

WELCOME

The Institute for Computer Sciences and Technology and the National

Computer, Security Center are pleased to welcome you to this Annual

Computer Security Conference. The past eight conferences have stimulated

the sharing of information and the application of new technology.

This year•s conference theme -- Computer Security - Today ••• and

Tomorrow -- reflects the growth of computer security awareness and a

maturation of the technology and 'its use. The efforts of the National

Bureau of Standards, the National Computer Security Center, computer

use~s, and industry have helped to bring about the progress that has been

made in ~he past few years. The commitment of the Federal. government and

private industry to improve computer security continues to·grow, and

trusted systems and other technologies are becoming available.

But much more needs to be done. Federal government executive and

legislative initiatives for computer security show the extent of national

concern. We must strengthen our efforts to make managers, executives,

and computer users strong advocates for computer security, and we must

make full use of the best affordable technology.

Your participation 1~ this meeting can help to achieve this goal.

let•s continue to exchange ideas and then go back to our organizations

with renewed purpose and commitment to improve the security of our systems.

>:!:f!~~~MES H. BURROWS
i rector Director

Institute for Computer Sciences National Computer Security
and Technology Center

i

TABLE OF CONTENTS

Title Page

A Brief Summary of a Verification Assessment Study,

Mr. R.- Kemmerer • • • • • • • • • • • • • • • • • • 1

"Smart" Terminals for Trusted Computer Systems,

Database Systems and the Criteria: Do They Relate?,

Towards Practical MLS Database Management Systems Using

Integrity in Trusted Database Systems, Dr. R. Schell &

The Challenge After Al A View of the Security Market,

SE/VMS: Implementing Mandatory Security in VAX/VMS,

A Verified Labeler for the Secure Ada Target,

Automated Analysis of Computer System Audit Trails for

Managing Exposure to Potentially Malicious Programs,

Security On Unclassified Sensitive Computer Systems,

Towards a Discipline for Developing Verified Software,

The National Bureau of Standards Message Authentication

Code (MAC) Validation System, Mr. M. Smid, Ms. Elaine

Using Software Analysis Tools to Analyze the Security

A Network Security Perspective, Mr. J. Millen 7

Mr. M. Gabriele • • • • • • • • • •••• 16

Mr. B. Hubbard, Lt. s. Walker & Ms. R. Henning ••• . . . 21

the Integrity Lock Technology, Ms. R. Burns •••• 25

Ms. D. Denning • 30

Trusted Database Design, Mr. P. Troxell 37

Mr. L. Fraim •••••••••••••••••• 41

Mr. s. Blotcky, Mr. K. Lynch & Mr. s. Lipner •• 47

Mr. w. Young, Mr. P. Telega & Mr. w. Boebert 55

Limitations of Dial-Up Security Devices, Mr. E. Troy • 62

Security Purposes, Mr. L. Halme & Mr. J. Van Horne 71

Ms. M. Pozzo & Mr. T. Gra.y ••••••••• 75

Mr. H. Feinstein •••••••••••••• 81

Mr. w. Farmer, Mr. D. Johnson & Mr. F. Thayer •••• . . . 91

Barker & Mr. D. Balenson • • • • • • • • • • • • • • • • • 99

Characteristics of HOL Programs, Mr. A. Schultz •• 108

ii

Title Page

Interpretation of the Bell-LaPadula Model in Secure
Xenix, G. Luckenbaugh, v. Gligor, L. Dotterer,
c. Chandersekaran & N. Vasudevan • • • • • • • 113

Informal Verification Analysis, Mr. B. Stauffer &

Mr. Roger Fujii • • • • • • • • • • • • • • • • 126

Al Assurance for an Internet System: Doing the Job,
P. Baker, G. Dinolt, J. Freeman, M. Krenzin & R. Neely . . 130

On the Interactions of Security and Fault-Tolerance,
R. Turn & J. Habibi •••••••••••••••• 138

User Definable Domains as a Mechanism for Implementing the

Least Privilege Principle, T. Smith • • • • • • • • • • • • 143

The Access Path, Ms. J. 0 1 Neil-Dunne • 149

Risk Analysis and Computer Security: Bridging the
Cultural Gaps, Mr. L. Hoffman •• 156

Managing Diffuse Risks from Adversarial Sources (DR/AS)

with Special Reference to Computer Security, Dr. R. Brown • 162

0 Advice Most Needed ••• n The Assessment and Advice Effort,

Ms. D. Claxton • • • • • • • • • • • • • • • • • • 168

A Model of Information, Mr. D. Sutherland 175

A Semantics of Read, Mr. L. Marcus & Mr. T. Redmond 184

A Standard Notation in Computer Security Models,

Mr. o. Saydjari & Mr. T. Kremann •••• 194

Research Toward Intrusion Detection Through Automated

Abstraction of Audit Data, Mr. J. Kuhn •••••• 204

Trust Issues of Mach-1, Dr. M. Branstad, Ms. P. Cochrane,
Dr. D. Bell & Mr. s. Walker • • 209

An Overview of the DoD Computer Security RDT&E Program,

Mr. L. Castro . . . • . . . • . . • . . . • . . . • 213

Computer Architectures and Database Security,

Ms. R. Henning & Mr. s. Walker ••••••• 216

Guidelines and Standards, Ms. c. Jordan 231

iii

Title Page

Panel on Database Management System Security Requirements,
Dr. J. Campbell, Ms. D. Denning, Mr. K. Eggers,
Dr. R. Schell & Mr. C. Testa ••••••••••••• 234

Panel Discussion NCSC and Verification • 235

Panel Discussion Using the Criteria in Acquisitions 236

An Economically Feasible Approach to Contingency Planning,
Mr. R. Courtney, Jr. • •••••••••••••••• . . 237

iv

A Brief Summary of a

Verification Assessment Study

Richard A. Kemmerer

Department of Computer Science

University of California

Santa Barbara, California 93106

Introduction

This paper is a brief summary of a
verification assessment study that was
begun in November 1984 and lasted for
approximately nine months. The final
report (Kern 86), which consists of five
volumes, can be obtained from the
National Computer Security Center.

The main goal of this effort was a
technology interchange among the developers
of four established verification systems.
The systems investigated were i) Affirm
(General Electric Company, Schenectady,
New York), ii) FDM (System Development
Corporation - A Burroughs Company,
Santa Monica, California), iii) Gypsy
(the University of Texas at Austin, Austin,
Texas), and iv) Enhanced HDM (SRI
International, Menlo Park, California).
There was some comparative work on examples,
but the main idea was for the developers
to learn the details of each other's system
as a basis for future development.

It was not the goal of this study to
rate the verification systems that were
investigated. It was also not the intent
of the study to justify the need for
formal specification and verification
systems or to justify the necessity for
research in this area.

_ The next section gives an overview of
the study. This is followed by a summary
of some of the issues raised by and
conclusions drawn from the study.

Overview of the Verification Assessment
Study

The approach taken for this study was
first to select a suitable set of example
problems to be used to investigate the
established systems. Each of the systems
in turn was used to specify.. and verify
these problems. The specification and
verification was performed by the
development team for each system. One
member of each system's development team
was picked as the "representative" for that
particular system. The system
representatives were well established with
regard to their· in-depth knowledge of the
particular verification system. In most
cases the representative was one of the
original developers of the system. The
AFFIRM representative was Dave Musser,
currently with the Computer Science Branch
at the General Electric Company's Corporate
Research and Development Cente.r. in
Schenectady(New York. The FDM
representat1ve was Deborah Cooper from

System Development Corporation's

Santa Monica Research Center in

Santa Monica, California. The Gypsy

representative was Don Good from the

Institute for Computing Science at the

University of Te~as at Austin in Austin,

Texas. The HDM representative was

Karl Levitt from SRI International's

Computer Science Laboratory in Menlo Park,

California. In addition to the system

representatives, the assessment team also

included two independent participants:

Dan Craigen from I.P. Sharp Associates in

Ottawa, __Canada, and Dick Kemmerer.

Tad Taylor, the sponsor's technical

liaison, also participated in the process.

At the initial meeting the group
agreed on the set of example problems that
would be specified and verified using each
of the systems. The point of these
examples was to determine how the system
developers would proceed in solving the
problem. It was hoped that ideas as to
how these problems should be solved, using
the various methodologies, would arise.
In addition, it was expected that the
strengths and weaknesses of the systems
and supporting languages and methodologies
would also be uncovered. Finally, it was
the hope of the sponsoring agent that
these examples would provide insight into
how a common set of problems might be used
for comparing verification systems.

For each of the four systems, the
specification and verification of the
example problems was done by the
development team for that particular
system. The nonresident members of the
assessment group then visited the home
site of each system to study ·the system
and the solutions to the
problems.

During the site visits, each
participant was allowed to study the
system in any way he or she wished.
Usually, this meant that the participant
defined a favorite problem and
investigated the effects that the system
had on the development of a solution.
For example, Don Good and Dan Craigen
teamed up, for the last three visits,
and worked with a micro-modulator example,
and Dick Kemmerer worked with a secure
terminal example on each of the four
systems.

Moreover, the participants
concentrated their efforts on areas in
which they were particularly interested

1

and tried to understand those parts
thoroughly. Dave Musser, for example
directed his attention to the theorem
proving aspects of the systems.
Dan Craigen was interested in language
and methodological concerns, and
Dick Kemmerer was interested in
specifying a large and "real" example.

Through this technical interchange
members of both the assessment group and
development teams presented their system
while the nonresident participants
observed the approaches used to specify
and verify the example problems.

After visiting a site, each of the
nonresident participants prepared a
critique of the particular system. After
all the site visits had been completed,
the assessment team convened at the
University of California in Santa Barbara,
to compare their findings, to discuss the
relevant verification technology issues
that were raised during the study, and to
propose future directions for verification
research.

Technology Interchange

Example Problems

One of the conclusions drawn from this
study is that the example problems were
not "benchmarks". That is, they could not
be used to measure the "quality" of a
verification system. This result is not
surprising, particularly since all of the
specification languages are based on
first-order predicate calculus, and one
can, therefore, specify the same kinds of
properties in all of them.

It is also a well known fact that any
testing 'other than exhaustive testing is
not complete. The example problems were
'five test cases that were tried on each of
the verification systems. This is not
exhaustive testing.

On the positive side it should be

noted that the five examples did provide

some common ground for comparing and

contrasting the four systems. The

individual critiques discuss some of the

strengths and weaknesses of the systems

and languages that were revealed when

reviewing the ,solutions to the example

problems.

The technology interchange that was
the primary goal of this study did occur.
One type of technology transfer that
occurred was the result of the nonresident
participants exercising the systems and
discovering bugs and weaknesses for the
developers. The value of this type of
information is documented in the
individual critiques and the responses to
the critiques (contained in Volumes II-V
of the final report for this study
(Kern 86)).

Another type of interchange was from
system to system. Several of the
developers mentioned during the later
visits that they had incorporated (or
planned to incorporate) changes to their
systems based on what they had learned
from the site visits. This was
particularly evident during the SRI visit
because it was the last visit and because
the Enhanced HOM system is in an early
stage of development.

The strengths and the weaknesses of
the four systems that were observed also
served as a basis for formulating the
components of a state-of-the-art
verification system and for identifying
areas that need further research. For
example, the move toward a more friendly
user interface that was apparent in all
of the systems clearly demonstrated the
desirability of such interfaces. It also
revealed the need to continue to move in
this direction incorporating the power
of bit mapped graphic displays and
windowing capabilities into the
verification systems.

Formal Verification for Secure Systems

The security community has been a
major source of funding for the
application of formal technologies and the
development of formal verification systems
for the last ten years. Their interest is
in the use of formal verification to
increase their confidence in the security
of the systems they are building.

Ever since the Anderson Study defined
the reference monitor in 1972 (And 72),
security kernels have been an integral
part of most secure systems. It is the
desire to achieve the third requirement
of a reference monitor (it must be small
enough to be subjected to analysis and
test) that has motivated the security
community to embrace formal verification
technologies. That is, one form of
analysis is formal verification. If one
looks up the definition of a security
kernel in the Dod Trusted Computer System
Evaluation Criteria (commonly referred to
as the "Orange Book") (DoD 83) the third
requirement has been replaced by "be
verifiable as correctn. Furthermore, the
difference between the highest level of
trust (Al) and the next lower level (B3)
is "the analysis derived from formal
design specification and verification
techniques and the resulting high degree
of assurance that the TCB (Trusted
Computing Base) is correctly implemented."

The reason that the security community
turned to formal verification for this
added assurance is that testing techniques
are not sufficient for giving the desired
confidence in the systems being built.

2

One must keep in mind, however, that
that secure systems are just one class of
reliable systems (those whose reliability
is defined in terms of security
requirements). Therefore, the benefits
of formal verification are the same as
for any reliable software development
project. The .use of formal verification
techniques helps to avoid sloppy thinking
and the verification systems keep one
"honest". That is, by using formal
specifications one can precisely document
the requirements of a system in
unambiguous terms. Furthermore, because
the specifications are written in a
formal notation, one can reason about the
specifications and one can also analyze
them using computerized tools. Thus,
properties can be proved about the
specifications.

In summary, the security community's
motivation for using formal verfication
techniques is no different than those of
anyone wanting reliable software. There
is a difference, however, in the
properties proved.

Formal Semantics and Mathematical
·Justification

One of the issues that was raised
during the study was the need for formal
sematics for the specification and
programming languages and a mathematical
justification for the proof approach
being used. There was a consensus within
the group that formal semantics and a
mathematical justification would be good
to have. However, there was a difference
of opinion about the role of these
mathematical foundations in verification
system development. The question raised
by the assessment group was "is it
necessary to have the formal semantics
and the mathematical justification all
rigorously defined before building a
system or is it better to begin building
a system while having only a partial
formulation of its foundations?" This
issue was not resolved during the study.
Some participants felt that it is
necessary to have the formal semantics
play an active role during the design of
the specification languages, programming
languages, and the underlying logic.
Therefore, the formal semantics should be
fully defined before going off to build a
verification system. Other team members
felt that if one insisted on formal
semantics before anything else, the
verification system might never get built,
and that one can have useful systems
without fully defining the formal
semantics. The four verification
systems that were inv~stigated in this
study were built without the formal
semantics being fully defined (if
defined at all). However, Don Good
remarked that he thought that not
having developed a formal semantics for
Gypsy as a part of the language
development was one of the most serious
mistakes made in the Gypsy effort.

Design Verification

Another issue that was raised during
the study is "what is design verification
and of what use is it." The DoD Trusted
Computer System Evaluation Criteria
requires design verification for systems
rated at the highest level of confidence
(Division A systems). The orange book
(DoD 83) defines design verification as

"the process of using formal proofs
to demonstrate the consistency
between a formal specification and a
formal security policy•.

An identical definition is given in the
COMPUSECese Computer Security Glossary
(DoD 85).

After much discussion the issue was
reduced to whether "design• verification
is the appropriate term. What is being
verified is a specification and not a
design, although the specification may be
part of the design process. The group was
also concerned that the term "design•
carries a connotation of being complete
while a specification is often incomplete.

To help settle the question the
available software engineering texts
(approximatly ten of them) were consulted
to determine the appropriate definition of
"design". The hypothesis was that design
was a well understood term in the software
engineering community. The surprising ·
result of this search was that most of the
definitions of design were ambiguous, and
of those that were not ambiguous, there
was little agreement as to what
constitutes a design. Because the
investigation revealed that the term
design was not as well understood as was
originally thought, the group decided to
take a fresh look at the process that was
being defined to determine if there was a
more accurate term for the process.

The consensus was that a specification
was a description of some property(ies) of
a system. Furthermore, security models
are high level specifications. The group
also agreed that it was useful to prove
properties about specifications, and that
testing and proving properties about
specifications (possibly even incomplete
specifications) is pne way of gaining
confidence that the specifications satisfy
some desired properties.

The conclusion was that what was
taking place were proofs about
specifications. Therefore, the term
"specification verification" more
accurately describes the process commonly
referred to as "design verification".

Is Formal Verification a Stagnant Fie1d?

It has been suggested, especially
during the last verification workshop,
that the field of formal verification is
in a state of stagnancy. The particular

observation made at VERkshop III (Ver 85)
was that very little seems to have been
accomplished since the previous workshop
(held four years earlier)~

Computing science in general, and
formal verification in particular, are
addressing some very real and difficult
problems. Formal verification is a
multidisciplinary field. It requires
understanding of programming and
specification languages, programming and
specification methodologies, mathematics
(both for reasoning about programs and
and systems and for describing languages),
and system interfaces. To engineer these
technologies into a cohesive whole is
extremely difficult, but the payoffs could
be substantial. If the development of
verification systems has been slow, it is
because of these fundamental challenges.

A Production Quality Verification
System

The four verification systems examined
in this study represent the leading edge
of mechanical verification technology.
This mechanical support is useful, if not
necessary, when applying formal
verification to real applications.
However, each of these systems has been
built primarily as.a research vehicle for
exploring different ways of implementing
and applying formal verification. None
of them has been designed or implemented
as the kind of production quality system
that is needed to support wide-spread
application of verification to real
software systems. There is much that
needs to be done to progress from where
the systems are now to a truly production
quality verification system.

The most important requirement for a
production quality verification system is
soundness. Soundness for a verification
system means that if the verification
system claims that an application is
proved and the assumptions underlying the
verification system are true (correct
hardware, compiler, etc). then the
application actually will exhibit the
properties that the verification system
claims to have proved about it. Without
soundness, the results of a verification
(be it mechanical or otherwise) cannot
be trusted. If a verification system
is to be used in any important application,
soundness must be given top priority.

Each of the research prototypes that
were studied. has some areas of
unsoundness. Often the cause of this
unsoundness simply is that the
implementations of the existing systems
are incomplete in some important way.
These problem areas usually can be avoided
or finessed by an expert userJ but this
level of expertise cannot be assumed for
the potential user community of a
production system. As mentioned above,
one way in which all of the four systems
are incomplete is that none of them have a
fully developed, mathematically precise
definition of the semantics of the
languages they process. This is the
standard against which a rigorous
determination of the soundness must be
made.

A production quality verification
system must be well engineered. It needs
to have a high quality user interface. It
must perform efficiently. It must be
robust, well documented, maintainable,
etc. It should be built with the best
methods available for software
engineering, quality control,
configuration management, etc. Generally,
thes.e issues have not been given a high
priority in the implementation of the
research prototypes, and all of them have
major deficiencies in some of these areas.
The current systems have been developed
primarily to demonstrate the feasibility
of i) mechanizing formal verification
and ii) applying it to real software
systems. They have served that purpose
well, but they are far from being
production quality systems.

A production quality system that is
to be used by a large community must be
hosted on equipment that is readily
available to that community. The
National Computer Security Center has
taken a first step in this direction by
making the FDM, Gypsy, and HDM (both
the original and the enhanced)
verification systems and the
Boyer-Moore theorem prover available
a Multics system on the ARPAnet. This
is a reasonable first step, however,
due to the limited Multics user
community (as compared to TOPS20, or
UNIX) and the dissatisfaction of
having to work over the ARPAnet, some
other means of reaching a wider audience
must be found.

4

If a production quality system is to
be made available on a wide-spread basis,
education of the potential user community
will also be required. This community
will need to be educated in the
fundamentals of verification as well in
the use of mechanical verification tools.
The existing research prototype systems
can play a useful role here. They can be
used to help educate the community, and
they can be used to explore a wider
variety of applications of formal
verification. Demonstrating the
effectiveness of verification on an
increasing variety of important
applications probably is the best way
of drawing the attention of the
software engineering community to
verification, and thereby accelerating
its development.

Verifiability of Ada

Currently, there is a significant
degree of interest in determining
whether the programming language of Ada
is amenable to formal program
verification techniques. This interest
is particularly evident in the security
community. This interest in Ada
Verification is most likely the result
of the following line of reasoning,.
DoD Directive 5000.31 states that Ada is
to be used for all mission critical
embedded systems software. It is
reasonable to assume that secure
systems are mission critical.
Furthermore, secure systems that are to
be certified at the Al level require
formal verification. Therefore, it is
reasonable to assume that Ada
verification may be required for secure
systems.

This line of reasoning may seem
plausible1 however, it should be noted
that no DoD requirement for code
verification exists. At the Al level
the requirement is for a manual or
other mapping between the formal
specification and the source code, to
provide evidence of correct
implementation.

While it was the collective op1n1on
of the assessment group that a verifiable
subset of Ada can be found, the group
also believed that it was necessary to
note some important observations and
concerns.

The main problem noted is that Ada is
a particularly complex language. As a
result, finding a useful and easily
determinable axiomatizable subset of Ada
is a difficult task. The group concluded
that before building an Ada verification
system time should be spent trying to
understand the components of Ada that
contribute to its complexity.

Research Directions

It was concluded that what is needed
to make a significant advance in the use
of formal verification for reliable
software is a variety of "exploratory
applications" that explore the potential
utility of verification technology. This
experimentation shuld result in a variety
of publicly visible examples that show the
benefits of formal verification. It would
also be desirable to have a technology
that gets accepted without being mandated
by the National Computer Security Center
or the government in general. That is,
one would like the general public to view
the examples and conclude that this is how
they would like to build their systems.

To achieve success would require

experimentation on a wide variety of

examples. It would be beneficial to have

the academic, industrial, and government

communities all involved in this

experimentation. To carry out the

examples would require a long term

commitment from funding agencies.

One of the side effects of these

experiments is that the limits of the

verification techniques would be made

known and the areas in need of further

research would be exposed. Another

benefit of the experiments would be

production quality systems, for without

them there would be no hope of public

acceptance.

Conclusions

It should be noted that the
conclusions contained in this paper are
the result of looking at four verification
systems. Although the assessment team
members brought a large amount of formal
verification knowledge to the study, the
reader should be aware that this is a
view of the total field of formal
verification. It was evident from this
study that although it is possible to gain
valuable insight and understanding during
a one week visit, it is impossible to
fully understand a system in such a short
time.

Acknowledgements

I would like to thank the members of
the assessment team for their dedication
to this study. They approached the study
with open minds that provided a refreshing
academic atmosphere for exchanging ideas
and knowledge.

I would also like to thank the

associations that hosted each of the site

visits for giving so generously of their

time and facilities. Particular thanks

goes to the development teams for each of

the systems who made each of the site

visits an enjoyable learning experience.

5

References

(And 72)

(DoD 83)

(DoD 85)

(Kem 86)

(Ver 85)

Anderson, J.P., Computer Security

Technology Planning Study,

ESD-TR-73-51, Vol. I, AD-758 ~06,

ESD/AFSC, Hanscom AFB, Bedford,

Massachusetts, October 1972

Department of Defense Trusted

Computer System Evaluation

Criteria, CSC-STD-001-83,

Department of Defense Computer

Security Center, Fort George

Meade, Maryland, August 1983

COMPUSECese Computer Security

Glossary, NCSC-WA-001-85,

National Computer Security

Center, Fort George Meade,

Maryland, October 1985

Kemmerer, R.A., Verification

Assessment Study F1nal Report,

Volumes I - V, C3-CROl-86,

National Computer Security

Center, Fort George Meade,

Maryland, January 1986

Proceedings of VERkshop III

A Formal Verification Workshop,

Pajaro Dunes Conference Center,

Watsonville, California,

February 1985, Software

Engineering Notes, Vol. 10, No. 4.

August 1985

6

A NETWORK SECURITY PERSPECTIVE

Jonathan K. Millen

The MITRE Corporation

Bedford, MA 01730

1. INTRODUCTION

BACKGROUND

Network security is roughly at the same stage ADP
system security was about ten years ago, when prototypes of
the first multilevel secure systems were being built. Systems
with some degree of security already existed, but it was
important to have systems that were more flexible (including
the ability to support DoD needs), and which provided an
assurance of security based on more than a limited amount of
testing and a firm handshake.

Secure networks, in some sense, are all around us. The
ARPANET has been used to carry classified information,
using PLI's (BBN's Private Line Interface) to provide end-to­
end encryption. Circuit-switched networks employ link
encryption devices to set up secure channels. Banks use DES­
based encryption to protect funds transfers. But modern
packet-switching networks present many opportunities and
problems that have not yet been fully explored.

The phased development and growth of DDN as a
backbone network to carry classified information, and the
development of distributed application-level networks such as
SACDIN and DoDIIS that will make use of its services, make
it necessary to understand and plan for the more advanced
capabilities envisioned for the future, as well as the concerns
arising from the interconnection of a wide variety of ADP
systems in a common internet environment.

Many important network security issues were brought
out in a Spring, 1985 DoD Workshop organized by the
National Computer Security Center (NCSC) [1]. The
objective of the Workshop was to provide the NCSC with
input for the development of trusted network evaluation
criteria, analogous to the Trusted Computer System
Evaluation Criteria (TCSEC) [2]. The network criteria would
provide technical guidance for the DoD in the evaluation and
acquisition of networks in which security needs are

significant. It was clear that much of the organization and
content of the TCSEC applied to network evaluation, but
also that the TCSEC was deficient or inapplicable in some
respects for this purpose. The TCSEC needed to be revised,
repla!fed, extended, or at least reinterpreted for network
evalulltion.

A number of issues discussed in the Workshop are still
unresolved. Some of the unresolved issues are very basic,
such as whether the current state of the art is adequate to
certify any networks as secure at an "A" level, implying a
high assurance of security comparable to A-level standalone

systems. Another, basic concern is the scope of the criteria;
what exactly is a network, and what kinds of networks can
reasonably be evaluated?

ISSUES OVERVIEW

The need for certain significant additions and changes
in the TCSEC to adapt it for network evaluation emerged
from the Workshop. Some of the more notable
characteristics of network evaluation that distinguish it from
the standalone system evalution ·are summarized below.
While each of these characteristics is a response to issues that
demanded attention, there are, in some cases, disagreements
about how to deal with them; those disagreements are
indicated below as well.

The char.acteristies touched upon in this subsection
are: the global vs. component view of a network, trusted
paths, interconnection rules, communications integrity and
denial of service, treatment of non-host components, and
encryption. The following subsection begins the main topic
of this report, the relation between security policy and
protocol layering, and how it should affect network
evaluation.

One pervasive theme of the Workshop was the need to
view a network both as a global entity with a single security

policy, and as a collection of components that must be
individually specified and evaluated. For secure operation, a
network is bound to have certain standards, restrictions, and
conventions that must be obeyed and enforced network-wide
to obtain assurances that all users can count on. In
particular,. some networks will have centralized facilities like
access control centers and repositories of audit information
whose proper use must be specified and enforced globally.

At the same time, networks are normally developed by
connecting together a variety of different components with
different functions, many of which existed independently prior
to the network or were off-the-shelf commercial products. It
is important to foster the development of future products of
this sort by understanding how to evaluate their designs on
their own, to the extent possible, out of the context of any
specific network.

The trusted path requirement is an extension of an
authentication requirement found in secure operating systems.
[n a standalone system, there are times when a human user
must communicate directly with trusted software, without
any possibility of undetected interference or forgery by

7

untrusted software. This occurs, for example, when a user is
presenting a password for login, since it should be read only
by trusted software; and when a privileged operation is being
requested, since the request should be honored only from an
authorized person. In a network, there are times when
trusted processes in different sites must share a similarly
protected channel. For example, one host may relay a local
user's password to a remote host, or send security-related
reconfiguration instructions from a local network
administrator to a remote site.

The interconnection rules are a statement of
mandatory access control policy at a level of abstraction (or a
layer of protocol) for which the network provides data links
between potentially multilevel components. These rules are
an explicit assurance to host administrators that their data
will not be sent to other hosts that are not accredited to
receive it. The current rules assume that data links are
bidirectional, because of the usual need for acknowledgements
and other two-way coordination when setting up connections.
In some applications there is a need for true one-way data
flow, and there is a question whether one-way data links
should be recognized by the interconnection rules, or whether
they should be treated as something that occurs invisibly
inside a trusted component.

The requirements relating to communications integrity
and denial of service result from the general feeling that these
concerns, while already present for s~andalone computer
systems, are more serious in a network context, because of
the greater vulnerability of communications links to random
errors, wiretapping, and other thrflats affecting data in
transit. Hence, though they are, not mentioned explicitly in
the TCSEC, some security requirements of these types should
be imposed on networks. However, the Workshop results
indicated that the definition of "denial of service" is mission
dependent, and hence it would be difficult to define general
requirements for countermeasures against it. Similarly, while
communications integrity can be quantified statistically, it is
difficult to state universally acceptable requirements for
transmission accuracy.

The idea of trying to apply the TCSEC to network
components seems to work well when the component is a
multilevel host, but is less plausible when the component has
a more limited or special function; such as an encryption
device or a switching node. Even hosts, multilevel or
otherwise, are not evaluated in the same way for network
purposes when the network connection is limited to a single
security level, or when the hosts has special trusted functions
introduced to support the network connection.

Encryption plays an important part in network
security, but it is not clear to what extent requirements for
particular encryption methods, and for the associated
software and hardware, can be specified in a document
analogous to the TCSEC. The reason for this is the division

of responsibility between the NCSC, which is competent to

evaluate trusted software, and those parts of NSA and other
organizations that are competent to evaluate cryptosystems.

LAYERING SECURITY POLICY

There are a number of terms and concepts in the
TCSEC that are difficult to interpret in a network context.
Two of the more troublesome. ones are subject and object .
Even for standalone computer system evaluation, it is not
always clear what the subjects and objects of a system are ..
Subjects are usually human users or processes; but sometimes
I/0 ports can be regarded as subjects. Objects are usually
files; but sometimes I/0 devices, temporary internal buffers,
and subjects are considered to be objects.

In practice, subjects and objects are identified in the
context of a particular system in conjunction with the access
policy it is designed to support. In other words, the
interpretation is a judgment call. If it turns out that certain
repositories of information have been neglected as candidates
for being objects, transfers of information through them will
be regarded as covert channels. Since covert channel analysis
is part of TCSEC evaluation, the situation is reasonably
under control.

The situation is more complex in a network
environment. There are many more options for the
in~rpretation of subjects and objects. Hosts, nodes,
gateways, switches, front end processors, and subnets might
also be subjects; and messages, packets, virtual circuits,
connections, channels, links, headers, plus the new subjects
just named, might also be objects. The prospect of devising
an access control policy for an internet that delineates the
roles of many of these players, and performing a. covert
channel analysis that takes care of the ones that were left
out, is daunting.

Netvort
Subject

Figure 1. Are They All Network Subjects?

A problem related to the interpretation of subjects was
discussed in the Accountability group at the Workshop, and
its conclusion hinged on the concept of protocol layering.
The group noted that individual identification and
accountability across a network is a service provided by a
high layer of protocol. Individual accountability is not

1
possible in networks that only provide services up to the
transport layer. A transport service is host-to-host; it has no
way of knowing whether a particular user is receiving data
from a particular file.

8

The point is that whether a security policy makes sense
depends on the service provided by the network, as specified
by the user interface to a particular protocol layer. The
binding of a security policy requirement to a protocol layer is
quite natural in a network context, and it should provide
some insight, not only into how to interpret . policy
requirements, but also how to structure the evaluation
process.

It is not necessary to confine the security policy for a
given network to a single protocol layer interface.
Requirements on different layers will certainly be called for.
For example, all information on communication links should
be protected from undetected eavesdropping or other
interference, by physical protection or link encryption. That
requirement clearly applies to the logical link layer or below,
and exists independently of higher level requirements on
access control.

Stratifying security requirements into protocol layers
has the principal benefit of preventing interpretations that
are nonsensical, or fundamentally incompatible with the way
networks are designed, because they cross layers. It also has
implications for
how to define what a network is, for purposes of evaluation,
and how to identify and evaluate its components.

To quote Tanenbaum, "The peer process abstraction is
crucial to all network design" [3, p. 13]. Peer processes
communicate with one another following certain rules
defining message types, formats, and conventions for various

activities such as opening and closing connections, error
correction, and so on. In order to send a message to a peer, a
process uses a lower protocol layer, sending the message
downward through an interface; and the other process will
receive it when it pops up through the interface at the
destination. Although the two communicating processes may
be a considerable distance from one another, the interface to
the lower protocol layer forms a single conceptually global
shell, enclosing a system that is itself a network.

We might visualize peer processes as heads of pins,
which are all stuck in the same pincushion. The pincushion
is hollow, however, and inside there is another pincushion
complete with pins, whose he.ads form the shell of the outer
one. Similarly, the peer processes in the higher layer may
support a higher level network service. We are, therefore,
equating a network with the service provided by a protocol
layer, and observing that networks can be nested within
othersJ by virtue of the protocol layering.

This layering of networks is not merely an abstraction;
network services are actually built by adding components
supporting a higher level protocol to an existing network.
This sort of network construction suggests that the entire
existing network should be thought of as a single component
of the new, higher-level one, since it was one of the "pieces"
used to put it together.

THE ISO MODEL

We will make use of much of the ISO reference model
terminology because of its wide familiarity. In that model,
the architecture of a network has seven layers, and those
layers will be characterized briefly below. It should be kept
in mind that the existence of layers, and the occurrence of
certain common functions, are more important than the
particular grouping of functions into the ISO layers. Few, if
any, networks have natural separations between layers at .the
exactly the same places envisioned by the ISO committee,
and many networks have additional functions that do not
seem to belong inside any of the seven layers, but occupy
layers of their own. Nevertheless, the seven ISO layers are
helpful as a starting point.

Peer

figure 2. Protocol Layering

In layer 1, the physical layer, the peer entities are
simple transmission and reception devices such as modems.
For each of them, the network is only a single wire leading to
another modem. A modem is also conscious of a user who
communicates with it over a connector, acting as a input and
output for voltage levels. Voltage levels at some of the pins
on the connector are simple commands to start, wait, etc.
Security concerns at the physical layer are limited to physical
protection of the link medium from tapping or
electromagnetic eavesdropping.

In layer 2, the data link layer, the peer entities are
processes who see the network as a kind of two-ended modem
(a modemedom?) that can be used to transmit individual 8­
bit characters, or perhaps longer data units, to a
corresponding process at the other end of the modem. These
data link processes may be located in a host or in a separate
network interface unit. Their users are sources and sinks of
character streams. A data link process may have some
responsibilities for error detection and retransmission. Link
encryption is typically applied at the lower edge of the data
link layer.

In layer 3, the network layer, the peer entities are
processes who see the network as a collection of
communicating processes - this is the first layer that knows
that a network has more than two ends. Let us refer to each
of these processes as a "node". A node understands that it is
connected directly via data links to only a few other,
neighboring, nodes, and often plays the role of a relay station,
passing on packets received from other nodes. Its user, if
any, is a host process. A packet is a sequence of characters

9

with source and destination addresses, plus some error
detection information relating to the packet as a whole.
Some communications integrity concerns are addressed at the
network layer.

In layer 4, the transport layer, the peer entities are
processes representing hosts. A host process is actually less
aware than the layer-3 nodes of the network topology; it
knows the addresses of other hosts, but it doesn't know which
ones, if any, are its neighbors. The host process divides its
user input into packets. If necessary, it attaches a sequence
numbe~ to the packets, so that its peer entity will know when
packets have arrived out of order, and thus can reorder them,
and drtect when packets are missing. End-to-end encryption
can be -applied at the bottom of the normal transport layer.

In layer 5, the session layer, the peer entities are
processes whose users are application programs. An
important function of a session-layer process is to set up a
connection by going through a login procedure; which may
involve communication with a peer entity in an access control
center host. When end-to-end encryption is used with
automatic key distribution, a session-layer process uses
transport layer services to obtain and distribute the
encryption key.

The two higher layers, the presentation layer (6) and
application layer {7), differ greatly from system to system. In
a distributed system, where the user is not forced to
distinguish between local resources and remote resources,
processes at these layers translate user requests that require
remote resources into requests for session layer services. Most
network security concerns are addressed at lower layers,
though end-to-end encryption could, in principle, be applied
in any layer from 4 to 7.

In an internet environment, host addresses accepted by
the transport layer have a network component, so that hosts
in other networks may be addressed. Internet communication
is accomplished by forwarding packets from one network to
another via gateway hosts. A protocol layer is needed to
translate th.e compound net/host addresses into an
appropriate host or gateway address within a network. The
internet layer is also concerned with fragmenting and
reassembling packets at gateways for travel through networks

with different packet sizes. Since the internet layer is used by
the transport layer and, in turn, uses the network layer, it is
between layers 3 and 4, as described above, and it is viewed
as the upper part of layer 3.

2. A SEQUENCE OF EXAMPLES

INTRODUCTION

The importance of protocol layering in evaluating
networks will be illustrated with a sequence of examples
based loosely on the evolving DDN architecture. We will look

at several networks, each one built on top of a preceding one.
In each case we will perform an off-the-cuff evaluation of the
network under a reasonable interpretation of the TCSEC,
with respect to compromise protection. The examples are
intended to bear a general architectural resemblance to
certain real networks, such as the ARPANET. In some cases,
the names of the corresponding real networks will be used for
the examples to suggest the connection, but it should also be
kept in mind that many details and features of the real
networks have been omitted or altered.

Security policy requirements will be applied to the
network service provided by the outermost protocol layer,
while architectural requirements will be applied, where
appropriate, to network components.

ARPANET

We begin with a simplified version of the ARPANET.
The basic components of this ARPANET are the IMPs
(Interface Message Processors, which are switching nodes) and
the trunks, p.roviding a network-level host-to-host service.
The network provides discretionary access control, as required
for division C, in the sense that messages are delivered
normally only to the addressed destinations. This seems to
satisfy the requirement for access control at the granularity of
a single host.

The discretionary access control requirement actually
refers to ''users", but the network provides only host-to-host
service, so the only proper interpretation for "user" here is
"host". Identification and authentication in the usual sense
are obviated with this interpretation for "user".

Looking at the architectural requirements for class Cl,
one could say that the TCB (Trusted Computing Base)
operates in its own "domain", since we could include all the
software in each IMP in the TCB; there is no "user
programming" on this system.

Yet this ARPANET has a serious security problem:
any individual could obtain information destined for any host
by eavesdropping, via wiretaps on suitable trunk lines. There
is, of course, no reference to this kind of vulnerability in tht
TCSEC. Should we disqualify this network for division C, or
just say that it is good enough for Cl but not for C2? One
way to pursue this question is to look at a similar network
that addresses this vulnerability.

PRIVATENET

Suppose that link encryption devices are added to
trunks between IMPs, and at the same time we place the
IMPs into secure areas. The net effect of these measures is to
protect sensitive information from exposure to the' outside
world. Although the host interface to the network is the
same, its link-layer service component has been replaced with

10

a more secure one. This makes it a new network; call it
PrivateNET.

The most startling difference between ARPANET and
PrivateNET is that the latter could operate in a dedicated or
system-high mode with classified information, (assuming that
the link encryption system was approved) while the former
,could not, unless it were a local-area network entirely
enclosed in a protected facility. It is true that any standalone
computer could process classified information if it were
enclosed in a protected environment, without raising its
evaluation class. . Nevertheless, it is argued here that
encryption should be regarded as an architectural feature of
the network and not an environmental add-on, because it
changes the nature of the service offered to users. This is
perhaps not so compelling in the case of link encryption. since

the associated encryption devices are relatively simple. In
more advanced schemes, however, in which access .control is
interwoven with key distribution, it is clear that the
architecture of the encryption system is a large and
significant part of the network design, with substantial
trusted software, and it must receive correspondingly great
attention during the evaluation.

Figure 3. PrlvateNET

Is ARPANET or PrivateNET in class C2? Possibly.
The requirement for "resource isolation" suggests that special
provisions are necessary to prevent messages from getting
mixed up inside switching nodes. It is unclear whether the
IMPs satisfy this requirement. However, the software that
keeps messages separate is no worse than the software that
supports the discretionary access control requirement by
preventing misdelivery, so there does not appear to be a
reason to reject it. Another factor to consider is the
maintenance of an adequate audit trail.

IPLI-DDN

On top of the PrivateNET basic transport service we
can superimpose a layer that provides end-to-end encryption,
initially with IPLI's (Internet Private Line Interfaces). This is
a new network, also with an interface to a layer 3 service. To
ensure that a message will be kept secret from all hosts other
than the desired destination, one arranges (ahead of time) for
the IPLI's at one's own host and the destination host to share
a key that is not available at any other. Or, one could
arrange for group-level access control by distributing keys on
a community basis. This scheme is very much like one of the

architectures suggested for a pre-Blacker phase of DDN,
although subsequently discarded. Let us call it IPLI-DDN.

IPLI • Internet Private Line
Interface

Figure 4. I PLI- DDN

End-to-end encryption gives us much greater assurance
that messages will not be compromised by either
eavesdropping or misdelivery. But the network is still only in
division C, . because it knows nothing about security level
labels. Given the large amount of additional expense and ·

effort that went into it, relative to PrivateNET, and its
greater level or protection, it deserVes a higher ranking.

With IPLI-DDN we have network complex enough so
that we need to take a close look at its components. What
are the components of IPLI-DDN? The IPLI's are certainly
components; and it is suggested that the entire PrivateNET
be taken as the only other component. The TCSEC has
security policy, accountability, assurance, and documentation
requirements for a TCB that have implications for each
component. These requirements could reasonably be
mpported by an IPLI, though some effort and perhaps some
new documentation would be necessary to establish that
claim. Some of the requirements, especially those relating to
accountability, apply rather obliquely when a host is a
network subject.

The PrivateNET component needs to be trusted only
to support discretionary distinctions between hosts in the
same key community. But this property may be inferred
from its prior "evaluation" as a network in its own right.
This illustrates how certain short cuts are possible when a
subnet can be regarded as a single component of a higher­
level network.

DNSIX

As an example of a network supporting mandatory
access control, consider multilevel security facilities such as
those planned for DoDIIS (DoD Intelligence Information
System). Let us assume, for our purposes, that DoDIIS will
depend on IPLI-DDN for backbone communication over long
distances. A DoDIIS node consists of one or more hosts with
a common interface to IPLI-DDN. DoDIIS hosts generally
handle compartmented information, but only some operate in
true compartmented mode, while others are system high, and
still others are dedicated to a single compartment.

11

NFE .: Network Front End

Figure 5. DNSJX

The network security architecture being developed for
DoDIIS is intended to support controlled access by users at
terminals to FTP and Telnet services at remote hosts. The
security policy has implications for (1) restrictions on creating
cross-network sessions and (2) security labels on datagrams.
The policy is to be enforced by a additional protocol layer (or
layers) called DNSIX (DoDIIS Network Security for
Information eXchange). The DNSIX software is split
between each DoDIIS host and its associated NFE (Network
Front End), which contains the TCP/IP software.

When evaluating DoDIIS against division B
requirements, the network service we are actually evaluating
is the DNSIX interface, which provides the remote services.
The requirements for DNSIX do appear to match closely with
B requirements.

The components of DNSIX are (1) the DoDIIS hosts,
since they have trusted DNSIX software; (2) the NFE's, since
they also have trusted DNSIX software; and (3) IPLI-DDN.
Considered as components, each of these has certain specific
functions it must support, and its evaluation is with respect
to these functions rather than the overall mandatory security
policy which they support. While the compartmented DoDIIS
hosts will probably be B-division systems with respect to the
TCSEC, that fact is not relevant to their evaluation as
DNSIX components, except insofar as their architecture
assures the protection of the DNSIX software they contain.
Similarly, even though IPLI-DDN is only division C, it can be
a component of an B network, because its function is only to
isolate connections; the mandatory access policy is taken care
of by the DNSIX protocol layer.

It should be kept in mind that installing DNSIX
software in a DoDIIS host may have repercussions on the
TCSEC rating of that host. For example, the DNSIX host
software may have privileges such as kernel-domain access to
communications ports. If so, it is trusted not only in the
network sense, but also for the host evaluation.
Recertification of the host may be needed.

It is also reasonable to try to evaluate DoDIIS itself,
rather than its network interface DNSIX. DoDIIS can be
regarded as a distributed system, providing access to both
local and remote services. The interface to the trusted part
of the system, which should be identical to the TCB interface

in each host, is very much like a protocol layer. Distributed
system evaluation is discussed further in the next section.

BLACKER-DDN

Another major step in upgrading DDN is to use
Blacker for end-to-end encryption instead of IPLI's. Like
IPLI-DDN, a Blacker-DDN is built by putting a protocol
layer on top of PrivateNET. Blacker-DDN components
include not only the Blacker Front End (BFE) in place of the
IPLI, but also a Key Distribution Center (KDC), and an
Access Control Center (ACC). The subnet component is
PrivateNET. The functional advantage of Blacker over IPLI's
is that keys are distributed in such a way as to enforce
security level separation as well as community separation. It
is also more convenient because keys are distributed
automatically over the network.

Because Blacker-DDN enforces interconnection rules
based on security levels, it should be targeted for division B
or A. In the TCSEC, the step from B to A comes primarily
from the use of more rigorous methods to verify that the
compromise protection policy is upheld.

Figure 6. Blacker-DON

Suppose for a moment that the additional verification
effort were not made to raise Blacker-DDN from B to A. We
would then have two networks, Blacker-DDN and DNSIX,
both in B, but with. significant architectural differences
between them. Although Blacker-DDN and DNSIX both
support a mandatory access control policy, the special
Blacker components will be designed with more attention to
the separation of security-critical modules from the rest of the
system. Another way of summarizing the difference is to say
that Blacker components can be evaluated under the TCSEC

as B3 or A1 systems, while the DoDIIS hosts and NFE's are
probably only B2 at most. This means that there are
environments (or distributed systems) for which Blacker
would be satisfactory and DNSIX unsatisfactory. This
suggests that it is reasonable to maintain the distinction
between B2 and B3 in a network context on the basis of
architectural requirements, so that Blacker-DDN could be
distinguished from DNSIX.

12

AUTO-DDN

There is an alternative to using end-to-end encryption.
We could, instead, upgrade PrivateNET by replacing the
IMPs by special packet switching nodes (PSN's) that inspire
greater confidence, by virtue of their architecture and
development environment. They might, for example, contain
security kernels and be evaluated under the TCSEC at a
relatively high level, perhaps even Al. Let us call this
hypothetical network AUTO-DDN; it is reminiscent of
AUTODIN II, whose development was discontinued in favor
ofDDN.

AUTO-DDN is not built on top of either PrivateNET
or ARPANET. Like PrivateNET, it is built on an encrypted
link layer. The components of AUTO-DDN are the PSN's
and the link layer. If it were evaluated, its rating would
depend on the functionality and architecture of the PSN's.
Let us suppose that the PSN's support mandatory access
controls, so that, say, a Secret datagram will be delivered
only to a host accredited for Secret information.

If we compare AUTO-DDN to Blacker-DDN, they are
similar in the quality of their components, but there is a
striking difference in the protection of message data in
switching nodes: it is protected by end-to-end encryption in
Blacker-DDN U\1Ps, while it is in the clear and protected only
by the operating system access controls in AUTO-DDN
PSN's. This is certainly a large enough increment in
compromise protection to warrant evaluating Blacker-DDN at

a higher rating.

Comparing AUTO-DDN with DNSIX is more difficult;
we seem to be comparing apples and oranges. Since DNSIX
is built on IPLI-DDN, it provides end-to-end encryption of
message data in IMPs; but AUTO-DDN PSN's employ a more
trustworthy architecture (by assumption) than the DoDIIS
hosts and NFE's with their DNSIX software. The crucial
observation here is that the data is still in the clear while in
the DoDIIS hosts and NFE's; the IPLI's provide only
community isolation. Consequently, the risk of mislabelling
message data is greater in DNSIX. This argument supports
the contention that DNSIX, AUTO-DDN, and Blacker-DDN
(before verification) exemplify three classes within division B.

3. DISTRIBUTED SYSTEMS

INTRODUCTION

One of the conundrums discussed at the Workshop
was whether to think of a network as simply a
communications service joining independent hosts; or as a
distributed system into which hosts and communications are

integrated.

The term "distributed system" is normally reserved for
a network that offers application-layer services, and controls

access to both local and remote resources. DoDIIS and
SACDIN are examples of distributed systems. At the smaller
end of the scale, there are distributed systems on local-area
networks (LANs). There are many examples of workstations
on a LAN sharing a global file system, in which a file located
at another workstation or a file server can be loaded as easily
as one stored locally.

The term "distributed system" can also be used in a
broader sense to apply to any network, inclusive of the hosts
that are connected to it. It is convenient for us to use the
term in this broader sense, since we have restricted
"network" to mean a protocol layer interface. In this section
we will look at ~concerns that arise from the way hosts are
connected to networks to form distributed systems.

In a "true" distributed system, network access to
remote resources is viewed as an extension of the local
resources provided by each host. It was stressed earlier that
a global network security policy should be stated in the
context of the service interface to one or more protocol layers,
so that the appropriate subjects, objects, and access control
requirements can be identified. When thinking in terms of a
distributed system that manages both local and remote
resources, we should still be able to identify a distributed
service ~·nte1jace in terms of which to state the policy, even
though it is not strictly a protocol layer interface.

For true distributed systems it is reasonable to follow
our general prescription for applying the TCSEC to networks:
apply security policy requirements to the global interface, and
architectural requirements to the components, including, in
this case, the hosts. But the implementation of this approach
will not be smooth sailing. The principal difficulty will be in
deriving its implications for non-host components.

COMPONENTS

It will be necessary to limit security policy
requirements of non-host components to match their specific
functions. The design specification and verification
requirements for division B and A components can be seen as
limited to security properties needed to support a global
policy. This means excluding TCSEC requirements for
security labels that may be inappropriate for some trusted
components. A switching node, for example, must be trusted
to separate messages from one another, and prevent message
data from leaking into headers; but it can do so with no need
to maintain security labels.

The perspective espoused in this paper suggests that it
would be very desirable to view subnets as components; the
problem is that TCSEC architectural requirements are really
applicable only to standalone computers. As an expedient
one might say that, when a distributed system is built on top
of a subnet, like Privatel\TET or IPLI-DDN, all of the
components of the subnet (and all of their components, etc.)

13

are elevated to the status of components of the distributed
system, down to every I11P, gateway, and modem; but it
would be conceptually simpler, and more in tune with the
precepts of network architecture, if that were not necessary.

The above considerations suggest that special
requirements should be developed for various specific types of
components, including subnets. Security policy-related
requirements and architectural requirements would both be
tailored for the type of component.

Having separate requirements for different kinds of
components could also facilitate a more detailed consideration
of the security features appropriate for them. It might
become practical to implement the recommendation of the
Components Group at the Workshop, namely, to rate
different features at different assurance levels. A link­
encrypted wire, for example, as a subnet component, provides
host-granularity discretionary security (a C-division feature)
with an extremely high (A-division) assurance.

COMPLEX SYSTEMS

A host attached to a network has schizophrenic roles
as a provider of both local services and network services.
True distributed systems integrate hosts coherently into the
network, but in others the network connection is an
afterthought. In the latter case, it may be impractical to
identify a distributed system service interface that supports a
coherent security policy.

Systems like SACDIN and I-S/A A11PE, whose hosts
have a single architecture and evaluation rating, can
reasonably be expected to support a coherent global security
policy, and can thus be evaluated as true distributed systems.

But what should we do about complex systems
comprised of dissimilar hosts of different evaluation classes,
operating in different security modes? It should be possible,
for example, for a multilevel, Al host to communicate with a
dedicated, C-division host over a private connection, given
that the single security level of the latter is within the
accreditation range of the former. It boggles the mind to
imagine a single, distributed system security policy that
covers user separation by security level in the multilevel host,
discretionary security in the network with host granularity,
and discretionary security with user granularity within each
of the hosts.

It is our contention that such a complex system should
not be evaluated as a distributed system, with an overall
TCSEC evaluation. Instead, one should look at it as a
collection of hosts with access to a separately evaluated
network service. Under these circumstances, the appropriate
goal is to examine the individual host and network evaluation
ratings, in order to justify continued accreditation of the

hosts for their current mode of operation, in the face of their
attachment to the network.

The environments guidance document associated with
the TCSEC, called the "Yellow Book" [4], addresses the
relation between the evaluated rating of an ADP system and
the range of classifed information it can handle, on the basis
of characteristics of its environment, such as the minimum
clearance of users. An analogous document addressing the
issues associated with connecting a host to a network is
currently being developed by the NCSC with support from
MITRE.

THE CASCADING PROBLEM

An example of an accreditation issue that needs to be
considered in a complex system context was brought up by
Steve Walker. Suppose that two ADP systems are operating
in controlled mode at two adjacent security levels, but one
has the range TS-S and the other has the range S-C. They
could be connected by a trivial network consisting of a single,
physically protected wire joining S-Ieve! ports on both
systems. The problem is that the network connection has
created a risk of introducing TS information into the C-S
system, whose accreditation only qualifies it to handle the
two lower levels.

From the point of view of the TCSEC, the network
connection has merely introduced a single-level-S resource to
both hosts. No new software has been added to either host,
so their evaluation classes have not been affected.

(TS)

................................. A
~--

L.__cs_)____JI~II~••~~~'...............
r
(C)

Figure 7. The Cascading Problem

What went wrong? Evidently, the environment of the
hosts changed by connecting them to the network. We could
say that the set of human users was expanded, but there is a
more precise way of characterizing the problem, relating to
the trustworthiness of security labels placed by a computer
system on classified objects. In general, the object level is
determined from two influences:

Object Level = Source Level + Contributions.

When information enters the system from outside, the
security level of its source is known and trusted. Thereafter,
while information is held within the system, the correct level
is maintained by system software. When computations cause
information to flow into an object from another, access
controls ensure that the level of the object remains consistent
with the level of information contributed to it by those

computations.

14

The TCSEC rating of a system is a measure of the
trustworthiness of system software in maintaining object
levels during computations; but how trustworthy is the
determination of source level? In a standalone ADP system
environment, the normal external source of information is
human users. If a human user says that certain input
information is Secret, high confidence may be placed in that
assignment. For, if the user is only cleared to Secret, he does
not have any higher-level information to introduce; and if he
is cleared to a higher level, he can be trusted to give the

proper level for information at that level or lower.

When an ADP system is connected to a network, the
network becomes a new source of information, and it often
cannot be trusted to the extent that human users are. This is
one point that must be taken into consideration when writing
an Environments document for networks, or a distributed

system evaluation guide.

A similar problem can occur even for a standalone
system. Again, consider the two controlled-mode systems,

one at TS-S and the other at S-C, but do not connect them.
Can we make a tape on the higher-level system with S-Ieve!
files 	 on it, and carry it to the lower-level system? No,
because the tape is an external source of information, and its
security label, determined by the other controlled mode
system, cannot be trusted any more than if the information
came across a wire. Such a tape transfer would be
permissible only if a responsible individual has reviewed the
material on the tape and confirmed the correctness of its
marking, or if the tape was produced on another system that
did not handle higher-level information.

Problems like this can be solved by imposing
additional restrictions on interconnection. For example, as
Walker has suggested, one can insist that all mutually
connected systems operating over the same size security level
range (two adjacent levels, in the example) share the same
maximum level.

When an accrediting agency wishes to place more
severe restrictions on certain information than called for by
normal environmental guidelines, the natural approach would
be to set up a community of hosts satisfying the tighter
restrictions. Communities like this can be implemented by
discretionary access controls or encryption.

4. SUMMARY

• Protocol layering is important in network
architecture, and it has consequences for network security
evaluation. A network is viewed as a global service provided
by the user interface to its outermost protocol layer.

requirements to the network globally, and architectural
requirements to the network components.

• Network global security policies should be st~ted in
terms of concepts supported by a particular protocol layer.
Requirements on more than one layer may be called for. The
global policy has implications for derived functional
requirements on individual components, to support it.

• Examples of networks providing varying features
and levels of assurance have suggested that the use of
encryption should be regarded as an architectural feature of a
network, affecting the evaluation class.

• Separate requirements documents or appendices
should be published for specific types of network components.
In particular, it should be possible to consider entire subnets
as network components. TCSEC requirements need radical
reinterpretation for application to components, so that they
do not exclude, or place unreasonable requirements on,
specialized components or subnets. Component evaluation
could assign separate assurance levels to various features
appropriate for the component.

• A true distributed system has a global user interface
whose security policy can be evaluated by the TCSEC.

• Complex distributed systems consisting of dissimilar
hosts are not practical to evaluate as true distributed
systems. Instead, the goal of evaluation for such systems is
twofold: to evaluate the network itself, and to justify

continued accreditation of the hosts for their current mode of
operation after attachment of the network. An environments
document is needed to facilitate this. The fact that a
network brings new, less trusted sources of information to a
host is an important environmental consideration.

REFERENCES

1. 	 "Proceedings of the Department of Defense Computer
Security Center Invitational Workshop on Network
Security," New Orleans, LA, March 19-22, 1985.

2. 	 DoD Computer Security Center, "Department of Defense
Trusted Computer System Evaluation Criteria," CSC­
STD-001-83 (the "Orange Book").

/

3. 	 Tanenbaum, A. S., Computer Networks , Prentice-Hall,
Inc., Englewood Cliffs, N. J., 1981.

4. 	 DoD Computer Security Center, "Computer Security
Requirements," CSC-STD-003-85 (the "Yellow Book").

• In attempting to use the TCSEC to evaluate a This work was supported by the U.S. Government
network, a rough strategy is to apply security policy under contract no. F19628-86-C-0001.

15

"Smart" Terminals for Trusted computer systems

by Mark D. Gabriele

Abstract

11 Smart 11 terminals are increasingly
popular, as they can increase individual
productivity immensely. However, such
terminals are not presently desirable from the
point of view of building a secure multi-level
computer system, as they open avenues for
spoofing, covert channels, and relabeling of
sensitive data. This paper is an overview of
the problems and the possible solutions to the
problems created by using "smart" terminals in
trusted systems. Among those solutions are:
1) don't use smart terminals~ that is,
restrict trusted systems to "dumb" terminals
exclusively~ 2) use only terminals which are
"configurably dumb~" 3) alter existing "smart"
terminals to remain "smart" while becoming
"trustable~" and 4) use secure workstations as
11 smart 11 terminal emulators. Each is examined
and weighed.

Introduction

The user community has recognized a need
for some method of accessing secure systems
which will increase individual productivity.
This is accomplished on non-secure systems by
the use of "smart" terminals. This paper will
focus on what types of terminals may be used
for accessing secure host systems without
jeopardizing their security. Perhaps some of

. the types of secure terminal mentioned here
will be researched and developed, and
eventually integrated into the secure systems
of the future.

These several generic types of terminal
range from "dumb" to "smart" to the secure
workstation of the future. The advantages,
drawbacks, and security relevant aspects of
each will be discussed. Methods for securing
each type of terminal will be suggested, as
well as possible problems which may need to be
overcome. The end result will be that the
reader will have some idea about the state of
secure terminals today, and where they may be
going in the future.

There are some matters which are not
addressed in this report. The foremost is
emanation security (the Tempest problem).
Other exceptions will be mentioned as they
occur.

Disclaimer: The views expressed in this
paper are exclusively those of the author
based on experience gained as a commercial
products security evaluator at the National
Computer Security Center (NCSC) . This paper
does not necessarily represent official policy
of the National Computer Security Center.

Terminology

Before beginning this discussion, a number
of definitions are in order. First, we need
to define our conception of a "smart"
terminal:

A "smart" or "intelligent" terminal is
a terminal which possesses some form
of volatile or non-volatile
programmable memory, and allows the
host system to perform read and write
operations on the data in that
memory.!

In contrast, a "dumb" terminal has no
programmable memory. A "configurably dumb"
terminal is a unit which may have unlimited
data processing and storage capabilities, but
these can be disabled to render the machine
"dumb," according to the above definition.

A "trustable" terminal is considered to be
a device which can be relied upon to relay to
the user exactly what was received, transmit
exactly what the user entered for
transmission, and to provide separation across
all security levels.2

With these definitions as a basis, there
must now be a distinction made between what
constitutes a terminal and what constitutes a
network node. If such a distinction is not
made, then one can simply argue that any
intelligent terminal attached to a host
constitutes a network, and should be dealt
with as such from a security standpoint.

An explicit definition of "network node"
is needed to alleviate this problem. owing
to the increasing complexity of computer
networks, a node is a difficult thing to
characterize~ but for the purposes of this
paper, a node is:

"A device which provides CPU cycles in
support of some activity which is
invoked at some other point on the
network."

Where a network is simply defined as an
interconnection of two or more nodes.

Note that while a personal computer may
physically be able to comply with the above
definition, should this capability be
neutralized or defeated by some mechanism,
then that unit is no longer acting as a node.
As an example: if a personal computer is
running a communications package which
includes a file transfer protocol, that
machine is acting as a terminal, not a node,
until such time as the host requests that file
transfer protocol is activated and the machine
enters server mode. At that point, the
personal computer is providing support to a
remotely activated activity (file transfer, in
this case), and is considered to be a node.

1 As appeared in response 147 in the
DOCKMASTER computer system Criteria Discussion
forum, entered by Vidmar.CPE.

2

16

Dumb Terminals

The first configuration which will be
addressed is that of "dumb" terminals. These
are secure simply because they have no means
by which they could compromise or subvert
sensitive data. This type of terminal is
exemplified by the generic term "glass TTY,"
although many types of printing terminals
would certainly qualify. A truly dumb
terminal would include no buffer memory,
although many contemporary terminals which are
considered to be dumb do contain some memory.
Just because a terminal is considered to be
dumb does NOT mean that it must be
inconvenient or cumbersome to work with~
however, any "intelligence" which the terminal
exhibits must be provided by the host machine.
This requirement severely limits the utility
of a dumb terminal. All dumb terminals suffer
from similar problems, to varying degrees,
regardless of their apparent intelligence at
their user interface.

One drawback is that of independence of
components. When working with a dumb terminal
which must rely on a host for even the
simplest of chores, all work must be done
while the user is on-line with the host. This
creates dependence on one central host~ should
that host fail, or suffer from poor response
time, the user is unable to work. Entire
offices or even corporations can be stymied by
a host failure~ if all computing is done via
dumb terminals, NO work can be done on the
terminal until the host service is restored.

Hosts which support a generous user
interface on a dumb terminal may unfortunately
be slowed by processing delays. The host
processor may incur a great deal of overhead
doing menial, terminal-support tasks, slowing
system response~ again, user productivity
suffers. Even the best dumb-terminal systems
have these faults.

Examples of very popular dumb terminal
systems may be found in many configurations of
the IBM 327x series of terminals and terminal
control units. The 3278 terminal supports
very limited local functionality: basically,
only the ability to position the cursor, and
send up to one screen of information back to
the host at a time. Virtually no processing
of the data is done locally~ although there is
some slight local intelligence, the 3278
terminal is essentially dumb. The 3274 (and
related type) device controller, while
supporting error detection and correction,
does not add to the local functionality of the
terminal. Almost all terminal support, such
as buffered screen memory, various screen set­
up options, etc. must be done by the host.
The host software support for the terminal
must therefore be trusted code in order for
this configuration to be considered secure.
Even though this arrangement does provide some
of the functionality of a smart terminal with
few security-relevant drawbacks, it is obvious
that it is not the most economical method in
terms of host CPU time, in addition to the
disadvantages listed above.

All NCSC-evaluated systems require the use
of "trustable" terminals in their evaluated
configurations. Dumb terminals are considered
intrinsically safe because they cannot aid a

malicious user in attacking the system by any
known means. They are therefore defined to be
"trustable". They also tend to offer fewer
features than contemporary computer users
would like. However, at the present time
there are no "trustable" smart terminals. So,
the user of a secure computer system must
currently use a dumb terminal in order for the
system to remain secure.

Configurably Dumb Terminals

The modern user of a secure syst.em, in
order to have his system running ~n its
evaluated configuration, may need to have two
separate devices on his desk: a terminal for
communications with the host machine, and a
personal computer for use with spreadsheets,
word processors, etc. This tends to be an
impractical, as well as an inconvenient
solution, so in many instances, a personal
computer (PC) may be used as a terminal
device. This is normally accomplished by
running some type of terminal emulation
software. Regardless of the software being
run, this is almost never a secure
configuration. Too many possibilities of
subversion exist: the PC can "spoof" a user
into divulging his or her password, keep a
record of the entire conversation with the
host for later retrieval by another party,
open enormous covert channels, relabel
sensitive data, or destroy any trusted path
which may exist. Unfortunately, great numbers
of Pes are being used as terminal emulators~
so some action should be taken to render them
secure enough to be used as trusted terminals.

The path by which this may be done is to
render them "configurably dumb." What this
means is that the user may invoke some action
which causes the PC to lose those things which
make it untrustable. As an elementary
example, one may install an extra processing
card in a generic PC which, when activated,
causes the machine to reboot from a trusted
ROM on that card, and immediately execute a
trusted terminal program, also contained in
ROM. When the card is active, the personal
computer functionality of the PC is gone~ it
is only capable of acting as a terminal. That
terminal will be trusted at the level of the
software and hardware modifications. It
should be a goal of the NCSC to develop
component evaluation criteria which can
address machines of this ilk, as they would
allow the user to fashion his PC into a
trusted terminal. This terminal could be
either smart or dumb. If it is to be made
smart, then it will be covered by the
discussion of smart terminals which follows~
if it is to be made dumb, then it must exhibit
none of the functionality of a PC~ it must be
trustable in exactly the same manner as any
other dumb terminal. Note that switchably
rendering an expensive computer incapacitated
except for basic terminal emulation functions
may sound somewhat ludicrous~ but if a dumb
terminal is all that is needed, it may be more
economical to arrange to equip a PC with such
a device, so that it may serve both stand­
alone and terminal emulation purposes equally
well.

17

Smart Terminals

An alternative to the use of a dumb
terminal in a secure computer system is to
employ a trusted smart terminal device. This
is a very favorable alternative in many cases
because of the great functional enhancements
which many smart terminals incorporate. Some
are able to do high resolution graphics, while
others allow great ease in manipulation of
text, several pages of conversation buffer,
multiple concurrent terminal sessions, or even
multiple sessions on different machines which
are physically plugged into the same terminal.
A few terminals allow all of these things and
more. Needless to say, these devices can
increase the productivity of the mainframe
user immensely, while presenting the user with
a much nicer machine interface. Apparently,
everyone wins. Unfortunately, this is not
true from the viewpoint of someone trying to
secure a system which uses smart terminals for
communication with a mainframe.

There are several features of smart
terminals which can pose major threats to
security. Foremost among these are: the
threat of spoofing, the ability to relabel
sensitive data, the ability to open extremely
high-bandwidth covert channels, and the
ability of such a terminal to interfere with a
trusted path. Object reuse can present a
readily exploitable threat. Each one of these
flaws could be used to compromise sensitive
data across all levels of the trusted
computing base (TCB) .

The spoofing attack could be employed by
writing a program which runs on the smart
terminal device. This program simulates a
successful connection to the host machine and
a logon banner. The program then prompts the
user for their password, and stores the
password for later retrieval by some malicious
user. The attack is identical to the
classical spoofing attack, but is carried out
by the terminal rather than the host. This
can make it more difficult to locate the
perpetrator. This problem goes hand in hand
with the problem of trusted path, which is not
addressed by the Department of Defense Trusted
Computer System Evaluation Criteria (TCSEC)
until the B2 level. Once one has a trusted
path, a spoofing attack from the terminal
level is no longer a problem; however, in a
smart terminal which features user­
programmable keys, the "secure attention" key
may be reprogrammed by a malicious user to
destroy trusted path and allow a spoofing
attack to take place. Thus, the secure smart
terminal must have at least one key - the
"secure attention" key which CANNOT be
reprogrammed. This key should send some
unchangeable signal to the host, which the
host must interpret as a request for trusted
path establishment. In addition, the terminal
must have no way of generating that signal
except via the "secure attention" key.

A smart terminal may also have some
"conversation buffer;" that is, some memory of
the transactions between the user and the
host. In many systems, everything the user
inputs and everything the host machine outputs
is saved, up to the limits of memory included
in the terminal. In this conversation buffer
there is great potential for subversion of

data. The user password may be saved in
plaintext, or any sensitive information which
the user may have been working with may be
able to be recalled by the touch of a single
button. This can be a great convenience and
enormous time-saver to the legitimate user,
but if that user logs off and leaves his or
her terminal without clearing the terminal's
memory then the problem of object reuse
occurs. The object is, in this case, the
terminal's memory; this memory must be cleared
between users, so that there is no possibility '
that one user can get at another user's data.
The clearing of memory must therefore take
place after the termination of each terminal
session, as well as any other time where
failure to do so could violate system security
policy, such as downward level changes.

Since any smart terminal must have some
ability to locally process data, another
attack may be effected. This one is
substantially more difficult and intricate
than those mentioned thus far, but is
certainly as compromising. If the terminal
software in a smart terminal is modified by a
malicious user, the terminal could be used to
relabel sensitive data by intercepting and
modifying input lines according to its
programming, allowing it to downgrade or
otherwise compromise sensitive data. This is
a classic example of a "Trojan Horse" attack,
applied through the use of a terminal.

The final method of attack which will be
detailed here applies only to a terminal which
supports multiple concurrent terminal
sessions, either on one host or across many
hosts. This is the problem of covert
channels. Covert channels have long been
recognized as a means of downgrading sensitive
data on a host system, and could be used to
downgrade information on a terminal as well.
On a mainframe, the covert channel is often
related to monitoring of use of system
resources. In a smart terminal, a covert
channel could take the form, for example, of
the use of ACK and NACK signals between the
terminal and the host, each signaling to
another concurrent process either a one or
zero bit of information. This is a simple
operation, but an effective one nonetheless.

Regardless of all of the possible attacks
which might be made on a computer system
through the use of a smart terminal, the risks
are not insurmountable. All of the above
security weaknesses which smart terminals may
exploit can be done away with in properly
designed and installed smart terminal devices.

The major problem revolves around trusted
path. If the user can be assured that he or
she is in contact with trusted software at
both the host and the terminal, many of the
opportunities for defeating the security of
the terminal can be removed. All trusted path
mechanisms require the physical integrity of
all devices which are part of the trusted
path. This is readily accomplished at the
mainframe level, but can be difficult to
assure at each terminal, particularly when
terminals are distributed throughout a
complex. One method is to seal shut the
casing of the terminal with some protective
and unforgeable seal; this seal would show any

sign of tampering, and users would be
instructed not to use any terminal which had
been tampered with, and report it immediately.
Physically locking down the terminal in a
manner in which it could not be easily
tampered with is another solution. One major
objective of either of these methods is to
insure the integrity of the secure attention
key, which would generate a non-maskable
interrupt to both the host and the smart
terminal, and guarantee to the user that the
software at both ends of his or her connection
was trusted. The other major objective of
physical protection of the terminal device is
to insure the integrity of the terminal's
trusted software. This software is often ROM­
resident, and with the replacement of a single
chip, a malicious user could compromise the
entire system.

One example of a way to cut down on the
amount of trust placed in a ROM-based terminal
program in the smart terminal is to cause the
terminal program to be downloaded from the
host when the user hits the secure attention
key. Assuming the integrity of the secure
attention key, this provides the user with
good assurance that he is using trusted
software; it also allows upgrades to be made
to the terminal program very easily, and much
less expensively than replacing the ROMs in
every smart terminal at the installation.

The problem of object reuse in a smart
terminal can be partially solved by erasing
the conversation buffer as soon as the.
connection to the host computer is terminated.
This may be accomplished by instructing the
hardware or the firmware in the smart terminal
that the conversation buffer is to be emptied,
say, every 10 seconds if the terminal is not
connected to a host. The terminal may also be
programmed to erase the conversation buffer
upon receipt of a given signal from the host.
This signal would then be sent at any time the
conversation buffer should be cleared (e.g.
downward level changes). These instructions
should be encoded in hardware or firmware so
that they cannot be defeated by the user
reprogramming the smart terminal in the course
of his or her terminal session.

Relabeling of sensitive data may be seen
as an extension of the trusted path problem.
If the user is assured that he or she is using
trusted software, then relabeling is no longer
a problem, because the trusted software will
not allow it. Covert channels also become no
threat, provided that the trusted software
takes measures to insure that they are
rendered harmless. What is crucial is that
the smart terminal software be trusted, and
that the user be able to confirm that he or
she is actually using the trusted software at
any given time.

Since the major threats caused by the use
of a smart terminal have been addressed, the
question becomes one of proving that a given
terminal device is trustable. In the case of
a smart terminal, different threats can be
mapped to different levels of trust in the
Department of Defense Trusted Computer System
Evaluation Criteria. The TCSEC does not
address terminals as such; but by mapping the
applicable Criteria requirements to terminal
devices, it may be possible at some point in

the future to define "levels of trust" within
the realm of terminals and terminal emulation
programs. One could then speak of a "B2­
trustable" terminal, for example. Such a
terminal would meet B2-level requirements for
all relevant features, among which would be
object reuse, covert channels, mandatory flow
policies, and trusted path. A B2-trustable
terminal would also require such things as B2­
level configuration management and design
documentation. It would, however, omit
requirements which do not apply to a terminal
device, such as discretionary access controls
and auditing. A terminal of this sort could
be used to run concurrent sessions at multiple
levels (say, Secret and Top Secret) and be
trusted to enforce the mandatory flow policies
of the system, depending upon the level of
trust bestowed upon the terminal.

If this methodology were to be uniformly
applied, it could be said that a C2-level
smart terminal one which handled object
reuse and some spoofing problems - could be
connected to any C2 system which could be
adapted to handle its special protocols, etc.
without placing the system in grave danger of
compromise. The same could be said of systems
at any level of the Criteria; if we have a B2­
level terminal device, then it should be
trusted enough that we can connect it to not
just one but two or more B2-level hosts which
fall within the same range of trust, and rely
on our terminal device to maintain the
integrity of data labels. This involves
placing a great deal of trust in terminal
devices. To this point, the NCSC has not
evaluated them; however, this will have to
change if the NCSC wishes to provide its
clientele with an Evaluated Products List
(EPL) full
equipment.

of modern and user-friendly

Secure Workstations as Smart Terminals

Perhaps the optimal solution to the need
for secure smart terminals may be solved by
the use of the forthcoming secure workstation
as a smart terminal. This gives the user the
best of both worlds; the power of a mainframe
when needed, with the convenience of smart
terminal features; and the ability to do
stand-alone processing for those jobs where a
secure microcomputer workstation will suffice.
A configuration such as this also makes
possible many useful and security-relevant
events which require some analysis.

To begin with, in order to rely on and
trust the terminal software of the secure
workstation, we must include it in the Trusted
Computing Base (TCB) of the workstation. This
will allow the terminal software to be trusted
at the same level as the workstation. That
is, a B2-level workstation may possess up to
B2-level smart terminal trustability; it could
therefore be used as one would use a B2-level
smart terminal. In addition, when not in use
as a terminal, it would retain the
functionality of a secure workstation, within
certain limits.

One important limit would be caused by the
range of trust which is given to trusted
computer systems. In the example given above
of a B2-level trusted workstation, the

terminal software could be trusted up to a B2
level. Thus, the secure smart
terminal/workstation as a whole would have a
range of trust identical to a B2 system. If
the machine were connected to a host (or
hosts) which contained Confidential and Secret
information, and the workstation was used to
process Unclassified and Confidential
information locally, the range of information
accessible by that machine would span the
range of Unclassified-Secret. That range is
too great to be entrusted to a B2-level
trusted system, according to the Computer
Security Requirements document. Care must be
taken that systems of this type are not
inadvertently trusted beyond what can
reasonably be expected from them.

It is also important to realize that a
host cannot be considered secure at a level
higher than that of its lowest terminal or
workstation, unless the entire configuration
has been specifically evaluated and it has
been shown that that is the case. A B3-level
trusted host may be subverted through use of
covert timing channels on a B2-level trusted
workstation, for example. Basically, all of
the security problems which may plague a smart
terminal exist for a secure workstation
running smart terminal emulation software.
Any further problems relate to the addition of
some form of permanent storage in the secure
workstation. If the smart terminal emulator
takes advantage of the abundance of storage
(typically several megabytes of hard disk) to
provide additional features for the uploading
and downloading of data, extreme care must be
taken that the security policies of the system
cannot be violated through its use. Again,
the trusted terminal software will have to be
evaluated by the NCSC along with the rest of
the workstation in order to provide assurance
that the security of the system will not be
compromised.

Conclusion

It is obvious that a smart terminal can
greatly increase the productivity of the
typical mainframe user. It is also obvious
that a smart terminal can significantly
jeopardize the security of its host machine
through many and varied mechanisms. However,
these risks can and should be overcome if the
user community is to be expected to switch
over to using secure computer systems. If
presented with an ergonomic and pleasant user
interface, the user will not have to sacrifice
efficiency and ease of use in order to use a
secure system rather than a non-secure system.
This should increase user acceptance of secure
computer systems dramatically. Since it is
imperative that both government and industry
implement the use of secure computer systems,
it is only logical that a comfortable user
interface be provided. The use of smart
terminals in secure computer systems can
provide this interface, and perhaps encourage
many hesitant prospective users to "go
secure."

Bibiliography

Brotzman, Robert L. comouter Security
Reauirements Guidance For Applying The
Department Of Defense Trusted Computer System
Evaluation Criteria In Specific Environments.
CSC-STD-003-85~ Library No. S-226,727. 25
June 1985.

Latham, Donald C. Department Of
Standard Department Of Defense
Computer System Evaluation Criteria.

Defense
Trusted

DOD 5200.28-STD~ Library No. S225, 711.
December 1985.

20

Database Systems and the Criteria:
Do They Relate ?

Brian s. Hubbard

Lt. Swen A. Walker

Ronda R. Henning

National Computer Security Center

9800 savage Road

Fort Meade, MD 20755-6000

(301)859-4488

ABSTRACT

There is much debate in the computer security community as to
whether or not the Department of Defense Trusted Computer Systems
Evaluation criteria (the Criteria) can be applied to database
management systems. In this paper we will examine the basic control
objectives of the Criteria and the fundamental security concerns of
database management systems. We will compare the two and show that,
while the control objectives of the Criteria are applicable to
database management systems, they do not encompass all of the security
concerns in database management.

The views and opinions expressed in this paper are those of the
authors and do not necessarily reflect official National Computer
Security Center positions.

still does not exist. Present day database
management systems do not provide adequateINTRODUCTION
security controls and mechanisms to ensure
that users are allowed to access only thatThe need for secure database management
data for which they have been granted asystems stems from the fact that, within the
clearance and have a specific "need to know."Department of Defense (DoD) and in

corporations around the world, there is an A major conclusion of a 1982 Summer Study
increasing amount of information being on "Multilevel Data Management Security"! was
manipulated through database management that computer security technology had
systems. The databases usually contain some advanced to the point where certifiable
classified or otherwise sensitive multilevel database management systems could
information, forcing these systems to operate be built for several specific applications in
in a system-high or dedicated mode. A user three to five years. However, there is no
may need to access data of differing metric to evaluate "secure" database
classification levels at the same time; management systems against. It has been
consequently, data must be duplicated on proposed that the DoD Trusted Computer
separate machines for different security systems Evaluation Criteria~ (the Criteria)
levels and compartments. This duplication of is sufficient as a database management system
data on separate machines causes security criteria. We do not subscribe to
inconsistencies in the data. There is an this view.
urgent need within the DoD to replace these
systems with multilevel secure systems. In this paper we will examine the basic
Additionally, other commercial customers such objectives and requirements of the Criteria
as financial institutions, would also be able to discover where they may fall short of the
to take advantage of the protection these requirements for security in a database
systems can offer. management system. The views expressed in

this paper are those of the authors and are
Computer security research and not intended to be taken as policy. This

development began in the late 1960's. The paper is an attempt to raise the readers
earliest work concentrated on the area of awareness of the issues vital to database
multilevel secure operating systems with security that have not been adequately
database management security research and addressed.
development receiving relatively little
attention. One of the main reasons for this
lack of attention was the perception that one CRITERIA
could not credibly implement a secure
database management system which was We begin by pointing out that, when the
dependent on the security controls of an Criteria was published in 1983, it was
untrusted operating system. At that time, defined to apply to both trusted general­
secure operating systems were, for the most purpose and trusted embedded systems, not for
part, nonexistent. Since then, a few direct application to database management
multilevel secure operating systems have been systems. With that fact in mind, the
developed by commercial vendors; however, a Criteria was developed for a number of
secure multilevel database management system reasons:

21

0 To provide users with a metric with
which to evaluate the degree of trust that
can be placed in computer systems for the
secure processing of classified and other
sensitive information.

0 To provide guidance to manufacturers
as to what security features to build into
their new and planned, commercial products in
order to provide widely available systems
that satisfy trust requirements for sensitive
applications.

0 To provide a basis for specifying
security requirements in acquisition
specifications.

In order to meet these goals, the
Criteria sets forth three basic control
objectives which are concerned with security
policy, accountability, and assurance.

The first of these, the security policy
control objective, requires that a statement
of intent with reg~rd to control over access
to, and dissemination of information must be
precisely defined and implemented for each
system that is used to process sensitive
information. The security policy must
accurately reflect the laws, regulations, and
general policies from which it is derived.

In systems processing classified or
other specifically categorized sensitive
information, provisions must be included for
the enforcement of mandatory access control
rules. These provisions must include a set
of rules for controlling access based
directly on the comparison of an individual's
clearance or authorization for the
information and the classification or
sensitivity designation of the information
being sought. These rules should also
control access based indirectly on
considerations of physical and other
environmental factors of control.

systems designed to enforce a mandatory
security policy must store and preserve the
integrity of classification or other
sensitivity labels for all information.
Labels exported from the system must be
accurate representations of the corresponding
internal sensitivity labels.

These systems must also include
provisions for the enforcement of
discretionary access control rules. That is,
they must include a consistent set of rules
for controlling and limiting access based on
identified individuals who have been
determined to have a need-to-know for the
information.

The accountability control objective
requires that systems processing or handling
classified or other sensitive information
must assure individual accountability
whenever either mandatory or discretionary
security policies are invoked. Futhermore,
to assure accountability the capability must
exist for an authorized and competent agent
to access and evaluate accountability
information by a secure means, within a
reasonable amount of time and without undue
difficulty.

The assurance control objective requires
that systems processing or handling
classified or other sensitive information
must be designed to guarantee correct and
accurate interpretation of the security
policy and must not distort the intent of
that policy. Assurance must be provided that
correct implementation and operation of the
policy exists throughout the system's life­
cycle.

We believe that, for the most part,
these control objectives have a great deal of
merit when put in the context of database
systems. However, they are not quite enough
to cover all of the concerns that are faced
when attempting to develop a secure database
management system. We must consider data
integrity, inference, aggregation, and many
other problems not addressed in the Criteria.
We must also expand on the concepts of
labeling and auditing when dealing with
database systems.

EXAMPLE

In order to make the security concerns
associated with securing a database
management system more evident, we will use
the sample database shown in Figure 1 to
provide examples of the issues discussed
below. The sample database will consist of
personnel information. The database record
will contain the employee's name, social
security number (ssn), sex, salary, and
department.

NAME SSN SEX SALARY DEPT
+-------+---------+---+------+----+
jJohn 11234567891 M I 500001 A I
+-------+---------+---!------+----+
!Ronda 12680347211 F I 250001 B I
+-------+---------+---+------+----+
!Brian 11066385281 M I 170001 c I
+-------+---------+---+------+----+
JLarry 11865396791 M I 350001 A I
+-------+---------+---+------+----+
!Bruce 18735953571 M 1 449001 B 1
+-------+---------+---+------+----+

FIGURE 1.

DATA INTEGRITY

In the Criteria's control objectives,
integrity is only discussed as it relates to
sensitivity labels and system integrity. For
database management systems, we must extend
the notion of integrity to address the issues
of accidental or unauthorized modification of
data and integrity checking for the accuracy
or correctness of data within the database.
The first integrity issue is that some system
data may need to be viewable by all security
levels but only modifiable bj certain trusted
programs or authorized users . This is
exemplified by the case of a user examining
the sample database for the first time and
wanting to view the structure of the record
in the system catalog. We want him to have
access for examining the structure of this
table but not access for modifying it. We
would want this access to be regulated
through a mandatory policy. The mandatory
policy of the Criteria only addresses the
improper disclosure of information, not its

22

modification. An integrity policy
requirement is needed to enforce the
prevention of unauthorized or unintentional
modification or destruction of data or other
essential, database-related information. It
must be precisely defined and implemented for
each system processing sensitive information
and must work in concert with the system
security mechanisms and controls.

In order to ensure that the data in our
database remains correct "integrity
constraints" must be imposed on individual
transactions being performed on our database.
A simple example of an integrity constraint
for the sample database in figure 1 would be
that all salary values must be greater than
zero. The data integrity problem is
exemplified in the above database when a user
wishes to change the department of John to z.
Assuming that the user has authorized
discretionary access rights, the issue to be
addressed is whether or not the value to be
placed in the field is an acceptable value.
In other words, does a Z department exist
within this organization? Another problem
that can arise from the lack of data
integrity controls is that a user may be able
to write a large quantity of false or
incorrect data to the above database,
rendering any queries on this database
useless. Although some commercial systems do
provide some integrity checking, most
integrity constraints are weak or
nonexistent4. Most integrity checking today
is still done by user-written procedural code
executed outside the control of the database
management system.

As mentioned by Date, many systems
claiming to provide data integrity are
actually using the term to mean concurrency
control. Systems that provide "integrity" in
this sense typically guarantee only that
interference between two concurrently
executing transactions cannot occur; they do
not concern themselves with the question of
whether individual transactions are correct
in themselves.

Under the Criteria's extension of the
assurance control objective, there is a
requirement for "System Integrity." The
system integrity requirement states that:
"hardware and/or software features shall be
provided that can be used to periodically
validate the correct operation of the on-site
hardware and firmware elements of the Trusted
Computing Base (TCB)." Does this requirement
have any application in the database
management system world, or is it sufficient
to rely on the operating system to handle
system integrity? Does this requirement
apply to software releases of database
management systems, or only hardware
modification?

INFERENCE

The inference problem is defined as the
compromise or increased probability of
compromise by deduction of unauthorized
information due to combinations of the
possession, known existence, known absence,
chronology, and location of authorized
information. It may be considered a covert
channel of database management systems. It
is a serious problem that must be reconciled
before a database management system can be

regarded as secure. As an example of the
inference problem, consider the following: if
the quantity (q) of some manufactured item is
classified, then either the total production
budget (b) or the cost per item (c) must be
classified, since quantity (q) could be
derived as q = bjc.

There are many unanswered questions in
the area of inference control. For instance,
can the problem be addressed or quantified .in
a general way, or must it be addressed. case
by case for each site processing sensitive
data or each specific application? Should
metrics be developed to describe and quantify
an acceptable level of inference control?
Should we require that abstract tools be
provided in a database management system so
that inference control can be builtin at each
site? If inference is actually another
covert channel, should it or could it be
audited in the conventional sense of the
Criteria?

Since it is unlikely that the general
algorithms can be defined for limiting the
inference problem, we believe it would be
wrong to require that a complete solution to
the problem be built into a database
management system. However, metrics should
be developed to define acceptable bandwidths
of possible inference attacks, and mechanisms
should be required to be available within a
system which will allow the inference problem
to be restricted to an acceptable level.
These restrictions could then be implemented
by each site as the need arose. The audit
mechanism must also be able to audit possible
inference attacks.

AGGREGATION and CONTEXT

The classifications assigned to data
must account for the data's associations or
relationships with other data. For example,
the unclassified data describing a flight may
be classified when the flight itself becomes
explicitly associated with a particular
mission, cargo, or passenger.

Because classification can increase with
context, an assemblage of data items may have
a sensitivity far higher than that of an
individual item in the assemblage. For
example, the location of one particular
submarine is likely to be less sensitive than
the location of all submarines. Another
example is that a single phone number may be
less sensitive than a complete telephone
directory.

Since classification depends on context,
it is not enough to store labels with the
physical data records in the database.
Methods are also needed for determining the
classification of data when it is associated
with other data and for managing
modifications in these associations. General
algorithms for context classification and
data aggregation may only be possible on a
per application basis, it may not be possible
to maintain these relationships on a general
database management system level. However,
mechanisms can and should be provided so that
labels can be enforced on aggregated data
once it is identified in a particular
application.

23

LABELING

Labeling is an area in which the
Criteria may fall short of as well as exceed
the needs of database systems. It falls
short in that there are no requirements for
labeling according to the context of the
data. It may exceed our needs in that a
database system does not operate devices and,
therefore, should be able to rely on the
operating system for exportation of data to
the proper devices. However, if the database
system operates on data objects which are
smaller than those which the operating system

level of granularity would be most useful to
them. The Criteria also requires that the
11 system administrator shall be able to
selectively audit the actions of any one or
more. users based on individual identity
andjor object security level. 11 This is a
very useful mechanism to have in place.
However, in a database management system it
would also be very useful to be able to
selectively audit the actions taken on any
object based on the operation andjor the
user's or object's security level.

CONCLUSION
works on (e.g., the operating system may
operate on a file, while the database
management system operates on records with±n
a file), an interface must be defined such
that the lower levels of labeling can be
supported and employed.

There are some very difficult issues
which must be addressed in the area of
labeling. If the labels are to be maintained
at the entity level, is the data then labeled
at the user's current security level, or can
labels exist at the discretion of the user?
How do we keep data from migrating to the
user's highest classification and, thereby,
having data which is over-classified? How
are data labels maintained during rollback
and recovery? How are labels affected by
changes made to the data?

We believe that mechanisms should be
required which allow data to be labeled to
whatever granularity is required by an
application and that the mechanism ensure the
integrity of these labels. We also feel that
mechanisms should be required which allow
proper labeling of aggregated data.

AUDITING

Under the accountability control
objective of the Criteria there is a
requirement that 11 the TCB be able to create,
maintain, and protect from modification or
unauthorized access or destruction an audit
trail of accesses to the objects it
protects. 11 Auditing is, of course, very
important in database management systems; the
issue is what do we audit? The types of
events that should be audited are
logon/logoff, creationjdeletionjmodification
of objects, access to objects, and actions
taken by database administrators and system
security officers. This list is open to any
additions, but we feel that this is the

Because there is a great need for
security in database management systems and
the security requirements for various sites
differ, it is very important to have a metric
with which to evaluate the degree of trust
that can be placed in database management
systems. It is also very important to
provide a basis for specifying those security
requirements in acquisition specifications.
However, in performing these evaluations, or
when generating system requirements, we must
consider all of the security relevant issues.
Because the Criteria was originally defined
to apply to trusted general-purpose and
trusted embedded systems, the control
objectives of the Criteria (while valid when
applied to database management systems), are
not quite sufficient to encompass all of the
security concerns in database management
system. We must consider the problems which
have been discussed in this paper as well as
any other yet-to-be-discovered problems in
the area of secure database management
systems. Only after these issues are
discovered, fully understood, and dealt with
properly can database management systems be
considered secure.

REFERENCES

1. Committee on Multilevel Data Management
Security, 11 Multilevel Data Management
Security, 11 Technical report, Air Force
studies Board, National Research Council,
1982.

minimum set of events that should be audited
in a database management system. For each of
these events the audit record should identify
the date and time of the event; user; type of
event; success or failure of the event; the
user's security level; level of the object
accessed; and, where applicable, before and
after image of the object. Since the objects
of the database management system can be at
such a fine granularity, the audit trail
could become quite large very quickly and,
therefore, quite useless without very
sophisticated audit-reduction tools. It
would seem reasonable to make auditing
possible to the finest granularity level of
the data but also allow the individual sites
the discretionary control to audit whatever

2. DoD Computer Security Center, Department
of Defense Trusted Computer System Evaluation
Criteria, Fort George G. Meade, Maryland, 15
August 1983, csc-STD-001-83.

3. Biba, K., 11 Integrity Considerations for
Secure Computer Systems, 11 ESD/AFSC, Hanscom
AFB, Mass., April 1977 (NTIS AD 039324), ESD­
TR-76-372.

4. Date, c. J. An Introduction to Database
systems, 4th ed. Reading, MA: Addison-wesley,
1986.

24

TOWARDS PRACTICAL MLS DATABASE MANAGEMENT SYSTEMS
USING THE INTEGRITY LOCK TECHNOLOGY

Rae K. Burns
The MITRE Corporation

Burlington Road
Bedford, Massachusetts 01730

This paper explores some practical
considerations for using the integrity lock
technology to provide multilevel secure
(MLS) database management systems. A
prototype architecture is described which
minimizes the source code modifications
necessary to retrofit the integrity lock
mechanism into an existing database
management system (DBMS). The INGRES
relational DBMS is used to demonstrate the
architecture. In addition to securing
user-defined relations, the integrity lock
software secures the INGRES data dictionary
relations, thereby supporting classification
at the record, relation, view, and index
levels.

Funding for this work was provided by
the U. S. Air Force Electronic Systems
Division.

INTRODUCTION

The integrity lock technology has been
demonstrated as a feasible near-term
solution to the need for multilevel secure
database management systems [1]. The work
described in this paper derives from a
current Air Force project to field this
technology for use in a production
environment. The questions are no longer
ones of feasibility, but rather questions of
a more practical nature. This paper
addresses two such general questions:

1. 	 How can the integrity lock be
retrofit into a commercial off­
the-shelf (COTS) DBMS without
impacting DBMS maintainability?
Could the integrity lock technology
be used even if machine-readable
source code were not available, or
is access to source code a
prerequisite for the use of the
technology?

2. 	 Can the integrity lock technology
be used to address any of the
database inference and aggregation
issues? Can database views be
secured with the integrity lock
technology? How might secure views
be implemented and used?

These two questions translate into the
implementation -goals for the INGRES
prototype:

1. 	 Implement the integrity lock
technology with minimal changes to
DBMS source code.

2. 	 Use the integrity lock filter to
secure the data dictionary and
thereby extend the scope of data
protection within the database to
include relations and database
views.

INTEGRITY LOCK TECHNOLOGY

The integrity lock concept is described
in detail in references [2] and [3].
Basically, each record (or other database
object) is tagged with its classification.
Then an unforgeable cryptographic checksum
for the entire record is computed and stored
in the database with the record. This
effectively "seals" the data, and any
unauthorized modifications to the data or
its security tag can subsequently be
detected. In addition, access to individual
records (or other objects) can be restricted
based on some specific security policy. To
implement the integrity lock mechanism, a
trusted filter monitors the operations of an
existing untrusted database management
system.

Security Architecture

The integrity lock architecture divides
the DBMS software into two separate
executable components: one which interacts
with a user and one which accesses the
database files. All communication between
the two components is monitored by a trusted
software component which is independent of
the DBMS software. The implementation
requires three separate execution domains:
the trusted monitor (FILTER), the portion of
the DBMS which interacts with the user
(USER), and the portion which accesses the
data files (FILE). Figure 1 illustrates the
interactions among these environments.

25

security information

__.....__ update/

retrieveP.--•--•
FILE

(DBMS)

USER
(DBMS)

Figure 1. Integrity Lock Architecture

The operating system (or Trusted
Computing Base (TCB)) within which these
three components are executing must enforce
some basic security requirements. The
security characteristics of each domain are
as follows:

FILE 	 The FILE component executes at
the security classification of
the database files. The FILE
is the only executable module
which has any access to the
database files. It is
prohibited from accessing any
output devices or files at a
lower security classification
(i.e., a mandatory security
policy is enforced by the
TCB).

USER 	 The USER executes at the
security clearance of the
individual using the database.
The USER is prohibited from
accessing objects at a higher
security classification and
from accessing any output
devices or files at a lower
security classification, as
specified by the TCB's
mandatory security policy.

FILTER 	 The FILTER executes at the
security classification of the
database files. However, it
is privileged to initiate the
execution of the USER (at a
potentially lower security
classification) and to
communicate with it. It also
uses operating system trusted
functions to determine the
relevant security
classifications and to audit
security-related activities.
The TCB has sufficient
mechanisms to assure that the
FILTER software is
tamperproof.

26

The prototype was implemented within
the context of the INGRES data base
management system and the UNIX* operating
system (BSD 4.2). The design makes use of
several UNIX security-related features.
However, since current implementations of
UNIX are vulnerable in a number of areas
[4], the implementation is not intended to
be secure within existing UNIX environments.

Security Policy

The security policy for access to the
information in the database is enforced by
the trusted FILTER. For the purposes of the
prototype, tuple (or record) level
classification was used with a simple
mandatory security policy based on the 1982
Air Force Summer Study [5]. The following
is a summary of the policies (SC is security
classification, SSO is a function which is
true if the user is currently a System
Security Officer):

READ Record SC(user) dominates

SC(record)

APPEND Record if SSO(user) then
prompt for SC(record)

else SC(record) =
SC(user)

UPDATE Record SC(user) dominates old
SC(record)

if SSO(user) then
prompt for new
SC(record)

else new SC(record)
SC(user)

DELETE Record SC(user) dominates

SC(record)

There are no other mandatory or
discretionary access control policies for
the prototype. INGRES supports some
discretionary controls which may be used in
addition to the integrity lock mandatory
controls. Since the UNIX environment does
not support security clearances for users,
for this implementation, the applicable
clearance is read from a ".secure" file
within the user's home directory.

PROTOTYPE ARCHITECTURE

The primary goal of the INGRES
integrity lock prototype was to implement
the integrity lock mechanism without
changing substantial amounts of source code.
To achieve this, the INGRES object libraries
were split along functional boundaries into
two separate sets. The executable modules
were then re-linked into the USER and FILE
components of the integrity lock
architecture. This section describes the

*UNIX is a trade/service mark of the Bell

System.

FILTER interface which mediates access
between the two sets of INGRES functions and
provides an implementation methodology for
developing an integrity lock version of a
COTS DBMS.

INGRES Functional Interface

The INGRES system is highly modularized
and contains a set of functions for low­
level access to relations. These functions
include relation open and close, get/put
tuple functions, and supporting buffer
management functions. The approach taken
for the prototype was to use this relation
access interface as the vehicle for the
FILTER to mediate access to the database.
Figure 2 represents the standard INGRES
get tuple function as it would be invoked by
the-INGRES query processor.

get_tuple (relation_desc, tuple_id, tuple)

where relation desc the relation descriptor
tuple ia identifies a tuple
tuple- a pointer for the returned tuple

query
processor get_tuple

UNIX

I/0

Figure 2. INGRES Function Invocation

For use with the integrity lock filter,
the get tuple function (along with all of
the relation-level functions) is replaced by
a substitute function which extracts the
parameters from the call, inserts them into
a message buffer, and communicates the
buffer (via UNIX pipes) to the FILTER. The
FILTER has an opportunity to perform any
security processing before conveying the
message on to the FILE process. The actual
INGRES get_tuple function is invoked by the
FILE process, and the tuple retrieved is
passed back to the FILTER. Here the FILTER
will recalculate the checksum and enforce
the mandatory security policy prior to
passing the tuple back to the USER process.
Finally, the USER process will store the
tuple into the location designated by the
original get tuple function invocation.
Figure 3 illustrates this process at a
conceptual level.

Development Methodology

For the operational version, only three
INGRES source modules (out of a total of
346) were modified. In addition, only 2700
lines of additional C code (including 1000
lines of trusted code) were needed to
implement the basic integrity lock

USER

INURES

L
I
B
R
A
R
y

~ BUF ~ FILTER ~ BUF j

D
E
c FILE0
D
E INGRES

UNIX UNIX
Pipe Pipe

Loaded with Loaded with
subsitute lNG RES
library library
(18 functions)

Figure 3. INGRES Process Architecture

functions. The construction process was
done in five major phases. At the
conclusion of each phase, there was a
working version of the implementation up to
that point. This technique allowed the
problems encountered with each phase to be
resolved prior to the introduction of more
design detail. The five major phases were
as follows:

1. Simple Prototype

Simple versions of the USER,
FILTER, and FILE processes were
developed. These processes
interacted to read and write lines
of a standard UNIX data file.
During this phase, the details of
the inter-process communication
were worked out and shown to be
effective. Most of the issues
which relate to the operating
system environment were dealt with
in this phase.

2. DBMS Restructuring

This phase was spent
researching the INGRES
implementation, and dividing it
into two pieces. Once the
restructuring was complete, the
INGRES software was integrated into
the simple prototype from phase
one. Using the resulting
implementation, it was possible to
verify that the correct arguments
were being passed through the
FILTER. The result of this phase
was a working DBMS without any
security features.

3. Security Processing

The next phase was coding the
security related functions and
integrating them with the results
of phase two.

4. UNIX Access Control

The fourth phase was to
develop an environment in which the
UNIX access control features could

27

be used to restrict the various
processes to access only the
appropriate files. If the UNIX
operating system were robust enough
to resist security penetrations,
these access controls could provide
a basis for secure MLS databases.

5. Secure Data Dictionary

The final phase applied the
integrity lock technology to the
INGRES data dictionary. The
results of this stage are the topic
of the next section.

SECURE DATA DICTIONARY

The final phase of the development
integrated security processing for the
relations which make up the INGRES data
dictionary; these were not secured initially
in order to simplify the implementation.
There are six relations in the data
dictionary:

relation 	 The relation relation
contains a record for
each relation defined in
the database.

attribute 	 The attribute relation
contains a record for
each attribute of each
relation.

tree 	 The tree relation
contains parsed query
trees which define
database views.

protect 	 The protect relation
specifies INGRES
discretionary access
controls.

index 	 The index relation
contains a record for
each index which has been
created.

integrities 	 The integrities relation
is used to specify any
update integrity
constraints.

By including these relations within the
scope of the security processing, the
descriptive elements of the database are
tagged with a security level as they are
created. In other words, if a relation is
created when the database administrator
(DBA), or other authorized user, is
processing at the SECRET level, then the
data dictionary records for the relation
will also be tagged at the SECRET level.
Similarly, views, indexes, and other system
entities acquire mandatory security labels.

The primary result of this extension is
that relations acquire a security
classification independent of the level of

the records within the relation. However, a
user must have a clearance for the relation
level in order to access any records within
the relation. A second practical result is
the ability to associate a security level
with the definition of a database view.

Classified Views

A database view is simply a definition
of a subset of the database, usually
specified in the DBMS query language. When
a user query refers to a view, rather than a
relation, the result of the query is limited
to those records within the view. (With the
integrity lock, the result is further
limited to those records for which the user
has an appropriate clearance.) Views are
frequently used to provide discretionary
access controls, based on the content of the
data records. For instance, a sales manager
may be restricted.to access only those sales
records for his/her region. There are
current research efforts to determine how
views might best be used to provide
mandatory access controls [6].

By providing for security labels for
database view definitions, it is possible to
limit users to views for which they have a
clearance in addition to limiting them to
individual records for which they have a
clearance. Figure 4 illustrates how a join
of two relations can be defined at a higher
classification than the individual
relations. (The range statement in the
INGRES QUEL language associates a query
variable, used in the where clause, with a
relation or a view; it-rs-6imilar to a from
clause in SQL.)

In a SECRET session:

create Arelation
create Brelation

(attrAl, attrA2
(attrBl, attrB2

attrAn)
attrBn)

In a TOP SECRET session:

range of A is Arelation
range of B is Brelation
define view ABview (attribute sub-list)

where A.attrA2 = B.attrBS

Figure 4. Classified View Definition

The ABview is a join of the information
within the Arelation and the Brelation. The
join operation is based on the values found
in attrA2 and attrBS that are equal in both
relations. The use of the view ABview is
limited to those users with a TOP SECRET
clearance, independent of the level of the
records within the view.

User Restrictions

The use of classified views requires
two restrictions within the user
environment:

I

28

http:restricted.to

1. 	 A user may access only one view
within any query. This eliminates
the possibility of joining views.
If users were allowed to join views
together, additional inferences
would be possible.

2. 	 Only the database administrator has
direct access to relations; all
other users must access the
information within the database
only through pre-defined views.
The database administrator defines
those views by direct references to
the underlying relations. ~The full
power of the query language is
therefore available only to the
database administrator.

These two restrictions constrain the use of
the query language to reduce the potential
scope of inferences which can be made. They
restrict users to only those specific views
authorized by the database administrator.

Unresolved Issues

There are several uses of views which
would be helpful for multilevel secure
databases, but which are not supported by
this concept of classified views. For
instance, aggregations over an authorized
view cannot be further restricted. It is
not possible to classify the sum of the
values of a particular field accessible by
the view higher than the view itself.
Similarly, this type of classified view
cannot be used to sanitize information. The
data within the view is tagged with its
classification and will not be visible to
any less cleared user even within the
context of a pre-defined view.

The integrity lock technology is
vulnerable to sophisticated Trojan horses
within the untrusted DBMS [7]. This
vulnerability remains an issue and the use
of classified views introduces an additional
Trojan horse threat. While the integrity
lock assures that the classification of the
view can not be altered, it does not
automatically prevent the view definition
(called a ~ tree) from being tampered
with during the query processing. The query
tree is a fundamental INGRES data structure
and is, in fact, modified significantly
during the query processing. The scope of
the Trojan horse threat could be limited by
placing portions of the query tree under the
control of a trusted component.

CONCLUSIONS

Overall, the results of this effort
have met the initial goals. In total,
including the secure data dictionary, six
INGRES modules were modified and recompiled.
Two of these recompilations were due to
mixed functionality within the original
code. Both were initialization routines
which affected several different functional
areas; the modifications removed the code
not related to the functions needed within

the particular process. The third
modification was to support index relations.
Here, an assumption was made in the original
code that the "tid" would be the last
attribute in each tuple; however, with the
addition of the security attribute, that was
no longer true. One modification was made
to support the creation of a secured data
dictionary, and two modifications were
needed to put the user restrictions in
place. All other functionality was
implemented within the integrity lock
software itself.

The use of the integrity lock
technology to secure the data dictionary
extends the usefulness of the integrity lock
approach while providing a necessary feature
for any practical secure DBMS. The ability
to classify views provides a foundation upon
which to build a base of experience to
determine how views can best be used to
address mandatory access control needs in a
database environment.

It is hoped that the techniques and
processes developed for this implementation
will be helpful in future work with the
integrity lock mechanism and with other
efforts to develop multilevel secure
database management systems.

REFERENCES

1. 	 Graubart, R.D., and Duffy, K.J.,
"Design Overview for Retrofitting
Integrity-Lock Architecture onto a
Commercial DBMS", Proceedings of the
1985 IEEE Symposium on Security and
Privacy, pp. 147-159.

2. 	 Graubart, R.D., "The Integrity Lock
Approach to Secure Database
Management", Proceedings of the 1984
~ Symposium ~ Security-and
Pr~vacy, pp. 62-74.

3. 	 Denning, D.E., "Cryptographic
Checksums for Multilevel Database
Security", Proceedings of the 1984
~ Symposium on Security and---­
Pr~vacy, pp. 52-61.

4. 	 Ritchie, D.M., "On the Security of
UNIX", Bell Laboratories.

5. 	 Air Force Studies Board, Committee on
Multilevel Data Management Security,
MULTILEVEL DATA MANAGEMENT SECURITY,
National Academy Press, 1983.

6. 	 Denning, D.E., Akl, S.G., Morgenstern,
M., Neumann, P.G., and Schell, R.R.,
"Views for Multilevel Database
Security", Proceedings of the 1986
~ Symposium on Security and---­
Pr~vacy, pp. 156-172.

7. 	 Denning, D.E., "Commutative Filters
for Reducing Inference Threats in
Multilevel Database Systems",
Proceedings of the 1985 IEEE Symposium
on Security and Privacy, pp. 134-146.

29

INTEGRITY IN TRUSTED DATABASE SYSTEMS

Roger R. Schell

Gemini Computers, Inc.

