. Such training can
provide specialists with the skills necessary
to provide support for mandatory controls in
the future. This support, in addition to
basic installation of the SE/VMS software,
could include defining initial security
policy, setting up device and directory
structures, and analyzing the impact of
SE/VMS on applications.

On hearing a description of the features

of SE/VMS, a listener might naturally be
expected to ask "has it been submitted for
evaluation?" Digital believes that SE/VMS
meets many of the TCSEC requirements for
Class B1, Labeled Security Protection.
However, absent a full developmental
evaluation, it seems 1likely that there are
specific features that fall short of the
requirements of Class Bl, 1In addition, the

documentation for SE/VMS is not structured in

accordance with the requirements of the
TCSEC, and the requirements for complete
functional testing of the security features

have not been met. Digital has requested
that NCSC initiate a developmental evaluation

of SE/VMS. The intention of requesting this
evaluation is primarily to provide better
insight into what might be required to make a
future release of VAX/VMS meet the
requirements of Class Bl.,
5.2 Experience With SE/VMS

As part of its evaluation of the impact

controls on VMS and its users,
SE/VMS to a

of mandatory
Digital has provided copies of
selected set of VAX/VMS users. Because this
paper was prepared shortly after the
evaluation copies of SE/VMS were distributed,
there is no experience to report. it is
anticipated that some comments on user
experience with SE/VMS will be included in
the presentation of the paper at the Ninth
National Computer Security Conference.

5.3 Directions For The Future

The discussion above clearly points the
way toward a possible future release of
VAX/VMS meeting the TCSEC requirements for

Class Bl. 1In addition, Digital is continuing
advanced development projects aimed at
evaluating the feasibility of developing a
Class Al security kernel that would be
compatible with VAX/VMS. Advanced
development and architecture studies are also
continuing to examine the impact of mandatory
controls on VAX/VMS layered software
products., An additional focus of advanced
development work is the need for enhanced
security in Digital's DECnet wide-area
network and Ethernet local-area network
products. As these advanced development
projects reach maturity, they are likely +to
form the basis for future papers like this
one.

REFERENCES
1. Department of Defense Trusted
Computer System Evaluation Criterila,
CSC-STD-9@1-83, Department of Defense

Computer Security Center, Fort George
G. Meade, MD 20755, August 1983
2. Guide to VAX/VMS System Security,

AA-Y510A-TE, AA—Y510A-T1, Digital
Equipment Corp., Maynard, MA £1754, July
1985

3. Product Evaluation Bulletin, VAX/VMS
Operating Systen, Version 4.2,
Report Number CsSC-PB-§1-85, National
Computer Security Center, Fort

George G. Meade, MD 20755, ©October 1985

4, Biba, K.J., Integrity Considerations for
Secure Computer Systems, ESD-TR-76-372,
Electronic Systems Division, AFSC, Hanscom
AFB, MA, April 1977

5. Bell, D.E. and LaPadula, L.J.,Secure
Computer Systems: Unified Expogition and
Multics Interpretation, MTR-2997, MITRE
Corp., Bedford, MA, March 1976

6. Technical - Description of the VAX/VMS
Version 4 Non-Discretlonary Security
Implementation, SAIC Comsystems,
Chesapeake, Virginia, 1985

CAVEATS

This paper presents the opinions of
its authors, which are not necessarily
those of Digital Equipment Corporation.
Opinions expressed in this paper must not be
construed to imply any product commitment on
the part of Digital Equipment Corporation.

The following are trademarks of the
Digital Equipment Corporation: DEC, DECnet,
DIGITAL, PDP, RSX, VAX, VMS.

Unix is a trademark of AT&T Bell
Laboratories.