P.O. Box 222417

Carmel, CA 93922

Dorothy E. Denning

SRI International

333 Ravenswood Ave.

Menlo Park, CA 94025

INTRODUCTION

A trusted computer system is designed to be 'secure'
with respect to some well-defined security policy. There are
two major classes of information security policy: (1) secrecy
policies, which govern the disclosure of information and (2)
integrity policies, which govern its modification. Although
much of the literature on computer security emphasizes
secrecy, for many systems integrity is of equal or greater
importance. The DoD Trusted Computer System Evaluation
Criteria1 is careful to encompass (although not require)
security policies that include integrity. A trusted computer
system is designed to protect 'sensitive information,' which is
defined in the Criteria as information that must be protected
from "unauthorized disclosure, alteration, loss or
destruction."

In databases, the term 'integrity' is interpreted broadly,
as illustrated by the following definition taken from Date2:

"The term integrity is used in database
contexts with the meaning of accuracy,
correctness, or validity. The problem of
integrity is the problem of ensuring that the
data in the database is accurate -- that is, the
problem of guarding the database against
invalid updates. Invalid updates may be
caused by errors in data entry, by mistakes on
the part of the operator or the application
programmer, by system failures, even by
deliberate falsification. The last of these,
however is not so much a matter of integrity as
it is of security ... The term 'integrity' is also
very commonly used to refer just to the special
situation ... in which it is possible that two
concurrently executing transactions, each
correct in itself, may interfere with each other
in such a manner as to produce incorrect
results."

In this paper, we address all aspects of integrity in that all
are essential to the operation of secure database systems.

Classes of Integrity Policies

There are two distinguishable aspects of integrity
policies: whether a given modification of information is
authorized, and whether the modification results in
information that is in some sense consistent or correct.
Authorization is subdivided into two categories: (1)

mandatory integrity authorization, which is based on
integrity classifications, reflecting importance of data, and
clearances, reflecting user trustworthiness, and (2)
discretionary integrity authorization, which is based on
users' needs to modify information. Both mandatory and
discretionary integrity controls can protect data from
malicious tampering and destruction as well as from
accidental modification and destruction through operator
errors (e.g., an operator may inadvertently attempt to delete
the wrong relation) or faulty software.

Consistency is subdivided into three categories: (1)
database integrity rules, which define correct states of a
database in terms of relationships among the data, (2)
recovery management, which returns the database to a
consistent state after failure, and (3) concurrency controls,
which ensure that concurrent transactions do not interfere,
thereby creating inconsistent states of the database.

We shall discuss each aspect of integrity in more depth
after first discussing assurance for these different aspects.

Assurance

The notion of a security perimeter is essential to
obtaining assurance that a security policy is actually enforced
by the Trusted Computing Base (TCB) of a system. As
stated in the Criteria "the bounds of the TCB equate to the
'security perimeter' " and "includes all those portions ...
essential to the support of the policy." That is, the security
perimeter is with respect to the security policy being
enforced. Thus, the two categories of policy, viz., mandatory
and discretionary, may well have two distinct security
perimeters. This, of course, only applies to systems of Class
B1 or above, because Class C systems do not support a
mandatory policy.

The mandatory policy, for both secrecy and integrity,
can be enforced with a very high degree of assurance against
concerted attacks, including Trojan horses. As the evaluation
classes move from B1 to B2, B3, and finally A1, the primary
distinctions relate to the use of improved architecture,
specification, verification, and testing to increase the
assurance in the mandatory access controls enforced by the
TCB. It is expected that the higher evaluation classes will be
used to protect against users with a wider range of
authorizations.

30

In contrast, because of their richer policies,
discretionary access controls have inherent limitations
(known as the 'safety problem'3) and more complex
mechanisms than mandatory controls. This is especially true
for database systems that protect data at the granularity of
individual elements and have powerful access mechanisms,
such as views, which rely on much of the database system for
their support. Because of the inherent as well as
technological limitations, little meaningful assurance of
discretionary controls can be obtained beyond that of Class
C2; in particular, one cannot obtain high assurance against
Trojan horses. Fortunately, this matches well the real-world
need for discretionary controls for need-to-know and
corresponding integrity enforcement. Moreover, because
discretionary controls operate within the confines of
mandatory controls, the damage that can result from their
failure is limited.

Because of the sharp distinction in the possible
assurance for mandatory versus discretionary controls in a
database system, the following discussion presumes that there
may be two distinct security perimeters for systems at Class
B2 and above: an inner perimeter (the 'reference monitor')
for mandatory controls, and an outer perimeter (or
perimeters) for discretionary and consistency controls. The
maximum assurance that seems required, and the maximum
practical, for the portion of the TCB outside the mandatory
perimeter appears to be that prescribed for Class C2.

As discussed later, the assurance requirements for Class
B2 and above, in particular the need to control covert
channels, affects the meaning of consistency and the
functionality of other aspects of a database system. However,
having separate security perimeters makes it possible to more
meaningfully address these problems.

AUTHORIZATION INTEGRITY

Mandatory Integrity Authorization

Mandatory security policies are particularly important
because they describe global and persistent properties that
are required for authorizations in a secure system. As
defined in the Criteria1 , mandatory policies employ a reliable
label to reflect the degree of protection required for
information and to reflect the authorization of a subject to
access information. When considering integrity, these labels
reflect what the Criteria refers to as the 'sensitivity
designation of the information,' or what is commonly termed
the integrity access class, or simply integrity class, of the
information objects. There is a comparable label that reflects
an individual's 'authorization for the information;' this label
is assigned to corresponding subjects. The primary systems
of interest are those that can be represented by a Formal
Security Policy Model, as defined in the Criteria. For such a
system it is shown that if the initial state of the system is
secure with respect to the policy, then all future states of the
system will be secure.

For mandatory secrecy policies, the secrecy access
classes must form a lattice. This requirement may be
appropriate for mandatory integrity policies as well, although
nonlattice mandatory integrity policies have been proposed4 .

For lattice-based policies, the integrity classes could
correspond to integrity levels (analogous to secrecy levels
such as SECRET), category sets of disjoint integrity
compartments (analogous to secrecy compartments such as
CRYPTO), or both.

Six mandatory security policies have been variously
proposed to deal with integrity. In the context of the above
concept of mandatory policy, each of these is examined as a
possible integrity policy for databases:

1. Strict integrity
2. Low-water mark
3. Ring policy
4. Multilevel security with no write-up
5. Program integrity
6. Domains and types

The first three policies were introduced by Biba5 as
possible policies for multilevel-secure systems.

Strict Integrity Policy. This policy is an exact dual
of multilevel secrecy as defined in the Bell and LaPadula
model6 . Each subject and object is assigned a fixed integrity
class taken from the lattice of integrity classes, and strict
integrity is preserved by prohibiting a subject from reading
down or writing up in integrity.

There are two distinct considerations in assigning
integrity classes to objects and subjects. First, the integrity
class of the object to be protected from unauthorized
modification must reflect the sensitivity of the information,
viz., the potential damage that could result. Second, the
integrity class of the subject must reflect its trustworthiness
for making modifications. However, it is essential to note
that the modifications by a subject are effected by the
programs it executes and the data that control the execution
of these programs. Thus, if a high integrity class is assigned
to objects (files or segments) containing programs and
program data, this assignment must reflect a determination
that the resulting execution will produce only acceptable
modifications.

The strict integrity model was initially introduced to
deal with the threat of deliberate falsification or
contamination of very sensitive information. One such
application in which high integrity is of great importance is
the preparation of targeting data that are used to control
ballistic missiles. The practical threat is not so much that an
unauthorized individual will be allowed to use such a system,
but rather that a program and/or data maliciously prepared
will be incorporated into a Trojan horse to retarget the
weapons towards inconsequential or even friendly targets.
This kind of Trojan horse could be implanted in what has
become popularly known as a 'virus,' and strict integrity has
been recognized as one of the few effective defenses.

There is a growing body of experience with the
implementation and use of strict integrity in highly trusted
operating systems. For example, in the Honeywell SCOMP,
the first Class Al system on the Evaluated Products List,
strict integrity is included as part of the protection for
segments. This mechanism is used for the protection for

31

security related information such as audit data. In addition,
the Gemini GEMSOS7 has incorporated strict integrity as
part of the sensitivity label for all subjects, objects, and
devices; this approach has been found useful when designing
the integrity protection both of sensitive application
information and of system information used to support the
security controls themselves. Although there has been little
comparable experience in database systems, the I.P. Sharp
multilevel database model8 incorporates strict integrity along
with multilevel secrecy.

Low-Water Mark Policy. This policy is analogous
to the high-water mark security policy of the ADEPT-50
system9 . A subject's integrity class is dynamic and decreases
as the subject reads data of lower integrity. If the integrity
clas~es of objects are static (as in the strict integrity policy), a
subJect will be unable to write into an object with a higher
integrity class than it has read; if the object classes are
dynamic, then their integrity classes are possibly lowered if
the subject writes into the object. As summarized by Biba5 ,

"This policy, in practice, has rather disagreeable behavior. .
. . In a sense, a subject can sabotage (inadvertently) its own
processing by making objects necessary for its function
inaccessible {for modification). The problem is serious since
there is no recovery short of reinitializing the subject." To
the best of our knowledge, this policy has not been included
in any system design.

Ring Policy. By prohibiting read-downs in integrity
class, it seems the strict integrity policy and the low-water
mark policy could prove to be quite restrictive for most
systems, especially database systems. Because database
processes must have both read and write access to user data
system tables, index files, logs, and other structures to answ~r
queries and update the database, it would appear that the
only workable assignment of integrity classes is system low.
Because of the restrictiveness of the two preceding policies,
Biba also introduced a more flexible policy called the ring
policy. Each subject and object has a fixed integrity class,
and a subject is only allowed to write into objects whose
integrity classes are dominated by the subject's class. No
restrictions are placed on reading, so a subject can write high
integrity data even if it has read data of a lower integrity.
Unfortunately, the relaxation of this policy makes the
integrity class of the subject essentially meaningless, because
there are no restrictions on even what programs the subject
can execute. Thus, what would appear to be a high integrity
subject can, without restriction, be executing erroneous or
malicious ~rograms that destroy the high integrity
information to which the subject has access. In reality, this
policy fails to meet the requirements for a mandatory policy.
Moreover, there is no real experience using this policy as a
basis for mandatory integrity.

Multilevel Security with No Write-Up. Extending
the Bell and LaPadula model to prohibit 'writing-up' in
secrecy class provides a limited form of mandatory integrity.
In particular, this extended policy model addresses the 'write­
up' problem of the mandatory secrecy policy, which allows a
subject to write up in secrecy class. The extended model
would prevent a SECRET subject, for example, from
inserting data labeled as TOP-SECRET into a multilevel
relation or from overwriting a TOP-SECRET element (which

it cannot observe). This approach appears to protect
subjects from lower-level subjects. Closer examination makes
it clear that this approach is a case of the ring policy just
addressed in which the secrecy labels, such as SECRET, are
also used as the integrity labels; the difference is thus only
syntactic with no difference in the results of the policy. Of
course, this policy also has the same weaknesses as the ring
policy.

Program Integrity Policy. The restrictions of the
strict integrity policy remain a concern, so it seems important
to try to identify a more flexible but useful policy. The real
world supports some notion of integrity class through job
levels and chain of command. However, the flows between
different levels (usually adjacent) are bidirectional, so
information flows both up and down in integrity class.
Moreover, the trust placed on the information provided by
any individual is often more a function of the individual than
position. The key to the effective protection in this context
is that the individuals are trusted to make only the desired
m Jdifications of high integrity information, even though they
have been exposed to information of lower integrity classes.

This same concept can be applied to software by
imposing more stringent requirements on assigning an object
containing executable code a high integrity class. It seems
unreasonable to assume that once a program has observed
data of low integrity that it is incapable of writing data of
higher integrity, or because data are entered by a user of low
integrity into a database, that indexes and other structures
on the database must be treated of low integrity also -- there
is little relationship between the quality of the data that go
into a database and the quality of the system structures that
represent it.

This problem has been approached by distinguishing
read access from execute access (which are treated identically
in the preceding policies). Based on this distinction, Shirley
and Schell10 have defined a program integrity policy in which
a subject is only allowed to write into objects of less than or
equal integrity class and only allowed to execute objects of
greater than or equal integrity. As with the ring policy, there
are no restrictions on reading. This policy appears to be
better suited for databases because the database processes
could operate with a high integrity class, where they would
be able to read and update the entire database. Users and
application processes would be assigned integrity classes
reflecting their 'trustworthiness'. Furthermore, Shirley has
shown not only that this is a mandatory policy but also that
it is the identical policy implemented by the hardware
protection ring mechanism of Multics and several other
systems (no connection with Biba's use of the term 'ring').
Thus there is a substantial body of experience with this
policy, and it has indeed been shown to be quite useful in
operating systems. There is no comparable body of direct
experience with database systems.

An even closer look at the program integrity policy
reveals the somewhat unexpected result that it is just a
special case of the strict integrity policy. To understand this,
it should be recalled that in the Bell and LaPadula model
there is the notion of a 'trusted subject.' When interpreted
for integrity, as in the case of the strict integrity policy, a
trusted subject is trusted exactly to be able to read low

32

integrity information without damaging the integrity of high
integrity data. This notion of trusted subject is too coarse
for the problem at hand because a trusted subject can read
any integrity class. However, the notion has been refined in
the Gemini GEMSOS7 to identify a 'multilevel subject' that
has both a minimum and maximum class. Now, if the
subject in each protection ring is regarded as multilevel (with
respect to integrity classes) with a maximum integrity equal
to the ring of execution and a minimum integrity equal to the
least trusted ring, the strict integrity policy in this case
becomes the program integrity policy if the multilevel subject
is trusted not to execute any program with a lower integrity
class than its maximum.

Domains and Types. Domains and types have been
proposed as a means to specify a mandatory integrity policy,
as illustrated by the Honeywell SAT system4 . Here, each
object is typed, and each domain has a list of types that it
can observe and modify plus a list of domains that it can call.
Although this policy model is similar to discretionary policies
based on the access matrix model, the set of types, domains,
and rights cannot be altered. Because it is a relatively new
approach, its properties are not yet completely clear. So far,
there is no experience applying this type of policy to a
database system, although Honeywell is working on it.

Discretionary Integrity Authorization

Discretionary integrity authorization policies control
access to data at the user or user group level. The usual
approach to controlling access in database systems includes
authorization lists, which specify what operations a user (or
group) is authorized to perform on some set of data. For
integrity, the operations of interest include update, insert,
and delete.

The authorization lists of database systems are included
in the data model at different layers of abstraction. At the
lowest layer, they are associated with files, records, or
elements. At the highest layer, they are associated with
views or subschema on the data. The high-level approach
has the advantage of specifying a context for access. The
context-- i.e., exact set of elements that fall within the target
of a view -- is dynamic, changing as the underlying database
is updated. Because it is easier and more natural for users,
the high-level approach has proven to be far more useful than
the low-level approach, and is embodied in many systems
including SQL/DS, DB2, ORACLE, and INGRES (though in
a somewhat different form).

The discretionary security policy contained in the
Trusted Computer System Evaluation Criteria1 is
appropriate for database systems as long as the concept of
object is interpreted to mean views (actually view
specifications or subschema) rather than just physical
elements, records; or files. Note that this does not mean that
discretionary controls cannot be associated with individual
records and elements; such controls are easily defined as
views on the database.

The Criteria specify that discretionary controls are to
be applied to 'each named object.' There is no requirement
that the named objects be disjoint in memory, and in some
operating systems a file may be accessed via different path

names through different directories with different
discretionary authorizations placed on the different names.
Similarly, applying discretionary controls to views is
consistent with the Criteria because views are just a way of
naming objects. Also, there is no requirement that the
'named objects' of the discretionary policy be the same
objects or even at the same layer of abstraction as the
'storage objects' of the mandatory policy.

CONSISTENCY INTEGRITY

Database Integrity Rules

Database integrity rules protect a database from data
entry errors as well as from other errors made by the
operator or by software. They define the correct states of
the database and may specify actions to take if an update
would cause the database to enter an incorrect state. They
are similar to exception conditions built into programs,
except that the conditions are represented in the database (as
metadata) rather than in the application programs so that
they can be automatically applied to all transactions
updating the database.

In a relational system, there are two common types of
database integrity rules: domain integrity rules and
relational integrity rules. Domain integrity rules are
context-free rules specifying the allowable set of values (i.e.,
domain) for an attribute, e.g., DRIVER.AGE is greater than
16 but less than 100. Relational integrity rules are context­
sensitive rules specifying more global constraints on
individual tuples 6r sets of related tuples, e.g., that every
tuple in a PROGRAMMER relation has a corresponding
tuple in an EMPLOYEE relation (this is a form of 'referential
integrity'). Many relational systems, e.g., INGRES, provide
mechanisms whereby users can define rather complex
integrity rules.

Integrity rules play a vital part in ensuring the integrity
of a database. Indeed, they are a very important part of
access controls because most systems are vulnerable to errors
as well as to sabotage. It is probably fair to say that a
database system would not be regarded as a useful trusted
system if it does not support integrity rules.

There are, however, intrinsic problems associated with
integrity rules in a multilevel system that is rated at the
evaluation level of B2 or higher, arising from the requirement
to protec't against covert channels. Because the
implementation of integrity rules is outside the mandatory
security perimeter, the database subjects that enforce the
integrity rules must be denied access to data that is classified
higher than the subject level. Thus, if the subjects are
processing a transaction on behalf of a user, the only data
visible to those subjects will be data that is classified at a
level dominated by the user's level. If the database system
were given access to data not dominated by the user's level,
then a Trojan Horse in the database system could leak the
unauthorized data-- that is, unless the database system (or a
large portion thereof) were part of the mandatory security
perimeter. Because the latter is neither feasible nor
desirable, in multilevel systems rated at the level of B2 or
higher, we are forced to consider integrity constraints as
constraints on the subset of the database dominated by the
user's clearance.

33

To see how this revised interpretation of integrity
constraints affects the enforcement of integrity rules, consider
the relational model, which requires each tuple in a relation
to have a unique primary key. Suppose the tuples in a
multilevel relation are classified SECRET or TOP-SECRET,
and suppose the relation contains a TOP-SECRET tuple
with primary key FOO. This tuple will be invisible to
subjects operating on behalf of SECRET users. Thus, if a
SECRET user attempts to insert a new tuple, also with key
FOO, the system will accept the tuple. Because the access
class becomes the only means of distinguishing the tuples, the
class must then be considered to be part of the primary key.
We refer to the coexistence of multiple tuples with the same
primary key except for access class as polyinstantiated

tuples11 .

Problems also arise with respect to referential integrity.
For example, suppose a TOP-SECRET user creates a TOP­
SECRET tuple in a relation T(ID, A), which is associated
with a SECRET tuple in a relation S(ID, B) through the join
attribute ID. The relation S represents the entities named by
the primary key ID. If a SECRET user deletes the
referenced tuple in S, referential integrity will be violated.
But because the SECRET user, as well as all subjects that
run on that user's behalf, cannot know of the existence of the
TOP-SECRET tuple, this cannot be avoided.

As a third example of the problems that arise from
invisible data, consider a relation that contains the weights of
items on board various flights. Suppose there is maximum
weight restriction of 5000 for any given flight and that some
of the items on board a flight are classified SECRET while
others are TOP-SECRET. If the integrity constraint is
specified simply as an upper bound of 5000 for the total of all
weights for a flight, a flight could be overloaded because the
TOP-SECRET weights would be invisible when the
constraint is applied at the SECRET level to determine
whether an additional SECRET item can be placed on board.
A possible solution is to have separate constraints for
SECRET and TOP-SECRET weights.

Thus, in B2 or higher systems, the consistency defined
by integrity constraints must be interpreted with respect to
the secrecy class of the subject applying the constraint.
However, whether there should be some notion of inter-level
consistency, or how this might be specified, is unclear. It is
also unclear how triggers fit into this notion since a trigger
activated by an operation on behalf of a user having one
secrecy class cannot read up or write down in secrecy class.
Finally, we note that if the database is polyinstantiated at
the tuple or element level, problems arise in applying the
integrity constraints because more than one tuple or element
with different values may be selected by the constraint, each
with different outcomes. Thus, the integrity rules must
specify which values to select among polyinstantiated values.

In a multilevel system, the concept of integrity
constraints should also be extended to include constraints on
the classifications assigned to data. For relational systems,
we have found that several properties should hold:

• 	The complete definition (schema) for a relation,
including the names of all attributes, should have
a single access class that is dominated by the

access classes of all data that is to go into the
relation. Integrity rules that constrain the data
going into the relation should also be assigned this
access class.

• 	The attributes representing the primary key in a
relation should be uniformly classified -- that is,
within any given tuple, the elements forming the
primary key should have the same access class.

• 	The classification of the primary key should be

dominated by the classifications of all other

elements within a tuple.

In that integrity rules enforce constraints on the
relationships among data in the database, they can be
associated with inference problems. For example, if an
integrity constraint states that C = A + B for attributes A,
B, and C, where A and B are SECRET but C is TOP­
SECRET, then a SECRET user with access to A, B, and the
integrity constraint can infer C. In this particular case, the
best strategy for dealing with the problem may be to use the
integrity constraint to force classifications on the data to
prevent the inference -- e.g., classify A or B, or both, as
TOP-SECRET. In cases where the rule of inference is
complex and unknown, it may be more appropriate to
classify the integrity constraint (which can be viewed as an
inference rule).

In summary, although a multilevel secure database
system should provide database integrity rules, the
mandatory secrecy policy affects the interpretation and
application of integrity constraints.

Recovery Management

Another vital aspect of database integrity is protecting
the database from operator or software errors, including
system crashes. The accepted method of dealing with such
errors and faults is based on the concept of a transaction,
which is a sequence of operations that behaves atomically -­
that is, it either successfully completes (commits) all updates
or else it has no effect on the state of the database (rolls
back). The overall integrity policy for trusted systems should
include the concept of transactions with commit and roll­
back.

Multilevel updates raise some difficult issues regarding
transaction management. For example, if a trusted user can
simultaneously insert or update multilevel data (within the
user's range of trust), it may be desirable to decompose these
updates into single-level updates represented as single-level
transactions and performed by single-level database subjects.
However, the unit itself must also be treated as a transaction,
so the concept of a multilevel transaction with single-level
nested transactions appears to be very useful. The problem
is rolling back the low portions of the transaction if the high
portions fail.

Assuming recovery management is outside of the
mandatory security perimeter, it is not clear how the
database recovery log should be managed and processed in
systems that are rated at the level of B2 or higher. However,
some of the techniques used for general-purpose operating
systems to ensure the consistency of file systems during

34

backup and recovery may be useful.

Concurrency Controls

An important aspect of database integrity is ensuring
that concurrent transactions do not interfere with each other
giving rise to inconsistent states of the database. '
Serializability, which states that any transaction schedule
must be equivalent to one in which the transactions execute
serially, has been shown to be a necessary and sufficient
condition for global consistency12 , although there are systems
that enforce somewhat weaker policies. Some notion of
global consistency, however, is an essential aspect of the
overall integrity policy for trusted database management
systems. The concurrency policy should also address the
problems of deadlock, where multiple transactions cannot
proceed because they are waiting on each other, and livelock,
where a transaction never exits from a wait state, both of
which create denial-of-service problems.

In B2 or higher systems, the concurrency mechanisms
must use techniques other than simple locks because read­
write locks on multilevel data provide a signalling channel.

Event counters13 are not vulnerable to covert channels, but
require that higher-level transactions roll back when a lower­
level one causes an update that could interfere with its
behavior.

CONCLUSIONS

We do not know enough about the application of
mandatory integrity policies to databases to recommend any
one in particular or even state that one be mandated at all.
While the strict integrity policy without trusted subjects may
be appropriate for some threat environments, the more
flexible program integrity policy, which uses restricted
trusted subjects to manage a database, may be appropriate
for most environments. It would be premature to adapt a
particular mandatory policy in criteria for trusted database
systems until such a policy has been experimentally tried in
at least one operational environment and has been
demonstrably successful. On the other hand, a discretionary
policy along the lines of that given in the criteria is extremely
useful provided it is interpreted to apply to views rather than
just elements, records, or files.

Database integrity rules should be included in an
overall integrity policy because they provide users with
considerable assurance that the data is protected against
many errors. This is one of the best ways in which the users
themselves can greatly enhance the integrity of their data.
However, the interpretation and application of integrity rules
is constrained by the requirements for mandatory security.
Similarly, any trusted system should support the concepts of
atomic transactions, rec_overy, and noninterference, though
again the features are constrained by the mandatory security
requirements.

Although we believe it is vital for trusted systems to
support these different integrity policies, it is neither
necessary nor possible to have the same degree of assurance
in the enforcement of them all. Whereas Classes A and B are
appropriate for mandatory access controls, Class C2 is
appropriate for discretionary controls and consistency

controls, which are considerably more complex than
mandatory controls and require much of the database system
for their support.

To provide a high degree of assurance, the mandatory
integrity policy must be enforced by the reference monitor.
In addition to enforcing the mandatory secrecy policy, the
reference monitor ensures the integrity of all data in the
system, including the labels that represent the secrecy and
integrity access classes. If the data are vulnerable to
tampering during storage or transmission to and from the
reference monitor, cryptographic checksums may be used to
ensure the integrity of the data and its labels. For
cryptographic checksums to be meaningful, it is essential that
the processes that compute and validate the checksums and
manage the key be under the strict control of a reference
monitor.

ACKNOWLEDGMENTS

An earlier version of this paper was prepared for the
National Computer Security Center's Invitational Workshop
on Database Security, where both authors participated in a
working group on integrity and inference. The current
version has benefited greatly from the group discussions, and
we would like to thank the other group members, namely
A. Arsenault, W. E. Boebert, D. Bonyun, D. Downs,
K. Jacobs, R. Miller, G. Raudnbaugh, J. Spain, and
S. Walker. We also thank T. Lunt, M. Heckman, and
P. Neumann for their comments on this paper. This research
was supported by the U.S. Air Force, RADC under contract
F30602-85-C-0243.

REFERENCES

1. 	 Dept. of Defense, Computer Security Center,
Department of Defense Trusted Computer System
Evaluation Criteria, 1983, CSC-STD-001-83

2. 	 Date, C. J., An Introduction to Database Systems,
Addison-Wesley, Vol. II, 1983.

3. 	 Harrison, M. A., Ruzzo, W. L. and Ullman, J. D.,
"Protection in Operating Systems", Comm. ACM,
Vol. 19, No. 8, Aug. 1976, pp. 461-471.

4. 	 Boebert, W. E. and Kain, R. Y., "A Practical
Alternative to Hierarchical Integrity Policies", Proc.
of the 8th DOD/NBS Computer Security Con f.,
1985, pp. 18-27.

5. 	 Biba, K. J., "Integrity Considerations for Secure
Computer Systems", Tech. report ESD-TR-76-372,
USAF Electronic Systems Division, Bedford, Mass.,
April1977.

6. 	 Bell, D. E. and LaPadula, L. J., "Secure Computer
Systems: Mathematical Foundations and Model",
Tech. report M74-244, The MITRE Corp., Bedford,
Mass., May 1973.

7. 	 Schell, R. R., Tao, T. F., and Heckman, M.,
"Designing the GEMSOS Security Kernel for Security
and Performance", Proc. 8th Dod/NBS Computer
Security Conf., 1985, pp. 108-119.

8. 	 Grohn, M. J., "A Model of a Protected Data
Management System", Tech. report ESD-TR-76-289,
I. P. Sharp Assoc. Ltd., June 1976.

35

9. Weissman, C., "Security Controls in the ADEPT-50
Time-Sharing System", Proc. Fall Jt. Computer
Conf., Vol. 351969, pp. 119-133.

10. 	 Shirley, L. J. and Schell, R. R., "Mechanism
Sufficiency Validation by Assignment", Proc. of the
1981 Symp. on Security and Privacy, Apr. 1981, pp.
26-32.

11. 	 Lunt, T. F., Denning, D. E., Schell, R. R., Heckman,
M., "Polyinstantiation in a Secure Relational Database
System", Tech. report, SRI International, May 1986.

12. 	 Rosenkrantz, D. J., Stearns, R. E., and Lewis, P. M.,
"Consistency and Serializability in Concurrent
Database Systems", SIAM J. Comp., Vol. 13, No. 3,
Aug. 1984, pp. 508-530.

13. 	 Reed, D.P. and Kanodia, R. K., "Synchronization
with Eventcounts and Sequencers", Comm. ACM,
Vol. 22, No. 2, Feb. 1979, pp. 115-123.

36

TRUSTED DATABASE DESIGN

Peter J. Troxell

PAR Government Systems Corporation

220 Seneca Turnpike

New Hartford, New York 13413

INTRODUCTION

In January of 1981, the Department of Defense
Computer Security Center (DoDCSC) was formed
to study all aspects of computer security and to
promote the development of trusted computer
systems. Their first task was to develop a set of
criteria for defining what "trusted" meant, and for
assigning levels to define how "trusted" a system is.
Their first criteria, the "Department of Defense
Trusted Computer System Evaluation Criteria
[TCSEC]", was published in August of 1983. The
"Department of Defense Trusted Network
Evaluation Criteria [TNEC]", expected out in 1986,
deals with network security issues.

This paper will discuss the software and hardware
components which must be present in order for a
Database Management System (DBMS) to be
considered "trusted" in relation to the [TCSEC].
Distributed databases utilizing the TNEC will be
considered beyond the scope of this paper.

Key Security Concepts

Several concepts must be addressed before any
discussion of computer security can be made. The
following paragraphs provide a general overview of
these concepts so that later references to them may
be understood.

The term "Trusted Computer System" is defined in
the [TCSEC] as "a system that employs sufficient
hardware and software integrity measures to allow
its use for processing simultaneously a range of
sensitive or classified information." In other words a
user running at the Unclassified level can share the
system with users running Top Secret, while
ensuring that each user can access only those
items for which they have permission.

The reference monitor concept developed from a
study performed for the Air Force by James P.
Anderson & Company. Simply stated, the concept
stipulated that was that "a reference monitor which
enforces the authorized access relationships
between subjects and objects of a system" should
exist. The mechanism that performs this concept is
called a validation mechanism, and must meet the
following three requirements:

a. 	"The reference validation mechanism
must be tamper proof.

b. 	The reference validation mechanism
must~ be invoked.

c. 	The reference validation mechanism
must be small enough to be subject to
analysis and tests, the completeness of
which can be assured."

This validation mechanism is given the name of the
Trusted Computing Base (TCB) and is sometimes
referred to as a security kernel.

The following excerpt from the mandatory security
control policy defined in the [TCSEC] adequately
defines the policy's meaning: "(the TCB) must
include a set of rules for controlling access based
directly on a comparison of the subject's clearance
or authorization for the information and the
classification or sensitivity designation of the
information being sought, and indirectly on
considerations of physical and other environmental
factors of control."

Likewise, the control policy for discretionary
security policy states that the TCB "must include a
consistent set of rules for controlling and limiting
access based on identified individuals who have
been determined to have a need-to-know for the
information."

TRUSTED COMPUTER SYSTEM

EVALUATION CRITERIA

While this does not primarily address database
security issues, it will be discussed since it presents
some key concepts that are applicable to any
multilevel secure software product.

Fundamental Security Reguirements

The criteria presents six fundamental computer
security requirements broken into three main
categories of policy, accountability, and assurance.
Each of these requirements is presented below with
its rationale.

The first two requirements deal with policy. The first
requirement states that there must be an explicit
and well-defined security policy enforced by the
system. As will be seen in the evaluation class,
there are two types of policy -- mandatory for
access rules to sensitive objects, and discretionary
for allowing access by groups or individual users.
For a mandatory security policy to work each object

37

within the system must have an associated security
label. This is the second requirement.

The third and fourth requirements focus on
accountability factors. The idea is that each subject
in the system will be identified and that
security-related actions can be audited and traced
back to the responsible party.

The last two requirements deal with assurance.
This means that there is some way to guarantee
that the first four requirements are enforced and that
they are continuously protected against tampering
and/or unauthorized changes.

Division Ratings

When a computer system is evaluated by the
DoDCSC, it is assigned a rating. The rating
consists of a division letter and a class number. The
heirarchy of division and class numbers is as
follows: the lower the division letter the higher the
protection the system gives. As the class numbers
increase within a division so does the security
rating. Thus a rating of B1 is higher than a rating of
C2 thus affording more protection. A key feature of
the security ratings is, that inherited in the
requirements for a particular class are all the
requirements for any clasess lower than it in the
hierarchy.

Division "D" contains only one class and is used
only when a system that is evaluated does not fall
in any of the higher classes.

All classes in division "C" implement some type of
discretionary security policy. This will enforce a
need-to-know type of protection on users and
objects. Accountability is another feature and
requires that certain audit capabilities be
implemented.

A division "B" rating requires addition of a
mandatory security policy. This policy requires
sensitivity labels for all objects to be part of the
major data structures of the system. Thus, the
mandatory security policy supplementary to the
discretionary policy developed for the division C
systems. In addition, the system developer must
provide the model of the security policy that the
TCB is based on, along with its specification. The
developer must also provide evidence that the
reference monitor concept has been implemented.

For a system to receive a division "A" rating, it is
required that the mandatory and discretionary
security policies can be formally proven. The TCB is
guaranteed that it meets its security requirements in
all phases of design, development, and
implementation. This guarantee is the result of
adding formal methods into the design process.

TRUSTED PATABASE DESIGN

The need for a trusted DBMS arises from the fact
that the [TCSEC] enforces access controls only to

the granularity of a file. To make maximum use of a
computer and its associated databases, these
access controls must be expanded to arbitrate
accesses to a finer detail, such as to the field or
data element level.

The remainder of this paper will first discuss the
security threats to a DBMS, then proceed to present
some of the suggested approaches.

Security Threats

Two security threats, inference and aggregation,
are prevalant in DBMS systems. In addition, there
are those threats which can be found in any type of
computer program, Trojan Horses and Covert
Channels.

Inference, as the name implies, occurs when the
user is able to infer some fact from the information
that has been presented. Suppose, for example,
that a database has two relations: AIRCRAFT, with
attributes ID and PAYLOAD; and WEAPONS, with
attribute TYPE and ID.The fields
AIRCRAFT.PAYLOAD and WEAPONS.ID can be
joined. All records are SECRET unless the
WEAPON.TYPE is NUCLEAR in which case it is
TOP SECRET. Now consider the following query:

RETRIEVE AIRCRAFT.ID

WHERE AIRCRAFT.PAYLOAD = WEAPON.ID

AND WEAPON.TYPE= "NUCLEAR"

The query would be processed and would return to
the SECRET user a list of all aircraft having a
nuclear payload, thus revealing TOP SECRET
information. This occurs because the computer
treats the information returned as SECRET since
the TOP SECRET portion was stripped away in the
selection.

Aggregation occurs when data combined from
different sources results in a data item that has a
higher classification than its individual components.
This can be the result of using one of the aggregate
operations, such as sum, or can be intrepreted as
the user, infering from different database requests,
the data at a "higher"security level. For instance, in
the previous example suppose that all records were
SECRET but the fact that a particular aircraft was
carrying a nuclear payload {i.e., the join relation) is
TOP SECRET. By placing two queries a SECRET
user could determine what the payload {TOP
SECRET) was.

Other Security Threats A DBMS would, like its
operating system counterpart, have to concern itself
with the problems of Trojan Horses and Covert
Channels. The [TCSEC] defines these two terms
as:

Trojan Horse - "A computer program with an
apparently or actually useful function that
contains additional {hidden) functions that
surreptitiously exploit legitimate

38

http:WEAPON.ID
http:AIRCRAFT.ID
http:WEAPONS.ID

authorizations of the invoking process to the attributes that were contained in the actual view but
detriment of security." not "seen" by the user?

Covert Channel - "A communication channel
that allows a process to transfer information
in a manner that violates the system's
security policy."

As can be seen from their definition care must be
taken to prevent the occurence of these security
threats.

Architectures

With the objective of having a Multilevel DBMS
(MDBMS) and knowing the types of threats to the
system, several potential architectures have been
put before the community as potential solutions.
These architectures are presented below.

It should be noted that whatever architecture is
used, the concepts defined in the [TCSEC] will
prevail. Each will contain, in some part, a TCB in
which resides the security-related code that is
guaranteed to work. Depending on the MDBMS, it
will contain code to enforce mandatory and
discretionary security policies. Marvin Schaefer
[SCHA85] states in his paper that the [TCSEC] is
sufficient in its current form to handle the multilevel
database management problem, since each
operating system maintains some type of internal
database to keep track of its information.

Another key point is that .sll accesses to the
database ~be through the DBMS; otherwise,
security is circumvented. This can be accomplished
by making the database a special classification that
can only be accessed from the DBMS which
operates at that level.

~ The concept of views has been around
since the early days of DBMS. In 1983, Billy
Claybrook [CLA Y83] presented a method for using
views to enforce security requirements on a DBMS.
A view is defined in [CLAY83] as "a database
description (or definition), together with an instance
of the definition." A view definition "is the process of
specifing the attributes of a view and defining the
mapping between the view and the underlying
database."

The concept that a view utilizes is that a user is
given access to a view but not the data itself so that
the user will only be able to access what the view
"sees." In addition, a view could be defined in terms
of another view allowing for a breakdown of the
component of the database tuples. The security
classification can be either static or dynamic
depending on to what depth the security labeling is
taken.

A problem with this architecture its side effects due
to the fact that the user only sees a part of the tuple.
For instance, if a user has delete permission to a
tuple and subsequently deletes a tuple that was in
the users view, what should be done with those

The [CLA Y83] paper presents the author's method
for handling the inference and aggregation
problems. The solution to the inference threat was
to make sure that the user had the necessary
clearance for at least the highest object searched.
Likewise, the solution presented for aggregation
called for the user's clearance to match the highest
classification in the material searched.

Integrity-Lock Richard Graubart has presented
several papers ([GRAU84], [GRAU85]) on an
architecture called Integrity-Lock. This architecture
was an outgrowth of the 1982 Summer Study on
Database Security sponsored by the Air Force
Studies Board. Its key architectural concept is to be
able to retrofit security onto existing DBMS instead
of recreating the DBMS from scratch.

The Integrity-Lock approach calls for the database
management system to be separated into three
components. Graubart's conception of this is shown
in Figure 1. The trusted code resides in the Trusted
Front End (TFE). The TFE is responsible for
authenticating the user, and verifying that only
information that the user is entitled to, is passed
back to him. The Untrusted Front End (UFTE) takes
care of parsing the queries and formatting the
output for the user. Lastly, the Untrusted DBMS
handles all the 1/0 access to the actual database.

The [GRAU84] paper goes on to define the basic
theme of the Integrity-Lock architecture; that is each
tuple has at least one classification attribute and an
associated cryptographic checksum. This provides
a mechanism for labeling the classification of the
data and provides a way to detect unauthorized
modifications to the tuple. The checksum is
computed using the value of the tuple and its
classification as input to an "unbreakable"
encryption algorithm. The result is placed with the
tuple in the database. Should an unauthorized
modification be made to the data, the checksum will
not match and a security violation flagged. Dorothy
Denning, in her 1984 paper [DENN84], presents
just how these checksums can be computed along
with their strengths and weaknesses.

The granularity of the security level can be
increased anywhere from the tuple level to
individual attributes by the addition of
classification/checksum pairs. Of course the greater
the granularity, the greater the cost; in terms of CPU
power to compute the checksums, and the amount
of disk space require to save the database.

One of the key advantages of this architecture is
that the technology needed to implement it currently
exists. It can be retrofitted on to an existing DBMS
to reduce the cost and time required to have a
Multilevel DBMS in the marketplace.

39

US!R

r
STAMPUntrusted Trusted

Untrusted
Front End Front End

CHECK DBMS
{UTFE) {TFE)

Query parsing, User authentication, Database searching
Output formatting Tuple formatting, Tuple selection,

Verify data returned, Tuple insertion,
Projections, Tuple deletion,
Creations, Database reorganization
Placement and
Verification of
Checksums

FIGURE 1 - INTEGRITY LOCK COMPONENTS

CONCLUSION

This paper has presented an overview on the
development of "trusted databases." It has
discussed the threats to such a database and has
presented a brief overview of some of the current
ideas for a likely architecture. While each has its
own strengths and weaknesses, time will tell which,
if either, will be the final solution.

These designs have dealt with the implementation
of the mandatory security policy onto an existing
DBMS. Further work still needs to be done on how
to implement the discretionary security policy of
need-to-know onto a database, be it either at the
database
attributes.

level or at the level of individual

REFERENCES

[CLAY83] Claybrook, B. G., "Using Views in a
Multilevel Secure Database
Management System," Proceedings of
the 1983 Symposium on Security and
Privacy, IEEE Computer Society,
1983, pp 4-17.

[DENN84] Denning, D. E., "Cryptographic
Checksums for Multilevel Database
Security," Proceedings of the 1984
Symposium on Security and Privacy,
IEEE Computer Society, 1984, pp
52-61.

[DENN85] Denning, D. E., "Commutative Filters
for Reducing Inference Threats in
Multilevel Database Systems,"
Proceedings of the 1985 Symposium
on Security and Privacy, IEEE
Computer Society, 1985, pp 134-146.

[FERR81] Fernandez, E. B., Summers, R. C.,
Wood, C., Database Security and
Integrity, Addison-Wesley Publishing
Company, Inc., Reading,
Massachusetts, 1981.

40

[GRAU84]

[GRAU85]

[RADC75]

[SCHA85]

[TCSEC]

[TNEC]

Graubart, R. E., "The Integrity-Lock
Approach to Secure Database
Management," Proceedings of the
1984 Symposium on Security and
Privacy, IEEE Computer Society,
1984, pp 62-7 4.

Graubart, R. E. and Duffy, K. J.,
"Design Overview for Retrofitting
Integrity-Lock Architecture onto a
Commercial DBMS," Proceedings of
the 1985 Symposium on Security and
Privacy, IEEE Computer Society,
1985, pp 147-159.

Hinke, T. H. and Schaefer, M. "Secure
Data Management System,"
RADC-TR-75-266, Rome Air
Developement Center, Air Force
Systems Command, Griffiss Air Force
Base, New York, November 1975.

Schaefer, M., "On the Logical
Extension of the Criteria Principles to
the Design of Multilevel Database
Management Systems", Proc. of the
8th National Computer Security
Conference, DoD Computer Security
Center, 1985, pp 28-30.

Department of Defense Trusted
Computer System Evaluation Criteria.
De part me n t of De f e n s e ,
CSC-STD-001-83, 15 August 1983.

Department of Defense Trusted
Network Evaluation Criteria.
Department of Defense, DRAFT, 29
July 1985.

THE CHALLENGE AFTER Al
A VIEW OF THE SECURITY MARKET

Lester J. Fraim

Honeywell Information Systems
Federal Systems Division

7900 Westpark Drive
McLean, Virginia 22102

INTRODUCTION

Honeywell Information Systems has the
only two commercial products on the National
Computer Security Center's (NCSC) Evaluated
Products List above class C2. The Multics
Product is rated as a class B2 and the Scomp
is the only system to receive the highest
rating of class Al. These systems are used
in a variety of applications where security is
a key requirement. Several new developments
are underway to further demonstrate the
effective use of the Scomp to meet a variety
of market needs.

As a result of the experience with
Multics and Scomp, Honeywell is developing a
strategy and product direction to expand our
segment of the evolving security market. The
security market consists of several elements
which must be integrated into a coordinated
set of product and service offerings.

This paper will present a view of the
security market and discuss the initial
approach being taken to develop products to
meet these market needs.

BACKGROUND

Honeywell has long been committed to the
development of systems to meet the security
needs of government and industry. The de­
velopment in the early 1980's are key examples
of this effort. Bringing trusted products to
the marketplace has provided Honeywell with a
unique view of security market requirements.
The advent of the Trusted Computer System
Evaluation Criteria and overall awareness of
trusted system concepts has grown rapidly dur­
ing this period. The list of vendors now
working with the NCSC is a relative who's who
in the industry. Each vendor must decide the
position (i.e., rating) and type of products
to be offered. The end result will be that
all products will contain enriched security
mechanisms. Vendors will provide standard
products which meet a broad spectrum of
security and processing requirements.

As a leader in the class B2 to class Al
area of trusted products, Honeywell has
developed a basic strategy to meet the needs
of this market. The overall strategy in­
cludes the coordination of security related
efforts through Honeywell. A high level
steering group reviews plans and requirements
to ensure that the technical security efforts
are directed with a unified goal in mind.
This group meets regularly to evaluate product
characteristics, program results, market
requirements and research directions. The
direction provided by this group ensures that

the efforts of various organizations are all
directed to meet the security needs of the
Honeywell customers.

Key to Honeywell's effort is the inclu­
sion of enhanced security in both our large
and small commercial product bases. Without
basic products which meet the evolving
standards, it is quite unlikely that we can
provide complete solutions to the high end of
the market. Another key element in the
strategy is to ensure that research is pro­
grammed into product enhancements. One
example of this is the inclusion of Scomp
hardware features in the DPS6 PLUS product,
which was announced in June this year. This
commercial hardware platform contains the
features to support the Scomp capability.
This will enable the evolution of enriched
security features to be implemented in ,the
commercial operating system offering as well
as provide a new platform for Scomp. The
Secure Ada Target (SAT) Program is also being
managed such that this technology can be
planned for product offerings at the proper
time.

As the technology evolves, Honeywell will
insert product offerings which take advantage
of proven technology. This approach, however,
can produce some difficult challenges. With
each new innovation comes the need to define
the security impacts, implementation approach
and the application of the technology. These
are the challenges that make the trusted sys­
tem market interesting. The Scomp system was
a major technical accomplishment because it
demonstrated the ability to build a class Al
system. The challenge now is to build a
broad product offering, meeting high level
security requirements and providing all the
features available in the non-trusted market.
To understand these requirements will require
a quick look at the characteristics of this
marketplace.

MARKET CHARACTERISTICS

The Honeywell experience with Scomp and
Multics has given us the opportunity to
evaluate a variety of system requirements.
Because these systems are very different with
respect to capacity, performance and capabil­
ity, we have observed requirements across a
broad spectrum. This experience has led us
to the definition of a marketplace model.
This model looks very similar to many system
and program requirements. It is not much
different from the model of the data process­
ing industry in general. Technology has
provided the capability to place large pro­
cessing capacity at user locations and provide

41

effective communications between these
processing elements.

A key element of the market, which is not
obvious from the model, is the need for
solutions oriented systems. These systems
must solve the users problem and provide· the
level of trust necessary for the user environ­
ment. There is no attempt here to justify the
users security requirements. Security must be
an element of the specifications just as
communications interfaces and processing re­
quirements. The market requires systems
which solve user problems and protect their
processing assets.

The Market Model

Figure 1 illustrates the interconnections
of several classes of processing elements.
The elements are interconnected through a
Local Area Network (LAN) . There are efforts
underway by several vendors to produce trusted
LAN products. This model does not depend on
their capability; however, these products
will enhance the vendor's ability to satisfy
the model requirements. The LAN is required
to provide efficient control between the
processing elements. The elements span the
spectrum of what is available in the market
today. The challenge is that all elements
need to be trusted at the class B2 to class
Al level.

INTELLIGENT WORMSTATIOH :

MLS

GRAPHIC
tcb

GRAPHIC
tcb TCB

To establish a common understanding of
these elements, it is necessary to describe
some of their features.

Trusted Work Stations - The requirement for
trusted work stat1ons is quite straight
forward. Users desire the full capability of
work stations, including color graphics,
windowing, disk storage, a mouse and hard
copy capability. Work stations run a variety
of software including MS-DOS* and UNIX.**
The challenge is to provide these features,
meet the security requirements, and allow all
applications software to run without modifi ­
cation.

Trusted Servers - These are departmental
size systems which provide a broad range of
processing resources. These systems manage
the data resource for the users. This data
management may be in the form of a relational
data base management system, document manage­
ment system, or file management capability.
This system manages the data resource for the
user, and enforces the security policy.

* MS is a trademark of Microsoft.

** UNIX is a trademark of AT&T Bell
Laboratories.

COMM.

tcb

DBMS

TCB

concenbate
distributed workstation

Figure 1. Trusted System Market Model.

42

Trusted Gateways - This element of the model
provides access to the outside world. This
function allowij users to access information
from external sources. Many requirements
exist to protect a local resource (i.e., LAN)
from unauthorized access. The Gateway pro­
vides this protection, and also allows
system users to gain access to other non-local
environments. In the Government, these
gateways will require TCP/IP capabilities.
In the commercial world, the gateways will
probably require ISO or SNA capabilities.

Trusted LAN Access - The development of
trusted LANs may preclude the need for this
element of the model; however, the functions
are still required. The trusted LAN access
element will ensure the separation of levels
on the LAN, and provide a trusted interface
to the LAN mechanism. The concept is to
provide an effective user interface to the
LAN.

Standards - This market model is driven by
standards. Everyone involved with system
requirements is quite familiar with both
official standards and the evolving standards
of practice. For example, there are several
standards for LAN connections. Most notably
are those of the IEEE. These standards are
very different from the evolutionary standards
of practice such as UNIX System V for depart­
mental processing and UNIX or MS-DOS for work
stations. To meet the requirements of the
market model, the vendor must i d.en ti fy the
standards to be supported and the standards
of practice which will be supported.

Application - One of the major lessons learned
with the Scomp product has to do with appli­
cations requirements. Everyone wants to see
applications running which perform functions
for the user. The challenge with applications
comes from several sources.

First, there are commodity applications
which users would like to use. These include
such things as data base management, spread­
sheet, word processing, transaction process­
ing, etc. So the first challenge is to be
able to support a variety of these existing
applications in the trusted environment.

Second, there are many applications which
require a security model which is different
from that supported by the basic trusted
system. Examples of these applications in­
clude guards, military message system and data
base management. These applications require
trusted elements which cannot just be ported
from commodity packages. The challenge is to
develop effective trusted interfaces which
meet a wide variety of market requirements.

And finally, there are applications which
must be trusted because they are required to
handle multi-level objects. An example of
this kind of application would be interfaces
to networks that contain multiple level
traffic. None of these exist today, with the
possible exception of AUTODIN. To meet this
challenge will require applications such as
trusted TCP/IP or X.25 capabilities.

43

Solutions - To meet the needs of the market
place requires a strong combination of pro­
duct and integration capabilities. The
products will provide a foundation for the
building of system solution. The vendor
must be committed to long term investment to
bring the technology and solutions to the
customer. To meet the needs of the market,
The vendor will have to combine the tradi­
tional vendor role with the system integra­
tion role. The key to success in this arena
is the commitment to meeting the customer
requirements. These solution oriented
systems will all require elements of the
model, and each may include a unique piece
that is only an emerging technology. A
strong technically oriented organization will
be the most successful in meeting these
solution needs.

THE FIRST STEP

As can be seen from this quick review of
the trusted market requirements, there is a
great deal of work ahead. There are also
many new and interesting challenges in bring­
ing these capabilities to the market. At
Honeywell, we have been working to take the
initial steps to begin to address the various
elements of the market model. By no means
do we have solutions for all the elements or
all the issues. That is the challenge to
this industry over the next several decades.

we plan on building on the technology of
the Scomp product by producing systems which
meet the requirements of the model. These
systems will then be used in our solution
oriented business to meet customer require­
ments. As new technology is advanced, it will
also be integrated into solutions. As other
vendors provide elements necessary to meet
our users' needs, we will integrate them into
sound technical solutions.

Because of the nature of Scomp, and the
type of system it provides, our initial capa­
bility will be in the departmental sized
system. It is well known that Scomp current­
ly resides on a 16 bit mini-computer hardware
platform. This hardware is modified to meet
the needs of building a trusted system.
Several years ago steps were taken to ensure
that these hardware characteristics would be
available in the future Honeywell hardware
platform. This was accomplished through
close working relationships between the
commercial hardware developers and the scomp
development team. The results of this effort
are the newly announced DPS 6 PLUS product
set. This commercial product provides a long
term technically advanced base for the Scomp
system. Additionally, the Scomp hardware
features ensure that future versions of the
commercial operating system will be able to
provide enhanced security capabilities. It
is now planned that the future commercial
operating system will be targeted at class B2.

DPS6 PLUS

The DPS6 PLUS is a new generation of 32­
bit virtual memory computers. It is built
using Very Large Scale Integrated (VLSI)
chips as integral elements of the central
processor and the memory manager. The central

processor firmware is loaded via the System
Management Facility to control software
operation.

The major significance of the DPS6 PLUS
is that it provides a commercial hardware
platform, without the need for special hard­
ware to support the Scomp Trusted Operating
Program (STOP). The initialization of the
system will be achieved through the firmware
load mechanism of the System Management
Facility. This feature of the DPS6 PLUS will
provide a great deal of flexibility and a re­
duction in product cost.

Figure 2 lists several of the features of
the DPS6 PLUS and the Scomp. As can be seen,
the DPS6 PLUS provides a multi-processor
capability with a large virtual address per
process. The performance of the system is
enhanced by the integration of the Scientific
and Commercial Instruction Processors
(CIP/SIP). These processors were not avail­
able on the 16 bit Scomp implementation.
Additionally, the largest segment size and the
availability of twice as many segments perfor­
mance.

Because of the firmware load capability,
the DPS6 PLUS implementation of Scomp will be
able to use commercial Test and Verification
(T&Y) routines. The current Scomp requires a
unique set of T&V's because of the hardware
differences. This will be a major cost sav­
ings in the DPS6 PLUS based product.

The firmware load capability is also
beneficial in providing the mechanisms
necessary to implement the one Scomp feature
not in the DPS6 PLUS hardware. The
commercial DPS6 PLUS only provides support for
physical Input/Output (IO) • Firmware will be
added which supports the virtual IO capabili­
ties necessary for Scomp. Because of this
difference, only pre-mapped IO will be sup­
ported on the DPS6 PLUS. The mapped IO
feature of the current Scomp will not be
available.

STOP 3.0

The first version of the Scomp operating
system to be available on the DPS6 PLUS is de­
fined as STOP 3.0. This is the same operating
system which runs on the 16 bit Scomp except
that it is modified to support the features
of the DPS6 PLUS. These modifications in­
clude the larger segments, multiple process­
ors, new IO capability, and new ring crossing
mechanisms. The user interface to STOP will
remain the same, and the application inter­
face to the system will be the same.

Multiple Processor Support - The 16 bit Scomp
was implemented on a mono processor system.
The DPS6 PLUS supports single, dual and quad
processor configurations. The Scomp Kernel
is being redesigned to effectively support
the multiple processor environment. This is
a complex enhancement to the Scomp security
Kernel, and has taken the most effort to
design.

New IO Support - The current Scomp supports
user initiated IO capabilities. This will no
longer be true on the DPS6 PLUS implementa­
tion. The IO capability will be moved into a
more privileged ring (ring 1), and the system
will perform the IO on behalf of the user.
This change is required because of the follow­
ing.

First, the IO environment on the DPS6
PLUS is quite different from that on Scomp.
There is no firmware support for some exist­
ing functions. Secondly, the development of
new smart device controllers requires the IO
mechanism to be protected from the user
environment.

.,

!

WORD SIZE

SECURITY FEATURES

VIRTUAL ADDRESS SPACE

SEGMENTS/PROCESS

SEGMENT SIZE

PAGE SIZE

SIP/CIP SUPPORT

MULTI-PROCESSOR

PHYSICAL ADDRESS

FIRMWARE

SCOMP

16 Bit

Add-On-Hardware

2 Mega Bytes

512

4 Kilobytes

256 Bytes

None

Mono

2 Megabytes

ROM

DPS6 PLUS

32 Bit

Commercial Hardware

2 Gigabytes

1024

2 Megabytes

2 Kilobytes

CPU - Supported

Mono-Dual-Quad

16 Megabytes

RAM

Figure 2. DPS6 PLUS/SCOMP Features.

44

l

Application

The initial application to be supported
on the DPS6 PLUS Scomp will be the UNIPLEX II*
integrated office application. The implemen­
tation of UNIPLEX II is currently being
completed on the 16-bit scomp System. UNIPLEX
II consists of word process.ing, file manage­
ment, data base management, spreas sheet and
mail. UNIPLEX II normally runs on UNIX based
systems, and has been ported to Scomp using
our evolving C standard application
environment.

Evaluation Goals

The DPS6 PLUS with STOP 3.0 will be built
in accordance with the class Al requirements.
The system's initial evaluation goal will be a
class B3 rating. The reason for this is that
it reduces the risk associated with verifi ­
cation. There are many issues associated
with this product enhancement that need to be
addressed in the verification aspects of class
Al. An example of this is multiple processors
and smart controllers. Additionally, the
technology of verification has not advanced
significantly from the current Scomp product
to warrant major investment in this technol­
ogy at this time. Future versions of STOP,
however, will be validated at the class Al
level when it is required to meer the market
requirements. Nothing will be done in the
development of STOP 3. 0 which would preclude
it from achieving the class Al. rating.

Performance

The performance range of the DPS6 PLUS
extends the performance capability of the
SCOMP system. There will be additional per­
formance benefits gained from the larger
segment size and the integrated SIP/CIP capa­
bility. Looking at the performance of the
DPS6 PLUS and the DPS6/75 produces the
following results:

o SCOMP (DPS6/75) 1.0

o PS6 PLUS 1 1.7

o DPS6 PLUS 2 3.2

o DPS6 PLUS 4 5.3

These performance ratios are based on the
basic hardware, and have not been factored to
reflect the impact of security.

THE 	 FUTURE

STOP 3.0 is just the first of a planned
evolution of systems capability on the DPS6
PLUS platform. Additional interfaces and
applications will be developed to meet the
needs of the market model. These efforts will
come from both internal and project directed
funding. Several of these additions are being
planned at this time. They include a re­
lational data base management capability, DDN
capability, Ethernet* interface and additional
support tools.

Application Environment

The market is driving the departmental
system toward the UNIX System V interface as
a standard. In line with this, the STOP
application interface is being enhanced to
make the porting of applications from UNIX as
easy as possible. This is the result of
several efforts to port UNIX based applica­
tions to Scomp. These applications include
TCP/IP, X.25, UNIPLEX II and a C-Compiler.

This is not an effort to emulate the UNIX
environment. It is purely a mapping of UNIX
interface calls to services provided by STOP.
our approach is to provide a trusted system
which supports UNIX applications. Not all
applications will port easily.

Data Base Management - It is not possible to
provide true MLS relational data base capa­
bilities today. However, the use of a
commercial RDBMS capability on a trusted
system is the first step toward realizing
many of the requirements of a RDBMS in a
trusted environment. Honeywell plans on ad­
dressing this need by providing basic data
management capabilities on future versions of
Scomp. The approach to. meet this requirement
has not been fully defined. Work is con­
tinuing in several areas to address the data
base management requirements.

Other Products - The DPS6 PLUS Scomp is only
one element of the market model. Efforts are
underway at Honeywell to address the full
spectrum of the model requirements. These are
being addressed both in terms of product
capabilities and as evolving research issues.
The use of the DPS6 PLUS chip set is being
analyzed with respect to development of a
micro based capability which could meet the
needs of a work station or communications
device. These efforts are in their early
stages and should produce meaningful results
in the next several years.

Additionally, a key research activity
being performed by the Honeywell Secure
Computing Technology Center (SCTC) is being
monitored for inclusion in product oriented
solutions. The Secure Ada Target (SAT)
research provides a potential path to advanc­
ed security mechanisms. The timed inclusion
of the proven technology developed by SCTC
will be a key element in the development of
advanced products.

UNIPLEX is a trademark of Redwood Int. Ltd.*
** 	 Ethernet is a registered trademark of

Xerox Corporation.

45

CONCLUSION

This paper has looked at the requirements
of the Trusted System market place. These
requirements cannot all be met with existing
product platforms and capabilities. This
market requires a strong solution oriented
approach combined with basic platforms to
meet the users security needs.

Honeywell has come a long way in achiev­
ing the Scomp and Multics evaluations. These
efforts, however, are only preliminary to our
eventual goal of providing a broad range of
product oriented solutions. The DPS6 PLUS is
the key element of this evolutionary approach
to trusted product development. The DPS6
PLUS, combined with standard interfaces and
appl.ications environments, ·will provide a set
of quality solutions for systems users.

46

1

SE/VMS: IMPLEMENTING MANDATORY SECURITY IN VAX/VMS

Steven Blotcky, Kevin Lynch, Steven Lipner

Digital Equipment Corporation

Nashua, NH and Littleton, MA

ABSTRACT

Si nee the late seventies, Digital
Equipment Corporation has been pursuing a
development program aimed at improving the
security of its computer system and network
products. The most visible product of this
program to date has been Version 4.2 of the
VAX/VMS operating system, which is under
evaluation as a candidate for Class C2 of the
Trusted Computer System Evaluation Criteria.
In addition to implementing discretionary
access controls, VAX/VMS Version 4.2
incorporates latent support for mandatory
security controls at the level of internal
operating system routines and data
structures. This paper describes SE/VMS
(Security Enhanced VMS), a set of
modifications that allow VAX/VMS users to
exploit the latent support for mandatory
security. The modifications provide
facilities that allow a system manager to set
up and administer the mandatory security
environment, and that allow users to operate
on labeled objects. The paper describes the
functions of SE/VMS that support user
registration and login, device and volume
management, file creation and access, and the
production of labeled printed output.
Discussions are provided of the techniques
that were used to implement SE/VMS, of the
system's limitations, and of plans to gain
user experience with SE/VMS. SE/VMS is
viewed as providing an interim mandatory
security capability for VAX/VMS users, and
will not be submitted for evaluation at Class
Bl of the Criteria.

INTRODUCTION

Since the late seventies, Digital
Equipment Corporation has been pursuing an
active development program aimed at improving
the security of our computer system and
network products. The primary focus of this
program has been a series of enhancements to
the security of the VAX/VMS operating system.
The most visible product of the program to
date has been VAX/VMS Version 4.2, which has
been submitted for evaluation at Class C2 of
the Trurted Computer System Evaluation
Criteria (TCSEC).

This paper describes SE/VMS (Security
Enhanced VMS), modifications that have been
developed to provide an initial mandatory
security capability for VAX/VMS. These
modifications were developed by Digital's
Software Services organization to provide

labeled security protection for VAX/VMS.
This work is intended to meet most of the
requirements for Class Bl of the TCSEC.
Because SE/VMS does not meet all requirements
and is ~ntended to provide only an interim
capability, it would not be a candidate for
submission for formal product evaluation at
Class Bl.

SE/VMS is not an "add-on" security
package in the sense of some of the products
on the National Computer Security Center's
Evaluated Products List. Instead it combines
latent capabilities of VAX/VMS, replacements
for some VAX/VMS components, and additional
components to achieve the overall objective
of providing labeled protection.

This paper begins with a review of the
security features of VAX/VMS Version 4.2. It
then summarizes the support for mandatory
security that was included in Version 4.2.
Next, the paper presents an overview of the
features of SE/VMS along with a sketch of the
techniques that were used to implement them.
Finally, we conclude with a discussion of
areas for future development in providing
mandatory security for VAX/VMS.

2 SECURITY IN VAX/VMS

VAX/VMS was initially developed in the
mid seventies along with the VAX-11/780
32-bit superminicomputer. The VAX-11/780 was
developed as an upward-compatible extension
to the PDP-11 minicomputer family and
executes PDP-11 code directly. As the VAX
family grew out of the PDP-11, so VAX/VMS
grew out of the RSX-11/M operating system for
the PDP-11.

Initial releases of VAX/VMS actually
included a significant number of PDP-11
utility programs that were transported
unmodified from RSX. Thus the initial
VAX/VMS security design was an extended
"minicomputer" model and encompassed
passwords at login and
"system/owner/group/world" protection on
files, directories and a few other objects.
VAX/VMS has always supported one-way
encryption of user passwords, and over the
years a number of security auditing functions
were incorporated with the system's
accounting features.

In the late seventies and early
eighties, a major project was started with
the aim of upgrading the security of VAX/VMS.
The first product of this project was VAX/VMS

47

version 4.0, and some additional enhancements
were incorporated in Version 4.2. When this
paper discusses the features of SE/VMS, it
describes changes or enhancements to
Version 4.2. Because the initial
implementation of mandatory controls was
incorporated in Version 4. 0, the paragraphs
below will refer to Version 4.0 in some
cases. (Odd-numbered versions since 4.0 have
been dedicated to "bug fixes" rather than
significant feature enhancements.) As it
currently exists, VAX/VMS Version 4.2
incorporates the following security
enhancements:

o 	 A number of "account management"
features including account expiration,
restrictions on days and times of
login, and restrictions on access to
accounts (no dialup, no network,
etc.) •

o 	 A number of password management
features including required change of
initial passwords for privileged
accounts, password expiration,
minimum password length,
dual-password accounts, and a random
pronounceable password generator.

o 	 Features directed toward systems
that support dialup lines or
networks including automatic hangup
and limits on unsuccessful login
attempts directed to an account.

o 	 Access control list and identifier
features allow the system manager to
define arbitrary groups of users,
and allow users to grant or deny
access to files by individual users or
defined groups.

o 	 Selective security auditing features
produce an audit trial of successful
and/or failed attempts at such
operations as user login, access to
files, and use Qf certain
privileges. The audit trail is
directed both to a terminal and a
log file, and can be analyzed by a
reduction procedure included in the
system.

o 	 Features introduced in VAX/VMS
Version 4.0 prevent "disk
scavenging" by insuring that disk
files are erased on deletion, or
that blocks newly allocated to files
are pre-erased. VAX/VMS systems
have always erased primary memory
pages before making them addressable to
a process, so the enhancement to disk
storage allocation eliminates the last
possibility for disclosure of
information by object reuse.

o 	 A "secure server" key prevents users
from implementing "password
grabbers" by guaranteeing that a
user of a hardwired terminal who
presses the break key will always
receive a login prompt from the
operating system. Equivalent
features are provided for users
whose terminals are attached to
terminal concentrators or VAX
network hosts.

o 	 A "Gui~e to VAX/VMS System
Security" was developed along with
VAX/VMS Version 4.0, and updated

for Version 4.2. The guide provides
detailed information for both users
and system managers.

The development of VAX/VMS Version 4. 0
was started before the completion of the
final version of the TCSEC. Nonetheless, the
developers were aware of the Criteria
development process, and tracked the content
of each draft of the TCSEC. A specific goal
of VAX/VMS Version 4.2 was that it meet the
requirements of Class C2, Controlled Access
Protection. VAX/VMS Version 4.2 has been
under formal evaluatio~ as a candidate for
Class C2 since late 1985.

3 	 MANDATORY CONTROLS FOR VAX/VMS

While the primary security evaluation
goal for VAX/VMS Version 4.0 was to meet the
requirements of Class C2 of the TCSEC, it was
understood during the development process
that incorporation of mandatory security
controls was both a feasible and desirable
objective. Resource limitations and
time-to-market constraints prevented the
completion of the mandatory security
features. However, a good deal of work was
completed, and "latent support" for mandatory
security has been present in every release of
VAX/VMS since Version 4.0.

Early in the development of. VAX/VMS
version 4.0, a decision was made that the
system would support 4both . the lattice
security and integrity models, with fields
allocated to support 256 levels and 64
categories for each of the security and
integrity models. The fields were encoded in
a conventional way - a byte each for security
and integrity levels, and a 64-bit quadword
for security and integrity category masks.
These fields, plus an additional 16-bit word
used as a filler, form a five longword
structure known as an "access classification
block", or CLS block. Thus, the total
storage required to represent a security
"access class" (levels and categories for
security and integrity) is 160 bits. As part
of the development of VAX/VMS Version 4.0,
CLS blocks were added to the data structures
for the system's subjects and objects.

The security properties of a subject are
recorded in a CLS block within an "Agent's
Rights Block", or ARB, that includes the
subject's current access class as well as
identity, group and privilege information
that is used for the other protection checks
performed by Version 4.0. The only subjects
on a VMS system are processes.

The security properties of most objects
(files, "mailboxes", logical name tables,
devices, and global sections) that are active
(accessible or "opened") in the system are
stored in "Object's Rights Blocks" or ORBs.
An ORB contains two CLS blocks, specifying
minimum and maximum access classes for the
object, as well as discretionary access
control information. Other objects (e.g.
mounted disk volumes) have CLS blocks as part
of their control structure. While the. major

48

i

storage obj~cts are labeled with CLS blocks,
a few (less critical) interprocess
communication objects are not labeled.

The ORB and ARB are data structures that
apply to active subjects and objects in a
VAX/VMS system -- processes that are logged
in (ARB), and open files, logical name
tables, and so on (ORB's). For mandatory
security controls to be effective they must
also, of course, apply to permanent subjects
and objects registered users, files,
directories and volumes. Thus the system's
permanent data structures were enhanced to
record access class information. The User
Authorization File (UAF) entry for a user
records that user's minimum and maximum
access class. The "volume home block" for a
disk volume records the minimum and maximum
access class for the volume, while the "file

-header" for each file records the file's
access class. In all cases the standard
VAX/VMS 160-bi t CLS block is used to store
the access class.

Volumes and devices may be multilevel
(minimum and maximum access class may differ
for each object, as set by the system
manager) while a file always has a single
access class. Directories are files with
special properties and also have a single
access class. Additional process control and
communication objects (i.e. logical name
tables, global sections, "mailboxes") are
potentially multilevel objects.

In addition to adding access class
information for subjects and objects, the
VAX/VMS Version 4.0 development project also
completed the code required to implement
mandatory controls for files, and extended
the executive's central protection checking
routine to reflect the access class of
subject and object in its decision to grant
or deny access. Access checks and
propagation of access classes were based
directly on the requirements of the5Bell-LaPadula model • A subject may only
read an object if the subject's access class
dominates the object's access class (simple
security condition). A subject may only
write an object if the object's access class
dominates the subject's access class
(*-property or confinement property).

While the code that checks access was
part of VAX/VMS Version 4.0, no provision was
made to allow a subject to have a non-zero
access class. Only in the case of files was
a subject's access class propagated to
objects it created as required by the
Bell-LaPadula model's rules for creation of
objects. Thus, there was no operational
ability to label objects, only a latent one.

A pair of privileges downgrade and
upgrade may be granted to a process to
exempt it from the security and integrity
*-properties respectively. The execution of
the mandatory security access check in
VAX/VMS Version 4.0 is conditioned on a
global "sysgen" parameter: when the
parameter is 1, checking is enabled. The
sense of the encoding of access classes is
such that, as long as the entire access class

is zero, access is always granted. Thus a
user who sets the sysgen parameter
inadvertently will lose some processor time
to access checks but will not find his system
"broken".

The implementation of mandatory controls
in VAX/VMS Version 4. 0 provides a relatively
complete set of structures and support in the
operating system kernel for labeled security
protection. However, no user (or system
manager) interface to the mandatory access
controls is provided, access class is only . t

propagated for files, and mandatory access
checks are not made during some operations
(e.g. mounting disks). In addition, even
though file access failures caused by a
violation of mandatory security will appear
in the system's audit trail, the reason for
such failures (i.e. the incompatible access
classes) will not.

If an installation is to make use of the
mandatory security support in VAX/VMS, it
must have a way to associate character-string
names wi.th levels and categories, to assign
"clearances" to users, to .allow users to
select an access class at login, and to
display access class information on printed
output, in directory listings, and so on. In
addition, a system manager must have
facilities to set up a system, for example
defining the access class ranges of drives,
volumes, and terminals, and must have access
to access class-related information in the
system's audit trail.

A number of Digital's users have
"discovered" the mandatory security features
in VAX/VMS an~ written their own software to
exploit them • The experience of these
users seems to show both the viability of the
implementation of mandatory security controls
in VAX/VMS Version 4.2 and the critical need
of some users for these features.

4 SUPPORTING MANDATORY SECURITY IN VAX/VMS

This section describes the features and
implementation of SE/VMS. In the following
paragraphs, emphasis has been placed on the
SE/VMS features that support mandatory
security controls. As was mentioned above,
integrity labeling is also present and
supported in SE/VMS, but most mention of the
integrity model has been omitted from the
paragraphs below in an attempt to shorten and
simplify the presentation.

4.1 Objectives

The discussion above has described the
support for mandatory security controls that
is present in VAX/VMS Version 4.2, as well as
the support that has not yet been completed.
The objective of the SE/VMS development was
to provide near-term support for mandatory
security. The ground rule of the development
effort was to provide a complete and usable
system, but to defer where necessary support
for features or facilities that would unduly

49

complicate or delay the provision of basic
support. Specifically, it was decided not to
modify any of the existing system data
structures. No effort was made to add
mandatory controls to ariy object that did not
already have a CLS block in its associated
data structures.

4.2 Approach

The technical approach to the
development of SE/VMS was, as might be
expected, to build on the support for
mandatory security in VAX/VMS Version 4.2,
and to add those components that were missing
or incomplete in Version 4. 2. In practice,
this effort required a few Changes to the
basic Version 4. 2 executive, the replacement
of some Version 4.2 modules with enhanced
ones, and the development of some entirely
new modules. Because the VMS development
group enhanced the latent support for
mandatory security that had been present in
Version 4.2 by adding system service routines
to the executive for VAX/VMS Version 4.4., it
was then decided that SE/VMS would be
developed as a set of enhancements to Version
4.4.

The following sections describe the
features that were added by SE/VMS and the
general approaches to implementing those
features. An overview of the implementation
of SE/VMS is provided at the end of ·this
section.

4.3 Names For Access Classes

VAX/VMS stores an access class (in a CLS
block) as a purely numeric value. Therefore
a mapping between the alphanumeric name of a
security or integrity level or category and
the corresponding encoded value is needed
both for input (user registration, login,
etc.) and output (directory listing, printed
output) •

The VAX/VMS rights database supports
mapping between numeric values and
alphanumeric identifiers (names) as part of
the user group identifier mechanism mentioned
above. A range of binary identifier values
was reserved to hold the names of security
and integrity levels and categories. A
simple arithmetic conversion allows the VMS
executive to transform the value
corresponding to a level or the bit position
corresponding to a category into a binary
identifier value. Pre-existing mechanisms
for processing the rights database implement
the mapping between identifier value and
alphanumeric name. VAX/VMS already provides
a utility to maintain the rights database, as
well as the User Authorization File
(Authorize); commands were added to this
utility that allow the system manager to
specify the names of security and integrity
levels and categories.

4.4 System Service Support

A uniform syntax was developed for the
specification of access classes by users
(Figure 1). This syntax allowed for the
specification of classification information
by an alphanumeric string (as described
above), or by numeric value. The VMS
development group provided two new system
services in Version 4.4, one to parse ASCII
access class strings and translate them into
binary CLS blocks and a second to create an
ASCII access class string from a CLS
block.

(LEVEL=SECRET)
{CATEGORY=27)
(LEVEL=TOP SECRET,

CATEGORY= (BLUE,RED)),
(LEVEL={MINIMUM:SECRET;

MAXIMUM:TOP SECRET), CATEGORY=RED)
(LEVEL={MINIMUM7UNCLASSIFIED,

MAXIMUM:255), CATEGORIES={l,3))

Figure 1. Examples of Valid Access Class

Strings

A third system service was provided to set
and get the access classes of those objects
that have associated ORBs. These are the
services that became available with VAX/VMS
version 4.4, and motivated the decision. to
implement SE/VMS under that version rather
than Version 4.2.

4.5 Authorizing Users

The system manager who wishes to add a
user to an SE/VMS system must be able to
specify a "clearance" for that user. The
VAX/VMS Authorize utility is normally used to
register users and specify their security
attributes. Authorize was modified for
SE/VMS to accept user access class
information. A syntax for enteri~g such
information was devised that is consistent
with normal usage in VAX/VMS and Authorfze
(Figure 2). Because VAX/VMS already uses the
"/SECURITY" command qualifier for other
purposes, "/SECRECY" is used to specify the
mandatory security clearance property.

UAF>ADD MODEEN/SECRECY= .
(LEVEL:(MINIMUM:UNCLASSIFIED,
MAXIMUM:TOP SECRET),
CATEGORY:(MAXIMUM:(APPLE,BANANA)))

Figure 2. Specifying User Clearance

A user can be allowed a single
classification, or a range of
classifications.

4.6 Logging In

The VAX/VMS LOGINOUT utility was
modified to assign an access class .. to the
user's process, and to validate that access
class. When a user logs in interactively, an

50

access class for his or her process can be
specified using the standard syntax (Figure
3). If none is specified, the process will
default to the user's maximum authorized
access class.

USERNAME: LIPNER/SEC=(LEVEL:SECRET,
CATEGORY:(BANANA,GRAPE))

Figure 3. Login With Classification Specified

The LOGINOUT utility then validates that
the access class is between the user's
minimum and maximum (as well as validating
the login against the other information in
the UAF) • It also validates the requested
access class for the login against the range
of access classes authorized for the terminal
(See below) • LOGINOUT then stores the access
class in the process' ARB. In the case of a
non-interactive login, such as a submitted
batch job, the process is assigned the user's
maximum access class and validation is
performed against the command, error and log
files specified by the user.

4.7 Volumes And Devices

The system manager of a SE/VMS system
will normally wish to specify the ranges of
access classes for mass storage devices and
volumes and for user terminals~ A new
command and associated utility program allow
the system manager to specify the necessary
parameters for objects with ORBs (Figure 4).

SET CLASS/OBJECT TYPE=DEVICE/SECRECY=
(LEVEL:(MINIMUM:SECRET,
MAXIMUM:TOP SECRET),
CATEGORY:(MAXIMUM:(APPLE,BANANA)))

DUAl:

Figure 4. Setting Device Access Class.

New switches (/SECRECY and /INTEGRITY)
have been added to the INITIALIZE command
(Figure· 5) to allow a volume to be
initialized so that only files within a
specified range of access classes can be
written to it. The INITIALIZE command
operates on a disk volume that is physically
mounted on the VAX system but not yet
logically accessible to application programs.
The access class is stored in the home block
of the disk.

IfI INITIALIZE/SECRECY=(LEVEL:(MINIMUM:SECRET,
MAXIMUM:TOP_SECRET)) USERDISK02

Figure 5. Setting Volume Access Class.

The SET CLASS commands may only be used
by the system manager or a privileged user to
change the classification of objects owned by
the system. Their effect is to set the
minimum and maximum access class values in
the ORB for the specified object. Because
the ORB is a transitory data structure, these
commands must be repeated each time the
system is rebooted. They will normally be

included in a command procedure that is
executed at system startup time before users
may log in. This use of a command procedure
is consistent with normal VAX/VMS practice.

When files on a volume are to be made
accessible to SE/VMS users and programs, an
option of the the SE/VMS MOUNT command
compares the access class ranges of device
and volume and, if the range of the volume is
"within" that for the device, allows the
mount to proceed. In this case, the MOUNT
command copies the access class range for the
volume into the device's ORB, saving the old
device access class information so that it
may be restored when the volume is
dismounted. The MOUNT and SET CLASS commands
allow the system manager to mount a foreign
disk or tape volume at the access class of
the device where the volume is to be mounted.

4.8 Operations On Files Ahd Directories

As was mentioned in the discussion of
mandatory controls in Version 4.0, the
operations of object creation and initial
access (file open) built into VAX/VMS
implement the requirements of the
Bell-LaPadula model in a straightforward
fashion. A newly created file or directory
inherits the access class ~f the creating
process. Opens for reading and writing are
subject to the constraints of the simple
security condition and *-property.

As with any system that implements the
lattice model and a hierarchical file system,
SE/VMS enforces a "compatible" hierarchy in
which the security classes of files and
directories are monotonically non-decreasing
(and integrity classes non-increasing) as one
proceeds away from a volume's root directory.
Any user can create an "upgraded"
directory via the SET CLASS command, but will
then be unable to gain access to the new
directory without logging in at a higher
access class. The files within a given
directory will normally be at a uniform
access class and only directories will be
upgraded.

Any user who owns or uses files at
multiple access classes will require a way to
discover what files and directories are
present at various access classes. The VMS
DIRECTORY/FULL and DIRECTORY/SECURITY
commands (requiring read access to the
directory) have been modified for SE/VMS to
produce a listing of file and directory names
and access classes for user review.

The VAX/VMS BACKUP utility was modified
to preserve the classifications of files and
directories when they are backed up to tape
or disk. Access checks are made during both
backup and restore operations.

4.9 Additional Objects

Because of the structure of VAX/VMS, any
object that has an associated ORB will be
protected by the system's mandatory controls.

51

Logical name tables (used to translate names
used by programs and the VAX/VMS command
language) , global sections (used to map files
into shareable areas of main memory) , and
"mailboxes" (used for interprocess
communication like Unix(tm) pipes) have
associated ORB's and thus are protected by
the system's mandatory controls.

These additional objects are created
dynamically by processes in execution. The
VMS executive was modified to set the access
class of a newly created object of any of
these types to the access class of the
creating process, except in the case of a
global section "backed" by a disk file; in
that case the global section is given the
access class of the file. The access classes
of objects of these types may be altered by
the SET CLASS command (given sufficient user
privilege) and displayed by the corresponding
SHOW CLASS command.

4.10 Labeling Output

For many users, the "bottom line" of a
system that implements mandatory controls is
the ability to produce properly labeled
printed output. As part of the SE/VMS
development, a print symbiont was developed
that verifies the requesting user's mandatory
access to a file, then produces a listing
with labeled header and trailer pages and
optional top and bottom labels on each page.
The layout of the header, trailer, top and
bottom labels are customizeable. A SE/VMS
utility allows the format to be defined for
each unique combination of security level and
categories.

4.11 Auditing

The VAX/VMS security auditing facilities
seemed to audit the "right things" for
SE/VMS, but were insensitive to mandatory
secur1 ty access classes. For SE/VMS, the
ex1st1ng tac111t1es were enhanced to record
access class information where appropriate
(login, file access).

To allow a reasonable level of audit
selectivity at audit trail collection time
and avoid flooding the system's audit log
file, the VAX/VMS executive was modified to
allow system manager selection of auditing of
all file access at or above a selected
security class. A command, SAUDIT, was
implemented as part of SE/VMS to allow a
system manager to select the access class
threshold for auditing (Figure 6) .

SAUDIT/ENABLE/SECRECY=(LEVEL:SECRET,
CATEGORIES:(APPLE,GRAPE)). ·''

Figure 6. Selecting the Audit Threshold Access
Class

4.12 Mail

The VAX/VMS MAIL utility is used to send
messages between users. As distributed with
Version 4.2, it would only be possible to
send mail between users at the unclassified
level. The SE/VMS development project
modified MAIL so that a message can be sent
from a process to any user who could read a
file at the sending process' access class. ,
In some cases, the receiver's copy of the
message may have its access class raised to
the receiver's minimum access class. The
receiving process can only respond with a
message built into the mail program that says
"user HAS READ YOUR MESSAGE".

4.13 Implementation Considerations

The implementation of SE/VMS was
simplified by the level of support for
mandatory security already present in
Versions 4.2 and 4.4 of VAX/VMS, and by the
structure of VAX/VMS. The normal functions
of an operating system kernel are performed
by the VAX/VMS executive. The executive
performs such functions as opening files and
checking access. Support functions are
performed by programs (images) that are part
of the operating system, but run in the
context of the process that invokes them. In
some cases, these operating system images may
have privileges of their own; more often they
inherit any special privileges of the user on
whose behalf they operate.

SE/VMS implements mandatory security
controls in VAX/VMS by first enabling the
mandatory control support features that are
always present in the VAX/VMS executive. In
a few cases, the executive has been modified
(patched) to add features not yet supported
by VAX/VMS. For example, selective auditing
by security access class, and filling in ORBs
with classification information are
implemented by patches to the executive.

A number of the user and system manager
support functions in SE/VMS are implemented
by images that are present, but do not
support mandatory controls, in the standard
VMS product. In these cases, SE/VMS simply
modifies the source programs for the images,
then replaces these images at SE/VMS
installation time. This is the case for the
Authorize, LOGINOUT, and Directory utilities.
In each case, the required modifications are
localized to small segments of the image in
question.

Finally, some of the components of
SE/VMS required the development of entirely
new programs (though perhaps based on
existing VAX/VMS software). For example, the
labeling print symbiont of SE/VMS and the
SAUDIT command are in this category. In this
case, too, SE/VMS simply installs the new
program in a directory where it will be
available to the system manager.

52

5 	 LIMITATIONS, EXPERIENCE AND FUTURE

DIRECTIONS

5.1 Limitations And Support

The sections above should have made
clear the fact that SE/VMS is intended to
provide an initial mandatory control facility
for VAX/VMS. This section considers what is
"not provided" with SE/VMS.

The combination of VAX/VMS Version 4. 4
with SE/VMS provides a fairly complete set of
mandatory control facilities at the operating
system level. Users' processes can create,
delete, read, and write objects at the
operating system level, and those operations
will be constrained by and consistent with
the requirements of the mandatory security
controls.

Two major system objects event flag
clusters and lock blocks - are not labeled.
Event flag clusters are sets of 32 bits,
normally used for posting events, that can be
used for interprocess communications. A
process can access two shared event flag
clusters at a time. Lock blocks are
structures used to control access to shared
resources. They can optionally be associated
with a 16-byte value block that can be used
to communicate information among processes
sharing the resource. Bot\ lock blocks and
and event flag clusters are allocated
dynamically by the system.

There are a few feature shortfalls that
might be expected to be resolved in a
full-fledged system. For example:

o 	 Terminals associated with terminal
servers (such as DECserver-100s) can
not be assigned access classes
individually; all such terminals
must be given the same access class as
a group.

o 	 Some of the auditing facilities are
relatively coarse and not well-tuned
for the mandatory controls. For
example, one cannot tell from the
error coding in the audit trail
whether a file access attempt was
rejected because of the mandatory
controls or the discretionary
controls.

These and other equivalent shortcomings
demonstrate that SE/VMS is still an evolving
system at the operating system level, rather
than a completely finished one.

The area where SE/VMS will present the
greatest challenge to its users is not in the
domain of operating system features, but in
application structure. It is clear that an
ordinary unprivileged VAX/VMS application
program that does not attempt to cross access
class boundaries will function correctly
under SE/VMS. It is equally clear that a
complex application that operates on multiple
files, perhaps of different access classes,
may find itself broken by SE/VMS.

Some complex applications must be
installed "with privilege" in a VAX/VMS

system. Those applications may have
sufficient power to defeat SE/VMS,
eliminating part of the benefit of the
mandatory controls. On the other hand, some
privileged applications (MAIL is an example)
may not have enough power to overcome the
mandatory controls. The key point is that
there is a significant amount of engineering
required to make complex applications operate

rcorrectly in an environment where mandatory
security controls are being enforced, and
that engineering has not yet been done for
the applications that may be asked to operate
under SE/VMS.

SE/VMS may interact in unexpected ways
with VAX/VMS applications. A pool of
specialists has been trained in mandatory
controls in general and in SE/VMS in
particular so they might understand their
effects on applications. Such training can
provide specialists with the skills necessary
to provide support for mandatory controls in
the future. This support, in addition to
basic installation of the SE/VMS software,
could include defining initial security
policy, setting up device and directory
structures, and analyzing the impact of
SE/VMS on applications.

On hearing a description of the features
of SE/VMS, a listener might naturally be
expected to ask "has it been submitted for
evaluation?" Digital believes that SE/VMS
meets many of the TCSEC requirements for
Class Bl, Labeled Security Protection.
However, absent a full developmental
evaluation, it seems likely that there are
specific features that fall short of the
requirements of Class Bl. In addition, the
documentation for SE/VMS is not structured in
accordance with the requirements of the
TCSEC, and the requirements for complete
functional testing of the security features
have not been met. Digital has requested
that NCSC initiate a developmental evaluation
of SE/VMS. The intention of requesting this
evaluation is primarily to provide better
insight into what might be required to make a
future release of VAX/VMS meet the
requirements of Class Bl.

5.2 Experience With SE/VMS

.As part of its evaluation of the impact
of mandatory controls on VMS and its users,
Digital has provided copies of SE/VMS to a
selected set of VAX/VMS users. Because this
paper was prepared shortly after the
evaluation copies of SE/VMS were distributed,
there is no experience to report, It is
anticipated that some comments on us:r
experience with SE/VMS will be included. ln
the presentation of the paper at the Nlnth
National Computer Security Conference.

5.3 Directions For The Future

The discussion above clearly points the
way toward a possible future release of
VAX/VMS meeting the TCSEC requirements for

53

Class Bl. In addition, Digital is continuing
advanced development projects aimed at
evaluating the feasibility of developing a
Class Al security kernel that would be
compatible with VAX/VMS. Advanced
development and architecture studies are also
continuing to examine the impact of mandatory
controls on VAX/VMS layered software
products. An additional focus of advanced
development work is the need for enhanced
security in Digital's DECnet wide-area
network and Ethernet local-area network
products. As these advanced development
projects reach maturity, they are likely to
form the basis for future papers like this
one.

REFERENCES

1. 	 Department of Defense Trusted
Computer System Evaluation Criteria,
CSC-STD-001-83, Department of Defe~se
Computer Security Center, Fort George
G. Meade, MD 20755, August 1983

2. 	 Guide to VAX/VMS System Security,
AA-Y510A-TE, AA-Y510A-Tl, Digital
Equipment Corp., Maynard, MA 01754, July
1985

3. 	 Product Evaluation Bulletin, VAX/VMS
Operat1ng System, Vers1on 4.2,
Report Number CSC-PB-01-85, National
Computer Security Center, Fort
George G. Meade, MD 20755, October 1985

4. 	 Biba, K.J., Integrity Considerations for
Secure Computer Systems, ESD-TR-76-372,
Electronic Systems Division, AFSC, Hanscom
AFB, MA, April 1977

5. 	 Bell, D.E. and LaPadula, L.J.,Secure
Computer Systems: Unified Exposition and
Multics Interpretation, MTR-2997, MITRE
Corp., Bedford, MA, March 1976

6. 	 Technical Description of the VAX/VMS
Version 4 Non-Discretlonary Security
Implementation, SAIC Comsystems,
Chesapeake, Virginia, 1985

CAVEATS

This paper presents the opinions of
its authors, which are not necessarily
those of Digital Equipment Corporation.
Opinions expressed in this paper must not be
construed to imply any product commitment on
the part of Digital Equipment Corporation.

The following are trademarks of the
Digital Equipment Corporation: DEC, DECnet,
DIGITAL, PDP, RSX, VAX, VMS.

Unix is a trademark of AT&T Bell
Laboratories.

54

A VERIFIED LABELER FOR THE SECURE ADA TARGET

William D. Young•

Paul A. Telega

W. Earl Boebert

Honeywell Secure Computing Technology Center

St. Anthony, Minnesota

Richard Y. Kain
Department of Electrical Engineering

The University of Minnesota

Abstract: This paper describes the specification and verification of
a prototype line printer labeler for the Secure Ada Target (SAT) machine
currently under development at the Honeywell Secure Computing
Technology Center. There are two types of constraints on a secure
labeler-functionality requirements on the labeler itself, and constraints
on the context in which the labeler is called. The approach described
addresses both types of constraints. Verifying properties of the labeler
itself is an interesting but straightforward exercise in program
verification-in this case, code level verification. This verification alone,
however, does not ensure that the labeler is unavoidably encountered in
moving text from user domain to line printer or that the output of the
labeler cannot be altered by user programs. Such constraints require the
construction of an assured pipeline and are easily handled by the SAT
type enforcement mechanism. Type enforcement is described and shown
to have broad applicability in handling such context constraints.

INTRODUCTION

Designers of secure computing systems go to considerable lengths to
guarantee the proper segregation of internal information. This care can
be wasted if the information is compromised externally or at the 1/0
interface between the computer and its external environment. Thus, the

DoD Trusted Computer Systems Evaluation Criteria1 (TCSEC) specifies
a labeling requirement on systems at or above the B level of certification.
For human-readable output this requires that:

The TCB [Trusted Computer Base] shall mark the beginning
and end of all human-readable, paged, hardcopy output (e.g.,
line printer output) with human-readable sensitivity labels
that properly represent the sensitivity of the output. The
TCB shall, by default, mark the top and bottom of each page
of ... output with human-readable sensitivity levels that
properly represent the overall sensitivity of the output or that
properly represent the sensitivity of the information on the
page.

This paper describes one approach to satisfying this requirement--a
prototype line printer labeler for the Secure Ada Target (SAT) machine
currently under development at the Honeywell Secure Computing
Technology Center. SAT is intended to satisfy or exceed all of the
TCSEC requirements for Al certification. Among these is the
requirement for design verification. Consequently, the labeler described
here has been designed so that it can be formally verified. This places
constraints on the labeler that make the design somewhat less flexible
than has apparently been true for most related efforts2• 3 . We examine
the implications of the requirement for formal verification on trusted
software Labeling is one of a number of areas which require code which is
commonly called trusted. However, unlike some other trusted software
such as a downgrader4 , we invest trust in the code not because it is
privileged to violate some aspect of the security policy but because its
functioning is crucial to the maintenance of security in the system. For a
discussion of this distinction see 5 .

Our presentation is as follows: in section 2 we outline the security
requirements for a labeler in anAl context. Section 3 describes the SAT

•Also with the Institute for Computing Science and Computer Applications, The
University of Texas at Austin.

prototype line printer labeler and ·the way in which the security
constraints have been met. Finally, we draw some .conclusions in section
4.

THE LABELING REQUIREMENTS

The basic requirement for a labeler is simply to associate the
correct sensitivity label with a document and to guarantee that the label
is affixed in such a way that it will appear in the proper format and
position on the resulting human-readable output. This seems a simple
requirement; for a line printer, for example, simply partition the input
stream into a sequence of pages with an appropriate character string (the
label) inserted at appropriate points in the output stream. Thus, the
labeler procedure takes as input a character sequence and a secu~ity level
(or the ·corresponding human-readable label associated with that level),
and generates as output a character sequence with labels and page breaks
inserte~ at the appropriate positions in the sequence.

However, the labeler is merely one program exec'uting in concert
with many others. Any assurance provided by the labeling process is lost
if the input can be manipulated to insert, for example, top secret
information into an input stream the labeler is to mark as)inclassified ..
Similarly, the labeling requirement is circumvented if the output stream
can be altered to replace any label by some string representing a label for
a lower security level. Thus, there are two components to the labeling
requirements: correctness constraints on the functionality of the labeler
itself, and integrity constraints on the handling of documents in the
"information pipeline• that ends at the line printer physical device.

The correctness constraints are specifications on the labeler code.
There is considerable flexibility in defining these constraints. For
example, the TCSEC does not specify the output page format other than
the placement of the labels; nor does it specify the particular characters
permitted in the output sequence. To restrict the possibilities for covert
channels in the output formatting6 and because of the desire to formally
verify the code, the SAT prototype labeler specification imposes fairly
stringent restrictions on the labeler functionality. These may be stated
as follows:'

AI. The labeler must partition the input stream into pages, each

of which begins and ends with a label. Pages are defined by

the placement of carriage control characters in the output.

This label must be the human-readable character string

associated by the system administrator with the level of the

document represented in the input stream. (We are

considering only single-level documents in this discussion.

Handling of multi-level objects and documents in the SAT is

currently under consideration.) The page size and page width

are device-dependent parameters. Output pages must satisfy

these size constraints and contain only characters from a

certain limited set.

A2. 	The document represented by the input stream must not be

unacceptably altered by the labeling process. Acceptable

alterations include the insertion of labels at the appropriate

places, breaking lines that exceed the permitted line length,

removing characters that are not within the permitted

character set, and deleting characters that would be

overstruck. (The current design does not permit underlining

or highlighting of text by overstriking. This limitation is a

consequence of the way in which lines are maintained in the

pagination process; the limitation could be changed in

55

subsequent designs.) The sequence of printing characters in
the output is a subsequence of the printing characters in the
input.

The constraints on the environment in which the labeler is invoked are
designed to preserve the integrity of its inputs and outputs. This is more
a function of the overall security mechanism in SAT than of the labeler
itself. These constraints may be stated as follows:

Bl. The level associated with the (input) document must be an
accurate representation of the sensitivity of the information
contained in the document. This implies that the level of a
document is not accessible to manipulation by arbitrary user
programs. Moreover, the content of the document is not
subject to alteration by arbitrary user programs.

B2. A stronger restriction is necessary to avoid mislabeling: the
labeled document may only be output on a device for which it
was labeled; no other manipulation should be possible. The
output document must not be accessible to manipulation by
arbitrary user programs.

B3. The labeler is limited to dealing with the files passed as
parameters. That is, the labeler is constrained from accessing
arbitrary files even if the system's general object access
constraints (e.g., the mandatory and discretionary security
policies) would otherwise allow it.

These restrictions on the handling of the document outside the labeler
are more difficult to insure in most systems than the constraints on the
behavior of the labeler itself. Verifying properties of the labeler merely
involves examining the code of the labeler. The other properties relate to
the environment in which the labeler is invoked. They reflect on the way
in which general documents may be handled in the system. Systems that
enforce the Bell and LaPadula model of securitl, for example, typically
guarantee adherence to constraint Bl. Initial assignment of levels is not a
function of the system, but once information has been classified, the
Simple Security Property and the *-Property ensure that high level
information cannot flow into objects at lower levels. The Tranquility
property requires that the level of an object remain fixed throughout its
lifetime.

These mandatory constraints, however, do not prevent the
manipulation of the labeler's output by user programs at appropriate
levels. That is, a program operating on behalf of a top secret user might
be able to alter the labels on a top secret output document without
running afoul of the mandatory constraints. One might encapsulate the
labeler and printer mechanisms so that there is no point at which
intervention is possible. This encapsulation violates the principle of
modular design that dictates that separate functions should reside in
separate modules. Alternatively, one can impose additional integrity
constraints which makes the output file inaccessible to user programs
because their integrity level is too low; this is the SCOMP approach5 .

Boebert and Kain8 have shown that hierarchical integrity approaches
that are sufficient to meet the Bl, B2, and B3 restrictions necessarily
involve trust since data must "flow up• in integrity. The SAT type

/enforcement mechanism addresses these issues with a novel approach
9that subsumes hierarchical integrity policies8• .

Very little work has been done on the labeling problem. Kurth
3 describes a line printer labeling package for an IBM/370-compatible
machine with the MVS operating system. This differs from our work in
that it describes a mechanism used in a single-level system, and is not
formally verified. Rudell2 examines the labeling of screen output at a
fairly high granularity. Again, the system is not formally verified. The
only verified routines similar in spirit to the SAT prototype labeler are
the proofs of the trusted device-driver routines of SCOMP10 . However,
this verification was done at a very high level, and it was assumed that a
process existed which did the labeling correctly. We are not aware of

., any implementation-level proof of a labeler process.

LABELING AND SAT

The treatment of labeling in the SAT system is presented in two
parts. We first examine the labeler itself and the properties that it is
proven to satisfy. These are constraints Al and A2 of the previous
section. We then present the SAT type enforcement mechanism and
show how this preserves the integrity of the output data after it has been
labeled (constraint B2). This mechanism is quite general, and we
indicate how our particular problem is only a special instance of a more
general problem of restricting access to classes of objects.

The Prototype Labeler

The functional correctness of the labeler is defined in terms of
constraints Al and A2 above. The input to the labeler is a sequence of
characters and a level. The output is a sequence of characters that is the
properly massaged version of the input--labels have been inserted at the
appropriate places and the output sequence is a legitimate transformation
of the input. The labeler was fully specified and mechanically verified

12using the Gypsy Verification Environment11• . The complete Gypsy text
is given in the appendix.

For purposes of verification, the labeling process is broken into two
steps. In step one, a paginator process breaks the input into a sequence
of pages of correct size. Extraneous characters are discarded at ·this
point. The paginator is verified to two properties: that the resulting
sequence contains only correct pages, and that the printing characters in
this sequence are a subset of those in the input. It is still conceivable that
the labeler could signal information by the sequence of characters
deleted. We consider this possibility unlikely and don't attempt to
prevent it.

There are two global constants, Logical_Page_Length and
Logical_Page_Width, in the specification that characterize the amount
of space on a line printer page (minus the amount needed to add the
labels at the top and bottom of the page). A correct page has exactly
Logical_Page_Length lines, each of which is a sequence of at most
Logicai_Page_Width printing characters. Printing characters are those
in the ASCII character set between space and "~", a range that excludes
all control characters. (This range was chosen because certain devices
allow device characteristics to be reset by sequences of control characters.
Passing to the device sequences of characters which might reset page
boundaries or selectively disable the print head might vitiate the
labelling requirement. We simply disallow all control characters; a more
selective filter is obviously desirable.) Other characters allowed in the
paginator output are carriage return (CR), line feed (LF), and form feed
(FF); these have their typical meaning in the division of the input into
lines and pages. A FF in the input sequence, for example, causes the
current page to be filled out with null lines and a new page to begin.
Other ASCII characters in the input sequence are discarded. The forinal
(Gypsy) specification for pagination of the output is given by the
following three recursive function definitions:

function CORRECT_PAGE_SEQUENCE (pages: pageseq): boolean =
begin

exit (assume result iff
(pages = null (pageseq)
or

(correct page (first (pages))
a correct:page_sequence (nonfirst (pages)))));

end; {correct_page_sequence}

function CORRECT PAGE (pg: page) : boolean =
begin ­

exit (assume result iff
(size(pg) = logical_page_length
a (all i: integer'

i in [1 . . size (pg) l
-> correct_line (pg[i)))));

end; {correct_page}

function CORRECT LINE (ln: line) : boolean
begin ­

exit (assume result iff
(size(ln) le logical_page_width
a (all i : integer.•

i in [1 ... size (ln) l
-> printing character (ln[i)))));

end; {correct_line} ­

56

This specification may be considered slightly flawed in that references to
printing_ character should not appear in the formatting constraint, but
rather in the textual integrity constraint described below. That is, for a
line to be correct from a formatting standpoint it need only be of the
correct length. Subsequent versions will include this change.

The other crucial property of the labeler is that it not distort the
input. This is handled in a very simple fashion. As the input sequence is
scanned, the printing characters are extracted. Those are the characters
that are placed into the output pages. They are also recorded in a
character sequence purgetxt, which is compared to the input sequence.
The property that is proven is that the sequence of printing characters in
purgetxt is equal to the printing characters of the input sequence
extracted by a call to the function Purge_ Text defined as follows:

function PURGE_TEXT (inseq: text) : text =

begin

exit (assume result =

(if inseq = null (text)

then null (text)

else

(if printing_character (inseq[1])
then inseq[1J

: > purge text (nonfirst (inseq))
else purge_text (nonfirst (inseq))

fi)
fi));

end; {purge_text}..

This property is almost tautologous. It would be much more satisfying
to be able to prove that the the purged version of the final labeled
output is identical to the purged input. This is not possible for two
reasons. Inserting the labels adds printing characters to the output
which were not present in the input. Thus, given the definition of
Purge_Text above, this property is not true unless one ignores the labels
in .the output. But there is no convenient way to distinguish labels
inserted by the labeling process from identical character strings which
might have appeared in the input stream.

Also, the way in which CRs and LFs are handled by the paginator
potentially causes some printing characters from the input to be lost in
the output. A single CR resets the current line to null, which is the
paginator analog of moving the print head to the beginning of the line.
However, this causes any characters on the current line to be lost. Thus,
a proper new line sequence should be in the form of a LF followed by a
CR. The LF causes the current line to be appended to the current page;
the CR sets the current line to null, and (conceptually) positions the
write head at the beginning of the line. This rather curious handling of
CR is necessary to guarantee that the printing characters of the page
sequence are a subsequence of the input, something that would not be
true if the initial characters on a line could be overwritten following a
CR.

~Enforcement ~the ~Environment

Proving the correct operation of the labeler is not sufficient to
ensure that labeling is carried out in accordance with the TCSEC
requirements. It remains to show that the labeled text is not altered
before it can be output. The SAT mechanism that guarantees the
integrity of such text is called the type enforcement mechanism and is

13fully described elsewhere8• , so we merely summarize it here.
Associated with each object in the SAT system is a security level,

an access control list (ACL), and a type. Each subject has an associated
level, user, and domain. The level attributes of subjects and objects are
used in enforcing the mandatory security constraints, and the user and
ACL fields in enforcing discretionary access controls. The mandatory
and discretionary constraints are straightforward interpretations of those
mandated by the TCSEC. It is the use of the subject domain and object
type fields that allows us to guarantee the integrity of the labeled text.
A domain is an abstraction of the role that a subject is currently filling,
and a type is an abstraction of the format of an object. When the
labeler is executing on behalf of a particular subject that subject must be
in a different domain than when executing typical user code. Labeled
text and unlabeled text are of different object types. The labeler domain
is afforded read access to unlabeled text and write access to labeled text,
and is the only domain with write access to labeled text objects. The

..
•:>• and •<:• are the Gypsy operators which add an element onto the end of a

printer device driver is in another domain, the only domain afforded read
access to objects of labeled text type; the printer domain cannot read
objects of any type except labeled text. The relevant type enforcement
constraints are pictured in Figure 3-1.

Figure 1: Information flow through the labeler domain.

Type enforcement constraints are recorded in a matrix, the Domain
Definition Table (DDT), indexed on rows by domains and on columns by
types. An entry in the matrix indicates whether read/write/execute
access is granted a subject executing in the given domain to objects of
the given type. This mechanism allows the construction of an assured
pipeline8 that maintains the integrity of labeled data. Every access is
mediated by the reference monitor, which determines access rights by
consulting the DDT in addition to the mechanisms for determining the
mandatory and discretionary constraints.

With a DDT configured as indicated above, data of unlabeled type
can be manipulated by subjects executing in user domain, but such
subjects have no access to labeled data. The labeler can read unlabeled
data, but write only labeled data. The printer domain permits only
reading of labeled data. These constraints suffice to enforce the rule that
no user process can remove or alter the labels that the labeler has
inserted or signal information covertly by modifying the labeled text.
Attempts to do so are violations of the type enforcement constraints
encoded in the DDT and are prevented by the reference monitor.
Similarly, the labeler cannot alter user files in any way. No text can
bypass the labeler since the labeler domain is the only domain that can
output data of labeled type and the printer domain will input only
labeled text.

The type enforcement mechanism thus provides a solution to the
problem of maintaining the integrity of labeled data. The solution is not
at all restricted to this particular problem but rather provides the
solution to a variety of similar concerns. An encryption device, for
example, must be unavoidably encountered by certain types of data being
propagated onto an unsecure network. This can be guaranteed using the
type enforcement mechanism in an exactly analogous fashion.

The proof of the SAT type enforcement mechanism is similar to the
proof of the SAT mandatory constraints and is fully elsewhere

16described14
• . Briefly, it involves proving that the reference monitor is

unavoidably consulted whenever an access is granted and that the access
decisions of the reference monitor always accord with the constraints
recorded in the DDT. A recent paper describes the formalization and
proof of type enforcement and similar security policies in a general

13context •

CONCLUSIONS

The prototype labeler obviously does not provide all the
functionality one would like in a general purpose line printer labeler.
For example, the design could securely permit some additional characters
to be handled, make use of the features of "smart" output devices such
as resettable device parameters, and allow overstriking. Also, a more
general labeler could be written with device type parameters. Such a
labeler would be passed a device type and consult a table to obtain the
corresponding device parameters. Labeling then would be only one part
of a larger text-formatting effort, with variable results depending upon
the intended target output device. This is the approach, for example, of
the Scribe text formatting system16

. The desire for such increased
functionality must be weighed, however, against the additional effort
that would be required for formal verification of the labeler properties.

Previous verified secure systems have been formally verified at the
design level. It has been our intention to push verification of the SAT
system as close as possible to the implementation level. Note that this
actually provides a level of assurance beyond that required for Al
certification. The traditional view has been that code-level proofs are
beyond the current state of the art in program verification. We intend
to test that assertion. The labeler code, for instance, is written in

sequence; •a• denotes sequence concatenation. executable Gypsy code and requires only a hand or mechanical

57

translation to the actual implementation language, a straightforward
process for the constructs involved. The Gypsy Verification Environment
contains mechanical tools for translating Gypsy programs to Ada or to
Bliss.

The requirement that the labeler be formally verified placed
constraints on its size and complexity. The proof logs of just the
paginator routine and accompanying lemmas, for instance, are some 150
pages in length and the proof is rather tedious. This is more a reflection
on the state of program verification than on the inherent complexity of
the code. Still, increasing the functionality increases the difficulty of
verification substantially. The experience gained in proving the simple
prototype labeler leads us to believe that our subsequent efforts can be
more ambitious. However, we are not discounting the size of the effort
involved.

A labeler might take advantage of the special functionality of the
intended output device. However, "smart" devices are likely to afford
increased opportunities for covert channel exploitation. An output device
may have internal parameters resettable via some input sequence of
control characters, for example. Reset-ting page size may vitiate labeling
constraints by placing labels outside of physical page boundaries. To
avoid this interference from internal device parameters, certain sequences
of characters would be disallowed as output fro!fi the labeler; it is much
easier to limit the set of acceptable ch;.racters than tp eliminate specific
undesirable sequences of characters. Our approach has been to limit {by
programming fiat) the range of device functionality exploitable by the
user by removing all control characters. An ~lterriative, ·and more likely,
approach would· be to insist that only devices of limited functionality be
used in a secure environment thus eliminating the possibilities for abuse.

The prototype labeler is trusted only insofar as its correct
functioning is crucial to the maintenance of system security, not in any
special privilege it may exercise to violate constraints against information
flow. Use of type enforcement limits the amount of software which must
be trusted in that way, and permits the· verification effort to concentrate
on the functionality of trusted modules. The proofs of the integrity of the
data flows between modules are trivial since they follow from the generic
proof of the type enforcement mechanism.

The use of the type enforcement mechanism has proved a powerful
approach to maintaining the integrity of labeled text. It allows us to
provide an assured pipeline for moving unlabeled user text through the
labeler to the line printer without the danger that the labels could be
altered at any intermediate point. Having the type enforcement
mechanism as an integral part of the security apparatus· permits us to
construct such an assured pipeline in any similar circumstances rather
than to construct an ad hoc solution for each new circumstance.

Acknowledgements: This effort has been ·supported by U.S.
Government Contracts MDA904-82-C-0444 and MDA904-84-C-6011. We
wish to acknowledge the help of our colleagues at the Honeywell Secure
Computing Technology Center, particularly Tom Haigh and Chuck
Ferguson, and of the Gypsy group at the University of Texas, especially
Don Good, Mike Smith, Bill Bevier, and Larry Akers. Our work has
benefited greatly from conversations with the staff of the National
Computer Security Center, MITRE, and GTE. Pat Engelking of
Honeywell Communications Resources provided valuable editorial
assistance.

APPENDIX: GYPSY CODE FOR THE LABELER

scope labeler_LP

begin

type LEVEL_TYPE = pending;

type TEXT = sequence of character;

type LINE = sequence (logical_page_width) of character;

type PAGE= sequence. (logical_page_length) of llne;

type PAGESEQ = sequence of page;

const LOGICAL_PAGE_LENGTH: integer = pending;

const LOGICAL_PAGE_WIDTH integer = pending;

lemma PAGE PARAMETERS POSITIVE =

logical_page_length ge 1

& logical_page_:width ge 1;

function LF : character =

begin

exit (result = scale (10, character));··

result .- scale (10. character):;·

end; {LF}

function FF: character =
begin

exit (result = scale (12, charac"r));

result : = scale (12, character);

end; {FF}

function CR: character = '· -·
begin

exit. (result = scale (13,. character));

result := scale (13, character);

end; {CR}

function SP: character =
begin

exit (result = scale (32, charac-ter));·

result := scale (32, character);'

end; {SP}

function PRINTING_CHARACTER (c: character): boolean
begin

exit (result iff c in (SP .. ·-));

result := (c in (SP .. •-));

end; {printing_character}

lemma SP IN PRINTABLE SET =

sp.in [sp .. •-J; ­

lemma CARRIAGE CONTROL NONPRINTING =
not printing_character (CR)

& not printing_character (LF)

.t not printing_character (FF);

function N LINE FEEDS (n: integer) :' text =
begin - ­

entry n ge O;
exit (result =

(if n = o
then null (text)
else N llne feeds· (n-1) <: LF

!1)); - ­

var i: integer := n;

result := null(text);

loop

if i = 0 then leave end;

result := result <: LF;

i := i - 1;

end; {loop}
end; {n_llne_feeds}

function N BLANKS (n: integer) : text =
begin ­

entry n ge O;
exit (result =

(lf n = 0
then null (text)
else N blanks (n-1) <: SP

fi)); ­
var i: integer := n;

result := null(text);

loop

1f i = 0 then leave end;
result :=result <: SP;
i := i - 1;

end; {loop}
end; {n_blanks}

function N NULL LINES (n: integer) : page
begin - ­

entry n ge 0;
exit (result =

(lf n = 0
then null (page)
else N null llnes (n-1) <: null (llne)

!1)); - ­

var i: integer := n;

result := null (page);

loop

if i = 0 then leave end;

result :=result<: null(llne);

i := i - 1;

end; {loop}
end; {n_null_llnes}

58

procedure PAGINATOR (inseq: t.ext.;
Yar purget.xt.: t.oxt.;
var pages: pagesoq)

begin
exit. purget.Xt. = purge_t.ext. (1Dseq)

a correct._paga..:.seque!lc• (pages);

val" curreat_column.,:.position: integer := 1;

-..r current rov posit.ion: 1Dt.ager := 1;

var currint.)nput.JOSit.ion: int.eger := 1;

Yar curreat page: page := null (page) ;

Yar current)1De: line := null (line);

pages := null (pageseq);

purgetxt := null (text.);

loop

assert.

purget.zt.

=purg~_t.ext (inseq[l .. current_input.Jostt.ion - 1])
a correct_paee_seqlience (pages)
a correctJar.tialJage (currntJage, currant._lina.

current_rOVJO&ition.
., currut._colllmn_position)
a size Ccurr~Jit_page) = currant_rov_position ~ 1
a size (current_line) : C!lrrent_colusn..:_position - 1
a current_rov_position in [1 .. logical_page_length]
a current_colllsnJOsition in [1. .logicalJage_vidt.hl;
if current~input_position = size(insaq) + 1

then leave

end;

1f inseq (current._1nput_posi t.ion) = CR than

curront_line := null(line);
curront_colusn_pC!Sition := 1;

else
1f inseq (current_input_posit.ion) = FF than

current_pago := curront._paga <: current_line
I N_nul1_lines (logical_page_langt.h

- currut._roVJOSition);
pages := pages <: currant page;
currntJage := null(page);
current_rovJosition := 1;
current line := null (line);
Cllrrent:colUmn_position := 1;

else
1f 	(inseq (currut_input_position) = LF) then

current_page := current_page <: current_l1ne;
1f current_rov_position = logical_page_longth
then

pages := pages <: current_page;
currut_page :=null (page) ;
currut_rov_position := 1;

else
currut_rov_position

:= curront_rov_position + 1;
end;
current line := null (line)

I N=blanks (current_column_posit.ion - 1);
else

if printing..:.character
(inseq (current_input_position)) t.hen

purgetxt. := purgetxt
<: inseq (currant_inputJosition);

current. line := current. line
- <: inseq (curront_input_pos1t.ion);

if curront._coluiDn_posit.ion
logicalJage_vidt.h

t.hen
current._page := current._page

<: currant. line;
current. line := null (line) ; ­
eurren(coliiiDn_posit.ion := 1;
1f currant. rov posi t.ion

= logica(pago_lengt.h
t.hen

pages := pages <: current._page;
curreftt. _page := null (page) ;
current._rov_posit.ion := 1;

else
current._rov_posit.ion

:= current._rov_posit.ion + 1;
end;

else
curront._columnJosition

:= current._column_posit.ion + 1;
end; {if}

end; {1f}
end; {1f}

ead; {1f}
end; {if}
curront._input._posit.ion := current._input._posit.ion + 1;

end; {loop}
currollt.Jiis• := currut._pago <: current._line

N_null_lines (logical_page_lengt.h
- current._rov_posit.ion);

pages := pages < : currant_page ;

ead; {paginat.or}

funct.ion PURGE TEXT (inseq: t.ext.) : t.ext. =

begin ­

exit (assume result =

(if 	inseq = null (text)

then null (text.)

else

(1f print.ing_character (last.(inseq))
then purge_text. (nonlast (inseq))

<: last Cinseq)
else purge_text. (nonlast (inseq))

fi)
fl));

end; {purge_text.}

function CORRECT LINE (ln: line) : boolean
begin ­

exit. (assume result iff
(size(ln) le logical_page_vidth
a (all i: integer.

i in [1 .. size (ln)]
-> printing character (ln [i]))));

end; {correct_line} ­

function CORRECT_PARTIAL_LINE (ln: line;
current._col_position: integer)

boolean =
begin

oxit (assume result iff
(current._col_position in [1 .. logical_page_vidth]
a correct i1ne (ln))) ;

end; {correct_partial:line}

function CORRECT_PAGE (pg: page): boolean
begin

oxit (assume result iff
(size (pg) = logical page length
a (all i: integer, - ­

i in [1 . . size Cpg)]
-> correct_line (pg(i]))));

end; {correct_page}

function CORRECT_PARTIAL_PAGE (current page: page;
current:line: line;
current_rov_posit.1on: integer;
current._col_posaion: 1Dt.eger)

: boolean =
begin

exit (assume result. iff
(correct._part.ial_line (current. line.

currant:_col_posit.ion)
a current._rov_posi t.ion in (1. .log1cal_page_lengt.h]
a current._rOVJOSit.ion

=size(current._page • (seq: current._line])
a (all i: int.eger.

i in (1 .. size (current page)]
-> correct_line (current_page [1])))) ;

ead; {correctJartial_page}

function CORRECT PAGE SEQUENCE (pages: pagesaq) : boolean
begin - ­

exit (assume result iff
(pages =null (pageseq)
or

(correctJage (last. (pages))
a correct_page_sequence Cnonlast (pages)))));

end; {correct_page_ sequence}

lemma PURGEABLE_CHARACTER_EXTENSION_LEMMA (inseq: text;
c: 	character)

not printing_character (c)

-> purge_text (inseq) = purge_text (inseq <: c);

lemma NONPURGEABLE_CHARACTER_EXTENSION_LEMMA (inseq: t.ext.;
c: 	character)

printing_character (c)
-> (purge_text (inseq) <: c) = purge_text (inseq <: c) ;

lemma SIZE_N_NULL_LINES Cn: integer) =
n go 0

->
size(n_null_lines (n)) = n;

lemma SIZE N BLANKS (n : integer)
n go 0-­

->
size (n_blanks Cn)) n;

59

I

http:paginat.or
http:purget.zt
http:purget.Xt
http:purget.xt

lemma N BLANKS ALL BLANK (n, i: integer)

(n-ge 0 &-i i;:; [1..n))

-> n_blanks (n) [i) = sp;

lemma N NULL LINES ALL NULL (n, i :integer)

(!:in [1. .n)-) ­

->

n_null_lines(n) [i) = null (line);

lemma LINE_INDEX_LEMMA! (ln, more : line; i : integer)

i in [1. . size (ln)) -> (ln @ more)[i) = ln [il;

lemma LINE INDEX LEMMA2 (ln, more : line; i : integer)

i in [size (ln)+1 .. size (ln) +size (more))

->
(ln @ more) [i) = more [i-size (ln)) ;

lemma TEXT INDEX LEMMA! (txt,more : text; i: integer)

i in u-:-.size(txt)) -> (txt@ more) [i) = txt[i);

lemma TEXT_INDEX_LEMMA2 (txt,more :text; 1 :integer)

i in [size(txt)+1. .size(txt)+size(more))

->
(txt @ more) [i) = more [i - size (txt)) ;

lemma SEQUENCE_INDEX_LEMMA! (ppg, more: page;
i: integer) =

i in [1. .size(ppg))

->

(ppg @ more) [i) = ppg[i);

lemma SEQUENCE_INDEX_LEMMA2 (ppg, more: page;
i: integer)

i in [size (ppg) +1. . size (ppg) +size (more))

->

(ppg @ more) [i) = more [i-size (ppg)) ;

lemma SEQUENCE_ELEMENT_LEMMA (elem :line; ppg :page)

elem in ppg

iff

some i :integer, i in [1. . size (ppg)) &

elem = ppg[i);

lemma EXTEND_TO_PAGE (current_page : page;
current._line : line;
currant. row position.

curr;nt ~olumn position : ·integer)
correct._partial_page (current_pag;. current_line ..

current row position ..
current:colUmn_position)

-> correct_page (current_page <: current_line
@ n null lines (logical page length

- - - current:_row=position));

lemma ADD_CORRECT_PAGE (pages : pageseq;

current_page : page;

current line : line;
current:row_position,

current column position : integer)
correct_page_sequence (pages) ­

.t correct_partial_page (current._page. current_line.
currant_row_posit.ion.
current_column_posi tion)

-> correct_page_sequence
(pages @ [seq: current_page @ [seq: current_line)

@ n null lines (logical page length
- - - curre;:;t_row_position)));

lemma EXTEND_LAST_LINE (current_line: line;
current_page: page;
pages: pageseq;
c: character)

correct page sequence

(pages <: (current_page <: (current_line)))

& printing_character (c)
& size (current_line) + 1 le logical_page_width

-> correct page sequence
(pages <: (current_page <· (current_line <· c)));

procedure LABELER (inseq: text;
var purge txt: t.ext.;
va.r out.seq: t.ext.;
lvl: level_type) =

begin

exit purgetxt = purge_text (inseq)

& correctly_labeled (outseq, lvl);

var pages: pageseq;

var label: text;

label := associat-ed label (lvl);

paginator (inseq, purgetxt, pages);

outseq := null (text);

loop
assert. correctly_labeled (outseq, lvl)

& label = associated label (1vl)
& purgetxt = purge_text (inseq)
& correct_page_sequence (pages);

1f pages = null(pageseq) then leave; end;

outseq := labeled page (last (pages), label) @ outseq;

pages := nonlast (pages);

end; {loop}

end; {labeler}

function ASSOCIATED_LABEL (lvl: level_type): text =
begin

exit (assume size (result) le logical_page_width);

pending;

end; {associated_label}

function LABELED_PAGE (pg: page; label: text): text
begin

entry correct_page (pg);

exit correctly_labeled_page (result, label);

va.r 1: 1nt.eger := 0;
result := [seq: FF, LF, CR) @ label @ [seq: LF, CR);
loop

a.ssert. correct.ly_labeled_part.1al_page
(result, label, 1)

& correct_page (pg)
& i in [0 .. logical_page_length);

1f (i = logical_page_length) then leave; end;
result:= result@ pg(i+l)@ [seq: LF, CR);
i := i + 1;

end; {loop}

result := result @ [seq: LF, CR)

@ label @ [seq: LF, CR);

end; {labeled_page}

function CORRECTLY_LABELED (outseq: text;
lvl: level_type): boolean

begin
exit (assume result iff

(if (outseq = null (text))
t.hen 'true
else

(some pg: t.ext.~ some out.seq2: t.ext..
((outseq = pg @ outseq2)
& correctly_labeled_page

(pg, associated_label (lvl))))
fi));

end; {correct.ly_labeled}

function CORRECTLY_LABELED_PAGE (pg: text;
label: text) : boolean

begin
exit. (a.ssume result. iff

(some body: text,
((pg = [seq: FF, LF, CR) @ label

@ [seq: LF, CR)
@ body @ [seq: LF, CR) @ label
@ [seq: LF, CR))

& correct page body

(body, l;;gical_page_length))));

end; {correctly_labeled_page}

function CORRECTLY_LABELED_PARTIAL_PAGE (outseq: text;
label: text;
i: integer)

: boolean =

begin

exit. (assume result. iff
(some body: text,

((outseq = [seq: FF, LF, CR) @ label
@ [seq: LF, CR) @ body)

& correct page body (body, i)))) ;
end; {correctly_labeled=page}

function CORRECT_PAGE_BODY (body: text; pagesize: integer)
boolean =

begin
axit. (assume result. iff

(1! pagesize = o
t.hen t.rue
else

(some ln: 'text.. some body2: t.ext.~

((body = body2 @ ln @ [seq: LF, CR))
& correct page body

(body2-;- pagesize - 1)

& correct_line (ln)))
fi));

end; {correct_page_body}

end; {scope}

60

http:correct.ly

References

1. 	 Department of Defense, "Trusted Computer Systems Evaluation
Criteria", CSC-STD-001-83, August 15, 1983.

2. 	 Rudell, Mindy, "Labeling Screen Output", Proceedings of the
Symposium on Security and Privacy, IEEE, 1985, pp. 237-240.

3. 	 Kurth, Helmut, "Paper Output Labeling in a Dedicated System
Running under MVS", Proceedings of the 8th National Computer
Security Conference, NBS, 1985, pp. 86-90.

4. 	 McHugh, John, "An Emacs-Based Downgrader for the SAT",
Proceedings of the 8th National Computer Security Conference,
NBS, 1985, pp. 133-136.

5. 	 Vickers Benzel, T., and D.A. Tavilla, "Trusted Software
Verification", Proceedings of the Symposium on Sec·ut·ity and
Privacy, IEEE, 1985, pp. 14-31.

6. 	 Lampson, Butler, "A Note on the Confinement Problem", Comm.
of the ACM, Vol. 16, No. 10, October 1973, pp. 613-615.

7. 	 Bell, D.E., and L.J. LaPadula, ""Secure Computer System:
Unified Exposition and Multics Interpretation"", Tech. report
MTR-2997, MITRE Corp., July 1975.

8. 	 Boebert, W.E., R.Y. Kain, "A Practical Alternative to the
Hierarchical Integrity Policies", Proceedings of the 8th National
Computer Security Conference, NBS, 1985, pp. 18-27.

9. 	 Kain, Richard Y., W. Earl Boebert, "Domains and Role
Enforcement", to appear..

10. 	 Good, Donald I., "SCOMP Trusted Processes", ICSCA Internal
Note 138, The University of Texas at Austin.

11. 	 Good, D.I., R.M. Cohen, C.G. Hoch, L.W. Hunter, and D.F. Hare,
"Report on the Language Gypsy, Version 2.0", Tech. report
ICSCA-CMP-10, Institute for Computing Science, University of
Texas at Austin, September 1978.

12. 	 Good, D.I., B.L. Divito, M.IC Smith, "Using The Gypsy
Methodology", Tech. report, Institute for Computing Science,
University of Texas at Austin, June 1984.

13. 	 Haigh, J.T., W.O. Young, "Extending the Non-Interference
Version of MLS for SAT", Proceedings of the 1986 Symposium
on Security and Privacy, IEEE, 1986, pp. 232-239.

14. 	 Boebert, W.E., W.O. Young, R.Y. Kain, S.A. Hansohn, "Secure
ADA Target: Issues, System Design, and Verification", Proc.
Symposium on Security and Privacy, IEEE, 1985.

15. 	 Young, W.D, W.E. Boebert, R.Y. Kain, "Proving a Computer
System Secure", Scientific Honeyweller, Vol. 6, No. 2, July 1985,
pp. 18-27.

16. 	 Reid, Brian K., Scribe: A Document Specification Language and
its Compiler, PhD dissertation, Carnegie-Mellon University,
October 1980.

61

LIMITATIONS OF DIAL-UP SECURITY DEVICES

Eugene F. Troy, CDP

National Bureau of Standards

Institute for Computer Sciences and Technology

Bui I ding 225, Room B-266

Gaithersburg, MD 20899

(301) 921-3551

ABSTRACT

A number of hardware devices intended to
Improve dial-up communi cat! ons securIty have
recently been Introduced to the commercial
market. These devices can be separated for
discussion Into six major groups, according
to their primary protection objective. The
six groups are: host port protection
devices, user terminal security modems, user
authentication devices, terminal identifica­
tion devices, I ine encryption devices, and
message authentication devices.

Many claims have been made about the
degree of protection afforded by these
mechanisms. In contrast, there are persis­
tent rumors from the "hacker underground"
that the security of some of these devices
can be broken. Also, several problems have
been Identified In administering this family
of devices, some of them economic or practi ­
cal and others directly related to security.
This paper reviews the classes of devices
available, describes their basic characte­
ristics via examples, discusses typical
security flaws and implementation weaknesses,
and recommends a series of approaches to
overcome these problems.

STATEMENT OF THE PROBLEM

Almost every computer of any size has one
or more ports which are connected via modems
to the public telephone system <POTS). it
has become a popu I ar hobby of teenagers and
others to identify these computers and
explore them in various ways, some of which
are disruptive to business operations. In
recent years, there have been growing
Indications that less savory Individuals,
such as spies and criminals, are using the
same techniques as "hackers", penetrating
computer systems In order to steal valuable
Information or to defraud organizations.
This paper makes no distinction of motives,
referring to all Instances of attempted or
actual access by unauthorized persons as
"penetrations" and the persons themselves as
"intruders".

To counter this threat, good access
control security Is now mandatory for Sill¥
computer system connected to POTS. In most
cases, the computer's operating system can
provide an adequate level of access control
If Its security-related features are used
properly. However, many smaller operating
systems do not provIde these features, and
many more systems are Improperly administered
to the extent that severe weaknesses exist.
If this security Is not available through use
of the computer system's own capabi llties,
then specialized hardware security devices
may be used to augment or supplant the

securIty features and provIde the necessary
level of protection.

These hardware devices used for dial-up
security are a mixed blessing. Technical
weaknesses In the design and implementation
of some of these products may exist which In
themselves offer the intruder an avenue of
approach, effectively negating their useful­
ness. In addition, there often are admlnts~
tratlve drawbacks to the use of these
security devices, In the form of unjustifi ­
able extra costs and administrative burdens.
Potential and current users of the dial-up
security devices need to examine these
weaknesses and drawbacks carefully so that
security and effectiveness may be improved by
correct usage of the devices.

NATURE OF THE THREAT

There is no doubt of the growing penetra­
tion threat to computers with dial-up access
to the POTS. A number of factors Increase
that threat to the point where it must be
taken seriously but without over-emphasis.

Openness of Dial-Up <POTSJ Network. For
several years, it has been possible for
anyone with access to a telephone connected
to POTS to dial directly almost anyone else
with the same access In this country and most
other countries of the free world. The only
Impediment to this access is knowledge of the
target's telephone number. A very small
number of protective measures are available
i n some I o c a t i o n s f o r P 0 T S , b u t t h e s e a r e
cost I y and not wei I known. These measures
are: unlisted numbers, automatic call ­
tracing, and limited call-In list. In
general, anyone with access to a telephone
and a modem-equipped terminal anywhere In the
world has the potential to become a user of
any computer with dial-up access In the
world. It is known that some of the most
sophisticated penetration attempts on
computers in the United States have come from
Europe and the Middle East.

Ayal!ablllty of Penetration Equipment.
Anyone with a minimal grasp of present
computer technology can readily understand
that no complicated equipment Is needed for
dial-up penetration. Terminal emulation
software Is readily available for all
personal computers, Including those In the
Inexpensive hobby class. Likewise, modems
can be obtained at any computer or electron­
Ics store, with starting prices at less than
$100. One of the most commonly used penetra­
tion instruments Is the Commodore 64, a hobby
computer for which extremely sophisticated
"hacker" software has been written and Is
avai I able on pirate bulletin boards.

62

Intruder Understanding of Technology. Modern
hobbyists have a grasp of computer and
communications technology that Is little
short of awesome in some cases. It must be
accepted as a guiding rule that Intruders, be
they "hackers" or more serious criminals,
know at least as much about technology as
anyone within the target organization. The
on I y facts that they ~ not know are the
specific details of system Implementation In
a particular organization. It appears that
disgruntled employees or other Insiders have
provided even this Information to pirate
bulletin boards and other underground
sources.

Sharing of Penetration Information. The
pirate bulletin boards are an Indication that
Intruders like to share information and brag
about their exploits. Often, this Is the
primary avenue for others to obtain a good
education about the technology and security
protection methods commonly used. This
widespread sharing of Information signifi­
cantly Increases the level of intruder
threat.

NATURE OF VULNERABILITIES

There are some common vulnerabilities in
the operation or administration of computer
systems which make it much easier for Intru­
ders to gain telephone access. It Is a sad
commentary that by far the greatest majority
of known penetrations have occurred by simple
exploitation of prevalent administrative
weaknesses, and not from any technical
sophistication on the part of the intruder.

USERID/Password Administration. The typical
penetration attempt starts out by using
USERIDs and passwords that Intruders know to
bE! commonly used In poorly secured systems.
Pirate bulletin boards often provide lists of
them for novices. The most notorious
examples include the following.

• Any vendor-supplied USERID or password
(the most common and effective penetration
avenue of a I I, because these typ i ca I I y carry
"super-user" privileges).

• Common fIrst or Iast D.AIIIti <pen etr a­
tors often obtain organization telephone
books and try likely names).

• Any common abbreviation, especially
computer-related.

• USERID = password.

• One or two letters or numbers.

• Any ll..QLjf In a dictionary (intruders
are now harnessing on-line dictionaries or
spelling checkers to their penetration
software).

24-hour Dial-Up Accesslbll Jty. It Is remark­
able how many computer systems of all sizes
permit dial-up access at all hours, even
though It may be unl lkely that any legitimate
users may be seeking access outside of normal
weekday business hours. This Is coupled with
the fact that most penetration attempts occur
during non-business hours. Often, the remedy

Is extremely simple: turn off or disconnect
modems when not actua I I y needed.

Operatl ng System Weaknesses. Many operating
systems either do not have many security
features or, more typically, provide the
features but make them optional to the using
organization. Often, the features are viewed
by system software engineers as unnecessary
or as causing reductions In system
performance or ease of use. The I atter may
be true, but the threat from intruders is
growing to such a degree that it is almost

Irresponsible to operate a system with dial­
up access that does not have demonstrably
effective access control.

BASIC DIAL-UP SECURITY REQUIREMENTS

In order to reduce the effectiveness of
intruder penetration via the telephone
system, there are four bas I c requirements
which should be met. Typical mainframe and
minicomputer operating systems, when properly
used, may be able to take care of all or part
of the problem, but no unadorned micro­
computer operating system can do so. If
these requirements are not adequately met by
the host itself, then add-on equipment may be
needed to supplement Its protection.

User I dent If I cat I on and Authentl cat Ion.
This is the keystone of all access control
security. A well administered USERID and
password process Is very Important for
computers with dial-up access, because It is
the first access control mechanism typically
encountered as the user enters a system.
When this capability Is weak or nonexistent
for any reason, a variety of external
hardware mechanisms can provIde or augment
this capabi llty.

Security Event Logging. It is now an
accepted security principle that all dial-up
communications activity between host and user
ought to be monitored in order to uncover
intrusion attempts, or worse, successes. For
larger computers, this can be done routinely
by the system journal. Several add-on
external devices can perform this function as
part of a dial-up user access control strat­
egy.

Limiting the Attacks. If the intruder does
not know the correct access codes, then he
must make many guessing attempts. In some
cases, this is done by the intruder 1 s comp u­
ter, which runs a program that generates and
trIes a series of passwords one after
another. Any mechanisms that limit the
number or speed of repetitive user sign-on
attempts per dial-up connection can help
counter this type of attack.

Concealment of Information. If the Informa­
tion which Is accessible via dial-up connec­
tion Is very confidential or susceptible to
fraud, then it may need to be protected from
disclosure or tampering via wire taps or
other forms of Interception. Any mechanisms
or software that encrypt the Information on
the line can help prevent this condition.

63

in various ways to perform their security
functions.

DIAL-UP SECURITY PEVICES AVAILABLE

To protect dial-up communications with
hardware security devices, the communications
link itself is secured independently,
external to the computer hardware or soft­
ware. Several types of devices are avai I able
thatapply one or more of the dial-up
protection functions described above to the
communications link.

BENEFITS OF SECURING PIAL-UP LINKS

The primary advantage in using hardware
security devices is that it reduces the
degree of dependence on other software or
procedural security mechanisms in the system.
Many of those mechanisms may not be strong
enough or may not even be read i I y ava i 1 ab 1 e
for a speer f lc computer system. There are
two other notable benefits to be gained by
applying hardware protection to the communi­
cations I ink.

Separation of Function. in using hardware
security devices, separation of function is
gained by:

• Externa!lzatlon of a set of security
functions outside the machine, physically and
logically separated from the host.

• Kernellzatlon of a portion of the
security functions into a single dedicatee
mechanism for reduced and controlled access
via communications.

Additional Layers of Protection. Hardware
security devices on the system's communica­
tions links provide formal protection of the
network ltsel f. Most hardware protection is
designed to control authorization to a single
system object, the communications port.
Other software and procedural security
mechanisms should still be used to reduce
logical exposure to the remainder of the
system.

THE SIX TYPES OF HARPWARE

In protecting any set of dial-up communi­
cations ports, two basic approaches can be
taken wh l ch i nvo I ve adding hardware protect­
ive devices to the Oial-up circuit. These
approaches are referred to as the "one-end"
and "two-end" solutions, depend! ng upon the
placement and configuration of the protective
hardware.

The "One-end Sol uti on• -- Two Types. This
solution provides a separate password on the
communications link itself, by using hardware
to protect only one end of the communications
link. Two types of devices are available,
one for in.stallatlon on the host computer and

. i the other on the user's terminal. These
devices perform a basic user authentication
screening function, normally without the
requirement for users to obtain any extra
equipment.

The "Two-end Sol uti on" -- Four Types. More
security is gained by using a matched set of
hardware protective devices for ~ ends of
the dial-up circuit (computer and terminal).
These devices can communicate with each other

64

The four types of equipment are divided
up by function. Three perform authentication
functions, respectively, of the user, the
user's terminal or location, and the message
or data transmitted via the circuit. The
fourth type is line encryption, which
performs a concealment function on the trans­
mitted data, and may also be construed as
authent l cat i ng the user or or l g I nat 1 ng
terminal via the process of encryption key
exchange.

"ONE-ENP" PEVICE FEATURES

The first group of devices to be dis­
cussed improves user access control by
performing a prel imlnary call-screening or
authentication function. Typically, such a
device is totally independent of the compu­
ter. Devices in this category are called
"one-end solutions", because they are used on
only one end of the communications circuit
between the host and terminal, but not both.
Most versions of one-end protection devices
are l n s t a I I e d at t h e host com p u t e r end , b u t
some newer mu I tl-function dev lees are
connected to the user's terminal.

Host Port Protection Pevlces cppps>. A PPD
is fitted to the communications port of a
host computer, providing the function of
authorizing user access to the port itself,
prior to and independent of the computer's
own access control functions. It is specifi­
cally designed to help control terminal
access when dial-up communications are used.

Depending on design, a PPD may operate
between the host and modem (digital side), or
it may operate between modem and telephone
set (analog side). Some modems include PPD
functions in a single unit. Once connection
and user validation take place, the PPD
becomes passive in the circuit. The four
primary features of PPDs are described below.

• Password Tables. AI I PPDs require the
user to enter a separate authenticator or
password in order to access the computer's
dial-up ports. This set of external password
tab I es in dependent of the computer's opera­
ting system is the primary protection given
by PPDs. All of these devices limit the
number of sign-on attempts per telephone
connection, in order to deter repetitive
attacks.

• Call-back to Originator. Most PPDs ~
D.Q.1 have or need this capab lllty, although
some persons erroneous I y ca I I a 1 I PPDs "ca I 1­
back devices". This feature, when present,
is used as a second I eve! of external user
authentication. A PPD wIth ca I 1-back w I I l
ordinarily require the user to enter a PPD
table password, and then wi II disconnect the
I lne. The PPD then Identifies the user's
telephone number that matches the password
and makes a return cal I to the user for host
connection.

• Hiding the Port. All PPDs have some
ability to "camouflage" the computer's
dial-up ports so that the computer cannot be
identified by an unauthorized caller. Some

PPDs located on the "analog-side" use a
synthesized human voice to hide the modem
tone on initial connection. "Digital side"
PPDs send their own screen displays via the
modem to the user's terminal which masks the
kind of computer they are protecting, vital
information needed by the Intruder to carry
out his attack.

• Attack Signalling. Most PPDs are able
to provide some form of warning signals or
r e cord s of d I a I -up attack • Some mode I s use
front-panel display lights, others maintain
I nterna I I ogs in RAM storage, and the most
expensive models use the disk storage of
dedicated personal computers to record many
types of Information about communications
activity.

Security Modems for Users. Several new
devices are part of the trend towards
Integration of security features Into
standard devices. Controlled-access "secur­
Ity modems", Installed on user terminals, are
single-user modems which Incorporate a set of
outbound call-screening security functions to
control access to the host from the user
end.

Security modems wi II not make the
dl a l-out connection until the user enters a
specified password. Inside the modem, these
passwords are matched In a secured table with
dial-out telephone number sequences necessary
to connect the user to specified host
computers. The table also can contain a
complete log-on sequence for transmission to
the host once connection is made, but It Is
advisable not to include the log-on password
In this sequence.

"TWO-END" DEVICE FEATURES

In higher-security systems, password
protection of the port may stilI seem inade­
quate. A more positive identification of the
specific terminal or user may be desired. A
measure of resistance to snooping or tamper­
Ing with communications traffic may also be
needed. The "two-end" approach makes use of
a security device at· the user terminal end
which matches to a device or special software
at the host computer. The four types of
devices that belong to the two-end solution
family are described below.

User Authentication "Tokens". Some two-end
devices perform highly secure authentication
of Individual system users. These devices
are based on the concept of a unique "token"
to be used somewhat like a mechanical
password. A token Is a small item, such as a
plastic "smart-card", given to each author­
Ized system user that must be used to gain
access to the system. Each token has a
special algorithm or some other unique and
non-copyable identifier embedded In it. The
host computer can Identify the user uniquely
by means of the token's distinctive charac­
teristics.

Most varieties of user authentication
tokens are hand-held and require no terminal
attachments. This type of token may take
various forms. Some examples now on the
market include a calculator with special
circuitry, a "smart" plastic card which

displays a time-based authenticator continu­
ously, and a llghtsensltlve wand which Is
designed to read and interpret special
terminal challenge displays sent by the
host.

For most tokens, the user must enter lntc
the token some challenge information sent by
the host. A liquid crystal display <LCD) on
the token then shows the computed resu It of
the challenge. The user must enter this
authentication information via the terminal.
The host reads the authentication Information
and compares It to the "right" answer It has
previously generated and then decides whether
to approve access.

Terminal Authentication Devices. The second
type of device In the two-end solution family
is designed to authenticate a specific user
terminal. Terminal authentication devices
work very much like user authenticators.
They use matching pairs of devices inserted
in the communications circuit. One device is
placed between the terminal and modem, and
the other is attached to the host computer's
port. A typical product includes a four-port
unit for the host end which is able to
generate challenges to the small portable
units that connect to the terminals. Each
terminal unit Is uniquely encoded for
identification by the host unit.

Hybrid versions of terminal authentica­
tors are also available, which include the
capabi I ity to authenticate each user at the
same time. For examp I e, a newer version of
the terminal unit just described has a slot
where each user is to insert their own token
in the form of any pre-val !dated magnetic
striped card (even a bank or charge card).
Another popular product takes a similar
approach, requiring each user to Insert their
own thick plastic card with embedded identi­
fication circuitry into the unique terminal
unit. Both of these products automatically
accept the challenge from the host, use the
algorithm or data in the user's token to
perform the required calculations, and then
transmit the results to the host for verifi­
cation.

Line Encryption Devices. Encryption is the
process of "scrambling" information In a
pre-determined way so that it is unlntell i­
gible to anyone who does not know how to
"unscramble" it. Encryption Is the highest
form of security which can be applied to
dial-up communications, because it has
several attributes which cover most communi­
cations security needs.

First, the primary rationale for using
encryption Is that it conceals the informa­
tion passing over the communications I ink
from disclosure to snoopers. Second,
encryption in some modes can assure the
integrity of the message, so that tampering
or transmission errors can be identified.
(Note that the process of message authenti­
cation, to be discussed next, Is better for
assuring message Integrity.) Third, the
uniqueness of the encryption key which must
be shared by sender and receiver enforces an
extremely high degree of user authentication.
If both sender and receiver share a single

65

key, they must have exchanged it or been
assigned it by a third party.

Encryption devices can take two forms.
In the more trad I tiona I form, the circuitry
is enclosed in a small box that is connected
in series between the port and the modem, on
either end of the communications circuit. In
the newer form, designed tor personal compu­
ters, all circuitry is contained on a single
circuit board that is plugged into one of the
standard slots inside the computer. With the
latter form, it is usually also possible to
use the circuit board for encryption of
internal disk files, in addition to using it
tor communications. With either form, the
host's communications ports are tully protec­
ted from intruders.

Newer and more sophisticated encryption
devIces can be I inked together so that they
automatically Identity each other and
exchange session encryption keys in a secure
way without need tor human intervention.
This takes care of the key management problem
which has troubled encryption users from
antiquity.

Message and Data Authentication Devices.
This approach, designed originally for
electronic funds transfer (EfT), can readily
be used to verify the integrity of any
collection of data being transmitted or
stored and to ensure that it is not a I tered
without being detected. In the usual
communications application, a device uses a
pre-specified key to encrypt selected fields
in a formatted message. Alternatively, the
device may be set to encrypt the complete
contents of any message or data file via the
key.

The device uses the encrypted text to
form the "message authentication code" (MAC),
a cryptographic checksum which it then
appends to the clear-text message or data
tile to serve as a signature or seal. The
recipient must have an identical device which
checks the seal by duplicating the original
MAC generation process with the same key.
Communications links protected full-time by
message authentication devices would be
highly resistant to intruders.

TYPICAL DEVICE WEAKNESSES/DRAWBACKS

The good news Is that the devices descr­
Ibed in the previous section can signifi­
cantly improve a system's resistance to dial­
up penetration. The bad news is that there
1 s no tree I unch, as the saying goes. There
is always a set of negative aspects to be
considered in selecting new products. The
devices may have weaknesses which could in
turn be exploited by intruders, and there are
always some administrative drawbacks in terms
of costs and inherent usage problems.

This section discusses these negative
.
.j
' 	 issues in order to help the system security

manager decide whether to use the devices at
alI and evaluate which of them might be most
beneficial. It is important to note that the
weaknesses or drawbacks discussed here are
D.Q.1 applicable to all devices or models.

TECHNICAL WEAKNESSES

The technical weaknesses of dial-up
security devices Include vulnerabilities in
the way specific devices are designed or the
way they are used. It is clear that adding
securIty devices to a system wiII increase
the security only if the mechanisms are not
themserves flawed and it they are used
properly. A practical analysis of dial-up
security devices indicates that in the worst
case they could even degrade security by
inducing a greater degree of trust than
warranted.

The following discussion is presented so
that the potential or current user of these
devices can better evaluate the device
characteristics required in a particular
application, be better prepared to ask
penetrating questions of device vendors, and
be more cautious about relying upon the
devices too heavily. This informatJon could
also be used tor background purposes in
framing equipment selection criteria.

Pes!gn Weaknesses. These weaknesses are
security flaws inherent in the design of the
protection device. There are known instances
in which intruders have defeated certain
types of the devices because of the way they
operate or are used.

• Extra Passwords or Tokens. Most of
the devices which perform a direct user
authentication function have the inherent
weakness of requiring the user to remember or
carry an additional authenticator (password
or token) beyond those a I ready needed for
system access. Many users have trouble
remembering their ordinary passwords, and
wi II commonly resort to writing them on the
terminal or keeping them nearby. Additional
required passwords will tend to amplify this
problem by making the exposure to surreptl­
t i ous password discovery greater than It
already is. There is a tendency to treat
tokens in a similarly insecure manner by
leaving them near the terminal where they
will be handy, instead of carrying them on
the person and risking the possibility that
they wil I be forgotten at home.

• Weak Password Mechanisms. Adding
port-level passwords to a system with weak
logical access control procedures does not ln
itself assure significantly better security.
The Improvement in security must come from
effective password management procedures,
wherever they are used. Hopefully~ these
procedures can be enforced or at least
supported by the device using them. The
design of devices presently on the market
makes it very easy to assign port-level
passwords with weak structures to users and
then not change them when needed. None of
the devices has a way of Identifying weak or
even repetitive passwords. None provides tor
dating of the passwords to determine their
age or otherwise provide tor mandatory
change. None forces the security admini­
strator to purge the vendor-supplied master
password from the system. Only the call-back
feature is any protection against users
sharing the same password.

66

• Security Event Logging. It was
pointed out earlier that good security event
togging Is important to assure effective
dial-up security by countering penetration
attacks. Many of the add-on hardware
security devices do not provide this capabil­
ity at all or do so In rudimentary fashion.
Others do not store the Information col I ected
in readily available or easy to use form.
This must be considered a weakness.

• Call-back Interception. The cal 1-back
feature on PPDs which use it can be a mixed
blessing. Modern dial-up Intruders typically
have access to many of the techniques used by
"phone phreaks" to trick telephone line
control devices. Some of these tricks have
even been programmed into the hacker software
packages now available via pirate bulletin
boards and other sources. Call-back relies
on the abi I ity of the PPD to drop the
incoming line and initiate a new cal I to the
potential user. If the intruder can trick
the PPD Into falsely sensing a line discon­
nect, then he can stay on the I I ne and thwart
the intent of the PPD 1 s ca I 1-back attempt.
This particular trick will only work when the
PPD 1 s incoming and outgoing I ines are the
same for a parti cuI ar ca I I and the Intruder
has already identified a valid password.

Some PPDs have one set of I ines for
screening incoming calls and another set of
I i nes used on I y for makIng the ca I 1-back
connection. This design approach could make
the Intruder's penetration even easier if the
PPD is not able to recognize an incoming
ringing signal on its outgoing I ines. The
intruder has only to guess one of the
outgoing telephone numbers, given a particu­
lar incoming number, then call the outgoing
line and "camp" on it with a ringing signal.
When the PPD attempts to ca I I out and make
connection with a user, the intruder is there
waiting to intercept the call. Vendors who
make use of call-back should be closely
questioned to determine whether their devices
can defend against attacks such as those
discussed.

• Password Table Security. Devices
which use passwords have a varIety of
procedures and securIty features for adm In i­
stering the password tables. If this
securIty can be penetrated by an intruder,
then the device has been nullified. Some
devices permit any terminal connected to
their Incoming port to gaIn access to the
tables, usually by furnishing a form of
supervisory password. Other devices with
greater security may require the supervisor's
terminal to use a special port. Some may
permit entry into table-changing mode only
when a standard brass key Is inserted into a
master switch. Table-changing procedures
should be evaluated carefully in terms of the
degree of security improvement desired.

• Penetration and Bypass. If an
intruder (including an insider) can gain
physical access to the security device, and
even worse, If he can open it up, then it may
be an easy matter to nullify or bypass it.
Only one port protection device now on the
market stresses physical lmpenetrabi I ity and
has a disconnect alarm. Others have varying
degrees of physical hardness, usually low.

All communications security devices should be
protected by restricted physical access.

• Camouflaging (sign-on clues). Dial-up
security devices are still not very well
known to the hacker community, mainly because
not very many of them are being used yet.
Few attack techniques against specific models
appear to have been developed up to this
time. Such will almost certainly ruu be the
case in the future. Computer hobbyists of
a I I ages have repeated I y demonstrated that
professional software and hardware designers
have no monopoly on insight, ingenuity and
innovation.

Some of the PPDs do not permit the
security administrator to change the sign-on
screens or other initial presentation
features. Being able to change them would
help obscure the identity of the device
itself from an intruder.

Implementation Weaknesses. Weaknesses of
implementation are probably more important in
a pract I ca I sense than weaknesses of desIgn.
If a security device is not used properly, it
may constitute a greater risk than if it is
not used at all. Following are a number of
typical implementation weaknesses associated
with some dial-up security devices.

• Password/Authenticator Problems. One­
end devices make use of passwords to Identify
va I i d users. These passwords are subject to
the same types of administrative problems as
p as swords used w I t h the opera t I n g system or
applications. All password-oriented devices
presently available require the administrator
to assign and manage the passwords, which may
result in the following example problems:
Passwords may be trivial in length or con­
struction, so they can be easily guessed;
passwords may not be removed when no longer
needed; passwords may not be changed frequen­
tly enough; the device vendor password may be
retained, with its attendant supervisory
level of privileges; passwords may be
exchanged between users or shared with those
who have none assigned. This reduces
individual accountability to near zero. A
simi tar set of problems appl les to the use of
encryption without good key management, as
well as to user authentication tokens.

• Incompatibilities With User Terminals.
Some PPDs require a telephone handset touch­
pad or the human voice to enter the user
authentication Information. Other protection
approaches, such as external encryptors and
terminal authenticators, require the user to
place a security device In series between the
terminal port and the modem. Unfortunately,
it is rapidly becoming commonplace for user
terminals (including portable and personal
computers) to be direct I y connected to the
telephone system without voice handsets. or
external modems or both. If this is the
case, then the security devIces wII I not work
without re-engineering the connection between
the terminal and the telephone system. This
will typically require some amount of user
equipment replacement.

• User Needs vs. Enforcement Ability.
Installing security hardware In the dial-up
circuit tends to Induce rigidities in the

67

ways that users are able to Interface with
the host system. In order for some types of
users to connect properly, some of the
des 1red securIty features may have to be
overridden. For example, PPDs with the call­
back feature enabled require the users to
call from a fixed set of terminal telephone
numbers. This Is Impractical If the users,
such as traveling salespeople, are on the
road or use more than one telephone number
for their terminals. The call-back feature
can usually be selectively disabled for these
people, but then some of the user codes are
In effect less secure than others.

This same situation could hold true if
the user securIty devIce were In the form of
a box which must be Inserted In series
between the terminal and the modem, such as a
terminal or message authenticator or an
encryptor. This configuration might not
match the types of terminals and modems some
users have, and would require special (often
less secure) procedures for them.

APMINISTRAIIVE PRAWBACKS

In addition to the technical problems which
may exist In using dial-up security devices,
there are a number of serious administrative
concerns that should be examined before this
equipment Is obtained. These concerns boll
down to money and the problem of I lving with
the devices once they have been placed into
operation.

Cost Factors. The basic money Issue with
respect to dial-up security devices is the
question whether they are cost-ef feet I ve in
reducing penetration risks. There are a
number of cost factors involved, not alI of
them obvious or easy to calculate. When
these are added together for a particular
application, the cost for communications
protection via hardware may become very high.
Here are some of the most significant cost
factors to consider.

• Hardware Cos-ts. All of these devices
tend to be very costly to purchase. One-end
protection Is the cheapest; it can be
attaIned for a mIn I mum of about $200 and a
maximum of about $1,200 per port, depending
on features and level of protection.
However, the two-end devices are much more
complex and costly; prices for complete
systems, Including terminal/user devices and
host dev lees or software can run to as high
as $3,000 per host/term Ina I I Ink, depending
on level of protection desired. These
figures do not Include jnsta!!atlon or
periodic maintenance and repair of equipment
and software, both of which may be substan­
tl al.

• Opera-ting Cos-ts. There are a number
of costs which may be incurred from device
usage and operation, with the following being
some of the most Important. u..s..e..r. costs due
to reduced efficiency may be small incremen­
tally, but can add up quickly. Most of the
devices require the user to take additional
steps and submit to delays In the process of
signing on to the host. In addition, there
can be significant labor costs from adminis­
tering the security system, Including
password or user token management and related

activities. For devices which use call-back,
all the telephone usage tolls would be
1ncurred by the host rather than the user,
which may make It difficult to allocate these
costs properly. On the other hand, call-back
may permit the system administrators to
standardize on a single, low-cost system such
as WATS, and reduce over a I I te I ephone to I I
costs. Finally, some of the two-end devices
make use of application software operating on
the host computer Instead of stand-a! one
hardware, thus Incurring system overhead
costs.

Management And Administration. In addition
to direct and hidd~n cost factors, there are
other potential drawbacks and problems In the
use of dial-up security devices which may
arise. These can be very significant, to the
point of curtailing the usefulness of the
devices. The following are some of the most
important problems In usage that are often
encountered.

• Iden-tifying Valid Users & Privileges.
A problem that is encountered when rigorous
access control systems of any form are
Installed Is to determine correct levels of
user prlvl lege. Many organizations simply do
not have an easy way to correlate specific
valid users with the specific computer
systems and applications they should be
permitted to access, given our modern and
very complex communications environment. Any
particular user may enter a system via dial­
up, direct connect, local area network, wide
area network, and so forth. Certain individ­
uals may be authorized to access one computer
system or application during normal work
hours and use other systems at all hours.
For large systems, it may take months to sort
out this set of user access conditions, and
they may be very difficult to keep current.
This could substantially delay Implementation
of rigid dial-up access controls.

• User Convenience (The Nuisance
Fac-tor). An objection that often arises to
improved security is that it tends to get in
the way of valid users. As noted earl fer,
most types of dial-up security devices
require user overhead in the forms of
additional procedures to follow and insertion
of delays in the connection process. There
may be passwords to remember or special
deylces to carry and manipulate. For the
infrequent user, the extra steps may be very
confusing and frustrating.

• Ma I n"tenance of Au"then"t I ca"tors. In
operating dial-up security devices which use
personal user authenticators or passwords,
there is the major problem of administering a
second password management system, separate
from that used by the host computer. The
procedures for assigning and changing these
communications passwords should be rigorous,
otherwise the rea I protect I on they can of fer
will be reduced. Usually, this means that
more peop I e w i I I be needed to admInister the
system, which may significantly increase
operating costs.

68

RECOMMENDATIONS

The overa! challenge of improving dial­
up security is no different from other types
of security: determining the system's
security needs, evaluating the present state
of security, and selecting the optimal set of
controls to raise that state to the desired
level. This rules out selection of security
hardware unti I it Is determined that these
dev i c e s are c I ear I y j us t i f i e d • Norm a I I y,
there are a number of other less-costly
controls which should be considered before
this justification can be accepted.

The following recommendations wi II aid
the security administrator to act conserva­
tively and still improve resistance against
dial-up Intruders.

1 • System Security Administration. The
first and most important step in improving
dial-up security is to review and correct
present security administration procedures.
Weaknesses in this area are the Single
greatest cause of intruder penetrations. The
focus here should be on ensuring:

• Clear Individual accountability, and

• Uniqueness In Identification and
authentication.

In practice, the key points to stress are
that vendor-supplied USERIDs should~ be
retained on the system, no user should share
a USERID with another, no USERIDs should be
assigned or retained without verified contin­
uing clear need, passwords should be unique
to each user and highly resistant to guess­
Ing, and passwords should be changed with
increasing frequency as the level of security
requirements rise.

2. Operating System Security Features. With
the unfortunate exception of current micro­
computer versions (e.g., PC-DOS), all opera­
ting systems have some features which can be
used to improve their abi I ity to counter
dial-up penetration attempts. Often,
however, system managers resist using these
features because they tend to reduce the
system's efficiency somewhat or impede user
flexibility. On the other hand, installing
external security equipment has similar
effects and can be more costly. Some of the
operating system features which are most
usefu I are:

• Use the system's journa!!lng capabil­
Ity to capture all security-related even+s,
such as invalid attempts to I og-on or execute
restricted programs, creation of new user
accounts, changing passwords, and the I ike.

• Use the system's permission codes
(read/write/execute) to restrict access to
f i I es and programs. Set system defau Its to
make all programs and flies private, which
wl I I require their owners to grant specific
permissions to others as needed.

• Use the system's ability to block
Invalid log-on attempts, in all forms such as
restricting number of attempts to a maximum
of three and then timing-out ports for a
short time.

3. Standard Equipment with Security
Features. It makes good sense to purchase
standard communications devices which have
innate security features, rather than to
obtain extra equipment solely to provide the
same form of security protection. Various
manufacturers now provide security-equipped
devices such as: modems, protocol conver­
ters, multiplexers, port contenders and
expanders, and data switches. The security
features may inc I ude password tables, call­
back, encryption, user authorization by time
of day, port restrictions, and others.

4. Port Protect Ion Dey Ices (PPDs). I f the
host system's user Identification and authen­
tication procedures cannot be improved
eas i I y, and the system requires a moderate
improvement in dial-up security, then PPDs
may provide the added protection necessary.
It is important to remember that PPD password
management must be at I east as strong as on
the host, because the PPD's main function is
to supplement that of the host.

Additional recommendations if PPDs are
used:

• Apply the cal !-back feature with
caution. It may not be needed or may induce
additional weaknesses. S"'"rong password
procedures for the PPD are better in the long
run.

• Use maximum camouflage In PPD sign-on
screens, so that intruders canno-t identify
either the PPD or the host.

• Use the PPD's logging features and
reyjew the logged data frequently.

5. Terminal & User Authentication. If a
greater degree of dial-up security is needed
than provided by PPDs, then use 7erminal or
user authentication devices where practical.
For good routine security, user authenti ca­
tion tokens are adequate. For good user site
identification, terminal authenticators are
best. For higher levels of security, use 7he
devices which provide both termi~al and user
authentication at the same time, such as
terminal authenticators which have a slot for
a user token.

6. Line Encryption. For the highest levels
of dial-up security, use automatic line
encryption devices which perform their own
key management. A somewhat lower degree of
security can be provided by encryptors which
use manual key management.

7. The last Word. To leaven all the above,
the security administrator shoulo keep in
mind that computer systems exist +o be used,
and that their ready use is now required for
carrying out the organization's mission.
This imp! ies that security and user producti­
vity must be balanced in a ra+ional way. It
is important to avoid "user surliness" in
installing additional communications security
procedures or devices~ by makirg the security
features as transparent and easy to use as
possible. Security is ruU: mutually exclusive
with dial-up connectivity.

69

AOD!T!ONAL REAPING

F IPS PUB 112, Standard on Password Usage,
National Bureau of Standards, 1985.

FIPS PUB 113, Computer Data Authentication
National Bureau of Standards, 1986.

Murray, William H., "Good Security Practices
for Dial-Up Systems," Computer Secyrlty
Joyrnal, Fall-Winter, 1983, pp. 83-88.

Sahdza, Richard, "Beware: Hackers at Play,"
Newsweek, September 5, 1984, pp. 42-48.

Stetnau.er, Dennis D., Secyelty of Personal
Camp vier Systems: A Management GuIde, NBS
Special Publication 500-120, January 1985.

Troy, Eugene F., "ThwartIng the Hackers, 11

Datamatlgn, July 1, 1984, pp. 117-128.

Troy, Eugene F., "A Guide to Dial-Up Port
Protection Products," Compyter Secyrity
Newsletter, July/August 1984, p. 4.

Troy, Eugene F., Stuart W. Katzke, and Dennis
D. Steinauer, "Technical Solutions to the
Computer Security Intrusion Problem,",
Workshop on Protection of Computer Systems
and Software, National Science Foundation,
October 22, 1984.

Troy, Eugene F., "Dial-Up Security Update,"
Proceedings of the 8th National Compyter
Secyr I ty Conference, September 1985, pp.
124-132.

Troy, Eugene F., "Communications Security
Equipment," Compyter Secyrlty Newsletter,
September/October 1985, p. 5.

Troy, Eugene F., Secyrjty for Pial-Up Ljnes,
NBS Special Pub I I cation 500-137, May 1986 •

..

70

http:Stetnau.er

AUTOMATED ANALYSIS OF COMPUTER SYSTEM AUDIT TRAILS FOR SECURITY PURPOSES

Lawrence R. Halme

John Van Horne

Sytek, Inc.

1945 Charleston Road

Mountain View, CA 94043

INTRODUCTION

Manual review of computer system audit trails is currently the only means available to monitor
systems for security violations. Automatic tools are needed to assist computer system security
officers in this task. This paper presents findings from an investigation into automating the
analysis of existing audit trails for security violations through the use of pattern recogni-.
tion techniques. The investigation included the analysis of actual audit data and simulated
intrusion audit data. The results were applied to developanautomatic audit trail analysis
tool. The investigation was performed for the Department of the Navy, Space and Naval·Warfare
Systems Command, under Contract Number N00039-85-C-0136. The results of this investigation
demonstrate the success of this approach. The paper also discusses future directions for
research.

BACKGROUND

Monitoring of computer system use for security
violations will always be necessary. Even if
we perfect the ability to design secure compu­
ter systems which we can trust, we can never
fully trust their users. The problem of catch­
ing legitimate users who violate system securi­
ty will remain a problem which can most effec­
tively be addressed by security monitoring.

Currently, system security officers perform
security monitoring of computer systems by
manually reviewing the system audit trail.
The only automated help available to them
comes in the form of audit mechanisms capable
of producing reports or data bases which store
audit trail data. Consequently, there is a
great need for more capable automatic tools to
assist in this task. This need, and the lack of
work being done to develop such tools, was
pointed out by Marv Schaefer in his closing
remarks to the Eighth National Computer Secu­
rity Conference. Although in 1980, the James
P. Anderson Co. produced an excellent discus­

sion1 of this problem, not much seems to have
been done since then.

An automatic tool to assist in the task of
security monitoring would require data about
user activity on the system. Audit trails
already provided by the system are one source
of such data. They have the advantage that
they are an economical and practical source,
since their use would require the automatic
monitoring tool only to interpret the data and
not collect it. On the other hand, the disad­
vantage of the use of audit trails should be
recognized. They may not have been originally
intended for security purposes and may not
contain enough security relevant material. The
audit mechanism may not be secure itself, so
that the audit data it produces may be of ques­
tionable integrity.

Whatever its source of monitoring data, an
automatic tool can provide the most assistance
to a system security officer by accurately
identifying monitoring data which represent
security violations. Perfect accuracy is
likely to be very difficult to achieve, but a
tool need not be perfectly accurate to be

practical. Consider the two types of errors
such a tool could make. It can identify as
representing violations monitoring data which
do not in fact represent violations, and it
can fail to identify data which do indeed repre­
sent violations. The first type of error is
by far more acceptable than the second type.
If a tool could be developed which would not
make errors of the second type, it could act
as a reliable filter which takes in all system
monitoring data and releases that data which
it finds suspicious, including all data repre­
senting actual violations. The fewer errors
of the first type the tool makes, that much
more useful it would be.

In order to make decisions about which monitor­
ing data represent violations, the tool will
have knowledge about the system and its users.
The favored approach is to have the tool under­
stand normal patterns of system use for each
user. Any monitoring data not falling into
these patterns of normalcy would be considered
suspicious and possibly representing a viola­
tion. Another approach would be for the tool
to understand patterns of violations, and for
it to report monitoring data which fit those
patterns. While this approach may be valuable,
it should not be relied upon solely since it
is unlikely that all patterns of violations
are known.

The main goal of the investigation discussed
in this paper was to determine the potential
of a tool whose source of monitoring data was
an audit trail. A reasonable degree of suc­
cess of such a tool which analyzed even a
limited range of audit data would demonstrate
that the approach would be more successful
when applied to analyze more general monitor­
ing data. More details can be found in the

4investigation's final report

The approach taken in this investigation was
to organize the audit trail data according to
which session generated it. Sessions were to
be classed as normal or intrusive based on
patterns formed by their individual audit
trail records. Functions of these fields,
called features, were defined to characterize
certain aspects of normal patterns for ses­
sions. Parameters within the features would

71

differ from user to user depending on individ­
ual system usage patterns. These parameters
were assigned values according to audit data
describing only normal activity in a process
called training. The features were then tested
for their ability to discriminate between nor­
mal and intrusive sessions. Features flag
sessions which do not fit the pattern of nor­
malcy which they describe. Successful fea­
tures were combined to create for each user a
user profile characterizing that user's normal
system activity. An automatic audit analysis
tool was developed using these user-profiles.

PROJECT SUMMARY

From a VAX-11/750 running UNIX we collected
audit data that was analogous to audit data
collected by general-purpose systems. (UNIX
is a registered trademark of AT&T Bell Labora­
tories.) This was accomplished by altering
the C shell command interpreter to collect
additional event attributes over what the UNIX
auditing/accounting facility normally collects.
No attempt was made to construct a secure, tam­
per-proof auditing tool. The goal was simply
to gather a representative audit trail. The
data we collected was compared to the auditing
information collected by commonly used systems
such as SMF for IBM/MVS. Although only a frac­
tion of what would be useful in characterizing
usage patterns was collected, these fields are
representative of what is likely to be collect­
ed by a commercial audit facility. The fields
collected included the user-ID, commands issued
by the user, the current directory, the port on
which the user was logged in, internal file
statistics, and internal process statistics.
File statistics included owner-ID, size, and
times of creation, last update, and last ac­
cess. Process statistics included size of input
and output, running times, and amount of memory
used. Two sets of audit data, each represent­
ing one week of auditing, were collected and
entered into an INGRES database.

In order to test which types of intrusions
could be reasonably detected by auditing, we
developed a set of twelve scenarios of abusive
behavior. These scenarios included break-ins
by hackers, legitimate users masquerading as
other users, and legitimate users deliberately
trying to subvert the system in a variety of
ways. We elaborated each of these intrusion
scenarios into a sequence of probable suspect
actions. These sequences of actions were per­
formed on the system, and the resulting audit
data used as a test set.

Based on the fields of the audit data records,
we defined features and prepared to test for
their effectiveness. With few exceptions, each
of the audit fields that we collected was used
to define a feature. In most cases the fea­
tures depended upon only one audit record
field, yet there were features defined as com­
binations of more than one field. Thirty-two
features were tested in all, among which were
the time of day of use, the command usage, and
directories and files accessed.

From the features, we defined a "certainty mea­
sure." The purpose of the certainty measure
was to indicate the degree of suspicion of a
session. If the certainty measure attributed
higher values to sessions which more likely
represent intrusions, it would direct the sys­

tern security officer to the sessions which
more urgently should be reviewed. 7he certain­
ty measure would be regarded as effective if
in testing, its values for the intrusion sce­
narios were much larger than its values for
normal sessions.

Among the goals of testing was to determine
which features were most effective at flagging
the intrusion scenarios. Certainly, features
which flagged no scenarios would not be consid­
ered useful for intrusion detection. A sec- ,
ond goal of testing was to determine which
features would also flag few normal sessions.
Since the goal is to reduce the volume of
audit data without eliminating data represent­
ing intrusions, features should flag as few
norma~ sessions as possible. A third goal of
testing was to determine how the features per­
formed as a group, rather than individually.
Because it would be unrealistic to expect that
one feature would be sufficient to detect all
intrusions, a user profile consisting of the
best performing features would be needed in
the audit analysis tool to detect as many in­
trusions as possible while also flagging as
few normal sessions as possible. A final pur­
pose of testing was to evaluate the certainty
measure for individual features as well as for
groups of features as an indicator of the like­
lihood that a session is an intrusion.

The tests performed involved the three sets of
data: week one audit data, week two audit
data, and the intrusion scenario audit data.
Week one and week two data represented normal
audit data. The tests were performed by using
one of these normal sets for training the fea­
tures, and then testing the features against
the other normal set and the intrusion scenario
data set. Thus, when week one was used for the
training set, week two and the scenarios were
the test sets. These tests were actually per­
formed first. When week two was used for the
training set, week one and the scenarios were
the test sets.

In the tests using week one for training, near­
ly every feature flagged at least one intru­
sion scenario. Therefore, the main measure for
the performance of the features individually
was how few normal sessions they flagged.
Twelve features which flagged no more than fif­
teen percent of the week two sessions were
chosen for the tests with week two as the
training set.

These tests confirmed that these features per­
formed adequately. It is especially notewor­
thy that in both cases of training, the user
profile formed from these twelve features
flagged all intrusion scenarios, and when
trained with week one, it flagged only 40.9%
of the normal sessions. We considered this
quite good, since it was the first test of thici
unoptimized user profile. The performance of
the certainty measure for an intrusion scenario
was twice that of a normal session.

The features which appeared to be effective
fall into four categories. There are specific
reference features, file statistic features,
features based on process statistics, and a
command usage pattern feature.

The three specific reference features spotted
references to commands or files which were

72

used by one of the intrusion scenarios to sub­
vert system security. They were included in
the tests because it was believed that these
references occurred seldom in normal use of
the system. The test of the effectiveness of
these three features was whether they would
flag an unacceptably high number of normal
sessions. The results were very good, with
very few normal sessions being flagged. This
seemed to be a small price to pay for captur­
ing the intrusive sessions which also have
this 	feature.

The features defined by accessed file statis­
tics which were among the effective features
were defined by the device on which the file
resided, the size of the file, and the user­
ID and group-ID of the owner of the file. The
resident device of the file referred to which
disk drive the file was on. Most users showed
little variation in which disk drives they
accessed, as demonstrated by how few normal
sessions this feature flagged. The file size
feature identified the intrusion scenario in
which a user tries to bring down the system by
creating large files and occupying all avail ­
able disk space. It also flagged a scenario
in which a hacker breaks into the system. As
expected, the features defined from the user­
ID and group-ID of the owner of the file ac­
cessed identified scenarios that included
browsing.

The effective features defined from process
statistics dealt with time of use, timing of
the process, and memory use. Time of use fea­
tures effectively caught scenarios of hackers
breaking in at night or over the weekend, as
well as legitimate users logging in at unusual
times to abuse the system in some way. The
measure of timing of the process which was
most effective was the CPU time of the user
programs (as opposed to the system programs)
associated with the process. In this way, ex­
cessive processing was flagged. The memory
use feature recorded a range for the maximum
memory used by the process. Since users have
little direct control over memory use, it was
surprising that this feature was so effective.
Apparently, it is an indication of intensive
processing.

The best performing command usage pattern fea­
ture was one which recorded for each command a
range of the minimum and maximum percentage of
the session time spent in the command. Time
was measured by CPU time. This was one of sev­
eral tested features designed to measure how
much each command is used. It was interesting
to learn that CPU time is a better measure
than real time.

The other features tested failed because they
were unadaptable, because of the poor quality
of the audit fields they were based on, or be­
cause they were simply poor indicators of nor­
mal activity. For instance, the file name and
the current directory were the basis for two
features which performed badly. Since files
and directories are created by users rather
often, numerous false flaggings occurred. In
order to be useful, features built on these
fields should be able to adapt to this dynamic
situation. They need to be able to learn when
a new file or directory is created so that it
can be added to the list.

A pattern classification tool was developed
incorporating the user profiles based on these
twelve most effective features. Besides in­
creasing the ease and efficiency of testing
whether certain features of the audit trail
database are useful discriminators of intru­
sions, this tool can be considered a prototyp­
ical audit analysis tool. It is essentially a
user-interface designed to provide a system
security officer with the capabilities needed
to use the audit data base for security pur­
poses. The user can train the user profiles,
query which sessions within the data base are
flagged by the user profile or by any subset
of the features in the user profile, and view
sessions satisfying a property specified by
the user, such as sessions with certain mea­
sure 	values higher than a certain threshold.

FUTURE RESEARCH DIRECTIONS

The results of this investigation demonstrate
a successful approach to the automated detec­
tion of intrusions from audit trai~s. The
basis of this conclusion is the performance
of the prototypical audit trail analysis tool
developed and tested in this project. While
this tool could be adapted for any system sim­
ilar to the one for which it was developed,
the approach could be applied to virtually any
system. Further research is needed to take
full advantage of the results of this project
and to develop a practical tool.

One area of future research must be the devel­
opment of features and certainty measures
which are more effective at discriminating be­
tween normal and intrusive audit data. The
application of expert system technology to
this discrimination should be investigated.
It is also important to determine what other
monitoring data, not normally contained in
audit trails, would be useful. Selecting data
fields which are common to all systems meeting
a particular classification as defined in the
"DoD Trusted Computer System Evaluation Cri­
te~ria" would make a more generally applicable
tool. Another area requiring further investi ­
gation should be the determination of the
amount of data needed to train features most
effectively. The performance of a feature
cannot be accurately judged if it is inade­
quately trained. Finally, a large and very
significant questions should be how to apply
these results to other computing environments,
such as DBMSs and networks. Specialized en­
vironments offer fertile ground for progress
in this area. With their narrower capabili ­
ties, these systems would have narrower defin­
itions of normal use which could be more eas­
ily characterized.

BIBLIOGRAPHY

[1] 	 James P. Anderson Co. "Computer Security
Threat Monitoring and Surveillance," Fort
Washington, Pennsylvania, April 15, 1980.

[2] 	 Dorothy Denning and Peter G. Neumann.
"Requirements and Model for IDES -- A
Real-Time Intrusion-Detection Expert Sys­
tem," SRI International, Menlo Park,
California, August, 1985.

[3] 	 Lawrence R. Halme, Teresa F. Lunt, John

Van Horne. "Results of an Automated

73

Analysis of a Computer System Audit
Trail." Proceedings of the Second
Annual 	AFCEA Physical & Electronic Secu­
rity Symposium and Exposition, Philadel­
phia, Pennsylvania,August, 1986.

[4] 	 Sytek, Inc. "Analysis of Computer
System Audit Trails --Final Report,"
Sytek Technical Report TR-86007,
Mountain View, California, May 30, 198.6.

: '·

74

MANAGING EXPOSURE TO POTENTIALLY MALICIOUS PROGRAMS*

Maria M. Pozzo

Terence E. Gray

Computer Science Department

University of California, Los Angeles

Abstract

ln. a resource-sharing environment, existing security mechanisms
are often. inadequate in. defending a system against programs that
contain. malicious code such as Trojan. horses and computer
viruses. Approaches to reducing potential damage caused by such
programs include: limited sharing, dynamic auditing, detection. of
modified programs, and decreased exposure to high-risk software.
A risk management mechanism is proposed that allows
administrative classification. ofsoftware based on. the credibility of
its origin., and permits individual users to specify which classes of
software they wish to be exposed to. The goal is to give users a
way to avoid unwitting use of high-risk software. This Risk
Management Scheme is not intended to be a complete solution. to
the problem ofprograms that contain. malicious code; rather, it is
intended to complement the authors' previous work in. the area of
computer virus containment.

Introduction

When invoking a program, a user has expectations about its
behavior based on documentation, experience, and possibly the
source code itself; however, the actions of that program are only
indirectly visible to the user, if at all 1• Thus, it is possible that the
program contains some hidden function that could have harmful
side-effects such as those caused by Trojan horses and computer
viruses2 . Ideally, a computer system should contain automatic
mechanisms to prevent introduction of such programs into the
system; however, existing preventative mechanisms are often
unsuitable or inadequate. Moreover, a prudent system
administrator would not place complete confidence in the
effectiveness of any single control.

Other than preventing the introduction of suspicious programs into
a system, what can be done to avoid damage? Protecting users
from malicious programs can be accomplished in several ways:

• by restricting 	users from sharing programs, thus
isolating the user from potentially malicious
programs. Unfortunately, this isolationist approach

:;:~~o:~s_~ptable if users are to benefit from each

• This research was supported in part by the NSF Coordinated Experimental
Research program under grant NSF/MCS 8121696 and by the IBM Corporation
under contract D8S091S.

• 	 by auditing the behavior of programs during
execution, and reporting suspicious actions to the
user and/or system administrator. If one could infer
malicious activity with complete certainty, then the
system could prevent further execution, but the
chance of halting execution erroneously is very
high. Also, with an auditing approach a user might
be inundated with records of inocuous actions.

• 	 by determining that a program is potentially
malicious prior to run-time, and preventing its
execution. While it is not generally possible to
statically analyze an executable and infer with
confidence its proclivity for damage, it is possible
to detect modification of executables since their
installation3 , a technique that appears to be
promising for containing the spread of computer.
viruses.

• by applying procedural controls such 	as physical
mechanisms (e.g., guards, restricted areas of
operation), configuration management policies,
standard development practices, etc. Many of these
procedural controls should be in existence in all
systems, and provide no additional protection
against malicious activity.

• 	 by classifying executables according to the
likelihood that they contain malicious code, and
giving users a way to avoid unwitting use of high­
risk software.

The last approach is the subject of this paper. A Risk Management
Scheme is proposed that provides for administrative classification
of software based on the likelihood that an executable is free of
malicious code and also permits each user to specify which classes
of software can be executed on his or her behalf.

Software on a system can come from many places and there are
differences in the credibility of various individuals and
organizations who develop software for a system. These
differences can be reflected by classifying the software based on
the credibility of it's origin as determined by the system
administrator. Thus, the likelihood that an executable is free of
malicious code is determined by the credibility of its origin. Users
can then manage their vulnerability by choosing a risk level at
which they are willing to operate, thus controlling their exposure
to potentially malicious programs.

75

1. Villain creates

enticing program

containing virus
Villain

3. Viral program
covertly modifies
dean executables
(copies virus)

0 Infected executables

victim has X 	 rrc1
modify access

Victim
BEFORE 	 AFTER

Figure 1: The Process of Infection

The next section provides background material on the types of
malicious programs and the damage they can cause as well as
some traditional protection models. A more detailed look at the
problem is presented in this section. The Risk Management

1 	 Scheme is then discussed followed by consideration of its
strengths and weaknesses. The issues discussed in this paper are
part of an on-going effort. Our long-range goal is to develop a
complementary set of independent mechanisms for protection
against computer viruses and other malicious programs.

Backeround

Not all program side-effects or hidden functionality are bad. This
discussion, however, is concerned with hidden code that is
deliberately inserted by unscrupulous individuals, with the
intention of causing malicious side-effects 4•5 . A Trojan horse*
lures unsuspecting users into executing it by ~retending to be
nothing more than a useful or interesting program , while in reality
it contains additional functions intended to " ... gain unauthorized
access to the system or to [cause a] ... malicious side effect" 5 . The
difference between a computer virus and a Trojan horse is that a
virus " ...can 'infect' other programs by modifying them to include,

* "The Trojan horse works much like the original wooden statue that the Greeks
presented at the walls of Troy--it is an attractive or innocent-looking structure
(in this case, a program) that contains a hidden trick, a trick in the form of
buried programming code that can give a hacker surreptitious entry to the
system that unknowingly invites the Trojan Horse within its figurative walls.
The Trojan horse is very simple in theory, but also very effective when it works.
The program that is written or modified to be a Trojan horse is designed to
achieve two major goals: first, it tries to look very innocent an~tempting to run,
and second, it has within itself a few high-security tasks to try."

76

a possibly evolved, copy of itself."2 Trojan horses and computer
viruses are particulary insidious because they operate through
legitmate access paths, taking advantage of normal access rights
belonging to the user. Figure 1 depicts this operation in the case of
a computer virus.

The system's file space contains several "clean" executables to
which the victim possesses modify access. The villain creates an
executable that performs a function designed to entice
unsuspecting victims to invoke it. Embedded in the executable is a
piece of clandestine code that is a virus. When the program is
executed, the hidden viral code is executed in addition to the
program's normal service. The victim, however, only sees the
normal service, and therefore, does not detect the presence of
malicious activity. The virus program, when executed by the
victim, typically carries the victim's access rights and, therefore,
has modify access to all of the victim's executables as well as any
other programs for which the victim has legitimate modify access.
The virus copies itself to the victim's uninfected executables.
Further, when any other user (with appropriate access rights)
invokes one of the infected programs, the virus spreads to that
user's executables and so on. In addition to its spreading property,
the virus may contain a Trojan horse intended to cause damage of
some kind.

Several properties of typical computer systems lead to an
environment in which malicious programs can wreak havoc: the
need for program sharinl, the difficulty in confining programs*,
and the fact that existing discretionary access control (DAC)
mechanisms are fundamentally flawed with respect to limiting
Trojan horses 1 or computer viruses.

* A program that canr8t retain or leak any of its proprietary information to a
third party is confined .

I

Several mechanisms exist for limiting the amount of sharing such
as the security and integrity policies 8•9, and flow lists or flow
distance policiel. However, to the extent that these mechanisms
permit any sharing, the damage caused by Trojan horses and
viruses cannot be eliminated since their malicious activity is
conducted via legitimate access paths due to the fundamental flaw
in DAC. Some work has been done in the area of prograp

11confinement10• and towards solving the DAC problem1
•

Because of the difficulty in preventing and detecting malicious
activity, a scheme is proposed here that can be implemented with

The system administrator* assigns software a credibility value
which identifies the likelihood that the software contains malicious
code. In general, this value is based on the origin of the software.
Credibility values range from zero toN, where software with the
lowest credibility has the value of zero and software with the
highest credibility on the system has the highest value. Software
that is formally verified, so that the possibility of it containing
malicious code is small, is always assigned the highest value. The
number of credibility values is determined by the system
administrator and can be one. For example, in an environment
where security is of primary concern such as a military installation,
a system may be restricted to only verified software. An
environment where security is of less concern, is unlikely to have
any formally verified software. But, since differences exist in the
credibility of the various sources of executables, the system
administrator can choose some number of credibility values to
reflect the classes of software on the system. Figure 2 depicts a
possible configuration for credibility values.

Origin Credibility User's Risk

User Files 0 - Lowest 0 - Highest Risk
User Contributed S/W 1
S/W from Bulletin Board 2
S/W from System Staff 3
Commercial Application S/W 4
S/W from OS Vendor 5 - Highest 5 - Lowest Risk

Figure 2. Credibility Value and Risk Level

Per-User Risk Management

Risk levels specify what classes of software can be executed for a
user. They correspond inversely to credibility values. If the user's
risk level is set to the highest credibility value on the system, the
risk of damage to that user is the lowest possible. On the other
hand, the greatest risk is taken when the user specifies a risk level
of zero.

When a user logs in, a risk level is established for the session.
This risk level can be determined in two ways. The first way is for
the user to specify the desired risk level as an argument to the
login command (e.g., login Joe -session_risk 3). The second way is
to assume the default risk level for that user. Initially, the default

• The system administrator is considered to be one or more individuals, trusted
not to compromise the security or integrity of the system.

risk level for all users is the highest credibility value on the
system. The user can reset this default risk level by specifying the
desired default as an argument to the login command (e.g., login
Joe -default_ risk 2). The user need only set this once and it
remains in effect until it is explicitly reset by the user. Thus,
assuming the default risk level as the risk level for the session
requires no explicit action on the user's part once it is set. Once
the risk level for a session is established, any processes that are
spawned inherit the risk level of the parent, restricting children to
running software of the same credibility value or higher. The only
way for a user to override the risk level for a particular session is
via the RUN-UNTRUSTED command which takes one executable
program as an argument. This program can have a credibility
value less than the risk level. The duration of this exception is the
execution of the program supplied as an argument. The objective
of the "RUN-UNTRUSTED" command is to make execution of
high-risk programs explicit, but not too inconvenient.

Credibility Execution User's Risk
Value Mode Level

0 RUN-UNTRUSTED
I RUN-UNTRUSTED
2 RUN-UNTRUSTED
3
4

normal --------~
normal t--Risk Level =3

5 normal ----------~-

Figure 3. User's Risk Level

As an example, Figure 3 shows five possible credibility values for
software, where the existence of malicious code in software with a
value of 5 is unlikely and in software with a value of 0 is most
likely. The initial default for the user is the ability to run software
with a value of 5 only, unless the user explicitly logs in at a lower
risk level or resets the default risk level. If the user chooses to
establish a session with a risk level of 3, software with values of 0,
1, and 2 cannot be run without using the RUN-UNTRUSTED
command. Of course, the user has increased the potential risk of
exposure to malicious activity.

System Configuration

Once a credibility value has been assigned to software, the
information must be conveyed to the run-time environment. This
can be accomplished in several ways. The first approach is to store
the credibility value as part of the executable, comparing the value
with the user's risk level prior to permitting execution. This
approach requires that the executable be protected from
modification to ensure the integrity of the credibility value. A
second approach is to keep a list of all executable software in the
system and the associated credibility values. When a user executes
a program, the run-time environment searches the list for the
program's credibility value and compares it with the user's risk
level before allowing execution. Such a list must be protected
from illicit modification. This approach may not be practical
depending on the time it takes to complete the search. A third
approach is to group software of the same credibility value in the
same place in secondary storage, and maintain a short, protected

77

list mapping credibility values to each file group. Software of the
same credibility value could be stored in the same directory, in the
same filesystem* , or some other mechanism used to partition
software. The list identifying each partition and the associated
credibility value is then short enough to avoid performance
problems, but must still be protected from modification by anyone
except the system administrator. Figure 4 shows possible
credibility values for software grouped using Unix** directories as
the partitions.

As the number of credibility values is determined by the system
administration, so is the granularity of the partitions. For example,
one system might partition all vendor software into one partition
with the same credibility value while another system might have
separate partitions for IBM, DEC and AT&T software, each with a
different credibility value.

Origin Credibility Partition

User Files 0- Lowest /usr
User Contributed S/W 1 /usr/flakey
Bulletin Board S/W 1 /usr/net
Commercial S/W 2 /usr!bin2
S/W from System Staff 3 /usr!local
Commercial S/W 3 /usr/bin
Verified S/W 4 /usr/ver
S/W from OS Vendor 5- Highest !bin

Figure 4. Partitioning Software of Different Credibility Values

If an individual program becomes suspected of containing
malicious code, perhaps based on reports from other installations,
it can be moved to a different directory of appropriate credibility
value. However, one disadvantage of associating a credibility
value with entire directories or filesystems is that the full name of
a program may be embedded in other programs or scripts; thus
moving a program to a different directory having the desired
credibility level is essentially a name change for that program, and
may cause existing scripts to break. This observation argues in
favor of assigning credibility values to individual programs, even
though to do so is more administratively demanding. A combined
approach that allows easy assignment of credibility levels to
collections of programs, but provides for individual exceptions
may be the winning strategy.

Strengths And Weaknesses

The major strength of this concept is that it makes the user aware
of the potential risk in executing certain programs. Disallowing
execution of software below the user's risk level brings to the
user's attention something that is potentially dangerous, in other
words, executing such a program does not meet the system's

* In Unix**• a filesystem contains a hierarchical structure of directories and files
and corresponds to a partit\~ of a disk. Each filesystem is represented
internally by a unique number .

**Unix is a trademark of AT&T Information Systems.

78

standard criteria for program execution at the user's current risk
level. Forcing the user to invoke the RUN-UNTRUSTED
command in order to perform such an action lets the user know
that this boundary is about be crossed. The use of the RUN­
UNTRUSTED command does, however, intrude on normal user
operation. In choosing a default risk level, typical users will try.to
ensure that the majority of commands they invoke will not require
use of the RUN-UNTRUSTED command. This tendency
contradicts the atmosphere of safety this mechanism is attempting
to create. To retain this atmosphere, but still allow the user as
much flexibility as possible, the system administrator can specify,
on a user by user basis, the minimum risk level at which a
particular user is ever allowed to operate. A system programmer
or operator, for example, may be restricted to a higher minimum
risk level than a normal user. This means that the default risk level
can never be set lower than the minimum risk level for the user.
Further, when the RUN-UNTRUSTED command is invoked,
programs executed below the risk level of the session can never
have a credibility value less than the minimum risk level for the
user.

Determining how to classify software from different origins is a
subjective decision. The system administrator must determine this
value based on past experience with the supplier, supplier
reputation, and any other available measures. For example, vendor
XYZ may have a good reputation in the field, and it is considered
unlikely that any software they supply will contain malicious code.
Software on a network bulletin board, on the other hand, has been
know to contain Trojan horses and computer viruses. If the system
has been partitioned as in Figure 4, software from a trusted vendor
XYZ would be assigned a crediblity value of 3, and placed in
/usr/bin, whereas programs from a vendor not known for their
configuration management might be assigned a credibility value of
2 and placed in /usr/bin2. Software from the bulletin board would
be assigned a value of 1, and be installed in /usr/net or /usr/flakey.
A set of guidelines should be created to maintain consistency. The
credibility value is a subjective indicator, and thus, a weak point in
the overall concept. This is not a fatal weakness, however, since
the mechanism is intended to be a warning system. The point is to
make visible any action which carries potentially unacceptable
risk.

Many systems allow the user to specify where the operating
system should look to find commands invoked by the user. For
example, the user may wish the operating system to first look in
the user's directory and if the desired command is not found, to
then look in the experimental system libraries, and if it's still not
found to look in the normal system libraries. This process is often
called name-resolution, and the means by which the user specifies
the order of the locations to search is often called the user's search
path. A search path is generally in effect for the duration of a user
session and is specified by the user as part of the session start up.
If the search path includes at least one directory that contains
malicious programs, such as a user-contributed software library, or
the user's "current working directory", then vulnerability is high.
For example, suppose a malicious program is given the same name
as some legitimate program. The perpetrator carefully places the
malicious program in a directory that is searched before the one
containing the legitimate version. The result is that the user
executes the malicious program instead of the intended legitimate
one. With the proposed system, if a name resolves to a program
with a credibility value less than the risk level established for the
session, execution is prohibited unless the RUN-UNTRUSTED
command has been invoked and the credibility value is not less

than the Irummum allowed for the user. Thus, the set of
potentially damaging programs is reduced to those possessing
credibility levels equal or greater to the user's chosen risk level,
plus those programs executed explicitly via the RUN­
UNTRUSTED command (further restricted by the user's minimum
allowable risk level).

A set of guidelines should also be available to help the user
determine the most appropriate risk level at which to operate
depending on the such factors as: the sensitivity of the information
the user is working on (e.g., proprietary, company confidential,
bum-before-reading, the new rogue game), the type of information
to which the user has access (and to which any programs run by
the user will also have access), the type of environment the user is
working in (e.g., development, operator, maintenance), an so on.

Second only in importance to the usefulness of the concept is the
feasibility of any candidate implementation. When considering
implemention of the proposed Risk Management Scheme,
dependencies on the underlying operating system must be
identified. There are six critical aspects to the mechanism:

• the installation of software into directories with high
credibility values;

• the integrity of executables after their installation;

• the credibility value associated with 	a particular
program or partition;

• 	 the files or data structures storing risk level
information;

• the illicit use 	of the programs that implement the
mechanism;

• the integrity of the operating system kernel.

Of primary concern is how easy it is to subvert the mechanism; for
example, how easy it is for a perpetrator to get malicious code
installed on a system with a high credibility value, or to change a
user's risk level.

It is essential that installation of the software be restricted to the
system administrator, otherwise, dangerous software can
masquerade at a high crediblity value. For example, in the
configuration shown in Figure 4, if a perpetrator could install
software into the /bin directory it would assume a credibility value
of 5, the highest on the system. Thus, failure to restrict installation
privileges renders this mechanism useless.

Since the effectiveness of the system also depends on preserving
the integrity of the executables themselves, this scheme might be
combined with an encryption mechanism as proposed in [3].
Allowing an executable to be modified after it has been assigned a
credibility value and installed in a partition invites insertion of a
Trojan horse or computer virus. Then, the assigned credibility
value will no longer reflect the possibility that the software
contains malicious code.

Protecting the credibility value associated with a particular
program or partition was discussed in the System Configuration
section. Risk level information falls into two categories: the
default risk level and the minimum risk level which are associated
with a user; and the process risk level which is associated with a

user's process. The default risk level and the minimum risk level
can be treated as part of the user's authentication information, as
indicated previously. These items can then be protected in the
same manner as user passwords. Protection of the per process risk
level is dependent on the underlying system. If the underlying
system is secure, all access to the process risk level can be
mediated by the Trusted Computing Base (TCB)15

• If the
underlying system is not secure, alternative measures must be
taken to protect the process risk level. This issue is addressed in
[16].

In addition to being protected from illicit modification, programs
that implement the Risk Management Scheme must also be
protected from illicit use. Routines that set the minimum risk level
for a user and set the credibililty value for programs should be
restricted to the system administrator. In an unsecure system,
these operations can be protected by performing them in a system
stand-alone mode, ensuring that they are not available during
normal user operation. In a secure environment, they would be
considered privileged operations, and part of the TCB. Setting of
the default risk level by the user, if implemented as part of the
login process, can be treated in a similar fashion to authenticating
user passwords. Setting of the process risk level is accomplished
at process creation time. If the system is secure, authentication
and process creation would be considered trusted operations, and
would be part of the TCB. Protecting this mechanism in an
untrusted computing environment is addressed in [16].

Con!j!lusions

We have proposed a mechanism that allows users to manage their
risk of executing potentially malicious programs. The underlying
premise of this mechanism is that useful distinctions can be made
about software based on its origin. This mechanism is not a
complete solution to the problem of malicious programs; it is
intended to complement preventative mechanisms that currently
exist as well as those described in our previous work3 .

Our future plans are to examine a prototype implementation of the
Risk Management Scheme in order to fully investigate all of the
implementation dependencies.

References

[1] 	Boebert, W.E., and Kain, R.Y., "Secure Computing: The
Secure ADA Target Approach", Honeywell Secure
Technology Center, Minneapolis, MN. 1985.

[2] 	 Cohen, F., "Computer Viruses", Proceedings of the 7th
DOD/NBS Computer Security Conference, September
1984, pp 240-263.

[3] 	 Pozzo, MM., Gray, T.E., "Detecting Modification of
Executables Using Encryption", 1986, (unpublished).

[4] 	 Lackey, R.D., "Penetration of Computer Systems: An
Overview", Honeywell Computer Journal: 81-85, Sept.
1974.

[5] 	 Denning, D.E., "Cryptography and Data Security",
Addison-Wesley Publishing Co., Reading, Ma, 1982.

79

·.I

.. I

[6] 	Anderson, J.P., "Computer Security Technology Planning
Study", USAF Electronic Systems Division, Bedford, Ma.,
Oct. 1972, ESD-TR-73-51.

[7] Landreth, B., "Out of the Inner Circle: A Hacker's Guide to
Computer Security.", Microsoft Press, Bellevue, W A,
1985.

[8] 	Bell, D.E., and LaPadula, L.J., "Secure Computer System:
Unified Exposition and Multics Interpretation". MITRE
Technical Report, MTR-2997, July 1975.

[9] 	Biba, K.J., "Integrity Considerations for Secure Computer
Systems". MITRE Technical Report, MTR-3153, June
1975.

[10] Lampson, B.W., "A Note on the Confinement Problem",
Communications of the ACM 16 (10):613-615, Oct, 1973.

[11] Lipner, S.B., "Non-Discretionary Controls for Commercial
Applications", Proceedings of the 1982 Symposium on
Security and Privacy, April26-28, 1982, Oakland, CA., pp
2-10.

[12] Boebert, W.E., and Ferguson, C.T., "A Partial Solution to

the Discretionary Trojan Horse Problem". Honeywell
Secure Technology Center, Minneapolis, MN.

[13] Lipner, S.B., "A Comment on the Confinement Problem",
The MITRE Corporation, MTP-167, Nov. 1975.

[14] Bourne, S.E., "The UNIX System", International Computer
Science Series. Addison-Wesley Publishing Company,
1983.

[15] DoD Computer Security Center, "Department of Defense
Trusted Computer System Evaluation Criteria", DoD,
CSC-STD-001-83, 1983.

[16] Pozzo, M.M., Gray, T.E., "Computer Virus Containment in
Untrusted Computing Environments", IFIPs, Dec 1986.

80

SECURITY ON UNCLASSIFIED SENSITIVE COMPUTER SYSTEMS

Hal Feinstein

The MITRE Corporation

7525 Colshire Drive

McLean, VA 22102

INTRODUCTION

This paper deals with some of the security
issues facing unclassified sensitive computer systems
that are operated by the civil agencies of the
Federal Government.

Computer security has taken two directions; the
first is prompted by the military and principally
designed to serve the military need for secure
command and control and the handling of classified
information. This has centered primarily on applying
trusted software to solve the multi-level security
problem.

The second direction of computer security has
been aimed at the unclassified, sensitive systems,
such as are used by the civilian agencies which deals
primarily with domestic matters. Here, emphasis has
been on risk reduction and management within limited
resources.

There has been considerable desire to share
appropriate technology developed by the military with
the civilian sector. Problems of doctrine and
environment require redefinition for the civilian
community which is often overlooked. This paper
addresses some of these issues and suggests interim
approaches where appropriate technology will not be
available in the near timeframe.

There has been a tendency to erroneously place a
civilian agency's unclassified information systems
within a military continuum of classifications,
relegating it to the lowest rung of protection
chiefly because it bears the formal unclassified
designation.

The military classification hierarchy is based
on national security sensitivity. Thus, because
national security considerations are not commonly
involved with domestic data, the security of computer
systems handling such data is not addressed from the
military security viewpoint. Thus, without a formal
civilian sensitivity ranking system, it is difficult
for system managers to ascertain what level of
protection is required within the trusted computing
base.

A civilian agency information svstem has certain
distinctive characteristics. They f~rm a
resource-access boundary and, in many cases, may
:epresen~ a semi-autonomous structure. Commonly, an
1nformat1on system may be based upon a commercial
data base management system or transaction monitor
that has control over files, user terminals, and
execution within its confines. Often, it is
administered under project auspices instead of a data
center manager.

Civilian agency information systems may span one
or m?r: ~omputers and contain data of the highest
sens1t1v1ty. Yet, because of economic and
organizational constraints, it may be forced to
operate next to or share computing resources with
uncontrolled or minimally controlled systems.

information system. The assumption that the C2 (very
sensitive) level is sufficient on these systems has
not been clearly demonstrated.

. Perhaps a major, but often overlooked problem,
1s the cultural differences between the military and
civilian domains. The emphasis and assumptions
differ vastly between these two groups and has
resulted in confusion. One symptom has been the
inappropriate application of the military
classification hierarchy mentioned above. In
general, there is a view that the unclassified
civilian agencies fit neatly with the framework
already developed for the military and, by
implication, the guidelines for using the TCB. In
opposition to this is the fact that the civilian
sector has evolved under a different cultural
framework and, hence, what is needed is a new
conceptualization of security and not a simple
transfer of doctrine as some would suggest.

This paper describes the experience the author
has had in examining a ~umber of civilian agency
systems and some of the issues which make direct
application of the TCB and military guidelines
somewhat inappropriate.

This pa,per is divided into eight sections.
Section 2 reviews the environment of the civilian
agencies .from a view,of their mission and
organizational framework. This is essentially an era
of shrinking resources, the Gramm-Rudgman amendment,
and growing workloads. It is also an era in which
the traditional centralization of the computer center
is giving way to decentralization. Section 3
contains a discussion of password usage. More than
any.other protection mechanism, password type, method
of 1ssue, and security are an indicator to the
individual style of ,their associated information
system and, often times, their form and usage is
viewed as a management prerogative.

Section 4 contains an overview of the method
used to construct a security model. This model
combines the information to be protected with the
threat factors to yield a mapping to the TCB. This
model is important because it reviews a central
difference between military and civilian
cultures--threat and countermeasures.

Section 5 contains a proposed mapping between
asset values, access clearances, and required
software trust. This model is proposed as a basis
upon which civilian agencies might build.

In Section 6, the C2 class of the TCB is
reviewed and compared against the threat model for
sufficiency. This necessarily centers on the lower
levels of the TCB below Class B; however, argument
for a higher level is presented, especially for the
very sensitive information on shared hosts.

Section 7 briefly reviews the issues associated
with file encryption as a viable tool for civilian
agency sensitive systems. Lastly, the paper
concludes by reviewing the various issues presented.

The information systems discussed in this paper
operate below the B-class of DOD trusted computer
base (TCB)l. Thus, there can be less reliance on
the TCB and more on designing assurance into each

81

ENVIRONMENT

This section reviews some of the factors which
are germane to civilian sector systems and affect the
operation of unclassified but sensitive information
systems in that sector. The environment is
characterized by the need to process a large amount
of data of varying degree of sensitivity within the
same system. With the move toward greater
productivity and shrinking resources, data processing
is expected to help streamline existing agency
missions. Yet, in some cases, the rate at which the
workload has increased outstrips the resources
available to civilian sector computer centers.

There are several factors that shape many of the
decisions made in civilian sector systems and in some
ways also shape the acceptable security approaches.
The priority of mission, from the standpoint of many
civilian sector managers, is the need to process, in
a timely fashion, very large amounts of non-sensitive
information. Commonly, this forms the essential
mission of the agency and, hence, the chain of
command within the agency views a data processing
operation as successful if it fulfills this demand.
Thus, funds and resources are commonly devoted to
servicing this goal first.

The civilian sector agencies commonly depend on
commercially-available operating systems and system
software. Modifications and special enhancements are
typically added to improve the speed and reduce
operational problems. System programming talent
within these agencies is typically dedicated
full-time to maintaining the service capability of
the computing systems. ·

The appearance on the market of commercial
access control packages have greatly enhanced
security in these centers by providing a package of
security tools not requiring development but only
installation.

The second major factor which conditions
unclassified sensitive systems is that there is no
consistent, community-wide classification system in
use across all civilian sector agencies. The military
or national security classification hierarchy deals
specifically with information affecting the national
security. Some information handled by the civilian
agencies does affect the national security and this
information, when originating within classified
programs, bears the proper national security or
military designations.

There is no parallel classification scheme and
handling protocol available to civilian sector
managers. Some departments have instituted special
handling categories which apply only to their
department. Commonly, they designate a two-level
approach, designating a restricted class of
information which must be specially handled. In some
cases, this special handling level resembles a
mixture of "official use only" and "confidential."
Often times, this single special level is meaningless
when applied to all the agency's sensitive data
because it does not provide the handler with a clear
indication of the information's true sensitivity.
Hence, other agencies which may act as temporary
custodians of the information for purposes of
analysis or storage may not routinely recognize or
enforce the information's true protection
requirements.

Most special handling caveats are department or
agency specific. When information is transferred
across department or agency boundaries, there is
often an uneven and ad hoc approach to information

protection. This is, in part, the result of the
assumptions producers make about how the information
is being protected and how serious the recipient
consumer or custodian is in providing the
protection. It seems that this often unverbalized
assumption presents one of the real dangers in the
unclassified sensitive sector because the producer of
the information may be only vaguely aware of the
exposures present in a custodian's or consumer's
computer system.

There have been limited efforts to create a set
of sensitivity classes which would be recognized
government-wide. The National Telecommunication and
Information System Security Committee (NTISSC) staff
is attempting to define a meaning for the term
"sensitive"; however, this effort seems confined to
designating unclassified data which is important to
the national security as opposed to information of
domestic interest.

Defining government-wide sensitivity levels for
domestic data would go a long way toward eliminating
the confusion and variability in data protection
commonly seen today. It would vastly improve the way
in which data protection planning is currently
approached by providing a set of well-defined
planning targets and a consistent measurement of
provided protection.

A third factor is the need to make use of
systems currently in place and, in addition, the need
to share resources. A sensitive information system
often executes, side-by-side, with non-sensitive and
perhaps even uncontrolled systems. This is a result
of the need for sharing of mainframes since there is
an economy of scale trade-off typically used in
planning many large computer systems.

It is not uncommon to see jobs of various
security levels, both online systems and batch jobs,
executing on the same mainframe. This is an example
of multi-sensitivity (similar to multi-level but with
unclassified information) operations run under
non-trusted software. Multi-sensitivity operations
on untrusted software carry with it a risk which is
difficult to estimate. In an extreme case which is,
however, not hypothetical, very sensitive information
which is available only to a restricted set of
specifically "cleared" individuals runs side-by-side
with non-sensitive information systems which have
minimally controlled access.

Thus, how much confidence should be placed in
the commercial operating system, disk access,
terminal handler, transaction monitor, and data base
to ensure that unwanted intrusions are prevented?
There are two additional dimensions to this
problem--separating different groups of cleared
individuals within the information system and the
old-new problem.

Gaining administrative clearance to access an
information system usually entails two separate and
different accesses. The first allows the user to
sign-on to the online system itself, while the second
permits him to access certain sensitive files within
the information system. This latter access might be
termed "file access" since this is the mechanism
where access control is typically enforced.

We have already asked the question concerning
the ability of the information system to prevent
outside users from accessing it; namely, access by
users who have not been granted administrative access
to the information system at all.

82

The second question we pose is can an information systems. A stronger policy will be
information system prevent users who have access needed to treat the in-place weaker systems where
rights to it from accessing files to which they do retrenching and security enhancements may be required.
not have a right? This question is central to secure
software efforts and can probably be answered in the
affirmative. Demonstration on a number of trusted
systems, such as the Honeywell SCOMP and the various
secure UNIX efforts, is possible. However, how
should it be answered for a traditional commercial
transaction processing package and operating system?

The second dimension of the problem is the
old/new issue which arises from attempting to modify
and extend old information systems. Often these
systems were designed with elementary or inadequate
security considerations. These systems have been
systematically extended over the years resulting in a
culmination of "loosely coupled" software
subsystems. Security control is often ad hoc, or
easily bypassed; few, if any, sophisticated
penetration analyses have been performed and only
rudimentary audit trails exist when they exist. In
some cases, passwords are stored in plain text,
something encountered more commonly than would be
expected; in other cases, "homemade" password and
data ~ncryption algorithms are used.

Comparatively, some newer sensitive information
systems currently under development have
well-designed security features built into the lower
level of the information system. This lower level is
a form of executive process for the information
system preforming and, hence, mediating access to
sensitive files, devices, and transactions. Each new
application within the information system will find
that security mechanisms, such as access control,
auditing, authentication, and transaction control,
are built in as primitive, low-level operations. The
lower level security "base" is maintained by an
experienced and trusted system programmer, while the
complicated and extensive applications code might be
contracted out to a software development contractor.

Agencies responsible for design of the newer
information systems commonly include security as one
of the primary attributes needed by their system from
the beginning of the planning process. In addition,
they understand what modern software security
approaches are available and see to it that they were
included in the system design. Often, a central
access matrix or access list is used to allow easy
maintenance of user privileges. These information
systems tend to have some of the best security
characteristics encountered for that environment.

Comparatively, some information system design
groups take the approach that security would be added
on after the information system was implemented.
These groups tended to view security as primarily the
responsibility of the data base or transaction
monitoring system chosen for the implementation. It
appears that security in this approach must
necessarily reflect the ad hoc, uneven, and
frequently fragmented security mechanisms available
from the commercial products upon which the
information system is built. This has usually been
born out by experience.

In sum, civilian agencies are faced with the
problem of scarce resources against growing workloads
and old systems. These systems contain weak security
features; however, they continue to be useful and
will pose problems in the future. Good security
techniques are known by selective groups within each
civilian agency. Making these techniques available
will greatly enhance the future security of agency

VARIATION IN PASSWORD USAGE

Authentication of the user is of primary
importance in information systems and is commonly
done with passwords or challenge-response devices,
such as a DES calculator. As with any authentication
token, the doctrine associated with their use is a
critical aspect of their security. A reasonable
protocol for password generation, distribution, and
use is presented in the NCSC "Password Management
Guide"2, and under the C2 doctrine, each user
should possess an individual password to allow
accountability to the single user level of
granularity.

In comparison to the C2 doctrine, we have found
that within a single shared civilian computer system,
there is a wide range of password practices. Each
information system may command its own doctrine of
use; thus, it is not uncommon to find a very
sensitive information system, perhaps written using
IBM's Customer Information Control System (CICS) to
require rigid conformance to the C2 doctrine, while
along side it and in the same mainframe is a
non-sensitive application whose passwords conform to
Cl (group passwords) or less (no password).

Examination of several unclassified systems
reveals a number of operational doctrines different
from the C2 doctrine. These are listed in Table 1
and are ranked from "least" sensitive to very
sensitive. Each of the systems in themselves do not
violate given norms of security. The major problem
is when they are mixed on a central mainframe using
commercial non-secure operating systems.

The first examined in Table 1 is that of a
public information and retrieval system which uses no
passwords and is available to the general public.
This service is somewhat new and is aimed at
providing the public with the latest information
regarding announcements, rulings, and orders.
Originally, terminals to these systems are placed in
the lobby of the agency's office and are open to
all. However, dial-in mode of access is now
beginning to make its appearance. Some experiments
have been done with public-to-agency electronic mail
in which the mail package runs on the agency's host.
The public information systems are commonly
implemented using one of the commercial transaction
monitors and, hence, the "isolation" one can expect
is an open question.

Public information terminals, electronic mail,
and public information data bases are attractive in
terms of enhanced efficiencies and a tool useful to
the public. This service will probably continue to
gain popularity in the future and, hence, represent a
potential problem area for the security of shared
agency hosts.

The second example in Table l is the "strong
room" mode of password usage. In this example, only
cleared individuals have unescorted access to this
strong room. The premise is that only persons with
the proper need-to-know can enter this strong room;
therefore, there is no need for further
authentication. This corresponds roughly with the Cl
doctrine of group passwords in a cooperative
environment. Yet, prudent handling of this
unclassified, yet sensitive, information would seem
to require accountability at the individual level of
granularity. The style of operation in these strong

83

TABLE 1 What is needed is the ability to authenticate a
user based not on a session, but on a transaction

PASSWORD USAGE basis. Conventional account name/password pairs are
Information inadequate for this role because the logon itself is

Logon System an example of a transaction.
Passwords File

Some approaches have been suggested for thePublic Information Terminal No No transaction authentication problem. Chiefly, theyResident in Agency's Lobby
center on eliminating the delay associated with
manual account name and password entry by using aPublic Information and Agency No No badge reader to gain this information. TheAnnouncements Available via
information read from the badge could be appended toPublic Dial-In Access
an invisible field prefacing the user text record.
An unsolved aspect of this issue is the additionalFunds Disbursement System Yes Yes processing time added for each account name/password
verification. This might best be dealt with by aRegulatory Investigative Yes Yes fast verification technique different from thatData Base
developed for session authentication.

Confidential Informant Group Group The last example of password usage show~ inIdentities [terminal located
Table 1 is the shorter than required password. Thisin controlled area (strong
is essentially a human factors problem, and it isroom mode 1)]
common to find installations where eight-character
random password combinations are systematicallyCounter Style Service Group Physical Lock changed and result in users writing them down. Some(office model)
relief can be expected from passwords composed of
pronounceable syllables or pass-phrases; however, therooms are dependent on the responsible managers and
doctrine of .random string passwords systematicallyvaries from group to group. Tightly knit groups tend
changed is a problem.to operate as a "skunk works" typically relaxing some

rules in favor of the mission. Large groups require
To overcome this, some information systems havemore accurate tracking of information and,

adopted four-character passwords, while others simplyunfortunately, may not employ adequate methods. It
do not change them allowing users to memorize themis probably this latter group that will gain from the
through long-term use.C2 doctrine.

It is clear that while passwords are currently aThe third example in Table 1 is the "office"
useful authentication technique, the management andmodel of password usage. In this model, the public
human factors overhead associated with them isis being serviced by agency personnel from "windows"
great. New methods commonly employing DESwhich contain a terminal hooked into the agency's
calculators, badge readers, and smart cards areinformation system. The agency person may, from
beginning to make their way into use within thetime-to-time, leave the terminal. The terminal could
civilian sector but are still relatively expensive.then be manipulated by an unauthorized person.
Primarily, they are first considered for very
sensitive security applications because they commonlyTo prevent this type of compromise, some
afford two-step (what the user knows and what theinformation system designers have introduced the use
user has) authentication as opposed to one (aof physical locks on the terminal which lock the
password).keyboard and blank the screen. Some simply lock the

terminal keyboard but do not blank the screen. The
Each of the examples discussed (the publicagency user removes the key and takes it with him to

access system, electronic mail, the strong-room, andprevent compromise or alteration.
office model) illustrates an important principle.