54

A VERIFIED LABELER FOR THE SECURE ADA TARGET

William D. Young”
Paul A. Telega
W. Earl Boebert
Honeywell Secure Computing Technology Ceriter
St. Anthony, Minnesota

Richard Y. Kain
Department of Electrical Engineering
The University of Minnesota

Abstract: This paper describes the specification and verification of
a prototype line printer labeler for the Secure Ada Target (SAT) machine
currently under development at the Honeywell Secure Computing
Technology Center. There are two types of constraints on a secure
labeler--functionality requirements on the labeler itself, and constraints
on the context in which the labeler is called. The approach described
addresses both types of constraints. Verifying properties of the labeler
itself is an interesting but straightforward exercise in program
verification--in this case, code level verification. This verification alone,
however, does not ensure that the labeler is unavoidably encountered in
moving text from user domain to line printer or that the output of the
labeler cannot be altered by user programs. Such constraints require the
construction of an assured pipeline and are easily handled by the SAT
type enforcement mechanism. Type enforcement is described and shown
to have broad applicability in handling such context constraints.

INTRODUCTION

Designers of secure computing systems go to considerable lengths to
guarantee the proper segregation of internal information. This care can
be wasted if the information is compromised externally or at the I/O
interface between the computer and its external environment. Thus, the

DoD Trusted Computer Systems Evaluation Criteria! (TCSEQ) specifies
a labeling requirement on systems at or above the B level of certification.
For human-readable output this requires that:

The TCB [Trusted Computer Base] shall mark the beginning
and end of all human-readable, paged, hardcopy output (e.g.,
line printer output) with human-readable sensitivity labels
that properly represent the sensitivity of the output. The
TCB shall, by default, mark the top and bottom of each page
of ... output with human-readable sensitivity levels that
properly represent the overall sensitivity of the output or that
properly represent the sensitivity of the information on the
page.

This paper describes one approach to satisfying this requirement--a
prototype line printer labeler for the Secure Ada Target (SAT) machine
currently under development at the Honeywell Secure Computing
Technology Center. SAT is intended to satisfly or exceed all of the
TCSEC requirements for Al certification. Among these is the
requirement for design verification. Consequently, the labeler described
here has been designed so that it can be formally verified. This places
constraints on the labeler that make the design somewhat less flexible
than has apparently been true for most related efforts® 3. We examine
the implications of the requirement for formal verification on trusted
software Labeling is one of a number of areas which require code which is
commonly called trusted. However, unlike some other trusted software
such as a downgrader4, we invest trust in the code not because it is
privileged to violate some aspect of the security policy but because its
functioning is crucial to the maintenance of security in the system. For a
discussion of this distinction see®. ’

Our presentation is as follows: in section 2 we outline the security
requirements for a labeler in an Al context. Section 3 describes the SAT

*
Also with the Institute for Computing Science and Computer Applications, The
University of Texas at Austin.

55

prototype line printer labeler. and ‘the way in” which the security
constraints have been met. Finally, we draw some conclusions in section
4. :

THE LABELING REQUIREMENTS

The basic requirement for a labeler is simply to associate the
correct sensitivity label with a document and to guarantee that the label
is affixed in such a way that it will appear in the proper format and
position on the resulting human-readable output. This seems a simple
requirement; for a line printer, for example, simply partition the input
stream into a sequence of pages with an appropriate character string (the
label) inserted at appropriate points in the output stream.. Thus, the
labeler procedure takes as input a character sequence -and a security level
{or the-corresponding human-readable label associated with that level),
and generates as output a character sequence with labels and page breaks
inserted at the appropriate positions in the sequence.

However, the labeler is merely one program -executing in concert
with many others. Any assurance provided by the labeling process'is lost -
if the input can be manipulated to insert, for example, top secret
information into an input stream the labeler is to mark as unclassified.
Similarly, the labeling requirement is circumvented if the output stream
can be altered to replace any label by some string representing a label for
a lower security level. Thus, there are two components to the labeling
requirements: correctness constraints on the functionality of the labeler
itself, and ‘integrity constraints on the handling of documents in the
information pipeline that ends at the line printer physical device.