This third example is important because it This principle rests on the view that user
brings out an important, but overlooked, authentication should be tailored to the environment
authentication problem--transaction-oriented in which it is used. Shorter passwords may suffice
authentication. Common use of account identity and if a proper password checking mechanism was also in
passwords is designed to be session-oriented commonly place. This mechanism would prevent trials by an
authenticating an entire session from logon time to unauthorized user and would quickly lock-out too many
logoff or session termination time. Because a attempts. Including a mandatory delay time also
session typically exists over a significant period of lowers the chances of a successful brute force attack.
time, it is acceptable for the user to perform the
manual operation of entering the passwords and In sum, it may not be necessary for every

:~~::.::~~::~:? account name since this is done once oer session. application of passwords to strictly conform to the
.·,~·"'···-·-··~·J:-:·:-:.""<-:'-:!

.. "l The overhead time associated with performing a logon C2 doctrine. The mode of operation and degree of . is acceptable because it is done once for the entire induced risk should be analyzed on a case-by-case
session. basis.

SENSITIVITY ru~~ PROTECTION
Comparatively, a transaction can be viewed as a

short unit of work which is performed many times over Allocating sufficient protective resources is an
the period of a session. The operational premise of essential management decision in the civilian sector
session logon is that the user will keep control of which must be carefully measured. There are two
the terminal for the duration of the session. Yet, philosophical views commonly employed for allocation;
there are circumstances where this is not true, the civilian agency view and the military or national
especially in the case of the "strong" room model and security view. While utilizing similar methods of
the "office" model. risk analysis to allocate resources, these views

differ primarily in their understanding of the
world. In turn, this is seen as a natural
consequence of the mission and environment in which

84

each operates. This section contains a brief of important information in a data base and the
examination of some of the issues affecting the frequency of certain types of attacks on that
estimation of threats and assignment of protections information. An example is an investigative data
for each. base containing very sensitive information.

Devising a protection scheme is a two-step
approach. The first step in devising a protection
scheme is to have a way to optimally utilize limited
countermeasure resources. Countermeasure in this
case consists of measures used to enforce system
security above what is available with a standard
commercial software package or which is available
without cost from the information systems data base
or transaction monitor. This includes investment in
an access control package, enhancements to the
operating system, or other security modifications.

The method used for protection estimation is
similar to the common average loss expectancy (ALE)
approach commonly used in risk analysis/risk
reduction. The ALE method is quite popular in the
civilian sector for allocating risk reduction funds.
It is recognized by most federal agencies as a valid
and adequate approach to identifying and ordering the
major risks and estimating the sufficiency of a risk
reduction strategy.

The ALE is a four-step approach in which the
individual asset value and loss event frequency are
compared against strategies of backup allocation. In
the first step, each asset is identified and a dollar
value indicating its replacement cost is assigned.
Second, all threats are identified and a probability
of a compromise or security-significant event is
computed. Third, the probability of an event is
combined with the loss value of that asset acted upon
to yield a total expected loss value. If this value
is computed for critical assets, for example in a
computer center, then a manager can decide where best
to optimall~ place scarce contingency resources.

A contingency resource might replace an asset
lost in an attack or disaster or it might provide a
reduced capability. The cost of replacement or of an
interim measure to offset loss of a critical asset is
subtracted from the expected loss. Thus, the fourth
step is to test different allocation strategies of
replacement resources to minimize the expected value
of loss.

The ALE approach can be applied to information
systems by first calibrating the frequency of a
security event against that data. An event of this
type could be a compromise, manipulation, theft
(removal), or denial of service attack. In turn, the
probability of attack is multiplied by the damage
done to the asset estimated in dollars. This yields
an expected loss value which can be used to allocate
funds to a protection strategy.

After a protection strategy has been picked and
the ALE recomputed, there is commonly a residual
amount of risk which cannot be serviced under a given
budget. This risk commonly centers on infrequent or
unusual events which are considered improbable;
however, frequently it is much more likely that risks
can only be partially addressed under a current
budget. These "unfunded" risks are present in the
systems operation and are commonly judged by
management to be acceptable levels of risk for a
given operation. These residual risks are treated
under the heading of risk management.

While the ALE method has found wide acceptance
as a risk objections reduction allocation method,
there are numerous objections to it both practical
and philosophical. Briefly, the practical objections
center on the process of estimating the dollar value

How does one go about determining the value in
dollars of such a data base? The replacement cost
can be calculated by costing the history of
investigative actions which supplied the
information. Sometimes it is possible to do this and
sometimes impossible as in the case of a data base
built up over years; however, the losses go beyond
simple replacement. Commonly, compromise of
investigative information can result in thwarting an
agency mission by divulging the confidential sources
and methods used by the government to develop the
case. In addition, there may be political and
legislative repercussions which often interact in
unexpected ways.

Estimating the frequency of an action is also
difficult chiefly because there are few solid
histories available. Certain sources are available;
for example, the Justice Department's Bureau of
Justice Statistics, the FBI, and some national trade
organizations can give information on occurrences of
blue and white collar crime. Yet, aggregating
numerous statistical sources which only partially
address the specific circumstances at hand
necessarily lessens predictive ability.

Both estimating cost and determining threat
event occurrence frequencies are processes which
cannot be carried out in isolation. The process is
usually the culmination of numerous discussions with
principals; analysis of documents, budgets and plans;
and a considerable amount of estimation. The
tentative figures developed by the analyst must be
defended to management who may apply the "reasonable
man" argument to them. This argument suggests how a
reasonable man or disinterested third-party might
view the realism of the analyst's numbers. Often,
the reasonable man argument would more honestly be
described as the organizational man argument.

Philosophically, the objection to the ALE method
centers upon the meaning of expected loss. The
mathematical notion of expected value allows one to
calculate an average value given both the probability
of an event and the value of the as-set. Yet, the
number of samples available to calculate the
probability is often limited and carry with it a
large degree of variance as to often make the
calculations meaningless.·

A second objection concerns what information an
average value has to offer for a specific loss
situation. It is based on the average behavior of an
event drawn from a large population of events.
Average value theory allows an insurance company to
calculate what the expected loss is over a very large
number of insurers because each of the insurers will
be different, some claims will be less and some
more. On the whole, the insurers can be expected to
act in a more or less randomized fashion within a
given set of criteria. Knowing the distribution
function for the insurers allows the insurance
company to calculate the mean and, hence, calculate
its expected loss and adjust its premiums accordingly.

Over the entire sample of computer centers there
may be a given sample distribution which indicates
government-wide what the distribution of loss is.
Each individual case can be expected to be different;
some of more and lesser degree. Like the insurance
company of the above example it will be possible to
calculate an average and determine average loss for

85

that population but what does it say about the
individual case? In sum, ALE may be likened to a
gambling strategy in which management bets that an
event "is on the average" no worse than expected.

A final difficulty experienced using the ALE
approach is that it produces a different level of
protection for each information asset to which it is
applied. This often leads to a fragmented approach
to protection and does not produce a general set of
protection mechanisms available for future
information systems placed upon the host.

The second step in an information security
program for the unclassified civilian agencies is to
develop a small number of uniform classes for asset
value and protection.

Military agencies arrive at a uniform definition
of value--the military definition of security relies
on damage to the national security as its basis. The
damage assessment defines a number of levels named
confidential, secret, top secret, and various
need-to-know groupings which form the familiar
military classification hierarchy.

There is also a uniform degree of physical
protection called out in the various military
security doctrines. Thus, the elements of the ALE,
asset value, frequency of event, type of event, and
protection allocation, are standardized for the
entire "classified" community. This framework is in
place and what is left is compliance determinations.

The military doctrine is set up to
counterbalance both individual and sophisticated
threats and is skewed to a worst case analysis of the
threat. Taking this worst case approach simplifies
the security program because it removes the
requirement of staying one step ahead of any threat
which may evolve on short notice. There are great
operation advantages to this simplified approach if
funds are available.

In comparison, the civilian sector commonly
requires the protection system to expend only enough
to counter the average threat facing it. The threat
environment facing civilian sector agencies is much
more stable and unchanging then the one facing
national security establishments; hence, as in life
insurance, the gamble is that the agency's
information protection approach can bound security
risk problems on the average.

A pressing disadvantage of this approach is
that, to date, no uniformed classification system has
been advanced for the unclassified civilian sector
which could allow the streamlining of protection
programs. If a uniformed level of protection and
threat similar to the military classification
hierarchy were available and suitably directed toward
a civilian agency's threats and if it received the
right recognition from the Executive Branch,
information security might be advanced across the
entire federal civilian sector.

LEVEL OF PROTECTIONS

Establishing levels of protection entails
creating a map between value of a asset, the degree
of trust for personnel, and the resulting amount of
trustworthiness needed from the software. The mode
of operation is important as well, and for purposes
of this paper, the multi-sensitivity shared mode is
assumed. Other ,modes such as dedicated, or system
high mode, modify the balance and threat environment
and, thereby, require a somewhat modified analysis.

The first step in determining the level of
protection is to create an asset measurement value
system. As discussed before, two approaches are
possible--the military classification hierarchy and
the civilian ALE method. For purposes of this paper,
we have adopted a system which conforms roughly to
the military hierarchy but without the national
security2 implications which is presented below.

Military Classification Proposed Civilian Marking

Unclassified Non-Sensitive
Military Sensitive Minimally Sensitive
Confidential Sensitive
Secret Sensitive
Top Secret Very Sensitive
IS/Categories Extremely Sensitive

This shows a four-level value asset hierarchy
with approximate correspondence to the military
classifications. It is important to note that this
chart shows asset worth by the damage a compromise
could do rather than assigning a dollar value to the
asset as the ALE would suggest.

The difference between military sensitive and
minimally sensitive is that the term "sensitive" is
currently used by military and national security
organizations to denote unclassified information
which impacts aspects of the national security, but,
hereto, has been considered unclassified.
Information in this category includes national and
international financial trends and projections,
movement and supply of strategic material, force
readiness estimations, positions for international
treaty negotiations, and similar information. The
civilian treatment of the term sensitive is more in
line with the overall sensitivity of the information
in a domestic context. Items covered under the
civilian usage of the term would be information
specifically protected by law, such as grand jury
testimony; identities of confidential informants; tax
return data; and agency sensitive information, such
as confidential correspondence, financial
decision-making or disbursement data, and employee
salary or medical histories.

The highest category in this chart is extremely
sensitive and it has been equated with the military
usage of top secret with categories. It is felt that
the sensitivity of this information greatly exceeds
that which would be considered very sensitive. No
commercial operating system, enhanced or otherwise,
not specifically designed for the A class should be
considered adequate for this type of information and,
hence, it must be compartmented and run on a
dedicated system. It is not economical to run such
information in a shared mode, and the risk from other
users, which is difficult to estimate in most normal
cases, would be unacceptable in this case.

The ratings displayed in the sensitivity marking
table are designed to be used on all civilia~ agency
information, especially computer systems. Having
four levels whose value is recognized across all
civilian agencies appears to be helpful to the
planning and budgeting process as well because it now
clearly states the value of the data.

The next step in establishing a level of
protection plan is to establish a system for user
trust and access. The Office of Personnel Management
3 has advanced a system of clearances for the
civilian agencies which is similar in scope to the
military clearance structure which is shown below:

86

Military Proposed Civilian
Information Information OPM Personnel

Classification Classification Clearances

Uncleared Non-Sensitive Non-Sensitive (NS)

Military Sensitive Minimally Sensitive Non-Critical
Sensitive (NCS)

Confidential Sensitive Non-Critical
Sensitive (NCS)

Secret Sensitive Non-Critical
Sensitive (NCS)

Top Secret Very Sensitive Special Sensitive
(SS)

Top Secret Extremely SensitiveCritical Sensitive
Categories (CS)

The mapping of the OPM clearance structure to
civilian information classifications and the military
classification hierarchy is simply an initial attempt
at establishing such a system. Many civilian
agencies currently require the OPM clearances for
their computer staff, commonly the higher clearances,
because of the wide types of information which they
handle. Users, such as data entry contractors or
clerical personnel, usually require either the
non-critical sensitive or special sensitive,
depending upon the sensitivity of the information
they are handling. Extremely sensitive information
and its OPM clearance--Critical Sensitive--are used
for specialized personnel handling the most sensitive
data.

The last step in creating the mapping of value,
access, and protection is to create a mapping between
value, exposure, and software protection.

A suggested ranking for the unclassified

sensitive world is shown below.

Civilian
Information TCB

Classification Class Mode of 0Eeration

Extremely Sensitive 	 Cl Dedicated

Very Sensitive 	 C2 System High
C2-ae Shared-multilevel

Sensitive 	 C2 System High
C2-a Shared-multilevel

Minimally Sensitive 	 C2

There are four entries in this table which
indicate the four levels suggested previously.
Column 3 indicates the mode of operation. There are
three modes indicated here: dedicated, system high,
and shared-multilevel. First, dedicated mode
describes the case where the available hardware and
software are not secure enough to guarantee good
security. This mode is reserved for the most
sensitive missions.

While we have indicated a Cl "group" style
environment being adequate, prudent administration
should call for anti-fraud and anti-white collar
crime mechanisms to monitor and control the use of
information by cleared employees.

87

There are two versions of C2 mentioned in this
chart: C2-a ("augmented") and C2-ae ("augmented" and
"enhanced"). The chief difference between these two
is that C2-ae suggests the use of privacy encryption
(DES) on all very sensitive information.

Additionally, encryption would be applied to
files and used to provide a higher degree of access
control and authentication above those cowmonly
required by C2. Encryption of data without a firm
base of trusted software surrounding it limits its
ability to withstand attack; however, it is a tool
which should not be ignored, especially in that
multilevel trusted systems may not be available in
the near future, especially for the civilian sector.

TCB CLASS C2 &~D ENH&~CEMENTS

The NCSC guidelines specify a C2 class system as
the minimum protection strategy for unclassified
information which requires need-to-know separation.
Additionally, the NTISSC staff has set C2 as a target
for federal agencies. This is a necessary but
difficult task for many federal agencies, but it must
be pointed out that C2 may be inappropriate for
certain sharing situations. Primarily, th~se

situations involve multi-sensitive sharing between
information systems which hold very sensitive
information and those which information systems used
to store minimally sensitive information on the same
mainframe.

A very high reverse correlation in civilian
agencies between the amount of information to process
and its sensitivity is almost an exponential
relationship. As described previously, the lower the
sensitivity, the lower the clearance levels and
looser the security administration in general.

There are three reasons for looser security
controls in these lower sensitivity systems. First,
authentication and access control restrictions are
relaxed in favor of getting the job done. In the
second case, administering very large numbers of
users who report to different chains of command and
are distributed over large distances is very
difficult. These leave numerous opportunities for
abuse of passwords and access privileges.

Third, there is a tendency for users to
accumulate file access privileges awarded for files
or file categories in order to meet a particular
need, which are, however, not surrendered and simply
accumulated. Thus, it is not uncommon to find users
with access rights to large portions of a system
without a current need-to-have for these accesses.___

While these problems can be solved with good
security management practices, it must be recognized
that decentralized and, hence, fragmented security
administrations do exist. It is also unreasonable to
suggest that the situation will change dramatically
in the near timeframe. Sharing computer resources
among a large population of users will bring with it
a higher risk, precisely the situation addressed by
the NCSC guidelines for classified users.

What is proposed is the development of a new
middle class between C2 and Bl which would contain
many of the stronger features of Bl but would
continue to rely on non-mandatory access control
structures in favor of the lower cost rule-based
access control packages. The proposed class is
labeled C2-a, which for discussion purposes would
serve as an interim step for the civilian agencies
until stronger multi-level systems were available
from the Evaluated Products List (EPL) at a
reasonable cost. While not fully developed, the
major requirements of C2-a are outlined below.

There is a fundamental breakpoint in the TCB
between the C2 and B class of systems which is seen
in all the security requirement areas. This
demarcation is reflected in a number of ways, the
most obvious of which is that Class Bl is the first
class where mandatory controls, labels, and a
security policy are required. Comparatively, Class C
need provide only discretionary controls.

A second important difference is the ability of
the system to withstand penetration. Class C2
requires that obvious flaws be identified and removed
while Class Bl requires detailed study of the
operating system code in addition to the required
live testing. Elimination of obvious flaws required
by C2 leaves numerous more subtle flaws untreated,
yet Bl requires these to be removed. A skilled
attacker could find a C2 system susceptible to
penetration by flaws which might be well known in the
system programming community. Class Bl requires
these flaws to be removed.

Above those required for Class C2, improvements
required by C2-a are improved audit trails, better
access policy, markings on multi-sensitivity computer
output devices, and a private address space for the
system security mechanism. Each will be discussed
below.

First, improved audit trails are critical to
good security since they frequently provide the only
record of what actions occurred during a security
breach. They have proved decisive in locating and,
in some cases, prosecuting an offender and. should be
carefully designed on a new system. There are two
modes of analysis of an audit trail: post-mortem and
defensive analysis.

Post-mortem analysis takes place when a security
breach has occurred and a time history is being
assembled of the event. Participating in such a
post-mortem reconstruction is often the best teacher
of what information to include in an audit trail and
how it shotild be organized. Since the audit trail
may be introduced as part of a court proceeding, its
designers should also have a knowledge of the rules
of evidence.

Defensive analysis occurs by systematic analysis
of the audit information on a routine basis. This
allows a security officer to identify suspicious
activity as it happens. Frequently, too much
irrelevant data is available preventing any serious
analysis of the audit information. Some researchers
have suggested employing artificial intelligence
techniques to automatically analyze the audit
information for problems.

Beside acting as one of the reliable records of
past events, the knowledge of the existence of a
well-desi~ned audit trail deters white collar
criminals by simple surveillance of the system.
This increases the certainty of being caught and
successfully prosecuted. In sum, an enhanced and
well-designed audit trail, together with analysis
tools, is certainly necessary in any multi-level
sharing endeavor.

Access control packages are beginning to include
provisions for controlling data base and transaction
monitor file access, yet many projects are reluctant
to surrender their privileges to a central
authority. A way around this dilemma is to use local
project-oriented access rule managers in addition to
the computer center security administrator. Each
access rule manager would have responsibility to his
own project.

A useful extension, which currently does. not
exist, would be a rule protocol which allowed each
party to levy constraints on what kind of accesses
can be granted. Thus, the computer center security
officer could restrict the local access rule managers·
from adding new accounts to the system, while the
local access rule manager could restrict the security
administrator from granting access to files under his
jurisdiction. Split granting authority, special
authorization digital signatures, and other devices
including anti-fraud aides might be included to
create a rule-based, power-sharing structure to meet
the needs of any two parties, cooperative or
distrustful.

The third item necessary for enhanced sharing
mode is sensitivity markings on multi-sensitivity I/0
devices and the labeling of input and output
hard-copy. This requirement is chiefly to avoid
mishandling of hard-copy input and output media and
to ensure proper control of terminals. Many large
computer centers commonly have large printer bays in
which a number of high-speed printers are used.
Printouts are commonly routed to a printer based on
the type of paper in the printer, for example,
multi-part "carbon" paper. It is quite typical to
find computer centers routing jobs of various
sensitivities to a printer dependirtg upon the paper
forms needed. Thus, v~ry sensitive printouts are
handled as non-sensitive until received by the I/0
control clerk. Addit1onally, items like memory dumps
are typically not controlled at the level of the data
they contain.

Formal object labels, user clearance data bases,
and reference monitors are the heart of a mandatory
access control structure. To have a reference
monitor at all seems to require object labeling and,
by implication, a user clearance data base to allow
the reference monitor to apply the security model.
It is a matter of disagreement at this point whether
an access control packa·ge can suffice for enhanced
sharing or if indeed the full suit of labels,
reference monitors, and clearance data bases are
required.

If other requirements can be satisfied, then it
seems adequate to settle upon an enhanced rule-based
access control system to enforce sharing. The
strength of the mandatory access is its ability to
mediate all accesses at a basic level. At the Bl
level the required assurances are not yet developed
to the point where multi-level sharing can be trusted
as is the case in a B2 environment. Therefo're, the
essential aspect is the reference monitor's ability
to mediate all accesses. Within the C2-a
environment, an enhanced rule-based access control
package might be adequate.

The second requirement of C2-a is improved
security policy. It is first necessary to compile
and have approved an agency-wide security policy. In
this paper we have advanced using the four levels of
sensitivity as a starting point. Federal law,
executive orders, special department-wide
instructions, and agency orders often form other
access restrictions. In addition, many agencies also
partition access by program and project.

Lastly, a requirement for multi-level sharing is
that the security mechanisms not be subvertable by a
malicious user. One of the best ways to do this is
to place the access control mechanism in its own
address space and take measures to protect critical
information that it uses. Some access control
packages share certain reserved system address space
virtual memory along with other special routines and

88

the 	operating system. Information modification,
, 	either by a trojan horse routine included within the

operating system or commercial package or an
inadvertant modification due to an error, could
disrupt the access control mechanism. Further
research would be needed to determine the extent of
this vulnerability in the open system environment
common i? civilian agency's data centers.

This section has outlined the argument for an
enhance.d level of protection beyond the C2 level but
without some of the structures required for the B
class. The C2-a class was advanced to support cases
where very sensitive information is handled within
the same commercial mainframe and operating system in
the presence of numerous minimally cleared or
controlled users. ·

C2-a would contain stronger resistance to
penetration than C2 by elimination of subtle flaws.
C2-a operating systems would have enhancements of
their audit trail capabilities, access control dow'11
to the information system-owned file level, and
output marking capabilities. In sum, each of these
measures reduces some aspect of risk associated with
multi-sensitivity shari~g and is proposed as an
inter-im step which could be accomplished by the
civilian agencies sector until more products become
available on the EPL. The discussion of C2-a
presented here is simply an overview of the
requirements the proposed class would need.
Additional research would be needed to clearly define
all aspects of this proposed class.

CRYPTOGRAPHIC F.ILE PROTECTION

An often overlook technique of protection for
multi-sensitivity sharing is file encryptionS.
File encryption is not currently considered useful in
satisfying the requirements of the trusted computer
base and has been partially neglected in favor of a
trusted software approach. File encryption is still
useful for providing an extra layer of safeguard in a
computer system and is suggested as an additional
security tool for ~ulti-sensitivity sharing
situations.

File encryption is attractive because it is one
of the only means available to prevent even a skilled
system programmer from browsing stored information.
It is, therefore, attractive to organizations with
the most sensitive data. File encryption prevents
browsing by user organization members with general
authorization to view all files within their
organization except specific ones.

There are four major points to consider in

selecting a file encryption technique for the C2

level:

• 	 Cryptographic encoding method
• 	 Target file organization
• 	 Key management
• 	 Trustworthiness of the encryption routine

The first element of file encryption is to
consider the encoding method. Cryptographic encoding
is commonly applied in three ways:

• 	 Block or electronic ·!code book mode in which
a group of bits which form a block are
enciphered together and the enciphered

·output is a block of similar size.

Chaining methods in which samples of plain•
text and/or ciphertext from previously
enciphered blocks are mixed with current
information during the encipherment
process. Block chaining prevents certain
types of spoofing attacks but also
propagates errors across some amount of data.

• 	 Additive method in whic:1 a cipher key stream
is generated independently and combined with
the file information on a bit-by-bit basis.
The additive method has the advantage of not
propagating errors but suffers from a need
for precise synchronization.

Selection of algorithm for a file encryption
capability is limited to NSA-approved algorithms for
government use. Perhaps the best known example is
the data encryption standard algorithm (DES) which is
finding popular use in privacy applications. The
drawback in using DES is that it is computationally
expensive for software implementations, and this must
be factored into response time calculations for
interactive applications.

NSA has advanced several new algorithms under

the Commercial Cryptographic Endorsement Program

(CCEP), which are targeted primarily at the

communications marketplace. The Type II algorithms

are meant specifically for the unclassified area;

they are available only as integrated circuits to

approved manufacturers and are not available in

software form.

Thus, while DES will be gradually withdrawn from
the federal marketplace in favor of the CCEP Type II
algorithms, no substitute has been suggested for
software versions of DES. Some authorities have
suggested that a way to approach the file encryption
problem is to develop a fast hardware box containing
the CCEP Type II algorithm. The "crypto-box" would
be used as a controlled peripheral device to a
computer system and would provide a faster
replacement for DES. To my knowledge, no work has
been done to develop such a box or standards for its
use.

File organization is important to a
cryptographic file security tool. Computer files
have different record organizations such as
sequential, random access, relative record, indexed
sequential, and proprietary methods developed by data
base manufacturers. Fitting an encryption technique
to each specific type of file organization is
necessary in that ciphers commonly must be started at
a mutually agreed starting point which is difficult
for short and varying length records. This is in
some respects similar to the problem of end-to-end
encryption in an X.25 network where each packet must
contain its own initial fill value.

Therefore, in providing a file encryption
package, each file must be considered separately. In
archive cases where an entire magnetic tape is to be
enciphered, chaining schemas work well because of the
long stretches of data while short records, which are
randomly organized, require completely different
enciphering methods. The requirement for flexibility
precludes a rigid single format and some adaptable
techniques are required, perhaps as a set of
subroutine calls to a "trusted" encryption facility.

Key management is the third aspect of a file
encryption technique. This is perhaps one of the
most difficult areas to surmount because of its
crucial nature. The nature of the current modern
information systems is to provide access online to

89

numerous individuals sometimes distributed over a Primarily, the C2-a suggestion is viewed as an
wide geographical area. Keys must be distributed to interim step which could provide better security in
each of these parties, and the number of issued keys the period until true multi-level products are
would grow quite large. Indeed, what we are faced available from the EPL at a justifiable cost. This
with here is a problem not unlike that of a secure may be a considerable period of time because
packet switching system in which keys grow researchers and manufacturers are targeting the
exponentially with the number of network nodes. classified market first.

The solution advanced with the packet-switching
networks and which may have application for a file
encryption tool is a key distribution facility
(KDF). The role of the KDF would be to enforce an
access protocol on each user, perhaps employing a key
shared between the KDF and the user. The actual file
encryption key would not be shared with the user but
might be derived from the user's key, a file key, and
perhaps a local security key.

Design of such a system and indeed its protocol
will need development while implementation could
employ either conventional key management techniques
or perhaps public key ideas. It appears that the KDF
idea will probably prove a way to solve this
difficult problem.

Lastly, assurance is the fourth issue in design
of a strong file encryption technique. We are faced
with a problem similar to developing trusted software
for the TCB in that the techniques are similar. It
is for this reason that the C2-a system proposes
stronger penetration testing than simply elimination
of obvious flaws found in C2 requirements. Yet,
there is a delicate tradeoff required in arriving at
a balanced assurance level for the file encryption
tool.

File encryption can provide good privacy and
authentication methods when there is high risk and
when other techniques are unavailable. File
encryption is not being discussed here as a
replacement for trusted software chiefly because it
fills a somewhat different function and serves as a
useful adjunct. In sum, the techniques and products
for file encryption on unclassified sensitive
computer systems are not as well developed as one
would wish; however, it is one of the proven tools
which are available where other forms of risk
reduction are not available.

CONCLUSION

This paper has presented a discussion of
security factors affecting unclassified sensitive
civilian agency systems.

The multi-sensitivity sharing problem was
reviewed and two essential questions were proposed:
first, can the information system adequately control
the users authorized to use it, and second, can the
operating system prevent users of one information
system from accessing files and resources of some
other system? It was shown that both these issues
cannot be given an unqualified answer lacking
multi-level trusted software; yet, it is possible to
substantially reduce the risk of multi-sensitivity
sharing by good software security engineering and
basic security enhancements to the operating system.

In this respect the notion of an enhanced
version of the basic C2 requirements was advanced
with the goal of introducing improvements to better
manage a multi-sensitivity job stream and improve the
system's resistance to penetration. Additionally,
file encryption was suggested as a further way to
limit risk in systems where there is a large
difference between the lowest clearances and the
highest classification of data.

Lastly, it is important to note the difference
in culture between military and civilian agencies.
Each has evolved in a culture facing significantly
different problems and, hence, responses and
perceptions are different. If the body of military
security knowledge is to be of value to civilian
agencies, it must begin by reformulating its
associated doctrine of use. Security programs which
do not conform to an organization's culture will
ultimately be expensive to administer and vulnerable.

REFERENCES

References Cited

lDOD Computer Security Center, Password Management

Guide, CSC-STD-002-85, April 1985.

2Executive Order 12356, National Security

Information, April 1982

3office of Personnel Management, Federal Personnel

Manual, Position Sensitivity, Basic Installment 311,

January 1984.

4Department of Justice, Bureau of Justice

Statistics, Computer Crime, Electronic Funds Transfer

Systems and Crime, U.S. Government Printing Office,

Washington, D.C., July 1982.

5IBM Corporation, Data Security Through

Cryptography, GC22-9062-0, October 1977.

Other References

DOD Computer Security Center. DOD Trusted Computer

System Evaluation Criteria, CSC-STD-001-83.

DOD Computer Security Center, Guidance for Aoplying

the DOD Trusted Computer System Evaluation Criteria

in Specific Environments, CSC-STD-004, June 198~.

DOD Computer Security Center. Technical Rationale

Behind CSC-STD-003-85, CSC-STD-004, June 1985.

McPhee, Operating System Integrity in OS/VS2, IBM

System Journal No. 3, 1974.

90

TOWARDS A DISCIPLINE FOR DEVELOPING

VERIFIED SOFTWARE

William M. Farmer
Dale M. Johnson
F. Javier Thayer

The MITRE Corporation

Bedford, Massachusetts

Abstract

In this paper the formal verification of com­
puter systems and software is viewed as an en­
deavor in applied mathematics. It is argued that a
formal verification. should consist ofthree separate
but interacting processes: a modelling process, a
theorem proving process, and a review and accep­
tance proceBB. Suggestions are made for improv­
ing the .development of these processes. Taken
together, they outline a proposed discipline for
the development of verified software. The ideas
presented were principally, though not exclusively,
motivated by the authors' work in reviewing the
design verification of the Restricted ·Access Pro­
cessor (RAP). Examples are drawn from the RAP
verification to support our suggestions for improv­
ing formal verification.

1. INTRODUCTION

The main purpose of this paper is to propose a dis­
cipline for the development of verified software. Our
comments in this paper are motivated in part by our
recent experience reviewing the design verification of
the Restricted Access Processor (RAP) (cf. [3], [7]).
We also draw some examples from the RAP verifica­
tion to support our views. The paper attempts to de­
scribe verification as an endeavor in applied mathemat­
ics. Though this viewpoint is not completely new (cf.
[1], [10]) and might even be regarded as the obvious one
to take, from our review experience we are led to be­
lieve that the exact consequences of taking this view are
not fully and clearly understood. In particular, perceiv­
ing verification as applied mathematics requires a clear
differentiation between the following two processes:

(1) 	 Establishing formal mathematical models of
natural-language requirements or specifications. In
the case of design verification for secure systems,
these models are usually called the formal secu­
rity model and the (formal) top level specification

(TLS). We refer to this as the modelling process,
which in our view is perhaps the most critical part
of the verification, yet it is apparently the least
understood.

(2) 	 Using mathematical techniques to reason about the
formal models obtained by the modelling process. In
the design verification of the RAP, this reduced to
proving formally that the TLS satisfied the formal
security model. We call this the theorem proving
process.

We realized in our review of the RAP that the dis­
tinction between the modelling process and the theo­
rem proving process is especially important from the
reviewer's perspective, 'since the tasks involved in each
of these processes are to be understood and judged in
very different ways. Yet while these processes are dis­
tinct, it is inevitable (and definitely beneficial for the
verification) that they will interact with one another.

In addition to these two processes we believe that it
is useful, in analogy with similar validation processes
occurring in the mathematical sciences, to include a
third interacting process as well:

(3) 	 Reviewing and accepting the verification. Gener­
ally, this means ascertaining that the verification
satisfies requirements agreed upon by the customer
and the verifier. Requirements may include, for ex­
ample, the use of automated tools. Another rele­
vant and more important requirement is soundness
of the logical principles used in the verification. In
our view, part of the review process should allow
for interaction between the reviewers and the ver­
ifiers.

We gratefully acknowledge the support of the
Rome Air Development Center under contract number
F19628-86-C-0001 during the preparation of this paper.
We would also like to thank E. Bensley, J. Millen, P.
Tasker, and J. Williams, who offered guidance in the
formulation of the ideas presented in this paper.

91

2. THE MODELLING PROCESS

Mathematical modelling is a crucial process in the
task of formal verification. For example, in the verifi­
cation of secure systems, a formal security model for
the security policy is constructed or, in some cases,
provided (e.g., the Bell-LaPadula security model). In
this section we discuss various aspects of the modelling
needed in verification, using our findings from reviewing
the design verification of the RAP to develop examples
and special points.

In general, models provide a description of some real­
world phenomenon. By "phenomenon" we mean some­
thing very general. A phenomenon may be a process or
a system; even a natural language description of a sys­
tem or process is a phenomenon. A fundamental aim
for constructing a model is. to allow the use of formal de­
ductive techniques on the model to gain some new infor­
mation or conclude something about the phenomenon.
This aim requires that models be comprehensive in the
sense that they contain all information necessary for
applying these formal techniques. It should be empha­
sized that formal deduction is clearly distinguished from
other forms of evidence, such as empirical evidence, so
that the requirement of comprehensiveness is quite im­
portant.

Another highly significant aim of the modelling pro­
cess is to make the phenomenon intelligible to others.
In order to achieve this, the models have to be clear and
thoroughly explained. Models that resemble computer
code do not meet' these goals.

The process of building useful models is one of the
most difficult in all of science. The model-builder has
first to select carefully the tools and techniques from
mathematics that seem the most appropriate for pre­
senting the model. Most critically, he must decide how
to represent elements of the phenomenon with mathe­
matical constructs.

The model should be a clear portrayal of the phe­
nomenon, so that it can be accepted. Acceptance of
a model is based on the collective experience of the
researchers doing modelling and also on subjective fac­
tors, such as mathematical taste. A precept that is
universally true is that models are meant to be under­
stood. Questions of style and format are not to be
brushed aside as technically irrelevant. Moreover, spe­
cific sciences have developed special methodologies for
validating models. These methodologies generally rely
on experimentation and statistical sampling; even some
form of disciplined introspection may be used.

Unfortunately, no modelling methodology has, to our
knowledge, been successfully developed for the young
science of verification. The lack of a methodology makes
modelling even more difficult.

We must emphasize that by the term "modelling" we
do not refer exclusively to the construction of the formal
security model, though this construction is a significant

part of the modelling process in some verifications such
as the RAP. We must also include the writing of the
formal top level specification (TLS) as a part of the
modelling of the system.

The modelling required for the design verification of
the RAP is typical of that needed in verification. We
can identify the parts of the modelling process in gen­
eral as follows:

(1) 	 Selection of a methodology for the verification,
such as the Hierarchical Development Methodol­
ogy (HDM) [6]. This selection has significant im­
plications for the verification. HDM was used for
the RAP verification. (Other possible methodolo­
gies are Gypsy and Formal Development Method­
ology. Also, an Enhanced HDM has recently been
released.)

(2) 	 Construction of a formal security model derived
from a security policy. The purpose of this model
is to formalize natural language requirements con­
cerning security. As part of the modelling process,
the functioning and adequacy of the model should
be explained. In the case of the RAP the formal
security model was derived from an Air Force se­
curity policy. Some explanation of the functioning
of the RAP accompanied the formal model.

(3) 	 Characterization of the design by writing a formal
top level specification. The TLS was a large and
significant part of the modelling for the RAP veri­
fication.

(4) 	 Generation of conjectures during the modelling
process, which then need to be investigated dur­
ing the theorem proving process. In the case of the
RAP verification we found that it was necessary to
make the exact nature of these conjectures as clear
as possible.

(5) 	 Justification of the decisions taken in steps (1)-(4),
in order to advance the (implicit or explicit) claim
that the modelling is adequate. Unfortunately, it
is often the case that this aspect of the modelling
is not adequately carried out.

We have prepared some suggestions for improving the
modelling process in verification. These were in part
prompted by our examination of the modelling done for
the RAP verification. In looking at the modelling in the
RAP verification we were particularly concerned with
the need for adequacy, comprehensiveness, intelligibil­
ity, and simplicity. These are highly desirable features
that should be considered in the modelling done in ver­
ification. Our suggestions are intended to help verifiers
make these features a part of their verifications.

(1) 	 Explain and carefully justify fundamental decisions
about the modelling.

92

Throughout a verification project, but more espe­
cially near the beginning, the verifiers should atten­
tively think about the modelling needed or being done.
Decisions about the modelling should be carefully doc­
umented and justified. At the outset of the RAP veri­
fication, certain modelling ideas had to be established,
i.e., decisions had to be taken about how to portray the
actual RAP (the reality in this case) as a mathemati­
cal model. The RAP is a processor guarding the data
link between the Network Control Center (NCC) and
the NASA Communications Message Switching Sys­
tem (MSS). Its purpose is to prevent uncleared users
from accessing classified information or facilities avail­
able through the NCC. A security policy had been pro­
vided by the Air Force and the architecture of the sys­
tem hardware had been developed. The basic modelling
problem was to find mathematical constructs that re­
flected the chosen architecture of the hardware and the
intended security of the system. The verifiers decided
to model the operation of the RAP conceptually as se­
quences of events that passed over a (conceptual) se­
curity perimeter. The selection of a particular security
perimeter and a particular way to portray the flow of
events is a fundamental modelling decision. Verifiers
must not only understand the nature of this basic deci­
sion about modelling, but be able to justify it as well.

(2) 	 Give broad explanations of the models and, if pos­
sible, key information about the process by which
they were derived.

Broad explanations of entire models are extremely
helpful to a reader or reviewer. Moreover, information
about the genesis of the models can illuminate the mod­
els themselves. During the construction of a formal
model various modelling decisions are made. These are
reflected in the final constructed model, but often in
obscure ways. The key information about the construc­
tion of the models should be preserved in an abbrevi­
ated form in the documentation.

In the case of the RAP we found that the documen­
tation, though substantial, could have contained more
information about the ideas behind the actual construc­
tion of the two main models, the formal security model
and the formal top level specification. To take a sim­
ple example, we found that one very large definition in
the formal security model could be reduced to a pair of
tables. Once these tables were constructed, the formal
definition became much easier to understand.

(3) 	 Choose a methodology that is adequate to formal­
ize the notions that need to be modelled.

This choice is a very difficult matter. One wants to
choose an adequate methodology for a verification, but
at present there are only a few from which to choose.
A fundamental modelling decision taken for the RAP

verification was to adopt the Hierarchical Development
Methodology (HDM) [6]. This decision had many im­
plications for the modelling process. Most notably it
implied the adoption of the sequential state machine
model, a basic part of HDM, in the modelling. For this
general model concurrency . is not so easily taken into
account. Hence, it is at least questionable whether this
sequential model is adequate to deal with the reality
of the RAP. Arguments ought to be given for the (im­
plicit) claim that the chosen methodology is adequate.

(4) 	Try to develop a formal model that has a direct and
clearly understood relation to the English policy
statement or English requirements specification.

The formal security model was a very significant part
of the modelling for the RAP [2]. The purpose of this
formal model was to capture the Air Force security pol­
icy in a succinct and correct way. The model was based
on event histories and was written in the specification
language SYSPECIAL, a variant of the SPECIAL of
HDM. The heart of the model consists of a hierarchy of
definitions of predicates on event histories, with a sin­
gle predicate (MBPS_OK) at the top of the hierarchy
representing the desired security invariant.

In order to facilitate the construction of the formal
model a shortened form of the Air Force security pol­
icy was developed, called the "derived security policy".
This was undoubtedly a great help in constructing the
formal security model, in particular, in seeing how the
Air Force policy should be related to the model. The
derived security policy is a terse English-language state­
ment of the security requirements that is closely related
to the formal model; in many instances there are direct
(one-to-one) correspondences between words of the de­
rived policy and functions or predicates of the model.
The model would have been even better if it could have
been a simpler formalization of the policy with more
direct correspondence between policy and model. How­
ever, formalization is a very difficult art.

In general, formal models should be made as simple
as possible and the relation to English-language require­
ments specifications should be made as clear as possi­
ble through informal explanations in the documentation
and perhaps through the construction of derived policy
statements. One can see the advantages of a derived
tersely-worded security policy statement in the case of
the RAP. Generally an English statement or specifica­
tion should be as simple as possible.

(5) 	 Definitions in a model'should have a hierarchical
structure and this structure should be presented
fully.

The definitions of the formal security model for the
RAP were arranged in a hierarchy. This arrangement is
certainly a good one. It is one that can be used to good

93

effect in modelling in verification. However, it is use­
ful to have as much information as possible about the
hierarchy. The hierarchy effectively indicates a "flow"
from the most general to the least general, revealing a
great deal about the structure of the model. The ver­
ifiers of the RAP might have given more information
about their hierarchy. Their diagram of dependencies
in the hierarchy was reduced to a brief summary in the
documents. A general explanation of a hierarchy of
definitions can be very helpful as a supplement to the
explanations of the individual definitions found in the
hierarchy.

(6) 	 Use nonprocedural forms of expression.

In our attempt to understand the formal security
model for the RAP we were led to develop our own in­
termediate mathematical model and explanation. We
found that it was very helpful to remove the recursions
from the basic definitions in the formal model and state
these with the aid of quantifiers and logic. The formal
model as given effectively had a mix of procedural de­
scription (the recursions) and strict logical description.
This mix was not always conducive to providing a direct
and clear exposition of the model.

It was only by constructing our own intermediate
mathematical model for the given formal security model
that we could begin to see the relation between the En­
glish security policy and the given formal model. This
intermediate model allowed us eventually to decide that
for the most part the policy was correctly reflected in
the given formal model.

The modelling done in constructing the TLS for the
RAP [8J had some special problems, partly associated
with adoption of HDM. We found the TLS at times
quite difficult to understand. We have a number of
suggestions for improvement in writing these kinds of
specifications. In the following we assume an under­
standing of the terminology of HDM.

(7) 	 Use homogeneous data types, whenever possible.

To avoid confusion, us~ homogeneous data types. If
for some reason the use of homogeneous data types is
impossible, pending data types should be considered.

(8) 	 Describe state transitions as simply as possible.

The effects of 0-functions on individual V-functions
should be easily understood. Ideally, the effects of an
0-function should be of the simple form:

V = F(W),

where V, W are V-functions and F is some simple func­
tion. The functionality of 0-functions of this sort is
manifestly clear to a reader.

(9) 	 Provide an information flow diagram.

The flow of information between V-functions should
be clear. Ideally, one should be able to represent the
flow induced by an 0-function as a directed graph. The
nodes of this graph correspond to V -functions and the
edges correspond to assignment statements. The graph
provides a clear understanding of the general architec­
ture of the TLS.

(10) 	Give adequate explanations of the relations among
the models.

This suggestion brings up the issue of comprehen­
siveness of the models. One of the goals of the RAP
verification was to prove that the TLS satisfied the se­
curity requirement or predicate formalized in the formal
security model. This formalized security requirement is
essentially a predicate on finite sequences of "events".
Since sequences of events do not constitute part of the
state of the TLS state machine, it is not clear how to in­
terpret the assertion that the TLS satisfies the security
predicate.

An interpretation can be made by associating event
histories with certain sequences of 0-functions or OV­
functions. These sequences are the possible execution
sequences of the TLS state machine. The assertion that
the TLS satisfies the model then means essentially that
for every execution sequence, its associated event his­
tory satisfies the formal security predicate. However,
this correspondence is not a part of either the formal
security model or the TLS. How one associates an event
history to an execution sequence is a problem of mod­
elling. In the case of the RAP, however, event histories
were introduced as part of the theorem proving stage
in a 	manner which seemed to suggest that one could
prove that the association chosen was the correct one.
Nevertheless, this association was especially problemat­
ical, since crucial assumptions about concurrency were
implicitly made. In general, the omission of the rela­
tion between models means that the modelling process
is not as comprehensive as it should be.

3. THE THEOREM PROVING
PROCESS

The second process of formal verification is the the­
orem proving process. In this process mathematical
proofs of the conjectures formulated during the mod­
elling process are constructed and analyzed. These
proofs serve two functions:

(1) To 	determine whether the conjectures formulated
during the modelling process are true.

(2) 	 To clarify the meaning of these conjectures.

The first function is well understood. No doubt it
is the part of formal verification that has received the

94

most attention. The second function is often ignored.
It is, however, essential for identifying inappropriate or
incorrectly formulated conjectures, and thus spotting
apparent errors in the modelling process.

Unlike the modelling process, the theorem proving
process is a completely mathematical endeavor. Proofs
of theorems are developed in a well-defined mathemati­
cal theory (created by the modelling process), in which
there is no direct mention of the real-world application.

As part of a verification, mathematical proofs can
provide a level of assurance for the correctness of a
conjecture that is not obtainable by traditional means
of software testing. Nevertheless, mathematical proofs
are not infallible. Their validity must be ultimately
grounded in some kind of critical process. In mathe­
matics, this critical process occurs within the commu­
nity of research workers.

Because proofs used in formal verification tend to be
long and complicated, verifiers usually try to construct
them with the aid of machines (theorem provers, proof
checkers, simplifiers, etc.). This approach is certainly
good and probably necessary. However, without care
it can become an obstruction to the theorem proving
process, leading to results such as the following:

(1) 	 Theorems are proved without being clearly under­
stood.

(2) 	 Opaque calculation is given instead of careful
argument.

(3) 	 Proof analysis is given less emphasis than proof
construction.

(4) 	 Conceptual simplification is overlooked.

(5) 	 Errors in the formulation of conjectures are not
discovered.

(6) 	 The fallibility of proofs is forgotten.

H verifiers are to construct good proofs with the as­
sistance of machines, they need to have a clear under­
standing of what a verification proof should be. We feel
that there are six basic goals that a verification proof
should attempt to achieve:

(1) 	 A verification proof should clearly state the theo­
rem it purports to prove.

To any mathematician this goal is so obvious that
it hardly needs stating. Nevertheless, achieving this
goal is essential to any good proof. A proof's value is
diminished in proportion to the lack of clarity in the
statement of the theorem.

(2) 	 A verification proof should increase one's confi­
dence in the truth of the theorem.

This is clearly the major goal of any proof. It is
important to remember that proofs can never give an
absolute guarantee of correctness.

(3) A verification proof should be rigorous.

The one thing that separates formal verification from
traditional ways of testing software and computer sys­
tems is that formal verification attempts to show some­
thing is correct with a rigorous proof. A rigorous proof
strives to use only well-defined concepts and to have no
loose ends. Nothing is ignored or left to chance.

(4) 	 A verification proof should clarify the meaning of
the theorem.

It is a rare luxury to begin proving a conjecture that
is correctly formulated. This is true in general mathe­
matics as well as in formal verification. Thus it is very
desirable that the process of proving a conjecture helps
to correct the statement of the conjecture itself. The
ideal process goes like this: a (partial) proof of the con­
jecture is constructed, it is analyzed, the conjecture is
modified, and the process is begun again. The process
ends when one is satisfied that a complete proof of an
appropriate and correct conjecture has been obtained.
(Cf. [5] for further discussion of this "dialectical" pro­
cess.) In order for this process to be successful, it is
necessary that verification proofs elucidate the mean­
ing of the theorems they prove. This cannot be done
by proofs consisting merely of a long series of opaque
logical calculations.

(5) 	 A verification proof should be maintainable.

Software and computer systems need to be modi­
fied virtually on a continuous basis. Hence, verifica­
tion proofs should be modified whenever the things they
verify are modified. In other words, verification proofs
should be maintainable just as computer systems should
be maintainable.

(6) 	 A verification proof should be machine checkable.

Verification proofs tend to be long and complicated.
One cannot expect to check them by hand without mak­
ing mistakes. It is reasonable to expect that many of
these mistakes would not occur when a proof is machine
checked. Although it is desirable that a verification be
machine checkable, it is not necessary that a verifica­
tion proof be machine generated. (Of course, it is often
useful to construct parts of a verification proof with the
aid of a machine.)

The state of the art of verification proofs falls signif­
icantly short of these six goals. We believe that this is
due in part to an inadequate understanding by verifiers
of what proofs should be and what role machines should
play in proof construction.

95

To help illustrate how real verification proofs satisfy
(and fail to satisfy) the goals we have stated above, we
shall briefly examine the verification proof for the de­
sign of the RAP. The RAP verification proof is a good
example to consider because, although it certainly is
one of the best large-scale verification proofs produced
to date, it exhibits some of the deficiencies that com­
monly plague verification proofs.

The principal theorem of the design verification of
the RAP can be stated as follows:

THEOREM. Every implementation of the Top Level
Specification (TLS) of the RAP satisfies the require­
ments formulated in the formal security model.

This theorem is only stated informally in the RAP Ver­
ification Results Report [9] and its mathematical mean­
ing is not explicated at all.

The proof of the theorem breaks up into two parts:

PART A. The proof that the theorem holds if the asser­
tions of an Augmented TLS (ATLS) are invariants of
the ATLS.

PART B. The proof that the assertions of the ATLS are
invariants of the ATLS.

These two parts are handled very differently. Part
A of the proof is an informal mathematical argument,
which is given very little attention relative to Part B.
Moreover, the argument is flawed because part of the
modelling process (the construction of the ATLS from
the TLS) is mixed up with it.

Part B is of a completely different nature from Part
A. It is essentially a series of 36 very detailed formal de­
ductions. The formal deductions are not actually given
in the Verification Results Report [9]; instead logs are
given of the theorem prover commands used to. con­
struct the deductions.

Part B does a reasonably good job of satisfying the
goals of rigor (3) and machine checkability (6). Its suc­
cess results from being a formal proof constructed (and
checked) with the use of a machine. Since the logs
are modifiable and reusable, part B also contributes
to the goal of maintainability (5). The logs, however,
are opaque. They do not help one to understand the
subtheorems they prove, nor do they communicate the
mathematical meaning of the deductions.

The lack of perspicuity in the formal deductions
means that one's confidence in the claim that the ATLS
assertions are invariants of the ATLS is almost purely
a matter of faith in the MUSE system, the theorem
proving system used to construct the formal deductions.
The MUSE system [4] was developed by Sytek, Inc. It

is a competent and, in many ways, admirable theorem
proving system. However, although the MUSE system
appears to work correctly, it has not been formally ver­
ified (like all such systems) and it is relatively untested,
having thus far been used on only one large project. As
long as the MUSE system itself is not verified, genuine
confidence in it can only come after it has been used by
several different parties on several different projects.

In summary, the RAP design verification proof is
composed of an informal part and a part constructed
with the aid of a machine. The first part received only
cursory attention. The second part was carried out in
great detail, but with too much reliance on automated
reasoning tools. Although the RAP verification proof is
successful in several ways, it illustrates some common
shortcomings of verification proofs:

(1) 	 Insufficient attention is paid to the informal parts
of the proof.

(2) 	 Justification for modelling decisions is presented as
part of the verification proof.

(3) 	 Formal deductions are not presented in an under­
standable form.

(4) 	 Too much reliance is placed on unverified theorem
proving tools.

We finish our discussion of the theorem proving pro­
cess by giving five suggestions for constructing good
verification proofs.

(1) 	 Use hierarchical construction.

To be readable and understandable, long proofs must
be constructed in a hierarchical manner. This is em­
inently true for verification proofs, which tend to be
oppressively long and full of minute details. The com­
ponents of a hierarchical proof should be subproofs of
the form

by the argument A, C follows from H 1 , ••• ,H,..

At the top level C is the conjecture that is proved, and
at the bottom level the H;'s are the hypotheses which
are being assumed or are trivially true.

The crucial parts of the proof- the "idea" of the
proof - should be in the arguments at the top of the
hierarchy, and the tedious details of the proof should
be at the bottom. One can read a proof of this form
part way down and be confident that the basic idea
of the proof and, hence, the basic idea of the theorem
are correct, even though there could be minor problems
with the details of the proof and the theorem.

(2) Use modular construction.

96

Mathematicians have been using modular construc­ et al. in [1], virtually all formal verifications to date
tion in proofs for centuries, and modular construction suffer in some degree from excessive reliance on formal
is considered part of good programming. It is well un­ logical calculation.
derstood why modular construction is desirable, even

(5) Use an expressive high level language. neceuary, in mathematical proofs and computer pro­
grams. To a large extent the whole enterprise of formal
verification rests on one's ability to develop methods of
modularity. In conjunction with hierarchical construc­
tion, modular construction is an excellent way to satisfy
the goal of maintainability.

By making use of proof parts that have been used
many times (such as fundamental lemmas), one's doubt
in a verification proof can be directed to a few spe­
cific aspects of the proof. This helps to increase the
reviewer's confidence in the proof by allowing him to
concentrate only on what is new. There is some use of
modularity in the the RAP verification proof with the
use of the theorem prover command logs.

(3) Identify all premises of the proof.

A good proof of any kind should clearly identify all
the premises used and assumed in it. Incorrect proofs
often result from the use of hidden assumptions that
are not valid. Following this suggestion should help
in attaining all but the last verification goal. A clear
statement of the theorem includes the premises that
are aBBUmed (goal1). In a well-constructed proof, the
aspects of the proof which might be questionable are
concentrated in the premises of the proof (goal 2). A
precise list of premises is a requirement of a rigorous
proof (goal 3). Knowing the premises of a proof in­
creases one's understanding of the theorem (goal 4).
The premises of a proof identify the conditions under
which the proof is valid and can be used again (goalS).

(4) Use calculations carefully.

Formal verification has been rejected by some [1] as a
means of testing the reliability of software. One of the
principal reasons for this is that all too often verification
proofs contain maBBive amounts of opaque logical calcu­
lations. Calculation is certainly a very valuable aspect
of mathematical reasoning. However, if one is going to
use calculations in a fundamental way in a verification
proof, one needs assurances that the calculations are
performed correctly. Until one has these assurances, it
is very dangerous to accept the results of calculation
without closely examining what was done.

Calculations can be incorrect and, when calculations
are opaque (such as arithmetic is in a digital computer),
there is no way of easily detecting errors. Complicated
calculations should be used in a verification proof only
when there is a very high aBBurance that they will be
correct. For example, it is appropriate to use arithmetic
calculations performed by a good digital computer or
simplifications performed by a well-tested and very re­
liable simplifier. As prominently mentioned by DeMilio

It is clear that verifiers can greatly benefit from the
use of machines to aBBist in the development of veri­
fication proofs. Using machines necessitates working
with formal languages. It is exceedingly hard to get
a machine to handle formal languages that have the
expressibility of the informal languages used by math­
ematicians. Consequently, verifiers have usually been
tempted into using very simple formal languages. This
approach keeps the proof development at such a low
level that the verifier and reviewer become lost in a
heap of trivia.

Relief can only come with the use of expressive high
level languages. Languages of this type are difficult to
develop and difficult to program a machine to use, but
they allow human beings to think naturally and to make
use of the richness of modern mathematics.

4. THE REVIEW AND
ACCEPTANCE PROCESS

In mathematics the validation or acceptance of a new
result is the outcome of a complex interactive process
involving the author, the interested community, and to
a lesser extent a technical reviewer appointed by the ed­
itor of a journal. Based on our experience of reviewing
the RAP, we now discuss how the process of validation
ought to occur in the verification of design or program
correctness. We believe that many useful analogies be­
tween the validation processes in mathematics and in
verification can be made. However, while these analo­
gies exist, we still think that the two processes have
important differences.

In mathematics (or in other areas such as mathemati­
cal economics or mathematical physics), workers in each
area of research try to build on or improve published re­
sults. They are strongly motivated to understand these
results and make sure that they are correct. Mathe­
matical papers are normally structured in a way that
permits understanding at many different levels. For
example, a specialist reader can take a cursory look
at a good mathematical paper and still get some no­
tion of the paper's contents. There are also aesthetic
reasons for reading mathematical papers. Researchers
read technical papers, not only because they can use
the results in their own work, but also because read­
ing them is a pleasurable experience. Generally, papers
that are not well written are not immediately received,
and the results they claim take longer to be accepted
by the community of research workers. Insuring that
their papers are read is a powerful reason for authors
to write clear as well as interesting papers.

97

In contrast to the situation in the other mathemati­
cal sciences, very few people read verifications of large
programs or systems. Most of the reasons that exist for
reading research papers do not exist for reading verifi­
cation proofs. Verification proofs are tedious and rarely
provide a basis for further research in the same way as
mathematical proofs. Cursory readings of verification
proofs provide absolutely no insight. In short, verifica­
tion proofs are written with no intention of attracting
readers. Generally, new software has been accepted ex­
clusively on the claims of developers. In the best of
circumstances (as was the case for the RAP) the design
or code undergoes some sort of independent review pro­
cess. Even in the case of the RAP, the review process
for the design verification was not explicitly discussed
in the original verification plan, despite the fact that a
review process for code development was carefully es­
tablished.

As we have argued above, the existence of proofs,
even automated ones, is in itself no guarantee of cor­
rectness. Proofs have to be submitted to a thorough re­
view process in much the same way as in mathematics.
Since it is unlikely that verifications will attract inter­
ested and critical readers, only a formal review process
by appointed referees seems to be feasible. This re­
view process should be considered an integral part of
the verification effort.

It is our belief that the reviewers should be regarded
as the main audience for a verification proof. IT the
purpose of such a proof is to persuade any potential
doubter, then at least the reviewers must be convinced
of the correctness of the verification proof. A verifica­
tion effort which fails to satisfy this condition cannot
be considered a proof in any reasonable sense. In order
to achieve these goals, the following two conditions at
least should be met:

(1) 	 Any formal models used in the verification must
be understandable without undue effort. Specific
guidelines for clarity of specifications should ex­
ist to aid specification writers. These guidelines
should be agreed upon before any formal models
are written.

II
(2) Even if automated tools are used, the structure of

the formal proof must be clearly stated. Presenting
the structure clearly makes the automated proof
more credible as well as making the verification
much more maintainable.

I
5. 	SUMMARY

In this paper we have proposed a discipline for verify­
ing software. We think that a verification should consist

·' of three interactive processes: a modelling process, a
theorem proving process, and a review and acceptance

process. The modelling process should develop formal
mathematical models of all requirements, specifications,
processes, and systems that are relevant to the verifica­
tion, and should generate conjectures in the mathemat­
ical framework established by the models. The models
and conjectures should be clear and their appropriate­
ness justified. In the theorem proving process, proofs
of the conjectures generated during the modelling pro­
cess should be constructed and analyzed. Unlike the
modelling process, the theorem proving process should
be a purely mathematical endeavor. The review and
acceptance process should provide a means of commu­
nication, so that the verifiers can convince the reviewers
- and ultimately the customer - of the adequacy of
the verification.

REFERENCES

1. 	DeMilio, R. A., Lipton, R. J., and Perlis, A. J.,
"Social Processes and Proofs of Theorems and Pro­
grams," Communications of the ACM 22 (1979),
271-280.

2. DiVito, B., 	and Proctor, N., "Restricted Access
Processor Formal Security Model," Technical Re­
port TR-82041, Sytek (July 1985).

3. DiVito, B., 	and Sullivan, E., "Restricted Access
Processor System Verification Plan," Technical Re­
port TR-82046, Sytek (October 1983).

4. 	 Halpern, D., and Owre, S., "MUSE: The Sytek
Proof Processing System", Technical Report TR­
85007, Sytek (July 1985).

5. 	Lakatos, 1., Proofs and Refutations, Cambridge
University Press, Cambridge, 1976.

6. 	Levitt, K., Robinson, N. L., and Silverberg, B. A.,
"The HDM Handbook," SRI International, Menlo
Park, California, (June 1979).

7. 	 Proctor, N., "The Restricted Access Processor: An
Example of Formal Verification," Proceedings of
the 1985 IEEE Symposium on Security and Pri­
vacy, Oakland, California, 1985.

8. 	Proctor, N., "Restricted Access Processor Message
Block Processing System Formal Top-Level Speci­
fication," Technical Report TR-83002, Sytek (July
1985).

9. 	Proctor, N., "Restricted Access Processor Verifica­
tion Results Report," Technical Report TR-84002,
Sytek (July 1985).

10. Scherlis, W. L., and Scott, D., "First Steps towards
Inferential Programming", Proceedings of the IFIP
Congress, Paris, 1983.

98

THE NATIONAL BUREAU OF STANDARDS

MESSAGE AUTHENTICATION CODE (MAC)

VALIDATION SYSTEM

Miles Smid, Elaine Barker, and David Balenson

National Bureau of Standards

Institute for Computer Sciences and Technology

Gaithersburg, Maryland 20899

ABSTRACT

This paper describes the National Bureau of
Standards MAC Validation System (MVS) for
testing the conformance of vendor devices to
Federal and commercial data authentication
standards. Topics which are covered include
the events which led to the development of
the MVS, the standards it validates, its
design philosophy, the requirements it
places on vendors validating their devices,
its performance characteristics, and the
results of the validations performed to
date.

1 INTRODUCTION

In 1979 a group of bankers, vendors,
financial network representatives, and a
member of the National Bureau of Standards
(NBS) met for the first time to define and
write an American National Standards
Institute (ANSI) standard for authenticating
financial transactions. The impetus for the
standard came from the bankers who were well
aware of the large dollar amounts contained
in wholesale electronic financial
transactions, and the outdated methods used
to protect their integrity.

Two years later, the American National
standard for Financial Institution Message
Authentication (Wholesale) was published by
the American Bankers Association as ANSI
X9.9-1982. The standard made use of the
Data Encryption Standard (DES) cryptographic
algorithm to calculate a cryptographic
checksum or Message Authentication Code
(MAC). The originator of a message
calculates the MAC by encrypting the data
using the DES algorithm and a secret value
called the key. The MAC is then sent to the
recipient along with the unencrypted
message. The recipient, who has the correct
key, calculates the MAC in the same manner
as the originator and compares i~ to t~e
received MAC. If the compar1son 1s
successful, the data is considered
authentic. Otherwise, an unauthorized
modification is assumed. Any party trying
to modify the data without knowing the key
would not know how to calculate the
appropriate MAC corresponding to the altered
data.

Contr1but1on of the National Bureau of
Standards. Not subject to copyright. This
research was partially funded by the u.s.
Department of Treasury.

The algorithm used to calculate a MAC was
based upon the DES cryptographic algorithm
which was published by NBS as a Federal
Information Processing Standard in 1977 [6].
The International Business Machines
Corporation had made the DES specifications
available to NBS, and had provided
nondiscriminatory and royalty free licensing
for building DES devices. NBS established a
DES validation program whereby twenty-six
DES hardware implementations have been
tested for conformance to the DES standard.
In addition, the specific method for using
DES to calculate the MAC was also published
by NBS as Federal Information Processing
Standards Publication (FIPS PUB) 113 in 1985
[7].

Much of the ANSI X9.9 standard deals with
extraction rules for determining what data
in the transmitted message is to be
authenticated by the MAC, and editing rules
for providing transparency in applications
where slight modifications to the data are
normally expected. For exa~ple, in manual
applications the received data must be
reentered into the authentication device in
order to be authenticated. If even one
character is reentered incorrectly or extra
spaces are inserted between words, the
recalculated MAC will in all likelihood not
equal the received MAC. In these cases it
may be desirable to minimize the chance of
human error by authenticating only the
critical fields of the message, and allowing
extra spaces to be inserted between words
without altering the MAC.

Shortly after the publication of the ANSI
X9.9 standard it was submitted to the
International Organization for
Standardization (ISO) as a candidate
international authentication standard. It
then became clear that the ANSI X9.9
standard would have to be revised to conform
to the character set requirements of the
International community. An effort to
revise the standard was begun and the
revised standard is expected to be published
in 1986. Further references to the ANSI
X9.9 standard in this paper pertain to the
April 7, 1986 version of the revised
standard [2].

In 1984, the u.s. Department of Treasury
wrote a policy directive requiring that the
department's Electronic Funds Transfer (EFT)
messages be properly authenticated on all
new systems immediately, and on all systems
by 1988 [5]. In addition, Treasury decided
to certify vendor devices and wrote the
criteria that such modules must meet [4].

99

NBS and the National Security Agency are to
assist Treasury with its certification. As
a part of this cooperative effort, NBS
agreed to develop a MAC Validation system
(MVS) which would test conformance with FIPS
PUB 113 and ANSI X9.9. This paper will
describe the MVS and the tests which are
designed to validate conformance to FIPS PUB
113 and ANSI X9.9.

2 MESSAGE AUTHENTICATION STANDARDS

2.1 Computer Data Authentication (FIPS PUB
113)

In automated data processing systems it is
often not possible for humans to scan data
to determine if it has been modified.
Examination may be too time consuming for
the vast quantities of data involved in
modern data processing applications, or the
data may have insufficient redundancy for
error detection. Even if human scanning
were possible, the data could have been
modified in such a manner that it would be
very difficult for the human to detect the
modification. For example, "do" may have
been changed to "do not" or "$1,000 11 may
have been changed to "$10,000 11 • Without
additional information the human scanner
could easily accept the altered data as
being authentic. These threats may still
exist even when data encryption is used. It
is therefore desirable to have an automated
means of detecting both intentional and
unintentional modifications to data.
Ordinary error detecting codes are not
adequate because, if the algorithm for
generating the code is known, an adversary
can generate the correct code after
modifying the data. Intentional
modification is undetectable with such
codes. However, a cryptographic MAC can
protect against both accidental and
intentional, but unauthorized, data
modification.

I IliDl I

DES

FIPS PUB 113 defines an algorithm for
calculating the MAC which is consistent with
ANSI X9.9 and the Department of Treasury's
Electronic Funds and Securities Transfer
Policy. The MAC calculation is based on the
DES cryptographic algorithm which transforms
64-bit input blocks to 64-bit output blocks
using a cryptographic key (See Figure 1).
The data to be authenticated is grouped into
contiguous 64-bit blocks: Dl,D2, ••. ,Dn. If
the number of data bits is not a multiple of
64, then the final input block will be a
partial block of data, left justified, with
zeroes appended to form a full 64-bit block.
After the first data block is passed through
the DES algorithm the output is
exclusive-ORad to the second data block to
form the next input to the DES. This
process continues until the last data block
is exclusive-ORad to a DES output block and
the result is used as the last input to the
DES. The left-most 32-bits of the final DES
output are taken as the MAC.

Since the outputs of each DES transformation
are chained to the inputs of the next DES
transformation, the final MAC is a function
of each bit of data and the secret
cryptographic key. When the key is unknown,
the alteration of a single bit of data will
cause an unpredictable alteration of the
MAC. Therefore, any intruder who intercepts
authenticated data and attempts to make an
alteration does not know what the
corresponding MAC for the altered data
should be.

The MAC algorithm may be used to protect any
data (transmitted or stored) which is
exposed to alteration between the initial
generation of the MAC and the verification
of the received MAC. It does not detect
errors which occur before the MAC is
originally generated.

Ii
Oi
Di

64-bit DES input block
64-bit DES output block
64-bit message block

@ bitwise exclusive-OR operation
DES - Data Encryption Standard algorithm

Figure 1. The message authentication algorithm

100

I

2.2 	 ANSI X9.9

The ANSI X9.9 standard defines a uniform
process to facilitate the protection of
wholesale financial messages. The process
is independent of the transmission media,
can be implemented in both automated and
manual systems, and is usable by both large
and small financial institutions.

2.2.1 The Authentication Process. Given a
message to be transm~tted from the
originator to the recipient, the
authentication process involves three steps.

(1) 	 The originator of a message computes a
message authentication code (MAC) from
the contents (or selected contents) of
the message using a secret key and one
of five authentication options provided
by the standard. The five
authentication options, which are
described in more detail below, include
one option for binary data and four
options for ASCII messages which
involve the authentication of selected
parts of a message. Choice of the
authentication option and key is the
responsibility of the originator and
the recipient and should be specified
using procedures that are part of a
bilateral agreement between the
originator and the recipient.

(2) 	 The originator transmits both the
unencrypted message and its MAC to the
recipient of the message.

(3) 	 The recipient verifies the received MAC
with the message by computing another
MAC from the contents (or selected
contents) of the received message
(excluding the MAC itself, and its
delimiters, if any) using the same
authentication option and key used by
the originator, and comparing the
computed MAC to the MAC received with
the message.

The authentication process can be
implemented either through software or
special hardware devices or a combination of
the two. The process provides verification
that the contents (or selected contents) of
a message have not been accidentally or
deliberately modified during transmission
between the originator and the recipient.
In addition, the identity of the originator
of a message is implicitly verified by
proper use of the correct secret key. By
including the date and a unique message
identifier in a message, the authentication
process also provides verification of the
uniqueness of a message (i.e., that the
message is not a duplicate) • The message
identifier, which must be authenticated, is
a value that does not repeat (typically a
sequence number), such that there is not
more than one message with the same message
identifier that has the same date and uses
the same key.

The authentication process alone does not
guarantee absolute security. The protection
provided applies only to the parts of a
message that are actually authenticated.
Other parts of a message are subject to
undetected alterations. Written agreements,
physical, personnel, and procedural security

controls are necessary for secure
implementation, use, and protection of the

MAC computation involves the application of

authentication process and devices.
must be protected in accordance with
X9.17 [3).

Keys
ANSI

2.2.2 The Authentication Computation. The

the authentication algorithm to the contents
of a message based on the authentication
option used. The algorithm is essentially
identical to the authentication algorithm
defined in FIPS PUB 113.

2.2.3 The Binary Authentication Option.
The binary authentication option applies the
authentication algorithm to the entire body
of a message represented as a sequence of
bits. The MAC is placed in the message in a
predetermined location according to a
bilateral agreement between the originator
and the recipient.

The binary authentication option of ANSI
X9.9 provides compatibility with FIPS PUB
113 and is the recommended option for the
authentication of bulk data.

2.2.4 The Coded Character Set Authentication
Opt~ons. The four coded character set

options apply the authentication algorithm
to either the entire contents or selected
contents of ASCII messages. All characters
of a message must be represented as 8-bit
ASCII characters with the leftmost bit set
to zero and the right-most seven bits set as
defined by ANSI X3.4 [1]. If the message is
represented by a different character set
(e.g., EBCDIC), then the message must be
transformed into ASCII before selecting the
contents of a message and computing the MAC.

In all four coded character set options, an
ASCII message contains fields (or message
elements), which are contiguous strings of
characters designated for a specific
purpose. Examples of fields that may appear
in a financial message include the
identities of the credit, debit, and
beneficiary parties, the transaction value
and currency types, and the identity of the
key used for authentication (IDA).

These fields may or may not appear in a
message, but they must be authenticated if
they do appear. Other fields that must
always appear in a message and must also be
authenticated include the date of message
origination (Date) and a message identifier
(MID). A MAC must also appear in a message,
but is not included in the MAC computation.
The formats of the IDA, Date, MID, and MAC
fields are fixed by the standard, and each
of these fields must appear only once in a
message.

In order to locate and identify the fields
in a message they must be either implicitly
or explicitly delimited. A field is
implicitly delimited if its placement in a
message is either fixed or unambiguously
specified by format rules. A field is
explicitly delimited if its placement in a
message is identified by a complementary
pair of opening and closing explicit
delimiters without any intervening
delimiters. The standard establishes the

101

following opening and closing explicit (3) The Entire Message with Editing Option
delimiters: applies the authentication algorithm to

Open Close

Date: QD­ -DQ
IDA: QK­ -KQ
MAC: QM­ -MQ
MID: QX­ -XQ
Text: QT­ -TQ

Figure 2 depicts a sample financial message
which uses these explicit delimiters. The
use of implicit delimiters versus explicit
delimiters and the formats of fields that
are not fixed by the standard should be
specified in the bilateral agreement between
the originator and the recipient. In all
cases, if a message does not conform to
these rules, then a syntax error must be
indicated.

The differences among the four au
thentication options involve which parts of
a message are actually authenticated, i.e.,
which parts are input to the authentication
algorithm in order to compute a MAC for the
message.

(1) 	 The Entire Message with No Editing
Option simply applies the
authentication algorithm to the entire
message.

(2) 	 The Extracted Message Elements with No
Editing Option applies the
authentication algorithm only to the
message elements and their delimiters.

The two non-editing options are recommended
for the authentication of data whenever the
transmission medium provides transparency.

the entire message, but first edits the
contents according to several editing
rules which modify carriage returns and
line feeds, convert all alphabetic
characters to upper-case, delete all
but certain acceptable characters,
eliminate leading spaces, and compress
sequences of consecutive spaces.

(4) 	 The Extracted Message Elements with
Editing Option applies the
authentication algorithm only to the
message elements and their delimiters
after editing the contents as above.

The editing options are recommended for the
authentication of ASCII data whenever the
transmission medium is not transparent to
the character set being used (e.g., BAUDOT
networks, Telex).

3 MAC VALIDATION SYSTEM

3.1 	 Design Philosophy

The approach taken in the development of the
MVS was based on experience gained from the
NBS DES validation process. Costs and staff
time to administer the tests had to be kept
to a minimum. It was therefore decided that
the tests would be automated and performed
on test devices at remote locations. Since
the tests were to be automated, NBS staff
would only have to monitor the results,of
the tests. And, since the tests could be
performed on remote devices, shipping and
set-up expenses would be eliminated.

TO YOUR BANK

FROM OUR BANK

QD-80 07 14-DQ IIIII 10561 QX-127-XQ

QT­

TRNSFR USD $1234567,89 FRM ACCNT 48020-166
IIIII TO ACCNT 40210-178

-TQ

KEEP ON QT EXPECT VISIT ON FRIDAY OF
NEW DIV VP ON PROJECT QT-QWERT-TQ BE

Careful

REGARDS

QUIRTO
QK-1357BANKATOBANKB-KQ
QM-D21F 3879-MQ

Figure 2. Sample financial message

102

OUT 1­ DPC -1
PC

RBBS ­Modem 1 Modem J-- r- MVS

VENDOR LOCATION NBS

OUT = Device Under Test
DPC = Device Protocol converter
PC = Personal Computer
RBBS = Remote Bulletin Board System
MVS MAC Validation System

·Figure 3. Basic configuration

When initial DES validations were performed,
much time was spent interfacing vendor
devices to the NBS test device. In the case
of the MVS, it was decided to specify the
MVS interface and require that the vendor
match the device to the interface. In most
cases this can be accomplished with a
PC-based device protocol converter (DPC)
because the interface is represented as
specific message protocols, including
message flow and format, between the MVS and
the device (see Figure 3).

The intent of the validation process is to
provide a rigorous conformance test which
can be performed at a modest cost. NBS does
not try to prevent a dishonest vendor from
purchasing a validated device and remotely
validating the device as the vendor's own
product. However, customers who wish to
protect themselves against a dishonest
vendor could require that the vendor
revalidate the device in the customer's
presence.

3.2 Basic configuration

The MVS is implemented on a personal
computer (PC) equipped with a 1200 baud
modem and a DES encryption board. A public
domain Remote Bulletin Board System (RBBS)
is used to provide controlled access to the
MVS by the vendor and the vendor's message
authentication device, the Device Under Test
(OUT) (see Figure 3). In addition, the RBBS
features could be used to provide the user

with information on how to use the system
and with a list of currently validated
products. The MVS is accessed using the
"WINDOW" command of the RBBS which allows
programs to be run which are external to the
RBBS program. When the MVS is activated,
the user's identity and password are
requested followed.by a menu of options for
debugging, validating and status checking.
Test activity is logged in order to resolve
any discrepancies in expected test results;

3.3 Validation Protocol

The MVS permits the vendor to both debug and
validate a device for any of the five·ANSI
X9.9 authentication options (and FIPS PUB
113) using similar protocols (see Figure 4).
Details of these protocols, including the
specific message flow and formats, are given
in the NBS Message Authentication Device
Validation Requirements [11]. The debug
capability permits the vendor to test the
MVS in the same manner that the MVS tests
the DUT during validation. This capability
is provided for the vendor's benefit and is
not required for validation.

During validation the MVS attempts to
validate the DUT for each selected option by
sending requests to which the OUT must
respond. As depicted in Figure 5,
validation message flow begins with the OUT
sending a READY message to the MVS to
indicate that the DUT is ready to proceed

Options

Debug Options Validate Options

I I I I I

Binary Coded Character Binary Coded Character

Suboption set suboptions Suboption Set Suboptions

Figure 4. MVS Debug and Validate Options

103

with testing. Validation testing for the final status of the testing for that option.
Binary Option will begin at this point;
whereas, for each of the Coded Character Set
Options, a sequence of ten keys and
associated identities must first be sent by
the MVS, followed by a CONTINUE message
which is sent by the OUT.

A series of validation tests follows, each
test consisting of a request message, a
response messageand a confirm message. A
request message is sent by the ~vS to
request that the OUT either compute ~ MAC
from a message, or verify a MAC 1n a
message. A request message for the Binary
Option consists of a key and data pair. The
data may or may not contain a MAC. The
request message for a Coded Character Set
Option contains a sequence of ASCII
characters formatted according to the Coded
Character set Rules described in ANSI X9.9.
The response message is sent by the OUT and
may have several forms, depending on the
exact nature of the request message. It may
contain the computed MAC of the data
contained in the request, an indication of
whether or not the MAC contained in the data
is correct, or it may indicate that the data
had a syntax error. The confirm message is
sent by the MVS to indicate whether or not
the OUT returned the correct response. Upon
completion of a validation option, the MVS
sends a completion message to indicate the

During validation testing the MVS maintains
a retest count. Whenever the OUT provides
an incorrect response to a test, the MVS
automatically repeats the same request in
the next test. If the OUT provides the
correct response within three tests using
the same request, the retest count is
incremented by one. If, however, the OUT
provides an incorrect response for three
tests using the same request, the retest
count is incremented by a large value to
indicate a test failure. Testing continues
in either case. At the conclusion of
testing, the retest count is evaluated to
determine the validation status. If the
retest count is greater than. 5 (because of a
complete failure on a test or the retest of
more than 5 different requests), the
completion message indicates that the
validation option was not completed
successfully. Otherwise, the completion
message indicates that the option was
successfully completed.

The OUT may receive validation credit for
any of the five options. However,
successful validation of the Binary Option
is a prerequisite for successful validation
of any of the four Coded Character Set
Options.

Ready Message
------------------------------------>

Key Messages*
<-----------------------------------­

Continue Message*
------------------------------------>

Request Message
<--------------------~---------------Response Message

DPC ------------------------------------>
Confirm Message

<-----------------------------------­

Request Message
<-----------------------------------­Response Message
------------------------------------>Confirm Message
<-----------------------------------­

Completion message
<-----------------------------------­

OUT Device Under Test

DPC Device Protocol Converter

MVS MAC Validation System

OUT MVS

* The key and continue messages are used
in the Coded Character Set Options only

Figure 5. Message flow for the validate suboptions

104

3.4 	 Validation Tests

3.4.1 Binary Option Tests. The following
types of tests are performed in the Binary
Validate Suboption:

(1) 	 235 selected key and data combinations
(without ~ MAC~ which are related to
those g~ven ~n Appendix B of NBS
Special Publication 500-20 [8], except
that the data consists of the given
data with one to eight hexadecimal
ASCII ones appended. These tests are
used to check for the proper
functioning of the DES algorithm.

(2) 	 192 selected key and data combinations
(without a MAC) which are related to
those generated by the DES Maintenance
Test as specified in NBS Special
Publication 500-61 [9], except that the
data consists of the generated data
with one to eight hexadecimal ASCII
ones appended. The DES Maintenance
Test creates a cycling process
consisting of a maximum of 192
encryption and decryption operations
intermixed in such a way as to test all
aspects of the DES algorithm. These
encryption and decryption operations
are used here as an additional check
for the proper functioning of the DES
algorithm.

(3) 	 At least 100 key and data combinations
(without a MAC) which are randomly
generated. Some of the combinations
consist of data whose length is not a
multiple of 64 bits so that the DUT has
to correctly pad the data in the MAC
computation. These tests are used to
check the ability of the DUT to
correctly compute a MAC.

(4) 	 At least 100 key and data combinations
(with a MAC) which are randomly
generated. Approximately half of the
MAC's are randomly chosen to be
incorrect. These tests are used to
check the ability of the DUT to
correctly compute a MAC and compare it
to a given MAC.

3.4.1 Coded Character Set Options Tests.
For all of the Coded Character Set Validate
Suboptions the following are tested:

(1) 	 The ability of the DUT to com~ute a
MAC. The example message g~ven in
Appendix B of ANSI X9.9 is used along
with several other test messages.
Messages that are modified by deleting,
inserting, modifying, and transposing
characters are used to check that the
DUT can detect such modifications.
Messages of varying lengths, and hence,
requiring padding are used, as well as
messages which include the entire ASCII
character set both with and without the
parity bits being set.

(2) 	 The ability of the DUT to compute a MAC
and compare it with a received MAC.
The same messages used above are used
here, except that the messages should
contain a MAC. Approximately one half
of the messages contain an incorrect
MAC.

(3) 	 The ability of the DUT to process
explicit delimiters. The messages used
contain incomplete explicit delimiters,
lowercase explicit delimiters,
unexpected opening or closing explicit
delimiters, missing closing explicit
delimiters, mismatched opening and
closing explicit delimiters, and pairs
of explicit delimiters that are
transposed.

(4) 	 The ability of the DUT to process
message element formats. Messages
containing the message elements with
fixed message element formats (i.e.,
Date, IDA, MAC, and MID) are used.
Both correct and incorrect message
element formats are checked.

(5) 	 The ability of the DUT to process
messages which are missing required
message elements or contain multiple
occurrences of message elements which
should appear only once.

(6) 	 The ability of the DUT to apply the
message element extraction rules for
the extracted message element options
(editing and non-editing).

(7) 	 The ability of the DUT to apply the
editing rules in the proper order for
the editing options (entire message and
extracted message elements) • Messages
which exercise all of the editing rules
are used.

3.5 	 Validation Procedures

The NBS Message Authentication Device
Validation Procedures [10] outline the steps
that must be followed by a vendor wishing to
use the MVS to validate their message
authentication device as part of the
Treasury certification process. The
procedure consists of six steps, including
the application to Treasury, validation by
the MVS, and final certification by
Treasury.

4 MVS IMPLEMENTATION ISSUES

4.1 	 Performance Issues

since validation will be performed from
remote locations using dialup access, the
telephone lines may introduce errors if a
poor connection is obtained. The protocol
has been designed to allow for recovery from
communication garbles by repeating messages
upon request. In addition, the length of
time required to conduct testing was chosen
to be short enough that a vendor will have a
high probability of passing a test if the
vendor's device has been correctly
implemented, but lengthy enough to test the
vendor's device for conformance to the
implementation requirements. Using a 1200
baud commmunications line, the test set for
the Binary Option, which consists of 627
messages, requires about 21 minutes to
validate, whereas the test set for the Coded
character Set Options, which consists of 455
messages, requires about 13 1/2 minutes.
Final validation will, therefore, be
completed in about 75 minutes if all of the
options are tested.

105

4.2 Problems and Issues Encountered and
Solved

A number of problems were encountered during
the implementation of the MVS. Some of them
along with their solutions were:

(1) 	 During the testing of the Coded
Character Set Options, two different
responses were required. Sometimes it
was desired that the DUT compute a MAC,
compare it to a received MAC, and
respond with the result of the
comparison. At other times, it was
desired that the DUT compute a MAC and
respond with the computed MAC. As a
result, two types of request messages
are sent by the MVS for the Coded
Character Set Options.

(2) 	 For the Binary option, it was
considered desirable to include key and
data combinations that would test all
functional aspects of the DES algorithm
(e.g., permutations and S-boxes). The
initial data was taken from NBS Special
Publication 500-20 [8]. However, it
was found during the first official
validation that many of the tests were
failing because the test set included
self-dual (weak) keys and the DUT
rejected these keys. It was therefore
decided to modify the tests so as to
not include the four self-dual keys.

(3) 	 For the testing of the Coded Character
Set Options, ANSI X9.9 does not specify
that the IDA (key identity) field is
required. In actual operation the
users would use a key that was
previously agreed upon (a "default"
key) . It was decided to use the first
key of the ten keys sent at the
beginning of testing as the "default"
key. The question was also raised of
how to handle the the case where the
IDA delimiters are present, but the
field is empty, or NULL. It was
decided to handle this as a key whose
identity was NULL rather than using the
"default" key.

(4) 	 There is a problem inherent in testing
several options. How do you prevent a
vendor from modifying their device
between the successful validation of
one option and the testing of another
option? The modification could affect
the results of the previously
successful validation if it were to be
rerun. Therefore, a final validation
step was included which tests each of
the options in sequence as selected by
the vendor. Credit for the validation
of the vendor's device is nqt awarded
until this final validation process is
performed.

(5) 	 For the testing of the Coded Character
Set Options, ANSI X9.9 does not specify
any bounds on the value of the date
field. It does not specify whether a
year of 01 refers to 1901 or 2001, nor
whether to check the number of days in
February, which varies depending on
leap years. While the addition of such
checks on the date might be reasonable
and desirable, without a standard way
of doing so there is no way to

guarantee that a DUT would implement
such a check in the same fashion as the
MVS. Therefore, checking the values of
the date field was not included in the
MVS. It was decided that this type of
checking must be performed outside of
the authentication process.

4.3 	 Successful Validations

During May 1986, the Personal Computer
Security Module (PCSM), a product of
Analytics Communications Systems, Inc.,
successfully completed the NBS tests for the
Binary Option of ANSI X9.9. Other vendors
and organizations have expressed an interest
in and the intent to validate authentication
devices and software using the MVS.

5 FUTURE EFFORTS

NBS plans to continue to support the MVS as
a part of the Treasury certification
process. In addition, NBS will support the
MVS for other Government and commercial
applications. It is expected that 6-7
message authentication devices will be
validated within the next year.

NBS is beginning to develop the Key
M~nagemen~ Validation System (KMVS) which
w~ll perm~t remote conformance testing of
the automated key-distribution protocols
specified in. ANSI X9.17, Financial
Institution Key Management (Wholesale). The
KMVS will be similar to the MVS, but more
complicated due to the complexity of the
standard, especially the wide variety of
options allowed by the standard.

6 CONCLUSION

NBS has developed the MAC Validation system
which is incorporated into a bulletin board
system to permit automated remote
conformance testing. It was necessary to
define protocols interfacing the MVS and DUT
in order to allow testing of different
vendor devices. This approach reduces the
amount of manual intervention and overall
costs while providing a rigorous conformance
test for the FIPS PUB 113 and ANSI X9.9
standards.

REFERENCES

[1] 	 American National Standard X3.4-1977,
Code for Information Interchange,
American National Standards Institute,
New York, New York, 1977.

[2] 	 American National Standard X9.9-l986
Draft Revision, Financial Institution
Message Authent~cat~on (Wholesale),
Amer~can Bankers Association
Washington, D.C., April 7, 1986.

[3] 	 American National Standard X9.17-1985,
Financial Institution Key Management
(Wholesale), American Bankers
Association, Washington, D.C., 1985.

[4] 	 Criteria and Procedures for Testing,
Evaluating, and Certifying Message
Authentication Devices for Federal
E.F.T. Use, Department of Treasury,
May 1, 1985.

106

[5] 	 Department of Treasury Directive
81.80, Electronic Funds Transfer
Policy, August 16, 1984.

[6] 	 Federal Information Processing
Standards Publication (FIPS PUB) 46,
Data Encryption Standard, National
Bureau of standards, Washington, D.c.,
January 15, 1977.

[7] 	 Federal Information Processing
Standards Publication (FIPS PUB) 113,
computer Data Authentication, National
Bureau of Standards, Washington, D.c.,
May 30, 1985.

[8] 	 Gait, Jason, Validating the
Correctness of Hardware
Implementat~ons of the NBS Data
Encr¥ption standard, NBS Special
Publ~cation 500-20, Revised September
1980.

[9] 	 Gait, Jason, Maintenance Testing for
the Data Encryption Standard, NBS
Special Publication 500-61, August
1980.

[10] 	 smid, Miles, Elaine Barker, and David
Balenson, Message Authentication
Device Validation Procedures, National
Bureau of Standards, Apr~l 15, 1986.

[11] 	 Smid, Miles, Elaine Barker, and David
Balenson, Messa~e Authentication
Device Validat~on Requirements,
National Bureau of Standards, April
15, 1986.

107

Using Software Analysis Tools To Analyze The Security
Characteristics of HOL Programs

Alan C. Schultz

Computer Science and Systems Branch

Information Technology Division

Naval Research Laboratory

Washington, D. C. 20375-5000

(202) 767-3157

arpanet: schultz@nrl-css

July 17, 1986

ABSTRACT

This paper describes research recently started to
discover if existing software analysis tools can be
used to find classes of security errors in existing mili ­
tary software. It is assumed that the requirements
and specifications for the software are not available,
and that only the source code is used in the analysis.

Introduction

The current arsenal of security analysis techniques
relies on the fact that the program being analyzed is either
under development or has recently been developed, and
therefore, that the requirements and the specifications are
available to the security analyst. These techniques are of
little use in analyzing existing software for which such
documentation is unavailable. Without the requirements
and specifications available to the security analyst,
automated analysis tools that can scan the source code for
security flaws would be a useful addition to the security
arsenal. The aim of this research is to use existing software
analysis tools (e.g. data flow analyzers, flowchart genera­
tors, etc) to see if they can detect certain classes of security
errors in source code.

Many security flaws in software are the result of poor
programming practices or software bugs inadvertently
introduced by the programmer. Put another way, many
software errors can be exploited as security flaws. By con­
centrating on these software errors, an analyst can make a
classification relating the errors to associated security flaws.
These security flaws can then be found by using the
appropriate software analysis tool. Although this technique
will not identify all security flaws in a program, it will iden­
tify many flaws that are associated with software errors.

The goal of this research is to identify classes of secu­
rity flaws that can and cannot be revealed through the
application of software analysis tools. Both static and
dynamic analysis techniques will be applied to programs
seeded with security flaws to identify these classes. This
paper reports preliminary results on tools for static analysis
and how they may help analysts locate security flaws.

Analysis Techniques

Software analysis tools can generally be broken into
two classes: static analysis tools and dynamic analysis tools.
Static analysis tools examine the source code without exe­
cuting it; dynamic analysis tools analyze the complied code
by instrumenting and executing it. In the first phase of this
study, static analysis tools will be examined and in the next
phase, dynamic analysis tools will be used.

Dynamic analysis is expected to yield more information
about the security characteristics of the software, but at a
greater cost both in algorithmic complexity and labor than
static analysis. Static analysis techniques are more easily
automated and, in general, the results need less human
interpretation.

Static Analysis Techniques

Static analysis tools can be classified by function: code
analysis, program structure analysis, program module inter­
face analysis, and event sequence analysis [20].

Code analysis is a syntactic check of the source code;
it is an extension of the compilation process. Several com­
mon programming errors can be found with this method,
including improper use of variables (e.g. variable used but
not initialized, variable initialized but not used) and error
prone constructions. Although many newer compilers now
check for these errors, older compilers do not, and so this
capability is important in the analysis of existing software.
Code analysis may also be used to extract information that
can be used later for checking the relationships between
modules of the program, i.e. parameters, global variables,
etc.

Structure analysis can be used to construct graphs of
the program which can then be checked for flaws such as
improper loop nestings, unreferenced labels, and unreach­
able statements. Termination checks can be performed in
cases where the loop controlling variables are data­
insensitive.

Whereas the previous two types of analysis affect sin­
gle procedures or subroutines, module interface analysis
looks for semantic defects across their boundaries. The pur­

108

pose of this analysis is to detect inconsistencies in the
declaration and use of global data structures and parame­
ters. For example, the types and number of parameters
should be consistent.

With event sequence analysis, specified events are
examined to assure that they are in the proper sequence.
For example, in writing to a file, the file must be opened,
written to and then closed. Event sequence analysis appears
to be the most effective approach to finding security related
errors as will be discussed later.

Now that the various functions of static analysis tools
have been examined, specific types of analyses will be
examined, with reference to specific tools. Most tools com­
bine several of the above functions.

Complexity Analysis

When a security analyst begins to analyze a large sys­
tem, he needs some method of deciding where to begin.
Most systems are too large to desk check in their entirety.
One method is to identify the most complex modules, and
use those modules as a starting point for further analysis.

One recently developed static analysis tool is based on
software complexity metrics. Developed by the U.S. Army
Electronic Proving Grounds, the Fortran Complexity
Analysis Program (FCAP) [6] calculates McCabe's cyclic
complexity [15] and the components needed to calculate
Halstead's various metrics [10].

The use this kind of tool in locating security flaws is
indirect. As noted by C. R. Attanasio in an operating sys­
tem penetration report, " ... relative design simplicity was
found to be the source of greatest protection against pene­
tration efforts. . .. simplicity enhances the probability of
obtaining security." [2] A security analyst can use a tool
such as FCAP to find the most complex modules in the
software and use that as the basis for a more complete desk
check.

McCabe's metric measures complexity based on how
many control paths exist in a single module. If a control
graph of a module written in a high level language is
created, McCabe's metric would be the number of faces of
the graph (regions in a planar graph) plus one. According to
McCabe, no module should have a complexity greater than
ten. FCAP will identify all modules which have a McCabe
complexity greater than a user-defined value. All such
identified modules would then be subjected to a more
rigorous desk check or further static analysis.

Halstead's metric is an estimation of the length of a
module or program, and is calculated by formula using a
count of the number of distinct and total operands and
operators. Although various tools will calculate Halstead's
length metric, this metric does not seem to have the same
applicability to locating security flaws in software as
McCabe's.

Pattern-directed analysis

Probably the most useful technique in security analysis
is pattern-directed analysis. In this technique, a suspected
security flaw is characterized as one or more statements in
sequence, but not necessarily adjacent. The sequence is
then searched for, and if found, is subjected to a desk
check.

What patterns are suspicious? "From the software
point of view, both the operating system and each applica­

tion program bear responsibility for maintaining data secu­
rity. It is, however, the operating system that controls,
assigns, allocates, and supervises all resources within the
computer system." [1] Various resources and data are acces­
sible to an application program only after "appropriate
dialogue (i.e. system calls) with the operating system.
. .. should the operating system be tricked ... or compromised
by an application program, the confidentiality of informa­
tion may be violated." [1] Therefore, one area of interest
might be to examine the application program's use of sys­
tem calls, or any calls outside of the software being exam­
ined.

Also suspect are routines that attempt core dumps,
routines that do not clear memory buffers or data areas
after use, direct addressing of memory, non-documented
instructions or instructions with known, undesirable side­
effects, etc. For example, all constants other than zero and
one in a program should be regarded as suspect since if not
used in unit conversions, constants could indicate the use of
direct memory access.

The most well-known tools of this class are the RISOS
(Research in Secured Operating Systems) tools [19]. Several
of the tools in RISOS will search an assembly language pro­
gram for selected patterns that might indicate security
flaws. The security analyst can enter a suspected pattern
and either have the number of occurrences of that pattern
reported, or have the location of the occurrences flagged.
The analyst can also have the lack of some pattern flagged.

The RISOS tools were specifically designed for assem­
bly language analysis. However, the simple pattern­
directed search of the RISOS tools is not sufficient for
high-level languages. Due to the control structure of high­
order languages, two patterns may not appear to follow
each other in a simple top-down search. For high-order
languages, the control structure must be taken into
account. Control flow analysis along with data flow analysis
is a technique that allows more robust type of pattern­
directed search.

Control Flow Analysis

Control flow analysis examines the control structure of
high-level programs. This technique allows checking pro­
grams for improper subprogram usage and violations of
control flow standards.

By itself, this technique allows a limited number of
flaws to be detected. In particular, unexecutable (unreach­
able) sections of code can be identified, and a call graph of
the program and flow graph of each module can be created
and manually inspected. Additionally, it is possible to find
violations of a specified standard, e.g. backward jumps out
of a control structure are not allowed.

The call graph indicates the structure of the program
with respect to subroutines and possible errors. The pres­
ence of cycles in the call structure indicate recursion, rou­
tines that are never called indicate unreachable code, and
attempts to call nonexistent routines are flagged. The flow
graph can make dead code evident indicating improper use
of boolean expressions.

Concerning security, one use for control flow analysis
would be to check for trap doors remaining from the debug­
ging of the software. If the control flow analyzer attaches
predicate information to the arcs of the graph, these predi­
cates could be examined for comparisons to string con­
stants.

109

Although by itself the technique finds only a limited
range of flaws, the call graphs and flow graphs are essential
for data flow analysis.

Data-flow Analysis

Data flow analysis inspects patterns of data use in a
program exposing error-prone design and programming
practices. Although data flow and control flow analysis are
separate techniques, most data flow analysis tools now
incorporate some form of control flow analysis to untangle
the high-level control structures. In the data flow tools
examined, control flow is an essential part of the process.

Data flow techniques were originally used to optimize
code generated by certain compilers [17] and was later
applied in static analysis of software. This technique has
been applied in software validation and documentation of
Fortran programs [16], and severaf tools have been
developed [18, 26]. Data flow based tools have also been
developed for other languages including PL/1 [23].

Data flow analysis searches for anomalies in the source
code. An anomaly exists when a variable is used in a way
that is inconsistent with the previous or subsequent uses of
that variable in the program.

A typical data flow analysis tool must first parse the
source code and generate an internal representation of the
program, usually in the form of a tree. Second, a control
flow graph of the software is created with attached variable
information. This data is used to perform the data flow
analysis.

The various tools that utilize data flow analysis differ
in the errors they report, but in general, the errors which
can be found are:

1) reference to variables not defined or set;
2) variables set but not defined;
3) variables set and not used (or set and then

set again without being used between the
two settings);

4) all of the errors listed under pattern
directed analysis;

5) all of the errors listed under control flow
analysis if performed.

It should be noted, however, that the technique will
allow any specified sequence of statements to be found. In
this respect, data flow analysis holds the most potential in
security analysis. The objective is to characterize a security
flaw as a sequence of statements, and then search for that
sequence.

In this respect, the data flow tools can find the
security-related errors reported under pattern-directed
analysis. Additionally, patterns that are not obvious due to
the control flow of the program may be found. An example
of such a pattern is the class of errors characterized by
Bisbey as inconsistencies of a single data value over time
[4]. In this class of errors, a data value is rendered incon­
sistent between two operations. More specifically, the data
value is changed between pairs of refences. The general pat­
tern specified is:

1) find an operation L which either fetches
or stores into a cell X;

2) find an operation M that fetches cell X;
3) operation M is critical (security related);
4) operation L occurs before operation M.

Step 4 requires that the control flow be part of the analysis.

Operation L must then be examined to see if it impro-perly
alters X.

Other Techniques

Other static analysis techniques may also prove useful
in detecting security related flaws. Cross-reference genera­
tors can reveal misuse of variables. Although limited in
scope, a careful scrutiny of the cross-reference listing might
be beneficial in a security analysis. Global variable misuse,
conflicting variables and useless variables are a few of the
errors that can be determined with this technique.

Various program statistics can indicate suspicious vari­
ables, i.e. variables only used once or used repeatedly. A
variable used only once could be an indication of a trap
door or a once used debugging tool. Too many uses could
indicate misuse of the variable. The RISOS tools contained
a program to analyze the statistics of the module under
examination specifically for the above reasons [9].

Limitations of Static Analysis

As stated earlier, although static analysis is more
easily automated than dynamic analysis, limitations exist.
These limitations can usually be overcome by using
dynamic analysis techniques.

The most obvious deficiency is the inability to fully
analyze dynamic data types. Pointers and array variables
are currently difficult to handle correctly due to their
dynamic nature. Current static analysis tools can only treat
an array as a single variable, since they cannot know the
bounds of the array in some languages. In some cases,
pointers cannot be treated at all. The indices of arrays and
the objects of the pointers may not be known until execu­
tion. Desk checks must still be performed on the code to
analyze the use of dynamic data types. .

Another deficiency is the handling of recursive and
concurrent procedures. Some of the control flow analysis
and data flow analysis techniques can follow recursion to a
pre-defined level, but only at an enormous c'ost in resources.
Concurrent processing is a current research area in static
analysis, but the technology has not yet filtered down to
available tools. [25]

Specific Tools

Various tools currently available through government
or industry will perform the analyses discussed above.
While many of the tools are still experimental in nature,
others are proving to be useful production tools in analyz­
ing software for bugs.

FCAP, briefly discussed above, is a tool based on com­
plexity metrics. In addition to calculating McCabe's metrics
and calculating the values needed for Halstead's metrics,
FCAP will calculate additional metrics, i.e. number of com­
ment lines, number of executable lines, number of entry
and exit points, number of forward and backward branches,
number of conditional branches and more. FCAP will also
produce structure diagrams of each procedure, variable
usage report, calls report (all calls from each procedure
within a module), and an undefined external variables
report.

The tool is written in Fortran and analyzes Fortran
source code (VAX, PDP-11, SKU Fortran and RATFOR).
It is interesting to note that the tool was used to test itself.
In addition to FCAP, the U.S. Army Electronic Proving

llO

Ground has also written similar tools to analyze C and
various assembly languages.

Weiser's Data Flow Slicer is an experimental tool that
performs data flow analysis on Fortran programs [26, 27].
The program will create a data flow "slice" on each vari­
able in a write statement. These slices will contain all state­
ments which affect the variable being sliced on, essentially
exposing the data flow to a variable.

RXVP is a comprehensive, production tool by General
Research Corporation which provides static and dynamic
analysis for large Fortran programs [22]. This tool per­
forms syntax and structural analysis to detect inconsisten­
cies in program structure and use of variables. The tool
generates call graphs, cross-reference listings, variable usage
reports (set, used, set and used), and 1/0 reports (shows all
1/0 statements).

The above survey gives a sampling of the various func­
tions available in static analysis tools. Many other tools are
available which perform similar functions
~,5,8, 11, 12, 13,14,28,24,23,21, 1~.

Plans

In the next phase of this research, various static
analysis tools will be applied to programs seeded with secu­
rity flaws. The sample programs will be medium-sized mili­
tary application programs written in Fortran. Fortran was
picked since many of the tools analyze that language. Also,
sample programs written in Fortran are more readily avail­
able.

The result of this effort will be a classification of the
types of security errors that can be found using static
analysis tools, and, equally important, a classification of
those security errors that cannot be found with these tools.

Next, dynamic analysis tools will be investigated and
classifications will again be made. Further research may
extend the existing tools to create a set of tools whose
specific function will be to analyze the security characteris­
tics of software.

Conclusion

Since there is a large body of existing military software
that cannot reasonably be subjected to formal proof, apply­
ing analysis tools to this software can help assure that the
software is free of some classes of exploitable security flaws.
The technique may also prove useful in obtaining a B1
"Orange Book" rating from the National Computer Secu­
rity Center. The B1 rating requires (section 3.1.3.2.1) that
the source code be subjected to "thorough analysis and
testing" to uncover security flaws [7].

Further research is needed to extend the existing tools
in order to remove deficiencies and to make the tools
security-specific. With these techniques, some assurance can
be made about the security characteristics of a program.

.·l

References

1. 	 Abbott, R. P., Chin, J. S., and Donnelley, J. E., "Secu­
rity Analysis and Enhancements of Computer Operat­
ing Systems," NBSIR 76-1041 (April 76).

2. 	 Attanasio, C. R., Markstein, P. W., and Phillips, R. J.,
"Penetrating an Operating System: A Study of
VM/370 Integrity," IBM Systems Journal 15(1), pp.
102-116 (1976).

3. 	 Berns, G. M., "Analysis Tool Tracks Down Bugs in
FORTRAN Code," Computer Design 24(6), pp. 169­
174 (June 1985).

4. 	 Bisbey, Richard, Popek, Gerald, and Carls~edt, Jim,
Inconsistency of a Single Data Value Over Time,
USC/Infomation Sciences Intitute (Feb 1975).

5. 	 Carre, B. A., "Software Tools for Static Analysis and
Formal Verification," in lEE Colloquium on
Computer-Aided Software Development, lEE, London
(April 1984).

6. 	 Defense, Department of, "FCAP, Fortran Language
Code Analysis Program : Technical User Manual,"
U.S. Army Electronic Proving Ground, Ft. Huachuca,
AZ (July, 1985).

7. 	 Defense, Department of, "Trusted Computer System
Evaluation Criteria," CSC-STD-001-83 (August 15,
1983).

8. 	 Frankl, Phyllis G. and Weyuker, Elaine J., "A Data
Flow Testing Tool," pp. 46-53 in Soft Fair, A Second
Conference on Software Development Tools, Tech­
niques, and Alternatives: Proceedings, IEEE Computer
Society, New York (December 1985).

9. 	 Fricke!, William G., RISOS Analytic Tool Description
Manual, Part 1: Program Description, Lawrence Liver­
more Laboratory, Livermore, Calif. (May 1975).

10. 	 Halstead, M. H., Elements of Software Science,
Elsevier North-Holland, New York (1977).

11. 	 Hlotke, John R., "Complexity Analysis and Automated
Verification," pp. 80-84 in Conference on Software
Tools: Proceedings, IEEE Computer Society, New
York (April1985).

12. 	 Janusz, Paul, "Application of Software Test Tools to
Battlefield Automated Systems.," DTIC #ADA144270
(7/84). Army ARDC

13. 	 Johnson, W. L. and Soloway, Elliot, "PROUST: An
Automatic Debugger for Pascal Programs," Byte 10(4),
pp. 179-190, Yale University (4/85).

14. 	 Korel, B. and Laski, J., "A Tool for Data Flow
Oriented Program Testing," pp. 34-37 in Soft Fair, A
Second Conference on Software Development Tools,
Techniques, and Alternatives: Proceedings, IEEE Com­
puter Society, New York (December 1985).

15. 	 McCabe, T. J., "A Complexity Measure," IEEE TSE
SE-2, pp. 308-320 (Dec. 1976).

16. 	 Miller, E. and Howden, W. E., Tutorial: Software Test­
ing & Validation Techniques, IEEE Computer Society,
Long Beach, CA (1978). ·

17. 	 Muchnick, S. S. and Jones, N. D., Program Flow
Analysis: Theory and Applications, Prentice-Hall,
Englewood Cliffs, NJ (1981).

18. 	 Osterweil, L. J. and Fosdick, L. D., "DAVE -A Vali­
dation Error Detection and Documentation System for
Fortran Progrm for Fortran Programs," Software­
Practice and Experience 6, pp. 473-486 (Oct.-Dec.
1976).

19. 	 Project, RISOS, "Handbook for Analyzing the Security
of Operating Systems," DOD S5-2068 (Nov. 1976).

20. 	 Ramamoorthy, C., "Testing Large Software with
Automated Software Analysis System," IEEE TSE
SE-1(1) (1/75).

111

21. 	 Robinson, P. J., "A User's view of the SAP-A New
Software QA Tool for FORTRAN Programs," pp. 67­
71 in Software Engineering. Proceedings of
ESA/ESTEC Seminar {ESA-SP-199}, European Space
Agency, Paris (1983).

22. 	 Saib, S. H., "RA'VP: Today and Tomorrow (Program
Testing Tool)," pp. 103-125 in Software Validation,
Inspection- Testing-Verification-Alternatives. Proceed­
ings, ed. H. L. Hausen, North Holland, Amsterdam
(Sept 1983).

23. 	 Sarraga, Ramon F., "Static Data Flow Analysis of
PL/1 Programs with the PROBE System," IEEE TSE
SE-10(4), pp. 451-459 (July 1984).

24. 	 Steffen, Joseph, "Experience with a Portable Debug­
ging Tool," Softw. Prac. Exper. 14(4), pp. 323-334,
Bell (4/85).

25. 	 Taylor, Richard N. and Osterweil, Leon J., "Anomaly
Detection in Concurrent Software by Static Data Flow
Analysis," IEEE TSE SE-6(3), pp. 265-278 (May
1980).

26. 	 Weiser, Mark, "Program Slicing," IEEE TSE SE­
10(4), pp. 352-357 (July 1984).

27. 	 Weiser, Mark, "Programmers Use Slices When Debug­
ging," CACM 25(7), pp. 446-452, Univ. Maryland
(1982).

28. 	 Wilson, Cindy and Osterweil, Leon J., "Omega - A
Data Flow Analysis Tool for the C Programming
Language," IEEE TSE SE-11(9), pp. 832-838 (Sept
1985).

112

Interpretation of the Bell-LaPadula Model in Secure Xenix

G.L. Luckenbaugh, V.D. Gligort, L.J. Dotterer, C.S. Chandersekaran, N. Vasudevan

IBM Corporation

708 Quince Orchard Road

Gaithersburg, MD 20878

Abstract

In this paper we review the Bell-LaPadula model for se­
cure systems, which includes the definition of states, state
transitions and axioms (properties). The interpretation of the
model states and state transition in Secure Xenix is defined,
and the access control mechanisms of Secure Xenix are shown
to satisfy the Bell-LaPadula axioms. The discretionary secu­
rity and the activation axioms of Secure Xenix are a superset
of those defined in the Bell-LaPadula model.

1. 	Introduction

We define the interpretation of the Bell-LaPadula secu­
rity model [Bell76J in Secure Xenix [Gligor 86]. The interpre­
tation explains how the protection mechanisms of the Secure
Xenix TCB implement the model. Since the description of the
Bell-LaPadula model is formal, and since the Bell-LaPadula
model is proven sufficient to enforce a specific DoD security
policy, the interpretation of the model in Secure Xenix repre­
sents prima facie evidence that the design of the Secure Xenix
TCB follows that policy.

The interpretation of the Bell-LaPadula model and the
access control mechanisms of Secure Xenix are shown to sat­
isfy the model's axioms. After that, one only needs to demon­
strate that the individual kernel-call specifications: (i.e., ker­
nel DTLSs) preserve the ss-, *-, ds-properties, compatibility,
tranquility, and activation properties under the defined in­
terpretation. The definition of the (Bell-LaPadula) model
interpretation is required for B2-secure systems. In addition
to the interpretation, the demonstration that the individual
kernel DTLS/FTLS preserve the above-mentioned properties
would be required for B3 / A1 secure systems (i.e., "A con­
vincing argument shall be given that the DTLS is consistent
with the model" c.f. [TCSEC 83] p. 39).

In section 2 of this paper we review the formal definition
of the Bell-LaPadula model including the notions of system
state, state transitions, model axioms, secure system state,
and secure systems. In section 3 we define the Secure Xenix
interpretation of the model and show that the access con­
trol mechanisms of Secure Xenix satisfy the model axioms.
Section 4 contains the conclusion, and section 5 contains the
references.

t Xerox is a trademark of Microsoft

t V.D.Gligor's permanent address is: Department of Electrical En·

gineering, University of Maryland, College Park, MD 20742

2. 	Review of the Bell-LaPadula Model

The Bell-LaPadula model is a "state transition" model.
That is, the model defines formally system states and rules
(actions or operations) that move the system from state to
state. Furthermore, the model includes four axioms that must
also be preserved by every state and by applications of rules
to system states.

2.1. System States

A system state v is an element of the set V = (B x M x
F x H) that is defined below.

B is the set of current accesses and is a subset of the set
(S x 0 x A), where S is the set of subjects, 0 is the set of
objects and A is the set of access privileges (modes) defined
in the system. The set B defines the access privileges each
subject has to each object currently.

M is the access matrix. It consists of elements Mij E A
that define the set of access privileges subject i may have to
object j.

F is a three-component security function; the first com­
ponent, Is, assigns a maximum security level (clearance) to
each subject, the second component, / 0 , assigns the security
level (classification) to each object; and the third component,
fc, assigns the current security level of each subject. Note
that Is 2': fc·

H is the current object hierarchy. It is a subset of all
functions H from objects 0 to the power-set of objects 0,
PO, subject to the following two restrictions:

(1) 	 Oi # Oi ~ H(Oi) nH(OJ) = iP, and

(2) 	 there does not exist a set {Olo02,···•0w} of ob­
jects such that Or+l E H(Or), 1 :5 r :5 w, and
Ow+l = 01.

(The above two conditions imply that the current object hi­
erarchy is a collection of rooted, directed trees and isolated
points. They rule out objects with multiple parents at differ­
ent levels, and cycles. If H is a tree strm;ture, then 0 R is an
object called the root for which H(OR) # 4> and Oi E H(OR)
for any Oi E 0. Furthermore, Oi is a superior of OJ if
Oi E H(Oi)·

2.2. State Transitions

The system transition from state to state is defined by
a set of rules (operations) that are requested by subjects on
system states. A rule is a function that specifies a decision
(output) and a next-state for every state and every request
(input). Thus, a rule p is defined as:

p : R X V --> D X V, where

R X V is the set of request-state pair (input) defined in the
system for every request, and D x.V is the set of decision­

113

state pair output defined in the system for every request. R
is the set of request invocations defined, and D is the set
(Yes, No, ? , Error) of request outcomes. "Yes" ("No") means
that the request has (not) been executed. The "?" outcome
means that any other exceptional condition detected during
the application of the rule p (e.g., table overflow, etc.).

Let {PI. ... , p8 } be a set of rules. The relation W is set
of stat~; transitions and is defined for any Rk E R, Dm E D
and V* E V by:

(Rk, Dm, V*, V) E W(w) iff Dm f= ?, Dm ¢:. Error, and

(Dm, V*) = Pi(Rk, V) for a unique i, 1 ~ i ~ s;

2.3. 	Systems, System Appearance, System Actions

Let T be the set of positive integers. X is defined as the
set of all request sequences, namely the set of all functions
from T toR; Y is defined as the set of all decision sequences,
namely the set of all functions from T to D; Z is defined as
the set of all stat.e sequences, namely the set of all functions
from T to V.

A system, L:(R,D, W,z0), is a subset of X X Y X Z such
that (x,y,z) E L:(R,D, W,zo) if and only if (xt,Yt,zt,Zt-1) E
W for each t E T, where zo is the initial state. [Note that
Xt(Yt, Zt) are individual elements of sequences x(y, z).]

A system appearance is defined as each triple (x, y, z)
such that (x,y,z) E L:(R,D,W,z0), x EX, y E Y, z E Z.

A system action is defined as each quadruple
(xt,Yt,Zt,Zt-1) E W, where Xt,Yt,Zt are the t-th request,
decision, and state in the sequences x EX, y E Y, z E Z.

Alternatively, (Ri,D;,v*, V) E R x D XV XV is an
action of L:(R, D, W, z0) iff there is an appearance (x, y, z) E
L:(R,D,W,z0) and some t E T such that (Ri,D;,v*,v) =
(xt, Yt, zt, Zt-1).

2.4. 	Model Axioms

The axioms of the Bell-LaPadula model require the def­
inition of the access privilege set A. In the model, A = {
read, write, execute, append} = {r,w,e,a}. The meaning
of these privileges is defined in the model in terms of the abil­
ity to "observe" or "alter" the state of objects and subjects
as follows:

e (execute) access = neither observation nor alter­
ation
r (read) access = observation with no alteration
a (append) access = alteration with no observation
w (write) access= both observation and alteration.

The first two of the four axioms (also called "properties"
in Bell [76]) use the above access privilege definitions. An
additional axiom, called the "tranquility principle," is defined
in [Bell 73]. This axiom has been removed from [Bell 76].

2.4.1. The Simple Security (ss) Property

A system state v = (b, M, f, H) satisfies the ss-property
iff, for each element b E B that has an access privilege of read
or write, the maximum clearance of the subject dominates the
classification of the object; or alternatively:

An element (s, o, If) E B satisfies the ss-property relative
to the security function f iff

(i) If e or a, or

(ii) If r or wand fs(s) 2: fo(o).

The above two definitions restrict the subject access to
objects based on object classifications and subject maximum
clearances whenever subject accesses to objects include "ob­
servation" of the object state. Also note that the ss-property
restricts subjects from having direct access to information for
which they are not cleared.

2.4.2. The *-Property

A system state v = (b, M, f, H) satisfies the *-property
relative to the set of subjects S' C S iff, for each element
(s,o,If) E B:

(i) If a==> fc(s) ~ fo(o)

(ii) If w ==> fc(s) = fo(o)

(iii) 	If r ==> fc(s) 2: fo(o); where S' is the set of
untrusted subjects.

The above property is intended to prevent unauthorized
flow of information from higher security levels to lower ones.
In particular, the *-property prevents an untrusted subject
from having simultaneously privileges to "observe" informa­
tion at some level and to "alter" information at a lower level,
namely [(s, Oi, a), (s, o;, r) E B] ==> fo(oi) 2: fo(o;). This
property represents a restatement of the *-property, and is
used as the *-property definition in [Feiertag 77]. Note that,
trusted subJects (i.e., subjects not in S') need not be bound
to the *-property relative to S'.

2.4.3. Discretionary Security (ds) Property

A system state v = (b, M, J, H) satisfies the ds-property
iff, for every element (si, o;,If) E B, If E Mij·

2.4.4. Compatibility Property

The object hierarchy H maintains compatibility iff, for
any Oi,Oi E 0 and 0; E H(Oi), fo(O;) 2: fo(Oi)· This
axiom is also called the "nondecreasing level" axiom for the
object hierarchy.

2.4.5. Tranquility Principle

The original version of the Bell-LaPadula model [Bell
73] also contained the "tranquility" principle. This principle
(axiom) states that a subject cannot change the security level
of active objects. Of course, this is defined relative to the
untrusted subjects S'.

This axiom has been removed from the 1976 version of
the Bell-LaPadula model to allow controlled changes of se­
curity levels of active objects. The rules that control such
changes depend on specific applications (e.g., mail, guards,
etc.) and differ from system to system.

2.4.6. Activation Axioms

Object activation/deactivation refers to the creation and
destruction of objects. The dynamic creation/destruction of
objects in the Bell-LaPadula model would cause the domain
of the classification function fo and the size of t:l).e access
matrix M to vary dynamically. To avoid this, the entire set
of objects ever used are considered extant in either active

or inactive form. Furthermore, objects are considered to be
labeled in both forms [Bell74].

However, the use of the above convention requires the
specification (1) of a subject's access to an inactive object, (2)
of the state of newly activated objects, (3) of the classification
of newly-activated objects, and (4) of the object deactivation

114

rules. Specification (1) is necessary because active and in­
active objects are assumed to coexist in 0. Since the model
defines subjects' access to active objects, it must also define
subject!!' access, or lack thereof, to inactive objects. If left
unspecified, such access may cause security breaches in real
implementations. Specification (2) is necessary because inac­
tive objects have states (since they exist in 0). Thus, their
activation must specify the relationship between the state of
an inactive object and its state at activation. Similarly, spec­
ification (3) is necessary because inactive objects also have
a classification in the model, and their classification while
inactive might "not match the requirements of the request­
ing subjects" [Bell 74]. Furthermore, their classification may
conflict with the compatibility axiom [Bell 76]. Specification
(4) is also necessary because the object deactivation (destruc­
tion) rules are security relevant. [As shown in section 3.1.7
the destruction of upgraded directories may not take place at
the level where they are read or written.]

Feiertag, Levitt and Robinson [Feiertag 77] attribute two
activation axioms to Bell-LaPadula [Bell 74] that specify only
a subject's access to one inactive object and the state of a
newly-activated object. The two activation axioms are:

(i) Non-accessability of Inactive Objects- A subject can­
not read the contents of an inactive object; and

(ii) Rewriting of Newly Activated Objects- A newly ac­
tivated object is given an initial state that is independent of
the state of any previous incarnations (n.a., activations) of
the object. (n.a., This axiom implies that the "object reuse"
requirement of [TCSEC 83] is satisfied.)

The two activation axioms can be expressed succinctly
as:

(i) Let 0 = 0 1 U O" where O' (O") = active (inactive)
objects and 0 1 n 0 11 = ~

[V(s,o,~)E B, o EO"]==;. (~=f. rand~ =f. w)

0 11(ii) 	 Let new(o) = {0" := - o and O' := O' + o}
and CALL[S,, new(o)] be the invocation of the primitive
"new" by s,; !

CALL[Si, new(o)] ==;. state[new(o)] =f. g[state(o)] for
any function g and state(o).

2.5. System Security

A state sequence z = (z1 , •.. , z8) is a secure state se­
quence iff Zt is a secure state for each t E T.

A system appearance (x, y, z) E E(R, D, W, zo) is a se­
cure appearance iff z is secure state sequence.

A system E(R, D, W, zo) is a secure system iff every ap­
pearance (x,y,z) is a secure appearance.

An equivalent definition of secure systems can be given
by stating that a system satisfies the first three security ax­
ioms, namely the ss-property, the *-property, and the ds­
property. The following three theorems form the basis for
an alternate definition of secure systems.

Theorem Al.

The system E(R, D, W, zo) satisfies the ss-property
for any initial state zo that satisfies the ss-property
iff W satisfies the following conditions for each action
[R,,D,-,(b*,M*,/*,H*), (b,M,J,H)]:

(i) each (S,O,~) E b*- b satisfies the ss-property rela­
tive to f*; and

(ii) 	 each (S,O,~) E b that does not satisfy the ss­
property relative to f* is not in b*.

Theorem A2.

A system E(R, D, W, zo) satisfies the *-property relative
to S' C S for any initial state zo that satisfies the *-property
relative to S' iff W satisfies the following conditions for each
action [R,,D,-,(b*,M*,/*,H*), (b,M,J,H)]:

(i) for each S' C S, any (S,O,~) E b*- b satisfies the
*-property with respect to S'; and

(ii) 	 for each S' C S, if (S,O,~) E b does not satisfy the
-property relative to S', then (s,o,~) f/:. b- b.

Theorem AS.

A system E(R, D, W, zo) satisfies the ds-property iff the
initial state zo satisfies the ds-property and W satisfies the

following conditions for each action [R,, D;, (b*, M*, f*, H*),
(b,M,J,H)]:

(i) if (Sk, Oe,~) E b*- b, then~ E Mi.,ei and

(ii) 	 if (Sk, Oe,~) E band~ f/:. Mi.,e, the (Sk, Oe,~) f/:. b*.

The proofs to the above three theorems can be found in
[Bell76, pp. 89-94].

Corollary Al [Basic Security Theorem].

A system E(R,D,W,zo) is a secure system iff z0 is a
secure state and W satisfies the conditions of theorems A1,
A2, and A3 above.

Theorems A4-A6 and A7-A9 oi [Bell76, pp. 94-97] rep­
resent restatements of Theorems A1-A3 focusing on (1) prop­
erties of sets of system actions of W, and on (2) properties
of individual states of V, respectively. In contrast, Theorems
A1-A3 focussed on properties of the current access sets of
B. Similarly corollaries A2 and A3 are the corresponding
restatements of corollary Al. Theorem 10 restates the re­
sults of the Theorems A1-A3, A4-A6, and A7-A9 in terms of
property-preserving rules p.

The need for the alternate, but equivalent theorems, be­
comes apparent when one needs to construct proofs of real
systems. For example, in systems whose kernel enforces se­
curity, it is substantially more convenient to prove Theorems
A4-A6 or A10 than Theorems A1-A3 or A7-A9. The reason
is system actions or rules can be easily identified with kernel
calls and their effects on the system states.

3. The Interpretation of the Bell-LaPadula Model

The interpretation of the Bell-LaPadula model in Secure
Xenix consists of a description of the notion of system state,
and state transition in Secure Xenix. Furthermore, it in­
cludes the definition of the initial state and an argument that
explains why the mandatory and discretionary access control
of Secure Xenix implies that the axioms of the Bell-LaPadula
model are satisfied.

3.1. The Interpretation of the System State

The interpretation of the system state requires the iden­
tification of the state components B = S X 0 X A, M, F,
and H in Secure Xenix.

115

3.1.1. Secure Xenix Subjects (S)

Processes are the only type of subject in Secure Xenix. A
process may create and destroy objects, may activate and de­
activate them, may change the discretionary privileges of ob­
jects in the access matrix, may change the current access set,
and may change the object hierarchy. However, processes may
not change the security level of objects. All changes a process
makes to the system state are constrained to satisfy compat­
ibility, tranquility, ss-property, *-property, and ds-property.
This is discussed in detail below.

Processes are created at login time or by other processes.
A process is identified by a unique process identifier and its
user is identified by a non-reusable UID and GID [Gligor86].
The effective UID and GID of a process are used in all discrete
unary access control decisions. Each process contains a secu­
rity label that is used in mandatory access control decision.
Process labeling is discussed below in the section describing
the interpretation of the security function in Secure Xenix,
and the use of the real and effective UID and GID is dis­
cussed in the interpretation of discretionary access control.

3.1.2. Secure Xenix Objects (0)

The user-created objects of Secure Xenix are: files,
special files (devices), directories, pipes, message queues,
semaphores, shared memory segments, Xenix semaphores,
Xenix shared data segments, ACLs, and processes. Secure
Xenix also includes system-created and maintained objects
such as the special files (devices) that can be opened or closed
by user processes. Trusted processes create, maintain, and
use similar objects as those of the users.

(1) Files, Special Files, Pipes,

Xeniz Semaphores, Xeniz Data Segments, and ACLs

Files are containers of information managed by the Se­
cure Xenix kernel. Files are protected by either ACLs or by
protection bits associated with file i-nodes. The security label
of each file is represented in its i-node.

The special files are used to represent devices and can
be opened or closed by user processes. In the case of special
files the object activation and deactivation are equivalent to
the opening and closing of a device. In all other aspects the
special files function as the user-created files.

The Xenix shared data segments have similar function to
that of the files and are represented, protected, and labeled in
a similar way. The difference is that the shared data segments
allow asynchronous processes to synchronize their read and
write accesses to segment data, and that, unlike files that are
shared on a per-copy basis, shared data segments are shared
on a per-original basis.

Named pipes function as "unbounded" communication
buffers and are represented, protected, and labeled in a simi­
lar way as the files. The difference between named pipes and
shared data segments i,s that named pipes impose producer­
consumer process synchronization to prevent underflow con­
ditions.

Semaphores are objects that allow the synchronization
between asynchronous processes and have similar representa­
tion, protection and labeling to that ·of files.

Access Control Lists (ACLs) are objects used for the dis­
cretionary protection of files [Gligor86] and are represented

as specially-protected files by the kernel. Each ACL is asso­
ciated with its file uniquely for the lifetime of the file. The
association is maintained by the kernel. The ACLs are la­
beled with the same label as that of the file they protect.
They are discussed in detail in the section on access matrix
representation.

(2) Directories

Directories are containers for files, special files, pipes,
Xenix semaphores, Xenix Data Segments, ACLs, and other
directories. They form the building blocks for the system
hierarchy. Directories are maintained and protected by the
Secure Xenix kernel and are represented in a similar way to
that of files. The directories that contain special files. and
ACLs are system created/destroyed whereas the rest of the
directories are created and destroyed by users. A directory
that contains an object is called a parent directory. A special
directory called the root is the highest directory in the parent
chain. It is its own parent. It has no ACL and is always
"search"-able by all users.

(3) Message queues, Semaphores, Shared Memory Seg­
ments, and Processes

The objects in this group do not have file system rep­
resentation. The System V semaphores and shared memory
segments have the same function as their Xenix correspon­
dents. The message queues are containers for messages and
are used primarily for requests to server processes. Processes
are created and destroyed by their parent processes and are
identified, labeled, and protected in the same way as that
used for their parents.

All objects mentioned above are activated when they are
created and deactivated when they are destroyed. Exceptions
to this rule are the special files, which activated when they
are opened and deactivated when they are closed. Special
files (devices) cannot be created/destroyed by users. This is
important in the interpretation of the activation axiom (viz.
section 3.7).

3.1.3. Access Privilege Set of Secure Xenix
(A)

The basic set of access privileges in Secure Xenix con­
sists of the read, execute, write, and null privileges. (An
additional privilege, setuid-gid, is defined for executable files.
This privilege is discussed in section 3.3 below). These privi­
leges are visible to the user and are interpreted by the kernel

·differently f~r different objects. Thus, the actual privilege set
is substantially larger than the basic set above. In this sec­
tion we define the access privileges for each type of object of
Secure Xenix and its relationship with the access privileges
(modes) of the Bell-LaPadula model.

In examining the relationship between the Bell-LaPadula
model privileges and the Secure Xenix privileges it should be
noted that the e (execute) privilege of the model does not
have any correspondent in Secure Xenix (nor in other sys­
tems [Bell76, footnote on p.ll]). Similarly, the null privilege
of Secure Xenix is not explicitly represented in the model.
Furthermore, some of the model privileges have no meaning
for some of the Secure Xenix objects and have no represen­
tation among the privileges define for those objects. (These
cases are denoted by the phrase "no meaning" in the corre­
spondence tables below). Other model privileges that have
no meaning for some Secure Xenix objects have representa­

116

tion among the access privileges for those objects, however

the access authorization mechanisms ignore their representa­

tion. This means that none of the operations defined on those

objects may be authorized by the ignored privileges. (These

cases are denoted by the phrase "ignored" in the privilege

correspondence tables below.)

(1) File Access Privileges

read (r) 	 A process granted read access to a file can execute
instructions that cause data to be fetched (read)
from the file into processor or memory registers that
can be manipulated (e.g., copied) by users. The
read access of the Bell-LaPadula model maps di­
rectly into the Secure Xenix read.

write (w) 	 A process granted write access to a file can execute
instructions that cause data in the file to be mod­
ified. This access privilege differs from the write
access in the Bell-LaPadula model in the sense that
it does not allow any observation of the state of the
file being modified. The append (a) privilege of the
Bell-LaPadula model, maps into the Secure Xenix
write privilege. Note that the Secure Xenix write
privilege is also necessary for append operations to
files. The write (w) privilege of the Bell-LaPadula
model maps into the read and write privilege com­
bination of Secure Xenix.

execute (x) 	 A process granted the "execute" (x) privilege to a
file can transfer control to that file and cause por­
tions of the file to be interpreted and executed as
instructions. Note that the portions of the file be­
ing executed as instructions are not stored in pro­
cessor nor in memory registers from which they can
be copied by users. Thus, the execute privilege dif­
fers from the read privilege. Also, this access priv­
ilege differs from thee (execute) access of the Bell­
LaPadula model in the sense that it allows the ob­
servation of the state of the program executing a file,
whereas the execute privilege of the Bell-LaPadula
model does not. The execute and read combination
of the Bell-LaPadula model maps directly into the
execute (x) privilege of Secure Xenix.

null (-) 	 A process with the null privilege for a file cannot
access the file in any way. The Bell LaPadula model
does not include the null privilege (although the ex­
ecute privilege semantics comes close to it).

setuid-gid Files containing program code have an additional
privilege bit that can change

(suid-gid) 	the identity (i.e., UID or GID) of the process while
executing in that file. This is discussed in the sec­
tion that describes the discretionary access control
in Secure Xenix.

(2) Privileges for Special Files, Pipes, Message Queues,
Shared Memory Segments, Xenix Shared Data Segments d
A~s 	 ~

The privileges for these types of objects are the same and
have the same meaning as the file privileges. They have the
same rela~ionships to the Bell-LaPadula privileges as those
of files (discussed above). The only difference between the
privileges for this group of objects and file privileges is that

the execute privilege (x) has no meaning for this group of
objects and, therefore, this field is ignored for all objects in
this group.

In summary:

Bell-LaPadula privilege corresponds to this Group Privilege:

e (execute) -+

r (read) -+ r

re (read & execute) -+ x(ignored)

a (append) -+ w

w (write) -+ rw

null

(3) Directory Privileges

read (r) 	 A process granted read access to a directory can
execute instructions that cause directory attributes
and contents to be fetched (read) from the direc­
tory into processor or memory registers that can be
manipulated (e.g., copied) by users. Note that no
information about the objects named by that direc­
tory can be retrieved. The relationship of this access
to the read access of the Bell-LaPadula model is the
same as that of the files.

search (x) 	 A process granted the search privilege to a direc­
tory can execute instructions that match a given
string of characters to those of a directory entry.
Note that the search privilege is weaker than the
read privilege; which could also be used for search­
ing. The read privilege of the Bell-LaPadula model
maps into the search privileges with the appropriate
restriction; i.e., the read privilege must be restricted
to directory-entry reads. Also note that the distin­
guished Root directory has the search privilege on
for all processes in the system.

execute 	The execute privilege has no meaning for directories.
Thus, the execute and read privilege combination if
the Bell-LaPadula model has no meaning either for
Secure Xenix directories. Note, however, that the
execute privilege bit is reassigned by the access au­
thorization mechanism to the search operation and
thus it denotes the search permission.

add_
entry (w) A process granted the add_entry (w) privilege to a

directory can execute in

In summary:

Bell-LaPadula privilege corresponds to File Privilege:

e (execute) -+

r (read) -+ r
re (read & execute) -+ X

a (append) -+ w
w (write) -+ rw

-+ 	 null

delete_entry (w) 	 structions that cause new entries to be appended to
or removed from that directory. The append priv­
ilege (a) of the Bell-LaPadula model maps directly
into this privilege for directories.

(rw) 	 The Bell LaPadula write (w) access maps directly
into the delete_entry privilege (rw) of Secure Xenix.

null (-) 	 The null privilege has the same interpretation for
directories as that for files.

117

Bell-LaPadula privileges correspond to Directory Privileges:

e (execute) ---+

r (read) ---+ r (read) or
x (search ==> restricted read)

re (read & execute) ---+ (x) no meaning
a (append) ---+ w (add entry or delete entry)
w (write) ---+ rw

---+ null

(4) Privileges for Semaphores and Xenix Semaphores

The access privileges for System V semaphores are de­
fined in the same way as those for files, and their relation­
ship to the Bell-LaPadula privileges is the same as that of
files. The xecute (x) privilege has no meaning for semaphores
and is ignored by the access authorization mechanism. The
write (w) privilege in isolation has no meaning for System V
semaphores. Whenever the write privilege is on but the read
privilege is off the write privilege is ignored by the access
authorization mechanisms. Thus, the only non-null accesses
defined for System V semaphores are read (r) and read and
write (rw).

For Xenix semaphores, the execute (x) privilege has
no meaning and is ignored by the access authorization
mechanisms. Although the write privilege has meaning on
semaphores in general, the Secure Xenix access authoriza­
tion mechanism reassigns that meaning of write to the read
privilege and ignores the write privilege. thus, the read (r)
privilege for Xenix semaphores implies both observation and
alteration and, therefore, it is equivalent to the write (w) priv­
ilege of the Bell-LaPadula model, and to read&write (rw) in
Xenix.

In summary,

Bell-LaPadula Privileges correspond to System V Semaphore
Privileges

e (execute) ---+

r (read) ---+ r (read)
re (read & write) ---+ x (ignored) .
a (append) ---+ w (ignored whenever read is off)
w (write) ---+ rw (read and write)

---+ null

Bell-LaPadula Privileges correspond to Xenix Semaphore
Privileges

e (execute) ---+

r (read) ---+ r (read)
a (append) ---+ w (ignored)
w (write) ---+ r (read and write)

---+ null

(5) Privileges for Processes

The only privileges defined for processes (not to be con­
fused with the process code file) are signal, kill, and null.
The signal and kill privileges are implemented implicitly for
every process and are a stylized form of a "write" to a process
body. The null privilege is also implicitly implemented by the
kernel through the process isolation mechanism; namely, two
isolated processes have null privileges to each other.

3.1.4. The Current Access Set in Secure
Xenix (B)

The current access set B is a subset of S x 0 x A. In
Secure Xenix, the current access set is represented by a per­
process data structure for some types of objects and by a per
type data structure for some other types.

(1) The Per-Process Component

The per-process component of the current access set con­
sists of a set of descriptors (fd) stored in the u_ofile structure
of the per-process u.block. These descriptors point to a file
table whose entries contain the current access privileges of
the process to: files, special files, ACLs, named pipes, Xenix
semaphores and Xenix shared data segments, and directories.
The file-table entries are multiplexed among objects of all pro­
cesses. Each per-process descriptor points to an entry in the
file table. The access privileges of each entry are a subset of
the privileges that the process has to the object (discussed in
the next section). Note that for semaphores and for shared
data segments the current-access-privilege set is the same as
the process always has tOthese objects; i.e., the same as the
corresponding access matrix entry.

(2) The Per-Type Component

The per-type component of the current access set con­
sists of special descriptors that contain the access privileges
available to each process. These descriptors are semid.ds
for System V semaphores, msgid.ds for message queues, and
shemid.ds for shared memory segments. The ipc.perm field
of these descriptors contain the access privileges a process has
to these objects. Here, as for Xenix semaphores and shared
data segments, the current access-privilege set is the same as
those the process always has to these objects.

3.1.5. The Access Matrix in Secure Xenix
(M)

The access matrix M of the system state is interpreted
in Secure Xenix through a set of system structures main­
tained by the kernel. The system structures interpreted for
each object as access matrix entries are either access con­
trol lists (ACLs) or Xenix (Unix) specifications but not both.
These structures represent the storage of the access matrix
by columns. That is, each object is associated with a list of
users that can access the object, each user having a set of ac­
cess privileges restricting his access. Access control lists and
Xenix (Unix) specifications are two different ways of storing
the access matrix by column.

An ACL is a set of <principal identifier, access
privileges> pairs that is attached to an object. The principal
identifier is a non-reusable, two part identifier consisting of a
user identifier and a group identifier (UID and GID). The user
identifier places each individual user in a separate access con­
trol group by himself, uniquely. The group identifier places
users in groups whenever such users are related by, or cooper­
ate in, some activity or project. Such groups imply that their
members have similar access privileges to a set of objects. A
user may belong to several groups; however, at login time he
must specify the group in which he wants to be for that login
session. If no group is specified at login time, a default group
is assigned to the user. Both group-membership and group­
default definition on a per user basis are determined by the
System Security Administrator (SSA). Default group speci­

118

http:shemid.ds
http:msgid.ds
http:semid.ds

fications can be changed by the SSA at the user's request.
Note that not all members of a group must be known when
the group is formed. Members of a group may be added and
deleted by the SSA subsequently.

To simplify principal identifiers, a DON'T CARE (i.e.,
"wild card") notation has been added [Saltzer 74]. A DON'T
CARE in a user or a group field of a principal identifier
is denoted by an asterisk (*). For example, the identifier
Jones.Networks_FSD puts a user Jones in the Networks-.FSD
group. By contrast, the identifier Jones.*. names a user
Jones in any group, whereas the identifier . * .Networks_FSD
names any user in the Networks_FSD group. The inclu­
sion and exclusion of individual users on ACLs and the
review/revocation of privilege mechanisms are presented in
[Gligor 86].

Both ACLs and Xenix protection specifications are as­
sociated in a one-to-one correspondence with the object they
protect. For example, for the objects that have file system
representation, the object i-node number is used to identify
unambiguously its ACL. The ACL is destroyed upon object
(and i-node) destruction. For objects that have file system
representation the Xenix protection specifications are kept in
the i-node itself. For objects that do not have file system
representation (i.e., System V semaphores, message queues
and shared memory segments), the ACL or the Xenix protec­
tion specification are associated with the object through the
object's descriptor (i.e., semid_ds, msgid_ds, and shemid_ds).
For example, the ACL's i-node number is stored in the de­
scriptor; the Xenix specification themselves are stored di­
rectly in those descriptor and used whenever ACLs are not
specified.

3.1.6. The Security Function (F)

The definition of the security levels as binary encodings,
of assignment of print names to binary encodings, and of the
(lattice) relationships between security levels is provided in
[Gligor 86]. In this section we focus on the definition of the
three components of the security function, namely, the assign­
ment of maximum security level (clearance) to each subject,
the current security levels (clearance) of each subject, and the
assignment of security level (classification) to each object.

The assignment of user clearances in Secure Xenix is
performed by the SSA on an individual and group basis in
the user security profile database. The individual user clear­
~ce consists of a User Maximum Level (UML), and the
group clearance consists of a Group Maximum Level (GML).
These values can only be assigned and manipulated by the
SSA, and must be in the range SystemJligh 2: UML,
GML 2: System_Low for the System_High and System..Low
values defined by the SSA. The subJ.ect maximum clearance is
the greatest lower bound (viz., [Gligor 86]) of the UML and
GML.

The current subJect clearance is called the current pro­
cess level (CPL), and is assigned to that process for its entire
lifetime. The CPL is determined at process creation time and
must be between the process maximum level (PML) and Sys­
tem_Low. The PML is the greatest lower bound of the UML,
the GML, and the terminal maximum level (TML). (Note
that, because the TML is no greater than the workstation
maximum level (WML), the WML is never lower than the
PML. The TML and WML are discussed below.) The CPL
of a process is the user RequestedJevel at login time, or the

user DefaultJevel if no level is requested, if and only if the Re­
questedJevel/DefaultJevel is less than or equal to the PML
(or equivalently~ UMLand ~ GML and ~ TML). There­
fore, it is clear that the subject maximum clearance always
dominates the current subject clearance in Secure Xenix.

Note that a login fault is detected during the compu­
tation of the CPL (and PML). The fault occurs whenever
the terminal minimum level (TmL) is greater than the user
maximum level (UML) or the group maximum level (GML).
Consequently, an audit record is written. The reason for this
action is that the user is likely to try to login from a security
area where he does not belong. Also note that a user can
always request a level that is lower than both the PML and
TmL, so long as both that user's GML and PML are no lower
than the TmL. No login fault occurs in this case.

The assignment of obJect classifications consists of the
assignment of classifications to the workstation components
and the assignment of classification to the user-created obc
jects. The assignment of classifications to workstation com­
ponents is performed by the SSA (during the definition of
workstation security profile), whereas the assignment of clas­
sifications to user-created objects is done by the Secure Xenix
kernel. (The current level of the workstation devices is also
assigned by the kernel.)

The definition of the workstation security profile is per­
formed by the system security administrator, and includes
the following classification ranges:

(i) The individual workstation classification range;
i.e., workstation maximum security level (WML) and Sys­
tem_Low.

(ii) The classification range of each individual terminal
and private devices that are connected to each workstation;
i.e., terminal maximum and minimum level (TML, TmL) and
the private device maximum and minimum levels (PDML,
PDmL).

The assignment of these values to a specific Secure Xenix
configuration is performed by the SSA and depends on the
operational and the physical security environment. For exam­
ple, in some operational environments the System..High and
System_Low, and all other security levels, may have the same
clearance value but different category sets. In such environ­
ments, the security levels assigned to individual workstations,
devices and file system depend solely on the "need to know"
basis.

The dependency of the security level ranges on the phys­
ical security is equally important. For example, the work­
stations located to areas accessible to users cleared at low
security levels have a lower classification than that assigned
to workstations located in areas where all users are cleared at
the highest level. Physical security considerations may also
require (1) that the maximum level of a terminal or private
device be lower than that of its workstation (TML/PDML
< WML), and (2) that the minimum level of a terminal be
higher than System_Low (TmL/PDmL > SL). Terminals and
other workstation devices may be located in a different phys­
ical security area than that of its workstation, and, thus, the
TML/PDML may be lower than the WML. (Terminals and
other private devices are also vulnerable to the additional
threat of spoofing, and thus some information contained in
the workstation may not be displayed on the terminal or on
the private device.)

119

A user can only change the level of a private device or
of a terminal to a level that he requests at login time (viz.,
the computation of the CPL). The current level of a private
device or of a terminal can be displayed by the kernel on re­
quest. The minimum level of a terminal or of a private device
classification may be higher than System_Low because physi­
cal security considerations may require that individuals with
-a low clearance, or with no need to know, may be denied
access to workstations, terminals and private devices located
in highly classified areas or in areas with different "need to
know". This is done by raising the TmL/PDmL to a corre­
spondingly high security level.

A workstation terminal, or a private device, also has a
current classification, called the Current Terminal Level, or
the Current Private Device Level (CTL or CPDL). In Se­
cure Xenix, both the CTL and CPDL equal the CPL of the
user, system process, or daemon to which they are attached
(and that owns or opens them). Note that it is possible to
have CTL < TmL because CTL = CPL and CPL equals Re­
quested_Level < TmL of a user whose UML, GML ~ TmL.
For similar reasons, it is possible to have CPDL < PDmL.

The determination of the classifications of the user­
created (or opened) objects is performed by the Secure Xenix
kernel, and consists of the following three groups of rules.

(1) Classification of Files, Special files,

Xenix Semaphores, Xenix Data Segments, and ACLs

Objects in this group have a single level for their entire
lifetime. (Exception to this are the special files whose ac­
tivation level equals the level of the process that activates
or opens them. None of the Xenix special files retain any
state information in current configuration. Whenever such
files retain state information, SSA intervention is required
for activation.) That is, unless a special trusted process with
discretionary access to that object changes the object classi­
fication (i.e., downgrade or upgrade), the object classification
does not change. The classification of an object in this group
is the CPL of the creating process and must be equal to the
security level of the directory containing that object.

An object in this group can only be destroyed by a pro­
cess with the same (CPL) level as that of the object; the
object is destroyed only if its reference count equals zero (i.e.,
it is not shared by any other directory or process). Note that
special files are not destroyed; they are only closed.

(2) Directory Classification

A directory has a single security level for its entire life­
time, just as in the case or ordinary files. However, unlike
ordinary files, the security level of a newly-created directory
can be' assigned from a range of levels. The lowest level of the
range is the CPL of the creating process and must be equal to
that of the directory that contains the newly-created direc­
tory. The highest level of the range is the WML. If a process
creates a new directory but does not request any level for
that directory, the default level of the directory is that of the
process (i.e., the CPL) and that of the containing directory.
The classification of a directory does not change during the
lifetime of the directory unless a trusted process with discre­
tionary access to that directory always changes it.

A directory can only be destroyed by a process at the
same level (i.e., CPL) as that of the containing (parent) di­
rectory. Also, a directory can only be destroyed if it contains

no files. This Xenix interface convention introduces a covert
channel, which is discussed in [Gligor86] because a lower level
process can discover whether a higher level process has re­
moved all the files from the higher level directory when it
tries to remove them.

(3) Classification of Processes, System V Semaphores,
Message Queues and Shared Memory Segments

The security levels that are assigned, to these objects by
the classification rules of the kernel always equal the CPL of
the process that created these objects. Similarly, these objects·
can only be destroyed by the process that created them or by
a trusted process at the same level as that of the objects. The
classification of those objects does not change during their
lifetime unless a trusted process with discretionary access to
those objects changes it.

3.1.7. ·Hierarchy (H)

The only Secure Xenix objects that may contain multi­
ple components with different classifications are directories.
Thus, the only object hierarchy in the system for the objects
that have a file system representation is that provided by the
directory hierarchy. All objects in this group (i.e., group (1)
above) are classified at the level of the creating process, which
must equal that of the directory containing the object.

Objects that do not have file system representatjon (i.e.,
objects in group (3) above) are classified at the level of their
creator process. This ensures that these objects cannot be
at a lower level than that of the processes' current directory.
This also maintains the "nondecreasing level" rule for the
directory hierarchy. These obiects form the isolated points
(i.e., the "stumps" in the Bell-LaPadula terminology [Bell76])
of the hierarchy.

The rules for assigning specific classifications to directo­
ries in the hierarchy prevent a process from placing a newly­
created directory in another directory at a lower level than
that process' CPL. However, a process can create an "up­
graded" directory that has a higher level than that of the
CPL of the creating process and that of its containing direc­
tory.

Note that a user process can create links in its current di­
rectory to objects that have file system representation. How­
ever, links to directories can only be created by trusted pro­
cesses. User processes can only link (non-directory) objects
in the process current directory (i.e., CPL=directory level),
and only if the security level of the object being linked equals
that of the current directory.

The Secure Xenix hierarchy has a ROOT directory whose
level is always SystemJow. All processes have the search
privilege (x) to this directory.

3.2. State Transitions in Secure Xenix

Transitions from state to state are defined by the kernel
calls and returns of Secure Xenix. Thus, each rule Pi in

p: RxV---.DxV,

of the Bell-LaPadula model is represented as follows:

(1) Each request Rk E R is represented by a specific
kernel call or by a trusted process call (these calls are imple­
mented by kernel calls). R is the set of all kernel and trusted
process calls.

(2) Each input to Rk comes from the current system state
V. That is, both parameters explicitly passed to each call

120

(such as object identifiers, values, pointers, access privileges,
and so on) and parameters implicitly passed to each call (such
as the system hierarchy, security levels, and so on) belong to
the current system state.

(3) Each decision Dm E D = {Yes, No, ?, Error}·
is represented by a specific return to a kernel call. "Yes"
is represented by the successful return parameter. "No" is
represented by the error return parameter that corresponds
to violations of th~ access control (e.g., mandatory or discre­
tionary checks). "?" is represented by the error return pa­
rameters specifying that the kernel call parameters are faulty
(e.g., non-existent file, parameters out of range, attempt to
invoke a privileged kernel call, etc.). In general, these er­
ror returns are called domain errors. "Error" is represented
by error returns "that correspond to other exceptional con­
ditions detected during the execution of specific kernel calls
(e.g., deletion attempted on a non-empty directory, overflow
conditions, etc.). Note that all decisions represent some in­
formation from the system state at the time of the kernel call,
V, or from the new system state, V*, entered by the system
as a consequence of the call.

(4) Whenever Dm =f No, Dm =f ?, and Dm =f Error,
the output of Rk includes a new new state V*, in addition to
Dm=Yes. The new sys~em state may include new objects, a
new hierarchy, or may exclude some objects and access priv­
ileges from previous states, and so on.

The Dm 's, the characteristics of the expected and of
the new state for each Rk are described in the Secure Xenix
DTLSs.

3.3. Access Control in Secure Xenix

In this section we report the invariant access control
checks that are performed in Secure Xenix. This includes the
presentation of (1) authorization checks for mandatory con­
trol, (2) authorizatio~ checks for discretionary access control,
including the Setuid-Setgid mechanism, and (3) the compu­
tation of the effective access authorization to objects.

3.3.1. Mandatory Access Authorization

The authorization rules are divided into three groups de­
pending on the type of object being accessed.

(1) The object is a File, a Special File (Device), a Direc­
tory or a Shared Memory Segment or an ACL:

A process may Read (Execute) an object if the CPL of
the process is GREATER THAN or EQUAL TO the classifi­
cation of the object.

A pro~ess may Write an object if the CPL of the process
is EQUAL TO the classification of the object.llll

This rule implies that the data displayed on a private de­
vice or on a terminal can be a level that is no higher than that
of the CPL and, implicitly, of the CPDL/CTL. Any displayed
data that may have to be at a lower level can be labeled sep­
arately by a trusted process of the secure application itself.
Thus, the application is responsible for providing labels for
data fields that would be appropriate for, and that use, the
different terminal features (i.e., windowing, scrolling, etc.).

(2) The object is a Named Pipe, Semaphore, Message
Queue, Xenix Shared Data Segment:

A process may Read/Write (open/close) an object if the
CPL of the process equals the classification of the object.

(3) The object is a Process:

A process can signal (kill) another process if the CPL of
the latter is GREATER THAN or EQUAL TO that of the
former.

(4) For all objects, a process has NULL access to an
object if the CPL of the process is ISOLATED FROM the
classification of the object.

The above rules imply that the flow of information in
Secure Xenix can only take place from a given level to another
level that is no lower than the first.

The mandatory access authorization rules presented
above are invariant. for all Secure Xenix kernel calls. That
is, depending on whether a kernel call is relevant to a partic­
ular type of object, one or several of the above rules apply to
that call. These rules are compatible with the ss-property and
the *-property of the Bell-LaPadula model for the following
reasons.

(1) Rules 1 and 2 of Secure Xenix imply conditions (ii)
and (iii) of the *-property.

(2) Rule 3 of Secure Xenix implies condition (i) of the
*-property.

(3) Since 	 the subject maximum clearance (i.e., the
greatest lower bound of UML and GML) always
dominates the current subject clearance (i.e., CPL)
in Secure Xenix, Rules 1-3 above imply the ss­
property.

However, it should be noted that equivalence between the
ss-property, the *-property of the Bell-LaPadula model and
any system interpretation is impossible in practice. There are
two reasons for this.

First, consider the meaning of the execute (e) privilege of
the Bell-LaPadula model presented in section 2.4 above. This
privilege does not exist in practice because, in any system, the
execute privilege implies some observation of the behavior of
the object being executed. Therefore, in practice, the execute
(e) privilege must be eliminated from condition (i) of the ss­
property and added to condition (ii). Furthermore, it must
be also added to condition (iii) of the *-property; otherwise,
observation of objects at levels that are higher than those
allowed to the user or his process is possible.

Second, consider the implementation of the "append"
operation that requires the append privilege (a) of the Bell­
LaPadula model. In practice, append operations may require
one or more of the following observations of objects or system
state:

(1) find 	the end of the object that is the target of the
append operation;

(2) find the name of an object in a directory at a higher
level than that of the process executing the append
operation;

(3) find out whether the object exists;

(4) find out whether the append operation fails due to
a storage channel exception.

Consequently, in practice, the append operation implies
not only alteration of an object but also observation of the
object or of the system state. Therefore, in practice, the

121

append (a) privilege must be eliminated from condition (i) of
the ss-property and added to condition (ii) of the *-property
for the similar reasons to those mentioned for execute (e)
above.

With the above two modifications that are required in
practice, the ss-property and the *-property would be equiv­
alent to the. rules 1-3 of the Secure Xenix implementation.
Note, however, that consistency of the Secure Xenix inter­
pretation with the model only requires that Rules 1-3 above
imply the ss-property and the *-property.

3.3.2. Discretionary Access Control

The discretionary access authorization rules of Secure
Xenix define the Secure Xenix model of discretionary policy.
Discretionary policy is characterized by four classes of axioms,
namely, (1) authorization axioms, (2) axioms for distribution
of access privileges, (3) axioms for review of access privileges
and (4) axioms for the revocation of access privileges. The
informal specification of the first three classes of axioms are
required explicitly by the [TCSEC 83] in the discretionary
access control area of B2-class system. The informal speci­
fication of the fourth is required implicitly in the statement
that "the enforcement mechanism shall allow users to specify
and control sharing for these objects.

{1} Authorization in Secure Xenix
The specification of the discretionary authorization

mechanisms of any system consists of two parts. First, it
must include a specification that relates every (kernel) oper­
ation on one or more objects with the privileges required by
the operation for those objects. This is necessary because the
authorization mechanism requires different (combinations of)
privileges for different operations. Lack of such specification
could mean that the wrong privilege may authorize an op­
eration. As seen in section 3.1.3 above, the correspondence
between an access privilege to a kernel operation depends on
the type of objects and is not entirely obvious.

Second, the discretionary authoriza~ion mechanisms
must include a specification of how the current access privi­
leges of subjects are related to the specification of the subjects
access to objects by the access matrix. This relationship is
defined by the ds-property of the Bell-LaPadula model, and is
important because it relates the high-level, human-oriented,
discretionary access controls specified by the access matrix
with low-level, human-oriented, discretionary access controls
specified by the access matrix with the low-level, system­
oriented, discretionary controls of the system.

It should be noted that the requests Rk discussed below,
namely, CALL, REVOKE, REVIEW, ACCESS, GRANT,
EXCLUDE are implemented by kernel calls or sequences of
kernel calls that require the reading and writing the ACL and
Xenix specifications. ACCESS and CALL are implemented
by a single kernel call (i.e., "access" and "exec").

The two general requirements of discretionary autho­
rization can be expressed by the following two axioms. Let
p : 	 R X v --> D X v· be the set of rules.

For all Rk executed by S; on some objects 0; with
Rk =f CALL, GRANT, REVOKE, REVIEW, ACCESS, EX­
CLUDE, and !f. are the required access privileges for Rk

(1.1) 	(Dm =YES) => (S;, 0;,!£.) E B, and

(1.2) (8;, 0;, !f) E B => !f. E M;; [Bell-LaPadula
76].

Secure Xenix satisfies both requirements mentioned
above. First, the DTLSs of Secure Xenix specify the dis­
cretionary privileges for each type of object that are required
by each kernel call. Furthermore, the kernel call fail whenever
the required privileges are not among the privileges of each
object used by the call. Second, each cu~rent access of a pro-·
cess to an object is derived from either the objects' ACL or
from its Xenix specifications (i.e., i-node, semid-ds, msgid-ds,
shemid-ds) when the object is open or created; viz., section
3.1.4 above. Because these data structures represent the ac­
cess matrix in Secure Xenix (viz., section 3.1.5 above), the
ds-property of the Bell-LaPadula model is also satisfied.

{2} Distribution of Access Privileges in Secure Xenix

The policy for the distribution of access privileges must
specify how "the access permission to an object by users not
already possessing access permission shall only be assigned
by authorized users" [TCSEC 83].

In Secure Xenix, the only users that are authorized to
distribute object privileges to other use:rs are the owner of
those objects. Ownership of an object is a user attribute and
not an access privilege. In Xenix, ownership is determined
solely by the user identifier (and not by ,the group identifier
GID). Each object has only one owner and only the owner is
authorized to modify either the ACL or the Xenix specifica­
tions for his objects.

This privilege distribution policy is succinctly stated by
the following two axioms:

(2.1) Ownership Axioms:

Vi =fJ, VS;,S; E S', S; = Owner(O;) =>

S; =f Owner(O;), and

S; = Owner(O;) => V;£. E A,;£. EM;;

(2.2) Privilege Granting Axiom:
Let p : R X v --> D X v· be the set of rules.

For all Rk executed by S; on objects 0; with
Rk = GRANT(!£., Sp)

(Dm 	 = YES)=> [S; = Owner(O;)] and
!f. E Mp;

The effects of the privilege granting are equivalent to the
inclusion of a user/group identifier on an ACL or in the Xenix
specifications. The inclusion of users on ACL's is explained in
section 3.1.5 above and on Xenix specifications for an object
in [Ritchie 74].

Similarly, the policy for the distribution of access privi­
leges must be able "to specify a list of named individuals and
a list of groups of named individuals for which no access to
the object is to be given".

In Secure Xenix this is possible since the owner can either
decide not to include a specific user or group in the ACL or
Xenix access specification or to exclude a specific user's or
group's access as explained in section 3.1.5 above.

(2.3) 	Privilege Exclusion· Axiom:
Let p : R X v --> D X v· be the set of
rules. For all Rk executed by S; on M[S;, 0;] with
Rk 	= EXCLUDE({S;}, 0;)

(Dm = YES) => [VJ =f i, S; = Owner(O;)
and (S;,O;,</>) E B, where {S;} c S'].

122

{9} Review of Access Privileges in Secure Xenix

The policy for review of access privileges "shall be ca­
pable of specifying, for each named object, a list of named
individuals and a list of groups of named individuals with
their respective models of access to that object" [TCSEC 83].

In Secure Xenix, the only users that can perform access
review (i.e., reading the ACL or the Xenix specifications) for
an object are the owners of that object. However, any user
can inquire whether he has access to an object, and what type
of access, regardless of the object's ownership.

This can be succintly stated by the following axioms. Let
p : R X V ----+ D X V* be the set of rules.

(3.1) For all Rk executed by Si on M[Si, 0;] with Rk
REVIEW(O;):
(Dm = YES) ===;. Si = Owner(O;)

(3.2) For all 	Rk executed by Si on 0; with Rk
ACCESS(O;):
(Dm = YES) ===;. Si E S'.

{4) Revocation of Privileges in Secure Xenix

The policy for revocation of privilege must specify how
access privileges for an object can be taken away from users
that have these privileges in a selective manner and, possibly,
partially.

In Secure Xenix the (selective and partial) revocation of
access privilege can be performed only by the owner of an ob­
ject. The reason is that only the owner of the object may mod­
ify ACLs and Xenix specifications. This can be expressed suc­
cinctly by the following axiom. Let p : R x V----+ D x V*
be the set of rules.

(4.1) For 	 all Rk executed by Si on M[Si,O;] with
Rk = REVOKE(:!;, Sp) :
(Dm = YES) ===;. [Vi =/= p, :!; rt. Mpf
and Si = Owner(O;)]

{5} The Setuid-Setgid Mechanism of Secure Xenix

The SETUID protection mode is used to build controlled
interfaces to various objects [Ritchie 74]. Whenever a pro­
gram with the SETUID bit is executed, the invoking process
inherits the privileges of the program owner. Every process
has both a real and an effective user identifier that are iden­
tical except when a SETUID program is executed. Then the
effective user identifier is set to that of the program owner.
All discretionary access control decisions are based on the ef­
fective user identifier and not on the real one. (There is a
similar mechanism called the SETGID mechanism for chang­
ing the effe~ctive group identifier.)

Although the SETUID feature can be very useful it also
poses three types of security risks: first, a poorly designed
SETUID program can compromise the program owner's se­
curity; second, the code of the SETUID program may be
modified in an unauthorized W<tY; third, a Trojan Horse in a
borrowed program may steal a user's privileges by creating a
SETUID program.

The modifications to the SETUID/GID mechanism pre­
sented in [Gligor 86] make it impossible for a user to change
an existing SETUID program, or for a Trojan Horse to steal
user's privileges by creating a SETUID program. However,
it is the responsibility of the user to use extreme care in the
design of SETUID programs. The operating system cannot

protect the user from his own mi~takes. Even if the user is
careless or malicious, he can only hurt himself by misusing
the modified SETUID features menti<;me~ above because he
cannot create a SETUID program under a different user's
identifier. Note that the mandatory access control (discussed
below) remains unaffected by the SETUID mechanism.

The SETUID/GID mechanism of Secure Xenix enforces
the separation of privileges between the subject that invokes
a SETUID/GID program and the subject that owns the pro­
gram. This means that a subject invoking a SETUID/GID
program may only have indirect access to some of the objects
of the SETUID/GID program owner. This can be expressed
succinctly by the following axiom:

(5.1) Let 	A = {r, w, x, null, suid- gid}

[S;,O;,indirect(:!;)] E B ===;.

CALL(S;,Ok), Si = Owner(Ok),

suid_gid E Mik and (Si, Oi,:!;) E B

In other words, if a program has the SETUID-GID bit
on, the subject Si executing it has privileges of the owner to
objects Oi that may not be directly available to that subject's
callers (i.e., S;).

3.3.3. Computation of the Effective Access in Se­
cure Xenix

The effective current access of a subject to an object in
Secure Xenix follows two rules. These rules are compatible
with the Bell-LaPadula model. They are:

(1) A user process is allowed to access an object in a
given mode (i.e., requiring a certain privilege) only if both
mandatory and discretionary checks are passed.

(2) The Error value returned for failed discretionary
checks must be the same as that returned from failed manda­
tory checks unless the mandatory checks have passed.

The first rule is necessary because, otherwise, the re­
quirement of the secure states and the Basic Security The­
orem of the Bell-LaPadula model would be violated. The
second rule is necessary because otherwise leakage of infor­
mation from higher levels to lower levels may be possible.
That is, whenever the discretionary checks are done first, a
higher level subject may revoke or add a privilege for an ob­
ject to a lower level subject. The lower level subject would
then distinguish between denied discretionary access and de­
nied mandatory access errors. Thus, by modulating the dis­
cretionary access of the lower level subject to a higher level
object, a higher level subject could transfer information to
a lower level object. In Secure Xenix, the mandatory access
checks be performed before the discretionary ch~cks for every
kernel call accessible to a user process. However, this is a
stronger requirement than the more general one specified in
(2) above.

3.4. 	Initial State (zo)

The initial ·state of any Secure Xenix installation is set
by a secure initialization procedure. The secure initialization
consists of three distinct phases: (1) system configuration
and generation, (2) system and user security profile defini­
tion, (3) normal startup (or Initial Program Load- IPL). The
first phase is performed by the TSP (Trusted Systems Pro­
grammer) in maintenance mode. Once this mode is left, the
TSP functions are automatically disabled, and only the rest

123

of the administrative users have access to the workstation.
The second phase work is performed by the SSA. The third
phase work, normally the IPL, is performed by anybody with
physical access to the power on/off switch of the workstation.

The IPL of the Secure Xenix can only take place with
input from the fixed disk, whereas in maintenance mode, the
IPL can only take place with input from the removable media
(e.g., diskette) drive. This separation ofiPL input is enforced
by a special hardware configuration that, when installed by
the TSP, prevents user mode IPL from using the removable
media drive. No cryptographic authentication of the remov­
able medium [Gligor 79] is performed at this time. The TSP
is the only administrative user that has access to the internal
hardware configuration, and he would have to be trusted to
configure the system correctly anyway. (If the TSP is not
trusted, on-site physical surveillance methods would become
necessary, cryptographic authentication notwithstanding).

During the Secure Xenix IPL, several cons~stency checks
are performed. Xenix already performs file system consis­
tency checks (i.e., through the "fsck" program). In particular,
the IPL recovers whenever the system is started up after an
improper shut-down (i.e., after a crash, after power-off during
disk I/Os, etc.) This ensures that security label consistency
is maintained because each label is written onto the disk with
a separate, atomic sector-write operation. In addition to the
file system consistency checks, Secure Xenix checks (1) the
consistency of the security map, (2) the consistency of the

current object label, and (3) the consistency of the overall se­
curity level hierarchy (i.e., the non-decreasing security levels
for directories). This is done by the "scheck" program.

3.5. Compatibility in Secure Xenix

The interpretation of the compatibility axiom in Secure
Xenix requires that a directory contains (1) non-directory ob­
jects (which have file system representation) only at the same
level as that of the directory, and (2) directory objects at the
same level as that of the directory or higher. Consequently, if
a directory is at a higher security level than that of a subject,
all objects filed in that directory remain inaccessible to the
subject.

The rules for object classification discussed in section
3.1.6 above, and the definition of the Secure Xenix hierarchy
discussed in section 3.1.7 above, imply that the compatibility
axiom is satisfied.

3.6. Tranquility in Secure Xenix

The section 3.1.6 is specified that both the current pro­
cess level (clearance) and the classification of objects in Secure
Xenix do not change during the lifetime process and of an ob­
ject, respectively (unless a trusted process with discretionary
access to those objects or with root privileges changes those
levels). This suggests that the kernel call accesses, and the
clearance and classification rules of Secure Xenix satisfy the
tranquility principle of the Bell-LaPadula model.

3.7. Activation

The design of Secure Xenix satisfies the two activation
axioms defined in section 2.4.6 above. First, an active object
can become inactive only through destruction. Objects that
have file system representation are inactivated by the destruc­
tion of their i-nodes and by the deallocation of the appropri­
ate table entries (i.e., file descriptor, file table entry). Objects

that do not have file system representation are inactivated by
the destruction of their descriptors and of their table entries
(i.e., shared memory, semaphore and message queue table en­
tries). A process is destroyed by destroying the corresponding
process table entry. Consequently, the destruction of all these
objects makes them inaccessible to any active process.

Second, whenever an object is created (activated) the
state of the object is automatically written by the kernel with
zeros. Thus, the previous states of this object, or of any other
destroyed object whose storage representation is being reused,
are erased before reuse. This is discussed in more detail in a
separate document on object reuse. Thus, the state of a newly
activated object cannot depend on the state of any previous
object incarnation.

Note that the destruction (inactivation) of some objects,
such as some special files representing terminals, do not cause
the object representation to be "erased." Whenever such ob­
jects do not retain state information they can be reactivated
and made accessible to different processes (and labeled ac­
cordingly; viz. section 3.1.6 above). However, the activation
of objects that retain state information after their deactiva­
tion requires the intervention of the SSA and of trusted pro­
cesses (i.e., mount/unmount volumes).

Secure Xenix also satisfies an additional activation axiom
that define the classification of a newly activated (created)
object and the object destruction rule.

Consistency with the compatibility axiom and with the
*-property requires:

(3) Classification of Newly Activated Objects and the Ob­
ject Destruction Rule

Let 0 = O' U 0", where O'(O") = active (inactive) ob­
jects, and

new(o) = {0' := 0"- o and O' := 0' + o}, and

destroy(o) = {0' := 0 1
- o and O" := 0" + o}

{CALL[Si, new(o)] or CALL[S;, destroy(o)]} ==>
{H-1 (o) =f </> => fo(o) 2: fc(S;) = fo[H- 1 (o)] or

H-1 (o) = </> => fo(o) = fc(S;)}

where H-1 (o) is the parent of object o.

The interpretation of these axioms in Secure Xenix is dis­
cussed in section 3.1.6 above.

4. Conclusion

In this paper we have reviewed the Bell-LaPadula model
for secure systems in its most complete form. We also defined
the interpretation of this model in Secure Xenix has been
defined. We showed that the access control mechanisms of
Secure Xenix satisfy the axioms of the Bell-LaPadula model.

124

5. References

[Bell 73] 	 Bell D.E., and L.J. LaPadula, "Secure Com­
puter Systems," Air Force Elec. Syst. Div.
Report ESD-TR-73-278, Vols. I, II, and III,
November, 1973.

[Bell 74] 	 Bell D.E., and L.J. LaPadula, "Secure Com­
puter System: Mathematical Foundations and
Model," MITRE Corp., Bedford, MA, (Septem­
ber 1974).

[Bell 76] 	 Bell, D.E. and LaPadula, L.J., "Secure Com­
puter System: Unified Exposition and Mul­
tics Interpretation," MITRE Corp., MTR-2997,
1976 (available as NTIS AD-A023588).

[Feiertag 77] 	 Feiertag, R.J., Levitt, K.N. and Robinson, L.,
"Proving Multilevel Security of a System De­
sign," Proc. of the 6th ACM Symp. on Op.
Syst. Prine., Lafayette, Ind., 1977, pp. 57-65.

[Gligor 79] 	 Gligor, V.D. and Lindsay, B.G., "Object Mi­
gration and Authentication," IEEE Trans. on
Software Engineering, SE-5, no. 6, (Nov.
1979).

[Gligor 86]

[Ritchie 74]

[Saltzer 74]

[TCSEC 83]

Gligor, V.D., Burch, E.L., Chandersekaran,
C.S., Chapman, S., Dotterer, L., Hecht, M.S.,
Jiang, W.-D., Luckenbaugh, G.L., and Va­
sudevan, N., "On the Design and Implemen­
tation of Secure Xenix Workstations," Proc. of
IEEE Symp. on Security and Privacy, Oakland,
Calif., April 1986.

Ritchie, D.M., and Thompson, K., "The Unix
Time-Sharing System," Comm. of the ACM,
Vol. 17, No. 7, (July 1974), p.p. 365-375.

Saltzer, J.H., "The Protection and Control of
Information Sharing in Multics," Comm. of the
ACM, Vol. 17, No. 7, (July 1974), p.p. 388­
402.

Department of Defense - Computer Security

Center, "Trusted Computer Systems Evalua­
tion Criteria," Final Draft, August 1983.

125

INFORMAL VERIFICATION ANALYSIS

By Barry C. Stauffer and Roger U. Fujii

IDgicon, Inc.

The concern for the se=ity of c:arputer systems has
been intensified by the increasing depen~ of the
system on the ccmputers and the ability for the
systems to react autonarrously. The developrent of
secure systems has proven to be an engineering
challenge. While much emphasis has been devoted to
perfection of fonnal specification techniques, to date
these techniques have had only limited use in
fielding state-of-the-art systems. The need for
assurance of secure systems remains.

This paper presents an adaption of existing software
verification and validation technology to be applied
to the specific needs of =rputer security.

1. Introduction

Ccmputer security includes all measures to protect
against unauthorized (accidental or intentiorial)
disclosure, m:xlification, or destruction of ccmputer
systems, processes, and data. Also included are
those rreasures to protect against denial of service.
Of concern is the protection of classified data,
mission critical data and processes, unClassified data
requiring special protection (official· use only data,
personnel data, etc.) and integrity. of data. Mission
Critical Ccmputer Systems (MXS) have the additiorial
concerns of process security and process integrity,
i.e. , to provide assurance that one process cannot
inadvertently access, initiate or deny access to
another critical process.

We have gained an increased understanding of security­
specific technical issues fran the ccmputer security
work undertaken over the last decade. 'lWo significant
developrrental factors affect the security of ccmputer
systems. The first is the rigorous use of sound
nodern software engineering principles combined with
systematic detailed program reviews. The second
factor is evaluating and incorporating critical
security issues during all phases of the developrent
cycle (i.e, build ccmputer security into the system
rather than add it as a separate part).

The use of a security rrodel is the nost effectl.ve way
to evaluate critical security issues. As part of the
system requirerrents, a system security nodel defines
the system-enforced security rules.

It specifies the access controls on the use of
information and how information will be allowed to
flow in the system. The rrodel also provides the
mechanism for specifying how to change access controls
and interfaces dynamically without c:arpranising system
security. A precisely tailored security rrodel can
ensure that a system will contain a level of security
appropriate to its intended application. Thus the
security nodel, which defines system security needs,
is a major c:arponent of a secure system.

The major remaining factor in the developrent of
secure ccmputer systems is the ability to validate
secure system behavior. Ccxrplete and total trust in
the security of system can only be achieved with a
fonnal, mathematically sound validation that the
system, as built, correctly ilrplements its fonnally
specified security nodel. The theory of fonnal

program validation is nCM better understood, except
for problems ·of concurrency and asynchronism, and a
significant arrount of progress has been made tCMard
verifying the correctness of cc:mputer programs with
canplete mathematical integrity. At the present time,
this technology can only be used to validate small
programs. The time and cost to validate a large
ccraplete program, such as an operating system,
precludes the use of this fonnal validation technology.
There is, however, a rigorous, though less
mathematically formal, technology that can be used to
validate system security.

2. Independent· Verification and Validation

Independent Verification and Validation (IV&V) is the
systematic· analysis, test and evaluation of a computer
system by a contractor or agency independent of the
.developer. It is a highly structured, rigorous
system engineering discipline consisting of a series
of specific activities which, in the ideal, parallel
program developrent. Its goal is to provide c:arplete
and total assurance that the delivered operational
system satisfies all of its requirements and is
limited to perfonuing only its intended functions.

IEEE-STD-729 defines Verification and Validation as:

"The process of determining whether or not the
products of a given phase of the software
development cycle fulfill the requirements
established during the previous phase," and
"The process of evaluating software at the end
of the software development process to ensure
c:arpliance with software requirements."

Figure 1 is a graphic depiction of the IV&V process.

Figurel. IndependentVerificationandValidationProcess

IV&V was developed in the 1960s for several military
and space programs with a clear need to ensure the
reliability of critical software. Since its inception,
the IV&V methodology has been expanded to include the
analysis of the entire system. IV&V has been
perfonred on varied M:CS including missile control,
launch, guidance and maintenance software; avionics
software; missile mission planning, weapons control,
and flight software; satellite ground and flight
systems; C3 intelligence systems.

The starting point for IV&V methodology is a
criticality analysis which focuses IV&V resources on
those software :E=tions which are deemed system
critical. This effort is independent of specific
IV&V tasking and is used to define the nature and
scope of IV&V for specific systems. Criticality

126

http:effectl.ve

analysis of nuclear missile systems, for example, has
resulted in an TV&V technology known as Nuclear
Safety Cross Check Analysis (NSCCA) • NSCCA focuses on
system critical nuclear safety issues, including
prevention of unauthorized or inadvertent anning,
enabling, launching, firing, or releasing of the
weapon system; prevention of a faulty launch; and
premature or unsafe operation of the· weapon system,
am:mg other possibilities. This technology has been
fonnalized in the Air Force AFR-122 regulations and is
also being adapted in a Navy standard for Software
Nuclear Safety (MIL-STD-SNS) •

3. C<:mputer Security Evaluation

TV&V and NsccA technology have been adapted to rreet the
specific needs of canputer security. 'I'he analysis,
called Canputer Security Cross Check Analysis (CSCCA)
focuses on the critical canputer security issues.
CSCCA starts with the critical security objectives
analysis to focus the effort on the security critical
functions of a specific system. For example, on an
intelligence collection and dissemination system these
objectives ~d verify the developed software does
not pennit:

- unauthorized or inadvertent access of processes,
fixing algorithms, sources, or gathered data

- deliberate or inadvertent denial of system
services

- unauthorized use of system services
- deliberate or inadvertent misuse of system

services

Canputer security cross check analysis contains a
series of activities to analyze and test the products
of the developn:mt process. These. activities are
designed to detect as early as possible those
developrent problems which affect security issues and
to provide the program manager with increased
visibility into the security requirements of the system
under developn:mt. 'I'hese activities include:

System security requirements analysis
- Design analysis
- Code analysis

Independent security testing
- System validation and rec<mrendation for

certification

'I'he process begins with a thorough analysis and
evaluation of the security requirements for the system.
'I'he purpose of this analysis is two-fold. First, to
independently derive fran the security instructions
those security requirements that apply to the system.
Second, to tailor the analysis· approach to the specific
needs of the system under evaluation. For maximum
benefit, the analysis and evaluation of the system
security requirements should be perfonred early in the
program developn:mt cycle so that potentially
conflicting or inconsistent system requirements are
detected and corrected before the requirements are
translated into program design code. Figure 2
derronstrates this analysis.

'I'he objective of requirements analysis is to ensure
that the system functional requirements, as embodied
in the requirements docurrentation, are consistent with
the system security requirements. Requirements
analysis detects errors and deficiencies in· the
requirements which could result in a subsequent system
failure to rreet the critical security objectives.
'I'he analysis, Figure 3, evaluates the program
requirements, interface requirements, access
requirements, control flow requirements, timing and
sizing requirements, etc., for canpliance with the

Secunrv
lnslruction'

DoD5200.1fl
DoD 5200.28
DoD S220.22IYI
DIAM 50·4
OPNAVINST

S239.1A
AFA205-16
AR 380-380
OCLO 1116
USSID 702

lndepend8n!Requlremen11
Deriveuonend Evelldli<ln

FunclionelAIKIUiremenu
Do<;:um.ntlFRDI

FigureZ. SecUrityRequirementslnclependentDerivation

Pan I

Specifications

•Requ_irementsellocationanalysis
!requ~rements-design-c:ode)

• Parsing/analysis methodology

• Hierarchical analysis
•Requirementsanalvsls/testc:overage

rrequirements-testplan-testprocedures)
 • Corllrol flow•nalysis

•lnput/olllputanalysis

Figure 3. Requirements Analysis Activ1t1es

security rrodel. Requirements analysis also ensures
that system requirements are properly implemented in
the security kernel, if appropriate.

'I'he objective of design analysis is to verify the
system design is consistent with the system security
requirements, i.e., the requirements are traced into
the design. Design analysis, Figure 4, evaluates the
system design for canpliance with the security model
and detects errors and deficiencies in the design.
Design analysis evaluates the data flow, process
interfaces, and overall control logic of the design in
tenns of its ability to implement the security
requirements. 'I'he design of access controls and
info:rrnation flows are evaluated for correctness and
consistency with security requirements. Design
analysis evaluates the description, security level, and
intended usage of each data item in the program design
to verify that the structure, security level, and
intended usage of program data will satisfy the security
requirements.

Design data analysis also evaluates the relationships
between secure processes and ensures that those
relationships satisfy the security requirements. The
design of interfaces between program canponents,
finmvare, and hardware is analyzed making certain that
these interfaces have been correctly defined and do
not violate security requirements. 'I'he design is
correlated to the system requirements to make certain
the design is a correct and ccxrq:>lete implementation
of the system requirements.

127

Ll
D

l}

8
Ftgure4. DesignAnalysisActtvit1es

Kernel analysis evaluation is a critical part of the
design analysis since a kernel mediates all accesses
to system resources and therefore, :inplerren.ts the
basic security rules for the system. Design analysis
IlUlSt include evaluation of the correctness and
c:cnpleteness of the mediation process with respect to
the security policy requirerren.ts. 'I'he kernel design
IlUlSt· ~ carefully.~ed to determine. that a tamper­
proof :utq?lerren.tation 1.s feasible. For verification
~ses, the kernel functions. must be kept to a
ffillUllll.lll\. 'I'he design IlUlSt be evaluated to detennine
that only those functions essential for the rrost
critical security rules are expressed in the kernel.
W:li.le it is rrost desirable to min:illli.ze kernel
~?-ons, sane ~signs may include trusted processes
Wl.~ the secur1.ty kernel. Trusted processes may be
pernu.'t;-ted to ~s certain security rules, for example,
allOWl.ng downgrading for a specific application when
nonnally the write permission would be forbidden.
Trusted processes IlUlSt be carefully evaluated for
correctness to ensure that security will not be
c:cnprani.sed.

~imurn benefit is derived from design analysis when it
1.s conducted prior to coding. Design errors not
detec't;-ed until after coding has ccnm:mced may require
redes1.gn and recoding of significant program segrrents
and thereby increase program cost and delay program
schedules.

'I'he objective of code analysis is to ensure that the
coded program correctly and c:cnpletely :inplerren.ts the
system security requirerren.ts. Code analysis detects
e:rors and deficiencies in the program. The analysis,
Fl.<JUr7 5, evalua"t;-es the data. descriptions, interfaces,
equations, algor1.thrns, and overall control logic of the
program in tenus of their adherence to the security
requirerren.ts. Particular attention is paid to an
analysis of the security kernel to guarantee that
~ecurity-cri"t;-ical design functions have been properly
:utq?lerren.ted 1.n the code. Code analysis also identifies
extraneous code whose purpose cannot be traced back
to the design or requirements:

FigureS. CodeAnalysisActivities

'I'he techniques used in code analysis are similar to the
techniques used in design analysis. 'I'hey include
program logic analysis, program data analysis, and
program interface analysis. For example, program data
analysis examines the source data structures in
conjunction with the program logic to determine whether
any possible security errors such as data crosstalk or
spillage, inconsistent use of data types, or :inproper
protection of classified data are present in the source
code.

'I'he goals of CSCCA testing differ frcm those of the
testing perfonred by the develq:.ment organization, who
tends to focus on ensuring the program is functionally
correct. CSCCA testing, on the other hand, focuses on
locating potential security weaknesses and identifying
extreme or unexpected situations that could cause
nonc:cnpliance with the critical security objectives.
'I'he security testing, Figure 6, is an independent
dynamic set of tests designed to verify the results
of earlier analysis, to investigate program behavior
to identify program shortcanings, and to ensure that'
the program c:cnplies with its security requirements.
CSCCA testing c:cnplerren.ts, rather than duplicates,
the testing perfo:r:med by the developer. 'I'he testing

• Test approach

=~:;T,=

B •Summaryof,.MI
• Concluaoons
•fltlo;ommtlncl.ltiol'll

•C..aeinpuu
• D<ou.IK optollting procadwea
•Elcpect.-draauhl

Figure6. CSCCATesting

is developed in a rrethodical manner fran the results
of the requirerren.ts analysis which detennined if
(and to what degree) the systems requirerren.ts reflect
the security requirerren.ts. High level test
specifications are written for each security require­
rrent. 'I'hese tests are designed to denonstrate the
correctness and effectiveness of each security
requirerren.t.

CSCCA also uses stress testing to examine critical
security functions during program execution when many

128

http:requirerren.ts
http:requirerren.ts
http:requirerren.ts
http:c:cnplerren.ts
http:requirerren.ts
http:requirerren.ts
http:inplerren.ts
http:redes1.gn
http:allOWl.ng
http:secur1.ty
http:min:illli.ze
http:requirerren.ts
http:inplerren.ts

demands are placed on the system. 'Ihese stress and/or
penetration tests will be developed fran the results of
our previous analysis using a fault tree hypotheses.
The fault tree hypothesis, Figure 7, postulate
techniques that could be used to exploit the system
weaknesses and circumvent the system security
measures. The techniques are translated into system­
specific tests to provide or disprove the hypothesis.
Since it is :i.npractical and frequently :i.npossible to
test all canbinations of inputs and program paths, the
testing perfonned IlUlSt be sufficiently representative
of the entire spectrum of possible conditions to
establish confidence in the security controls of the
system. In general, software developrent Irethodologies
do not establish criteria for Ireeting this goal.
However, the design analysis and code analysis
activities in CSCCA serve to generate these criteria.

a. o.t~ne how ""'• .,._......_.......
b. Not probable by

physblfa,g., timing.
MqUtinc.J ewnts

8. 	ldentifr' conditlona for t.u1t C. Hanhnre hlult beyond
to remain unct.tectect tor aoftw.,. control
nornerminated Pllthll

Figure 7. Fault Tree Hypothesis

The CSCCA effort is aided considerably by the use of
carefully selected software tools which provide
reliable, cost-effective adjuncts to manual analysis
techniques. Tools significantly increase the
productivity and value of a security evaluation effort.
Both static and dynamic tools can be used. Static
analysis tools do not require program execution; Iretric
analyzers, requireirents tracers, dataflow analyzers,
and cross reference generators are typical of the tools
in this category. Serna operate on requireirents and
design infonnation supplied by the analyst , wh i 1e
others are used to help analyze program source or
object code. Dynamic analysis tools include test
drivers, execution monitors, real-till'e analyzers, data
reduction tools, and simulators. These tools are used
to control program execution, extract Ireaningful
infonnation during program operation, analyze program
results, and model the environment external to the
operating program.

CSCCA is concluded with a system validation and
reccmrendation for certification. The purpose of
validation is to provide final assurance that the as­
bulit system satisfies the specified system security
requirell'ents and Ireets critical security objectives.
Validation provides an end-to-end evaluation of the
software deliverables against the security requireirents,
the security model, and the critical security object­
ives. Since it is camon for numerous program patches
and other minor software changes to be made during
the final stages of system test and integration, it is
=cial to the success of the CSCCA process that a
final validation of the entire system follow delivery
of the final code.

The final CSCCA activity is a certification of the
object program delivered to the program office. I'his
two-step process includes: (1) an internal
verification that the final-version souree and object

tapes correspond to one another and match the v.urk
files used in perfonning CSCCA, and (2) a certification
derronstration conducted to confinn the object tape
delivered to the program office is identical to the
object tape on which validation was perfonned.

4. Sl.m:nary

The last decade has brought an increased understanding
of security-specific technical issues inherent in the
developrent of canputer systems. These technical
issues include:

o 	 Utilization of a security model that accurately
reflects the security requirell'ents.

o 	 Use of a correctly :i.npleirented tarrperproof

security kernel.

o 	 Rigid adherence to modern software engineering

standards throughout all phases of system

developrent.

There now remains one significant technical issue, that
is the need for a rigorous, independent, and objective
assurance procedure to Ireet critical security
objectives.

When the need for reliably secure canputer systems
first arose in the early 1970s, it was believed
possible to design and :i.npleirent canputer-assisted
assurance procedures which would be able to verify the
correctness of a program with mathematical certainty.
The mathematical theory behind such fonnal verification
procedures is mostly understood; but due to the
carplexities of large systems, the use of fonnal
verification proofs to verify correctness of actual
programs has been very limited. It is unclear when
this technology will be applicable to a large canputer
system.

CSCCA is a well proven rigorous technique. CSCCA
carefully tailors IV&V technology to the special issues
inherent in developing secure carputer systems. It is
a blending of rigorous canputer-assisted review,
analysis, testing, and evaluation activities designed
to provide objective assurance that a system Ireets its
critical security objectives. Carputer Security Cross
Check Analysis--perfonned in conjunction with a soft ­
ware developrent process employing modern software
engineering principles--is the best, most cost­
effective, practical way to realize state-of-the-art
canputer security in mission critical canputer systems.

The authors wish to acknowledge Jerry W. M:rrsky and
Bruce H. Wetts for their contr.iJ::ution in preparing
this paper.

129

Al ASSURANCE FOR AN INTERNET SYSTEM: DOING THE JOB

P. c. Baker, G. w. Dinolt, J. W. Freeman,
M. Krenzin, and R. B. Neely

Ford Aerospace and Communications Corporation

Colorado Springs, Colorado

This research was sponsored in part by the USAF Rome
Air Development Center under the Multinet Gateway
Program, contract number F30602-86-C-0138.

A project to certify a multilevel secure internet
device has served as a vehicle to address several
design issues for secure communications systems. These
issues have been the subject of intense discussion by
the security community in recent years. This paper
specifically covers three of the issues. Our approach
to providing assurance for communications systems not
only is doing the job for Multinet Gateway, but also
applies to a broad class of communications and other
systems.

INTRODUCTION

We are currently developing an internet device
that. in conjunction with other internet components,
provides a datagram service. In providing that
service, it also provides security protection
mechanisms to prevent the compromise of sensitive
information. The security protection mechanisms are to
be evaluated in an internet environment using as a
basis the Trusted Computer System Evaluation Criteria
(TCSEC) at the Al level 5 TEMPEST and COMSEC
certification are also being accomplished. To
accomplish this, extensive use of rigorous and formal
methods are being employed. The paper also describes
those methods in terms of objectives, motivation,
utility and application to the internet device and its
environment. This paper describes our approach to the
development of such a secure distributed system device
and some of the issues such an effort raises.

The following list summarizes the issues covered
in the process of the Multinet Gateway certification
project:

e life-cycle issues: re-verification cost and risk

e 	documentation relationships: linking formal,
traditional, and other documentationIiiii

e requirements analysis: describing requirements
for enhanced traceability and identifying impor­
tant relationships among requirements

e 	obtaining assurances from different sources: logi­
cally combining constraints on environment and
component behavior to satisfy qualitative
assurance requirements

e 	use of rigor: avoiding the ali-or-nothing effect
often associated with formal methods

e flexibility of system types: focus on communica­
tions systems

e 	secure system architecture: characterization of a
distributed TCB via the more general concept of a
"constraint monitor"

e 	specification target: what is being specified and
what about the specification is to be verified

e 	decomposition and abstraction: examination of the
fundamental ways of relating components in a com­
plex system

This paper focuses on the latter three issues.
Elaborated as questions, those issues are:

e 	Secure system architecture: How should one charac­
terize the analog of the trusted computing base
(TCB) for a communications system (or any distri ­
buted system)? What are the consequences of
directly extending the TCB concept to general sys­
tems? Have some fundamental issues been over­
looked by such a direct extension? 16

• 	 Specification target: What is the target of the
specification, verification and (eventually) cer­
tification process? What is it that a formal
specification must describe, and is it only to be
a formal !Q2 level specification of the target? 4

e 	Decomposition and abstraction: How are these con­
cepts related? Are they merely inverses of each
other? If not, how do we know when to use either?

The remaining listed issues are discussed in "Rigorous
Integration of Sources of Assurance" 14 and "Results in
the Development of a Multilevel Secure Network" 6.

The remainder of this paper is organized as fol­
lows: The second section describes the Multinet Gateway
as an internet device and its environment in terms of
design constraints, design objectives and security con­
cepts. The third section describes the various
development mechanisms that are being used in the Mul­
tinet Gateway development. Included in this section
are the motivation for newly developed tools (trust
domains) and concepts (constraint monitors). The Gypsy
specification language is identified in this section to
show how it integrates with the development mechanisms.
The fourth section describes how we are applying these
development mechanisms in order to specify the neces­
sary security characteristics of the Multinet Gateway
internet device. The paper concludes by relating our
results to previous computer security literature.

SYSTEM DESIGN CONSIDERATIONS

The Multinet Gateway System (MGS) is composed of
gateways and networks. It provides an internet
protocol based datagram service that permits delivery
of datagrams between source and destination hosts.

130

subject to the DoD security policy on the transfer of
classified information. The MGS will be able to
connect to networks that carry data at one or more
security levels. The current Multinet Gateway
certification program has the goal of providing an Al
level of security assurance for the gateway as an
internet device. The certification work includes not
only formal specification and verification of the
security-critical software, but also COMSEC and TEMPEST
certification. The protection mechanisms for
personnel, TEMPEST, and COMSEC as well as the
procedural mechanisms are all applicable to the MGS,
but are not emphasized in this paper.

Design Constraints

Inherent in the design of any system are the
constraints that limit the design choices:

e 	Access to data: The MGS provides switching
services that employ the lower-layer protocols in
terms of the OSI Reference Model 11. These
lower-layer protocols do not require access to
user data in order to perform their particular
functions. The primary data objects to be
protected are user data that are encapsulated in
various protocol layers.

e 	Well-Defined data structures: The only way that
users can access the MGS is by formatting their
data in accordance with the specifications of
these lower-layer protocols. These formats are
well-defined in terms protocol header fields, data
fields and trailer fields. In particular, these
sets of protocols provide a means of unambiguously
determining the location of the security label in
the protocol header (if appropriate) and
determining the demarcation between the protocol
header/trailer fields and the user data.

e 	External Systems: The MGS is intended to function
in the context of a larger system that includes
hosts and networks that are external to it. The
security properties of the MGS must be considered
in conjunction with these external components.
The security of the combined components including
the MGS may be affected by the security attributes
and security properties of these external
components.

e 	Distributed system: The MGS is intended to provide
interoperability between geographically dispersed
networks, and is therefore itself a geographically
dispersed system with specific functionality to be
distributed.

e 	Formal specification and verification: Formal
specification and verification techniques are to
be used to provide an increased level of assurance
that the mechanisms whose functions are to prevent
unauthorized disclosure of sensitive information
are correctly implemented.

Design Objectives

The preceding design constraints are considered
requirements that must be met by any design approach
for the MGS. In addition to those constraints, there
are additional design objectives which have furthe~
,limited the potential approaches.

e 	Security and protocol processes: Minimize the
security-critical portions of the protocol
processing. Protocol design, development, and
implementation is currently undergoing rapid
change as the technology evolves. Limiting the

amount of security trustworthiness required of
these protocols will significantly reduce the MGS
security recertification effort required as
protocols are added, deleted, or modified.

e 	Common Protection Mechanism: Provide security
protection mechanisms that can be uniformly
applied to each of the distributed components that
make up the MGS.

e 	Security Labels: Provide a means of associating or
tagging all (user level) data processed by the MGS
with a security label.

e 	Certification of the COMSEC Integration: Ensure
that the design of the embedded encryption
function and the integration of the device are
accomplished in a consistent and verifiable
manner. Related issues include those of defining
an appropriate policy, model and specifications
which capture the security-critical functionalit;
and desired security properties of the COMSEC
equipment.

e 	Levels of abstraction: Use levels of abstraction
as part of the design process for three purposes.
It will simplify the task of evaluating the
security properties of the system using a top down
approach. It can modularize the specifications so
that changes can be easily encorporated without
complete re-verification. It can simplify the
verification process.

Multinet Gateway System Security Concepts

The basic Multinet Gateway System security
concepts are:

e 	The definition of the system boundary of the MGS.
The definition of the system boundary is to
incorporate the notion of various security
perimeters.

e 	Definition of all information units and access
control of such information units crossing the
boundary.

e 	The control of how data units are manipulated
while inside the boundary.

These concepts must be placed in context of the
physical realities of the Multinet Gateway System. The
Multinet Gateway System consists of a set of
geographically dispersed Multinet Gateway Nodes. The
nodes are connected to client hosts by networks termed
"End Networks", and are connected to each other by
networks, termed "Transport Networks". A network that
provides both end and transport services is termed a
"Dual Network". Figure 1 illustrates these
relationships. The MGS boundary establishes the point
where security responsibilities start or end. The
Multinet Gateway System boundary, in terms of Figure 1
is where the End Network connects to the MG Node. The
Transport Networks are considered inside the MGS
boundary.

131

--~-~-;--
--~--

SYSTEM BOUNDARY

END
NETWORKS

END
NETWORKS

0 1NPUT/DUTPUT SECURITY ACCESS CHECKS

---G

--~ t.....::.:.....

--G

---~

"t.....::.:....
A4117

Figure 1. Multinet Gateway System

Given the MGS boundary, mechanisms are required to
control the access into and out of the MGS. The
location of the access control is shown in the figure.

The concepts underlying the computer security
protection mechanisms are the following:

& Within the MGS a security label is associated with
every information unit (datagram or other protocol
unit). ·

& An input security access check is performed on
every information unit entering the MGS.

& An output security access check is performed on
every information unit leaving the MGS.

• 	 While in the MGS, information units will not be
subject to unauthorized disclosure.

• 	 While in the MGS, the security label associated
with a information unit will not be corrupted.

A major source of assurance that these security con­
siderations ·are met is the Secure Communications Sup­
port System (SCSS). The SCSS consists of the software,
executing on each gateway processor, that supports the
security controls.

DEVELOPMENT MECHANISMS

The development mechanisms we are using are

summarized as follows:

Trust domains: A means of partitioning a distributed

system and expressing particular constraint

relationships.

Constraint monitors: A means (in conjunction with trust
domains) of determining what minimum
constraints are necessary to maintain the
security of the system.

Gypsy Verification Environment (GVE): A means of

expressing the design and implementation

and proving assertions that are expressions

of the constraints.

Documentation: An integrated way of describing the

system and its security attributes.

Trust Domains

The distributed nature of the Multinet Gateway
environment led us to consider a rigorous means of
describing such systems. The result was the
development of the concept of trust domains 15,
Briefly, trust domain analysis provides a high level
description language which can be used to describe the
partitionirig of systems into nodes and links. The
language provides a way of describing how nodes and
links are interconnected, how each can be broken up
into subordinate nodes and links, and how each can be
constrained at the associated interface. These
language capabilities can then be used to focus on the
security properties of the system without being tied to
the semantics of a given specification language, such
as Gypsy.

Constraint Monitors

The trusted computing base (TCB) as defined in the
Trusted Computer System Evaluation Criteria (TCSEC) is
that software and hardware used to enforce the system
security policy. One would like to minimize the amount
of such software/hardware because it is expensive to
produce for Al systems.

Based on trust domains, we have developed the
notion of a "constraint monitor" to aid in the
determination of exactly what portions of a system are
trusted and what they are trusted to do. The term
constraint monitor is used to replace such terms as
"kernel", "reference monitor", "trusted process", etc,
to emphasize that in a distributed system not all
functions or components will have the same type of
behavioral requirements (trust).

Gypsy Verification Environment

The GVE provides a capability to specify and
verify (via proof techniques) correctness attributes of
systems and their constituent components, including
programs. The GVE consists of a programming language,
Gypsy, a verification condition generator, a theorem
prover, and tools for maintaining the verification
state of the current version of the system under
development. The programming language includes
mechanisms for specifying properties to be proved about
systems, subsystems and programs and their
interrelationships.

A significant advantage of Gypsy is its ability to
specify and verify systems which have concurrent
processes, which is particularly useful for describing
distributed systems. The GVE is described in detail in
"Using the Gypsy Methodology" 8,

Documentation

Given the various design tools and concepts
mentioned above, there is the need to provide some way
of conveying the design information to an evaluator in
a consistent and understandable form. Because of the
complexity of typical distributed communication
systems, their design must be described in several"
abstraction levels, in terms of specific properties
that are to be emphasized. in mappings of how the

specific properties are related to the overall func­
tionality of the system, and finally how the various
components are implemented in iron and executing code.
Unfortunately, such a universal description language
does not exist. As a (hopefully interim) substitute,
we have developed procedures to provide correspondence
between the available specialized description
languages. A document termed the System Security
Description (SSD) is used to present the various
descriptions and their associated correspondences.

132

The system and security architecture is presented
in the SSD via a four-fold representation: an implemen­
tation, a functional, a trust domain and a Gypsy sum­
mary description.

The first description is an implementation
description. It includes the physical lo.cation, of the
components, how they are interconnected, the allocation
of functions to software, firmware, and hardware and
the protection mechanisms.

The second is a description of the functionality
of the MGS. It describes the types of functional pro­
cessing and the associated relationships. This func­
tional description provides a basis for another
description that is a more rigorous formulation of
specific security requirements and their relationships.

This third description allows a demonstration that
the MGS security policy is satisfied without being tied
to the semantics of a given formal specification
language. This description is given via the concept of
"trust domains" and the trust domain description
language.

The fourth description is a summary description of
the Gypsy specification of the MGS, with its focus on
the required security attributes. Although the formal
specification itself presents a description of the MGS
and its security attributes without any implementation
or procedural constraints, the SSD presents a class of
implementation constraints that are consistent with the
formal specification of the MGS and to which the MGS
implementation belongs.

The final part of the SSD provides the mappings
between the four descriptions to show how they
correspond to one another. The mappings are
represented and validated informally.

Together, these descriptions are intended to
comprise what is meant by a "descriptive specification"
as called out by the TCSEC. The descriptions permit a
clearer presentation of the many aspects of the design
and give a reader a more complete view of the overall
design. These documentation relationships and the cer­
tification approach for Multinet Gateway development
are discussed in further detail in "Results in the
Development of a Multilevel Secure Network" 6.

ISSUE RESOLUTION

In this section we show how we are actually
building the MGS using the development mechanisms
presented previously.

Abstraction Layering and Decomposition

For the purposes of this development, it seems
appropriate to view abstraction and decomposition in
terms of dependency relations. The concept is that
elements of a set "upper" components depend on the
elements of a set of "lower" components. Such a
dependency, in the Multinet Gateway security design, is
both in terms of function and constraints. The
distinction between an abstraction relationship and a
decomposition relationship is that with a
decomposition, the relation is a many-to-one mapping
from the lower component set to the upper component
set. With an abstraction, the relation is typically
many-to-many.

The many-to-one versus many-to-many distinction is
significant in the actual development process. A
many-to-one (decomposition) mapping requires much less
"bookkeeping," and is generally supported by more
automatic tools (such as the syntax of the Gypsy

language) than the many-to-many (abstraction) mapping.
Thus, it is generally prudent to apply decomposition
wherever some overriding factor does not prohibit it.

We chose to incorporate the. abstraction mapping in
the development process based on the following factors:

t!l 	 the need to structure the formal specification in
a way that relates easily with the policy model;

"t!l 	 the need to assure certification plug
compatibility of interfaces, i.e., reusability of
the verification and certification for certain
trust domains; and

t!l 	 the need for a direct relation between the formal
specification and various "architectural reference
points" in the design.

By an architecture reference point, we mean a signifi ­
cant aspect of the system architecture that is taken as
given and so must be reflected by not only the system
implementation, but also by the formal description of
the system. For example, in a system of network gate­
ways, and architectural reference point might include
specific aspects of the geographical separation of the
gateway nodes. The idea of an architectural reference
point is that it constrains the allowed design space of
the system.

In order to reflect the policy model in the formal
specification of the system, it was useful to keep the
virtual secure transport, acceptance and delivery func­
tions highly visible. Also, it was decided that the
scss external interfaces should be explicitly
represented in the formal specification to assure its
certification plug compatibility. The primary formal
constraints (security policy model) would not have
necessitated that representation, nor was the system
architecture a significant factor. But the SCSS is
expected to be reusable, and its reuse needs to have a
minimal ve.rification impact.

The combination of the need to reflect the policy
model as it is in the formal specification and the
desire to make visible the SCSS with its external
interfaces disallowed direct decomposition from the
system interface to the SCSS interfaces. Thus, an
abstraction mapping was necessary at the SCSS inter­
face, with the two layers related by the constraints
satisfied by the scss.

In summary, the decision to include an abstraction
mapping was the result of significant iterations of
architectural structuring during the past two years.

An 	 Examination of the TCB Concept

When applying the concept of a TCB within the
context of a distributed system, there are some
resulting issues that can be quite confusing. A key to
avoiding such confusion is to look at distributed or
otherwise complex systems in ways tailored to the
systems and their environments 13. Before we can know

how to apply such a concept, we must first ask, "What
must we prove about what?". First, in a deeply struc­
tured system, it becomes more clear that the system as
a whole is the object about which adherence to the
security policy must be proved, and not just some
"security-critical" software (which might be called the
TCB). Second, as we examine internal, derived security
requirements, we see more subsystems that are not
strictly a "TCB" or parts of a "TCB" about which those
derived requirements must be proved. Third, according
to the TCSEC's definition, the TCB encompasses more
than developed software. For example, part of the

133

hardware of a system may be part of the TCB. Thus, it
may not be appropriate to prove some of the TCB charac­
teristics, for various reasons. Fourth, different,
separated parts of the TCB may be different in function
and/or interface, and must somehow be related.
Further, some sets of separated parts of the TCB may be
essentially identical except for their contexts, and so
should not require separate proofs of their con­
straints. Fifth, a distributed system requires expli­
cit attention to the channels (links) as well as to the
computational components (nodes). Links may be as com­
plex as nodes; in fact, either may contain the other.
Trustworthiness of links may have to be demonstrated or
assumed, as with nodes. As a special case. trustworthy
links must be available to allow communication among
separated components of the TCB.

The consequence of these points is that distri­
buted systems inherently have structure. Ignoring such
structure by assuming a "system TCB" without substan­
tiation detracts from any confidence associated in the
assurance mechanisms. It is more beneficial if there
are ways to deal with such underlying inherent struc­
ture.

A more useful view is an approach analogous to the
operating system monitor concept 10. The paradigm for
that approach is depicted in Figure 2. The concept of
a TCB has been replaced with "constraint monitor,"
since the paradigm is to be applied at any place in the
system structure where a constraint is to be demon­
strated. In particular. it is not to be applied just
at the system security policy level. The paradigm
thereby accounts for both the traditional TCB concept,
as well as more general concepts.

8471

Figure 2. Constraint Monitor Paradigm

As an example, let the "non-trustworthy" function
F, identified in the figure, be the amalgamation of all
the application (user) functions to be performed on a

secure operating system. The constraint monitor is
then just the software portion of the TCB, as tradi­
tionally viewed. The "trustworthy" function F' appears
to users (connected via the "external interfaces") as
the system itself.

We now apply the constraint monitor paradigm to a
distributed system, such as the MGS. In a first appli­
cation of the paradigm, the SCSS is the constraint mon­
itor itself. The non-trustworthy functions are the
protocol functions, which we are demonstrating need not
be trusted with respect to the security policy. That
demonstration involves showing that the SCSS constrains
the functions appropriately, and that the only inter­
faces to the functions involve the SCSS. The set of
"trustworthy functions" is then the software present on
a particular processor. All external interfaces to
such a set of software pass directly to the scss.

The paradigm is used successively in the MGS
structure until one arrives at a trustworthy internet
device, the Multinet Gateway node. That device, in its
context, is another example of a constraint monitor.
As with the SCSS, it is multiply instantiated within
the MGS. The non-trustworthy function in this context
is the set of transport networks by which the internet
devices communicate with one another. The paradigm is
applicable here, since all external interfaces, i.e.,
to client networks, are via the internet devices. As a
result, the MGS is a trustworthy version of the tran­
sport function.

Formal Specification Structure

The Gypsy language representation of the MGS
.includes the MGS interface, the MGS environment, and
certain subsystems, particularly the Multinet Gateway
node and the SCSS. The SCSS and subordinate components
are represented in an abstraction layer separate from
the rest of the system. The reason for this is that
the MGS Outer (System) abstraction follows functional
architectural reference points, while the SCSS
abstraction follows implementation architectural
reference points. Each is described in this section
along with an explanation of their interrelationships.
The previously described concepts are thereby discussed
in the context of a given specification language.

MGS Outer (System) Description

The MGS Outer (System) abstraction relates
functional architectural reference points such as the
internet structure, protocol layering and system-level
protection structures, e.g., gateway-to-gateway
encryption. Figure 3 is a summary of the specification
decomposition for the system layer of the MGS. The
figure depicts the structure of the Gypsy procedures ~
and cobegins.

134

MGS Environment
Co	begin:

User Delivery

User Acceptance

MGS

Co	begin:

MG Acceptance

MG Delivery

MG Derive

Cobegin:

E*3 Delivery

E*3 Acceptance

Node Derive

E*3 Derive

Cobegin:

E-Box

D-Box

. NAP Derive
Cobegin:

Label Create
Label Delete
Transport Derive

Cobegin:
Transport Deliv
External Transport
Transport Acceptance

Figure 3. Gypsy Specification Tree for System Layer

Figure 4. Specification Diagram for ~ystem Layer

Figure 4 shows the upper portion of the system Gypsy
specification tree pictorially, with the connections
(Gypsy buffers) as arrows. This figure further
contains broken arrows that indicate certain
constraints assumed by some components and satisfied by
others. The constraints are represented in Gypsy by
entry, exit, and block conditions. along with
supporting specification functions as constraints.
Note that while some of the constraints have both
"satisfiers" (tail end) and "assumers" (head end),
other constraints have an unconnected tail end. and so
are attached only to "assumers." Such constraints, in
the system layer. are treated as boundary conditions.
It is only via the formal mapping between this layer
and the SCSS layer that those constraints are demon­
strated to be met (cf. "Mapping" paragraph, below).

MGS Inner (SCSS) Description

The MGS Inner ·(SCSS) abstraction relates
architectural reference points that are implementation
specific. For e 1 h . xamp e, ardware, software,
abstrac~~on~, the design, performance and
modular~zat~on str~t~gies. Figure 5 is a summary of
the of_ the spec~f~cat~on decomposition for the scss
layer ot the MGS. The figure depicts the structure of
the Gypsy procedures and cobegins.

SCSS Environment
Co	begin:

Actuator.

scss

Cobegin

Call Decoder

Call Encoder

Local Functions

Prodige

MMI Service

Net Service

ITP Service

COMSEC Service

E3 Service

IPC Switch

Figure 5. Gypsy Specification Tree for SCSS Layer

Figure 6 shows the SCSS Gypsy specification tree
pictorially, using the same representations as in
Figure 4. In this figure, broken arrows (constraints)
either have both ends connected, or else have an
unconnected head end, and so are attached only to
"satisfiers." Such constraints need not be assumed by
any domains in the SCSS layer, but rather are intended
to satisfy boundary condition constraints in the system
layer. That connection of constraints is accomplished
via the formal mapping described in the "Mapping"
paragraph, below. The abstraction layer that underlies
the SCSS layer is the Gypsy computational model. The
SCSS assumes that the Gypsy layer operates correctly
according· to Gypsy semantics. The Gypsy layer in turn
assumes that the hardware operates according to the
security-relevant constraints that will be specified
for it.

11414

Figure 6. Spec~fication Diagram for SCSS Layer

At completion, the SCSS formal decomposition and
the SCSS imnlementation software will be in a one-to­

135

one relationship in terms of modules. It will be given
to a level of detail sufficient that within each
module, the determination of whether the implementation
corresponds to the specification constraints will be
simpler and less prone to error than previous develop­
ment efforts 15

Mapping Between the System and SCSS Abstractions

Four fundamental concepts characterize the mapping
between the SCSS and system layers:

1!1 	 constraints, rather than structures, are mapped;

1!1 	 constraints of the system layer that must be
satisfied by the SCSS are left as boundary
conditions, assertions that may be assumed but
whose proof is deferred;

1!1 	 a set of constraints intended to map to the
unproved system constraints are proved within the
SCSS layer specification; and

1!1 	 one or more Gypsy scopes are provided containing
functions to map the proved SCSS constraints to
the unproved systere constraints.

The primary mappings are depicted in Figure 7.
The figure contains a simplified version of Figures 4
and 6. In addition, the figure contains "junction
boxes" in the center, which represent the mapping
functions that allow the upper and lower versions of
the constraints to c0nnect.

I
I

I

I

I

I

I

\
\
I
I
I
I

I

I
I
I
I
I
I
I

I

., .. I

"

...5

LEGEND:
IMPLEMEIITAnONINTERFACE­
CONSTRAINT RELAnONSHIP ---~

Figure 7. Constraint Mapping Between Abstraction
Layers

The mapping functions themselves are of two types:
type mappings and constraint function mappings. The
type mappings resolve the differences in Gypsy ~s
between the two abstraction layers. The constraint
function mappings express the system layer Gypsy
functions naming the constraints in .terms of the
analogous S.CSS layer Gypsy functions.

RESULTS AND CONCLUSIONS

Much of the assurance at the Al level that is
based on an application of formal specification and
verification techniques is predicated on a formal model
of the security policy and a formal specification. It
appears that most of the discussion surrounding policy
models and formal specifications seems to center on
three aspects: the level(s) of abstraction of the
policy and system description, the actual target of the
description (e.g., entire system, particular
components, explicit functionality) and the
appropriateness of existing models including specific
interpretations of them (e.g., Bell-LaPadula 1, the
Military Message System 12, Two-Level Model 7). This
paper asserts that part of the criteria for a model's
appropriateness should include whether · one 1 s
understanding of the targeted system is actually
increased (both of the design and what is verified)
rather than forcing an interpretation of a model such
as the Bell-LaPadula model.

For the MGS, the security policy model is an
abstract model with a structure .for explicit
instantiations to provide a collection of distinct
policies (which may become constraints on specific
portions of the MGS) that are consistent with the more
abstract policy model. In terms of the previously
identified aspects, the target of the policy model and
the formal specification is the entire MGS as an
internet. The formal specification provides a
description of the internet system down to particular
routines executing on particular processors within a
given node of the MGS. Although the rules of the
Bell•LaPadula model ·are applicable to the environment
of the MGS, they are less so to the datagram service
provided by the MGS and for the lower protocol layers.
This is in concurrence with an observation made by
Denning at the 1985 Invitational Workshop on Network
Security 3. The observation is that those viewing a
network as a distributed resource manager (higher
levels of the ISO model) find less trouble with the
TCSEC than those who view a network as a communication£
subnet (lower levels of the ISO model). The Multinet
Gateway modeling approach has provided a means, via the
trust domain representation and the formal
specification approach, to tie these views together
without forcing interpretations that do not aid the
overall understanding of the system. A key aspect of
the approach being taken is that a effective framework
for the various descriptions is provided so that an

interpretations of a security requirements (according
to the TCSEC) can be analyzed in a rigorous manner.

Bell 2 raised the issue of the exact manner of
intertwining the development of the formal top-level
specification (FTLS) and descriptive top-level specifi ­
cation (DTLS). The intertwining of the FTLS and DTLS
issue is resolved within the Multinet Gateway develop­
ment process via the production of the ·four types of
descriptions discussed in the "DEVELOPMENT MECHANISMS"
section and the relationships among them. A conse­
quence of this is a clearer design certification chain
down to the implementation of the security mechanisms
within the enhanced ADM and their relationship to the
whole MGS.

136

An additional contribution of our approach is a
way of addressing a relatively hard problem in the
specification of system-wide and component specific
aspects as described by Schaefer and Bell. The" •••
problem is how to be assured that the collection of
component specifications-support, are consistent· with,
and actualize the system-level specification· •••• " l7.
They correctly point out the difficulty of handling
such a process in present .formal verification systems.
The objective is to provide an association between an
expression of the requirements and design at one level
and derived requirements and design at another level.
As part of the Multinet approach, such an association
between levels ot' system description is achieved.

Finally, based on initial results, it appears that
the approach outlined here offers a way of lowering .the
overall cost of the specification and verification pro­
cess. This is due to the way that a reasonable and
reusable problem domain can be described in a con­
sistent manner in shorter time and communicated to peo­
ple not all of whom are experts in a given formal
specification language. This is consistent with the.
observations and suggestions offered by Good 9 The
approach also helps reduce the technical risk in an
application of the formal specification and verifica­
tion technology.

In conclusion, this paper has examined some secu­
rity issues that have been under discussion in the
security community in recent times. Based on the work
already accomplished for the certification of an Mul­
tinet Gateway internet device, an analysis and assess­
ment of the issues has been made and results discussed.
Much of the basis for the assessment is due to the
engineering work necessary to produce an advanced
development model of an internet device and to demon­
strate the feasibility of the design concepts. This
was accomplished by building such a device, by having a
parallel effort to prototype some of the technical
aspects for the security certification of the device
and by incorporating the prototype results into the
formal specification and verification of the system.
Questions raised in the literature and calls for
research in specific areas have been addressed by the
sharing of results obtained in the given context, Mul­
tinet Gateway. Although the focus presented here is
but one way to consider the underlying issues, it is
felt that the results are applicable to a wider range
of systems under development or being planned.