‘The correctness constraints are specifications on the labeler code.
There is considerable flexibility in defining these constraints. For
example, the TCSEC does not specify the output page format other than
the placement of the labels; nor does it specify the particular characters
permitted in the output sequence. To restrict the possibilities for covert
channels in the output format,t;ing‘5 and because of the desire to formally
verify the code, the SAT prototype labeler specification imposes fairly
stringent restrictions on the labeler functionality. These may be stated
as follows: Co

Al. The labeler must partition the input stream into pages, each
of which begins and ends with a label. Pages are defined by
the placement of carriage control characters in the output.
This label must be the human-readable character string
associated by the system administrator with the level of the
document represented in the input stream. (We are
considering only single-level documents in this' discussion.
Handling of multi-level objects and documents in the SAT is
currently under consideration.) The page size and page width
are device-dependent parameters. Output pages must satisfy
these size constraints and contain only characters from a
certain limited set.

. The document represented by the input stream must not be
unacceptably altered by the labeling process. Acceptable
alterations include the insertion of labels at the appropriate
places, breaking lines that exceed the permitted line length,
removing characters that are not within the permitted
character set, and deleting characters that would be
overstruck. (The current design does not permit underlining
or highlighting of text by overstriking. This limitation is a
consequence of the way in which lines are maintained in the
pagination process; the limitation could be changed in

subsequent designs.) The sequence of printing characters in
the output is a subsequence of the printing characters in the
input.

The constraints on the environment in which the labeler is invoked are
designed to preserve the integrity of its inputs and outputs. This is more
a function of the overall security mechanism in SAT than of the labeler
itself. These constraints may be stated as follows:

Bl1. The level associated with the (input) document must be an
accurate representation of the sensitivity of the information
contained in the document. This implies that the level of a
document is not accessible to manipulation by arbitrary user
programs. Moreover, the content of the document is not
subject to alteration by arbitrary user programs.

B2. A stronger restriction is necessary to avoid mislabeling: the
labeled document may only be output on a device for which it
was labeled; no other manipulation should be possible. The
output document must not be accessible to manipulation by
arbitrary user programs.

B3. The labeler is limited to dealing with the files passed as
parameters. That is, the labeler is constrained from accessing
arbitrary files even if the system’s general object access
constraints (e.g., the mandatory and discretionary security
policies) would otherwise allow it.

These restrictions on the handling of the document outside the labeler
are more difficult to insure in most systems than the constraints on the
behavior of the labeler itself. Verifying properties of the labeler merely
involves examining the code of the labeler. The other properties relate to
the environment in which the labeler is invoked. They reflect on the way
in which general documents may be handled in the system. Systems that
enforce the Bell and LaPadula model of security7, for example, typically
guarantee adherence to constraint B1. Initial assignment of levels is not a
function of the system, but once information has been classified, the
Simple Security Property and the *-Property ensure that high level
information cannot flow into objects at lower levels. The Tranquility
property requires that the level of an object remain fixed throughout its
lifetime.

These mandatory constraints, however, do not prevent the
manipulation of the labeler’s output by user programs at appropriate
levels. That is, a program operating on behalf of a top secret user might
be able to alter the labels on a top secret output document without
running afoul of the mandatory constraints. One might encapsulate the
labeler and printer mechanisms so that there is no point at which
intervention is possible. This encapsulation violates the principle of
modular design that dictates that separate functions should reside in
separate modules. Alternatively, one can impose additional integrity
constraints which makes the output file inaccessible to user programs
because their integrity level is too low; this is the SCOMP approachs.
Boebert and Kain® have shown that hierarchical integrity approaches
that are sufficient to meet the Bl, B2, and B3 restrictions necessarily
involve trust since data must "flow up* in integrity. The SAT type
? en forcement mechanism addresses these issues with a novel approach
that subsumes hierarchical integrity policiess’ 9,

Very. little work has been done on the labeling problem. Kurth
3 describes a line printer labeling package for an IBM/370-compatible
machine with the MVS operating system. This differs from our work in
that it describes a mechanism used in a single-level system, and is not
formally verified. Rudell? examines the labeling of screen output at a
fairly high granularity. Again, the system is not formally verified. The
only verified routines similar in spirit to the SAT prototype labeler are
the proofs of the trusted device-driver routines of SCOMP®. However,
this verification was done at a very high level, and it was assumed that a
process existed which did the labeling correctly.
any implementation-level proof of a labeler process.