REFERENCES

1. 	 D. Bell and L. LaPadula, "Secure Computer System:
Unified Exposition and Multics Interpretation,"
MTR-2997, MITRE Corp., Bedford, Mass., July 1975.

2. 	 D. Bell, "Working Towards Al Certification," Proc.
7th DOD/NBS Computer Security Conference,
Gaithersburg, Md., 24-26 Sept. 1984, pp. 24-29.

3. 	 D. Denning, "A Position Statement on Network
Security," Proc. Invitational Workshop on Network
Security, New Orleans, La., March 1985, pp. 4.47­
4.56.

5. 	 DoD Computer Security Center, "Trusted Computer
System Evaluation Criteria," CSC-STD-001-83, 1983.

6. 	 J. Freeman and R. Neely, "Results in the
Development of a Multilevel Secure Network," Proc.
Armed Forces Communications and ElectroniCs
Association (Philadelphia Chapter) Physical and
Electronic Security Symposium and Expositi~
Philadelphia, Pa., August 1986.

7. 	 J. Glasgow and G. MacEwen, "A Two-Level Security
Model For a Secure Network," Proc. 8th National
Compu'ter Security Conference, Gaithersburg, Md., 30
Sept.- 3 Oct. 1985, pp. 56-63.

8. 	 D. Good, B. DeVito and M. Smith, "Using the Gypsy
Methodology," draft Technical Report, Institute for
Computing Science, Univ. of Texas at Austin, Aus­
tin, Texas, June 1984.

9. 	 D. Good, "Reusable Problem Domain Theories," Techn­
ical Report 31, Institute for Computing Science,
Univ. of Texas at Austin, Austin, Texas, September
1982.

10. 	c. Hoare, "Monitors: An Operating System Structur­
ing Concept," Communications.of the ACM, ACM, vol.
17, no. 10, Oct. 1974, pp. 549-557.

11. 	International Standards Organization, "CCITT Red
Book, Data Communications Networks, Open Systems
Interconnection (OSI) System Description Tech­
niques," VIIIth Plenary Assembly, CCITT, Recommen­
dations x.200-x.250, vol. VIII-Fascicle VIII.5,
October 1984.

12. 	C. Landwehr, "A Security Model for Military Message
Systems," Naval Research Laboratory, Washington,
D.C., May 1984.

13. 	C. Landwehr and H. Lubbes, "Determining Security
Requirements for complex Systems with the Orange
Book," Proc. 8th National Computer Security Confer­
~. Gaithersburg, Md., 30 Sept.- 3 Oct. 1985, pp.
156-162.

14. 	R. Neely and J. Freeman, "Rigorous Integration of
Sources of Assurance," Proc. IEEE (Washington
Chapter) Symposium on Compu~Assurance: Software
Safety and Process Security, Washington, D. c.,
July 1986.

15. 	R. Neely and J. Freeman, "Structuring Systems for
Verification," Proc. IEEE Symposium on Security and
Privacy, Oakland, Calif., 22-24 April 1985, pp. 2­
13.

16. 	D. Nessett, "Factors Affecting Distributed System
Security," Proc. IEEE Symposium on Security and
Privacy, Oakland, Calif., 7-9 April 1986, pp. 204­
222.

17. 	M. Schaefer and D. Bell, "Network Security
Assurance," Proc. ·National Computer Security
Conference, Gaithersburg, Md., 30 Sept.- 3 Oct.
1985, pp. 64-69.

4. 	 G. Dinolt, "Security Policies and Models for
Computer Networks" Proc. Invitational Workshop on
Network Security, New Orleans, La., March 1985, pp.
2.39-2.48.

137

http:2.39-2.48
http:Communications.of

ON THE INTERACTIONS OF SECURITY AND FAULT-TOLERANCE

R. Turn
J. Habibi

Department of Computer Science

California State Universiti, Northridge

Northridge, CA 91330

ABSTRACT

Security and fault-tolerance are critical
requirements in many distributed systems,
especially in those supporting real time
applications. For fault-tolerance, redundancy
techniques are being applied in hardware or
software to attain fault masking and graceful
degradation capabilities. For security;
various approaches are being proposed for
dist~ibuted system use. This paper examines
interactions between security and fault ­
tolerance generically and with the help of a
case study. It concludes that, for fault ­
tolerant security, hardware implemented redun­
dancy techniques are to be preferred over
software implementations.

INTRODUCTION

A recent trend in computer system ar­
chitectures is to design and implement dis­
tributed systems where sets of processing
units (PUs) (each with its own private memory
and I/0 devices), global memories, and data
bases are interconnected by local area net­
works (LANs). The distributed system architec­
ture has several useful features: the process­
ing power of the system can be increased (or
decreased) by adding PUs (or removing them);
availability and reliability are enhanced by
virtue of multiple PUs, data bases, etc. such
that these units can be used to back up each
other; and cost is lower, as compared to using
a mainframe computer with the same processing
power (if such a computer is available at
all).

Distributed processing is the preferred
architecture in a variety of real-time ap­
plications, such as command-control systems
for the military, process control systems, air
traffic control, and others. These systems
must be highly reliable and available, and
they are alio likely to contain or process
sensitive information, and require that the
integrity of operational data and programs be
protected. In these systems, data security and
integrity become additional design require­
ments. Some of these systems serve large
communities of users who have different
security clearances or need to know. For
efficient resource-sharing operation, multi ­
level security (MLS) would be required in
these systems.

Given the requirements for fault-
tolerance, graceful degradation, and data
security, a number of questions about the
interactions of these requirements arise and
need to be resolved:

Are the techniques for achieving
fault-tolerance and data se~tirity
fully compatible? If not, what. are
the problems, and how can they be
resolved? What tradeoffs are avail ­
able? · ·

How does the architectural design
for fault-tolerance impact the
design for security, and Yice
versa? How can the designs be made
compatible?

.Can data security be gracefully

degrading? Can gracefully degrading

systems be data secure? Is there a

difference in achieving each?

This paper addresses the above questions
generically in terms of the suitability of
various strategies and techniques of fault ­
tolerance in sytems where security is also
required. A brief illustration of implementa­
tion problems is provided by examining MuTEAM,
an existing, experimental distributed system
with fault-tolerance, from the point of view
of rendering it multilevel secure.

FAULT-TOLERANCE TECHNIQUES

In this paper, nsecurityn is defined in
terms of the implementation and enforcement of
the DoD security policy according to the ~o~
trusted computer system evaluation criteria ' •
Since the design requirements and techni­
ques for security are well-known they need
no further explanation in this paper.

nFault tolerancen is defined as the
capability of a system to function correctly
according to its design specifications despite
of th~ 4presence of transient or permanent
faults ' • Such faults may occur in the hard­
ware for various reasons, and they may be
present in software in the form of undetected
nbugsn created in the design or programming.
Their effects are nerrorsn in data values
and/or in program behavior. Indeed, one may
view security techniques as a subset of fault ­
tolerance since they are also attempting to
handle faults, but these faults may be
deliberately introduced and they tend to b~

very complex. Fault-tolerance techniques tend
to be less known and, thus, a brief summary of
these is provided below.

Fault tolerance is based on the use of
nspacialn redundancy (replicated modules) or
ntemporaln redundancy Crepeated computations).
Spacial redundancy is also known as nprotec­
tive redundancyn -- the occurrence of certain

138

faults is masked entirely by use of redundant
hardware or software, A specified number (but
a minority) of the redundant units may fail
without affecting the correctness the results
or the system operation. That is, faults
remain invisible,

An example of protective redundancy in
hardware, is N-modular redundancy (where N is
odd), N replicated modules perform the same
operations in parallel. Their outputs are
connected to a majority voting unit of N
voters which considers as correct the output
from the majority of the modules. Some of the
voters in the unit may become faulty them­
selves, but the set performs correctly if less
than half of the voters are faulty,

Another protective redundancy technique is
the use of error-correcting codes. Thess mask
the occurrence of a specified number of simul­
taneous faults (i.e,, erroneously inverted
bits), or specified patterns of faults, in the
encoded data unit. Of course, hardware or
software design flaws or erroneous input data
values cannot be corrected, These require
different approacheg, such as the "design
diversity" technique , and various data in­
tegrity techniques, such as reasonableness
tests.

Temporal redundancy is also known as
"corrective redundancy", Here the occurrence
of faults must be detected and diagnosed,
before correc~ive action can be taken (i.e.,
isolation of the failed unit and activation of
a replacement unit), and recovery from failure
effects can be initiated. Corrective redun­
dancy is implemented is mainly in software,
but hardware units can also be used to enhance
performance. More specifically, the following
actions and preparations are required.

Fault detection, can be implemented in
hardware or software. Hardware techniques
include the use of error detection codes,
self-cheking circuitry, and comparison of the
outputs of replicated modules. Software imple­
mented detection includes computation of
checksums and other authentication functions,
periodic checking of the hardware functioning,
various reasonableness and limit tests applied
to data values, repeated evaluation of the
same function with the same data, and inter­
spersing testing data with operational data.
In distributed systems, testing of processing
units (PUs) by other PUs in the system is a
sophisticated detection strategy which will be
examined later,

Fault diagnosis, is an activity which
strives to locate the fault and confine the
damage. The use of diagnostic programs is one
approach. These may be applied by the local
operating system or even from remote diagnos­
tic centers without the knowledge of the users
and, thus, raise security issues.

Recovery, is the activity of placing the
system back into an error-free state from
which normal operation can resume, This in­
cludes correcting any erroneous changes made
when the system was affected by a fault which
had not yet been detected, Typically, such
error-free system states are stored periodi­
cally for this purpose as "roll-back" states,
~orrecting erronous data values is a much more

difficult task, unless steps are taken in the
system design to provide audit trails for data
base updates, or "recovery caches" where
changed data values are collected. With these
means it is possible to restart the computa­
tion and restore the data values at the roll­
back point.

Reconfiguration is the activity of remov­
ing from the system a failed unit, and replac­
ing it with a a correctly operating one, The
replacement unit may have been assigned in
advance or may be chosen from a pool of avail­
able units. This activity may also include
transporting programs and ~ata to new units
and removing programs and data from a failed
unit. ·

If recovery and reconfiguration have
succeeded in restoring the system into an
operational state, but with less than nominal
capabiii ties, · the system has "degraded
gracefully". The degradation may be in the
form of a reduction in the system's perfor­
mance, memory capacity, nu~ber of processors
a~ailable, and the like. One prerequisite ~or
graceful degradation is redundancy in each
type of modules, such that the failure of a
module can be handled by the remaining modules
of the same type which assume the functions of
the failed module.

FAULT-TOLERANT SECURITY

Since the purpose of implementing fault­
tolerance is to eliminate the disruptive
impacts of faults on the functions being
performed, it is of interest to apply fault­
tolerance techniques also to the security
function. The principal purpose of thiS func­
tion is to make decisions on attempts by a
system's subjects' (e.g., users, processes) to
gain access to the system's objects (e.g,
memory segments, files, programs), The
security function is fault-tolerant if,
despite of faults in the system, the security
decisions correctly enforce the system's
security policy, the associated decision
support data (i.e., identifications, security
labels, access rules) remain correct, no
sensitive data are erroneously released, no
covert channels are introduced, and no denial
of service event takes place. We will now
examine the suitability for security purposes
of the protective and corrective redundancy
approaches to fault-tolerance,

Protective redundancy, implemented in
hardware, and the use of error-correcting
codes appear to be suitable techniques for
fault-tolerant security, provided that certain
precautions are taken and the assumptions made
about the number and patterns of errors are
kept in mind, An important consideration is
the .granularity of applying protective redun­
dancy, i.e., the size of the replicated
modules. The finest granularity is at the
individual logic function level, A very coarse
granularity is at the individual processor
level. In general, the coarser the granularity
the more semantic content there is in the
module's output such that sensitive informa­
tion might be extracted.

For example, a permanent fault in the
control unit of one of a replicated set of

139

data encryption units may cause data to be
released unencrypted, but the majority of
encryption units would produce correctly
encrypted output and the voters would stop the
unencrypted data stream. Thus, a replicated
module set must be encapsulated such that only
the outputs from the voters are visible from
outside the module set. Even then, failure of
a voter may still allow the incorrect output
to exit from the replicated set. The use of a
shared bus to send module outputs to be voted
upon elsewhere is clearly not acceptable for
security.

Corrective redundancy, as discussed above,
involves detecting and diagnosing fault occur­
rences, disconnecting the faulty modules, and
then taking corrective action (e.g., recomput­
ing a program from its last error-free
"recovery point"). Recovery also includes
informing the recepients of potentially er­
roneous results of the problem and, after
recovery, sending the correct results. As
discussed in [3], in a highly interactive dis­
tributed system this may create a "domino
effect" of correction and recovery activities
when recepients of erronous information have
passed it on to others, and all those involved
must undergo correction and recovery.

In general, this mode of operation appears
to be incompatible with the security require­
ments, since the errors in security functions,
and their consequences, may not be
recoverable. For example, if the reference
monitor malfunctions and permits writing of
files in violation of the •-property, a
security compromise may result. Important here
is the time interval from fault occurrence to
its detection and diagnosis (the error latency
time)~ If this time is sufficiently short
(error detection test are performed very
frequently), it may be possible to recover
without any security compromises having oc­
curred.

However, it may also be feasible to design
the system for near-continuous self-testing of
its security functions, especially immediately
prior to any access control or information
release decisions, so that some form of cor­
rective redundancy could still be used. Fur­
thermore, in special subsystems such as local
area networks (LANs), corrective redundancy is
used in the form of retransmission upon error
detection. This may be acceptable from
security point of view if the LAN interface
units are trusted to reject communications
which would violate the security policy.

GRACEFUL DEGRADATION OF SECURITY

A system can degrade gracefully if it can
remain operational with diminished
capabilities despite of the presence of faults
which cannot be masked by fault-tolerant
design techniques. A prerequisite is that the
hardware modules be replicated so that no
single failure could totally disable the
system. The question is: Can the security
function degrade gracefully?

If we use the DoD security criteria as a
model, as proposed in Ref. 6, degradation of
security can be viewed in terms of downward
migration in the criteria divisions and

classes. For example, a failure in the TCB
hardware may cause the loss of some security
mechanism which would cause the TCB to fail to
meet some criterion of its current evaluation
division and class, but still meet the
criteria of a lower class of this division or
of a lower division. Thus, a system's security
level may migrate from Al to B3, to B2, and so
forth as faults occur. Correspondingly, the
authorized application mode of the system
would migrate from multi-level secure (MLS),
to controlled mode, to system-high or dedi- ,
cated modes.

Thus, it appears that in principle grace­
ful degradation of security is a feasible
concept. In practice, however; it would be
necessary to develop a system design where
security mechanisms are implemented modularly
with diagnostics available to test each
module's correct operation. Upon detecting a
failure, there would be a need for rapid
containement of all subjects and objects until
a new (lower) security level has been deter­
mined, decisions have been made about the
subjects' authorizations, and all data no
longer permitted in the system have been
safely removed. How this might be implemented
is not yet clear.

SECURE FAULT-TOLERANCE

Implementing security in systems where
computational fault-tolerance is also required
raises new issues for security. The recent
trend is toward the use of corrective redun­
dancy, rather than hardware implemented
protective redundancy. As pointed out earlier
in this section, this may not be fully compa­
tible with security requirements. The repli­
cated modules, too, tend to be more complex
and so the redundancy granularity is coarser.
All this makes the system more complex and
creates new information flows. Thus, there are
more security-related problems to resolve:
proving correctness of the design and im­
plementation, and analyzing the system for new
information flows and new covert channels.

Software-implemented corrective redun­
dancy is usually based on the "backward
recovery" concept -- intermediate results of
computations and system state information are
stored periodically as "recovery points" and,
if error is detected, computation is restarted
from the most recent recovery point. Several
copies of recovery information may be kept to
allow backup of faulty modules. This increases
the exposure potential of sensitive informa­
tion and complicates meeting the security
requirements.

To illustrate the secure fault-tolerance
problems, we will briefly discuss MuTEAM, a
distributed multimicropr~cl'sor system
prototype developed in Italy - • This system
is intended to serve as a development vechicle
for design methodologies of real time dis­
tributed systems applications. It operates in
a decentralized control mode without a central
supervisory control entity, and it includes an
integrated set of fault-tolerance mechanisms
in the system programming language, architec­
ture and run-time support. Its main goals are
to achieve modularity, expandability and

140

fault-tolerance, and to maintain a concurrent
processing environment in each processing
unit.

The system is organized into a set of
clusters of up to 16 computer elements (or
"nodes"). These are connected via a "cluster
bus", and a "signalling bus". The interconnec­
tion topology satisfies the requirement that
each pair of nodes is connected by at least
one communication path, despite any single
link failure. All interprocessor communication
is based on message passing using the shared
memories at nodes. Access control list tech­
nique is used for protecting segments in the
shared memory.

MuTEAM's fault-tolerance is based on
separate phases of fault detection and diag­
nosis, reconfiguration, and recovery. A fault
in a node is viewed as rendering the node
totally faulty and it is disconnected from the
rest of the system. A faulty node is isolated
from the non-faulty ones by the latter delet­
ing all access permissions of processes in the
faulty node. Processes from a faulty node are
reallocated to non-faulty nodes based on prior
pairing of nodes with their "twins". All these
operations have considerable security implica­
tions.

If MuTEAM were provided with a trusted
operating system in the sense of the DoD
security evaluation criteria at the B or A
division level, it could implement the man­
datory and discretionary security policies by
using security labels on subjects and objects.
However, faults can affect the security func­
tions as much as computational functions. If
the security functions were made fault­
tolerant by using preventive redundancy tech­
niques, the OS could be regarded as trustwor­
thy even in the presence of faults. However,
if the software implemented fault-tolerance
technique now being used in MuTEAM were ex­
tended to also cover the security function,
the OS could not be regarded as trustworthy in
the event of faults. The prudent action would
be then to run the system as if it had an
untrusted operating system.

Even if the trustworthiness of the operat­
ing system were not in doubt, there would be
problems in applying the present MuTEAM's
fault-tolerance system to processes and data
objects which have different security levels.
There is a great deal of message exchange
between processes for diagnosis, reconfigura­
tion, and recovery. Violations of the •­
property occur whenever two processes at
different security level exchange messages, or
the receiver process sends some acknowledge­
ment or test result. To handle this, either
the fault-tolerance functions would have to be
viewed as trusted processes which are per­
mitted to violate the security policy, or
fault-tolerance would have to be implemented
on process subsets, each at a particular
security level. Further, the communications
performed for fault-tolerance purposes may
permit covert channels which could be used by
Trojan Horses in fault-tolerance software.
More generally, it may be possible to spoof a
node to enter the fault detection and diagnos­
tics mode much more frequently than normal to
reduce the system throughput.

With an untrusted operating system,
security would be implemented by dedicating
specific nodes to single security levels and
implementing the security policy with trusted
interface units (TIUs). These label all outgo­
ing messages with the node's highet security
level. The effect of this is to form subnet­
works of nodes, each for a different clas­
sification level (omitting any consideration
of categories at this time). Since messages
with responses cannot be exchanged between
subnetworks without violating the security
policy or requiring the use of a Guard module,
each subnetwork would need to be made fault­
tolerant by itself, using the MuTEAM approach.
One possible consequence of this is the need
of more of the redundant nodes than indicated
by the computations to be performed to contain
the twin backup processes.

MuTEAM reconfiguration approach is based
on an ~ priori allocation of twin processes to
backup nodes and storage of recovery point
information at these nodes. However, if
dynamic reconfiguration and recovery were
introduced, additional problems would arise.
For example, if there is no node available
with appropriate security level, it would be
necessary to prepare such a node either by
upgrading or downgrading its nominal security
level. In the former case, the other processes
in the node would get their outgoing messages
labelled higher and, hence, they may not be
able to maintain previous communications
without using the time consuming Guard
process. In the latter· case, the higher­
classified processes in the node ~ould need to
be purged before releasing it to the backup
role.

Clearly, imposing a security requirement
on a fault-tolerant system such as MuTEAM
causes a number of problems which tend to
complicate the system or increase its size, or
both. Whether or not a suitable solution can
be found requires further study.

CONCLUDING REMARKS

We have attempted to establish a framework
for determining the impacts of combining
security and fault-tolerance in distributed
systems, and to set a stage for further
research. The preliminary conclusions are that
(1) fault-tolerant security requires the use
of preventive rather than corrective redun­
dancy, (2) graceful degradation of security is
fesible under a particular interpretation, (3)
secure fault-tolerance is a complicated
problem when software implemented fault­
tolerance techniques are used (as in MuTEAM),
and (4) more study is required.

ACKNOWLEDGEMENTS

This study was supported, in part, by TRW
Defense and Space System Group through the
Industrial Associates program of the School of
Engineering and Computer Science, California
State University, Northridge.

141

REFERENCES

1. 	Department of Defense Trusted Computer
System Evaluation Criteria, CSC-STD-001­
83, DoD Computer Security Center, Ft.
Meade, MD, 15 August 1983.

2. 	Computer Security Requirements: Guidance
for Applying the DoD Trusted Computer
System Evaluation Criteria in Specific
Environments, CSC-STD-003-85, National
Computer Security Center, Ft. Meade, MD,
25 June 1985.

3. 	Rennels, D.A., •Fault Tolerant Computing:
Concepts and Examples•, IEEE Transactions
on Computers, December 1984, pp. 1116-29.

4. 	Siewiorek, D., and R.S. Swarz, The Theory
and Practice of Reliable Design, Digital
Press, Bedford, MA 1982.

5. 	Avizienis, A., and J.P.J. Kelly, •Fault ­
Tolerance by Design Diversity: Concepts
and Experiments•, Computer, August 1984,
pp. 67-80.

6. 	Habibi, J., Multilevel Security in Dis­
tributed Data Processing Architectures
with Back-~ and Graceful Degradation,
M.S. Thesis, Department of Computer
Science, California State University,
Northridge, CA, May 1986.

7. 	Grandoni, F. et al., "The MuTEAM System:
General Guidelines•, Proceedings of 11th
Fault-Tolerant Computing Symposium, June
1981, pp. 15-16. .

8. 	 Cioffi, G., et al., •MuTEAM: Architectural
Insights of A Distributed Multi-micropro­
cessor System•, Proceedings, 11th Fault ­
Tolerant Computing Symposium, June 1981,
pp. 17-19.

9. 	Bairardi, F. et al., "Mechanisms for A
Robust Multiprocessing Environment in the
MuTEAM Kernel•, Proceedings, 11th Fault ­
Tolerant Computing Symposium, June 1981,
pp. 20-24.

10. 	Ciompi, P., F. Grandoni, and L. Simoncini,
•Distributed Diagnosis in Multiprocessor
Systems: The MuTEAM Approach•, Proceed­
ings, 11th Fault-Tolerant Computing Sym­
posium, June 1981, pp. 25-29.

11. 	Barrigazzi, G., A. Ciuffoletti, and L.
Stringini, •Reconfiguration Procedure in
A Distributed Multiprocessor System•, Pro­
ceedings, 12th ~-Tolerant Computing
Symposium, June 1982, pp. 73-80.

142

USER DEFINABLE DOMAINS AS A MECHANISM FOR IMPLEMENTING

THE LEAST PRIVILEGE PRINCIPLE

Terry A. Smith

Office of Research and Development

National Computer Security Center

9800 Savage Road, Ft. Meade, MD 20755

ABSTRACT

In the defense and intelligence community, exercising the
"need-to-know" principle minimizes the potential damage that can
be done by a compromised individual. This is identical to using
the least privilege principle in computer systems to minimize the
damage that an errant or malicious process can cause. Current
security models do not appear to permit the principle of least
privilege to be fully implemented. This weakness is exploited by
a large class of trojan horses and computer viruses. User
definable domains, as developed in this paper, allow the princi­
ple of least privilege to be implemented completely, thus
providing users with significantly greater protection against
these threats.

BACKGROUND

It is an accepted tenet of the government
and industrial community that information may
be owned. As with any resource, there is a
desire to protect information from theft.
However, protecting information is very
different from protecting other property.
because information has special properties.
Information has value, but who possesses the
information directly affects that value.
Also, information may be freely duplicated in
an undetectable fashion.

One example of this is a football coach
who develops a game plan. He desires to
communicate this plan, his property, to his
players. But only for them to use in a game ­
- not to tell others. The coach wants to
share information yet retain control of its
distribution. We term this the information
security problem.

This situation also occurs in computer
systems. When a user runs code written by
someone else, he desires some assurance that
this code will not leak information it is
given. This is the confinement problem as
described by Lampson (LAMP 73].

Throughout time, people have struggled
with this problem. one highly successful,
although incomplete, solution to the
information security problem is the military
"need to know" system. Under this system
each individual is given only that informat­
ion considered necessary to perform his part
of an overall mission. One goal of this
system is minimizing the damage that can be
done by a compromised person.

The computer analog to need to know is
the principle of least privilege. saltzer
and Schroeder identified the least privilege
principle as a key design principle for
protection mechanisms. (SALT 75] When the
least privilege principle is fully implemen­
ted each process possesses the minimum access
to information required to perform its task.

Current security models implement the
least privilege principle by a process having
only those privileges explicitly granted by
the system. This policy creates what Denning
refers to as a closed environment. He
further states

The principle of a closed environment
is to give each process no more
capabilities than it needs to perform
its task. The normal state of
affairs is completely disjoint,
isolated, processes: nothing can be
shared or exchanged among processes
except by explicit arrangement, all
interactions being prohibited unless
expressly allowed. No process can
attempt to interfere or communicate,
with another in an unexpected way.
Because a closed environment forces
all interactions into the open it is
possible to check them all for
consistency and validity as desired
[DENN 76].

on many computers, it is difficult or
impossible to know beforehand what tasks a
user will perform. Because of this, users
are given a class of privileges which comply
with some security policy. ~ (BELL 75]
This often leaves a user process with much
more privilege than needed.

143

This paper proposes that the user be given
the ability to further regulate the privile­
ges his processes have. This creates a
system of attenuating privileges which allows
a user to protect himself from a large class
of trojan horse attacks.

it is not 	proposed that this is
revolutionary, but it is believed to be a
useful solution to a real problem. In
dealing with some security problems, the use
of set theory and Venn diagrams is more
concise and more direct than conventional
matrix notation.

TERMINOLOGY

BASIC SETS

Let X be 	the set of all users. *
Ui is an element of x.

s be 	the set of all subjects.
Sj is an element of s.

o 	 be the set of all objects.
Oi is an element of o.

A be 	the set of all access rights.
a· is an element of A.
-~

lXI denote the cardinality of x.

*we reserve the use of u for user
tuple sets later in this section.

Subjects and Objects may have individual
attributes associated with them (e.g.
security level, ownership links, etc.).

An access triple is defined as a tuple of
the form (si, ok, sm>· An access triple is
also called a privilege. To perform the
access described by an access triple is to
exercise the privilege.

Let M be the set of all access triples.

M (S X 0 X A)

At this point we introduce the concept of
a User.

Definitions:

A User is 	a human being who is utilizing
the resources of a computer system.

A Subject 	is a process on a computer thatIIII performs operations.

A user, upon logging,into a system, causes
the creation of a process. Through input to
this initial process, the user may create
other processes and effect changes to data on
the system. The concept of these subjects
(processes), acting to carry out the wishes
of a user, is expressed in a many-to-one
mapping of Subjects to Users. This mapping
partitions the set s into equivalence

classes. If Ui is the image of Sj under this
mapping, then we state that Sj is a subject
acting in behalf of user Ui· The set of all
subjects acting in behalf of user ui is the
subject set of ui, denoted Ki•

We write

PHI:S --> 	X

where Ki = { Sj 1 PHI(Sj) =Ui }•

M may also be partitioned into
equivalence classes by Subjects, Objects, and
accesses.

A user tuple set for a user ui, denoted
ui, is defined

Ui =Ki X 0 X A.

This 	set defines all privileges which may be
exercised 	in behalf of a given user.

SECURITY POLICIES

Suppose that R is a nonempty subset of M.
If we designate tuples in R secure and those
in not-R nonsecure then R constitutes the
instantiation of a Security Policy. A triple
in R represents a specific access to a
specific object by a specific subject which
is considered permissable, hence secure, by
the security policy corresponding to R. Thus
if M has cardinality m, there are 2m possible
security policies, one corresponding to each
of the elements of the power set of M.

COMBINATION OF SECURITY POLICIES

If the intersection of two or more sets,
Bi and Bj, is taken, the set produced
designates what we call the combined security
policy. A very important property of this
operation is that this combination of
security policies may only eliminate tuples
from the secure set~ combination of a given
security policy with others can never
compromise (add undesirable access triples
to) the initial or any subsequent policy.
Thus, freely combining (intersecting)
security polices yields a system of
attenuating privilege.

TRUST

For a given security policy, R,
exercising a privilege deemed non-secure
requires trust with respect to the policy R.

LEAST PRIVILEGE

For a given task with a given algorithm
there exist a minimal set of access triples
required to accomplish the task. This is the
set of least privilege for the task and is
denoted LP[task]. We assume two different
sets of access triples imply two different
algorithms.

If LP[task] is contained in the subject
triple set of subject sa, and is also
contained in the secure set of R then the
task may be accomplished by sa without trust.

144

DOMAINS

A domain with respect to security policy
R has been defined as the list of objects
that may be accessed by an entity [SALT 75].
We further constrain the notion by defining a
domain as the set of objects that may be
accessed and the accesses allowed to those
objects. In the set notation a user U·'s
domain with respect to a given securit~
policy is defined:

Di =Domain[ui] =Ui INTERSECT R

CURRENT MODELS

Current security models usually separate
security into two facets mandatory and
discretionary. The mandatory security policy
implements restraints required by system
owners to protect what they consider
sensitive information. The discretionary
policy implements restraints chosen by owners
(in the computer sense) of information to
satisfy their opinions on how the data should
be protected. Generally, Access Control
Lists (ACL's) are used to implement
Discretionary Access Controls (DAC's).

For example, in the Bell and LaPadula
(BLP) security model, the mandatory security
policy requires that (si, Oj, ~k) satisfy the
simple security policy and the *-property
(read star property). The discretionary
policy is satisfied if and only if the access
right ~ is in cell (S, O) of the
discretionary access matrix. Usually, the
accesses listed in the cell are wholly
controlled by the owner of the specific
object, and are thus ACLs. Therefore, the
secure set can be viewed as the intersection
of three sets B1 , B?, and BJ which
correspond to secur~ty policies satisfying
simple security, *-property, and the access
control lists respectively.

More generally, a. security policy (sp)

embodied by n properties is defined as

n
INTERSECT Bi

i=l

where B~ is the set of access triples
satisfy~ng the i-th property. Figure 1 shows
an example of a BLP security intersection.

THE PROBLEM

EXCESS PRIVILEGE

The partition of M described above may
also be viewed from a user's point of view.
Intersecting a security policy with a user's
tuple set defines the privileges a user may
exercise without trust, his domain. Suppose
Ui is trying to accomplish task t. Assume
that the security policy is Bsp· The user's
domain is

Di = Ui INTERSECT Bsp•

We assume that the task is accomplishable
without trust,

LP[t] Di•

This allows the definition of the set of
excess privilege,

EP[t,i] Di- LP[t].

AN EXAMPLE

Given a world with three objects of
interest, (o1 , o2 , OJ)· u1 owns o1 ; u2 owns
o2 and OJ· The security policy is based on
the BLP model. Assume that all files and
subjects are operating on the same security
level; thus the mandatory security policy is
of no concern. u1 and u2 give themselves
the right to read and write their own files.
However, u2 also gives ul the right to write
to his file o2 and to execute the program OJ·

= { (s1 , olt l:), (s1 , o 1 , ii),
(sl, 02, ii)' (s2, 02, l:)'
(s2, o2, ii), (sl, OJ, ~)
(S2 I OJ I ~> } •

Suppose u2 tells ul that o~ is a great game.
Agreeing, ul causes the tr~ple (s1 , OJ, ~) to
be exercised. The set of least privilege
for executing OJ should be

However the domain of U1 is

{ (sl, olt l:), (sl, ol, ii),
(sl, o2, ii), (slt OJ, X)}.

Thus,

EP { (s1 , o1 , l:), (slt olt ii),
(s1 , o 2 , ii)}

In addition to being a great game, the
code is a trojan horse: s 1 reads o1 and
writes its contents into o2 exploiting the
excess privilege (sl, o2, i£).

145

Note that (1) an undesired information
flow was accomplished, (2) that this did not
involve a failure of the security mechanism
but exploited a weakness in the security
model, and (3) that this flow occurred
without the knowledge of the information's
owner.

THE PROPOSED SOLUTION

In the above example, eliminating either
the tuple (s1 , o2 , ~) or (sl, ol, ~) from the
set Bsp• would prevent the compromise of the
file ol. The obvious candidate for removal
is (s1 , o~, ~).However, by the hypothesis
that DAC ~s implemented with ACLs, the only
user that can remove it is the owner of o2
which is u2. Present security models appear
to grant the owners of objects absolute
control over the presence of tuples involving
these objects in the discretionary aspect of
security policy. One solution to this
problem is grant a user control over tuples
involving subjects acting in behalf of that
user. This control is granted regardless of
the object to which a tuple refers.

This is to say that each user Ui defines
a subset

which ui deems secure. Thus the presence of
a tuple

(sj, ok, g) is an element of R(ui)

implies that user Ui does not object to Sj,
a subject authorized to act in behalf of Ui,
to access object ok in the fashion described
by access right g. This is wholly in the
spirit of discretionary access and grants the
user powers denied to him by current
policies. This subset, a security policy, we
term the User Definable Domain (UDD) policy
for ui. The set R(ui) is the domain define
by user ui to implement more completely the
least privilege principle for processes
acting in his behalf.

Because

Ui INTERSECT Uj ={} for all i ~ j,

we may construct the union of all these sets
without permitting users to interfere with
each other. This set we term Buoo with

lXI
Buoo = UNION Ui•

i=1

Now

BoAC =BACL INTERSECT BuDD•

IMPLEMENTATION NOTES

While it is not the intent of this paper to
address implementation questions, a few
topics should be addressed to show the
feasibility of this model.

COMPUTATIONAL OVERHEAD

The overhead of this scheme could be
managed by maintaining a master security
matrix s x o x A. This ties the overhead of
updating security sets to the frequency with
which users update their domains and ACLs
this frequency can be regulated by policy
according to each system's needs. An
additional advantage of this scheme is that
the burden of updating these tables can be
charged directly against the users initiating
the update.

Of course completely maintaining such a
matrix is not practical on real systems. The
size of the matrix would overwhelm the
computing power of some machines and burden
the rest. However the most users would have
sweeping domains where all members of a
certain group are excluded. The matrix could
be factored along these lines and only
important subsets of the matrix maintained
dynamically.

SECURING REQUIRED TABLES

The information user use for domain
definition needs to be protected. However,
this is identical to the problem of securing
ACLs, and whatever device used to secure ACLs
should be able to protect UDD information.

USER INTERFACE

The model, as stated, assumes the user
has a fair amount of knowledge about security
and operating systems. Since this is not the
case usually, both the implementation and
administration of a security model should
address the problems of securing the
security-ignorant and/or computer-ignorant
user.

For instance, a system could have default
domai~s for the user, user groups and system
funct~ons. Then the system might initially
set up user accessible commands (via trusted
path) <trust> and <distrust>. The <trust>
command would add tuples to R(u); the
<distrust> command would remove them. These
utilities would allow sophisticated commands
in the following fashion:

$trust write to user=bruce

(individual)

$distrust read to group=VLSI_DESIGN

(group)

$trust read to directory=HOME

(location)

146

User defaults would be set up by
sophisticated commands to protect against
standard attacks yet allow normal
functioning.

$trust file creation to directory=HOME and ­
owner=me and
acl = none

$trust write to user=ME and directory=HOME or
directory=SYSTEM_TEMP_DIR

This family of commands might also include
hooks into the DAC system so that a user
could say "write only to files which are also
not readable by the verification group."

VERIFICATION ISSUES

In a verified system that maintains a
master security matrix, we believe the UDD
system can be retrofitted to provide some
level of assurance by verifying two things.
As a scenario, a user Uj describes to a
program the tuples he w~shes to remove from
the matrix. This program generates 0, a
subset of M. Next a process requests the
operating system to remove 0 from the master
security matrix, R. The system verifies that
this request originated with a subject acting
in behalf of Uj and does the following
computation (using something akin to Pascal)

P :: P INTERSECT Uj ;

This assures that the user is removing only
his own tuples. Next the system updates the
master security matrix by computing

R := R - P ;

At a m~n~mum, the operations of validating
the identity of the user and the set
operations described above must be verified
correct and then made tamperproof. For true
security though, the interface which
initially generated the set P must also
undergo verification.

AN EXTENSION

Often, an individual will use a computer
system in two different roles. For example
in a small software design team, one person
might be both a programmer and an archivist
for group code. The domains applicable to
these two tasks are likely to be very
different.

To account for this need, users could
also have more than one domain, R(u,k). At
process creation time the user could specify
the domain to be used. For example in a VMS
system the command could be,

$SPAWN/NOWAIT/SECURITY DOMAIN=personnel RUN
payroll ­

or in Unix (if we must)

%payroll -sd personnel &

CONCLUSION

We are defining security policy as the
intersection sets. We enhance current
security models by including a user-definable
domain. These domains allow a user to
constrain information flows initiated by
subjects acting in his behalf. We have for
every user Ui, the triple (sj, Oj, £),with
Sj is an element of Ki, is secure with
respect to u if and only if

(si, Oj 1 £) is an element of BMAC INTERSECT
BoAC INTERSECT BuDD

where BMAc is the set of triples satisfying
the mandatory access constraints of the
initial model, BAc~ the sets of triples
satisfying discret~onary access constraints,
and Bvoo is the set of those satisfying
addit~onal conditions devised by the users to
closely approximate the least privilege set
required for their processes.

The idea of protection mechanism that are
subject oriented instead of object oriented
is not a new one[DENN 82]. It is believed
that this technique can be used to enhance
existing models in an efficient (as compared
to model's initial computational overhead)
manner, that the additional proofs required
for verified systems will be manageable, and
that it will provide a high level of
assurance against discretionary trojan horses
(including computer viruses).

ACKNOWLEDGEMENTS

The author would like to express his
thanks to Will Harkness for invaluable
assistance in the development and preparation
of this paper.

BIBLIOGRAPHY

LAMP 73. Lampson, Butler w., "A Note on the
Confinement Problem," Communications of
the ACM V 16 # 10, October 1973.

BELL 75. Bell, D. E. and L. J. LaPadula,
Computer Security Model: Unified
Exposition and Multics Interpretation,
tech. report ESD-TR-75-306, AD A023588,
The Mitre Corporations, Bedford, MA, June
1975.

DENN 82. Denning, Dorothy E. R., Cryptography
and Data Security, Addison-Wesley
Publishing Company, Reading, MA, 1982.

DENN 76. Denning, Peter J., "Fault Tolerant

Operating Systems," Computing surveys,

Vol 8 No. 4 December 1976.

SALT 75. Saltzer, Jerome H. and Schroeder,
Michael D. "The Protection of Information
in Computer Systems," Proc. of the IEEE,
Vol 63 No 9 September 1975.

147

----··--·--------'"--'--' -
A = Tuples not eliminated by *-property. B = Those not eliminated by the
Simple Security Property.

C = Those not eliminated by
Discretionary Controls (ACL' s) .

!

i

lt·
j

In the User Tuple Set, this defines
that user's DOMAIN.

0
_,..lJ-~- :1£tJlTASKl -

Tile Set of Excess Privilege.LP = The set of Least Privilege for sane

task.

FIGURE 1

A Venn Diagram Illustration of the Concepts Being Discussed.
Note: in the fourth figure the plane set switches from M to ui.)

148

INTRODUCTION TO THE ACCESS PATH

TECHNICAL DEVELOPMENTS

Telecommunications networks, dispersed
processing capabilities, increased
storage capacity and the introduction of
software components with advanced
functions have totally changed the
mainframe computer environment. When
data processing was centralized, the
computer and all terminals were located
in an area where they could be directly
controlled. Concerns about the data and
the computer were often about control
over physical access to the computer
room itself. Computer operators
initiated all processing and loaded all
programs and data files as needed.
Output was reviewed by operations andjor
data control personnel who ensured all
jobs were processed to completion and
the results appeared to be correct.
They then released the output to the
user departments. Many of these systems
were relatively simple-the user could
often review and reperform the computer
generated reports to determine the
correctness of processing.

On-line real-time data entry with
immediate update of transactions to data
files has removed the necessity for much
of the batch processing. The current
level of sophistication totally removes
the operator from much of the day-to-day
control over the processing. Most data
files and programs are permanently
resident on the computer. Operators
cannot identify each transaction that is
processed, nor determine its
appropriateness or its effect on each
data file. The possible lack of hard
copy audit trails could mean the user
has little or no chance to retrospectly
review processing in its entirety.

The risks associated with data
processing have increased as both the
speed with which information can be
changed and the number of users
accessing the system have rapidly
increased. Telecommunications has
vastly expanded the number of terminals
linked into the mainframe and the degree
to which they are used. The
introduction of minicomputers and
microcomputers, linked both to each
other and to mainframes, has distributed
processing even further. These new
users may have little appreciation for
the risks of data loss, error or fraud.

The traditional control features such as
physical access and division of duties
can potentially be compromised in these
sophisticated systems by any person
having access to either a terminal or
another computer linked to the
mainframe. Management, users and data
processing staff all need to place
significant reliance on the appropriate
functioning of the computer network to
reduce the risk of incorrect or
unauthorized processing.

USING THE ACCESS PATH

People unfamiliar with large computers
or people familiar with traditional
batch ~yste~s may find that identifying
potent~al r~sks and controls in the maze
of software components which make up
sophisticated networked computer systems
to be overwhelming. A simple but useful
method of 9aining and recording an
understand~ng of these systems is to
prepare an Access Path diagram.

An Access Path diagram is a concise one­
page depiction of all the software
components in the system under review
and depicts the sequence of informati~n
~low from one component to the next. It
~s a very useful instrument when
recording, explaining or discussing a
s~stem, especially for identifying the
r~sks and controls which may be present.

VTAM

CICS
IMS/DC
TSO

COBOL
PACKAGE

SOFTWARE

VSAM
IMS/DB
IDMS

ACF2
RACF
Top Secret

MVS
DOS/VSE

149

: ommunocat ons so twara s t e

TELECOMMUNICATIONS

RISKS AND CONTROL CONSIDERATIONS

Built into these multiple layers of
software are features that may affect
the risk and control considerations such
as passwords, user identification codes,
transaction codes, access level
indicators and processing options. The
same software components can be
implemented differently in every
location. For example, most access
security software packages provide
various options for the treatment of
unauthorized access attempt: it could
disallow the access and not report the
violation; it could disallow the access
and report the violation for
investigation; it could allow the access
and report the violation; it could allow
the ~ccess and display a warning message
to the user; it could allow the access
and ignore the violation completely.

How these features within each component
are installed and maintained
significantly affects the risks and
controls present in each system. The
Access Path shows a broad view of the
software components involved and where
the installation may have used the
control opportunities available in each
component. If an in depth evaluation of
the system is required, more detailed
information can then be obtained for
those software components identified as
being relevant. · .

DESCRIPTION OF THE SOFTWARE COMPONENTS

Figure 2 illustrates the view that most
users have of their data access - an
uninterrupted direct connection. They
generally do not understand, and should
not have to understand, all the software
involved in accessing the data. This
section will give a brief description of
the actual activities that take place
transparently each time a user - for
example, an accounts receivable clerk ­
accesses data in a typical mainframe
computer installation.

I[USER]I
Usor A"'"
Mainframe

Figura 2. Most users see their computer system as shown. They
know that there ara terminals and flies Involved, they may not

raallza how the files ara accessed.

The first component of system software
encountered on the access path is the
Telecommunications Software (illustrated
in Figure 3). This software connects
all the terminals, printers and other
peripherals to the rest of the computer
system. All of these links need to be
defined within the telecommunication
software if the rest of the system is to
receive messages from or submit messages
to any of these peripherals.

The software continuously "listens" to
all the terminals for any messages being
transmitted. When it "hears" a message,
it identifies the terminal, retrieves
the message and transmits it to the
system. Likewise, it "hears" and
retrieves messages from the system and
transmits them to the terminals
indicated.

The telecommunications software used by
most IBM mainframes is the Virtual
Telecommunications Access Method (VTAM) •
VTAM is made up of several different
programs which essentially perform the
following functions:

* 	 Recognize that a terminal is

attempting to submit a message

* 	 Identify the terminal and check if
it is defined within the
telecommunication software

* 	 Ensure the access authority, as
defined within the
telecommunication software, is
appropriate for the intended
message

* 	 Package and transmit the message to
the next component of the access
path

* 	 Recognize that a message is being
sent from the system to a
peripheral and route it
accordingly.

Mainframe

VTAM

gure rst step n
the accau modal. For the aystam to accapt a massage
from a terminal, It must ba defined to the computer via
this softwara. At this point, the communications soft·
wara provides the computer with the massage baing
sent as wall as the Identification (terminal) from which
the raquast Is coming. Communications software can
limit the functions that can ba performed by the termln·
al. In addition, thara may ba password protection avail·
able.

150

TRANSACTION PROCESSING SOFTWARE

The second component of system software
on the access path is the Transaction
Processing (TP) software (illustrated in
Figure 4). TP software is used by many
computer installations to specify which
terminal can use application programs
(exceptions to this rule are the Time
Sharing Option (TSO) and other text
editors. These are discussed below.

TP software serves as the link between
the telecommunication software and the
application program which actually
processes the message, and can be used
with both batch and real-time systems.
The message transmitted by a user
contains a name or code whereby the TP
software can identify its nature. The
TP software then performs various
control functions which enable the
message to pass along to the required
application program for processing if
the access is permitted by the access
tables contained within the TP software.

The most commonly used Transaction
Processing software on IB~ mainframes is
customer Information Control System
(CICS) • Information Management
System/Data C:pmmunications (IMS/DC) is
an alternative for a system which uses
an IMS data-base management system.
CICS can perform many functions, but
broadly described it performs the
following:

* 	 Handles all terminal messages
transmitted to and from the
Telecommunication Software
(described in the previous step)

* 	 Schedules the execution of all
processing activity within CICS.
Each component of processing
activity is called a task

* 	 Controls. the information flow to
accommodate multitasking. This
allows more than one task to be
submitted at a time, although only
one task will be executing at any
specific point in time

* 	 Controls the loading and releasing
(unloading) of the application
programs required to execute the
tasks •.

The Timesharing Option TSO) and other
text editors (WYLBUR, ROSCOE, et al)
were designed primarily as productivity
aids for application and system
programmers. Use of these editors does
not tie the terminal to specific
programs as does CICS and other TP
software. Rather~ the editors make
utility programs available which allow
programmers to read files, tables and
libraries; scan them; change them andjor
delete them. In addition, the editors
allow submission batch jobs that are
handled by the system like any
production job.

User Area

VTAM

CICS
IMS/DC
TSO

Figure 4 : Transaction processing software can be used

to limit access to the system by matching SP'!Ciflc trans­

actions to the terminals and/or users. Limited password

sacurlty measures can also be Implemented here.

Log files can be produced that can be used for backup/
recovery purposes as well as to determine (audit) sys­
tem usage.

processing
aooollcootlorrs programmers have access to utilities

to add, delete and/or change programs

AREA

sys­

and date files. Due to the capabilities of the utilities, closa
supervision and review of their use may be necessary.
Additionally, care should be taken relating to any "user"
activity that programmers are allowed to perform.

Figure 5 shows the power that editors
such as TSO give the programming staff.
In essence, all files, programs and
tables are potentially available to the
user of such an editor.

151

APPLICATION PROGRAMS

After the TP software has identified the
nature of the message and completed the
necessary control functions, it
transmits the message to the relevant
application program. This is the
program that will perform the actual
function required by the user, for
example: do a calculation, search for
the available quantity of an inventory
item, .or print an invoice. Whereas one
Telecommunication Software package and
one Transaction Processing Software
package normally handle all the
information flowing within a given
access path, there may be tens, hundreds
and even thousands of application
programs which can be used within the
same access path.

Many organizations are now purchasing
and installing application programs for
common business systems which have been
developed by independent software
vendors rather than employing their own
programmers to develop the applications.
This purchased software is also referred
to as "packaged" or "off-the-shelf"
software, and although it is most often
associated with microcomputers there are
numerous vendors selling application
software for mainframes. Figure 6
illustrates the Application Program in
the Access Path.

Application programs are written in a
variety of programming languages. The
majority of business application
programs are written in COBOL.

User Area
a1n me

VTAM

CICS

IMS/DC

TSO

COBOL
PACKAGE SOFTWARE

Figure 6 : At this point the application programs are ac­
cessed. The program analyzes the data received to deter­
mine how the transaction should be processed and recorded
on the flies. Editing, reasonableness checks, etc. can be
performed here. In addition, the program may raad and
write to flies, format and send messages to the originating
terminal and can perform additional security related func­
tions.

Many application aoftwara packages can be purchased from
third-party vendors. The user of purchased software should
ensure that the software meets their needs.

FILE ACCESS METHOD

Almost all application programs require
the manipulation of data in some manner.
Data may be read, added, deleted or
changed. Data is stored in .files which
may be on magnetic disk or tape.
Although the application programs issue
the instructions directing the
manipulation, it is the File Access
software that actually· retrieves the.
data from and writes the data to the
files. In data processing terminology,
these manipulations are referred to as
the inputjoutput (I/O) operations.

There are many different file access
methods. Two of the most commonly used
are Indexed Sequential Access Method
(ISAM) and Virtual Storage Access Method
(VSAM). Figure 7 illustrates the-File
Access method in the Access Path.

User Area
am rama

VTAM

CICS
IMS/DC

TSO

COBOL
PACKAGE SOFTWARE

VSAM
ISAM

Rgure 7 : The file access method function relates

the requesting program to the flies needed for

rocessing and the method by which the data will
C. stored. In other words, It actually performs the Input I

output operations.

Where an installation uses a data b~se
rather than conventional.comput~~.~~le:1for storing data, there ~st~n aTh~ ~~~a
component in the access pa • 11 d
storage and organization is contro e
by a Data Base Management System (DBMS).
Two of the most frequently used data
base management systems on IBM
mainframes are Information Management
system (IMS) and Integrated Data Base
Management system (IDMS).h t~Y ~~~~to
access has to pass throug e.
obtain the exact storage locat~?n of
such data. Within the DBMS a F~le
Access method performs the actual
inputjoutput operations. T~ese.
components are illustrated ~n F~gure s.

152

User Area
Mainframe

YTAM

CICS
IMSIDC
TSO

COBOL
PACKAGE SOFTWARE

IMS
I OMS

Figure 8 : When data base management aystem Is used
It normally Includes Its own file access method to perfor:n the 110
operations to and from the dstebaae.

OPERATING SYSTEM

The Operating System is an integrated
set of programs that control and
coordinate the operation of the
computer. It interacts with all the
previously mentioned steps in the Access
Path and allows all the components to
communicate with each other. Part of
the system software, it is a set of
programs that directs the computer
system. It can translate high-level
languages (e.g., COBOL) into machine
language (with a compiler), manage
system resources (tape and disk files
~rogram ~ibraries, etc.), retrieve '
~nformat~on from files, schedule and
supervise work, and operate and control
mechanized devices (tape and disk
~rives, com~u~er terminals, etc.). It
~s not spec~f~c to any one application
but may be used in the design · '
processing and control of a11'
applications and other system software
components.

The Operating System provides the
opera~ors control over starting up and
shutt~ng down the computer and controls
the allocation of resource~ to enable
the computer to process efficiently and
handle multiple users accessing the
system at the same time. Figure 9 shows
the operating system as part of the
Access Path. All activity within the
shaded area occurs under the control of
the operating system.

There are two basic operating systems
used on IBM mainframes. The earliest
system, introduced in the 1960's, is the
Disk Operating system (known as
90S/VSE). The later system, introduced
~n the mid-1970's, is Multiple Virtual
Storage (known as OS/MVS). Although the
two systems perform similar functions,
there are many differences between them
and switching a computer from one syste~
to the other requires a major effort.

User Area

YTAM

CICS

IMS/DC

TSO

COBOL
PACKAGE SOFTWARE

VSAM
IMS/DB

IOMS

MVS or
DOSIVSE

Figure 9. The operating system software has control
over all the previously mentioned "steps". Since there

can be many users on the system st the same time,
"traffic control" Is necessary to give processing time
to each tesk. The operating system schedules each
tesk to ensura that each user Is given appropriate
priority and the correct resources for the job

(flies, disk drives, etc.).

ACCESS CONTROL SOFTWARE

As computer systems have become more
sophisticated, the number of users,
transactions and software components
have increased. In order to limit the
access each user has within the system a
number of Access Control software
packages have been developed. These
packages are designed to protect the
data files, program files and system
software files within the installation
considered to be vulnerable. All
accesses permitted within the system are
defined in access tables, and the system
then compares every action attempted
against these tables to determine if the
action will be permitted. Obviously
these systems are only effective if the
access rules defined in the tables are
functionally appropriate, correctly
implemented and accurately maintained.
Figure 10 illustrates the access control
software operating within the access
path.

153

The three most frequently used access
control packages on IBM mainframes are
~CF, (an IBM developed package) and two
~ndependently developed packages, ACF2
and Top Secret.

USI!II.A>I!A

Figure 10. Access softWare can be used to
access to flies, libraries and tables held on the computer.

The proper Implementation of such softWare can aid In

providing a sscure system. On-going monitoring of the

system Is required to ensure that the security policies

and procedures are followed.

THE AUDIT AND REVIEW OF THE ACCESS PATHS

The access path is a methodology
developed to. help the auditor define and
evaluate system security and other
restrictions against unauthorized access
in a complex environment. It is an easy
way to understand system and application
software interaction. An auditor needs
to know: who can access what data files?
The Access Path provides him a way of
identifying every possible way of
accessing one file. Each way is a
different access path.

Thus, the first step in the audit or
review process is to identify the files
or data elements which are of interest
to the auditor.

Every access path to these sensitive
files should then be mapped. Most
installations have several access paths
to the data files. The path can be the
batch processing of production jobs, on­
line access by the user department, use
of utility programs by application
programmers, etc. Every path will be
made up of different kinds of.software.
Access to data is controlled by these
different layers of system software and
application programs. At each layer,
there may be controls that prevent
system users from performing tasks
outside of management's intentions (see
Figure 11). How these controls are
,,ctually employed is an audit concern.

D\TA BASEADMNISTAATOR
DBMS EDIT.c:HECKING, Fle.D

AND RECORDSENSn'MTV

SECURITY ADMINISI'RATOR
RESI'RICT ACCESS TO FILES.

BASS> Cit
~

User Area

"""'TEAMINM.,ETC.
REPORTS OF ACCESS VIOlAT10NS

ABQJTYTO REVOKE ACCESS

11. are many opportu
available to the personnel responsible for the
design of the system and computer network.
The auditor should understand the technology as
Implemented within the data center, recognize the
methodology being used and Incorporate It Into
the audit plan.

154

The auditor will review as part of the
audit, the security features for each
software mapped on a path giving an
access to any sensitive data files. The
auditor, or reviewer, knowing the
control opportunities which each
software product offers, will record,
for all these software products, which
of those opportunities have been
implemented.

For example, the security key feature of
CICS might be employed to restrict
access to CICS transactions. The result
of these inquiries provide a map of the
Access Path, with the implemented
controls which restrict access and
therefore indicate the areas which merit
testing. The testing, in this case,
will involve the review of the user
profiles and tables which the relevant
software products reference in order to
restrict access. This review will
typically have to be conducted with the
use of software for the purposes of
printing out the profiles or tables.
This software may be a feature of the
product itself, a general purpose
utility program which is supplied by the
vendor or a software product expressly
designed for this purpose. Coopers &
Lybrand has developed, and continues to
develop, customized software for this
purpose (i.e. the CICS Analyzer).
Having reviewed those profiles for the
users and reached an opinion as to their
adequacy, the next step is to consider
and review the paths which can be taken
by other categories of user. It is also
important to remember that the tables
and profiles which have been reviewed
above will be the subject of
maintenance. This is because the
community of users is norma~ly
constantly changing as a result of
employees joining and leaving the
company as well as transfers from one
department to another. Also, it should
be remembered that the application
programs and system software product~
are also being changed. Therefore, ~t
is important for the access paths to the
tables and profiles be mapped and a
review be conducted of the adequacy of
the controls over this change management
process.

In order for this review to be complete,
it is important to consider all
categories of user who potentially might
have access to the data and programs and
profiles or tables. In the steps above,
we have reviewed the end-user and those
who are responsible for maintaining the
profiles and tables. It is also
necessary to review the access paths
that the members of the Data Processing
Department use. Obviously,. when
reviewing the Access Paths that are
mentioned above, the main purpose is to
ensure that only authorized users have
access to authorized facilities. One
detailed aspect of this would be to
ensure that members of the Data
processing Department do not have access
to production versions data files using
production versions of programs.
Members of the programming section of a
data processing department will
typically have access, via the system,
to various operating system utility
programs, typically via an editor such
as TSO, for example. They will also
have the ability to submit batch jobs
for processing. It is with these
programming tools that they could gain
access to line or production versions of
programs and data files, thereby
bypassing controls which are contained
not only in the application programs but
also in the system software components.
It should be remembered that these
"bypasses" must exist in most
installations for valid operational
reasons. For example, the database may
require repairing after the computer
went down because of a power failure or
a logic error in a program. The
essential consideration here, though, is
to ensure that the use of these access
paths is suitably restricted and
authorized. This review will involve
using software to print out reports
showing the user profiles in the editor
(e.g. TSO) and considering the
appropriateness of the entitlements
given to each user.

After having identified the active
security features within all software
layers of every possible path to
sensitive data files, the auditor is now
in a position to evaluate the risk of
unauthorized access to these files.

155

RISK ANALYSIS AND COMPUTER SECURITY: BRIDGING THE CULTURAL GAPS

Lance J. Hoffman
Department of Electrical Engineering and Computer Sciences

The George Washington University
Washington, D. C. 20052

(202) 676-4955

Abstract

Specific problems which currently limit the very few risk analysts have paid any
effectiveness of computer security risk attention to the computer security
analysis are discussed. These problems have literature. And this type of work, like any
already surfaced and in some cases been which crosses jurisdictional boundaries, has
addressed by the risk analysis community trouble attracting support from traditional
outside of computer security. It appears sponsoring organizations or universities.
that the quality of computer security risk
analysis can be significantly improved by Unlike traditional risk analyses which deal
using previous work or undertaking certain with concete consequences (such as money or
basic steps in these areas. lives lost), often computer security

concerns are diffuse and intangible (e.g.,
l. INTRODUCTION military advantage, competitive advantage,

privacy protection). Asset values are
In recent years, significant changes have more difficult to arrive at, since data can
taken place in the computer security field. be an ambiguous asset whose value varies
~ith the explosive growth of personal significantly over time and by use. And
computing, computer system penetration from perhaps more so than in other areas,
home is now a reality which is constantly operational priorities put real-world
demonstrated [Park83]. In response, port constraints on what computer security
protection security devices have been measures will be used. Still, the existing
developed. New products have come to market risk analysis literature may be able to shed
(and continue to) in other areas of computer light on the costs of breached security.
security as well; over a hundred were
exhibited at one recent trade show. In the past, the computer security community

has often used ill-fitting adaptations of
Work in traditional areas of computer risk analysis methods that were developed
security research (e.g., authentication for problems which were significantly
methods, cryptography, statistical inference different. The majority of computer
protection) continues [Proc86], especially security risk analyses have used annual loss
research into the development of trusted expectancies (ALEs), a method well-suited to
operating systems for multilevel secure and used by insurance companies. However,
operation (spurred on by trusted system unlike insurance risks, computer security
evaluation criteria [NCSC83]). However, risks often are multiple and not readily
with the increased realization that m~~r specified (by money, injury, or death).
computer security problems and solutions are Often the potential losses are
not entirely technical, and with the intangible--related to national defense,
increasing number of real-world systems at corporate goodwill, or other nonmonetary
risk, the risk analysis process has lately assets. Unlike traditional risk analysis
received additional attention [Cecu86, problems, computer security problems tend to
Guar85, Hoff85]. often lie in a relatively uncharted area,

that of diffuse risks from adversarial
While risk analysis is an interdisciplinary sources, where the objects at risk and the
area, computer security specialists have in nature of the risk may be diffuse and where
general not used models and techniques from the source of the risk may be a malevolent
other fields to the extent possible. There adversary. These risks might be
has been some cultural gaps between the risk characterized as points on the right of
analysis community which has been developing Figure l [Brow86].
models and techniques for risk assessment
and risk management and the computer
security community which has until recently
largely concentrated on either technical or
administrative solutions without paying a
great deal of attention to exposure
assessment, risk characterization (including
uncertainty), or weighing of alternative
solutions.

This is not surprising since risk analysis
(like computer security) is a
multidisciplinary field requiring a blend of
skills; the development of any such field

Dlfh..

e 1urorh•

e Rucbu tbdt

!llw1roucata1 l11k

must cross disciplinary boundaries and In•uuac:l lbt eo.,uter Tbdt
focu••• ._,::::;:::::....:=-------------<1>-­breach semantic barriers. Few in the

llo~a-Ad,.artar1&1
computer security community know of existing

ICMICIresults in probabilistic risk analysis or
even of the existence of the Society for F:i.gure 1. Categorization df Risk Analysis Problems

Risk Analysis or its journal; similarly, by Type and Source of Risk (Brow86)

156

2. MAJOR PROBLEMS IN
COMPUTER SECURITY RISK ANALYSIS

There are several areas where significant
problems exist which currently limit the
effectiveness of computer security risk
analysis. The problems appear to be
tractable; by bringing resources to bear on
them, the quality of computer security risk
analysis can be significantly improved.
This section describes the specific areas
and suggests appropriate actions to take.

2.1. Semantic Problems Due to a Lack of
Standard Definitions

A critical area where research is needed is
that of standard definitions in risk
analysis for computer security. While there
are accepted terms in both fields, sometimes
the same term means two different things,
depending on the field; in some cases, there
are differences among workers even in
computer security; in a few cases, there are
out and out conflicts between the commonly
accepted definitions in risk analysis and
usage in computer security. By and large
however, these conflicts appear resolvable
if addressed promptly; both fields are
relatively new and the leaders appear quite
willing to work together to agree on one
common set of terms.
There is a computer security glossary
produced by the National Bureau of Standards
which contains several hundred definitions
which has been out for several years; a more
recent one is [NCSC85] from the National
Computer Security Center. Even so, in the
workshop which led to this paper [Hoff86],
"we had significant trouble with
communication among computer security
people" [Cour85]. There does not appear to
be any widely used formal glossary of terms
for the risk analysis field in general. It
is absolutely necessary that the two
disciplines communicate well; therefore,
harmonization of existing definitions is
needed and a common glossary of terms would
be helpful.

2.2. Absence of Guidelines on When to Use
Risk Analysis

Another important issue is when to use risk
analysis. Too often in the past, computer
s~curity practitioners have either avoided
initiating a risk analysis due in part to
fear of its cost or, alternatively,
initiated full-fledged analyses which
slavishly used methodologies better suited
for other problems and, ~s a result, cost
more and produced less of value than
desirable and possible. Apparently no
guidelines exist regarding when a risk
analysis or a specific methodology should be
initiated or terminated.

Ill
It is inappropriate to use (certain kinds
of) risk analysis when the potential benefit
gained from such use is too small. A
related issue is how far to go; one may
often need a relatively simple or even
cursory analysis and nothing more.
Alternatively, one may begin an analysis,
suspend it for a time, and then resume it as
events warrant. Finally, in some cases a

full-blown exhaustive analysis may be called
for.

As an example, often safeguards which cost
the least displace the most risk;
organizational policy statements and
employee awareness programs can be
relatively easy to cost-justify, and may in
many cases obviate the need for more
detailed risk analyses. But the problem is
not always that simple, and in particular
safeguard selection can be complex:

••• "A baseline look might, at times, let
you identify generic measures whict
should be taken but you cannot
implement generics; you must implement
specifics. To identify the specific
measures needed you need to look in far
greater detail than is normally
considered in some initial, cursory
inspection and understand the need for a
set of fully complementary measures."
[Cour85]

2.3. Communicating risk management options
to decision makers

Public perception of computer security
breaches often involves "hackers" dialing in
from afar to obtain protected information or
to "crash" a system [Levy84, Psyc80].
However, the reality is that outsiders are
much less likely to cause computer problems
than are data errors and omissions,
dishonest or disgruntled employees, a
failure of administrative controls, or water
damage. This is often not communicated
effectively by computer security
professionals to their management. We thus
have the real-world problem of the risk
analysis that, once done, sits unread upon a
shelf. This is often the case even when the
results are appropriate and accurate and the
analysis was done efficiently. Typically
this happens because top management was not
convinced of the need to take any corrective
action. Often, management reacts to events
rather than planning protective measures in
advance. What may appear reasonable to a
security manager may be excessive when
looked at through the eyes of a higher level
decision maker.

Indeed, one of the most vexing problems risk
analysts and computer security experts have
is communicating risk management options to
decision makers. Risks and adverse events
are often not popular topics, and the
options available may all be undesirable.
Presenters of risk management options have
to avoid a number of pitfalls. On the one
hand, they may be accused of being too
analytical and cost-oriented and insensitive
to human or political costs which are
difficult to quantify; on the other hand,
addressing those important issues but not
having enough credible data on which to base
a decision lays them open to charges of
being vague. Insensitivity to either of
these can spell doom to any hope of
selecting reasonable options even if
excellent data is in hand (which is never
the case). Ignoring interdependencies may
also lead to unrealistic risk assessments
and thus, when discovered, cripple the
credibility of an analysis. Misapplication

157

of automated tools and unwarranted belief in
their output is another potential problem.
And of course no methodology will be useful
in an institution that doesn't want to know
what the risks are; it takes an
organizational commitment to make the
results at all useful [MacG86].

Disciplines which are, at the first glance,
far removed from scientific risk analysis -­
advertising, communications, psychology,
etc. might contribute to better
communicating risk management information
and choices, especially since there so may
opportunities for misinterpreation of
results as diverse audiences are addressed.
The area is so new that the first major
national conference on communicating risk to
the public took place in January 1986 (the
National Conference on Risk Communication,
Mayflower Hotel, Washington, D. C., January
29-31, 1986, sponsored by The Conservation
Foundation, National Science Foundation,
Environmental Protection Agency, American
Industrial Health Council, and the
University of Southern California). Efforts
to improve this situation may go farther
than anything else to mitigate, in the long
run, the real problems risk analysts are
asked to address.

2.4. Lack of Test Beds and Respected,
Available Studies

There is a critical lack of test beds and of
well-known, respected impartial risk
analyses of computer system security to use
as examples. It is difficult to evaluate
the performance of various risk analysis
methodologies or tools without a suitably
rich test bed. With one or two exceptions,
such a research asset does not exist and the
fields' growth and maturity is hindered by
incomplete testing and information.

In test bed development, as in real world
risk analyses, there is very little case
data available on which to base estimates or
assessments; and computer security personnel
have long bemoaned the fact that estimates
of threats are hard to elicit and very hard
to justify; there is not enough historical
data. Thus, , a few test beds and pilot
studies which incorporated traditional risk
analysis techniques with real problems from
computer security (and other application
areas) and using real data would be very
important in advancing research progress by
helping us to develop, based on real world
experience, a general model and conceptual
framework for computer security risk
analysis. Notions of generalization,
methodological development, and
demonstration should be in mind, while at
the same time carefully focusing the
efforts. The scope must be narrow enough to
be manageable; one would hope that at the
end the result could be a highly visible
successful application of known techniques
and models to a real computer security
problem. After that, other efforts can be
held up to that standard.

2.5. Problems with available data

In any undertaking such as test bed
development, data base problems will be run

into. The most likely of these is lack of
data. Risk analysis and computer security
experts have long bemoaned the fact that
there is very little real-world case data
available on which to base estimates or
assessments. Real world case data
collection would help matters, both in the
general risk analysis case and in the
specific computer security case. Examples
of such data are the relative frequencies of
different types of security breach and the
measurable impact on security of specific
incidents and of various risk management
measures.

Elicitation of this information is not easy,
and relatively highly train~d individuals
must be available to encode the data for
later use; this task cannot be left to
unknowledgable persons. Worthwhile also
would be an effort to review existing data
and data gathering efforts related to
computer security such as data banks
maintained by Donn Parker at SRI
International; Robert Courtney of Robert
Courtney, Inc., and Glenn M. Jones of the
Pentagon Joint Data Services Support
Center. After such a review, significant
gaps would be identified and the process of
gathering new needed data could be started.
Such work will require knowledgable persons
to encode the data. An initial effort at
this is underway at the National Computer
Security Center, under the direction of Roy
Wood.

2.6 Uncertainty

Estimates of threat likelihoods are hard to
elicit and validate; nevertheless, the risk
analysis community has already made some
important progress in the area of
uncertainty by using probability
distributions to quantify uncertainty about
exposures and severity of effects. In
particular, work in nuclear safety by
Rasmussen [NRC75], and in the more general
field of probabilistic risk assessment
[Howa76, Morg84, Henr85, Cox81] is
relevant. However, this Bayesian,
probabilistic approach is only a start, and
there remain quite a few unanswered
questions related to uncertainty. There is,
for example, a growing literature on low
probability, high loss events.
Nevertheless, we are still uncomfortable
handling these in the real world.

A number of important questions with respect
to uncertainty remain unanswered in the
specific area of computer security [Henr86]:

Should all risks be quantified? Should
all uncertainties about numerically
expressed risks be quantified? Are
linguistic expressions of severity and
uncertainty ("rarely", "likely")
sufficient, or are they inevitably
bedevilled by ambiguities? If not, are
probabilities always the best approach?
What of fuzzy sets, Dempster-Shafter
calculus, and various other approaches
to representing uncertainty, both
quantitative and qualitative, developed
by researchers in artificial
intelligence and expert systems? One
fuzzy set based approach [Schmucker] has

158

~ '
~ '

already been applied to computer
security. Is it better than the others?

Studies which compare these approaches (on
both theoretical and practical criteria),
assess their merits and drawbacks, and start
to develop guidelines about which may be
appropriate under what conditions are
needed.

2.7. Desirability of a general risk model as
a conceptual framework

If a general risk model could be developed
which could be used by both the risk
analysis and computer security communities,
it would provide significant benefits to
both communities in the areas of testing,
methodology evaluation, and completeness of
analysis. Such a conceptual framework
should be very flexible, be able to handle
numerous types of risk analysis computer
security problems, and be able to handle all
external policies imposed on the problem.
It should be able to be easily refined as
new knowledge (for example, from the test
beds and pilot studies described above)
becomes available or new constraints appear.
It should be acceptable to both communities
and rich enough to represent just about all
computer security situations. Without such
a model, "we will continue to have methods
that are as different as apples, oranges and
pears and which will produce results which
cannot be compared" [Katz85].

The interrelationships between threats,
threat frequencies, vulnerabilities,
safeguards, risk, outcomes, etc., should all
be described in a formal way so that a
common understanding of the risk analysis
process emerges [Xatz85]. Such a model
might, at least in part, not be highly
mathematical, since it would ideally make
effective use of case-based and
quasi-statistical data described in Section
2.5. It should be able to handle but not be
limited to techniques such as the FIPS PUB
65 annual loss expectancy method [NBS79];
commercial methodologies such as return on
investment method [Coln85] or Bayesian
decision support [Ozie86]; and perhaps even
a qualitative fuzzy set theoretical approach
[Schm84].

The model would provide generic threats,
assets, etc. as well and would fit a number
of specific methods described in [Hoff86].
It must also allow for approximations to
those functions we do not know how to
define. This will allow us to implement
tools, in the near term, that represent
~implifica~ions. to more complex
~nterrelat~onsh~ps. As we obtain more
insight about interrelationships, we should
be able to replace the simplistic
representations with more complex ones,
Furthermore, it must allow alternative
methods for different purposes; it should
allow appropriate combination of qualitative
and quantitative input data; and it should
be consistent when applied to the same
pr~blem by two different teams of people
us~ng the same data.

constantly change, as the life cycle of the
system goes on, and reflect the updated
configuration of the system.

2.8. Dearth of Metrics for Risks and for
Risk Analysis Methodologies

One significant lack today is metrics for
risk analysis and risk management. There is
no currently accepted set of criteria
against which all methods can be compared.
It is difficult evaluate or to convey the
advantages and disadvantages of a given
methodology or tool when no accepted
evaluation metric exists. Until such a set
of criteria is developed, we can expect
proliferation of various methodologies, most
of which are adaptations of previous ones
(even if the previous ones have serious
deficiencies).

A deeper problem is the lack of metrics for
risk, even within the risk analysis
community. There has been little research
on value tradeoffs to guide policy decisions
(with some notable exceptions such as the
roughly $1 million value put on a human life
in airline safety risk analysis, and $1,000
cost equivalence of a man-rem of exposure
used in nuclear regulation). In computer
security such metrics (e.g., a dollar value
put on a breach of secret defense
information) are scarce. One such is an
initial attempt at a multi-attribute utility
function related to congressional options on
a number of issues in information security
[Brow85]. There is also little work on
generalization of binary logic to multiple
states which handle reliability with
degraded performance (e.g., a safeguard that
works some of the time or which partially
works.

2.9. Appropriateness of Automation

Recently, there has been a proliferation of
computer security risk analysis tools and
products [Hoff85, Fiks85, Henr85] which are
particularly useful in getting the risk
analysis started, allowing quick sensitivity
analyses, and producing reports. Despite
these advantages, the risk analysis
community has been quick to caution against
premature development or use of
quantification, automation, or expert
systems. They are concerned that "Issues of
modeling, uncertainty assessment and
judgment of value require the kinds of
t~inking F,hat software tools can't provide
r~ght now and should only be used for
routine calculations, such as implementing
the logic of fault trees.

In the workshop which led to this paper, all
agreed that there should not be a rush to
computerize and that automated tools should
not claim or imply more than is there; in
essence, automated tools are fine as a
means, not as an end. Some subtle dangers
are involved here also, including the lack
of credibility when the systems don't
deliver w~at they promise and the locking in
of inappropriate methodologies by premature
computerization and inflexible software.

No one was willing to advocate the idea ofFinally, it should be a "living model" (in
using expert systems or artificialthe words of H. 0. Lubbes) which is able to

159

intelligence in risk analysis today, at the
early stage of development these fields are
in. However, if a suitable general model
can be built, then prior experience in the
codification and treatment of expert
op1n1on might be used in the development of
an expert system to produce a risk
management tool which would be quite
useful. This would be a lot more than an
electronic checklist: it would, based upon
information related to the specific
installation being analyzed, suggest actions
to take to improve security. Such systems
have been built or proposed in many areas,
including medicine and business planning.
Naturally, all the rules used by such a
system would have to be traceable and clear,
and the system would have to handle
nontechnical as well as technical risk to
computer systems.

3. ACKNOWLEDGMENTS

The workshop which led to many of these
conclusions was supported by contract
MDA904-85-C-A478 to The George Washington
University from the National Computer
Security Center of the National Security
Agency of the Department of Defense at Ft.
Meade, Maryland. Dr. Sylvan Pinsky was the
technical manager foi the Center. His
initiative a~d willingness to examine an
interdisciplinary area with potential high
payoff but about which relatively little is
known is recognized and appreciated. This
paper is extracted from the complete report
[Hoff86].

4. REFERENCES

(Brow85} 	 Brown, R. V., Presenting risk
management information to
policymakers: Executive summary of
a report to the National Science
Foundation. Technical Report 85-4,
Decision Science Consortium, Inc.,
Falls Church VA, July 1985.

(Brow86) 	 Brown, R. V., "Managing Diffuse
Risks from Adversarial Sources
(DR/AS) with Special Reference to
Computer Security: Ideas for a New
Risk Analysis Research Area",
Working paper 86-1, January 1986,
Decision Science Consortium, Inc.,
Falls Church, VA 22043.

(Cecu85} 	Cecula, d., "Consider alternatives
to formal risk analysis",
Government Computer News, September
27' 1985.

(Coln85} 	Basic Data Systems, Inc., The Risk
Analysis Machine, Rockville, MD,
1985.

(Cour85} 	Courtney, R. L., Private
communication, September 24, 1985

(Cox81) 	 Cox, D. C. and Baybutt, P.,
"Methods for Uncertainty Analysis:
a Comparative Survey", Risk
Analysis, Vol. 1, 1981, 251-258.

(Fiks85} 	Fiksel, Joseph, "Automated Threat
Assessment for Computer
Facilities", A. D. Little, Inc~~
Cambridge, Mass. 02140, 1985.

(Guar85} 	Guarro, S. B., Garcia, A. A., Wood,
C. C., and Prassinos, P. G., LRAM:
Livermore Risk Analysis Methodology
for Information Systems Security,
UCAR-10150, December 1985, Lawrence
Livermore National Laboratory,
Livermore, CA.

(Henr85} 	Henrion, Max and Morgan, M.
Granger, "A Computer Aid for Risk
and Other Policy Analyses", Risk
Analysis, Vol. 5, No. 3 (Sept.
1985}, 195-208.

(Henr86) 	Henrion, Max, Private
communication, January 30, 1986.

(Hoff85} 	Hoffman, Lance J., "PC Software for
Risk Analysis Proves Effectiveff,
Government Computer News, Vol. 4,
No. 18, Septemb~r 27, 1985, pp.
58-59.

(Hoff86} 	Hoffman, Lance J., Computer
Security Risk Analysis: Problems
and Issues, Report GWU-IIST-86-04,
Department of Electrical
Engineering and Computer Science,
The George Washington University,
Washington, D. C., March 1986.

(Howa76) 	Howard, R. A., Matheson, J. E., anJ
Miller, K. L. (eds.), Readings in
Decision Analysis, Decision
Analysis Group, Stanford Research
Institute~ Menlo Park, CA, 1976.

(Katz85) 	Katzke, Stuart, "Summary of Key
Issues", in (USAF85}.

(Levy84} 	Levy, Steven, Hackers: Heroes of
the Computer Revolution (Garden
City, New York, Anchor
Press/Doubleday, 1984)

(MacG86) 	MacGregor, D., Private
communication, January 14, 1986

(Morg84) 	Morgan, M. G., Morris, S. C.,
Henrion, M., Anaral, D., and Rish,
W. R., "Technical Uncertainty in
Quantitative Policy Analysis--a
Sulfur Air Pollution Example", Risk
Analysis, Vol. 4, No. 3 (1984).---- ­

(NBS79) 	 National Bureau of Standards,
Guidelines for Automatic Data
Processing Risk Analysis, FIPS PUB
65, Gaithersburg; Md., August 1979.

(NCSC83} 	 DOD Computer Security Center,
Department of Defense Trusted
Computer System Evaluation
Criteria, CSC-STD-001-83, 15 August
1983.

(NCSC85} 	 National Computer Security Center,
COMPUSECese Computer Security
Glossary, NCSC-WA-001-85, Ft.
Meade, Md., October 1985.

160

(NRC75) NUREG-75/014, Reactor Safety Study,
an Assessment of Accident Risks in
United States Commercial Nuclear
Power Plants, WASH-1400 Study,
Nuclear Regulatory Commission,
Washington, DC, October 1975.

(Ozie86) 	Ozier, Perry, and Associates,
Bayesian Decision Support System,
San Francisco, 1986.

(Park83) 	Parker, D. B., Fighting Computer
Crime, Chas. Scribner's Sons, New
York, N. Y., 1983.

(Proc86) 	Proceedings of the 1986 IEEE
Symposium on Security and Privacy,
Computer Society Press, Catalog No.
86CH2292-1, Oakland, CA.

(Psyc80) 	 "The Hacker Papers", Psychology
Today, Vol. 14 (Aug. 1980), p. 67.

(Schm84) 	Schmucker, Kurt J., Fuzzy Sets,
Natural Language Computations, and
Risk Analysis, Computer Science
Press, Rockville, MD, 1984.

(USAF85) 	 Minutes of the Federal Information
Systems Risk Analysis Workshop,
22-24 January 1985, Air Force
Computer Security Program Office,
Gunter AFS, AL [available through
Defense Technical Information
Center, Alexandria, VA].

161

MANAGING DIFFUSE RISKS FROM ADVERSARIAL SOURCES (DR/AS)
WITH SPECIAL REFERENCE TO COMPUTER SECURITY

Dr. Rex V. Brown
Decision Science Consortium, Inc.

7700 Leesburg Pike, Suite 421
Falls Church, Virginia 22043

(703) 790-0510

ABS'£RACT

An essentially new methodological area of
risk analysis is proposed, in which the risks
are multiple and diffuse and the source of
risk is a human adversary. Computer security
is a special case of particular interest.
The methodological needs for both risk
assessment and risk management, dealing with
these types of risk, are defined and related
to the current state-of-the-art in other
branches of risk analysis and decision
analysis. Distinctive analytic techniques
are suggested, extending the existing armory
of analytic tools for risk analysis. Issues
and approaches include: formulation of risk
consequences (e.g., macro models and plural
analysis); evaluating risk consequences
(e.g., via multiattribute utility functions
and alternative devices); predicting adver­
sarial behavior (game theory and decision
analytic models); predicting complex risk af­
termaths (step-through simulation); determin·
ing institutional and social value; specify­
ing the impact of action options; and choice
and implementation of options.

1. INTRODUCTION

1.1 Evolution of Risk Analysis Methodology

Risk analysis, as a distinct field of in­
quiry, has been steadily evolving in terms of
the complexity of risks it addresses, and
thus requires increasingly ambitious analytic
tools. Risk situations might be charac­
terized along two dimensions: the source of
the risk and the effect of the risk. The
source might be represented along a continuum
between non-adversarial and a malevolent ad­
versary. The effect of the risk might range
along a continuum between focused (or exact)
and diffuse (or inexact). These dimensions
of risk analysis are shown conceptually in
Figure 1.

1.1.1 Simple focused risk. non-adversarial
source. Historically, risk analysis research
first addressed the simplest type of risk:
focused risk whose source is nature--i.e.,
non-adversarial. This risk is typified by
the risk faced by insurance companies. Risk
is focused in that it can be expressed along
a single, easily measured dimension, such as
money; and the bearer of the risk is a single
entity, such as a corporation, a joint ven­
ture, or an individual. In some of these
cases, such as life and health insurance,
risk assessment is simplified by the
availability of substantial historical
records, which permit uncontroversial deter­
mination of probabilities. In other cases,
human judgment must play a significant role
in the assessment, typified by a recent case
where Lloyd's of London insured against the
discovery of the Loch Ness Monster (for a
manufacturer of scotch who had offered a mil­

lion pound reward to the happy discoverer).
However, this still remains the simplest case
of risk analysis.

1.1.2 Multiple focused risk. non-adversarial
source. Within the last ten years, risk
analysis research has expanded to consider
more complex risks, ones that are somewhat
more diffuse than the simple risks that are
addressed by insurance companies. This risk
is typified by health or safety risks of the
type addressed by many governmental regula­
tions (see Figure 1). It is somewhat more
diffuse than the first case, because the ob­
jects at risk are multiple and the risks
themselves are multiple, even though the
risks are defined along easily measured
iimensions (such as death and health effects)
~nd the objects at risk are easily specified
(such as human populations). The source of
this risk, however, is non-adversarial, and
is often the combination of nature and tech­
nology (such as drugs or nuclear power
plants). As with life insurance, quantifica­
tion of the risks can typically be anchored
to observed frequencies, but human judgment
has a significant role to play (for example,
in predicting events that have never oc­
curred, such as a reactor core meltdown).

This health and safety area has now achieved
some considerable measure of technical
maturity in predicting, evaluating and manag­
ing the risks involved, with significant sup­
port, for example, from the Risk Analysis
Program at NSF. It uses, among other tech­
niques, personalized (Bayesian) probability
for quantifying risks, and multiattribute
utility theory (MAUT) for trading of death
against disability against economic cost.
The literature in this area is now quite ex­
tensive, and the state-of-the-art is
reasonably represented in the following
selected references: Covello & Menkes1 ;
Keeney & Raiffa2 ; Lave3 ; Ricci, et al. 4 ;
Rowe5 ; Risk Analysis6 ; Schwing & Albers7 •

1.1.3 Diffuse risk, non-adversarial source.
A risk which is substantially more diffuse,
but still non-adversarial (i.e. technologi­
cal) is typified by environmental risk
analysis, where multiple ill-defined effects
are experienced by often equally ill-defined
objects at risk (see Figure 1). Environmen­
tal risk analysis has been spurred during the
past decade or so by the National Environmen­
tal Protection Act (NEPA), the establishment
of the Environmental Protection Agency, and
the resulting requirement for environmental
assessments and environmental impact state

ments for a wide range of projects (Leape8).
Like most health and safety risk analysis, it
is largely motivated by government regula­
tion.

162

1.2 New Risk Analysis Requirements

New categories of risk are now emerging,
which require a new analytic technology,
which can accommodate risk analyses in the
whole plane of Figure 1. That is, where the
objects at risk and the nature of the risk
could be diffuse, and in where the source of
risk could be a malevolent adversary. such
risks might be termed "diffuse risks from ad­
versarial sources" (DR/AS). Most types of
computer security are prime examples of this
type of risk, to be discussed below. Other
examples include theft and sabotage at
nuclear and other energy facilities,
espionage and terrorism in its many forms.
These risks might be characterized as the
points in the top right corner of Figure 1.
Multiple effects are not necessarily diffuse.
One of the multiple effects of environmental
risk might be the destruction of a wildlife
sanctuary, which is quite focused, compared
with the breached security effect of a com­
puter system, which can only be evaluated
with consideration of a possibly complex pat­
tern of "aftermaths" leading, for example, to
possibly harmful uses of information by
potential enemies of the United States.

The existing analytic methodology is not well
adapted to the new levels of complexity in­
troduced by this class of risk. There have
been isolated instances of promising
methodological innovation, developed in the
process of solving specific practical
problems, for example, consequence evaluation
for nuclear safeguards. However, little has
been done to unify or generalize them. sys­
tematic approaches have also been developed
on analogous problems (for example, modeling
adversaries in negotiation and competitive
situations, and modeling complex future
scenarios in military planning). However,
they have not been adapted for, or applied
to, the problem of analyzing and managing
risk.

Although nearly all of recent risk analysis
literature has been on physiological risks
from technological sources plus a little on
environmental risks and on natural hazard
sources (as typified by the coverage of the
journal Risk Analysis), DR/AS risk analysis
has not been entirely lacking. It has, how­
ever, been piecemeal and typically case­
specific. At Decision Science Consortium,
Inc. (DSC), for example, we have performed
risk analyses for nuclear safeguards against
theft, malevolent acts against energy
facilities, and international monitoring of
nuclear proliferation, and methodological
innovations have been developed and applied.
However, such developments have not been sys­
'tematized or codified for general use.

Analytic techniques for modeling diffuse fu­
ture effects are being developed through ap­
plication areas other than risk analysis,
notably defense planning, which needs to take
into account the unfolding of complex
military scenarios. Various forms of
scenario specification and simulation have
been devised including step-through simula­
tion (Ulvila, Brown, & Randall9 ; Ulvil~ &
Brown10), which economizes on mental burden.
These methods are, on the whole, at an early

stage of development and have not been
adapted to problems of DR/AS.

A distinctive aspect of "adversarial source"
of risk is the role of motivation and percep­
tion, which interacts in complex ways with
risk management efforts. For example, where
there are several alternative ways for real­
izing a hazard, (e.g., breaches of informa­
tion security in a computer system, or ways
for a proliferator to divert nuclear
material), a risk manager's success in block­
ing one path, if perceived by the adversary,
may lead the latter to reassign his effort in
other directions. Again, analytic approaches
to this class of problem have been attempted
in non-risk fields, notably game theory (Luce
& Raiffa11 ; Shubik12), and the use of
prescriptive decision analysis models to pre
diet adversarial and other human behavior.
For example, Brown .et a1. 13 uses prescriptive
decision analysis models to predict NATO
response to an impending Warsaw Pact attack.

Interactive decision theory, which incor­
porates concepts from both decision analysis
and game theory, has been developed for nego­
tiation applications, and also has suggestive
analogies with the case of DR/AS risk
analysis (Raiffa14 ; Ulvilal5).

1.3 Computer Security as a Special Case

Most computer security risks are special
cases of this new area, but some types (e.g.,
computer theft) have focused effects (money),
and others have non-adversarial sources
(e.g., computer reliability).

The tools currently available for risk
analysis within the computer security com­
munity draw very little on previous risk
analysis work, partly because the computer
security community is generally unaware of
this work and partly because computer
security problems, being largely DR/AS, have
not always been readily amenable to many of
the traditional risk analysis techniques.
The computer security community has, in the
main, been using ill-fitting adaptations of
risk analysis methods that were developed for
significantly different problems. One of
these is the Annual Loss Expectancy (ALE)
method (FIPS PUB 65) based on practices in
the insurance business, where the risk of
concern is that of losing money in insurance
claims. Usually these methods are not ap­
propriate in situations where the cause of
the risk is a human adversary and where the
effects of the threat are diffuse. With com
puter security, there may be a human adver­
sary, such as a "hacker" (Levy16) and the ef­
fects of the threat are diffuse because once
data is compromised, it may be impossible to
precisely specify the effects.

In computer security, multiple risks must be
considered, and these risks are not always
easily quantified (as contrasted with money,
injuries, or deaths) • The threats will vary
from one installation to another. The coun­
termeasures available to ha~the threats
include not only technical measures, but also
physical and administrative security tech­

163

niques. As in many other areas, there are
very little case data available.

2. RESEARCH NEEDED

Specific analytic techniques need to be
developed to address the distinctive features
of risks which are multiple and diffuse and
the source of risk may be a malevolent adver­
sary. Computer security would be an excel­
lent special case to exercise them on.

Developing an appropriate methodology for
DR/AS problems can build on past work, such
as the state-of-the-art of risk analysis as
used in conventional application areas (Risk
Analysis6), case studies, completed and ongo
ing, of specific attempts to analyze computer

. 17security and other 	DR/AS problems (Brown);
a review of decision science methodology for
problems analogous 	to DR/AS (Brown, et
al.13); and initial efforts to develop a
methodological paradigm for the new dimen­
sions (Brown & Lindley18 ; Ulvila & Brown10 ;
Brown & Feuerwerger19).

In keeping with standard risk analysis prac­
tice, we distinguish two analytic tasks:
risk assessment and risk management. Risk
assessment involves quantifying the probabil ­
ity of unfavorable outcomes in the absence of
any deliberate intervention. Risk management
involves the evaluation of potential measures
to manage the risk, i.e., to reduce it or its
consequences. Both phases involve identify­
ing potential relevant consequences, their ·
probabilities of occurrence, and their eval­
uation if they do occur.

An appropriate unifying methodological
perspective is that of personali~ed decision
analysis, which incorporates human judgment
in quantifying uncertainty and value in the

. "b" t" (R "ff 20process of prescr1 	1ng ac 10n a1 a ;
Brown, et al.21). A schematic outline of one
such ~nalysis is given in Figure 2.

For this new type of DR/AS problem, we sug­
gest that its methodological needs for both
risk assessment and risk management need to
be defined and related to the current state­
of-the-art in other branches of risk analysis
and decision analysis. Within this new area,
we propose a research plan for developing
methodologies. where the needs are greatest
and with special application to of computer
security. The methodology can be exercised
on live cases, primarily in the process of
conducting a complete risk analysis for an
unclassified version of a live problem of
computer security at a large defense
facility. We now describe this plan more
fully.

3. 	 DELINEATING THE NEW TYPE OF RISK ANALYSIS
(DR/AS)

To set the stage for a broader program of
methodological and 	data gathering research we
argue that DR/AS is a class of risks
(typified by large areas of computer
security, nuclear safeguards, espionage and
terrorism) that is 	distinguished from the

more conventional areas of risk analysis in
similar ways, such that they could be use­
fully studied together, leading to the
development pf a unified.methodology. The
dominant distinguishing features shared by
this class o·f problem refer to the nature of
the risks and their sources as.they bear on
methods for assessing them and evaluating
their seriousness.

The features are the diffuseness of the risks
(including multiple dimensions, multiple and
ill-defined risks, and uncertain consequences
extending over time); and the fact that the
major source of risk is a human adversary
(whose behavior is not susceptible to the
same prediction methods as inanimate or a~
least nonmalevolent sources) •.There may be
other dimensions of analogy or disanalogy to
be explored.

As shown in Figure 	1, not all risk analysis
problem areas fall 	cleanly in or out of the
DR/AS category. For example, theft of
proprietary data stored in a computer system
("Computer theft" in Figure 1), as a sub­
category of computer security, has the ele­
ment of an adversarial source (e.g., the
thief), but the risk itself may be monetary
(and to this extent has much in common with
the finan~ial risk 	facing insurance
companies') • Conversely, there are areas .
where th~ risk is diffuse (such as certain
kinds of'environmental impact), but the
source is inanimate and technological and in
this respect similar to health and safety
risk analysis (see 	Figure 1).

special ·attention needs to be paid to -che
distinctive metho~ological needs of computer
security as a legitimate area of risk
analysis research in its own right•.A DO~­
spons6red workshop 	on computer secur1ty r1sk
analysis, chaired by Lance Hoffman of George
washin9ton University22 , was recently held.
It was suggested there that a general concep­
tual model for computer security can be
developed and used to model unauthorized dis­
closure, destruction, modification of data
and denials of service from the point of view
of risk analysis. The problem of setting .a
value on intangibles deserves to be examined,
as well as problems involved in characteriz

ing and propagating uncertaint~es. (Brown23)
which are to date almost unrecognized by the
computer security community. Also of inter­
est are problems in communicating computer
security risks to various r~sk management ac­
tors (e.g., Congress and facility managers)
and constituency groups (e.g., segments of
the general public, system manufacturers and
vendors, end-users, government
administrators).

4 • DEVELOPING SELECTED METHODOLOGIES
FOR DR/AS PROBLEMS

Specific pieces of new methodology need to be
developed to address the most serious
deficiencies in the current state-of-the-art
applied to DR/AS risk analysis problems, in
the light of the results of the effort
described in Section 3. They can be il ­
lustrated in the context of computer security
and other DR/AS examples, and address both of

164

the standard divisions of risk analysis:

risk assessment and risk management.

.4.1 Risk Formulation

We are concerned with risky situations where
the possible consequences are diffuse, .i.e.,
they cannot readily be characterized by a few
simply specified standard events or measures,
such as monetary costs, a core-melt accident,
or a number of deaths. The question: "What
is risk?" cannot be simply formulated in
operational terms and, indeed, the appropri­
ate formulation may vary with the situation
and defy standardized definition.

Alternative methods and principles for for­
mulating risk deserve investigation. At this
time, it appears that four possibilities show
a high degree of promise. First, risk might
be specified in a "macro model" containing
few high-level, abstract attributes that
could be expected to span the range of con­
cerns in given risk assessment. For example,
computer security risk might be specified
along such attributes as national security,
economics, privacy, cost, civil liberties,
and others. As another example, a macro
model of the risk of nuclear material theft
(shown in Figure 3) might specify risk along
the attributes of material stolen, deaths,
damage, possession of material by adversary
at any time, appreh~nsion of adversary,
penetration of safeguard system.

·Second, the macro model might be extended to
represent the risk from the points of view of
several different constituencies. For ex­
ample, the risk at a u.s. government computer
facility might be represented from the point
of view of the facility manager, the U.S.
legislature, and several segments of the
public. As another example, the risk of
nuclear material theft might be represented
from the points of view of facility manager,
government regulator, and society, as il ­
lustrated schematically in Figure 2.

Third, since macro models may be too highly
aggregated and broad to represent all impor­
tant details of the risk, a series of
"feeder" models may be developed and incor­
porated into the modeling process to provide
detailed analyses of the most important
aspects of risk. For example, a macro model
of nuclear power plant risk might use a
feeder probabilistic risk assessment (PRA) to
provide a detailed analysis of the magnitude
of accidental exposure to radiation.

Fourth, since no single specification of a
diffuse risk is always adequate for all pur
poses, techniques of "plural analysis" (Brown
and Lindieyl8) should be investigated.
Plural analysis involves pursuing two or more
separate approaches to the same problem and
then formally reconciling or pooling the dif­
ferent results.

4.2 Consequence Evaluation

In additien to problems of formulating risks,
situations with diffuse risks pose problems
in evaluating the consequences of the risk.
The problem is due primarily to the need to
characterize multiple attributes of risk.

Thus, not only do the individual attributes
need to be assessed, but comparisons across
different categories of risk must be deter­
mined. For example, in computer security
risk, total risk might be characterized in
terms of national security, economics,
privacy, cost, and civil liberties, and
others. As assessment of total risk requires
a method to compare a level of risk on one
attribute with the level of risk on another
attribute. MUltiattribute utility analysis
(Keeney and Raiffa2) offers a promising

method for development such comparisons.

It is worth exploring general ways, both of
defining appropriate scales for multiat ­
tribute utility analysis, and of deriving
value parameters that compare different at ­
tributes. The methods can be exercised in
the context of computer security. A tenta
tive example is presented i~ Brown17 , which
evaluates alternative national computer
security policies. One might also build on
other related work which involved developing
an index of hazard for radioactive waste,
which is reported in watson24 • This involved
field work to elicit value judgments from
three sources: members of the general
public, the responsible Government ad­
ministrator, and technical experts. The
analysis can be either weakly or strongly
quantified (see Figures 5 & 6, respectively).

4.3 Modeling the Aftermath of a Risk Event

An alternative method to macro models for
handling diffuse risk is Monte Carlo simula­
tion, where complex possible consequences of
aftermaths to a risk are represented as a
sampling of possible complete paths. How­
ever, for diffuse risks, the conventional
Monte Carlo simulation requires specifying
probabilities for all possible contingencies
and poses an unmanageably heavy burden. We
have developed an alternative, called "step­
through simulation," in the context of dif ­
fuse consequences of military actions, where
an expert and a model interact in producing
each trial (Ulvila, Brown, and Randall9 ; Ul­
vila & Brown10).

4.4 Modeling Adversarial Behavior

The methodological significance of the
"adversarial source" of risks is that an­
ticipation of deliberate, hostile numan ac­
tion requires special assessment techniques,
which are not appropriate for inanimate, or
at least nonadversarial, sources of risks
(c.f. human error in the operation of nuclear
plant). A major avenue to be explored is
modeling the decision processes of the adver­
sary.

Game theory (Luce and Raiffa11 ; Shubik12) is
one implementation of this idea, though the
need for restrictive assumptions on the
rationality of behavior and extensive infor­
mation available to the adversary severely
limit the practicality of this approach.

'
A more promising alternative is to anchor
prediction of an adversary's behavior to that
which a decision-analytic model of his choice

165

would indica~e. This has been used in a
study concerned with probabilistically pre
dieting a NATO response to an impending War
saw Pact attack (Brown et al. 13). The
literature for predicting deliberate, but
nonadversarial, human action can also be
reviewed for applicability.

A key element in this prescriptive approach
to prediction, which needs substantial
development, is handling the slippage between
prescription and prediction, acknowledging
the fact that the adversary may not behave as
the decis~on analysis of his choice would in
dicate. The psychological work of Duncan

Luce25 and the interactive decision analysis
work of Howard Raiffa14 provides a starting
point. There has also been some more
specific work on this problem, in the context
of predicting nuclear theft behavior of
malevolent acts against energy facilities·
(Hill26).

5. CONCLUSION

The object this paper has been only to get
out, for comment and suggestion, some
preliminary ideas on what might constitute a
fruitful new area of risk analysis. We
believe it will call for distinctive--and
major--research and methodology development,
on a scale comparable to that which has been
devoted in recent years to health and safety
risk analysis.

REFERENCES

1. Covello, V.T., & Menkes, J. Issues in

risk analysis. Hohenemser, c., and Kasper­

son, J.X. (Eds.). Risk in the technological

society. AAAS Selected Symposium 65.

Boulder, co: Westview Press, 1982, 287-301.

2. Keeney, R.L., & Raiffa, H. Decisions.

with multiple objectives: Preferences and

value tradeoffs. New York: Wiley, 1976.

3. Lave, L.B. (Ed.). Quantitative risk

assessment in regulation. Washington, DC:

Brookings Institution, 1982.

4. Ricci, P., Sagan, L., & Whipple, c.
(Eds.). Technological risk assessment. Al­
phen an den Rijn, The Netherlands: Sijthoff
and Noordhoff, 1983.

5. Rowe, W.O. An anatomy of risk. NY:

Wiley, 1977.

6. Risk Analysis, Special issue on nuclear

probabilistic risk analysis. Vesely, W.E.

(Guest Ed.), December 1984, ~(4).

7. Schwing, R.c., & Albers, W.A (Eds.),
Societal risk assessment. NY: Plenum Press,
1980, 181-216.

8. Leape, J.P. Quantitative risk assessment
in regulation of environmental carcinogens.
Harvard Environmental Law Review, 1980, ~'
86.

9. Ulvila, J.W., Brown, R.V., & Randall 1
L.S. step-through simulation: A method for
implementing decision analysis (Technical
Report 76-18). McLean, VA: Decisions and
Designs, Inc., November 1976. (NTIS No. AD
A036969).

10. Ulvi~a, J.W., & Brown, R.V. Step­
through s1mulation. Omega: The Interna­
tional Journal of Management Science, 1978,
§(1)' 25-31. .

11. Luce, R.D., & Raiffa, H. Games and
decisions. New York: Wiley, 1957.

12. Shubik, M. Game theory in the social
sciences. Camgridge, MA: M.I.T. Press,
1982.

13. Brown, R.V., Kelly, c.w., III, stewart,
R.R., & Ulvila, J.W. A decision-theoretic·
approach to predicting the timeliness of NATO
response to an impending attach (U). Jour­
nal of Defense Research, May 1977, Special
Issue 77-1 (Crisis Management), 126-135.

14. Raiffa, H. The art & science of nego­
tiation. Cambridge, MA: The Belknap Press
of Harvard University Press, -1982.

15. Ulvila, J.W. Decisions with multiple
objectives in integrative bargaining.
(Doctoral dissertation, Harvard University,
Graduate Schoo~ of Business Administration,
1972). Dissertation Abstracts International,
1979, 40, 1594A. University Microfilms No.
79-20985.

16. Levy, Steven. Hackers: Heroes of the

computer revolution. Garden City, NY: An­

chor Press/Doubleday, 1984.

17. Brown, R.V. Personalized decision

analysis as an expert elicitation tool: An

instructive experience in information

security policy (Report to OTA - Task 2)

(Technical Report No. 85-9). Falls Church,

VA: Decision Science Consortium, Inc.,

February 1985.

18. Brown, R.V., & Lindley, o.v. Plural

analysis: Multiple approaches to quantita­

tive research. Theory and Decision, 20,

1986, 133-154.

19. Brown, R.V., & Feuerwerger, P.H. A mac­
remodel of nuclear safeguard effectiveness
(Interim Report PR 78-6-80). McLean, VA:
Decisions and Designs, Inc., March 1978.

20. Raiffa, H. Decision analysis. Reading,
MA: Addison-Wesley, 1968.

21. Brown, R.V., Kahr, A.S., & Peterson,
C.R. Decision analysis for the manager. New
York: Holt, Rinehart, and Winston, 1974.

22. Hoffman, L.J., A research agenda for
computer security risk analysis (draft).
Report on a DOD-sponsored workshop,
Washington, DC: The George Washington
University, Department of Electrical En­
gineering and Computer Science, January 1986.

166

2 3 • Brown, R. v. ..,A'-=s"'s,.,e,_,s""s""m="e..,n""t"'-u=n""c'-"'e"'r'"'t'""a;.oi..,n~t=-yz:.__;a,._n~d
the firmness of information: A decision-
oriented methodology. Falls Church, VA:
Decision Science Consortium, Inc., May 1986.

24. Watson, S.R. An index of hazard from
radioactive waste (Technical Report).
McLean, VA: Decision and Designs, Inc.,
1977.

25. Luce, R.D. Individual choice behavior:
A theoretical analysis. New York: Wiley,
1959.

26. Hill, G.A. Societal consequences of
malevolent situations: Implications for
safeguards policy (Technical Report 81-8).
Falls Church, VA: Decision Science Consor­
tium, Inc., May ·1982.

ACKNOWLEDGEMENT

The author wishes to express appreciation to
Lance Hoffman, who provided stimulus to work
on this topic and suggested the idea for the
principal figure here; and to Granger Morgan
for some basic insights into the problem.

167

"ADVICE MOST NEEDED ••• "

THE ASSESSMENT AND ADVICE EFFORT

Deborah M. Claxton

Department of Defense

9800 Savage Road

Fort George G. Meade, MD 20755

Abstract

The intent of this paper is to briefly
inform the reader of the controversy brought
about by National Security Decision
Directive 145. Also, it will present to the
reader an informative report of the
Assessment and Advice (A&A) effort being
carried out by the Applications Systems
Evaluations Office of the National Computer
Security Center (NCSC). The opinion of the
author is that the A&A effort is one of the
best ways for the NCSC to address both the
directive and the controversy. The paper
will:

1) give a brief account of NSDD 145 and
the Center.

2) describe the actual process of an
A&A ­

- for federal agencies which may
wish to have an A&A performed.

- for training computer security
evaluators who are assigned to
an A&A team.

3) encourage management to continue the
A&A effort ­

- for the benefits to the NCSC.
- for the. benefits to the federal

government.

Introduction

There is nothing more
difficult to plan, more doubtful
of success, nor more dangerous to
manage than the creation of a new
system. For the initiator has the
enmity of all who would profit by
the preservation of the old system
and merely lukewarm defenders in
those who would gain by the new
one. 1

Niccolo Machiavelli is credited with
making this enlightened observation in the
early 1500's, but his accurate account of
resistance to change is still very evident
today. A Presidential Directive concerning
the issue of information security in the
federal government has stirred up resistance
on many fronts.

NSDD 1.45

nwith the federal government's need for
computer security so acute and so obvious,
it's a shame that the White House's effort
to address the issue has become so mired in
controversy.n2 This quote from an editorial

1 Niccolo Machiavelli, The Prince.

2nsecurity," Government Computer News,
Editorial, 27 September 1985, p. 14.

in the weekly Government Computer News
(GCN) expresses the contention brought
about by National Security Directive (NSDD)
145 wbich was issued by the National .
Security Council on September 17, 1984, and
signed by President Ronald Reagan. The
directive, which is titled the nNational
Policy on Telecommunications and Automated
Information Systems Security,• states these
policy objectives: 1) to assure the
security of telecommunication and automated
information systems that process and
communicate classified and other sensitive
national security information, and 2) to
offer assistance in the protection of
certain private sector information. The
National Security Agency has been named as
the leading authority for accomplishing
these objectives.3 ·

Opposition to this directive has many
concerns, ranging from the American Civil
Liberties Union's concern for freedom of
information, through a government agency's
security specialist who says, 0 We don't
want someone else telling us what to do,n4
to ~ome in Congress who are upset that the
pol~cy was made through a directive
des1gned by the National Security Council
~nd signed by the President without public
1nput rather than by legislation which
would receive public hearings and a full
debate in Congress. Mostly, criticism
stems from the leadership position for
information security given to the National
Security Agency.S The GCN editorial
concludes: -- ­

Given the need for federal
computer security, we hope the
agency is up to the task.
Failure could set back the whole
process by several years and many
federal agencies are already
years behind in security
measures.6

Actually, many government standards
concerning computer security were available
prior to NSDD 145. However, these policies
are often ambiguous, outdated, or cite

3u.s., National Security Council,
"National Policy on Telecommunications and
Aut?mated Information Systems Security,"
Nat1onal Security Decision Directive 145
(17 September 1984).