We are not aware of

LABELING AND SAT

The treatment of labeling in the SAT system is presented in two
parts. We first examine the labeler itself and the properties that it is
proven to satisfy. These are constraints Al and A2 of the previous
section. We then present the SAT type enforcement mechanism and
show how this preserves the integrity of the output data after it has been
labeled (constraint B2). This mechanism is quite general, and we
indicate how our particular problem is only a special instance of a more
general problem of restricting access to classes of objects.

The Prototype Labeler

The functional correctness of the labeler is defined in terms of
constraints Al and A2 above. The input to the labeler is a sequence of
characters and a level. The output is a sequence of characters that is the
properly massaged version of the input--labels have been inserted at the
appropriate places and the output sequence is a legitimate transformation
of the input. The labeler was fully specified and mechanically verified
using the Gypsy Verification Environment'? 12. The complete Gypsy text
is given in the appendix.

For purposes of verification, the labeling process is broken into two
steps. In step one, a paginator process breaks the input into a sequence
of pages of correct size. Extraneous characters are discarded at this
point. The paginator is verified to two properties: that the resulting
sequence contains only correct pages, and that the printing characters in
this sequence are a subset of those in the input. It is still conceivable that
the labeler could “signal information by the sequence of characters
deleted. We consider this possibility unlikely and don’t attempt to
prevent it.

There are two global constants, Logical__Page_Length and
Logical _Page__ Width, in the specification that characterize the amount
of space on a line printer page (minus the amount needed to add the
labels' at the top and bottom of the page). A correct page has exactly
Logical _Page__Length lines, each of which is a sequence of at most
Logical _Page__ Width printing characters. Printing characters are those
in the ASCII character set between space and "~", a range that excludes
all control characters. (This range was chosen because certain devices
allow device characteristics to be reset by sequences of control characters.
Passing to the device sequences of characters which might reset page
boundaries or selectively disable the print head might vitiate the
labelling requirement. We simply disallow all control characters; a more
selective filter is obviously desirable.) Other characters allowed in the
paginator output are carriage return (CR), line feed (LF), and form feed
(FF); these have their typical meaning in the division of the input into
lines and pages. A FF in the input sequence, for example, causes the
current page to be filled out with null lines and a new page to begin.
Other ASCII characters in the input sequence are discarded. The forimal
(Gypsy) specification for pagination of the output is given by the
following three recursive function definitions:

function CORRECT_PAGE_SEQUENCE (pages: pageseq): boolean =
begin
exit (assume result iff
(pages = null(pageseq)
or
(correct_page (first (pages))

& correct_page_sequence (monfirst (pages)))));
end; {correct_page_sequence}

function CORRECT PAGE (pg: page): boolean =
begin
exit (assume result iff
(size(pg) = logical_page_length
& (all i: integer,
110 {1 .. size(pg)l
~> correct_line (pglil))));

end; {correct_pagel}

function CORRECT LINE (1n: line): boolean =
begin
exit (assume result iff
(size(ln) le logical page_width
& (all 1: integer,
iie [1 .. size(im)]
-> printing_character (1n[il1)))):

end; {correct_line}

56

This specification may be considered slightly flawed in that references to
printing__character should not appear in the formatting constraint, but
rather in the textual integrity constraint described below. That is, for a
line to be correct from a formatting standpoint it need only be of the
correct length. Subsequent versions will include this change.