4Eric Fredell, •Agencies Balk at
Control Given NSA,• Government Computer
News, 27 September 1985, p. 19.

5Eric Fredell, 0 Security Directive
Lambasted,n Government Computer News, 19
July 1985, p. 1.

6"Security,n GCN editorial.
168

http:controversy.n2

conflicting information and their "Big Brother." The GCN editorial,
ineffectiveness is evident by the lack of "Security," further explains the "fear of
security in the computer systems of the Big Brothern and suggests how the fear
federal government. might be overcome:

The Office of Management and Budget's
(OMB) Circular A-71 requires that computer
systems with sensitive applications be
certified and accredited. The National
Bureau of Standards' (NBS) Federal
Information Processing Standards Publication
(FIPS PUB) 102 details procedures for
certification and accreditation for federal
agencies and lists more .than eighty federal
computer security policies and guidelines.
Numerous Department of Defense (DoD)
regulations also exist outlining security
requirements, safeguards for classified
information, and modes of operation. Susan
Menke reports the ineffectiveness of these
requirements in an article in Federal Times:

In the past, OMB and. ~0 have
tried with mixed success to force
everyone to think hard about the
risks and consequences (of
computer and computer information
loss) •••• Many agencies remain
overwhelmed by conflicting,
overlapping security directives
and so far haven't made m~ch
piogress•••• Others hold a cynical
laissez-faire view•• ~that they'll
roll with the punches when
something valuable gets stolen.7

NSDD 145 points out that the nation's
security is in jeopardy if the
telecommunication and automated information
systems which process national security­
related information continue to operate as
they have in the past. •The technology to
exploit these electronic systems is
widespread and is used extensively by
foreign nations and can be employed as well
by terrorist groups and criminal elements.nA
With all the policy and regulations
concerning information security that have
been available, no one agency has had the
responsibility to foster computer security.
NSDD 145 has directed that NSA be
responsible for aiding agencies that process
national security information, and now that
NSA has been given this responsibility, the
controversy spreads.

To make NSDD 145 work and ease the
apprehensions of the great opposition, the
National Security Agency has plenty to do.
The ability to influence others toward
greater information security must be used
with aboveboard procedures. The biggest of
the concerns, that in some cases borders on
paranoia, is of NSA's being the Orwellian

7susan M. Menke, •security is More a
Human Issue Than a Technical One,• Federal
Times, 4 November 1985, p. 18.

8NSDD 145.

Probably most of those with
an interest in better security
measures would have been happy if
authority came from anyone ­
anyone but NSA, that is •••• If NSA
is going to smooth the waters,
gain the trust of the agency
ADPers whose cooperation is vital
to this program's success and
hold off revision minded
congressmen, it will have
to••• cooperate with, not dictate
to, the agencies, it will have to
work closely with Congress and
the private sector ••• it will
have to operate much more openly
than it has ever done before•••• 9

NSA must reemphasize this point: it
is the responsibility of each agency,
whether defense or civil, to determine
where and what its most valuable assets
are, and what the consequences of exposure
of those assets would mean to each
agency.The point was clarified by Assistant
Secretary of Defense, Donald C. Latham,
when he testified before a House
subcommittee that the directive:

Does not make NSA the
government's oversighter of all
civil agencies ••• and allow them
into everybody's computers and
tell them what to do•••• only
where appropriate will there be
any assistance to the civil
sector. (The assistance from NSA
will be advice and information in
most cases) •••• Implementation of
security measures is the
responsibility of the federal
departments and agencies, not the
director of NSA or the DoD.lO

Sensitive applications must be certi~ied
and accredited; moreover, the process· of
accreditation is an integral part of system
security. NSA's role is to provide
guidance to departments and agencies.

The technical experts for information
security are available at NSA, and their
knowledge is available for those who need
help with computer security issues in their
own agencies. Once these agencies, the
customers, have requested computer security
assistance from NSA, the technical experts
must keep in mind that their job is to
provide a service to those customers. Open
lines of communication and a professional
attitude on the part of the NSA experts
will add much to the effort to allay the
opposition's fears. A large part of the

9"security," GCN editorial.

10Eric Fredell, "Latham: NSDD 145 Does
Not Restrict Agency Roles," Government
Computer News, 11 October 1985, p. 16.

169

http:elements.nA

success with which NSA fulfills its mission
as the leader for fostering information
security is de~endent upon the National
Computer Secur 1ty Center (NCSC) , the
organization within NSA where the computer
security experts work. ·

The Center

With NSDD 145, the Department of
Defense Computer Security Center (DoDCSC)
became the National Computer Security
Center; however, more than just the name has
been changed. The Center's mission and
responsibility have expanded to include not
only the DoD but also the civil sector (non­
DoD departments and agencies of the
Executive Branch) of the Federal Government
where appropriate. ("Where appropriate"
means having systems which deal with
classified information or other national
security-related information.)

The Department of Defense Computer
Security Center (DoDCSC) was formed in
January, 1981, with a major goal stated in
its charter of "encouraging widespread
availability of trusted computer systems by
those who process classified or other
sensitive information." The Center has
followed a strategy to improve the level of
data security in computer systems throughout
the Department of Defense by various
efforts. The strategy has been to emphasize
the need to install state-of-the-art secure
"trusted" systems and to promote the
availability of those systems .11

The task of the new mission is a
tremendous one, but the effort to contact
the more than two million federal employees
who need to become aware of computer
security has begun. Two upper level
management representatives from the Center
have been circulating to various federal
agencies in an attempt to open the lines of
communication with federal managers. The
purpose of this contact has been to provide
information about the Center and to identify
computer systems used by the organization.
A new "desk officer" program has also begun
with the purpose of providing a point of
contact for the federal agencies in their
dealings with the Center.

It is obvious, however, that the lack
of both resources and time will hinder the
Center's ability to reach two million
federal employees. The enormity of the task
has been described as such by the Center:

llu.s., Department of Defense, DoD

Computer Security Center, Department of

Defense Trusted Computer System Evaluation

Criteria, CSC-STD-001-83 (15 August 1983),

p. l. .

Although NSDD 145 gives NSA
the responsibility for automated
information systems processing
national security related
information, we at the NCSC will
only be able to help those civil
agencies that process national
security related information and
request our assistance.l2

An Office Level Management Review
(OLMR) report from the Applications Systems
Evaluations Office advocates better use of
existing resources to address the NSDD 145
tasks. The report states that a greater
service will be provided by giving sound
advice and support to many projects rather
than devoting resources to long term, in­
depth analysis of a few systems. The best
means of providing support to many is
through short term undertakings. Short
term efforts will benefit not only the
customer, but also the Center.l3 Benefits
to the customer would be giving the
customer a service that is much needed, and
helping the customer agency build its own
computer security expertise. Benefits to
the Center would be building the Center's
own knowledge base, on-the-job training for
new computer security analysts, and
improving public relations for the Center.

Short term efforts which are available
for both DoD and civil sector customers
include:

1) 	 introductory briefings:
information on the threats and
vulnerabilities of untrusted
computer systems and how to
reduce risks, presentation of
services which can be provided,
and educational information;

2) 	 technical consultations:
meetings arranged at the request
of the customer to discuss
particular areas of concern or
general computer security issues;
and

3) 	 Assessment and Advice (A&A)
studies: on-site technical
analyses in suiport of any phase
of a project.l

12Letter to Ms. Jean Smith of the
Congress of the United States, Office of
Technology Assessment from the National
Computer Security Center, (3 December
1985).

13"0ffice· Level Management Review
(OLMR) Summary Report," 10 December 1985,
National Computer Security Center.

14Briefing at the National Computer
Security Center, Ft. Meade, MD, 22
November 1985.

170

http:Center.l3
http:assistance.l2

Again, these short term endeavors must
be accelerated to create the most benefit to
everyone concerned. In particular,
concentration upon the Assessment and Advice
effort can help generate the greatest
service in the least amount of time to
customers, and can provide the Center's
analysts with the knowledge of systems
currently being used throughout government
agencies.

and a questionnaire or survey form provided
to the customer, completed promptly by
customer personnel knowledgeable of the
system and returned to the team of analysts
at the Center. A generic questionnaire is
currently being produced by analysts in the
NCSC for use in A&A's. Scheduling for the
physical site visit should take into
consideration the preparation and review of
documentation which the team must make.
Classification or some type of protection

A&A's

An Assessment and Advice effort is not
an inspection, certification, or risk
analysis but rather is a technical analysis
of the computer security posture of a
particular system and advice to the customer
about vulnerabilities of the system. The
A&A will identify security problems and
propose reasonable solutions that are
achievable by the cu.stomer. In addition to
immediate suggestions to improve computer
security, long term planning suggestions are
provided.lS These suggestions will enable
the customer to assume a self-help posture
and to do more for themselves with the
Center providing counseling and tools to
help them.l6

Preliminary Planning

The process of an actual A&A is a
structured operation. Preliminary planning
begins with tasking from the customer in
writing. This is important for a clear
understanding of what is expected and what
will be done by all involved. All
"buzzwords" must be clearly defined,
especially the fact that an assessment is
not a full-fledged certification. The
difference between these two technical
analyses of systems, one analyst explained,
is that during an assessment, the computer
security evaluators consider the system
documentation, procedures and personnel as
witness to the security of the system;
whereas, in a certification, the security of
the system must be proven, tested and
validated by the analysts.l7 Also defined
in the tasking should be the policy or
criteria with which the system will be
compared. Good communication from the
beginning of the A&A effort is very
important.

Acceptance of the tasking should
clarify in writing all that will be done for
the customer with an outline of the
milestones for completing the process of the
A&A. The customer must provide information
to the team of computer security analysts
who will perform the A&A. The information
needed consists of documentation and manuals
pertaining to the system to be assessed

15Ibid.

16oLMR Summary Report.

17rnterview at the National Computer
Security Center, Ft. Meade, MD, 4 September
1985.

for the final assessment report is
necessary for the confidentiality of the
information between the customer and the
Center. Some customers may need special
charters to protect the information from
Freedom of Information Act inquiries.l8
The customer should be advised to submit
this information to the team .so that proper
classification procedures can be followed.

Having accepted the task, the team of
analysts must keep an open line of
communication flowing between the customer
agency and the Center. It is very
important that the customer furnish
necessary information mentioned as quick.ly
as possible. Without the documentation,
manuals and the completed survey, the
evaluators cannot begin to familiarize
themselves with the system to be assessed.
Friendly communication will encourage the
customer to deliver the materials promptly.
Once the materials have been received, a
quick call or note keeps the customer
informed and lets them know that the A&A is
progressing. If scheduled milestones or
times must be adjusted, being honest with
the customer and not making promises which
cannot be kept are part of the professional
attitude which the team from the Center
must present. The team's own management
must be informed of the progress of the
A&A, with what the team is doing and the
time frame for activities planned.

The actual job at hand for the
assessment team is to become familiar with
the system before the on-site visit. This
preparation allows team members to ask
intelligent, well-thought out questions of
site personnel and prevents the necessity
of being briefed "from scratch" by them.
If the system is a large one, tasks might
be broken down, and smaller teams formed to
concentrate on specific technical areas and
questions concerning these areas. A point
which the analysts must remember during the
review of material is that they must not
make premature judgments of the system
which are unsupported by facts. Unclear
areas in documentation may easily be
explained by the site personnel if the
analysts have not already formed an adverse
opinion. In addition to computer security
knowledge, each member of the A&A team must
also be

18u.s., Department of Commerce,
National Bureau of Standards, Guideline for
Computer Security Certification and
Accreditation, Federal Information
Processing Standards Publication 102
(1983), p. 64.

171

http:quick.ly
http:inquiries.l8
http:analysts.l7
http:provided.lS

. -~

armed with skills for briefings,
interviewing, and report writing. Advanced
preparation by all team members benefits the
Center by presenting a professional
appearance to the customer. Prepa~ation
thus increases the customer's conf1dence in
the conclusions and recommendations made by
the Center's computer security specialists
during the physical site visit and in the
final assessment report •

On-site Visit

The on-site visit itself is of short
duration, from two to five days. Here, the
analysts confer with customer personnel who
know the system. The physical site visit
gives the technical team the opportunity to
examine the environment in which the system
actually operates and the procedures which
personnel follow when using the system. The
existence of most physical and
administrative controls such as locks,
guards and written logbooks can be seen
during the visit. Controls internal to the
machine such as passwords and audit trails
can be shown in demonstrations and verified
during the interviews with customer
personnel. The intent is simply to show the
existence or lack of proper controls.
Active penetration testing as performed in a
certification effort is beyond the scope of
an A&A. The visit consists of several
meetings for which the customer must arrange
facilities and personnel.

Generally, the visit commences with an
in-briefing. The in-brief consists of a
reconfirmation of the tasking, what is to be
done during the visit, and general
information on the final report. Following
this briefing, a session is led by the
customer who ~resents a general overview of
the system, general concerns to be covered,
a visit to the computer and terminal areas,
and demonstrations of the system.

The team then proceeds to interview a
variety of site personnel, whether they be
users, operators, programmers, managers, or
system security officers, who are
knowledgeable of technical aspects of the
system. Interviews are a form of
interpersonal communication and subject to
the usual problems of misunderstandings.
Team members must strive to prepare well for
the interview so that they already know the
answers to the questions that they ask and
are, therefore, simply verifying information
that they have already gathered. The
objective of the reviewer during the
interview is to solidify an informed opinion
which is then presented in the final
assessment report. Again, advanced
preparation aids the team in obtaining
proper information and is crucial to a
successful assessment.20

20Ibid., p. E-1.

Once all interviews have taken place,
the computer security team meets in a
private session to discuss their findings
and concerns. Since a team decision is made
concerning the security posture of the
system which they have just examined, the
team members work as a body to formulate the
decision and suggestions which are
incorporated into an out-brief during the
visit, and finally, in the written
assessment report.

The out-briefing is essentially a short
form of the final report. The findings,
conclusions and recommendations determined
by the technical team are addressed. Now,
the customer knows what to expect in the
final report; there will be no surprises.
Conclusion of the on-site visit leaves only
paperwork to be done by the team.

Final Report

The final assessment report
containing information gathered during the
preparation period and the physical site
visit is written and delivered to the
customer as quickly as possible. Time
frames agreed upon in initial acceptance of
tasking normally target completion of the
report within 30 - 60 days after the site
visit. The final report presents an
informed opinion of the security posture of
the system and computer security advice to
the customer. A basic part of the report
contains information on how the system meets
the policy requirements to which it should
conform. Whether the requirements be a
Criteria class or the customer's own
standards, the policy to consider has been
agreed to by management in the initial
tasking.

Contents of the report consist of how
the current system "stacks up" to the
policy, concerns specific to the system,
possible solutions to any vulnerabilities
found, guidance for the future of the
system, and encouragement for the customer
to continue the pursuit of computer
security. Each of these points should be
covered during the out-brief for the
customer, and the final report just expands
on those points. Classification guidance
for the report which was specified by the
customer agency must be followed. Again,
credibility for the Center grows with a
timely completion of the report and its
submission to the customer.

Conclusion

The Assessment and Advice effort is an
excellent tool which the Applications
Evaluation Office can employ in fulfilling
the mission of NSA and the Center defined in
NSDD 145 and attempting to quell the fears
of those who oppose that directive.
Continuation of these short term projects
will quickly aid in the Center's goal of

I

172

http:assessment.20

being viewed as a "help not a hindrance."20
In addition, the knowledge base of the
Center itself will also benefit.

"Organizations are always involved in
some process of transformation•••• Healthy
organizations are responsive to feedback,
using it in part, as a basis for future
messages, policies and actions."21
Hopefully, A&A customers will be open to
suggestions that the Center makes; and
hopefully, from those customers that are
served, word will spread that the Center is
doing a service and doing it well.
Hopefully, the old adage, "Advice most
needed, seldom heeded," will not be the
standard which the agencies follow. A
willingness to cooperate and work together
helps everyone get on the right track toward
information security.

Summary

"All organizations must remain
relatively open in order to survive.
Organizations cannot exist as static
systems•••• "22 This fact is evident even
within an organization as large as the
federal government of the United States. As
the National Security Agency and the
National Computer Security Center address
the critical need for computer security in
the information systems of federal agencies,
it is hoped that those agencies will have
the ability to accept the advice which they
are given and to facilitate needed changes.

Real security for electronic
information does not result from
rules on pieces of paper,
assignments of people, hardware
facilities or software systems ••••
Security depends on people's being
willing to comply ••• to the means
selected for protection,23

NSA and the Center can ease the
resistance to change by employing aboveboard
procedures and by quickly giving help where
needed. Short term efforts, in particular
the Assessment and Advice program, are the
best means for accomplishing this goal.
Computer security in the information systems
of the federal government not only can
happen, it must happen, for the security of
the nation is dependent upon it.

20oLMR Summary Report.

21Patricia Hayes Bradley and John E,
Baird, Jr., Communication for Business and
the Professions, 2nd ed. (Dubuque: William
C. Brown Co. Publishers, 1983), p. 18- 21.

22Ibid, p. 20.

23James A. Schweitzer, Managing
Information Security: A Program for the
Electronic Information Age, (Boston:
Butterworth, (Publishers) Inc., 1982), p. 2.

Bibliography

Bradley, Patricia Hayes, and Baird,·Jr.,
John E. Communication for Business and
the Professions. 2nd ed. Dubuque:
William c. Brown Co. Publishers, 1983·.

Campbell, Robert P. "Tech Faults, Small
Demand Make Security Buys Risky."
Government Computer News, 27 September
1985, p. 19.

"Center Works to Increase Safeguards."
Government Computer News, 27 September
.19851 p, 24 o

Couch, Walter R. "Agencies Need to Identify
Sensitive Applications." Government
Computer News, 27 September 1985,
p. 40.

Fredell, Eric. "Agencies Balk at Control
Given NSA." Government Computer News,
27 September 1985, p. 19.

Fredell, Eric. "DoD's Latham Defends New
NSA Security Role." Government
Computer News, 11 October 1985, p. 1.

Fredell, Eric. "Latham: NSDD 145 Does Not
Restrict Agency Roles." Government
Computer News, 11 October 1985, p. 16.

Fredell, Eric. "Security Directive
Lambasted." Government Computer News,
19 July 1985, p. 1.

Fisher, Dalmar. Communication in
Organizations. St. Paul: West
Publishing Co., 1981.

Fisher, Royal P. Information Systems
Security. Englewood Cliffs, NJ:
Prentice- Hall, Inc., 1984.

Greene, Josephs., Jr. "DoD Overview:
Computer Security Program Direction."
Proceedings of the 8th National
Computer Security Conference.
Gaithersburg, MD: n.p., 1985,
pp. 6-10.

Harvey, L. James. "Flexibility to Face
Change
Computer News, 8 November 1985, p. 31.

Hoffman, Lance J, "PC Software for Risk
Analysis Prove Effective." Government
Computer News, 27 September, p. 58.

"ICST Specialist: Security Depends on
Environment." Government Computer
News, 27 September 1985, p. 28.

Levine, Arnold s. "Conference Looks at
Results of Security Efforts.•
Government Computer News, 8 November
1985, p. 64.

173

Levine, Arnold s. "Energy Explains Dept.
Security Problems, Solutions."
Government Computer News, 8 November
1985, p. 65.

Marti·[l, James. Security, Accuracy, and
~rivacy in Computer Systems. Englewood
Cliffs, NJ: Prentice Hall, Inc., 1973.

Menke, Susan M. 0 Security is More a Human
Issue Than a Technical One." Feder~l
Times, 4 November 1985, p. 18.

McLoughlin, Glenn. °Congress Addresses
Crime and Security." Government
Computer News, 27 September 1985,
p. 19.

National Computer Security Center. Letter
to Ms. Jean Smith of the Congress of
the United States, Office of Technology
Assessment. (3 December 1985).

National Computer Security Ce.nte.r. "Office
Level Management Review (OLMR) Summary
Report. 0 (10 December 1985).

Parker, Donn B. Computer Security
Manaqement. Reston, VA: Reston
Publishing Co., Inc., 1981.

Parker, Donn B. Fighting Computer Crime.
New York: Charles Scribner's Sons,
1983.

Schweitzer, James A. Managing Information
Security: A Program for the Electronic
Information Age. Boston: Butterworth
(Publishers) Inc., 1982.

0 Security.n Government Computer News,
Editorial, 27 September 1985, p. 14.

Stahl, Taro and Shumar, Chuck. "Restricting
Access is New Challenge to Mgmt.n
Government Computer News, 27 September,
1985, p. 56.

u.s. 	Department of Commerce. National
Bureau of Standards. Guideline for
Computer Security Certification and
Accreditation, Federal Information
Processing Standards Publication 102
(1983).

u.s. 	D,epartment of Defense. DoD Computer
Security Center. Department of Defense
Trusted Computer System Evaluation
Criteria, CSC-STD-001-83 (15 August
1983).

U.S. 	 National Security Council. 0 National
Policy on Telecommunications and
Automated Information Systems
Security,n National Security Decision
Directive 145 (17 September 1984).

Wong, Kenneth K. Risk Analysis and Control.
Rochelle Park, NJ: Hayden Book Co.,
Inc., 1977.

174

A MODEL OF INFORMATION

David Sutherland

Odyssey Research Associates, Inc.

1283 Trumansburg Road
Ithaca, New York 14850

The highest level requirements on a secure
computing system are usually stated ~n terms
of information, that is, they state that
certain information must not be obtained by
certain individuals on the system. Formal
models of computer security to date have
concerned themselves largely with
restrictions on the movement of data. While
these restrictions capture part of the high
level requirements of secure systems, they do
not capture all of tq_em, as witnessed by the
fact that there is a distinction made between
"formal modeling" and ,;covert channel
analysis". True formal verification of a
secure system would incorporate the security
violations usually covered by "covert channel
analysis" into the formal model of the
system.

In this paper we present a simple model of
information and inference, give a generic
instantiation of the model to state machines,
apply the instantiation to a simple example,
and discuss the relationship between the
state machine instantiation and the
Goguen-Meseguer non-interference model.

What is information? What does it mean to
infer information from other information? We
will start with a few naive answers to these
questions.

1 Informa.tion

In answer to the first question, someone who
was used to thinking in terms of formal
specifications of systems might answer "the
values of some collection of state
variables". What's wrong with this answer?
One problem with this answer is that it's not
general enough. Most instances of
information channels involve observing the
values of some collection of state variables
over the course of time; no one instantaneous
value contains the information transmitted.
Suppose we amended the above answer to
"information is the history of some
collection of state variables" where
"history" means "history from time 0 to some
timet". One problem with this second answer
is that, in order to apply it to a system,
the system must be expressed as a state
machine. Not only does this force us to use
a certain representation, but our analysis of
information in the system might be unduly
sensitive to, say, what state variables we
choose. What we wish to do at this point is
generalize the second answer so that it's
independent of how the system is
represented. To do this, we'll look at the

second answer in a little more detail.

For the purpose of this discussion we will
say an abstract state machine consists of:

1. 	 A set of states

2. 	 A set of possible initial states

3. 	 A set of state transformations, by
which we mean a function from states to
states.

The set of states is usually defined by
giving a set of state variables, each of
which has a certain type; a "state" is then
an assignment of each state variable to a
value in its type.

How do we imagine such an abstract machine
actually "running"? We imagine the machine
starting out in one of the possible initial
states, and then changing state over the
course of time as various state
transformations are applied. For each
possible initial state and each sequence of
transformations applied, we get a sequence of
states that the machine passes through.
Thus, an abstract machine defines a set of
possible sequences of states that the machine
can pass through. We will call these
sequences possible execution sequences. We
will regard.time as being measured in· terms
of tne number of state changes the machine
has passed through, so "state at time O"
refers to the initial state of the machine,
"state at time 1 11 refers to the state of the
machine after one application of a state
transformation, and so pn.

Given a collection of state variables v and a
time T, what do we mean by "the history of
the state variables in V from time 0 to time
T"? This "history" is actually a function
(call it h) whose domain is the set of
possible execution sequences. Given a
possible execution sequence s, h(S) is a
finite sequence of length T + 1 such that:

1. 	 The ith entry of h(S) is an assignment
of each 'state variable in V to a value
in its type.

2. 	 For each state variable v in v, the
value assigned to v by the ith entry of
h(S) is the same value assigned to v by
the ith entry of S.

In other words, H takes the first T + 1
entries of S and e.xtracts out the assignments
of the variables in v.

We generalize the above scheme in the
following way: we represent a system as a set
of possible worlds; this corresponds to the
set of possible execution sequences for an

175

abstract state machine. A particular "piece
of information" about the system is
represented as a function whose domain is the
set of possible worlds; we will call such
functions information functions. An
information function can be thought of as a
certain "view" of the system; in a given
possible world w, an information function
returns what is "seen" of w by someone
"looking at" the information function.

2 Inference

We now return to the second question posed at
the beginning of the section: what does it
nean to infer information from other
information? In terms of the formalism
developed above, what does it mean to infer
something about the value of one information
function from the value of another
information function? To answer this
question, we will imagine a user who:

l. 	 knows what the set of possible worlds W
is (this corresponds essentially to
knowing how the system is designed);

2. 	 knows what information function he is
seeing (call it f1) (this corresponds
to the user knowing what his interface
to the system is. If, for example, a
user could see a terminal but had no
idea how the output appearing on the
terminal was being generated, he would
be able to deduce very little about the
system.);

3. 	 knows what information function he
wishes to deduce something about (call
it f2);

4. 	 is "in" some possible world w, and
knows the value of f1 (w) (call it x).

What can the user infer about f2(w)? Since
he knows that f1 (w) = x, he can deduce that w
is in the set of all possible worlds y such
that f1 (y) = x. Call this set s. On the
basis of the above knowledge, all the user
can deduce about w is that it is in s. From
this, he can deduce that f2(w) is in the
image of S under f2. Call this image T. If
there is some value z in the range of f2 that
is achieved in some possible world but which
is not in T, then the user has actually
gained some information about f2(w), namely,
he at least knows that it is not equal to z.
If, on the other hand, every value z in the
range of f2 that is achieved in some possible
world is in T, then the user knows nothing
more about f2 than he could have inferred on
the basis of knowing W and f2 alone. This
leads us to the following definition:

Given a set of possible worlds W
and two functions f1 and f2 with
domain w, we say that information
flows from !.!_ to f2 if and only if
there exists some possible world w
and some element z in the range of
f2 such that z is achieved by f2 in
some possible world but in every

possible world w' such that
f1 (w') f1(w), f2(w') is not equal
to z.

Having given this somewhat complicated but
reasonably motivated definition, the first
thing we will do is note that it is
equivalent to a much simpler statement.

Proposition: Given W, f1 and f2 as above,
information does not flow from f1 to f2 if
and only if the function f1 x f2 from w to
the cross product of the images of f1 and f2
is onto.

£rQQf: Suppose information does not flow from
f1 to f2; we wish to show that f1 x f2 is
onto image(f1) x image(f2). Let (x,y) be an
element of the cross product. Since x is in
the image of f1, there exists a possible
world w1 such that x = f1(w1). Likewise,
there exists a possible world w2 such that
y = f2(w2). If we take the negation of the
above definition with w = w1 and z = y, we
get that there must exist a possible world w'
such that f1 (w') = f1 (w1) = x and
f2(w') = y. In other words,
(f1 x f2)(w') (x,y). Since (x,y) wa~
arbitrary, f1 x f2 is onto.

Conversely, suppose f1 x f2 is onto. Let w
be a possible world and z an element of the
range of f2 that is acheived by f2 in some
possible world (in other words, z is an
element of image(f2)). Then (f1(w),z) is an
element of image(f1) x image(f2) and so there
exists a ~ossible world w' such that
(f1 x f2)(w) = (f1(w),z), i.e.
f1 (w') = f1 (w) and f2(w') = z.

Corollary: the information flow relation is
symmetric.

The corollary seems somewhat surprising at
first glance, since information flow is not
usually thought of as being necessarily a
two-way street. However, consider the
following scenario: a system is designed so
that every character which is typed at
keyboard K is echoed to screen s. Let f1 be
the information function which, given a
possible world, returns the sequence of all
characters typed on K in that world, and let
f2 be the infcrmation function which, given a
possible world, returns the sequence of
characters displayed on S in that world.
Information is obviously being transferred
from K to s, and so we would expect to find
that, according to the definition above,
information flows from f1 to f2. This is
exactly what we do find. By the corollary,
we will also find that information flows from
f2 back to f1, i.e., it will find that,
knowing the value of f1, one can infer
something about f2. But this is in fact
true! If one knows the design of the system,
and one knows what has been typed at K, one
knows something about what shows up on s. A
problem arises, however, if we try to assign
security levels to information functions and
require that information always flow "up." If
we assign K a level "lo" (say, because only
"lo" individuals are allowed to type at it)
and S a level "hi" (say, because only "hi"
people are allowed to view it), we will find
a flow in both directions, violating the

176

security requirement, despite the fact that
the system as described seems secure. The
problem is not in the definition of
information flow but rather in the choice and
labeling of information functions. S may be
a "hi" terminal, but the information it gets
from K is not "hi" information, and thus
should not be labeled as "hi." Actually, the
onl~ information which should be labeled as
"hi is information which comes from high
sources. We will discuss th~rther below
when we instantiate the information model to
state machines.

3 Security Conditions

We now have a model of information and a
definition of information flow. What we need
to complete the model is a definition of
"secure". Informally, a system is secure if
nobody can get information he's not entitled
to. How can we express this in the above
formalism? ·

First of all, each "piece of information"
which has restrictions on who may "get" it is
represented by an information function.
Second, each "entity" on the system which has
restrictions on what information it can "get"
is represented by an information function
corresponding to the entity's "view" of the
system. We will denote the set of
information functions corresponding to pieces
of. information and entities by IF. We
represent the restrictions on which entities
are entitled to "get" which pieces of
information by a binary relation
"legal_to_get" on IF.

How can we formally express the notion of an
entity E "getting" a piece of information I?
If f1 is the information function
corresponding to E and f2 is the information
function corresponding to I, we interpret "E
'gets' I" to mean "information flows from f2
to f1".

Under these interpretations, the informal
statement of security given at the beginning
of the section is formalized as

For all f1 and f2 in IF, if
information flows from f2 to f1
then legal_to_get(f1,f2)

Readers familiar with formal computer
security may at this point be asking "Where
are the security levels in this model?" The
answer is that security levels are a
particular instance of the model. We could
assign security levels to the functions in IF
and define legal_to_get(f1,f2) if and only if
the level of f1 is less than or equal to the
level of f2. This is just one possible way
of defining legal_to_get; the model allows
for others, e.g. discretionary access
restrictions.

4 Summary of the Model

In this section we summarize the information
model briefly. An instance of the model
consists of:

1. A set w of possible worlds

2. A set IF of functions with domain W

3. A binary relation on IF, legal_to_get

Such an instance is secure if and only if for
every f1 and f2 in IF, if information flows
from f2 to f1 then legal_to_get(f1,f2) (where
information flow between functions with
domain w is defined as above).

5 State Machine Instantiation

In this section, we instantiate the
information model given above to a state
machine. We begin by defining what we will
mean by a state machine.

5.1 State Machines

"State machine" will mean a non-deterministic
finite automaton with null moves except that
the state space of the automaton is not
required to be finite. In other words, a
state machine consists of a set of states, a
non-empty set of initial states, an alphabet,
and a set of "arrows." Each "arrow" starts at
one state and points to another; an arrow may
be labeled with a single element of the
alphabet or it may be unlabeled. The
"operation" of the machine is to start at an
initial state and change state in steps, with
each state change accompanied by one or no
letters of the alphabet.

We now add a few extra structures and some
additional axioms. First of all, at this
point we will stop using the word "alphabet"
and refer to the set we formerly called the
alphabet as the signals of the state
machine. The signals of the machine are
partitioned into the input signals and the
output signals. There is also a set of
security levels, partially ordered by a
relation <=, and a function from signals to
levels.

We require that for every state of a state
machine and every input signal, there is an
arrow which starts at the given state and is
labeled with the given signal. In other
words, it is always possible for a sta~e
machine to receive a given signal (even 1f
its only response is to remain in its former

177

state). We also require that for every state any inference made in such a world can only
of the machine there is an arrow which starts take into account the information about the
at the given state which is not labeled with
an input signal. In other--words, it is
always possible for the state machine to "go
ahead", even in the absence of an input.

5.2 	Instantiating the Information Model

We wish to interpret the information model in
terms of state machines. In other words, we
want to give a procedure which takes a state
machine and returns the corresponding
information model. Security for the state
machine is then defined simply as security
for the corresponding information model.
Thus, we need to give a procedure which,
given a state machine, gives a corresponding
set of possible worlds, a set of information
functions for that set of worlds, and a
binary relation on those information
functions defining what information flow~
between them are legal. We now describe this
procedure.

Suppose we have a state machine described by:

1. 	 A set of states S

2. 	 A set of initial states I

3. 	 A set of input signals X

4. 	 A set of output signals Y

5. 	 A set of "arrows" A (we won't give a
completely formal definition of what an
"arrow" ·is, as it would be more
obfuscatory than anything else).

6. 	 A set of levels L with partial ordering
<=

7. 	 A function from Xu Y to L

The set of possible worlds we associate with
this machine is the set of finite sequences
H = { H[i] I 0 <= i <= length(H) - 1 } such
that:

1. 	 Each H[i] is either a state or a signal

2. 	 No two consecutive entries in the
sequence are both signals

3. 	 H[O] is an initial state

4. 	 If H[i] and H[i+1] are states, there is
an unlabeled arrow from H[i] to H[i+1]

5. 	 If H[i] is a state and H[i+1] is a
signal, there is an arrow starting at
H[i] labeled with H[i+1]

6. 	 If H[i] is a state, H[i+1] is a signal
and H[i+2] is a state, there is an
arrow from H[i] to H[i+2] labeled with
H[i+1]

There is actually an important reason why we
have chosen finite sequences rather than
infinite sequences as our possible worlds.
Under the above instantiation, a possible
world is literally a possible run of the
system .!.!12. to 2. given point in time. Thus,

world which has manifested itself up to the
point in time being considered. We can think
of such finite worlds as being initial
segments of some real, complete possible
world (i.e. an infinite sequence), but any
inference must be made at some finite point
in-it. This choice literally affects whether
some systems are formally secure or not, and
the choice we have made seems to make the
"right·" systems formally secure.

For each level 1 in L, we define two
information functions over the possible
worlds defined above:

1. 	 view(l) is the function which, given a
possible world H as above, returns the
subsequence of H consisting of those
signals s whose levels are <= 1

2. 	 hidden from(l) is the function which,
given a possible world H, returns the
subsequence of H consisting of thos.e
input signals s whose levels are not <=
-1-­

Finally, we specify that it is illegal for
information to flow from hidden_from(l) to
view(l) for any 1.

This choice of information functions and
illegal flows is based on the following
picture: there is a collection of "entities"
external to the machine which interact with
it, and each of these entities has a level.
It is assumed that each entity only "knows"
some signals going into and coming out of the
machine, and that an entity of level 1 is
allowed (by procedural safeguards or
whatever) to see at ~ all of the signals
that go into or out of the machine whose
levels are <= 1. The choice of illegal flows
simply reflects the policy that an entity of
level 1 should not be able to deduce from
what it is legal that he see anything about
what it is not legal that he see. Notice
that, according to the instantiation, there
is nothing wrong per se in a low level entity
being able to deduce a high level output
signal. If a high level output signal is
unconnected to any high level input signals,
then it is not a violation of security for a
low level entity to see it. If, on the other
hand, such a high level output has some
connection to a high level input, then this
connection will presumably be reflected as an
information flow and thus an information flow
will be found from the high inputs to the low
entity, violating the policy as stated.

6 An Example

In this section we give a simple example of
the use of the state machine instantiation of
the information model. We will first
describe the machine informally.

The machine is a simple message-passing
system. It consists of a collection of
"ports" and a queue of "message entries."

178

Each port is labeled with a security level lvl (p) <= 1.
indicating what level entities external to
the machine can access the port. Ports can
input messages to the machine, which get put
on the queue in a message entry. The message
entry also contains the information of which
port the message came from. The intended
destination of the message is contained in
the message. When a message entry comes to
the head of thequeue, one of two actions is
taken: (1) if the level of the destination
port is greater .than or equal to the level of
the source port, the message is output to the
destination port and the message entry is
removed from the queue; (2) otherwise, the
message entry is removed from the queue and
no output occurs.

We now describe the above machine formally.
We denote the set of ports by P, the set of
messages by M, the set of security levels by
L, the partial ordering on L by <=, the
function which takes a port and returns its
level by lvl (a function from P to L), and
the function which takes a message and
returns its destination by dest (a function
fromMtoP).

The state of the machine i~ a sequence of
pairs (m,p) where m is in M and p is in P.
The initial state of the machine is the empty
sequence.

A signal of the machine is a triple (m,p,x)
where m is in M, p is in P and x is in the
set {input,output}. Such a signal is an input
Signal if X is "input" and an output signal
if x is "output"• If x is "input", p is the
wort from which the signal came. If X is
output", pis the port to which the signal

goes. The level of a signal (m,p,x) is
lvl(p).

The arrows of the machine are as follows:

For each state s, each m in M and each p
in P, let s' be the sequence s with the
pair (m,p) prepended; there is an arrow
from s to s' labeled with (m,p,input).

For each state s, each m in M and each p
in P, lets'' be the sequences with the
pair (m,p) appended:

* 	 If lvl(p) <= lvl(dest(m)), there is
an arrow from s'' to s labeled with
(m,dest(m),output).

* 	 If lvl(p) is not <= lvl(dest(m)),
there is an unlabeled arrow from
s" to s.

There· is an unlabeled arrow from the
empty sequence to itself.

We will now prove that this machine meets the
security condition of the state machine
instantiation of the information model.

Fix a level 1 in L. We wish to prove that no
information flows from hidden from(l) to
view(l). First, we will define a function R
from states to states as follows: if s is a
state (i.e. a sequence of message-port
pairs), R(s) is the subsequence of s
consisting of the entries (m,p) such that

We want to examine what happens to a possible
world of the machine (i.e. a finite sequence
of states and signals meeting the conditions
described in the previous section) when we
apply R to every state in it. To do this, we
must examine the effect of R on the initial
state of the.machine and the pairs of states
at the ends of the various arrows. ·

The initial state of the machine is the empty
sequence, and R of the empty sequence is the
empty sequence. Thus, R of the initial state
is the initial state. ·

Suppose there is an arrow from s to s'
labeled with (m,p,input); s' must therefore
be s with (m,p) prepended. What do R(s) and
R(s') look like? If lvl(p) <= 1, R(s') is
R(s) with (m,p) prepended, and so there.is an
arrow ·from R(s) to R(s') labeled with
(m,p,input). If lvl(p) is not <= 1, R(s)
equals R(s'). In other words, if the arrow
corresponds to an input signal of level <= 1,
the states at the ends of the arrow are
mapped to states at the ends of an arrow
corresponding to the same input signal; in
this case we will say that R "preserves" the
arrow. If the arrow corresponds to an input
signal whose level is not <= 1, the states at
the end of the arrow are mapped to the same
state; in this case we will say that R
"masks" the arrow.

Suppose there is an arrow from s'' to s
labeled with (m,dest(m),output). s'' must
therefore be s with (m,p) appended for some p
such that lvl(p) <= lvl(dest(m)). In this
case, if lvl(p) <= 1 then R(s'') is R(s) with
(m, J?·) appended, and there is an arrow from
R(s ') to R(s) labeled with
(m,dest(m),output). Again, we say that R
preserves the arrow. If lvl(p) is not <= 1,
R(s'') equals R(s), and we say that R masks
the arrow.

Suppose there is an unlabeled arrow from s''
to s. There are two possibilities for s''
and s. First, s'' and s can both be the
empty sequence, in which case R(s'') = R(s) =
the empty sequence and we sa¥ that R
preserves the arrow. Second, s' can be s
with (m,p) appended for some p such that
lvl(p) is not <= lvl(dest(m)). In this case,
if lvl(p) <= 1 then R(s'') is R(s) with (m,p)
appended, and there is an unlabeled arrow
from R(s'') to R(s). Again, we say R
preserves the arrow. If lvl(p) is not <= 1,
R(s'') equals R(s) and we say that R masks
the arrow.

What happens when we take a possible world H
and apply R to every state in it? We can
think of H informally as consisting of a
sequence of arrows, with the first arrow
starting at the initial state and with the
ending and starting states of consecutive
arrows matching. Each such arrow will either
be preserved by R or masked by R. If we
"throw away" the arrows that are masked by R,
we get a new possible world of the machine.
Call this world RH. What is the relationship
between RH and H? RH is essentially H with
all input signals whose levels are not <= 1
removed. In addition, all outputs and state

179

http:there.is

changes resulting from such signals (i.e.
being queued, being dequeued) are also
removed. On the other hand, all of the input
and output signals of level <=1 are the same
(the proof of this relies on the fact that
the. machine only allows signals from a given
port to be output to ports of equal or
greater level). In other words, view(l)(RH)

view(l)(H) while hidden from(l)(RH)= the
null .sequence. Given any sequence s of input
signals of level not <=1, we can add them on
to the end of RH to get a possible world H'
such that view(l)(H')= view(l)(RH) and
hidden from(l)(H')=S. Since H was arbitrary,
this. shows that for any value v1 in
image(view(l)), any any value v2 in
image(hidden from(l)), there exists a
possible world H' such that view(l)(H')= v1
and hidden from(l)(H')= v2. In other words,
view(l) -x hidden from(l) is onto
image(view(l)) x image(hidden from(l)) so
there is no information flow between them.
Since 1 was arbitrary, this proves the
security condition.

7 Connection with the Goguen-Meseguer Model

We can think of the above proof as taking
place in two stages. We start with an
arbitrary possible world H, and we show that:

1. We can replace H by RH so that there are
no signals of level not <= 1, without
changing any signal of level <= 1.

2. We can replace RH by H' to make the
signals of level not <= 1 anything we want,
without changing any signal of level <= 1.

The first step looks something like a proof
of a non-interference condition as in the
Goguen-Meseguer model, i.e. it shows that
the 	inputs of entities of level not <=1 can
be deleted without effecting what is seen by
entities of level <=1. What is the
relationship between the state machine
instantiation of the information · model and
the 	Goguen-Meseguer non-interference model?

First of all, by "The Goguen-Meseguer model"
we will hereinafter mean the model as set
forth in [1]. We will only consider what are
referred to as "static systems" in [1]. The
first problem we encounter in comparing our
state machine instantiation with the
Goguen-Meseguer Model is that the
Goguen-Meseguer model uses a different kind
of automaton than the state machine
instantiation.

The second problem we encounter is that the
Goguen-Meseguer model allows us to express a
much broader class of security policies that
can be expressed in the state machine
instantiation. In our reformulation of the
state machine instantiation, we will broaden
the policies expressible to include arbitrary
non-interference assertions as in [1].

Before giving our reformulated instantiation,
we will note a few assumptions about what

users can "see" that seem to be implicit in
the Goguen-Meseguer model. First, it seems
implicit a user u cannot "see" the state
machine making a transition from state s1 to
state s2 if out(s1,u)=out(s2,u). In other
words, a user cannot tell the difference
between seeing a given output once and seeing
it "twice in a row". If this were not the
case, then whenever any user issued any
command to the state machine, it would be
seen by every user, either as a change in
output or a "repeat" of the same output.

Second, it seems implicit that users cannot
"see" time passing. In other words, a user
cannot tell the difference between a se~uence
of state changes carried out over a ' long"
time and the same sequence of state changes
carried out over a "short" time. Indeed, the
Goguen-Meseguer model has no way of
expressing this difference.

We now give a reformulation of our state
machine instantiation in terms of
Goguen-Meseguer-type state machines. Fix a
state machine M consisting of a set of users,
u, a set of states, s, a set of commands, c,
a set of outputs, OUT, a function "out" from
S x U into OUT, a function "do" from S x U x
c into s and an initial state s. In
addition, fix a set of commands A and sets of
users G1 and G2. We wish to give an
instantion of the information model to M
whose information functions and information
flow restrictions express the
non-interference assertion A, G1 :1 G2.

The set of possible worlds associated with M
is the set of all finite sequences of
elements of uxc. Since Goguen-Meseguer state
machines are deterministic and have a unique
starting state, the behavior of M during a
given sequence of commands from users is
completely determined by the sequence of
users and commands issued. We choose finite
sequences for the same reasons explained in
subsection 5.2

we will now define a few functions we will
need later. Given a possible world
H=<(u[o],c[o]), ••• ,(u[n],c[n])>, we can
define a sequence of alternating states and
elements of Ux6 ST(H)=<s[o], (u[o], c[o]),
s[1], (u[1], c[1]), ••• , s[n], (u[n], c[n]),
s[n+1]> where s[o]= s (the initial state of
M) and s[i+1]= do (s[i], u[i], c[i]) fori= ,
••• , u. In other words, ST(H) is just H with
the 	states that M passes through M the course
of H "interpolated".

Given a state s, we can define a functions
V(s) from G2 into OUT by V(s)[g]=out(s,g) for
all g in G2. V(s) is thus the "G2-tuple" of
outputs "seen" by the member of G2 in state
s.

We will now complete the instantiation. We
associate two information functions wi~h the
non-interference assertion A,G1 :I G2 :

1 • 	 INPUT is the function which, given a
possible world H, returns the
subsequence of H consisting of the
entries (u,c) where u is in G1 and c is
in A.

180

2. 	 VIEW is the function which, given a
possible world H, returns a sequence
obtained as follows:

Start with ST(H). Delete from
ST(H) all entries (u,c) such that
u is not in G2. Call the result X.
(X will be a sequence of states
and user-command pairs, not
necessarily alternating).

Replace every entry s of X by
V(s). Call the result Y. (Y will
be a sequence of user-command
pairs and functions from G2 into
OUT).

Remove all consecutive repetitio~s
of functions from G2 into OUT from
Y. the result is VIEW(H).

INPUT simply extracts from H the history of
inputs from users in G1 which are in the
command set A. VIEW is slightly more
complicated. Given H, it returns the history
of commands from users in G2 and outputs to
users in G2, with repeated outputs ignored.
These functions are similar to the
hidden-from and view functions of the first
instantiation.

Finally, we specify that it is illegal for
information to flow from INPUT to VIEW.

What is the relationship between the two
definitions of security for M? First of all,
a bit of pathology arises if A is non-empty
and G1 and G2 overlap. Since users in G2
"know" what commands they're given, if a user
u who is both G1 and G2 issues a command from
~. then the users of G2 can deduce something
about commands in A issued by users in G1 • On
the other hand, it is possible for A, G1 :I
G2 to hold. For example, suppose G1=G2={u}
and A={c} where do (s,u,c)=x for all states
s. Then A,G1 :I G2 holds, i.e. u literally
cannot interfere with himself by issuing c
because c never causes any state change and
so never causes any change in the output seen
by u. The state machine instantiation takes
into account the fact that u "knows" more
than just what he "sees"; u also "knows" what
he "cfoes".

Thus, in the degenerate case where A is
non-empty and G1 and G2 overlap,
non-interference does not imply no flow from
INPUT to VIEW. However, we do have

Proposition 1: If G1 and G2 are disjoint and
A,G1 :1 G2, then there is no flow from INPUT
to VIEW.

Let p be the function which, given a possible
world H, returns H with all entries in G1xA
deleted. Proposition 1 will follow from the
following

Lemma 1: If G1 is disjoint from G2 and A,G1
:1 G2, then for all possible worlds H,
VIEW(H)=VIEW (p(H)).

Proof of Proposition 1 from Lemma 1: We need
to show that for any A in image(INPUT) and
any B in image(VIEW), there exists a possible
world H such that INPUT(H)=A and VIEW(H)=B. B

in image(VIEW)=> there exists HO such that
B=VIEW(HO). A in image(INPUT)=> A is a
sequence of elements of G1xA. Let H=
p(HO)AA. H is a possible world. Clearly,
INPUT(H)=A. By the Lemma, VIEW(H)=
VIEW(p(H))= VIEW(p(p(HO)AA))= VIEW(p(p(HO)))=
VIEW(p(HO))= VIEW(HO)=B.

Ill

Before g1v1ng the proof of Lemma 1, we will
note a few relevant facts.

Suppose H is a possible world, u is a user
and cis a command. What is VIEW(HA<(u,c)>)?
To compute VIEW(HA<(u,c)>), we must first
compute ST(HA<(u,c)>). If, s is the last
element of ST(H) (i.e., the state of the
machine after "doing" it), then ST(HA<(u,c)>)
is ST(H)A<(u,c), do(s,u,c)>. Next, we delete
all user-command pairs with user not in G2.
Let X be the result of performing the
operation on ST(HA<(u,c)>) is :

XA<(u,c), do(s,u,c)> if u is in G2

XA<do(s,u,c)> if u is not in G2

Next, we apply V to all states in the
sequence. Let Y be the result of performing
this operation on x; Then the result of
performing the operation on the sequence
above is:

YA<(u,c), V(do(s,u,c))> if u is in G2

YA<V(do(s,u,c))> if u is not in G2

Note that the last entry of Y is V(s). The
last step in constructing VIEW(HA<(u,c)>) is
to eliminate consecutive repetitions of
values of V. The result of doing this to Y is
VIEW(H). Therefore, we have

Fact 1: VIEW(HA<(u ,c)>)=

VIEW(H)A<(u,c), V(do(s,u,c))>, if u is in G2

VIEW((H)A<V(do(s,u,c))>, if u is not in G2
and V(S) is not= V(do(s,u,c))

VIEW(H), 	 otherwise.

As mentioned above, for any possible world H,
the last element of ST(H) is the state of M
after "doing" H. It is easily seen that the
last element of VIEW(H) is therefore the
function form G2 to OUT which maps each user
in G2 to the output "seen" by that user after
H is "done". We denote the last element of 'a
sequence Q by last(Q). A straightforward
translation of the definition of
non-interference in [GM] yields

Fact 2: A,G1 :1 G2 if and only if for all
possible worlds H, last(VIEW(H))=
last(VIEW(p(H))).

Proof of Lemma 1: The proof is by induction
on the length of H.

The base case isH=<> (the empty sequence).
Then p(H) <> H, so VIEW(H) = VIEW(p(H)).

We 	 now do the inductive step. Assume
H=HOA<(u,c)> and VIEW(HO)=VIEW(p(HO))

181

Case1: (u,c) is in G xA. Then
p(H)=p(HOA<(u,c)>)=p(HO), so by Fact 2,
last(VIEW(H))= last(VIEW(p(H)))=
last(VIEW(p(HO)))= last(VIEW(HO)).

Since G1 and G2 are disjoint, u is not G2, so
by Fact 1, VIEW(H)=VIEW(HOA<(u,c,)>)=

VIEW(HO)A<V(do(s,u,c))>, if V(s) is not
V(do(s,u,c))

VIEW(HO) I otherwise.

But last(VIEW(HO)) is V(s), so the only way
that last(VIEW(H)) can= last(VIEW(HO)) is if
the second case above holds, so VIEW(H)=
VIEW(HO). By the inductive hypothesis,
VIEW(HO)= VIEW(p(HO)), and p(HO)= p(H), so
VIEW(H)= VIEW(p(H)).

Case .2: (u,c) is not in G xA and u is not in
G2. Then p(H)= p(HOA<(u,c)>)=p(HO)A<(u,c)>.
By Fact 2; VIEW(H)=

VIEW(HO)A<V(do(s' ,u,c))>, if V(s 1
) is

not=V (do(s' ~u,c))

VIEW(HO) 1 otherwise.

Where s=last(ST(HO)). Again by Fact 2,
VIEW(p(H))=VIEW(p(HO)A <(u,c)>)=

VIEW(p(HO))A<V(do(s' ,u,c))>, if V(s 1
) is not=

V (d0 (S
1

t U t C))

VIEW{p(HO)), otherwise.

Where s'=last(ST(p(HO))). By the inductive
hypothesis, VIEW(HO)= VIEW(p(HO)). Therefore,
V(s)= last(VIEW(HO))= last(VIEW(p(HO)))=
V(s 1

). ·

Now, Suppose V(s)= V(dO(s,u,v)) but V(s') is
not= V(do(s' ,u,c)). Then VIEW(H)= VIEW(HO)
and VIEW(p(H))= VIEW(P(HO))A<V(do(s' ,u,c))>.
By Fact 2, last (VIEW(H))= last(VIEW(p(H))).
But then

V(s')=V(s)= last(VIEW(HO))= last(VIEW(H))=
last(VIEW(p(H)))= V(do(s' ,u,c)), a
contradiction. Therefore, if V(s)=
V(do(s,u,c)), then V(s')= V(do(s' ,u,c)), and
so VIEW(H)= VIEW(HO)= View(p(HO))=
VIEW(p(H)).

Next, suppose V(s) is not= V(do(s,u,c)) but
V (s ') = V(do (s' , u, c)) • By an argument
completely analogous to that of the previous
paragraph, this lead to a contradiction, so
if V(s) is not= V(do(s,u,c)) then V(s') is
not= V(do(s' ,u,c)); in this case,

VIEW(H)=VIEW(HO)A<V(do(s,u,c))>

VIEW(p(H))=VIEW(p(HO))A<V(do(s' ,u,c))>

VIEW(HO)= VIEW(p(HO)) by the inductive
hypothesis, and by Fact 2,
V(do(s,u,c))=last(VIEW(H))= last(VIEW(p(H)))=
V(do(s' ,u,c)), so VIEW(H)= VIEW(p(H)).

Case 3: (u,c) is not in G xA and u is in G2.
Then p(H)= p(HO)A<(u,c)>. By Fact 1,

VIEW(H)=VIEW(HO)A<(u,c), V(do(s,u,c))>

VIEW(p(H))=VIEW(p(HO))A<(u;c), V(do(s' ,u,c))>

VIEW(HO)= VIEW(p{HO)) by the inductive
hypothesis, and the last elements of the
above sequences are= by Fact 2, so again,
VIEW(H)= VIEW(p(H))

Ill

The converse of Proposition1 fails in a
non-pathological case however.

Proposition 2: No flow from INPUT to VIEW
does not imply A,G :1 G.

Proof: Consider the following state machine:

·U={u1 ,u2,u3}

S={0,1}x{0,1}

C={flip1,flip2}

OUT= {0,, 1}

out((b1 ,b2) ,u)=

b1 if u=u1

0 otherwise

do ((b1,b2),u,c)=

(b1,b2) if u=u1
(b1 ,b2) if u=u2 and b2=0
(b1,b2) if U=US and b2=1 and c=flip2
(1-b1 ,b2) if U=U2 and b2=1 and c·=flip1
(1-b1 ,b2) if U=U3 and c=flip1
(b1 t 1-b2) if u=u3 and c=flip2

SO= (1 1 1)

Briefly, the state consists of 2 flags. u1
can see the first flag, while u2 and u3 can't
see anything. There are 2 commands, one to
flip the first flag and one to flip the
second flag. Commands from u1 are ·always
ignored. Commands from u2 to flip the second
flag are always ignored, whereas commands
form u2 to flip the first flag are carried
out if the second flag is 1, and are ignored
otherwise. Commands from u3 to flip either
flag are always carried out.

Let A={flip1}, G1={u2} and G2={u1}.

Claim 1: A,G1 :1 G2 does not hold. Consider
the possible world H=((u2,flip1)>. After H,
u1 is "seeing" a p(H) =<>I After p(H), u1 is
"seeing" a 1. By definition of
non-interference, the above assertion does
not hold.

Claim 2: There is no flow from INPUT to VIEW.
Rather than give a completely rigorous proof,
we will simply indicate why claim 2 is true.
We wish to show that u1 cannot possibly
d.educe anything about u2 1 s inputs by
observing his own inputs and his outputs.
The reason this is true is because anything
that u1 sees could be the result of u3
issuing flip2, u3 issuing flip1 a certain
number of times, and u2 issuing any sequence
of commands. In other words, no matter how

182

many times u1 sees the first flag flip, it
could always be the result of u3 issuing flip
1, and if u3 in addition issues flip 2
immediately, all of u2's inputs are "masked
out".

rhe essential difference in this example
between the Goguen-Meseguer model and the
information model instantiation, is that
Goguen-Meseguer requires that there be no
change in what u1 sees when u2's inputs are
deleted while holding u3's inputs fixed. The
Goguen-Meseguer model requires u3's inputs to
be held fixed even though u1 has no way of
knowing what they are.

In conclusion, the state machine
instantiation of the information model given
above seems (if certain pathological
situations are ruled out) to be a
generalization of the Goguen-Meseguer model.
It is a proper generalization in the sense
that it is implied by Goguen-Meseguer but
does not always imply Goguen-Meseguer.

REFERENCES

(1] 	Goguen, J.A. and Meseguer, J.,
Security Policies and Security Models,
Proceedings of the 1982 Symposium on
Security and Privace, April 1982.

183

A SEMANTICS OF READ

Leo Marcus and Tim Redmond1

Computer Science Laboratory

The Aerospace Corporation

P.O. Box 92957

Los Angeles, CA 90009

ABSTRACT

We give a rigorous mathematical definition for the concept of a

variable being read by a process and give evidence that this

definition captures the· correct intuitive notion with applications to

security specification and verification. We examine the

expressibility of "read" in various temporal logics, getting some

positive and some negative results. We define what it means for

a host machine to implement a target machine in such a way that

a given variable is not read. We show that "read" is theoretically

decidable and give some proof rules. In a later paper we intend

to give axioms and proof rules for such "protected

implementation" proofs in the context of the State Delta

Verification System being developed at The Aerospace

Corporation (see1).

This formulation is rather new, and we are still exploring its

technical properties and applications.

1This work was supported In part by the Aerospace Sponsored Research
program.

INTRODUCTION

In dealing with computer security, a major consideration is

protecting certain registers from being read from or written·into

by unauthorized processors or users. It is fairly trivial to define

the semantics of write: if the value of the register changes, it

was written intQ. (This is ignoring the rare occasion when writing

a value which is the same as the current value may be of

interest.)

However, detecting when a register's value has been read is a

much more delicate matter. For a register x to be read, we do not

require that the reader actually "look at" or access the x, nor that

the reader learn the value of the contents of x in any way. We

view "reading" as a special case of the general problem of

information flow. Intuitively, we will consider a register x to have

been read by (or during) process P, if. some non-public or

protected information about its contents becomes known during

an execution of P, i.e., if the behavior of Pis dependent on the

value of x in some specifiable or observable way. This mean&

that the concept of "non-public" must be made explicit in every

specific case of read.

A superficial approach to the semantics of read yields the

following examples. If the right hand side of an assignment

statement consists of the program variable x by itself, then x is

read. If the expression x - x (subtraction) is on the right hand

side, it is not completely clear whether we want to consider x to

have been read or not. If x appears in a condition for a branch,

where the outcome of branch depends on the value of x, we

probably do want to consider that x has been read, even if we

don't need to know its explicit value.

184

These examples all rely on the presence of some syntax for

their formulation. The situation is clearly different in the case of

security verification. We shall consider a prototypical relation

between an adversary,. A,. and a process, P. The adversary tries

to learn something new about x by examining the behavior of the

process and by using the public knowledge, K, available about x.

A, in general, does· not have complete knowledge about the

~yntax of P; A may observe P in operation or may wait until P

has terminated (if ever), and then analyze the results to deduce

the new information about x. In this case, disclosure of new

knowledge about x means that some behavior of x which is a

priori possible in the context of of K, is discovered to be

impossible in light of P.

The link between the syntactic and the general formulation

can be seen, for example, in the simple assignment statement

above: a possible value of x (actually, all but one possible value

of x) is eliminated by examining the value of the left hand side.

Likewise in the branch example, the negation of the realized

branch predicate is discovered to be impossible at that point in

time in that computation (the realized branch predicate is

discovered to be true).

Our approach elevates this "public knowledge• to a position of

prominence in the definition. K plays a dual role in the sense

that it can be used by the adversary to deduce information about

x based on observation of P, but K also is the criterion for

deciding if that information about x is new. For example, if the

public knowledge about x is weak (e.g., K = TRUE), and x is not

an explicit variable of P, then x is not read by P because there is

no way to connect x with the behavior of P. Also, if K is too

strong {e.g., K = FALSE), then x is not read by P, because P

185

could not possibly increase our knowledge about x. Actually, x

can alternate between being read and not being read with

respect to K as K increases in strength. On the other hand, for

any non-trivial process P and register x, there is some public

knowledge such that with respect to it, P reads x: simply take K

to be x =v for some variable, v, of P.

We assume a strict distinction on the one hand between the

variables 21 a process, Var{P), which P knows everything about

at all points of all computations and by definition reads,

analogous to reallocations in a machine for P, arid on the other

hand, external variables which P may or may not read,

depending on K.

We take the view that the specification of a process is a way

of restricting the possible computations that the user can

perform, rather than permitting them. We are interested in

protecting against the inadvertent read, not !inding which

registers are always read. Thus, the fewer CC?mputatlons the

user can perform (the fewer models the process has), the less

chance of x being read.

There are four separable concerns which need formalization:

the new information learned about x by P is "information", it is

"new", it is "about" x, and it is learned "by" P. As mentioned

above, the "newness" will be measured in relation to K;

"information" is taken to be a set of possible computations. The

"about x" and "by P" are handled by looking at the restriction of a

model of K to x, and combining this with a computation of P.

To formalize the above discussion in precise mathematics, we

utilize the concepts of model theory, in the sense of2. We

assume only very basic acquaintance with logical concepts and

model theory. We start out with a model (computation) of K, and

we restrict it to x (ignore the other variables). This represents a

possible behavior Of (Or information about) X consistent With

K. Now take a model (computation) of P and see if we can

superimpose the above restricted model onto this model of P in a

way which is oonsistent with K, i.e, such that the combination is a

model of K. If we cannot, then we have learned that this behavior

of xis ruled out by this particular ()9mputation of P, and xis read.

It could be that ~the forbidden behavior (the information) is

specifiable by a sentence in a given language. This means that

there is a sentence, F, such that the above holds for all models

of K A -.F. (In other cases, it may be that a particular model or

set of models is ruled out, but this model or set of models is not

specifiable in the language.) HM does not read x with respect to

K, then the adversary cannot deduce anything about x that does

not already1ollow from K. See Lemma 3.

We examine the possibility of expressing the necessary

semantics within various temporal logics and come to the

conclusion that this is impossible in some cases.

There are several possible variations of the formalization

which seem reasonable. An important task is to examine

examples and results about their interdependencies in order to

determine which ones correctly represent our intuition.

4See3 , , and5 for discussions of similar problems.

EXAMPLES

Example 1: Consider a system with two processes sharing a

common CPU: P1, which uses variable y, and P2, which uses

variable x. Each has exclusive use of the CPU for five clock

cycles. Every five clock cycles the G!;'U will swap the other

proce~s in. if it so requests, and the first process is then swapped

out. Let K be the description of this system. It is true that x is

read by P1 with respect to K, since when P1 is running, it knows
'\. '

that x cannot be changing.

However, the only information that P1 ga'ins about x is that x is

not active when P1 ·is running. Assume'oow that the system

contains another variable, "status", that holds the name of the

active process for each point in the timeline, and let K' be the

description of the new system along with a pa?icular choice of

values for status. Then P1 does not read)(with respect to K'.

For a more detailed analysis of this example see .Example 4.

Example 2: If K is x = 0 or K is TRUE, then no process reads

x with respect to K. K either contains all the possible information

about x, or does not give any connection between x and other

variables. If K is v = 0 -+ x =0, then any computation satisfying

3t(v(t)=O) reads x with respect to K. Notice that this is an

example of K1 -+ ~ -+ Ks and a computation that reads x with

respect to the middle K but not with respect to the two outer

ones.

If K is '0<X<5 " 0<V<5 " x=v' or '0<X<5 " 0<V<5 v x=v=6' then

x is read by every process with respectto K~ If K is jusf'O<X<5 "

0<V<5', then xis not read by any process with respect to K. This

is an example of K1 -+ K2 -+ K3 such that x is read with respect

to the outer ones, but not read with respect to the middle one.

Example 3: If K .. 'u + x = v', and u and x are not variables of

the process P, then P does not read x with respect to K.

186

THE FOAMAL DEFINITION OF READ

We consider a computation for a process to be specified when

we know the values of all process variables at every point in

time. A process thus determines a set of computations, its set of

possible computations. Formally, this becomes a class of

mode~ based on an. ~rbitrary linear order (T, <} representing the

timeline of the C01f1pulation. At each point t of. T a state is

specified by defining the v~lues of the functions v(t), where v can

be thought of as a program variable and v(t) its contents at t..

For a given proeess, T. may change from computation to

computation, but the dOmain of values is fixed.

Definition 1: A computational model for program
variables V over the linear order (T, <) is a structure of
the form M- <T.u D; <, V, ... , R, ...}vevwhere V, ... are
function symbols to be interpreted as functions from T
to .D (the "domain of data") and R,... are relations (and
functions) on D.

Let L(M) .. {<} u V u {R, ... } be the language of M, Var(M) =V

be the set of variables of M.

A process (or program or theory) a is a class of computational

models with V, D, and R, ... fixed. We call {D; R, ... } the domain

of a. In that case we write Ml=a if Me a and define L(a) =L(M)

and Var(a) = Var(M). If ~ is a sentence in the appropriate

language, then M~ has the standard meaning (see 2).

So for example, by using time as an explicit variable we can

say

MF(3t eT)('v\eT)(~ = t2 v 11 > t2), or1
Ml=3t1 eT)('t~eT)(~ ~ t1 ~ "vevv(t2) = v(t1))

(two versions of terminating computation), or Ml='v'teT(v(t)>u(t)),

etc.

In the following, when we say "model" we mean

"computational·model".

Now we want to define the formal counterpart of the intuition . ' " c . .

of comparing a possible b~~avior of x to actual behaviors of x

allowed by M. Remember, our definition will say that x is read by

M. with respect t~ K if there is a beh~vior of x that is possible

according to K, but which is not anowed by M.

lnform<illy still, given a~' model M with x as a variable, ·the

behavior of X in M is 'simply the model obtained by ignoring all

the other program variables·.· Formally, this is the restriction of M

to x.
Definition 2: .If. M is the above model (Var(M = V)

and U is any set of program variables (typically, but not
necessarily, U ~:: V) we define the restriction of M to U
by MU = (T u D; <, v, ..., R, ...}veUnV M is an
expansion of MU. ·

In compliance with the standarq terminology, we use

"expansion" for a model obtained by enriching the language, and

"extension" for a model obtained by enlarging the underlying set.

A behavior of.x which is possible according to K is just Ml{x}

for M11= K. The behavior of x is allowed by a model M if when we

glue this behavior to M we get a model of K.

If = (T u D;. <, v, ... , R, ...}vev and =M1 M21

(T u D; <, v, ..., R, ...}vev are models over the same timeline
2

and with the same domain, M1fV1nV2 ;;, M.JV1nV2, then M1 u

Here is the main definition:

Definition 3: Let M be a model over T as above,
K(v, x) a sentence in L(M) u {x}. M reads x with
respect to K if M has an expansion to a model of K but
there is M1 I=K overT such that (M,f{x})uM ~K.

If K = K(v, ii, x) contains additional variables e L(M) besides

187

II

x, then the definition becomes:

Definition 4: M (over T) reads x with respect to
K(i.i, u, x) if M has an expansion to a model of K, but
there is a model M1t=K overT such that Ml{x} u M
has no expansion to a model of K.

The intuitive reason that we insist that M be consistent with K

is that otherwise, the "adversary" would not be able to observe M

at all; K and M could not coexist. The "new information" about x

is that M/{x} is not allowed. Thus, the possibilities for x

satisfying K are restricted.

Definition 5: x is read by cr with respect to K if there
exists Mt=cr such that x is read by M with respect to K.

Example 4: Now let us return to Example 1. Let M be any

model of P1; remember, M does not mention x. M is obviously

consistent with K, i.e., it has an expansion to a model of K. For

example, x can be defined to be always idle. If y is not idle in M,

then M reads x with respect to K, since there is a model M1 of K

which has x changing exactly at the time that M has y changing.

Now consider the case with the added status word. Let M0 be

a particular graph of the status word and let K' = K n

{M: Mf{status} = M0}. Then xis not read by any M with respect to

K', since the non-active/potentially active behavior of x is

determined by status. -j

THE PADDED VERSION OF READ

Now we shall give an alternate definition which relaxes the

condition that the behavior of x which is excluded by M must be

realized over a timeline identical to M's. We shall be looking at

models of K whose timelines can be superimposed on the

timeline of M in a consistent manner. This is the concept of

"padding".

We shall not give a formal definition of "padding", but it is

sufficient to think of a padded version of M as a model over a

larger timeline in which some states of M are spread out (in

either direction).

Definition 6: x is strongly read by M over T with
respect to K if there is a padding of M to a model of
K(i.i, x), but there is M1t=K over T 1 ;;2 T and M2, a
padding of M to T 1, such that Ml{x} u M2 ~{K}.

The intuition is that we have some property of x consistent

with K: this is embodied in our choice of M1. However, by

"running" cr under certain circumstances (over the "T1-pad" of M)

we eventually come to the conclusion that this property of x

consistent with K cannot be true.

Definition 7: x is strongly read by cr with respect to
K if there is Mt= cr such that x is strongly read by M
with respect to K.

Definition 8: A language L is paddable if padding
preserves L-equivalence between L-models.

Theorem 1: In the case of paddable language, if x
is strongly read by cr with respect to K, then x is read
by cr with respect to K.

For example,

Theorem 2: The language of "weak until" (WU) is
paddable, where

Definition 9: WU is the set of sentences formed
from first order logic (not containing <) and closed
under conjunction, disjunction, negation, and U*:

(M.to) I= PU*Q iff

(3t2 ~ t0) (Q(t2) A ("Vt1)(t0st1st2 ~ P(t1))).

188

THE CASE OF SPECIFIABLE INFORMATION

So far, we have studied "read" in a general framework, where

the information learned about x took the form of a given model or

behavior which was excluded from the set of possible behaviors.

Now we examine the situation in which the information read

about x is expressible in a given language.

The reason for this new definition is that the previous definition

was in a sense too strong, i.e., x could be read, but the behavior

which was excluded was not specifiable, and thus the

information gained could not be "used".

Definition 10: M (over T) discovers F(v, x) with
respect to K if

1. there is an expansion of M to a model of K,

2. there is M1f= K A-, F (F does not follow from
K),

3. if M1 F K A -,F, then Ml{x} u Mf= -,K.

For example, if K is v(t)=O ~ x(t)=O, then M satisfying v(t)=O

discovers x(t)=O.

Discovery satisfies the following intuitive properties:

Lemma3:

1. If M discovers F with respect to K, then M
does not discover -,F with respect to K.

2. If M discovers 	Fi with respect to K, then M
discovers F1 A F2 with respect to K.

3. If M discovers F(v, x) with respect to K, then
M reads x with respect to K.

Actually this definition works just as well for F an arbitrary set

of models.

READING DURING AN INTERVAL

We can further refine the main definition to talk about when the

reading takes place.

Definition 11: M (overT) reads x with respect to K
during the interval I !;;;; T if M has an expansion to a
model of K, but there is M1f= Kover T such that Mli
cannot be extended to M2f= K over T such that
Mj{x}uMf=K.

Some intuitively desirable properties hold:

Lemma4:

1. "M (over T) reads x with respect to K during
the interval T" (M's whole timeline) reduces to
the original definition of M (strongly) reads x
with respect to K.

2. "M (over T) reads x with respect to K during
the interval I" is not the same as "MI reads x
with respect to K."

3. If M does not read x with respect to K during
the interval I, then the same holds true for
every subinterval of I.

Unfortunately,

Example 5: Read protection during intervals does not finitely

compose. That is, there is M overT, t1 ~ t2 ~ t3 e T, K, such that

M does not read x with respect to K during [t1, ~). M does not

read x with respect to K during [t2, tsJ, but M does read x with

respect to K during [t1, tsJ.

Read protection during intervals does not compose in the limit,

either. That is, there is M over T = ui<Jt0, ~) such that x is not

read with respect to K during [t0, tj] for all i, but M does read x

with respect to K during T. --l

READ AND RELEVANCY

Definition 12: v reads x with respect to
K(V, ii, x) if there is a model M such that M{ v} and

lllf{ x} have expansions to models of K, but

189

M { v} u lllf{x} does not.

Note that if M reads x with respect to K, v e L(M), then v reads

x with respect to K.

Definition 13: vreads xwith respect to K arid y if

there is M such that M xu y and Nf vu y have

-expansions to models of K, but 111f vu xu ydoes not.

Note that vreads xwith respect to K and 0 iff vreads x
with respect to K.

Notation IK(X, ii, v) holds if vdoes not read xwith respect

to K and ii. IK is to be compared to the "irrelevancy relation"

from Pearl and Paz6 . There the common knowledge K is not

made explicit.

LemmaS:

1. IK(x, ii. v) iff IK(v, ii. x)
2. IK(X, U, V U w) ~ IK(X, U, V) A

IK(X, U, w).
3. IK(X, U, Vu w) ~ IK(X, Uu W, V}.

4.IK(X, 	 U, w) A IK(X, U uw, v) ~

IK(X, U, Vu w).

These are conditions (11.a), (11.b), (11.d), and (25) of (6).

Condition (11.c) from6 is not true: i.e.,

EXPRESSIBILITY OF READ

Definition 14: A logic L expresses read if for all
K(v, ii, x) e L, there is cr e L such that M does not
read x with respect to K if and only if M 1= cr.

Note that it in order to show that L does not express read, it is

sufficient to find M1, M2 satisfying the same L-sentences such

that one reads and the other does not.

This method can be used to prove:

Theorem 6: WU does not express read.

For similar results, see7 . The proof we have involves non­

standard timelines (i.e., not isomorphic to the natural numbers)

and infinite domain set. It is not known if all WU-equivalent

models over timeline oo with finite domain set are also read­

equivalent.

One positive result though:

Lemma 7: If K is static (over one-point timelines) or
time universal, then read with respect to K is
expressible.

READ AS A GENERALIZED QUANTIFIER

In this section we express "read" as a generalized quantifier in

the sense of8 . This gives us a syntax to use in reasoning about

read statements.

We introduce the quantifier 9tx where M 1= 9txK will mean that

M reads x with respect to K (when K does not contain any

occurrences of 9tx.)

ExampleS:

1. The example of K from Example 1 generalizes to 1=
3y-,G(y) A G(v) ~ 9tx(G(v) ~ -,G(x))) (which is a
special case of 4 below.)

2. The example 	of K being '0<X<5 A 0<V<5 A x=v'
from Example 2 generalizes to 1= 3:<2yG(y) A G(v)
~ 9tx(G(v) Ax= v).

3. The 	 example of '0<X<5 A 0<V<5 v X=V=6'
generalizes to 1= 3yG(y) A -,G(v) ~ 9tx(G(v) v x =
v).

4. The example of 'v=O ~ x=O' generalizes to 1= G1(v)

190

A 3yG 2(y) A 3y-,G 2(y) ~ 9tx(G1(v) ~ G2(x)). -l

Theorem 8: The following are valid statements
(true in every L-model, where x e L):

1. If x does not occur in G1 and v does not occur
in G2, then -,9tx(G 1(v) A G2(x)).

2. If x does not occur in G1, then 9tx(G1 A G2) ~
G1 A 9txG2.

3. 9tx(Gt A G2) ~ 9txG1 v 9txG2.

4. 3yG,(y) A 3y-,G,(y) A 3yG2(y) A 3y-,G2(y) ~
9tx(G1(v) H G2(x)).

5. V'yG(v, y) ~ -,9txG(v, x). (This implies G1(v)
~ -,9tx(G1(v) v G2)).

6. V'y-,G(v, y) ~ -,9txG(v, x).

7. G1(v) A 3yG2(y) A 3y-,G2(y) ~

9tx(G 1(v) ~ G2(x)).

We do not know how to expand the above set to get a

complete axiomatization of read.

Note that the following is not valid:

FA 9txK ~ 9tx(K A F), for x not occurring in F.

This is the converse of 2 above.

Example 7: There are Gi such that the following are

satisfiable:

1. 9txG1 A 9tx(-,G 1)

2. 9txG2 A -,9tx(-,G2)

3. -,9txG3 A -,9tx(-,Ga)

Take G1 = X>V, = -,(P(x) A Q(v)), and G3 = TRUE (or G2

FALSE).

DECIDABILITY OF READ

In this section we show that "read" is decidable. More

precisely, we show that for a fixed (finite) domain D, the theory

consisting of the set of sentences in the logic with 9tx which are

true in all computational models over D with countable timelines

is decidable. The res~lt follows by interpreting 9tx in the second

order monadic theory of countable chains, shown to be

decidable in9 . Second order monadic logic allows quantification

over subsets, but not arbitrary relations or functions. This result

is, of course, only of theoretical interest without practical

application, since the size of the domain is typically very large.

Let D = {d1, .•• , dn} be a given finite domain. Let 9tx be the

read quantifier for countable computational models over D. That

is, M 1= 9txK if M is a computational model over D with countable

timeline T, there is an expansion of M satisfying K, and there is

M1 1= K such that M1's timeline is T and M u Ml{x} !" K. Let

Th(9tx) be the set of sentences in the above language which are

satisfied in every computational model over D with countable

time line.

Theorem 9: Th(9tx) is decidable.

Proof: In order to interpret Th(9t)xl in the monadic second­

order theory of linear order, first we interpret 9tx in the logic

allowing quantification over functions from T to D:

M I= (3fx:T ~ D) K(vM, fx) A (3f;, fx'• ... :T ~D)[K(fy', fx') A

-,K(vM, f/)].

Now we write 3fx as a finite sequence of set quantifiers overT:

(3fx:T~D)cl>(fx) H (3D1, .. , Dn !:: T) (the Di are pairwise disjoint

A cf(D1, ... , Dn)), where ,. replaces ...fx(t)... with

A(Dj(t) ~ ·A···>· -l

191

PRACTICAL FORMULATION OF READ PROTECTION

The real-world situation that served as the motivation for the

development of this concept of read, and that will serve as the

final judge of its viability, is the following: given a host machine

(code), H, and a target machine (specification), T, H implements

10Tin such a way that variable xis not read. See1 or .

In order to make this statement precisely fit the mold of the

formal definition of read presented in this paper, we need to

specify what formulas (programs) will play the roles of a and K,

the relevant process and public knowledge.

Proposal:

Definition 1: "H implements T in such a way that x
is not read" if

1. H implements T

2. T does not read x with respect to H.

So we are suggesting that a = T and K = H. x can be (and

usually is) an explicit variable of H, but not ofT. T is the process

whose behavior the adversary may examine in order to try to

learn some new information about x, and the (structure of the)

host machine H is considered to be public knowledge.

The variables of T must be considered to be associated

already by the implementation mapping to relevant variables in H

for this formulation to make sense. (a and K typically have

variables in common.) The role x plays in H is (hopefully) hidden

from T; T exists at a level of abstraction (tailored, perhaps, to suit

the adversary's read rights) so that the behavior of x cannot be

inferred from the behavior of T, even taking into account the

structure of H.

Of course, it could be that different mappings which both give

correct implementations would give different results for the

security questions. Given a host and target, a "security analysis"

would consist of characterizing those mapp!ngs with respect to

which H implements T in such a way that x is not read.

ACKNOWLEDGEMENT

We thank Sue Landauer for her careful reading of the

manuscript, her suggestions, and her corrections.

192

References

1. 	 L. Marcus, S. D. Crocker, and J. R. Landauer, "SDVS: A
System for Verifying Microcode Correctness", 17th
Microprogramming Workshop, IEEE, October 1984, pp.
246-255.

2. 	 C. C. Chang and H. J. Keisler, Model Theory (Second
Edition), North-Holland, 19n.

3. 	 J. Halpern and M. 0. Rabin, "A Logic to Reason about
Likelihood". Fifteenth Annual ACM Symposium on
Theory of Computing, ACM,1983, pp. 310-319.

4. 	 S. Goldwasser, S. Mica~. C. Rackoff, "The Knowledge
Complexity of Interactive Proof Systems", 1984 ACM.
Foundations of Computer Science, ACM, 1985, pp.
291-304.

5. 	 V. Nguyen and K. Perry, "Do We Really Know What
Knowledge Is?", Tech. report RC 11830, IBM
T. J. Watson Research Center, April1986.

6. 	 J. Pearl and A. Paz, "GRAPHOIDS:A Graph-based Logic
for Reasoning about Relevance Relations". Tech. report
R-53-L-1, CSD-850038, Computer Science Department,
UCLA, April1986.

7. 	 L. Marcus, T. Redmond, and S. Shelah, "Completeness
of State Deltas", Tech. report ATR-85(8354)-5, The
Aerospace Corporation, 1985.

8. 	 J. Barwise and S. Feferman, Model-Theoretic Logics,
Springer-Verlag, 1985.

9. 	 Michael 0. Rabin, "Decidability of second-order theories
and automata on infinite trees". Transactions of the
American Mathematical Society, Vol. 141, 1969, pp.
1-35.

10. 	 Leo Marcus, "Implementation Mapping between
Programs", Tech. report ATR-84(8478)-3, The
Aerospace Corporation, 1984.

193

A STANDARD NOTATION IN COMPUTER SECURITYMODELS

o. 	 Sami saydjari
Timothy Kremann

National Computer Security Center

Attn: Office of Research and Development, C3

9800 savage Road

Fort George G. Meade, MD 20755-6000

(301) 859-4488

ABSTRACT

In the burgeoning field of computer security,
there has been a lack of standard notation
for representing models. This paper intro­
duces such a notation, called Set Normal Form
(SNF), based on set theory. The paper
recasts the Bell and LaPadula, Biba Integ­
rity, Role Enforcement, and Multilevel Object
models in this notation. The standardization
should facilitate the comparison of models.in
terms of security, completeness and level of
abstraction.

INTRODUCTION

The purpose of
present new research
Instead, its intent

-this paper is not to
in computer security.

is to offer a standard
notation based on set theory. The objectives
are to provide a common language for model
expression and facilitate the comparison of
models.

Historically, a rather difficult mixed
notation was adopted because of the sig­
nificant impact of the Bell and LaPadula
(BLP) model. The set theory notation, how­
ever, seems to be more understandable and
flexible. A set theory casting of a sim­
plified form of the BLP model [1] , the dual
Biba Integrity Model [2] , a role enforcement
model[3], and a Multilevel Object (MLO)
model[4] are provided as appendices and
discussed in detail in this paper. We shall
call this notational representation 11 Set
Normal Form (SNF). n

The essence of this paper is in the
appendices. There is a discussion section
for each of the four appendices corresponding
to the four models rewritten in SNF. The
purpose of each discussion section is to
provide: (1) highlights, (2) clarifications,
(3) motivations, and (4) explanations of any
deviations from the original model.

The SNF castings of the four models
chosen are intended to capture the basic
essence of each model. Many of the more
subtle features have been intentionally left
out for simplicity. The point of these
representations is only to show basic exam­
ples of how SNF is applied.

DISCUSSION

·'.' Notation Primitives
."I

.. ::
Notation primitives are descrip­

tions of notions that are either already
well-defined in computer science or co~on.to
many of the different models •. T~~ mot~~at~on
behind introducing these pr~m~t~ves ~s to
factor out common characteristics of sets

introduced in this paper. We explain the
primitives once and then use them to provide
a shorthand method of referri~g to the char­
acteristics.

The notion of "maps-completely-to"
is introduced. Set A is said to map-com­
pletely-to set .B if every element in set A
maps to some element in set B. For example
requiring every object in a system to have a~
associated security label is the same as the
set of objects maps completely to the set of
classification labels.

The notion of ''maps-uniquely-to" is
also introduced. Set A maps-uniquely-to set
B if no element in A is mapped to more than
one element from B. For example, an object
must have only one classification associated
with it at any time (that is, it cannot be
both TOP SECRET and UNCLASSIFIED at the sama
time) •

The "maps-uniquely-to" and "maps­
completely-to" primitives are combined and
called "maps-fully-to. 11 All classification
labeling of objects and subjects must conform
to this primitive. In other words, all
objects and subjects must have one, and only
one, classification level associated with
them.

The power set primitive, PS, is
introduced to indicate all of the possible
subsets of a given set. PS is not explicitly
used in the representation of models in this
paper, but the need for it is anticipated for
richer descriptions.

The "is-a-hierarchy-on" .Primitive
(used in the MLO Model) describes the rela­
tionship between containers and atoms.
Containers are objects which have descriptors
of other objects while atoms are se.Lr-con­
tained objects. A hierarchy, as defined in
appendix A, is used to show the container­
atom relationship between objects.

The requirements placed upon this
hierarchy are that its digraph representation
contain no cycles. The model requires that
each container's security level dominates the
level of each entity that it contains. The
actual hierarchy, as defined here, is a
collection of acyclic rooted digraphs which
may overlap.

In this hierarchy we require that
no container be empty. This means that all
leaf nodes are atoms and all nonleaf nodes
are containers. Any empty containers will
contain a special leaf node called the null
atom. This is an arbitrary restriction which
simplifies the MLO SNF. The "is-a-leaf-in"

194

http:co~on.to
http:models.in

indicates that the corresponding digraph has
no outgoing arcs from this node.

Finally, the concept of "is-a­
partial-ordering" defines the standard math­
ematical concept of a partial ordering on a
set. This primitive is very important in
establishing order in a normally unordered
set. In particular it allows the definition
of dominance for classification levels.

Another concept introduced in SNF
is set dependence. The motivation is based
on a confusion about which sets are specified
by the user (or security administrator or
system designer) and which sets are con­
strained by the choice of other sets. A
level-one set is one which you have complete
freedom to chose. A level-two set is one
that depends on, or is constrained by a
level-one set. Similarly, several levels of
dependence can be traced in most models.

Bell and LaPadula Model

The level-one sets of the BLP model
are the compromise levels (C_L), obj?cts (0),
and subjects (S), and the access r~ghts (A)
that will be used to restrict · information
flow.

The set of compromise levels is
simply an unordered enumeration of the clas­
sification labels that exist in the system­
for example, {SECRET, UNCLASSIFIED, CONFIDEN­
TIAL - CATEGORY A} • The ordering of these
labels in terms of sensitivity is accom­
plished by a second set (P) defin~ng ~ par­
tial ordering on c L. The levels ~n th~s set
are called "compromise" levels to distinguish
them from "integrity" labels that may be
associated with objects and subjects in an
integrity model (See Biba Integrity, Appendix
C). If there are no other labeling schemes
in the system besides compromise levels, the
levels are often called "security levels."

The specification of the set of
compromise levels as a level-one set (uncon­
strained and unordered) is a deviation from
the original model. Security levels in BLP
are defined as two-tuples with the first
element coming from a totally ordered (hier­
archical) set of clearance levels (e.g. {TS,
s, c, U}) and the second element from the
power set of an unordered (flat) set of
categories. The partial ordering on the
security levels is then defined in terms of
the total ordering on the clearance levels
and subsets of categories. For example,
TS.A.B dominates S.A because TS is greater
than s in the totally ordered set of clear­
ance levels and {A} is a subset of {A,B}.

The levels specification in BLP has
the advantage that the determination of
dominance is a two-step operation and thus
the algorithm is said to be "constant time"
(5] • on the other hand, there are many
problems with this scheme. The enumeration
of these problems will be the subject of a
future paper. The central point here is that
we view the set of security levels is as a
fundamentally a level-one set for maximum
flexibility.

The final level-one set is that of
access privileges. The specification of just
a read-only (r) and blind-write (a) is a
deviation from the original model. BLP
specified four access rights: (1) read-only­
observe but no modify, (2) execute - neither
observe nor modify, (3) write - modify and
observe, and (4) append modify but no
observe. Note that all of these rights are
defined in terms of the two more primitive
access privileges called "modify" and "ob­
serve. 11 Therefore, in the abstract, these
two primitives are the only ones required.

The level-two sets include the
partial ordering (P) on the compromise levels
(C L), the mapping functions assigning clas­
sifications to objects and subjects (Fo and
Fs), and the definition of the universe of
all possible accesses between subjects and
objects (M).

The set P is a set of two-tuples
defining a partial ordering on the compromise
levels (C L). The relationship primitive
"is-a-partial-ordering" .is rigorously defined
in Appendix A. It corresponds to the intui­
tive notion of dominance in terms of data
sensitivity. Because of the transitive
nature of the definition of partial ordering,
all pairs that directly or indirectly domin­
ate each other must be contained in the. set.
In other words, if (TS,S) and (S,C) are in P
indicating that TS dominates s and that S
dominates c, then (TS,C) must also neces­
sarily be in the set. This may be imprac­
tical to implement for very large sets of
compromise levels (C_L). For an implemen­
tation, the inclusion of only directly domin­
ating pairs would suffice. Transitive clos­
ure of the set could be computed on the fly.

The sets Fo and Fs assign classifi­
cation labels to objects and subjects, res­
pectively. The method of making this assign­
ment is by the use of the two-tuples where
the first element is chosen from the set of
objects (or subjects in the case of set Fs)
and the second element is chosen from the
compromise level set. For .example, if (ol,
TS) is a member of Fo, this means that object
ol is classified top secret. The sets Fo and
Fs are equivalent to the similarly named
mapping functions in BLP. In this represen­
tation, they will be referred to as the
classification-mapping sets.

The classification-mapping sets
depend on two different level-one sets. This
is important since changes to any element in
a level-one set on which a level-two set
depends may adversely affect the level-two
set as well. For example, a change made to
the set of objects (e.g. when a subject
writes to an object) will impact on Fo since
it depends on the set of objects (0) and the
set of classification levels (C_L). Further­
more a change to c L impacts on both Fo and
Fs. ' This dependency is highlighted by the
organization of SNF.

The definition of Fs is a deviation
from the original model. BLP has two mapping
functions for subjects: fs and fc. Both
functions map subjects-to-levels. The level
assigned to a subject by fs is the upper

195

bound of the level a subject may take, where­
as fc assigns the current level. This
implies that fc is a dynamic assignment con­
strained by fs. This conceptual separation
has been deleted from our representation for
simplicity.

The separation of labeling func­
tions described in the original BLP model is
logically equivalent to having multiple
subjects, each taking on one of the classifi­
cations allowed to the single subject under
BLP. For example, subject sl exists under
the unmodified BLP scheme, it is currently
classified "C," and the maximum level sl can
take is "S." Assuming the levels are ordered
as {S, C, U} , this is logically equivalent to
having three subjects, sll, sl2, sl3, clas­
sified at u, c, s, respectively. This shall
be referred to as the one-subject-one-level
approach.

The alternative one-subject-one­
level approach is also more satisfying in
that it promotes tranquility of the security
state of the system. This is preferable in
that changes made to any set by any operation
on a system require a proof that the change
to ·that set and any sets that depend on it do
not corrupt the security of the system.

The final level-two set is M. It
defines the universe of all possible accesses
that each subject may have to each object.
The security policy set, B, equal to the
universe set, M, represents a completely
permissive system in which each subject has
all possible access privileges to each object
in the system. The universe is then restric­
ted by one or more security policies repre­
sented by subsets of the set M and inter­
sected to form the overall policy.

As a point of clarification, the
three-tuple (sl, ol, r) in set Bsp means that
subject sl has read access to object ol. It
is equivalent to entering the access privil­
ege r in the (1,1) cell of an access matrix.
The use of set notation may seem awkward here
at first, but it maintains consistency with
the rest of the notation and allows a some­
what different perspective on access control
than that provided by matrices.

The use of the letters M and B for
these sets may be somewhat confusing since
BLP's definition for the same terms are
different. As defined in this paper, M- is
the cross product of the set of subjects (S),
the set of objects (0), and the set of
accesses (A) resulting in all possible com­
binations of elements chosen from each of
these sets. BLP defines M as the access
matrix indexed by subject and object. Each
cell in the matrix M contains a set of allow­
able accesses. In this paper sets beginning
with the capital letter B represent instan­
tiations of security policies. The single
letter B represents a security policy equal
to the universe set M which implies no restr­
iction to any access. In BLP, B is the power
set of the universe set. In other words,
this B represents all possible restrictions
that may be placed on the universe. There
appears to be no utility in using the power
set of the universe in our context so we have
chosen to leave it out.

The level-three sets represent a
fairly significant departure from the orig­
inal BLP model in form but not in content.
BLP defines two rules that restrict the
promiscuous universe of full access, each in
its own way. The restriction of this set is
implicit since it is specified by defining a
state such that the accesses allowed adhere
to the rules. SNF, on the other hand, makes
the restrictions of the universe defined by a
rule explicit by the specification of a set.
This set ultimately determines the subset of
the universe which implements the security
policy associated with the rule.

The first level-three set, Bms,
defines the mandatory security policy. Since
mandatory security is really the combin~tion
of restriction~on read access by s~mple
security and on write access by t:ne *-pro­
perty, the set Bms is broken up into two
explicit subsets associated with each of the
rules. These sets are unioned to form Bms­
those accesses allowed under the integrated
mandatory security policy.

The subset Bms r r-epresents the
read restrictions imposed by the simple
security property. The property has been
summarized as meaning "no read up" in classi­
fication level. For example, a secret­
cleared subject is prevented from reading
data in a top secret object. Read access is
permitted only if the level of the subject
dominates the level of the object.

Similarly, the subset Bms_a repres­
ents the write restrictions by the *-proper­
ty. This property has been summarized as
meaning "no write down" in classification
level. For example, a secret-cleared subject
may not write to an unclassified object since
secret information could flow to the object
thereby exposing it to unclassified subjects.
Write access is permitted only if the level
of the object dominates the level of the
subject.

The second level-three set, Bds,
defines discretionary security policy. Bds
is an arbitrary subset of the universe of
promiscuous accesses defined in set B. The
discretionary nature of the set comes from
additional rules defining subsets of B over
which each subject has dominion. Dominion
means the discretion to include or exclude an
element from Bds, thereby allowing or denying
the corresponding access privilege.

The final level-three set, Bs,
defines the unified security policy - the
combination of mandatory and discretionary
access control. The set Bms defines the
mandatory security policy. The set Bds
defines the discretionary security policy.
These two set are intersected to form the
unified policy. The fact that the combin­
ation is done by intersection says that if a
given access privilege is denied by either
policy, it is denied in the unified policy.
In this way, even though an arbitrarily large
subset of the promiscuous universe set, the
discretionary access set cannot allow access
denied by the mandatory security policy
embodied in set Bms.

196

This representation of the total
security policy as the intersection of subsi­
diary policies allows simple extension to
include other security protection policies
with these two by simply intersecting them
into the final set. This, for example, makes
the addition of type enforcement described in
Appendix C simpler to grasp in its relation­
ship to the other security policies with
which it coexists.

Biba Integrity Model

The Biba Integrity Model is essent­
ially an exact parallel to the BLP model with
compromise levels (C L) replaced by integrity
levels (I L). The SNF description in Appen­
dix B is nearly identical to that of BLP with
the above noted change propagated throughout.

The model is intended .to protect
the integrity of data in a system so as to
prevent unauthorized modification of objects.
For example, a data base locating the space
junk orbiting the earth may be unclassified,
but the integrity of this information is
critical to plotting a safe course for space
craft. The Biba Integrity Model attempts to
deal with this problem by adding integrity­
related labels to all of the subjects and
objects and restricting access to protect
critical files (objects).

The innovation in the model is not
in its form (since it is equivalent to BLP)
but rather in the assignment and interpretat­
ion of labels. It is difficult to make sense
of assigning integrity labels to subjects.
The assignments necessary to provide integ­
rity protection of certain types seems con­
torted at times. Indeed, the author drops
parts of the parallel to BLP due to an inabi­
lity to ascribe a meaning to them.

The attempt to parallel BLP
resulted in a somewhat contorted model that
was not powerful enough to fulfill the spect­
rum of requirements of integrity enforcement.
For example, the model cannot protect inter­
mediate fil<::: results in a pipeline of
programs without requiring a substantial
amount of trusted software. [3] one of the
most important goals of a model is to mini­
mize the amount of trusted software since
software verification is expensive. This
leads the discussion to the next section on
role enforcement. This model addresses the
same integrity problem, but with much more
power.

Role Enforcement Model

The level-one sets of objects (0),
subjects (S), and accesses (A) are as in the
BLP model description .above. The set of
types (T) and domains (D) are new sets that
will act as an orthogonal label set for
objects and subjects respectively. The
unique aspects of role enforcement [3] are
based on these two sets.

The first level-two set, Fl,
assi~ns types to objects. Notice that the
mapp~ng need only be complete - each object
must have at least one type associated with

it. There appears to be no need to make the
mapping unique as for classification labels
in the standard BLP model. In other words,
there appears to be no needed restriction in
this policy that prohibits an object from
being of more than one type. Similarly, the
set F2 maps all subjects to domains.

The universe of all possible
accesses is again defined as M as in Appendix
B for BLP.

The level-two set, F3, defines the
universe of all possible accesses between
domains and types just as is done above for
the set M. Indeed, if each object is
assigned a unique type, and each subject is
assigned a unique domain, F3 is isomorphic
to the universe set M.

The first level-three set, F4, is
defined as a subset of F3 that defines a
particular access policy. F4 is an arbitrary
subset of F3 in very much the same sense that
Bds is an arbitrary subset of B. Indeed,
under the special condition stated above, the
analogy is exact. This brings up an interes­
ting point. Is this model a kind o~ discret­
ionary access control, and does ~t suffer
from ~e same inherent weaknesses? The
answer is no, but only if the assignment of
labels is done carefully and the mappings of
objects-to-types and subjects-to-domains
remains tranquil (static). Restricted
changes could be allowed, but they would have
to adhere to some stated properties if they
are not to corrupt the integrity protection.

The set Brs is a level-three set
that essentially maps the access restrictions
imposed between domains and types back to
restrictions between subjects and objects.
Brs, therefore, defines a particular role
enforcement security policy. It is a defined
subset of the universe of all possible
accesses (M) in the same way that Bds (dis­
cretionary policy) and Bms (mandatory) are
also subsets of M. Role enforcement is
represented as just another subsidiary policy
in the same form that can simply be intersec­
ted into the unified policy defined by the
set Bsl.

The unified policy set, Bsl, is
defined as the intersection of the BLP
unified policy Bs (which combines mandatory
and discretionary security - see Appendix B)
and the policy enforced by role security.
This demonstrates the facility of adding
coexisting security policies under SNF.

MLO Model

In 1985 SYTEK, Inc., produced an
MLO Model under a Rome Air Development center
contract. At that time, we were not able to
compare the 111LO model rigorously with any
other model due to the lack of a standard
notation. In casting the MLO model in SNF we
were able to grasp its content. In this
paper we cast that part of the MLO model
which allows us to compare it with BLP. A
complete casting of the MLO model will appear
in a subsequent paper.

197

MLO access attributes are treated
at a higher level than BLP. In addition to
the BLP read and write, the actual MLO set of
access types includes the following: create,
destroy, downgrade, upgrade, owner, clear­
ance, Discretionary Access Table (OAT), and
kill. For simplifying the comparison with
BLP, we will consider only the read and write
access attributes.

The set of security levels (S_L) is
the equivalent to the BLP SNF set of com­
promise levels (C_L). The subject and object
sets are BLP equivalents also. The set of
roles (RO) list all the possible roles under
which subjects may operate. Subjects may
operate in one role at a time (S_RO).

The level-two sets, partial
ordering (P) and object-level mapping (Fo),
are BLP SNF equivalents. In MLO, however, we
have two security levels associated with each
subject: the container clearance (Fe) for
reference path access and the data clearance
(Fd) for object access.

To model the relationship between
multilevel objects (i.e. containers) and
single level objects (atoms) the set H is
defined with the primitive is-a-hierarchy-on
(see Appendix A). The setH models both the
container-atom relationship between objects
as well as determines the possible reference
paths for object access. For example, if an
object oz is contained in container oy which
is, in turn, contained by container ox, a
reference path to oz would be the ordered
tuple <ox,oy,oz>. The set Q represents all
such sequences in H. H also determines which
objects are atoms and which are containers by
using the convention that the leaves are the
atoms.

The reference mechanism in the MLO
model returns the reference path which must
be used to access an object. The set RF
models this mechanism and maps subject-role
pairs and objects to reference paths. There
is only one allowable path to an object for
each subject and role combination. Frp, a
level-five set, models the association of a
security level with each path. Given a
subject in a specific role accessing an
object, there is only one path allowed, and
it has a single security level associated
with it. For example, in a top secret doc­
ument there is an unclassified paragraph
which may be only accessed if the user has a
top secret clearance. The reference p~th
here is opening the document and then read1ng
the paragraPh. This is modeled by the use of
a container clearance per subject and assign­
ing top secret to all reference paths to the
paragraph. The subject's container clearance
must dominate the level of the reference path
used to access the object.

Finally, we create the sets Bms_r
and Bms_ w which are analogous to the BLP
Bms r and Bms a sets. An element (sr,o,r) of
Bms-r implies that read access is allowed
because the subject (s), acting in the role
(ro), has a container clearance which domin­
ates the security level of the reference path
to object (o) and a data clearance which

dominates the object's security level. This
is the MLO equivalent to simple security.

The MLO equivalent to the *-proper­
ty is the set Bms w. An element (sr,o,w) of
Bms w implies that write access is allowed
because the subject (s), acting in the role
(ro), has a container clearance which domina­
tes the security level of the reference path
to the object (o) and a data clearance which
is dominated by the security level of the
object.

The unified security policy is
determined as in BLP. Given an arbitrary
set, Bds, which represents the discretionary
access controls and the set Bms which is the
union of Bms r and Bms w, the total secure
access set is the intersection of Bms and
Bds.

In simplifying the MLO model to
compare it with BLP we ignored the concept of
users and operations. The MLO model is much
more comprehensive than we present here;
however, we feel we have accomplished our
purpose of comparing it with BLP. The inter­
esting problem of modeling parameters in set
theory will be solved in the full casting of
the MLO model in SNF.

CONCLUSION

The notation proposed, SNF, is consis­
tently based on set theory representations.
This has proven sufficiently powerful to
represent the essence of four different

security models.l

Merely representing these models in SNF
has given the authors new insights into the
meaning and ramifications of. these models.
SNF promises to greatly facilitate the an~ly­
sis of existing models and the compar1son
between models. several follow-up papers
based on SNF are planned.

1 We expect SNF to be rich enough to
represent the full subtlety of current com­
puter security models, however this remains
to be shown by future analysis.

198

REFERENCES

1. Bell, D.E. and L. J. LaPadula, "Secure
Computer System: Unified Exposition and
Multics Interpretation," (Bedford, MA: Elect­
ronic Systems Division, AFSC, Hanscom AF
Base), January 1976, ESD-TR-75-306.

2. Biba, K., "Integrity Considerations for
Secure Computer systems, 11 (Bedford MA,
Electronic Systems Division, AFSC, Hanscom AF
Base), April 1977, ESD-TR-76-372.

3. Boebert, W.E •. and R. Y. Kain, "A Prac­
tical Alternative to Hierarchical Integrity
Policies," Proceedings of the 8th National
Computer Security Conference, (Gaithersburg
MD: DOD Computersecurity Center/National
Bureau of standards), September 1985, pp 18­
27.

4. Sullivan, E.c., T. F. Lunt, and N.
Proctor, "The Multilevel Object Security
Model;" (GRIFFISS AFB, New York: Rome Air
Development Center), November 1985, F30602­
85-C-OOOl.

5. Aho, A., J. Hopcroft, and J. Ullman, The
Design and Analysis of Computer Algorithms,
Addison-Wesley, 1974, Chapter 1.

APPENDIX 	 A: Notation Primitives

Set Normal Form construct Definitions
07/18/86

Strings of ASCII characters are used in place
of standard mathematical symbols for two
reasons: we wish to easily transmit this
document electronically, and we do not have
the graphics capability to support editing
such a document. Realizing that these symbols
are near and dear to the mathematicianJs
heart, we will produce this notation, some­
time in the future, using standard mathem­
atical symbols.

1. maps-completely-to: Given sets A and B

and M := { (a,b) 1 a member-of A and b

member-of B}, A "maps-completely-to" B iff

for_every a member-of A there_exists (a,b)

member-of M for some b member-of B.

2. maps-uniquely-to: Given sets A and B and
M := { (a,b) 1 a member-of A and b member-of
B}, A "maps-uniquely-to" B iff (a,bl) member­
of M and (a,b2) member-of M implies bl=b2
where a member-of A and bl,b2 member-of B.

3. maps-fully-to: Given sets A and B, A
maps-fully-to B iff A maps-uniquely-to B and
A maps_completely to B

4. PS(A): power 	set of A

5. is-a-partial-ordering-on: Given set A
and P := { (al,a2) 1 al, a2 member-of A }, P
"is-a-partial-ordering-on" A iff

(i) al = a2 or
(ii) 	 (al, a2) , (a2 ,al) members-of P =>

al=a2 or
(iii) 	(al,a3), (a3,a2) members-of P =>

(al,a2) member-of P where
al,a2,a3 members-of A

Comment: The three conditions specify
reflexivity, antisymettry, and transitivity
required by a partial ordering. P captures
the dominance relationship described by BLP.

6. is-a-hierarchy-on: Given set A and H :=
(al,a2) 1 al,a2 member-of A } H "is-a-hier­
archy-on" A iff

(i) al not = a2 and
(ii) for all sequences of members of H

where
(al,a2),(a2,a3), ••• , (li,ai+l), •••
, (an-l,an) is a sequence where

the second element of one pair is
first element of the next pair =>
al not = an

comment: 	 The two requirements specify ..that
(1) no container contains itself,
and (2) there are no cycles
within the representative di­
graphs.

7. 	is-a-leaf-in: Given His-a-hierarchy-on A
then a is-a-leaf-in H iff

(i) 	 for all (ai,aj) member-of H, a
not = ai

Comment: 	 There are no objects which this
object contains. By our restrict ­
ion that all containers must
contain at least the NULL atom,
only the atoms will satisfy the
above criteria.

s. is 	a subset of: A is a subset_of B iff

(i) 	 for all a member-of A, then a
member-of B

APPENDIX 	 B: Bell And Lapadula

Modified Bell and Lapadula Model
Set Theory Casting
08/29/85, 09/18/85

Level-one Sets: 	 The fundamental sets of the
modeling system.

c L := set of all compromise levels
0-:= set of all objects

· (data;files;pgms;subjects;ijo
devices)

s := set of all subjects (processes;pgms
in execution)

A := 	 {r,a} the set of access rights
r means read~only access
a means blind-write access

Level-two Sets: 	 The sets which depend only

on fundamental sets.

p is-a-partia~-ordering-on C_L

Def: 	 11 R 12 denotes the dominance
relation R between C L members 11
and 12. 11 R 12 iff-(11,12) is a
member of P. In BLP terms, 11 R
12 means level 11 dominates level
12.

199

Fo := 	{ (o,l) 1 o member-of o, 1 member-of
C_L, and 0 maps-fully-to C_L}

Comment: 	 Fo is a set that equivalently
specifies the BLP function Fo:
0 --> C_L.

Def: 	 Given a particular (o,l) member­
of Fo, Fo(o) refers to the level
1 to which object o is mapped in
the tuple.