The other crucial property of the labeler is that it not distort the
input. This is handled in a very simple fashion. As the input sequence is
scanned, the printing characters are extracted. Those are the characters
that are placed into the output pages. They are also recorded in a
character sequence purgetzt, which is compared to the input sequence.
The property that is proven is that the sequence of printing characters in
purgetzt is equal to the printing characters of the input sequence
extracted by a call to the function Purge__ Text defined as follows:

function PURGE_TEXT (inseq: text): text =
begin
exit (assume result =
(1f inseq = null(text)
then null(text)
else
(if printing_character (imnseq[il)
then inseq[1]
:> purge_text (nonfirst (inseq))
else purge_text (nonfirst (inseq))
1)
. £1));
end; {purge_text}""

This property is almost tautologous. It would be much more satisfying
to be able to prove that the the purged version of the final labeled
output is identical to the purged input. This is not possible for two
reasons. Inserting the labels adds printing characters to the output
which were not present in the input. Thus, given the definition of
Purge__ Text above, this property is not true unless one ignores the labels
in .the output. But there is no convenient way to distinguish labels
inserted by the labeling process from identical character strings which
might have appeared in the input stream.

Also, the way in which CRs and LFs are handled by the paginator
potentially causes some printing characters from the input to be lost in
the output. A single CR resets the current line to null, which is the
paginator analog of moving the print head to the beginning of the line.
However, this causes any characters on the current line to be lost. Thus,
a proper new line sequence should be in the form of a LF followed by a
CR. The LF causes the current line to be appended to the current page;
the CR sets the current line to null, and (conceptually) positions the
write head at the beginning of the line. This rather curious handling of
CR is necessary to guarantee that the printing characters of the page
sequence are a subsequence of the input, something that would not be
true if the initial characters on a line could be overwritten following a
CR.

Type Enforcement and the Labeler Environment -

Proving the correct operation of the labeler is not sufficient to
ensure that labeling is carried out in accordance with the TCSEC
requirements. It remains to show that the labeled text is mot altered
before it can be output. The SAT mechanism that guarantees the
integrity of such text is called the type enforcement mechanism and is
fully described elsewhere® 13, so we merely summarize it here.

Associated with each object in the SAT system is a security level,
an access control list (ACL), and a type. Each subject has an associated
level, user, and domain. The level attributes of subjects and objects are
used in enforcing the mandatory security constraints, and the user and
ACL fields in enforcing discretionary access controls. The mandatory
and discretionary constraints are straightforward interpretations of those
mandated by the TCSEC. It is the use of the subject domain and object
type fields that aliows us to guarantee the integrity of the labeled text.
A domain is an abstraction of the role that a subject is currently filling,
and a type is an abstraction of the format of an object. When the
labeler is executing on behalf of a particular subject that subject must be
in a different domain than when executing typical user code. Labeled
text and unlabeled text are of different object types. The labeler domain
is afforded read access to unlabeled text and write access to labeled text,
and is the only domain with write access to labeled text objects. The

%
*:>% and *<:* are the Gypsy operators which add an element onto the end of 2
; "@* denot q concatenation.

q

printer device driver is in another domain, the only domain afforded read
access to objects of labeled text type; the printer domain cannot read
objects of any type except labeled text. The relevant type enforcement
constraints are pictured in Figure 3-1.

User junlabeled,| Labeler { labeled Printer
Domain text | Domain text Domain

Figure 1: Information flow through the labeler domain.

Type enforcement constraints are recorded in a matrix, the Domain
Definition Table (DDT), indexed on rows by domains and on columns by
types. An entry in the matrix indicates whether read/write/execute
access is granted a subject executing in the given domain to objects of
the given type. This mechanism allows the construction of an assured
pipeline8 that maintains the integrity of labeled data. Every access is
mediated by the reference monitor, which determines access rights by
consulting the DDT in addition to the mechanisms for determining the
mandatory and discretionary constraints.

With a DDT configured as indicated above, data of unlabeled type
can be manipulated by subjects executing in user domain, but such
subjects have no access to labeled data. The labeler can read unlabeled
data, but write only labeled data. The printer domain permits only
reading of labeled data. These constraints suffice to enforce the rule that
no user process can remove or alter the labels that the labeler has
inserted or signal information covertly by modifying the labeled - text.
Attempts to do so are violations of the type enforcement constraints
encoded in the DDT and are prevented by the reference monitor.
Similarly, the labeler cannot alter user files in any way. No text can
bypass the labeler since the labeler domain is the only domain that can
output data of labeled type and the printer domain will input only
labeled text.

The type enforcement mechanism thus provides a solution to the
problem of maintaining the integrity of labeled data. The solution is not
at all restricted to this particular problem but rather provides the
solution to a variety of similar concerns. An encryption device, for
example, must be unavoidably encountered by certain types of data being
propagated onto an unsecure network. This can be guaranteed using the
type enforcement mechanism in an exactly analogous fashion.

The proof of the SAT type enforcement mechanism is similar to the
proof of the SAT mandatory constraints and is fully elsewhere
described!® 15, Briefly, it involves proving that the reference monitor is
unavoidably consulted whenever an access is granted and that the access
decisions of the reference monitor always accord with the constraints
recorded in the DDT. A recent paper describes the formalization and
proof of type enforcement and similar security policies in a general
contextm.

CONCLUSIONS

The prototype labeler obviously does not provide all the
functionality one would like in a general purpose line printer labeler.
For example, the design ¢ould securely permit some additional characters
to be handled, make use of the features of "smart" output devices such
as resettable device parameters, and allow overstriking. Also, a more
general labeler could be written with device type parameters. Such a
labeler would be passed a device type and consult a table to obtain the
corresponding device parameters. Labeling then would be only one part
of a larger text-formatting effort, with variable results depending upon
the intended target output device. This is the approach, for example, of
the Scribe text formatting system'®. The desire for such increased
functionality must be weighed, however, against the additional effort
that would be required for formal verification of the labeler properties.

Previous verified secure systems have been formally verified at the
design level. It has been our intention to push verification of the SAT
system as close as possible to the implementation level. Note that this
actually provides a level of assurance beyond that required for Al
certification. The traditional view has been that code-level proofs are
beyond the current state of the art in program verification. We intend
to test that assertion. The labeler code, for instance, is written in
executable Gypsy code and requires only a hand or mechanical

translation to the actual implementation language, a straightforward lemma PAGE PARAMETERS POSITIVE =

process for the constructs involved. The Gypsy Verification Environment logical_page_length ge 1
contains mechanical tools for translating Gypsy programs to Ada or to & logical page_width ge 1;
Bliss.

The requirement that the labeler be formally verified placed ::;::10n LF: character =

constraints on its size and complexity. The proof logs of just the exit (result = scale (10, chafacter)); .
paginator routine and accompanying lemmas, for instance, are some 150 result := scale (10, ché.ract)er):;;
pages in length and the proof is rather tedious. This is more a reflection end; {LF} o

on the state of program verification than on the inherent complexity of

the code. - Still, increasing the functionality increases the difficulty of ::;izion FF character = o .
i verification substantially. The experience. gained in proving the simple exit (result = scale (12, character));
B prototype labeler leads us to believe that our subsequent efforts can be result := scale (12, character); ‘
more ambitious. However, we are not discounting the size of the effort end; {FF}
involved. function CR: character = . SRR h
A labeler might take advantage of the special functionality of the begin s e
intended output device. However, “smart" devices are likely to afford exit (result = scale (13, character)); ° =
increased opportunities for covert channel exploitation. An output device result := scale (13, character);
may have internal parameters resettable via some input sequence of end; {CR} .
control characters, for example, ,Res'eﬁting page size may vitiate labeling function SP: character = -
constraints by placing labels outside of physical page boundaries. To - begim . e - N

exit (result = scale (32, chatacter)); - ¢ ¢

< is i i i i ces :
avoid this interference from internal device parameters, certain sequen result := scale (32, character)::

of characters would be disallowed as output from the labeler; it is much

end; {SP

easier to limit the set of acceptable characters than to eliminate specific e .
undesirable sequences of characters. Our approach has been to limit (by function PRINTING CHARACTER (c:*character): boolean =
programming ‘fiat) the range of device functiona»lil;;r e)sploitable by the beg::n (result 11f ¢ 1n (SP”__'))'; :
user by removing all control characters. An alternative, and more likely, result := (e in (SP..'=)):
approach would be to insist that only devices of limited functionality be end;. {printing_character} - s
used in a secure environment thus eliminating the possibilities for abuse. . ; . o

The prototype labeler is trusted only insofar as its correct Lemma S?-IN—PRINT?%E—SET =
functioning is crucial to the maintenance of system security, not in any spin [s}," S . .
special privilege it may exercise to violate constraints against information lenma CAERIAGE;CQMQQL_NUNPRIN'riNG =
flow. Use of type enforcement limits the amount of software which must not printing_character (CR) .
be trusted in that way, and permits the verification effort to concentrate & not printing character (LF)

. . . . & not printi hi ter (FF);
on the functionality of trusted modules. The proofs of the integrity of the 1Ot printing character

data flows between modules are trivial since they follow from the generic

' function N_LINE FEEDS (n: integer): text =
proof of the type enforcement mechanism. - ge1 ’

begin
The use-of the type enforcement mechanism has proved a powerlul ‘ ge‘nti-y I ge 0;

approach to maintaining the integrity of labeled text. It allows us to exit (result =
provide an assured pipeline for moving unlabeled user text through the (it : =0 o
labeler to the line printer without the danger that the labels could be :i;: n;]'ii::e’;:l ds (a-1) <: LF
altered at any intermediate point. Having the type - enforcement) - -
mechanism as an integral part of the security apparatus permits us to var i: integetr := n;
construct such an assured pipeline in any similar circumstances rather :’l':z“l" := null(text);
than to construct an ad hoc solution for each new circumstance. : £1 =0 then leave end:

result := result <: LF;

1:=1-1;
Acknowledgements: This effort has been supported by U.S. end?ng ﬁ::?:“ds}
Government Contracts MDA904-82-C-0444 and MDA904-84-C-6011. We s
wish to acknowledge the help of our colleagues at the: Honeywell Secure function N_BLANKS (n: integer): text =
Computing Technology Center, particularly Tom Haigh and Chuck begin
Ferguson, and of the Gypsy group at the University of Texas, especially entry n ge 0;
Don Good, Mike Smith, Bill Bevier, and Larry Akers. Our work has exit (rei::nn: o
benefited greatly from conversations with the staff of the National then mull (text)
Computer Security Center, MITRE, and '‘GTE. Pat Engelking of . else N_blanks (n-1) <: SP
Honeywell Communications Resources provided valuable editorial) 1),

. var 1: integer := n;
assistance, result := null(text);
loop
if 1 = 0 then leave end;
APPENDIX: GYPSY CODE FOR THE LABELER result := result <: SP;
' 1 :=1-1;

end; {loop}

scope labeler LP = end; {n_blanks}

begin

function N_NULL_LINES (n: integer): page =
‘begin
entry n ge O;
exit (result =
(ifn=0
then null (page)
else N_null_lines (n-1) <: null(ligme)
11));
var i: integer := mn;
result := null(page);

type LEVEL TYPE = pending;

) type TEXT = sequence of cﬁafacf.er;

type LINE = sequence (logical_page_width) of character;

type PAGE = sequence- (logical page_length) of line;

type PAGESEQ = sequence of page;

const LOGICAL PAGE LENGTH: integer = pending; 100:1 1 = 0 then leave end;
const LOGICAL_PAGE WIDTH : 1integer = pending: ;esl.u: i=1x-.°s“1t' < MLl Gined;
end; {loop)

" end; {n_null lines}

58

procedure PAGINATOR (inseq: text;
var purgetxt: text;
var pages: pageseq)

begin

exit = purgetxt = purge_text (imseq)

& correct_page sequence (pages);
vai current_column_position: integer := 1;
Yar current_row_position: integer := 1;
var current_input_position: integer := 1;
var current_page: page := null(page);
var current_line: line := null(line);

pages := null {pageseq);
purgetxt := null (text);
loop
assert
purgetxt R
= purge_text (inseq[l .. current_input_position - 1])
& correct_page_sequence (pages) :
& correct_partial_page (current_page, current_line,
current_rov_position,
F o B current_column_position)
& size (current_page) = curremt_row_position - 1
& size (current_line) = cirrent_column_position - 1
& current_rov_position in (1..logical_page_length)
& current_column_position in [1..loglcal_page_widthl;
1f current_input_position = size(inseq) + 1
_ then leave
end; . .
if inseq (current_input_position) = CR then
current_line := null(line);
current_column_position := i;
else '
E 1f inseq (current_input_position) = FF then
: current_page := current_page <: current_line
@ N_null_lines (logical_page_leugth.
~ current_row_position);
pages := pages <: current_page;
current_page := null(page):
current_rov_position := i;
current_line := null(iine);
current_column_position := 1;
slge
1f (inseq (current_input_position) = LF) then
current_page := current_page <: current_line;
if current_row_position = logical_page_length
then X
Pages = pages <: CUrrent_page;
current_page := null(page):
current_row_position := 1;
else
current_row_position
‘= current_row_position + 1:

end;
current_line := nuli(line)
@ N_blanks (curreat_column_position - 1);

else
if printing_character
(inseq (current_input_position)) then
purgetxt := purgetxt
<: inseq (current_input_position);
current_liine = current_line
<: inseq (current_input_position);
if current_column_position
= logical_page_width
then
current_page := current_page
<: current_line;
current_line := null(line);
current_column_position := 1;
1f current_row_position
= logical_page length
then
pages := pages <: current_page;
current _page := null(page);
current_row_position := 1;
else
current_row_position
:= current_row_position + 1;
ond;
else
current_column_position
:= current_column_position + 1.
end; {11}
eand; {if}
end; {if}
~end; {if}
end; {11}
current_input_position := current_input_position + 1;
ond; {loop}
current, _piso I= current_page <: current_line
@ N_null_lines (logical page_length
o - current_row_position);

59

Pages = pages.<: current_page;
end; {paginator)

function PURGE TEXT (inseq: text): text =
begin
exit (assume result =
(1f inseq = null(text)
then null(text)
else
(if printing_character (last(inseq))
then purge_text (nonlast (inseq))
<: last(inseq)
else purge_text (nonlast (inseq))
1) ‘
11));
end; {purge_text}

function CORRECT_LINE (ln: line): boolean =
begin -
exit (assume result iff

(size(ln) le logical_ page_width

& (all i: integer,

‘4 in [1 .. size(1n)]
=> printing_character (1n[11))));

end; {correct_line}

function CORRECT_PARTIAL_LINE (ln: line;
current_col_position: integer)
: boolean =
begin
exit (assume result iff
(current_col_position in [1..logical_page_width]
' & correct_liine (1n))): .
end; {correct_partial_line}

function CORRECT_PAGE (pg: page): boolean =
begin
exit (assume Tesult iff
(size(pg) = logical_page_length
& (all i: integer,
1 1in [1 .. stze(pg)]
=> correct_line (pglil})));

end; {correct_page}

function CORRECT_PARTIAL_PAGE (current_page: page;.
current_line: limne;
current_row_position: integer;
current_col_position: integer)
: boolean =
begin ;
exit (assume result iff
(correct_partial_line (current_line,
. current_col_position)
& current_row_position i