Fs := 	{ (s,l) 1 s member-of s, 1 member­
of C_L and S maps-fully-to C_L}

Comment: 	 Fs is a set that equivalently
specifies the BLP function Fs:
S --> C_L.

Def: 	 Given a particular (s,l)
member of Fs, Fs(s) refers to
the level 1 to which subject s
is mapped in the tuple.

M := 	 { (s,o,x) 1 s member-of s, o member­
of o, x member-of A}

Comment: 	 M is the set of all possible
access between subj-ects and
objects independent of the
mapping functions. M is
essentially equivalent to an
access matrix with all of the
entries filled in with full
access.

Level-three Sets: 	The sets which depend on
level-two sets.

Bms := 	 Bms_r Union Bms_a

Comment: 	 Bms is a subset of M which
defines the access between
subjects and objects that are
allowed by simple-security and
the *-property.

Bms_r 	 := { (s,o,r) 1 Fs(s) R Fo(o) }

Comment: 	 Bms r are those accesses
allowed by simple-security.

Bms_a 	 := { (s,o,a) 1 Fo(o) R Fs(s) }

comment: 	 Bms a are those accesses
allowed by the *-property.

Bds 	 is_a_subset_of M

comment: 	 Bds are those accesses that
are allowed by discretionary
security. BLP refers to this
as matrix M, where M(i,j) = r
means that the ith subject has
read access to the jth object.
This is represented by the
triple (si, oj, r) in the set
Bds in SNF.

Bs := 	 Bms Intersect Bds

comment: 	 Bs corresponds to the set of
all secure access triples.
This set defines all accesses

allowed in a given security
system.

APPENDIX C: Biba Integrity

Integrity Parallel of the Modified Bell and
Lapadula 	Model
Set Theory Casting
09/03/85, 9/18/85

Level-one Sets: 	 The fundamental sets of the
modeling system.

I L := 	 set of all integrity levels
o-:= set of all objects

(data;files;pgms;subjects;ijo

devices)

S := 	 setof all subjects (processes;pgms
in execution)

A := 	 {r,a} the set of access rights

r means read-only access

a means blind-write access

Level-two Sets: 	 The sets which depend only
on fundamental sets.

P 	 is-a-partial-ordering_on I_L ·

Def: 	 11 R 12 denotes the dominance
relation R between I L members 11
and 12. 11 R 12 iff-(11,12) is a
member of P. In BLP terms, 11 R
12 means level 11 dominates level
12.

Fo := { (o,l) I o member-of o, 1 member­
of I_L and o maps-fully-to 1}

Comment: 	 Fo is a set that equivalently
specifies the BLP function Fo:
0 --> I L.

Def: 	 Given a particular (o,l) member
of Fo, Fo(o) refers to the level
1 to which object o is mapped in
the tuple.

Fs := 	{ (s,l) I s member-of s, 1 member­
of I_L and s maps-fully-to 1}

Comment: 	 Fs is a set that equivalently
specifies the BLP function Fs:
S --> I L.

Def: 	 Given a particular (s,l) member
of Fs, Fs(s) refers to the level
1 to which subject s is mapped in
the tuple.

M := 	 { (s,o,x) I s member-of s, o member­
of o, x member-of A}

Comment: 	M is the set of all possible
access between subjects and
objects independent of the
mapping functions. M is
essentially equivalent to an
access matrix with all of the
entries filled in with full
access.

200

Level-three Sets: 	The sets which depend on
level-two sets.

Bms := 	 Bms_r Union Bms_a

Comment: 	 Bms is a subset of M which
defines the accesses between
subjects and objects that are
allowed by integrity
simple-security and the
integrity *-property.

Bms_r := { (s,o,r) 1 Fs(s) R Fo(o) }

Comment: 	 Bms r are those accesses
allowed by integrity
simple-security.

· Bms_a := { (s,o,a) 1. Fo(o) R Fs(s) }

Comment: 	 Bms a are those accesses
allowed by the integrity
*-property.

Bds 	 is_a_subset of M

comment: 	 Bds are those accesses that
are allowed by discretionary
security. BLP refers to this
as matrix M, where M(i,j) = r
means that the ith subject has
read access to the jth object.
This is represented by the
triple (si, oj, r) in the set
Bds in SNF.

Bs := 	Bms Intersect Bds

Comment: 	 Bs corresponds to the set of
secure access triples. This
set defines all access allowed
in a given security system.

.APPENDIX D: Role Enforcement

Type-Domain Mechanism Model Extension to the
Modified Bell and LaPadula Model
Set Theory Casting
09/03/85

Level-one Sets: 	 The fundamental sets of the
modeling system.

0 := set of all objects
s := set of all subjects
A:= {r,a} the set of access rights

T := 	 set of all types
D := 	 set of all domains

Level-two Sets: 	 The sets which depend only
on fundamental sets.

Fl := 	{ (o,t) 1 o member-of o, t member-of
T and o maps-completely-to t}

Comment: 	 Fl maps every object o to some
type t. Fl corresponds to a
mapping function Fl: o --> T.

F2 := 	{ (s,d) 1 s member-of s, d member-of
D and s maps-completely-to d}

comment: 	 F2 maps every subject s to
some domain d. F2 corresponds
to a mapping function F2: s
--> D.

M := 	 { (s,o,x) ·1 s member-of s, o member­
of o, x member-of A}

Comment: 	 M is the set of all possible
access between subjects and
objects independent of the
mapping functions. M is
essentially equivalent to an
access matrix with all of the
entries filled in with full
access.

F3 := 	{ (d,t,x) 1 d member-of D, t member­
of D, x member-of A}

comment: 	 F3 is the set of all possible
accesses between domains and
types.

Level-three Sets: 	The sets which depend on
level-two sets.

F4 is a subset 	of F3

comment: 	 F4 represents an access matrix
between domains and types.

Brs := { (s,o,x) 1 s member-of S, o
member-of o, x member-of A and
(d,t,x) member-of F4 and (s,d)
member-of Fl and (o,t) member-of
F2}

comment: 	 Brs is the set of all accesses
allowed between subjects and
objects in the type-domain
model •

Bsl := 	 Bs Intersect Brs where Bs is the
BLP secure set

Comment: 	 Bsl represents the logical AND
of the basic access rights
defined by the BLP model and
the type-domain extension to
that model.

APPENDIX E: MLO Model

Modified MultiLevel Object Model
set Theory casting
05/26/86

Level-one Sets: 	 The fundamental sets of the
modeling system.

s_L := 	 set of all security levels
0 := set of all objects

(data;files;pgms;subjects;ijo

devices) ·

s := 	 set of all subjects (processes;pgms
in execution)

A := 	 {r,w} the set of access rights
r means read access
w means write access

RO := 	set of all roles

201

Level-two Sets: 	 The sets which depend only
on fundamental sets

p 	 is-a-partial-ordering_on S_L

Def: 	 11 R 12 denotes the dominance
relation R between s L members
11 and 12. 11 R 12 Iff
(11,12) is a member-of P. In
BLP terms, 11 R 12 means level
11 dominates level 12.

Fo := 	{ (o,l) I o member-of o, 1 member­
of S_L and 0 maps-fully-to s_L}

Comment: 	 Fo is a set that equivalently
specifies the MLO function Fo:
0 --> S L.

Def: 	 Given a particular (o,l) member­
of Fo, Fo(o) refers to the level
1 to which object o is mapped in
the tuple.

Fe := 	{ (s,l) I s member-of s, 1 member­
of S_L and S maps-fully-to S_L}

Comment: 	 Fs is a set that equivalently
specifies the MLO container
clearance.

Def: 	 Given a particular (s,l) member
of Fe, Fc(s) refers to the level
1 to which subject s is mapped in
the tuple.

Fd := 	{ (s,l) I s member-of s, 1 member­
of S_L and S maps-fully-to C_L}

Comment: 	 Fd is a set that equivalently
specifies the MLO data
clearance.

Def: 	 Given a particular (s,l) member
of Fd, Fd(s) refers to the level
1 to which subject s is mapped in
the tuple.

H := 	 { (ol,o2) 1 H is-a-hierarchy-on o &
(Fo(ol),Fo(o2)) member-of P}

Comment: 	 This hierarchy determines the
container-content
relationship. Containers
contain references to other
containers and atoms. Atoms
may be leafs and can only
contain data. In order to
maintain the leaf (atom) ­
non-leaf (container)
distinction, we have adapted
the convention that all empty
containers contain a null
atom.

SR := 	{ (s,ro) s member-of s, ro member-
of RO}

Comment: 	 SR is set of all permissable
subject-role combinations.

S_RO 	 is a subset of SR and s maps-fully­
to-RO in s_RO

Comment: 	 Every subject must be
associated with only one role
at any given time.

Level-three Sets: 	The sets which depend on
level-two sets.

M 	 { (sr,o,x) 1 sr member-of SR, o
member-of o, x member-of A}

Comment: 	 M is the set of all possible
access between subjects and
objects independent of the
mapping functions. M is
essentially eqUivalent to an
access matrix with all of the
entries fiiled in with full
access.

Q .- { q 1 q is an ordered tuple
<ol, ••• ,on> & for 1 ~ i < n, n ~ 2,
oi member-of q, then (oi,oi+l)
member-of H }

Comment: 	 Set of all possible paths
constructed of pairs of
objects from H

AT := 	{ o 1 o member-of o, o is-a-leaf-in
H}

comment: 	 In the MLO model, atoms can
contain only data at a single
security leveL

c := 	 { o 1 o member-of ci, not o is-a­
leaf-in H}

Comment: 	 In the MLO model, containers
can contain only descriptors
of other containers or atoms.

Level-four sets: 	 The sets which depend on

level-three sets.

RF := 	{ (sr,o,q) 1 sr member-of SR, o
member-of o, q member-of RF, (SR,O)
maps-fully-to RF. o=on where on is
last oi in q}

Comment: 	 This equates to the MLO
reference mechanism. Given a
subject-role pair and an
object combination, there is
exactly one reference path
allowed.

Level-five Sets: 	 The sets which depend on

level-four sets.

Frp := 	 { (sr,o,l) I (sr,o,q) member-of
RF, 1 member-of L}

Comment: 	 Frp(o) will be used as a
shorthand to indicate the
reference path level
associated with an object for
a given subject-role pair.

202

Level-six Sets: The sets which depend on
level-five sets.

Bms := 	 Bms_r Union Bms_w

Comment: 	 Bms is a subset of M which
defines the access between
subjects and objects that are
allowed by MLO equivalents to
the BLP simple-security and
the *-properties.

Bms r : = { (s 1 o 1 r) I Fe (s) R Frp (o) and
- Fd(s) R Fo(o) }

Comment: 	 Bms r are those accesses
allowed given that the
subject's container clearance
dominates the reference-path
level for the object and the
subject's data clearance
dominates the object•s
security level. (NO READ UP)

Bms w := { (s 1 o 1 r) 1 Fc(s) R Frp(o) and
- Fd(s) R Fd(s) }

Comment: 	 Bms w are those accesses
allowed given that the
subject's container clearance
dominates the reference path
level for the object and the
subject's data clearance is
dominated by the object•s
security level. (NO WRITE
DOWN)

Bds 	 is_a_subset_of M

Comment: 	 Bds are those accesses that
are allowed by discretionary
security. MLO defers this to
implementation detail. In
essence it is an arbitrary
subset of M.

Bs := Bms Intersect Bds

Comment: 	 Bs is only part of the full
MLO model created by SYTEK
Inc. We put as much of the

1
MLO

model in SNF as necessary to
compare it to BLP. We plan to
put the full MLO model in SNF
as a future paper.

203

RESEARCH TOWARD INTRUSION DETECTION

THROUGH AUTOMATED ABSTRACTION OF AUDIT DATA

JEFFREY D. KUHN

National Computer Security Center

911 Elkridge Landing Road

Linthicum, Maryland 21090

ABSTRACT

Auditing seldom plays a role in detecting

illegal attempts to access data residing in

computers. Instead, if audit data are used at all,

it is generally in the form of detailed printouts

that are pored over by the security officer for

further evidence of wrongdoing after illegal

activity has already been discovered. This paper

examines the issues involved in using audit data to

detect illegal computer activity, and proposes an

audit system based upon the results of that

examination.

INTRODUCTiON

There are two major sources of audit data

typically produced by timesharing operating

systems to provide a history of system use. An

accounting system provides the information

necessary to bill account holders for the computer

time that they use, and security logs provide

listings of attempts to use priviledged commands.

The information collected this way that indicates

a security violation, if it exists at all, is usually

too well dispersed within a large volume of

similar but irrelevant data to be useful for the

detection of that violation. Instead, it is generally

used only to confirm something already strongly

suspected, or to add additional evidence to that

already in existence.

Despite the poor performance of present

auditing techniques applied to security, a

combination of proper audit data and tools for the

computer aided analysis of that data should

provide a security officer with the ability to

identify some illicit computer activities. The

remainder of this paper will examine activities

that violate the security of computer systems,

determine what audit information needs to be

collected, and describe how that information can

be analyzed to detect undesirable activity.

VIOLATING SECURITY

At the most fundamental level, the

methodology for compromising information

security is the same whether that information is

contained within a computer system or not. A

compromise occurs through some combination of a

violation of trust and a circumvention of physical

and procedural safeguards. If the violation

involves aspects of security not intimately related

to the use of a computer, then there will probably

be little to distinguish the computer activity

involved. In this situation the computer is merely

a tool being used in the proper manner.

The situation of interest is one where the

safeguards that are being abused exist within the

204

operating system of a computer. If this is the

case there may be little to distinguish the illicit

act except for information regarding particular

computer activity. The computer is then no longer

a properly used tool but is instead a fundamental

part of the compromise. This type of violation or

circumvention of operating system safeguards is

commonly referred to as system penetration.

A PHILOSOPHY OF PENETRATION

When a person performs what appears to be

a single operation on a computer, they are

interacting with the computer operating system at

a level of abstraction above what is actually

occuring. The operating system that the user

manipulates is an abstract model that has been

implemented with lower level operations. A

typical operating system contains several such

levels, each model implemented in the levels

below it. The lowest level operations are

implemented in hardware. It is an interpretation

of the effects of several hardware operations that

the user recognizes as the result of any individual

command.

A properly constructed implementation must

exhibit all the properties that will allow it to be

recognized as the correct abstraction. Conversely,

it should not display any properties not shared

with abstraction being implemented. Doing this

perfectly Is a very difficult thing to ensure. The

typical operating system has a number of

implementation flaws at each level of abstract

operation. When such an inconsistency is

discovered, It can often be employed by a

sophisticated user to perform operations that

would otherwise be disallowed as violations of

security.

Discovering and exploiting inconsistent

implementations is only one technique employed in

the compromise of computer security. At its most

abstract level, an operating system is still

complicated enough that administrative oversights

and design errors will sometimes exist that can

lead to properly unauthorized access to sensitive

data. In such cases, penetration occurs despite a

potentially correct implementation of the

operating system design because security has not

been correctly considered either by the system

designers or the system administrators. Whether

the error is made by the implementor, the

designer, or the administrator, penetrations are

effected by achieving an understanding of the

operating system and considering the

ramifications of using a command or set of

commands in an unanticipated manner.
\

APPLICATION OF AUDITING TO PENETRATION

An auditor must collect data at a relatively

low level of implementation for it to be effective

in the discovery of penetrations. This ensures

that most of the flaws that can be exploited exist

at levels of abstraction higher than that being

audited, maintaining the integrity of the audit

data. A second requirement necessary to maintain

the integrity of the data is for the auditor and the

collected data to be housed in a processor distinct

from that being audited. Otherwise, the

successful penetrator might be able to erase or

alter the data. Collecting the data at such a low

level of implementation only increases the

problems associated with the large volume of

audit data involved, leading to a third requirement

that a large percentage of the potential data not be

generated at all or else be disposed of early in the

auditing process. The remaining data should then

205

be processed by summarizing the effects of the

low level commands upon data objects

representing relatively high level concepts of

system security. Whenever possible, these data

objects should become the raw data that is

examined and further processed for evidence of

security violations so that the volume of audit

data that must be searched to find a penetration

attempt Is reduced.

The security officer with this kind of an

auditor will be able to monitor system security by

noting the access of special purpose files used by

the operating system, and by watching the use of

commands with particular relevance to system

integrity. Known flaws can be carefully watched.

Trojan horse programs and viruses can, in some

cases, be identified by their access of files and

patterns of information flow. Some covert channel

manipulations can be detected by their distinctive

use of system calls. The general technique is to

characterize specific penetration techniques and

Identify their use in system activity. An

Important point is that much of the information

used in the characterizations will be system

specific.

The intent is to put reliable information

into the hands of the security officer that has a

direct bearing on possible attempts to circumvent

the security controls built into the operating

system and achieve unauthorized access to data.

The information is retained on-line so that it can

be further processed in a manner directed by the

security officer. This approach uses the unique

capabilities of both computer and human to

positive advantage: the computer's ability to

quickly organize and process data and the human

talent for recognizing relevant situations and

interrelationships.

THE APPROACH

The above approach was applied to auditing

the UNIX operating system. UNIX was chosen for

several reasons. First among them was

expediency; I have a.PDP 11/70 running a version

of UNIX and several UNIX experts at my disposal.

Second, the UNIX system is an almost ideal

candidate. It was developed as a simple but

powerful, general-purpose operating system. The

fundamental generality of the individual commands

makes It possible to use them In often completely

inappropriate ways, tremendously Increasing the

possiblllties of finding an unanticipated

combination of commands and arguments leading

to a violation of computer security. Modifying

UNIX to produce the audit data needed is easy

because it is written and maintained in C, a

high-level language.

Like most multiuser computers, the

PDP-11/70 simulates multiprocessing on a

computer with only a single processor. The

hardware is designed such that virtual memory is

mapped to actual memory in a way enabling the

address space of an individual process to be kept

distinct from that of other processes. A process

must access all resources other than its own

distinct address space through requests to the

operating system, which mediates the requests

and enforces the concept of process separation.

The UNIX operating system is designed

arounq the central concept of a flle system. All

resources are represented as files, greatly

simplifying their access. Process separation is

maintained by requiring that processes have the

206

proper permission before they can access a file.

Each file Is marked with a permission field that

Indicates what class of processes may access it

and how it may be accessed. The permission field

indicates read, write, and execute permissions for

three types of processes: processes owned only by

the owner of the file, processes owned my a

member of the owner's group, and by any process

regardless of ownership. There is an owner named

root with special privilege. root has ownership of

the files representing the disks, core, and so forth.

Processes owned by root also have the privilege of

accessing any file regardless of the file's

permission field.

UNIX is implemented in the Cprogramming

language, augmented with operations called

syscalls. Syscalls enforce the abstractions of a

file system and the necessity for processes to

have the privilege to access files. This is the

level at which I chose to record audit data. It

requires that the syscalls properly employ the

hardware based memory mapping to maintain the

illusion of virtual memory, and that the file

system abstraction is both correctly implemented

and properly enforces security. There is also some

circularity involved, since the C language and the

syscalls run on the UNIX operating system. While

these assumptions are not necessarily completely

valid, enough flaws exist beyond any in the

syscalls and the file system to make it

worthwhile.

It was decided to use syscall audit data to

construct representations of the propagation of

priviledge (Indicating what each process may

access), process lineage (keeping track of process

ownership), and file system manipulation by each

process (Identifying potential information flow).

These representations would be the data submitted

to the security officer for further analysis.

Making the above assumptions, this information

should be sufficient to identify many potential

breaches In information security that can occur

through exploitation of the UNIX operating system.

About half of the fifty-six syscalls

implemented on our version of UNIX (a modified

version 6) were identified as having an impact on

the state of the abstractions chosen for display to

the security officer. After careful consideration,

twenty of these were chosen for auditing. The

goal was to produce the most accurate

representations possible with the least amount of

auditing and the smallest amount of processing.

Syscalls such as pause were rejected as having no

direct Impact. Others, such as ru.Q. were rejected

because of their high frequency of use, and because

their use can be assumed from the use of the QQM

syscall.

A Symbolics LISP machine was chosen to

receive and process the raw audit data. The

Symbolics machine was chosen because of its

suitability for symbolic manipulation of lists,

capability for prototyping, and attention to tools

for the construction of elegant user interfaces. A

major goal is the creation of a system which is

easy to use. The security officer will be able to

run background processes that screen the incoming

data for particular events, and perform further

analysis in a batch mode.

CONCLUSION

An examination of operating system

penetration techniques and current auditing

methods indicates that most sophisticated

207

violations of system security will be completely

undetected, leaving potentially no trace in the

audit logs at all. Perhaps the only method of

identifying this type of violation is to

characterize specific classes of penetrations and

attempt to recognize their occurrance. To do this,

however, it is necessary to audit data at a lower

level of system implementation than is currently

the practice. This data must then be processed,

both automatically and with human guidance, to

identify individual penetration attempts. In order

to be effective, the auditor must, as much as

possible, represent the audit data and penetration

characterizations in terms of high level

abstractions rather than the low level audit data.

This reduces the amount of further processing that

must take place. It is also important to give the

security officer as much power as possible to

describe characterizations of security violations

and guide the resulting search for their

occurrance. Above all, the proposed system is a

tool involving human participation.

Bl BL IOGRAPHY

Peters B., "Computer Security Today," Proc.

7th DOD/NBS Computer Security

Conference, pp. 270-276, 1984.

Ritchie D., and K. Thompson, "On The Security

Of Unix," Documents For Use With The UNIX

Timesharing System, 6th ed., Be II

Laboratories, Murray Hill, NJ 07974.

Ritchie D., and K. Thompson, "The UNIX

Timesharing System," Documents For Use

With The UNIX Timesharing System, 6th ed.,

Bell Laboratories, Murray Hill, NJ 07974.

Thompson K., "Reflections on Trusting

Trust," Communications of the ACI'tvol. 27,

no. 8, August I984.

Wood P. H., and S. G. Kochan, UNIXSystem

Security, Pipeline Associates Inc., Hayden

Publishing Company Inc., Hasbrouck Heights,

NJ. I Berkeley California, 1985.

208

TRUST ISSUES OF MACH-1

Dr. Martha A. Branstad, Ms. Pamela S. Cochrane,

Dr. D. Elliott Bell, and Mr. Stephen T. Walker

Trusted Information Systems, Inc.

P.O. Box 45

Glenwood, MD 21738

I. INIRODUCTION

Trusted Information Systems, Inc., is investigating the
feasibility of creating a trusted version of the Mach-1
operating system being developed at Carnegie-Mellon Uni­
versity. Initial analysis is being done on Accent, the
progenitor of Mach-1, since both systems are message­
based and focus on ports (kernel managed message queues),
as the central abstraction, although Accent has a simpler
process structure and no memory sharing. Accent is a
well-structured system designed with protection as a sys­
tem goaL Consequently, the crucial trust issue in deter­
mining if Accent can be made to conform with the DoD
Trusted Computer Security Evaluation Criteria (TCSEC) for
a level B3 system is the ability to associate labels with
subjects and objects within the system to support manda­
tory access control.

Two different approaches to labeling, each at a differ­
ent level of abstraction with respect to the system, merit
further investigation. These approaches are: 1) associate
labels with ports and processes managed by the kernel; and
2) modify the existing access group structure and use the
Authentication, Authorization, and Name Servers to provide
mandatory access control. This paper will examine the
structure of Mach-1 and Accent, constraints imposed by
the TCSEC, and the two approaches to labeling outlined
above. This is a preliminary report on a research project
in its early phases; it presents initial findings and strate­
gies, not completed research.

11. MACH-1 AND ACCENT

Mach-1 is the kernel of a distributed operating system
designed for a diverse set of machines, ranging from work­
stations to very high performance multiprocessors. Mach-1
is based upon the Accent kernel used in the Spice distrib­
uted operating system at Carnegie-Mellon University.

Since Mach-1 bears a strong conceptual similarity to
Accent, we will first discuss Accent, the simpler of the
systems. Accent is designed as a message-based system,
with processes communicating via messages. Inter-process
communication, process management, and virtual memory
management are handled by the Accent kernel. Other
operating system services are provided by servers outside
of the kernel.

Messages in the system are sent and received via ports
which are kernel-managed and protected queues for mes­
sages. Access rights for ports have three types: Own,
Receive, and Send. Own and Receive are unique rights;
only one process may possess Receive (Own) rights for a
given port at any one time. Many processes, however, may
have Send rights to a port at the same time. Access
rights may be passed in messages. Each process has (capa­
bilities for) a pair of ports used for communication with
the kernel. The kernel maintains records of the port
capabilities associated with each process, providing control
of port creation and propagation. Each process has a
large virtual address space; Accent does not support mem­
ory sharing. Through commands to the kernel, process cre­
ation (deletion), message sending (receiving), and memory
~("~o~~ 9.re t:!<:'~lev~d~

Mach-1 is being designed to run efficiently on multi­
processors. The differences between Mach-1 and Accent
reflect this difference in design goals. Mach-1 maintains
the message-based paradigm of Accent, with ports and port
access rights remaining the same. Processes, however, are
represented with separate abstractions for the environment
and the executable portion of the process. A task is the
environment in which a collection of "lightweight" pro­
cesses termed "threads" may execute. Ports are associated
with the task, although specific ports may be designated as
primarily associated with a specific thread. Protection is
associated with the task, since threads all share the envi­
ronment provided by the task. To facilitate multiprocessor
operations, memory sharing is supported by Mach-1.

In Mach-1, as in Accent, the kernel mediates commu­
nication via messages. The kernel stores the access rights
for ports and determines if message transmissions are per­
mitted. Messages which carry access rights in their con­
tents must be so designated, and the kernel updates its
tables as appropriate when such rights are transferred.
Unless the kernel has information concerning the port
access rights, the access designators are not effective.

Perhaps in contrast to what might be expected in the
development of a distributed system by a university
research group, protection has been a design goal for both
Accent and Mach-1. This view of protection includes pro­
cess isolation, user authentication, authorization for use of
services, and discretionary access controL It does not
include a parallel to military security labeling (classifica­
tion and clearances) and mandatory access control. A
structure to support protection is an integral part of the
basic system design.

Kernel mediation of message communication via con­
trol of port access rights is a central mechanism of both
operating systems. The distributed system is organized so
that major server functions exist at both local and central
sites. Global data stores and system records are kept at
central sites which are physically secured. Local sites
provide local functionality and communicate with central
servers through protocols that can authenticate servers to
one another, and to users. Encryption may be used to
secure communication lines. Special servers handle user
identification and authentication on the system. As indi­
cated, protocols of communication with central authentica­
tion servers can be used to authenticate users to servers,
and vice versa. Central servers can act as key distribution
centers.

Discretionary access control is provided by the Autho­
rization Server and the Name Server in conjunction with
the Authentication Server. The Authorization Server main­
tains access group membership for each user via values for
two entities, the primary and secondary access groups.
Group membership is determined at login and communi­
cated to the Authentication Server. The Name Server·
maintains Access Control Lists (ACLs) associated with each
named object. When files or services are requested from
the Name Server, it compares the access group member­
ship (acquired from the Authentication Server) against the
ACL to determine if access to the named object is author­
!zed.

209

Although there has been considerable conc.::rn for: - '"
attention paid to providing protection in Mach-1 cu:d
Accent, neither would currently qualify as a DoD trusted
computer system with more than discretionary access con­
trol. Missing from both systems is any mechanism that
corresponds to sensitivity classes for subjects and objects.
Sensitivity labels and a mechanism that uses them to
enforce mandatory access control must be added to the
CMU systems to provide a basis for a stronger trusted
computing capability. For our investigations we have tar­
geted B3 as the goal.

lll. APPROACHES TO MANDATORY ACCESS CONTROL

IN ACCENT

Discussions with CMU researchers have probed two dif­
ferent approaches to providing mandatory access control:
1) associate labels with ports and processes managed by
the kernel, and 2) modify the existing access group struc­
ture and use Authentication, Authorization, and Name
Servers to provide mandatory access control.

Approach 1, Kernel Mediation, would require an exten­
sion to the port access mechanism to provide sensitivity
labeling. The kernel would check for sensitivity label
mis-match while mediating port access rights. Although the
Kernel Mediation approach would involve modification to
the kernel, the basic mediation mechanism already exists.
This approach is consistent with the TCSEC B3 level
mechanism for mandatory access control with minimization
of the TCB.

Approach 2, Server Mediation would use existing
Accent servers to provide mandatory access control as well
as the discretionary control they currently provide. Modi­
fications to both data structures and control code in the
servers would be required, but no modification to the ker­
nel itself is anticipated. This approach, which labels and
controls objects visible to users of the system, should be
adequate to support a B2 or B3 system.

Both of the above approaches will be discussed in
greater detail in the remainder of this paper, although the
Kernel Mediation approach has been the focus of most of
our energy. It should be noted that either approach, when
transferred to the Mach-1 system, must deal with the issue
of multiple threads (executable units) in a single protection
domain provided by a task; an issue in conflict with literal
interpretation of TCSEC requirements for an isolated pro­
tection domain for each process. Since threads appear to
be fundamental to achieving effective performance for
multiprocessor systems, however, this separable issue should
be considered as a point for future interpretation of the
TCSEC.

A number of other features must be provided in order
to qualify as a trusted computing base (e.g., auditing,
trusted path); however, since they are not central con­
cepts, they are not being considered at present. The
implications of the memory sharing permitted in Mach-1
and the inheritance of both memory and ports rights upon
task creation have not yet been considered, and may also
significantly impact issues of trust; the same is true for
resource management approaches. This paper presents ini­
tial findings and strategies of research in progress, not the
results of a completed research effort.

IV. KERNEL MEDIATION APPROACH

B3 criteria require sensitivity levels associated with all
subjects and objects in the system and mediation of all
access of subjects to objects based upon these labels.
Subjects are active entities corresponding to users. In the
Accent system, processes assume the role of subject, and
as such should be labeled.

Objects are the passive entities and in traditk:-;;o;
systems correspond to memory objects (data elementsi. ,,,
Accent, each process has its own virtual address space to
define its virtual memory. This virtual address space has
meaning only with respect to its associated process and is
accessed only by that process. Since the virtual address
space is so intimately associated with the process, and
accessible only within the process (or in conjunction with
the process's kernel port), it should be considered an
indivisible part of the process and be labeled by the pro­
cess label. This implies that the entirety of a virtual
address space is at the same sensitivity level as that of ,
its process.

Ports provide a unifying abstraction for the design of
the Accent kernel and a focus for access control in the
system. Communication between processes (request for
services from the kernel and other servers, and the trans­
fer of information) is accomplished by sending messages to
ports and receiving messages from ports. The actual ports,
or message queues, are maintained and protected by the
kernel. Since ports provide the communication conduit and
the access mechanism to process objects (and to their
associated data and services) within Accent, and are not
uniquely associated with processes (since ownership rights
to them can be transferred), ports should be labeled.

Labels should be associated with ports and processes in
the Accent kernel. Since the primary structures used to
define and maintain both processes and ports exist internal
to the kernel, these are accessible only to the kernel
process and are protected from tampering by other pro­
cesses. Initial examination suggests that the label associ­
ated with a process be stored in the PCBHandle and the.
port label in PortRec. Labels will require two fields:
SecurityClassification and SecurityCategory.

At the time the user would log onto the trusted sys­
tem, the Authorization Server would determine the values
of these fields, based on the user's requested sensitivity
level for the session. The validity of the request would be
determined by the Authorization Server, based on the
user's maximum sensitivity level as recorded in the Autho­
rization Server's data structures. The Authorization Server
would be modified either to insert this information directly
into the PCBHandle record or to supply the information
for another procedure to modify the PCBHandle.

In the case of Port objects, the NewPort procedure
would store the fields of the creating process's PCBHandle
record into the PortRec of the new port. This information
would have to be duplicated in the PortRec, since the
port's Procld becomes "INTRANSIT" (NPROC +1) when
ownership and receiver access rights are passed between
processes, eliminating any possibility of verifying that the
process receiving port rights is permitted to do so.

Since enforcement of access policies would occur at
the time Send, Receive, or Ownership privileges were
granted, there would be no need to enforce these policies
during message queueing or dequeuing as well, except when
the message being sent included port access rights. The
IPC routines, GiveSendRights, GiveReceive-Rights, and Giv­
eOwnership, would have to be modified to check the label
and classification fields of the PortRec against those in
the PCBHandle record of the process acquiring the rights,
to ensure that the acquiring process had a valid right to
access.

Discretionary access control would be provided by the
Authorization, Authentication, and Name Servers using
access group membership and ACLs, as is currently done in
Accent. We have not yet investigated I/0 handling and
window interfaces (currently residing within the Accent
kernel for performance reasons). Both areas may require
significant redesign to accommodate TCSEC constraints.

210

V. SERVER MEDIATION APPROACH

Significant attention has been devoted in the existing
Accent system to issues of access control. Built on top of
the Accent kernel, its control of access through the use of
ports is a collection of system processes, or servers, which
work together to provide access control of named objects.
The Authentication Server is called during the login pro­
cess to verify that the user/password combination is valid.
The Authentication Server interacts with the Authorization
Server to acquire the password associated with any given
user, and the access group membership of the user. If the
user/password match is valid, the Authentication Server 1)
establishes a port associated with the user, 2) records the
access group membership, and 3) returns the Name Server
port to the user.

Access group membership is determined by the values
of the primary access and secondary access groups to
which the user is a member. Each primary group is
uniquely associated with a single user. Secondary groups
may have both users and other secondary groups as mem­
bers. These records are kept by the Authorization Server,
which determines access group membership at login by per­
forming the union of the transitive closure of the second­
ary access group memberships.

When the user wishes to acquire files or services, he
interacts with the Name Server. The Name Server provides
a port for a named object only if the user process's access
group membership (acquired via interaction of the Name
Server with the Authentication Server) corresponds to the
ACL associated with the requested named object. This
mechanism of access groups and. ACLs is adequate to sup­
port discretionary access control and can be extended, with
the addition of labels, to support mandatory access control.

The mechanisms described above exist in the current
Accent system. The same server interactions (with modifi­
cations) can be used as the basis for adding labels and
mandatory access control. Labels can be associated with
users and kept in data structures maintained by the Autho­
rization Server. The current sensitivity level for a session
would be established at login time; it could be less than
maximum clearance level of the user. The Authentication
Server would keep information on the session level along
with the access group information of the user that it pre­
viously maintained. All processes initiated by the user
would operate at session sensitivity level, but they would
not have actual labels associated with process control data
structures. The session level for the process, maintained
by the Authentication Server, would suffice.

When a named object is created, a label would be
associated with it based upon the session sensitivity level.
The object and its label would be "registered" with the
Name Server. When attempting to access the object, the
Name Server would check the session level (via interaction
with the Authentication Server) against the object label, in
addition to an ACL check against access group membership
of the user, to provide both mandatory and discretionary
access checks.

If access is permitted, the Name Server would return
port access to the specific object requested. If the tran­
saction involves process and object at the same sensitivity
level, port access rights to the object would be conveyed
by the Name Server directly to the process. If the tran­
saction involves process and object at different sensitivity
levels, a Mediation Server would be introduced as an
intermediary. The Mediation Server would be given actual
port access rights, an object ID, and the associated process
identity; the user process would be provided with the
object ID. Actual access to the object would be made by
the user process through the Mediation Server, using the
object ID. (The user process would acquire a port for the
Mediation Server from the Authentication Server during the

login to the trusted Accent system). This mechanism
would give the user access to the object but prevent the
user process from possessing (and transferring) port access
rights.

Children spawned by a process would be at the same
sensitivity level as the parent process and could inherit
access rights held by the parent without violating manda­
tory access controls. The Mediation Server would inter­
vene and hold ports only for transactions between pro­
cesses at differing sensitivity levels.

We conjecture that inserting the Mediation Server into
the object access path for selected transactions should not
affect system performance too severely.

VI. CONCLUSIONS

The Accent and Mach-1 operating system kernels are
very well-designed, and appear to provide a solid base upon
which to structure trusted versions. Both systems provide
discretionary access control which would satisfy C2 level
ratings. (Other C2 level constraints. such as auditing
requirements, would require non-substantive modifications.)
Our current investigations indicate that the Accent system
could be modified to generate a viable B3 level operating
system. The Kernel Mediation approach, with labeling of
all subjects and objects and a minimized TCB, is a strong
candidate for B3. Estimates of the performance of such a
trusted version have not yet been made, but we conjecture
that the penalties imposed by proposed modifications· to
the kernel should not be severe. Required modification to
control 1/0 and window management may alter this perfor­
mance prediction, however. The Server Mediation approach
presents a somewhat weaker but still viable case for B3.
Performance should not be affected too adversely by the
mediation required on transactions that cross sensitivity
levels.

The brevity of our study has not permitted detailed
examining the generalization of the kernel mediation
approach to the Mach-1 system, although we are convinced
that it will necessitate more significant modifications than
required in Accent and a broader interpretation of the
TCSEC. Nevertheless, a trusted version of Mach-1 seems
achievable.

We are embarking upon further investigation of both
approaches, with Kernel Mediation being the focus with the
highest priority, since it is the most fundamental. It
appears that the memory sharing permitted in Mach-1 will
necessitate a stronger concept of memory object (capable
of having an associated label) than is needed in Accent.
The Server Mediation approach has second priority. Trust
requirements are likely to suggest modifications in data
structures, algorithms for access control interpretation, and
organization of functions within the various servers.

VII. ACKNOWLEDGMENTS

We wish to thank Richard Rashid of CMU, and mem­
bers of his research group, for the information provided to
us in technical discussions of the Accent and Mach-1 sys­
tems. Their assistance has been invaluable. ·

211

Vll. REFERENCES

1. 	 Barron, R.; Rashid, R.; Tevanian, Jr., A.; and
Young, M., Mach-1, Kernel Interface Manual,
Technical Report, Computer Science Department,
Carnegie-Mellon University, 15 January 1986.

2. 	 Barron, R.; Rashid, R.; Siegel, E.; Tevanian, Jr., A.;
and Young, M., Melan~: A Multiprocessor--Oriented
Qperatina- S)lStem and Environment, Technical Report,
Carnegie-Mellon University.

3. 	 Department of Defense TrUsted Compyter S)lStem
Evaluation Criteria, 15 August 1983.

4. 	 Jones, M. B.; Thompson, M. R.; and Rashid, R. F.,
Sesame: The Spice File ~. Technical Report,
Computer Science Department, Carnegie-Mellon Univer­
sity, August, 1984.

5. 	 Rashid, R., and Robertson, G., "Accent: A Commun­
ication-Oriented Network Operating System Kernel,"
Proceedings, 8th Symposium on Operating System Prin­
ciples, ACM, December, 1981.

6. 	 Rashid, R., The Accent Kernel Interrace Manual,
Technical Report, Computer Science Department,
Carnegie-Mellon University, September, 1981.

7, 	 Accent Source Code

212

AN OVERVIEW OF THE DoD COMPUTER SECURITY RDT&E PROGRAM

Panel Chairman, Mr. Lawrence Castro

Chief of the Office of Research and Development

National Computer Security Center

The purpose of this panel is to inform
the audience of the progress of and plans
for the Research, Development, Testing, and
Evaluation (RDT&E) efforts sponsored by the
Department of Defense (DoD) Computer Security
Program (CSP). The presentation is organized
according to the five distinct areas of the
R&D program: Secure Architecture, Secure
Database Management Systems (DBMS's), Network
Security, Modeling and Verification, and
Aids to Evaluation.

The first part of the presentation will
allow each panel member to describe the
status of his area's current programs and
new initiatives for FY87. Among the new
initiatives to be described is the consoli ­
dated program for producing a multilevel
secure workstation. The participating panel
members from the three military service labs
will describe the support they are providing
to the CSP. Following this, the panel will
entertain questions from the floor.

Panel Members:

Mr. Wayne Weingaertner, Office of
Research and Development (R&D),
National Computer Security Center

(NCSC), Secure Architecture

Dr. John Campbell, Office of R&D,
NCSC, Secure DBMS

Mr. George Stephens, Office of R&D,
NCSC, Network Security

Dr. Sylvan Pinsky, Office of R&D,
NCSC, Modeling and Verification
and Aids to Evaluation

Mr. H. Lubbes, Space and Naval
Warfare Systems Command (SPAWAR)

Mr. John Faust, Rome Air
Development Center (RADC)

Mr. John Preusse, Army Communica­
tions and Electronic Command
(CECOM)

THE STRATEGY

The goal of the DoD's CSP is to provide
a quantum increase in the security available
to the nation's automated information
systems. To achieve this goal, the NCSC has
a three-pronged strategy. The first major
component of that strategy involves a massive
retrofit of security features into existing
systems. The emphasis here will be on rais­

ing all federal computers to a controlled
access protection level (the C2 level in the
DoD Trus.ted Computer System Evaluation
Criteria) of trust or better by 1988. The
second prong of this strategy seeks to
foster widespread availability of systems
through the verified design level (Al) by
1990. The third part of the strategy is to
develop techniques to extend assurances well
beyond Al in order to offer adequate
protection for our most sensitive
applications.

Federal-level policy changes, new
operational procedures, and an aggressive
R&D program were required to effectively
implement the strategy. The R&D program
contributes to the first part of the
strategy through a concentrated effort to
enhance some existing systems. The Computer
Security RDT&E Program provides the means to
experiment with the efficacy of various
enhancement options --functions or features
that might be added through enhancement,
such as providing authentication, labeling,
or auditing. With respect to the second
portion of the strategy, the R&D program
should continue to provide the technological
support necessary in achieving an Al system.
Areas of support include stabilizing and
improving verification environments:
providing background material for refining
security criteria --particularlyfor
networks: refining security models that
would serve as the point of departure in the
development of Al systems: and finally,
developing Al demonstration systems
themselves. In accomplishing the third
portion of the strategy -- going beyond Al
and transferring research breakthroughs into
marketable products --the entire burden
falls on the RDT&E Program.

THE RESOURCES

The Computer Security RDT&E Program is
a cooperative undertaking led by the NCSC
with the full participation of the Army,
Navy, Air Force, Defense Communications
Agency, and Defense Intelligence Agency.

Beginning with the FY84 budget, DoD
RDT&E funds for computer security were
consolidated, allowing the program build to
be centralized while permitting
decentralized execution. The FY86 program
represents the third year of consolidation
and, like the two before it, provides
specifically-identified funds to be executed
by several DoD components. Consolidation,

213

as prescribed in DoD Directive 5215.1,
avoids unnecessary duplication among DoD
components. Decentralized execution of the
program by the DoDCSC and the DoD components
takes full advantage of the scarce expertise
needed to provide technical oversight of
contracts dealing with the highly technical.
field of computer security.

THE PROGRAM

To most effectively meet our challenge
of transferring research breakthroughs into
marketable products, we have channeled our
efforts into the five distinct areas already
mentioned. These five subprograms explore
particular aspects of computer security
research and development and, when combined,
provide a solid program spiraling past the
state of the art and into new technological
frontiers •.

Secure Architecture addresses the
design and implementation of trusted
computing. bases (TCB's). A TCB is the
hardware and software mechanism within a
computer system that enforces.security. Our
current thrust is to puSh the edge of tech­
nology for TCB's. In addition, we are
investigating kernel-based systems, office
automation and personal computers (PC's),
security enhancement of current systems, and
advanced architecture.

Security kernels are the classical
means of providing security in a TCB. A
security kernel is a portion of the
operating system that runs in its own
domain, separate from the normal operating
system code, intercepting any operation that
has security relevance. Last year,
Honeywell's kernel-based Secure
Communications Processor (SCOMP) was
successfully evaluated and received the
Center's highest rating.

The prolific growth of office
automation and PC equipment and software
within the Federal Government is another
area of research concern. Little
consideration has been given to the security
aspect of these stand-alone and netted
office automated systems. Non-secure PC's,
for example, negate the security provided by
even the highest-rated host because labels
used within secure computers that indicate
the security level of the data are lost once
data is transferred to a PC. Security
enhancement will be targeted at next
generation PC's since many of the current
generation PC's are single-state machines
and cannot support security.

Providing security enhancement of
existing commercial operating systems that
process classified information at inadequate

security levels is a near-term solution.
Under this task, we are incorporating
security into the UNIX System v.

Advanced security architecture work
provides new and different architectures for
secure computers. The current effort in
this area is the Secure Ada Target (SAT).
The SAT takes a novel approach towards
providing security in that it incorporates a
separate security processor. Placing the
security mechanism into a separate processor
has notable advantages over the kernel-based
approach. Because its architecture shares
security-related portions of the system with
nonsecurity-related parts, the kernelis open
to attack. A separate security processor,
however, prevents a user process from
accessing the security-relevant portions of
the system. A favorable side effect of
security processors is an improvement in
performance because it removes the security
processing load from the main processor.
This advanced architecture has completed its
initial design phase, and a prototype of
this computer should be available in 1988.

Multilevel database management security
R&D has received far less attention than has
secure operating systems. In the summer of
1982, the Air Force and the National Science
Foundation cohosted a workshop of experts in
DBMS to examine the security problem. Three
recommendations resulted:· (1) provide near­
term relief -- it is desperately needed and
achievable; (2) for the mid-term, develop
working demonstrations of high-leverage
applications; and (3) conduct long-term
research in the theoretical and practical
foundations of secure multilevel DBMS's.
Current and planned programs have made some
progress towards achieving these goals, but
there has been no breakthrough that substan­
tially improves DBMS security.

The focus of the Secure DBMS subprogram
is on compromise and integrity protection to
databases and their related components.
This subprogram is comprised of three
research areas: trusted prototypes, studies
and analyses, and advanced DBMS
architectures. An effort to secure an
existing DBMS entitled MISTRESS is now under
way. Researchers are conducting various
DBMS studies and analyses with the following
objectives: data dependencies -- to achieve
a family of multilevel secure DBMS's;
evaluation -- to investigate the evaluation
ramifications of DBMS's; and sanitization-­
to examine the downgrading and upgrading of
multilevel data in database systems.

A study is being conducted of the
integrity lock technique, which cryptograph­
ically seals information stored in an
automated system, with the objective of

214

incorporating this technique directly into
computer architectures supporting multilevel
secure DBMS operations. And finally, the
SAT will be used to develop a trusted DBMS
application.

Network Security focuses on the
protection of data while it is being trans­
mitted between host computers and users. A
data communications environment has been
created between geographically dispersed
computers that includes networks of
computers, .terminals attached to computers
that are attached to networks, and the
internetting of multiple and various combi­
nations of these. Current computer
networking technology has concentrated on
providing services in a benign environment,
and the security threats to these networks
have been largely ignored. While literature
abounds with examples of hackers wreaking
havoc through access to public networks and
the computers connected to them, hackers
have exploited only a fraction of the
vulnerabilities that exist. Techniques need
to be developed that will prevent both
passive exploitation (eavesdropping) and
active exploitation (alteration of messages
or message routing).

To. reduce these vulnerabilities, we
have initiated research in the de.velopment
of components, high-level applications such
as distributed processing, multilevel mail
and file transfer, modeling, and advanced
architectures. Within the area of advanced
architectures, we are conducting internet
research, device authentication studies, and
architectural simulation. The challenges
facing us in the network security field are
boundless. We hope that coordinating
efforts within the Federal Government and
following a sound R&D program will enable us
to work with industry to create a product
line of network security systems that meet
the needs of the Federal .Government and will
be available in the marketplace. ·

The problems of introducing computer
security into the Ada programming langauge
are being investigated. Ada is the DoD­
mandated programming language for mission­
critical systems. We are developing
verification environments to be integrated
into Ada software development systems as
well as a suite of secure protocols in Ada
to demonstrate how to marry these two
technologies.

Our Aids to Evaluation subprogram
addresses the need to streamline and improve
the system evaluation process. We believe
we can make the evaluation process more
responsive to our national demand for
computer security by providing a framework
for identifying security requirements

throughout the system's life cycle,
identifying bottlenecks, automating tools
to simplify the evaluation process,
evaluating the effectiveness of safeguards,
and reducing subjectivity in risk
assessment. We are involved in research on
intrusion detection, evaluation tools and
techniques, erasure and emergency
destruction, risk management, and generic
product evaluation.

Modeling and Verification explores
conceptual solutions to computer security
problems (modeling) and provides assurance
that system specifications and/or implemen­
tations are consistent with the model
(verification). Research and development
in modeling and verification addresses a
critical national need for trusted software
and hardware systems of high reliability.
To extend the state of the art in security
modeling and verification approaches, we
have embarked on five research endeavors:
Ada verification, integrated design and
verification environment, security
modeling, software verification, and
hardware and firmware verification. Our
ultimate research goal is to verify systems
at all levels of design and implementation.
In this regard, we note the similarity
between our requirements and those of the
Strategic Defense Initiative (SDI). We are
working with the SDI program office to
explore these common needs.

We believe our generic Computer
Security R&D Program provides the solid
framework needed to convert research
breakthroughs into viable products. If you
in industry, as the practitioners and
managers of security technologies, think
you can contribute to our efforts, we would
like to hear from you.

215

COMPUTER ARCHITECTURES AND DATABASE SECURITY

Ronda R. Henning

Swen A. Walker

National Computer Security Center

Attn: Office of Research and Development

9800 savage Road

Fort George G. Meade, MD 20755-6000

(301)-859-4488

ABSTRACT

There are various hardwarejsoftware architectures that will
support a database management system and its assorted
applications. Among the more common are the general purpose
operating systemjdatabase management system combination, the
backend database machine implemented in hardware or software, and
the distributed database management system on several hosts. The
distinction between the security responsibilities of the database
management system and the operating system is not well defined.
The responsibilities of the database management system depend
upon the security policy of the operating system. Both da~abase
management systems and operating systems can provide some data
security to user applications accessing a database. The question
is how to divide the security controls between the two.

This paper discusses the various system configurations which
support database management systems and the security tradeoffs
inherent in each. It also details some of the fundamental
security requirements and functions of the database management
system, and the operating system security features that a
database management system could take advantage of to enhance its
own security features. The paper concludes with a summary of the
author's current thought on secure database management
architectures and their potential for near term implementation.

GENERAL ARCHITECTURE OVERVIEW

Current operating systems technology
makes a case for three generic system
architecture types that can support a
database management system. These types are:

a general purpose operating system

a database machine environment

a distributed processing system.

General Purpose Operating System

The general purpose operating sys~em
environment (figure 1) provides a ser~es of
general services to a wide variety of users
and their applications. These services
include a file system, inputjoutput
management, user authorization and
authentication, and recovery procedures.
This class of system can best be categorized
by products such as Unixtml, VMstm2, MVstm3,
and other widely used time sharing systems.

1 Unix is a registered Trademark of Bell
Laboratories

2 VMS is a registered Trademark of the
Digital Equipment Corporation.

3 MVS is a registered Trademark of the
International Business Machines Corp.

Within the general purpose operating
system environment, there are two basic types
of security policies enforced: those that
provide some degree of discretionary access
control, and those that provide mandatory
access controls. The security controls of
most general purpose operating systems are
usually only of a discretionary nature: they
do not protect the user from the potential
compromise of his data by his associates.
For example, if a user gives read access to
his file to another user, there is no
mechanism to prevent the second user from
copying the file and granting access to other
users.

Discretionary access control is defined
by the Trusted Computer Systems Evaluation
criteria (The Criteria) (1) as providing a
means of restricting access to object based
on the identity of subjects andjor g~oups to
which they belong. According to the ··
Criteria, the controls are discretionary in
the sense that a subject (user) with certain
access permission is capable of passing that
permission on to any other subject. In the
context of this discussion, systems meeting
the requirements for the C2-level of the
Criteria are defined as discretionary accass
control computer systems. For example, a
user with read/write access to a file can
grant readjwrite access to that file to
another user.

216

A secure database management system
existing on an operating system with good
discretionary access controls affords the
user the ability to control authorized access
to the database on a per user basis. The
operating system support of discretionary
access control provides a higher degree of
confidence in this protection because it is
enforced not only by the database management
system but also by the operating system's
discretionary access control policy. This
type of security is also most easily
incorporated into existing products in both
the operating systems and database management
systems commercially available today. The
general purpose operating system can also
provide the database management system with
authentication and authorization mechanisms.
For example, the password generation and one­
way encryption features of system login could
also be used if a database were password
protected.

Relying only upon a discretionary
security policy to provide a foundation for a
secure database management system may have
serious disadvantages. Most currently
available systems with a discretionary access
c~ntrol policy implemented can be easily
c~rcumvented. This allows a user to bypass
the database management system's security
controls and access any database directly
frQ~ th~operating system. Such an attack
would allow ~ne aa~aDase flles to be read
with conventional file access techniques
supported by any programming language. These
systems are currently vulnerable to Trojan
Horse penetration attacks because the user
does not maintain complete control over the
access rights to a file. For example, if a
user runs an untrusted program, once this
program grants read privileges to a malicious
user, the second user cannot be prevented
from granting read privileges to yet another
user. Indeed, the entire user population
could eventually gain read access to the
file, thereby defeating the purpose of
discretionary access control.

Discretionary access control operating
systems may not have an automatic label
enforcement mechanism to label data and files
with the appropriate sensitivity marking.
While these operating systems do provide some
protect~on for the database management
system, they do not promote a high degree of
confidence in their controls, and, in effect
permit the user to define trust and thereby '
grant other users the ability to potentially
compromise the~data. Future implementations
of discretionary access controls may provide
better protection and enforce different
security policies which may better address
some of ,the shortcomings of current
discret'.ionary access control implementations.

General purpose operating systems with
manda~ory access control security policies
implemented are usually multilevel secure
systems. Mandatory access control is defined
by the Criteria as a means of restricting
access to objects based on the sensitivity
(as represented by a label) of the
information contained in the objects and the
formal authorization or clearance of subjects
to access information of such sensitivity.
'l'h~s means that users are protected from each
other by the reference monitor using their

sen~itivity levels, which are used to label
the~r processes, and by the labels attached
to their files. Manipulation of file
information is based on a composite of the
mandatory access control and the
discretionary access control labels. For
example, a user cannot exist at the top
secret level and modify an unclassified file
even if he has discretionary write access to'
the file. such a "write-down" could violate
the ~andatory security policy of the system.
M~lt~level systems are relatively uncommon,
the most notable being Honeywell's Multics
system and the SCOMP (2).

A multilevel computer system can easily
be thought of as a series of single level
computer systems residing on the same
hardware base and executing the same copy of
the operating system at the same time with
different process~s at various levels
cooperating with e·aeh other under the control
of the operating system (3). Operating
systems whi~h enforce ~andatory access
control pol~cies afford the database
management system all of the advantages of
discretionary access controls, but also add
further s7curity controls. Labeling, for
example, ~s enforced on all objects (files
and directories) known to the operating
system.

Most operating systems with mandatory
access controls are implemented with a
security kernel architecture which enforces
the system security policy on all access and
authorization commands. The security kernel
operates through a trusted path which allows
the user to communicate directly to the
trusted computing base during these
operatio~s. There are no such trusted paths
or secur~ty kernels required in discretionary
access control operating systems below the
B2-level of the Criteria. The possibility of
a system-wide Trojan Horse attack is also
greatly minimized in a mandatory access
contra~ system because data is partitioned
accor~~ng to a user's authorization rights.
A TroJan Horse attack would be limited to at
most one sensitivity level of the system
since objects are labeled by level and are
not changeable by an untrusted process. This
holds true only for disclosure of
in~ormation, not data integrity. The
ex~stence of the trusted path also minimizes
the risk of spoofing penetration because of
the direct communication required between the
user and the security kernel. All of these
features lead to a higher degree of assurance
that the security policy is enforced. That '
is, the user is protected against other users
and maintains control over his data.

Mandatory security access controls do not
solve all operating system security problems.
The probability of covert storage and timing
channels is greatly increased in comparison
to discretionary access control systems by
virtue of the fact that information must
somehow be communicated between the levels
for the operating system to function (4).
such channels offer a ready method of system
exploitation if two or more users coordinate
in an attack with cooperating processes.

current implementations of security
policy models do not provide sufficient

217

user~A~h
ProcessesVZf~W)) Wv IJW'l)

A B i c I D

Database
Management

System

EIFIGH I IJ IKI LT~!
Mail jForumfditin~Others

Operating System

Firmware

Hardware

Fig.5 - SOFTWARE BACKEND DATABASE MACHII'<"E

Fig.l - GENERAL PURPOSE OPERATING SYSTEM

HOST REQt:EST BACI\E:.:D RA\" DATA: EJ

HOST R£Q1,j£ST

ANSWER

EJ = 1'--;;..:::•-:::::"~..:::·-:::..;;-_,
Fig.6 - MULTIBACKEND SOFTWARE

DATABASE MACHINE

HOS1' REQl:!-:ST BACK£~0 BB
~uto.b&se

Mna:t Syste~

k 	 Intelligent

Control

ANSWER

Fig.2 - GENERIC HARDWARE BACKEND DATABASE MACHINE

Fig.3 - HARDWARE BACKEND - HOST INDEPENDENT

Fig.4 - HARDWARE BACKEND - HOST DEP&'lDENT

218

support for finer levels of label protection mechanisms. The only dependency
granularity. Sensitivity labels may not be between the host independent database machine
automatically enforced to the level of and the host is that of a channel to pass
granularity required for them to be used information back to the host and
effectively in database management systems. authentication and query information to the
For example, the operating system may support database machine. As an additional security
mandatory access control on objects down to measure, the database machine could require
the file level. Labeling on tuples or its own user authentication mechanism.
relations within a file, however, would be The independent database machine approach
the domain of the database management system. also implies that the database management
There may also be severe performance system used on the database machine will only
penalties in that the general purpose have to be secured once, with minimal changes
operating system kernel and the database to host-resident front-end software, as
management system kernel have to communicate opposed to securing multiple versions of the
with each other to determine division of database management system on a per host
labor and perform file and directory basis. such a system could also enhance
manipulation. Some degree of confidence system performance on the frontend systems
would also have to be assigned to the because all the security controls for the
database management system in order for it to database management system are done on the
support its own security policy. backend database machine. This approach also

allows hosts trusted at different sensitivity
No database management system has yet levels to communicate with the backend

been implemented that takes advantage of the database machine, which, in turn, would
multilevel features of general purpose ensure that they are permitted to access data
mandatory access control operating systems. only at their authorized sensitivity level.
If such a database management system did This feature provides data segregation
exist, it could afford greater protection to without replication of complete computer
the user and minimize the number of systems. It should be noted, however, that
penetration techniques that could be used to the database machine would have to be trusted
exploit its flaws to a more finite set. at least to the highest level of trust of the

attached hosts. For example, a database
Database Machines machine connected to C2 and B3 level hosts

would have to be trusted to at least the B3
Backend database machines (figure 2) level.

effectively remove the responsibilities for
data access methods from the general purpose The backend host independent database
operating system. The backend database machine is susceptible to covert signalling
machine approach has been discussed for channels between cooperating processes. A
several years, but has become commercially trusted path between the database machine and
available only within the last five years. host must exist to prevent Trojan Horse
This architecture is implemented in two basic attacks and spoofing of the database machine.
configurations, the hardware and software The mechanism for trusting the database
backend database machines. machine is evident; how to build a trusted

channel between the two systems is a harder
The hardware backend can be defined as a problem. Encryption techniques alone do not

series of one or more processors which appear to provide adequate protection. Other
implement a particular database management safeguards must be incorporated to secure the
system or type of database management system channel. Of course, the database machine
in custom firmware (5). These systems have architecture was designed to enforce security
been developed with two basic architectures; since retrofit of the mechanisms could result
the standalone, host independent database in a major restructuring of the system
machine and the intelligent disk controller. architecture to remove host dependent
The host independent database machine (figure features.
3} encompasses all features of a database
management system through a combination of The host dependent backend. database
its hardware and its operating system. In machine (figure 4) can be viewed as an
this architecture, the database machine must intelligent disk controller. This approach
take all responsibilities for its own to the backend database machine implements
security and does not have the security and executes the high-level data manipulation
protection of a general purpose operating language on the frontend host and requires a
system. The system can do all query substantial amount of host~resident software
processing and data reporting as if it were a to validate queries before they are sent to
general purpose operating system with the the controller for processing. The
database management software in execution. controller executes the most efficient
Or the system can take requests passed to it implementation of the query to collect the
from other frontend general purpose hosts and data requested, but does not have the
pass the results back to the requesting wherewithal to do very much with it except
process. ' pass it back to the requesting process. The

security assurances afforded by this
The primary security advantage gained in architecture are those associated with a

this approach is the physical separation of general purpose operating system's security
the database management system from the policy. Current implementations of security
frontend computer systems. This permits the constraints on these systems reflect the
database management system to control all security policy of the database management
access to the databases. The database system working in the frontend and are
machine has all security responsibilities for usually discretionary access control
its storage devices and may implement its own mechanisms.

219

I

The primary advantage to this approach is
in the area of system performance. Response
time can be dramatically decreased by using
efficient search algorithms implemented in
the backend controller. It is possible that
some discretionary and mandatory access
control could be done by the intelligent
controller as part of its query processing.
Once again, the intelligent controller must
support the highest host level of trust if it
does any security enforcement tasks. The
dependence on the host system for most of the
security policy enforcement in this approach
can also become a liability if the security
policy of the host system does not afford
user applications adequate protection. The
host dependent backend machine also must
depend on the host system for authentication
and user identification functions. Since it
has no direct contact with the user, it
cannot query him for additional authorization
and authentication information and must rely
on the mechanisms in place on the host
system. The backend host dependent database
machine must be reconfigured for each host
operating system. That is, the front-end
software, to do all necessary host functions,
must be modified on a per operating system
basis. A trusted path between the disk
controller and the host must also exist to
prevent penetration attacks and spoofing that
would circumvent the system security
mechanisms.

In the software backend database
management system (figure 5), the specialized
retrieval and parallel processing
architectures of the hardware backend
database machines are simulated by special
software instead. This backend may exist on
the general purpose computer system. It is
similar to the intelligent disk controller.
once again, the security policy of the
software backend approach mirrors the
security policy of the particular database
management system in use on the system. The
principal advantage of this approach is the
enhanced performance capabilities.
Additionally, all of the resources of the
operating system are available to the
database management system. As a result, the
security policy of the operating system can
be readily incorporated into the database
management system. Because of the
implementation approach used here, it may
also be possible to permit the database
management system to enforce an alternative
security policy that could coexist with the
operating system security policy. The heavy
reliance of this type of backend on the
operating system can also be considered a
major liability. Exporting this architecture
to other operating systems and enforcing the
proper function of the security mechanisms on
other operating systems are the primary
disadvantages with this architecture.

There is also a multiprocessor
multibackend version of this architecture
(figure 6) that utilizes a number of
identical backends each using a copy of the
same software. The single software system as
well as the multibackend software system does
not involve modification of the system's
hardware; rather they rely on innovative
software techniques to do their processing.
This approach permits a security kernel to
exist in the traffic controller (a particular

software program) that routes que~ies to each
backend according to their sensitivity level.
Performance may also be improved because
multiple backends can be processing portions
of the same query in parallel and perform
some of the required security enforcement.
Physical segregation of the data can also be
enforced by storing only data with a
particular sensitivity label on a given
backend. The system also complicates of
configuration management control because
there must be multiple copies of the software
running on the system to access data on each
controller. The problems associated with
this approach are those of the single
software backend architecture, but they are
compounded because multiple backends exist.
Additionally, each backend consults with the
other backends occasionally in the course of
query processing, thereby creating a
potentially very large covert channel between
the backends.

Distributed Database Management

The third generic architecture, a
distributed database management system, is a
relatively new technology and poses new
security problems. Date defines a
distributed database management system as any
system involving multiple sites connected
together into some kind of communications
network, in which a user (end user or
application programmer) at any site, can
access data stored at any site (6). There
are two basic types of distributed systems:
homogeneous and heterogeneous. The
homogeneous distributed system is one in
which the same version of the database
management system software and possibly the
same operating system is running at each
site. A heterogeneous system may have
different database management systems,
operating systems, and processors present at
each site. From a security standpoint, the
distributed case becomes very complicated
because not only does database management
security have to be considered, but operating
system security and network security features
must also be taken into account. Because
this area is so unknown, it is difficult to
determine the combination of mandatory and
discretionary access controls that would be
needed to secure a distributed database
management system. Distributed and
decentralized database control is a very
important and difficult research area.
Processing decisions in distributed database
management system can be based on incomplete
and inaccurate information when information
from other hosts is unavailable. Formulation
of the global security policy for a
distributed database management system is not
presently well understood.

If a security policy could be formulated
for a distributed database management system,
it would be most advantageous. Data could be
logically and possibly geographically
distributed among a variety of hosts, each of
which could control his own sensitive data
and authenticate queries from the other nodes
on the system. The additional processors of
a distributed system could improve system
performance in a very large database
environment with massive processing
requirements. smaller database applications

220

would probably experience a degradation in
performance because of the overhead of
transporting data across the nodes. The
possibility of data replication in the
distributed environment also provides a
method for trusted recovery. If a node on
the distributed system crashes, it could
conceivably recover and return to service by
copying its databases from another node.
Also, the removal of a node from service
would not necessarily impair the overall
security integrity of the distributed system
because the other nodes would remain intact.

Distributed systems also raise many new
and potentially serious security concerns.
Perhaps the largest security loophole is
concurrency control and database
modification. Locking in the distributed
environment has to be done very carefully to
avoid denial of service to nonlocal nodes
which may be doing retrievals against a
database while another user is doing updates.
Maintenance of journals in the distributed
case is also difficult and must deal with
many of the same considerations as the
concurrency control problem. The possibility
of compromise increases when data is accessed
over a distributed system, simply because the
user now has access to more than one computer
system available for penetration attempts.
Denial of service attacks are harder to
detect and differentiate from a normal
database lock on another node or the time
spent in network traffic. The preservation
of label integrity and label recognition
across the nodes of the distributed system
must also be addressed. It is also possible
that the problems associated with data
inference and aggregation will become
increasingly more complex as additional nodes
are added to a distributed system. In
addition to all of these problems, the issues
of network security must be considered in the
development of the distributed database
management system.

OPERATING SYSTEM/

DATABASE MANAGEMENT SYSTEM DEPENDENCIES

Within the framework of these general
architectures, there are certain dependencies
between the database management system and
the operating system that apply in all cases.
Stonebraker outlined these dependencies in
1981 and concluded that operating systems
were inefficient and not designed to
accommodate database management systems, but
did not address the security considerations
involved (7). Even if the database
management system provides all of its own
support in a backend database machine
environment, the functions generally
performed by a multi-user operating system
are performed in the database machine kernel
and hardware. What are these functional
dependencies, and what implications do they
have for a secure database architecture?

File Management

Perhaps the largest functional dependency
is that of file management. Most database
management systems use the system file

handling routines to do some input;output
processing. Most database management systems
use the file system to implement relations,
one relation or one database per file. over
this file, the data views or subschemas are
superimposed. The operating system is
responsible for opening, closing, update, and
read operations on the relation or database.
Additionally, the operating system opens and
closes the data. dictionary which enforces the
database structure and subschema hierarchy on
the user's process.

Beyond these basic functions, the file
management system may also be relied upon to
perform access control checking on the
relations or databases being used. Whether
this takes the form of mandatory andjor
discretionary access control is a direct
function of the security policy implemented
by the operating system. In the case of the
general purpose operating system,
discretionary access_control on relations or
databases can be readily enforced since they
are already incorporated into some commercial
products. Operating system discretionary
access controls reinforce these existing
mechanisms, but are dependent upon the
storage structures of the database management
system. If the user does not have write
access.to the file, for example, he cannot
update a relation or database. If the user
does not have add privileges, he may be able
to update existing tuples but cannot create
new tuples. In mandatory access control, the
database management system also depends upon
the operating system to validate the user and
file authorization labels to ensure that the
operation requested does not conflict with
the system security policy. Reliance on
system file management routines does present
solutions to several areas of security
concern. However, file inputjoutput is not
usually the most efficient access method for
database management and operating system file
management routines may be bypassed. To
optimize database performance, smaller buffer
sizes and blocks of data are preferred to
manipulation of file-sized structures. This
also leads to the issue of object label
granularity, which is discussed elsewhere in
this paper.

A special area of file management within
the database management environment is that
of recovery services and auditing. Most
database management systems that keep
journals or transaction logs exist in a
single level environment. Those few that
have tried to exist in a multilevel system
have done so by maintaining separate journals
at each level, makinq recovery procedures
complex. The dilemma with journals is that
they must be kept, which implies they have to
be written to by each user. However, users
should not be able to read what they have
written to the journal, and its existence
should be transparent to the user. This
applies in most cases. In the event the user
cannot commit a transaction to the database,
however, the database management system
should be able to initiate a rollback on the
user's behalf .and restart the transaction.
The database management system should ~lso be
able to examine a database for damage 1n the
event the system should crash and to restore
the database management system and its
accompanying databases to a consistent state.

221

http:access.to

Closely related to recovery and file
management is audit maintenance and control.
Many of the same problems inherent in
transaction journals also exist in audit
files. Indeed, in most systems, they are one
and the same. However, the database
management system can, and often does, use
the system audit facilities to create a bare
bones audit of its own. This type of audit
contains only information related to tuples
that updated the appearance of the database.
Those tuples which are read out of the
database for a report, for example, are not
included in this type of audit. An audit
such as this would be highly useful in
recovery, but would not be very useful if the
database administrator or system security
officer was trying to determine if an
inference or penetration attack was underway.
such an attack would not have to modify the
data but only collect it. The problems of
enforcing the appropriate access controls
also continue to exist in audit functions and
files as well.

Additionally, the question of what the
database treats as a subject and what the
database treats as an object for audit
purposes must be answered. If the object for
an audit is defined as each individual
attribute in a database, the audit files will
quickly become very unwieldy. If the object
is the relation, on the other hand, not
enough information will be available for a
meaningful audit trail to exist. By the same
token, it may make more sense in the database
environment to audit by object than by
subject. That is, the data accessed should
be audited as opposed to the user or accessor
of that data. In database management
systems, one is more interested in access
attempts on a particular sensitive data item
than in all actions done by a particular
user. Additionally, if the audit is
conducted on a per attribute basis, auditing
on a subject level could result in very large
audit logs. These areas must be addressed if
a database management system will manage data
securely.

Label Granularity

The issue of label granularity is another
area in which there are functional
dependencies between the operating system and
the database management system. Most
operating systems only support labeling at
the file and directory (a logical collection
of files) level. They do not support the
labeling of entities smaller than a file.
Therefore, most database management systems
have to maintain their own labels and be
responsible for their integrity. Database
management systems cannot use the system
level mandatory and discretionary access
control mechanisms to enforce access rights
to any finer level of granularity. In fact,
the database management system will probably
have to violate the operating system security
policy to manipulate smaller multilevel
objects. This, in turn, causes concurrency
control problems because locking can only be
accomplished when access control can be
enforced on the database. Additionally, the
question of whether or not to trust labels
which are not enforced by the operating
system security kernel must be addressed.

Another issue ln this area is the interface
between the database management system's
labeling techniques and the operating
system's labeling technique. In this case,
should labels attached by the database
management system be considered valid by the
operating system? current technology may not
permit a lower level of labeling without a
substantial performance penalty, rendering a
database management system unusable in real-
time user response time applications.

Memory Management

The database management system may rely
on the operating system to perform memory
management on its behalf as well. In this
area the largest functional dependency is
that of object reuse. The database
management system uses those pages of memory
the system allocates to it and leaves the
system to perform object reuse functions on
those pages. For example, if the page was
not modified, it will not be written back out
to disk. If the page was modified, it must
be checked to ensure that the labels
associated with that page are still valid
before it is put back on the disk.
Additionally, before the page frame is
reused, it must be overwritten to prevent
recovery of data by the next unauthorized
user. Some operating systems leave object
reuse/data remanence up to the particular
application. Others perform the function as
a matter of course. The database management
system should make no assumption as to what
services the operating system provides for it
in this regard, but could take advantage of
operating system services if they are
available.

Denial of Service

The question of denial of service is also
tied to a database management system's
dependencies on the operating system. For
example, if the operating system has decided
to swap out a process that has the database
locked for update, the competing processes
which may wish to use that database are
denied service until the swapped process is
brought back in to finish its execution.
With the possible exception of custom
database machine environments, the case of
denial of service in database management is
complicated not only by the database
management system's own locking algorithms,
but by the operating system's process
scheduler software. Synchronization in the
interaction of the database management system
and the scheduler may make an database
management system too dependent on a
particular operating system to make it
portable to other operating systems.

Interrupt Handling

Connected to the memory management
dependencies are the database management
system's dependencies on the operating system
in the area of interrupt handling. By
necessity, database management systems
generate interrupt requests to the operating
system to perform various operations such as
requests for files, inputjoutput handling,
and process wakeup and block messages. The
.operating system, in turn, executes the_s_e

~22

requests and generates the appropriate
interrupts, which, in turn, may be audited by
the operating system as needed. The
interrupt interaction between the database
management system and the operating system
offers a wide range of opportunities for
covert channel exploitation. For example, a
user could have a database locked for
exclusive update and then trigger an
interrupt that would suspend his process.
Another user would not be able to access the
database while the lock table showed that the
other user had it exclusively locked. In
this case, the lock table could be used as a
covert signalling channel between the two
user's processes. Unfortunately, with the
possible exception of the database machine
case, there is little that can be done to
minimize the need for such communication
during interrupt processing, although the
implementation of interrupt handling in a
secure operating system may afford sufficient
security features to minimize the opportunity
for covert chan~el exploitation through the
interrupt processing facilities.

Interrupt processing raises the question
of the concept of the trusted path and
trusted processes. Certain functions of an
operating system, for example, the
input/output controller and the mail system,
have the ability to bypass system standard
access control policies. These processes are
known as trusted processes, and their ability
to communicate with the security kernel
requires a "trusted path" to the security
primitives. Obviously, labels have to be
enforced from the user perspective, but
certain operations, such as label
manipulation and modification, have to be
considered trusted processes. Their use
should be permitted only by database
administrators or system security officers,
and, even then, heavily audited. Obviously,
for regular functions, the trusted process
has to exist as a standard feature and be
used rather frequently. In these cases, the
trusted process resides at the highest
security level accessible to the user. When
a request that requires trusted intervention
is made, the trusted process filters the
request to the appropriate files, and
consolidates the returned responses before
passing them back to the user at the
appropriate level. Once again, there is a
substantial possibility of large covert
channels, but extensive audit files and
system security controls on user processes
help to minimize the associated risks.

Authentication and Auditing

Related to trusted processes is the area
of authentication and authorization
techniques. The database management system
may not require that each database is
password protected. It may use the system's
authorization control mechanism to enforce
access control on the database. In turn, use
of the authorization control implies that the
database management system is willing to
accept the authentication mechanisms of the
operating system as well. With such a
scenario, the user logs into the system,
which in turn authenticates his identity and
validates his authorization levels for the
existence of his process. The database
manaqement system, in turn, uses the user's

authenticated information to determine his
access rights to the data. It is also
possible for the database management system
to take advantage of the operating system's
enforcement mechanisms for mandatory and
discretionary access control through the
authentication/authorization mechanism. That
is, if the user is not at the appropriate
level in a multilevel system and attempts to
access a database in violation of the system
security policy, the operating system access
mechanism may prevent this occurrence and

generate an interrupt, which must be

intercepted and interpreted by the database

management system. The same scenario could

also be used in the case of discretionary

access control where the user attempts to

update a relation he is only permitted to

read. The complexity of the interface

between the database management system and

-the operating system in this area could be
reduced if the database management system did
its own.validation on access requests prior
to pass~ng.these requ7sts to the operating
system, wh~ch would, ~n turn, minimize
~ecurity-related interrupts. This dependency
~s a very necessary one if a trusted database
management system is to coexist with a
trusted operating system successfully.

Network Services

All of the above relationships between
the database management system and the
operating system have been general case
dependencies. There is one very critical
dependency that exists in the distributed
database management environment the network
server function. In this case, 'the data and
user requests are transmitted through the
distributed system to any and all appropriate
hosts, which in turn return the requested
information to the sender. The network
server should be a trusted process
communicating with other trusted network
servers who presumably reside on trusted
operating systems. This model holds for
either of the distributed architectures
discussed above because either trusted
queries are sent without the benefit of a
trusted control system to determine where
they.should be routed, or with this benefit.
In e~ther case, the netserver function is a
necessary dependency in a distributed
database environment that will require
further exploration before such an
environment can be considered trusted.

DATABASE MANAGEMENT SECURITY FUNCTIONS

Beyond the functional dependencies
between the operating system and database
management systems, there are security
functions which must be performed by the
database management system independent of the
operating system. Those features which have
an effect on the database management system's
architecture are discussed below.

Label Enforcement

Perhaps one of the most important
security relevant functions of the database
management system is that of label
enforcement at fine granularities. Because
current trusted operating systems may or may
not recognize objects for labeling that are
smaller than a file, the database management

223

functions which must be performed by the
database management system independent of the
operating system. Those features which have
an effect on the database management system's
architecture are discussed below.

Label Enforcement

Perhaps one of the most important
security relevant functions of the database
management system is that of label
enforcement at fine granularities. Because
current trusted operating systems may or may
not recognize objects for labeling that are
smaller than a file, the database management
system must take responsibility for labeling
at lower levels. These levels, depending on
the database architecture, are the relation,
tuple and attribute. Some database
management systems use one file per relation,
therefore they are only concerned with label
management at the tuple and attribute level
and leave file level label management to the
operating system. Assuming discretionary and
mandatory access control information has to
be accounted for, the database management
system must account for the sensitivity level
of the data as well as the access control
lists attached to the data. For example, the
sensitivity level may be top secret and the
discretionary privileges may be read and
update for a particular tuple. How low the
level of label granularity applies depends on
the security policy enforced by the database
management system.

Label Integrity

How is label integrity maintained? The
sensitivity level used in labeling can be
ascertained from the user's process
authorization. This label then has to be
attached to all new information entered into
the database by this process. Users should
not be able to modify existing labels, nor
should they have the ability to enter or
change data at lower or higher authorizations
than the one they currently are using. This
interpretation of the multilevel environment
is highly restrictive and most users would
consider it to be a user-hostile denial of
serv1ce. Labei modification should only
occur under the auspices of a trusted
process. The database management system must
automatically append the appropriate label to
the data upon data entry into the database.
Additionally, the database management system
must do label comparison operations to
determine if update, delete, and read
operations follow the security constraints of
the system. These functions must maintain
label integrity to ensure correct operation
of the system security mechanisms and
maintain the system security policy. This
enforcement is also an important
consideration in the system integrity policy
to prevent unintentional or malicious
corruption of data.

Query Interpretation

Another area of security responsibility
is that of query interpretation. The
security mechanism of the database management
system must ensure that what information the
user requests via a query is what he

rece1ves, cons1stent with the security
policy, of course. This means the integrity
of the query must be beyond reproach. In
fact, it may not be possible to provide this
level of query integrity without trusting the
entire database management system. There
must be no chance for the insertion of Trojan
Horses or violation of the system integrity
policy before the query is processed.
Additionally, safeguards must be in place to
enforce the data labels and mandatory access
control policy on the reply to the query.
Once again, the issue of label integrity must
be addressed if correct results are to be
obtained from the database. Labels may be
appended to queries to ensure their
compliance with mandatory access controls, in
which case the database management system is
responsible for secure query modification
that only appends the subset of labels
appropriate to a given process and query and
not the superset of all known labels which
may reside in a given database. In the event
query modification techniques are not
employed, the database management system must
perform a filter function before returning
any information back to the user in response
appended to queries to ensure their .
compliance with mandatory access controls, 1n
which case the database management system is
responsible for secure query modification
that only appends the subset of labels
appropriate to a given process and quer~ and
not the superset of all known labels wh1ch
may reside in a given database. In the event
query modification techniques are not
employed, the database management system must
perform a filter function before returning
any information back to the user in response
to a query. This filter, of course, must be
a trusted process capable of examining all
returned data and forwarding only that which
the user is authorized to examine. This can
be especially crucial in the case of an
update request, where the user may be able to
examine lower level data but can modify only
those components of a tuple which are at his
current authorization level. Under such
circumstances, labeling of attributes and
checking of authorization privileges are very
much secure database management functions.

Indices

The use of indices as a mechanism to
improve response time also causes security
concerns. If the indices are derived
directly from data, or if their use can
reveal additional information about the
database structure or contents, then their
existence raises the same types of labeling
and query modification concerns that apply to
generic data. Indices also have to be sorted
by mandatory access control level and used in
a manner consistent with the database
management system security policy.
Therefore, what started out as a method to
improve retrieval performance may actually
hinder it by the time all necessary access
mechanisms are enforced on the indices. In
this case, use of the indices may become more
burdensome and less efficient.

In the event data indices exist as the
result of a random hash algorithm or other
arbitrary addressing technique, the question
of where the indices reside must be

224

addressed. If they are placed at the highest
authorization level, once again the data ·
filter problem exists. If the indices are
located at the user's lowest authorization
level, they can be read by all but may
unintentionally divulge information about
higher level data and could be exploited'in a
statistical inference attack. Location of
data indices and their use therefore becomes
another security~function for the database
management system to balance between data
security and system usability.

Data Dictionary Enforcement

Indices, however, are only a small
segment of a larger security concern in
database management, that is, how to enforce
data dictionary constraints securely. The
data dictionary contains the database schema,
data conversion algorithms, and
characteristics of data attributes. In most
systems, the data dictionary is invoked for
data validation whenever a query is posed or
data is modified or added to the database.
Since the data dictionary could contain data
validity checks which might divulge sensitive
information about data value ranges for a
database, it should have associated with it a
level of trust equal to the highest level of
trust for a given database. The data
dictionary also may contain information about
discretionary access privileges and the
location of database files which contain the
actual data. Therefore, the data dictionary
also becomes an active entity which requires
protection beyond that which is normally
available in untrusted operating systems.

Perhaps a solution is to divide the data
dictionary into its components and protect
each of these according to their relative
sensitivities. Such a solution would have to
be determined on a case by case basis for
each individual database and data dictionary
combination, thereby eliminating the
possibility of a generic enforcement
mechanism. Another solution would be to
translate the data dictionary into an
executable form which could be kept at a
level accessible to all users while the
original source from which it was derived
resides at the highest sensitivity level
under the further protection of discretionary
access control administered by the database
administrator or security officer. The
executable form must be enforced as truly
"execute only" permission. That is, the user
must not be able to reconstruct the source
segment nor determine sensitive algorithms or
data. This method allows all users access to
the information in the data dictionary while
protecting the information as closely as
possible. It strikes a compromise between
total access and complete security while
preserving the required functionality for the
database management system. Such a
compromise must be qualitatively measured for
each trusted application according to the
security constraints in force at that level
of trust.

Database Creation and Security Functions

Data validation and. retrieval performance
aids, however, make one important assumption

that the database exists and has been
defined and created by a user of the system.

This becomes a security concern because the
data files and supporting structures such as
the data dictionary and lock table should be
known only to the system and the database
administrator. They should not be accessible
to the common user accessing data through the
database management system. To make them
accessible and known to the users by their
appearance in the directory structure invites
tampering. For example, if the system does
mandatory and discretionary access control to
the file level, and the database management
system supports one file per relation and
uses the system's access control mechanisms
there is nothing to force the user through '
the database management system to access the
entire relation, whether he has access rights
e~tablished on a per tuple basis or not. A
s1mple copy or print command would result in
the compromise of all data stored in such a
relation, not to mention all per tuple
privilege information for the relation. At
this point, it is a small job to decipher the
relation formation and complete the data
compromise.

The problem becomes even more complex in
the case of a multilevel operating system.
Here the database manager somehow has to
segregate data according to the user's
authorized level, but merge it to provide
responses to his requests consistent with the
system's security policy. That is, the data
has to be stored in such a way as to maintain
the mandatory access control policy of the
system while providing the user with his
information. The database management system
has to maintain the appropriate data files at
the correct levels, or store the data at the
user's highest authorization and distribute
it from there.

The majority of work on multilevel data
management to date has assumed the database
existed and worked from there. very little
has been done on the potential covert
channels that might be created during the
initialization of a multilevel database, or
techniques to minimize them.

View Enforcement

Related to the problems of database

creation is the area of view or subschema

enforcement. This function enforces certain

configurations of the basic database as

created by the database administrator on the

.database's users. Historically, views have
been defined in the data dictionary/database
creation files. Their enforcement upon the
database becomes critical in multilevel data
management. For example, the database as a
whole could exist at a variety of levels with
views used to ensure that the user only sees
data consistent with his authorization level.
Views can also be used to enforce
discre~ionary access to the database if one
view is used for each discretionary access
right and composite views can exist to allow
users multiple privileges. For example,
separate views exist for reading and writing
data to a particular relation and the two
views are merged to create a readjwrite view
for a particular user. Once again, if the
database's data files are accessible with the
standard system file commands, views are easy
to circumvent. Additionally, combinations of

225

views may divulge more information .than
single views authorize the user to see. View
mechanisms may also be used to protect a
database against inference attacks and to
ensure data integrity. In light of these
potential security uses of views, their
secure enforcement becomes a prominent
security service that must be trusted to work
correctly.

Trusted Process Mechanism

highest authorization. In this case the
audit log will grow rapidly into something
very large with minimal utility. Therefore
for a trusted audit to exist successfully i~
a database management environment audit
reduction tools must exist, including pattern
recognition tools that could detect attempted
inference attacks. Both types of tools
should exist, otherwise valuable pattern
information could be lost during audit
reduction and an attack could occur and never
be detected through the audit logs.

As was noted above in the discussion of
operating system dependencies, creation and
use of a trusted process mechanism in the
database management system can become a major
security concern. In this context the
trusted process becomes responsible for the
enforcement of the database security policy
and ensures its consistency with the
operating system's security policy. It is
this process which takes the user's request
and applies appropriate logic to it to result
in an updated view of the database. If a
user were to request an update of a tuple in
the database, the trusted process would be
responsible for validating his access
privileges on the relation and on each
attribute of the reiation, if necessary. It
would also be responsible for ensuring the
integrity of the database, that is, checking
the lock table prior to applying a
transaction to the database to ensure each
user gets consistent information. The
trusted processes become even more critical
in the multilevel environment. Here they
must still ensure that data integrity
constraints and locking protocols are
followed as well as handle the multilevel
security policy axioms. In the case of the
database machine, these processes are the
primary components of the security kernel. A
database management system working in
conjunction with a trusted operating system
would interface its trusted processes to the
operating systems's security kernel, creating
a large opportunity for covert channels and
subsequent system exploitation. In the event
the system permits execution of user data
segments, this exploitation threat is
substantial.

Auditing Small Objects

Another requirement to maintain data
integrity is the need for auditing at a finer
level of object granularity than the file
level objects most general purpose trusted
systems audit. The majority of operating
system audit tools would note that a user
accessed or attempted to access a file and
may or may not have modified it. Special
audit tools used for system debugging account
for arguments passed into and out of
subroutines that are referenced. In the case
of secure database management, a combination
of these two functions is required. An audit
that notes only that the user accessed a
database is not sufficient to address data
security concerns. For a database management
system, a useful audit function would
probably include the data accessed and the
before and after image of any data modified
by a user request. The audit log also has to
be able to account for the possibility of
multilevel data manipulation by either
existing at each level or at the user's

such an audit log could also be used to
handle trusted database recovery as well.
Recovery for a database management system
becomes a bit more complicated than recovery
for a generic operating system. The
operating system has to save its hardware
context (the values of its registers at the
time of crash) and write all modified pages
back out to disk. It makes no claims with
regard to data validity within those pages,
and, if it cannot get the page back on disk,
may replace it with a page of null values.•
This type of nonrecoverable error would be
easily detected in the case of an individual
text file, for example, but a database can be
much larger than a single page and therefore
such an error could conceivably escape
detection until data from that particular
page was needed and not found. The database
recovery facility must be able to determine
if its files were affected by a crash, if
pages within a file were affected, and, if
so, to restore the appropriate information.
The information from the audit logs can be
used to determine if transactions have been
committed and to repair damaged databases.
In trusted mandatory access control systems,
the integrity of data labels must also be
validated. Additionally, if the system is
multilevel secure then the data must be
distributed to each level securely. The
recovery mechanism may have to deny service
to database users while it is validating the
database after the system has finished its
own recovery to ensure as accurate a
reconstruction of the database as is
possible. This technique requires that the
database recovery manager must be added to
the trusted processes resident in the
database management system.

Inference and Integrity

No discussion of database security
mechanisms would be complete without the
mention of data inference and integrity
control mechanisms. Data inference -- the
unintentional compromise by deduction of
unauthorized information due to combinations
of the possession, known existence, known
absence, chronology, and location of
authorized information -- is most frequently
exploitable in data at either end of a
standard distribution. That is, the most
extreme values are the most vulnerable.
There are several techniques to protect
against inference attacks, but the majority
of them render the database useless for
precisely formulated queries with specific
responses because they involve the corruption
of the original data in some way. An
alternative approach to inference control is
the construction of a rule-based semantic
layer between the logical database design and

226

the physical implementation of that schema.
This rule-based system would use statistical
information about the database composition to
determine the probability of compromise if
the requested information were divulged. If
the probability of compromise were high, the
data would not be revealed. It is possible,
however, that the performance penalties paid
for inference control may make a database
management system unusable in an interactive
system.

The concerns of data integrity are more
acute and offer more promising near-term
solutions than those of data inference. Data
integrity in the database management sense is
defined as the correctness of the data itself
and any associated data structures and
information required to access the database.
The principal concerns in the area of
database integrity are associated with
locking mechanisms for the update and
addition of information to a database. If a
user is updating the database, an exclusive
lock mechanism must deny other users
attempting to update the database or retrieve
information access for the duration of the
update. It may be possible to preserve
uncommitted transactions and apply them to a
database when the locking process releases
its locks, thereby freeing the database for
other users. However, there may be
complications with this strategy in that
there is no guarantee that conflicting
transactions would not be applied to the same
data. For example, two users wish to modify
status information and attempt to commit
transactions at the same time. One may say
the status is complete, the other the status
is pending. Such types of conflict cannot be
resolved automatically by the system and
would require human intervention of some
sort. The update problem becomes more
complicated in the multilevel sense in that
users at different authorizations could well
be modifying attributes of the same tuple at
the same time. The database management
system must apply the transactions as
specified by the security policy of the
opera~ing system. These integrity
constraints do not include the case of
unauthorized intentional modification of data
by an authorized users. In this case, a
user modifies a file at a higher
classification by writing up into it,
although he cannot read the file afterwards
from his current authorization level. There
is no known security policy that addresses
this concern and maintains a multilevel user
environment.

There are integrity concerns with the
locking mechanism. The lock table may not
reflect the current status of the database.
For example, if the system crashed after the
user process committed a transaction but
before he could release his lock on the
database, denial of service to other users
could be based on incorrect information
because the lock table is left in an
inconsistent state. Given the option, the
database recovery manager could possibly
resolve a inconsistent lock table from the
audit logs. It could not resolve an
inconsistent database from a consistent lock
table in most cases.

Denial of Service

Beyond these integrity issues, there are
the questions of denial of service in a
multilevel environment. A user at a higher
authorization level could have the database
exclusively locked. This fact must be hidden
from the lower level user to prevent a covert
signalling channel. However, the lower level
user could not access the database if the
higher level user was working with a
particular page. It has been proposed that
creating mirror image tuples at the
appropriate levels would solve this problem;
however, the question then becomes which user
has the most current version of the tuple and
which user is working with data that has been
modified without his knowledge.

The above concerns are only meant to
highlight the severity and importance of the
database management system's security
functions. They are not meant to be complete
discussions of the subjects, but rather to
show the magnitude and impact of the security
constraints which will exist in a trusted
database management system.

EXPLORATORY DATABASE ARCHITECTURES

Given the number of dependencies between
the operating system and the database
management system, the security functions the
database management system must perform, and
the state of current technology, can anything
be done to minimize the security problems in
database management? The majority of
currently available database management
systems address the discretionary access
control constraints in some fashion, even if
they are easy to compromise by experienced
programmers. These discretionary access
controls do perform the function of
protecting the user and the database from
unintentional mistakes that could cause data
leakage. They do not protect against
deliberate attacks. The few database
management systems that are hosted on
multilevel systems do work well with the
mandatory access controls, but they do not
support multilevel objects and cannot
function at more than a single level per
database.

What is needed then, is a method to
enforce discretionary access controls
securely, force all access to the database
through the database management system to
eliminate the possibility of copying data
files through the file system commands,
enforce mandatory access control, and work in
a multilevel environment without creating
large covert channels. To do so efficiently
with minimal impact on user response time is
a necessary condition if the product will be
usable. The question then becomes how to
meet all of these requirements in a database
management system that can be implemented in
the near future. The 1982 summer study on
Multilevel Data Management proposed three
different architectures to answer these
requirements (8). This section summarizes
these three architectures and includes a
fourth architecture that the authors believe
may offer a solution.

227

Kernel-Kernel

The first of these architectures, the
kernel-kernel approach, uses the operating
system security kernel as a foundation for a
database security kernel that acts as a
trusted mediator between the user's requests
and the operating system security kernel.
The database kernel is responsible for
labeling at a granularity finer than the
operating system's smallest labeled object.
The operating system does labeling at its
granularity levels and is responsible for the
enforcement of the system security policy on
the database management system. The
operating system ensures that the user can
only modify data at his current authorization
level through mandatory access controls. The
database management system attaches the
appropriate labels to the data and enforces
its discretionary access controls on its
databases. Recovery operations are a joint
effort between the database recovery manager
and the operating system's recovery
utilities. The operating system recovers to
the file level and informs the database
recovery manager that there was damage done
to items under its control. The database
recovery manager then examines its databases
and does what it can to make things
consistent. Comprehensive system audit tools
are customized to handle the database audit
requirements by adding audit reduction and
pattern recognition features. Authentication
of the user is done by the operating system
and the database management system may take
advantage of that information or use the
system authentication subroutines to perform
its own authentication.

The kernel-kernel approach should allow
retrofit of the database security kernel on a
kernelized trusted operating system. The
primary area of concern in this approach is
the definition of the boundaries of the
database security kernel. In the worst case,
the databases themselves must be within the
bounds of the kernel, making it so large and
complex that correct operation could not be
substantiated. In the best case, the kernel
may not be substantially larger than the
operating system security kernel and would
have little effect on performance or
validity.

This design may take advantage of the
security features of the underlying operating
system for mandatory and/or discretionary
access control. This technique could
conceivably be applied to any database
management system that resides on a
kernelized operating system host.
Performance constraints on the database
management system would exist if the
performance of the operating system security
kernel was poor since it must interact with
the database kernel for most operations.
Covert channels may exist because of the
interaction between the two kernels. Such
covert channels also increase the probability
of Trojan Horse attacks against the database
management system by cooperating processes at
various sensitivity levels. Additionally,
the no-write-down constraint of the Bell­
LaPadula security model prevents data from
being stored at a sensitivity below the
current authorized sensitivity level of the

user, making this system very user-hostile
for data update operations. To minimize the
user interface problems, larger covert
channels would have to be permitted and a
generic downgrade function would have to
exist in the database management system
trusted software and be accessible to
authorized database users. This approach is
very attractive in that the amount of trusted
code to be added to the system is relatively
small because the database management system
~ses the operatin~ system ~or the majority of
~ts trusted funct~ons, mak~ng it easy to
retrofit into an existing system. However,
the user interface to this database
management system, and the potentially large
covert channels may not make it useful as
more than a demonstration project. Only if
past experience with kernelized architecture
performance constraints can be incorporated
into the system design would such an
architecture be feasible for secure database
management systems.

Cryptographic Sealing

The second exploratory architecture,
cryptographic sealing, uses encrypted
checksums to determine the authorization
label and access rights to the data. When a
tuple is created, the encrypted access
information is appended to it. Every time
the data is accessed, the sensitivity labels
are decrypted with keys corresponding to each
access class. If the data is decrypted
proper, it is forwarded to the user. If the
correct key is not located, the data is not
returned. A variation on this method uses
query modification to append the correct
sensitivity label to the query and stores the
labels as another attribute with the rest of
the data. The label fields are then compared
as part of the normal query/response
processing with matching labels required
before an item is reported to the user. In
these examples, there is additional overhead
for encryption/decryption and query
~odificati~n. The database management system
~s respons~ble for all label integrity and
access control enforcement. Recovery beyond
the file level is handled in much the same
way as the kernel-kernel approach with the
database recovery manager responsible for
label integrity and data correction if
necessary.

The principal disadvantage to this method
is the time involved to encrypt and decrypt
the ~abels and the additional storage
requ~red for them, since sensitivity labels
are not usually stored with data.
Sensitivity keys must also be stored with
care so they may not compromise the system's
security mechanisms. There is also a
possibility of compromise through
unintentional or intentional mismanagement of
the encryption keys and checksums. The
advantage to this method is that the database
management system becomes responsible for all
access control functions and performs as a
simple access filter. This is especially
true in the variation on this technique that
encrypts the entire tuple and decrypts it
only when necessary. The fact that the only
trusted component in the system is the filter
makes it simpler to verify correct operation
of the software and a relatively

228

straightforward approach. Potentially, this
system offers a high degree of trust and can
be incorporated into an existing database
management system with minimal effort, if the
constraints involved in key management can be
resolved.

Physical Data Segregation (Backend Database
Machine)

A third approach, that of physical data
segregation, is best suited to the dedicated
database machine environment. In this method
the mandatory access control is accomplished
by independent processors and disks which are
labeled by sensitivity level. Each
independent processor works on a query passed
to it by a central controller and returns the
requested information under its control that
meets the conditions of the query. The
control processor determines which
independent processo~s to forward the query
to and merges the independent responses into
one consolidated response. The independent
processors are responsible for discretionary
access control on their own data and the
control processor is responsible for
mandatory access control enforcement.

one of the disadvantages of this approach
is the extra complement of processors and
disks associated with each level.
Additionally, each device pair must be
responsible for its own recovery and auditing
functions. This method also has to cope with
components of the distributed database
locking problem in that it may be able to
obtain locks for high level data but not for
low level data, resulting in denial of
service to a process which requires both
levels to develop an answer.

The major advantage is that the security
controls are relatively centralized in the
control processor, thereby defining the
bounds of the database security kernel and
its interfaces to nontrusted processes. This
technique offers a straightforward approach
to secure database management. However, if
too many features are incorporated into the
front-end controller, the security
constraints may become very complicated.

Custom Kernel

The fourth primary architectural
alternative is a operating system security
kernel designed with database security
features in mind. This type of architecture
cannot be incorporated into a system, it has
to be designed in and exist from the start.
The time usually spent determining where to
place security constraints is instead spent
on design of the system from scratch. The
implementation allows the database security
policy to be reflected in the system security
policy. The operating system can take
responsibility for all labeling functions and
the enforcement of the mandatory and
discretionary access control policies. The
database management system is responsible for
additional security requirements such as
inference control. Audit functions can be
handled by the system audit controls since
the system recognizes labels on objects
smaller than a file in this scenario.
Recovery procedures could be managed by the

operating system since it understands the
smaller granularity and the labels associated
with it.

This technique may also prove very costly
in that it requires the expansion of the
security kernel to incorporate the database
security kernel's functions. There may also
be performance problems that would render the
system user-hostile in interactive
environments. Past experiences with large
operating system kernels have demonstrated
that system performance and the size of the
kernel are related, with large kernels being
harder to validate and slower (9). In this
context, much of the validation information
and audit functions would probably have to be
implemented in hardware to ensure adequate
response time for the user's applications.
This approach would only be feasible if the
operating system kernel could be extended
without compromising its' level of trust or
its' ability to be analyzed for security
flaws. Therefore a dedicated database
machine architecture is implied because the
system would be tailored to address database
security considerations.

CONCLUSIONS

There are several functional dependencies
between the database management system's
security functions and the operating system's
security functions. These dependencies would
make it very difficult if not impossible to
develop a trusted database management system
on an untrusted operating system. They
would also make it hard to trust a database
management system beyond the level of trust
available in the operating system. For
example, it would be difficult for a database
management system to enforce strong mandatory
access controls without the underlying
support of an operating system trusted at the
B2 level of the Trusted Computer Systems
Evaluation Criteria or higher.

It is also very difficult to determine
how much of the database management system
needs to be trusted. Any portion of the
system that has the potential to modify the
actual data or audit logs could be considered
part of this security kernel. In theory,
database management systems support separable
functions, however, in practice, there is
some debate as to the number of commercial
database management systems constructed
totally out of modular sections. Many of
today's database management systems are
highly integrated and the modules which
support these individual functions are not
always distinct or interchangeable.
Therefore, since it is difficult to
distinguish between the functional modules,
different database management system designs
require different portions of the database
management system to be trusted. This leads
to the conclusion that those portions of a
database management system that must be
trusted are determined by three primary
factors: 1) the design of the database
management system, 2) the design of the
security mechanism within the database
management system, and 3) the interrelation
between the operating system security
mechanisms and the database management
system's security mechanisms and policy.

229

Beyond these conclusions, there have
been arguments that the only way to ensure
that the data is protected, especially in the
multilevel environment, is to include the
database as a protected object that is
isolated from the control of the standard
system file structure to some degree. This
eliminates the possibility of access through
standard system file commands and forces the
user to access the database through the
database management system. There still must
be some consideration of applications
provided with the database management system
(spreadsheets, report generators, etc.) that
manipulate data afte~ it has been retri7ved
but before it is del~vered to the user ~n the
requested format, and easy query language
interfaces that convert user generated
English statements into stru~ured Query
Language expressions that can be executed by
the query processor.

The incorporation of security features
into a commercial database management system
is not an easy thing to do. Beyond finding a
way to secure or control the operating system
interfaces, a large portion of the database
management system itself might require
revision or replacement to eliminate or
narrow potential covert channels. The
dependencies between the operating system and
the database management system are very
complex. In the distributed database
environment, they become even more difficult
because network security must also be
considered. With the backend database
machine, the question of how much confidence
exists in the host request mechanism must be
addressed.

From the four alternative exploratory
architectures discussed, perhaps the
architecture with the highest potential for
the greatest security is the fourth
alternative, the customized combined
operating system/database management system
kernel approach. This approach would address
the efficiency concerns inherent with
security kernels as well as the performance
considerations for database management
systems. The security policies of the
database management system and the operating
system could be more easily reconciled
Because they would be developed concurrently
and with a greater degree of confidence that
the end product was secure.

A trusted database management system will
not be built overnight. Rather, it must be
carefully constructed to afford the maximum
protection possible to the data, a sufficient
audit trail, and a thorough recovery process
to eliminate data inconsistencies that may
result from crash. All of these features
must exist, and performance penalties must be
minimized. It may not be possible to
incorporate all of these features in a near­
term solution. However, worked examples of
the various security techniques must be
created now to be incorporated into the
secure data management systems of tomorrow.
To do otherwise would result in the ultimate
secure system -- one so secure that nobody
could afford the price of its use.

Bibliography

1. Department of Defense ~rusted Computer
System Evaluation Criteria, CSC-STD-001-83

' I15 August 1983, DoD Computer Secur~ty center,
Ft. Meade, MD.

2. Department of Defense Evaluated Products
List (EPL) for Trusted Computer Systems, 2
April 1985, DoD Computer Security Center, Ft.
Meade, MD.

3. Henning, Ronda R., "Multilevel
Application Development", Proceedings of
Eighth National Computer Security Conference,
NBS, 1985.

4. Lampson, B.W., "A Note on the
Confinement Problem", CACM, October 1973.

5. Hsaio, David K., "Data Base Computers",
Advances in: Computers, Vol, 19.,. 1980.

6. Date, C.J., An Introduction to Database
Systems, Volume 1. Fourth Edition. Addison
Wesley, 1986.

7. Stonebraker, Michael, Editor, The Inqres
Papers. Anatomy of a Relational Database
System, Addison Wesley, 1986.

8.Air Force Studies Board, committee on
Multilevel Data Management Security,
"Multilevel Data Management security",
National Academy Press, 1983, Washington, DC.

9. Neumann, P.G, et al, A Provable Secure
Operating System: The System. Its
Applications. and Proofs, CSL-116, 7 May 1980.

230

GUIDELINES AND STANDARDS

carole s. Jordan

National Computer Security Center
· 9800 Savage Road

Ft. George G. Meade, MD 20755-6000
(301) 859-4452

INTRODUCTION

This paper describes four guidelines and
standards that have been or are being
developed in the Standards Division of the
National Computer Security Center. These
documents are: ·ooD 5200.28:...STD, DoD Trusted
computer systems Evaluation Criteria, Draft
DoD Directive 5200.28, Security Requirements
for Automated Information Systems CAIS),
Tru·sted Network Guideline, and A Guideline on
Office Automation Security.

DOD 5200.28-STD

The Department of Defense Trusted Computer
system Evaluation criteria, CSC-STD-001-83,
was signed as·a DoD standard by Mr. Latham,
the Assistant Secretary of Defense for
Command, Cbntrol, Communications and Intel­
ligence (ASD(C3I)), in December, 1985. The
standard is DoD 5200.28-STD, entitled
Department of Defense Trusted Computer system
Evaluation Criteria.

The standard is nearly a duplicate of csc­
STD-001-83. During coordination within the
DoD, however, some changes were agreed upon
between ASD(C3I), the NCSC, and the DoD
components. A document was created that
contains a summary of the changes that were
made. This document is being distributed
along with the standard. The standard has
been printed (It, too, has an orange cover.)
and copies are available from the NCSC.

DRAFT DOD DIRECTIVE 5200.28

Background. The Secretary of Defense tasked
the Assistant Secretary of Defense for
Command, Control, Communications and Intel­
ligence, ASD(C3I), in collaboration with the
NCSC to revise the directive. To accomplish
the task, a task force chaired by NCSC was
formed of DoD representatives who have
computer security expertise, are familiar
with current DoD policy, and are aware of
their own components' security needs. A
draft directive was produced by the task
force and sent to ASD(C3I) for their review
and coordination among the DoD components.

Overview of the Draft Directive. The SECDEF
had three objectives to be accomplished in
the revised directive. The first objective
was to ensure that the directive applies to
all computer-driven information systems. The
second objective was to add policy guidance
for including computer security requirements
in AIS procurements. The third objective was

to incorporate the use of computer security
standards and guidelines. These objectives
were accomplished by the task force during
the rewrite.

The third objective was accomplished by
introducing the DoD 5200.28-STD in the draft
and by requiring its use in the selection of
security features that will meet the re­
quirements stated in the directive. Without
going into detail, the following is a brief
description of how the draft directive
incorporates the DoD standard:

All AISs that handle classified or sensitive
information must have security safeguards
that are adequate to meet a set of minimum
requirements specified in the draft di­
rective. These minimum requirements are
similar to those listed in the original DoD
directive, but they have been reworded and
updated. The minimum requirements include
such things as individual accountability,
audit trail, access control, physical
controls, and appropriate marking of output
products.

For those AISs that will operate in the
dedicated security mode, the set of minimum
requirements may be met by automated or
manual means, and there are no further
requirements to be met.

For those AISs that will operate in the
system. high or multilevel or partitioned
security modes, where there is increasing
risk involved in the protection of the
information being handled by the AISs, there
is further guidance in the draft directive
that must be followed in order to determine
the additional security safeguards that are
necessary.

The guidance in the draft is comprised of a
series of steps that must be taken to
determine the requirements that must be met
for a particular AIS. The first step is to
determine the security mode of operation from
among the modes that I listed above. The
second step is to determine the minimum user
clearance, or, more precisely stated, the
maximum clearance of the least cleared user.
The third step is to determine the maximum
sensitivity of the information handled by the
AIS. The information derived in steps two
and three are assigned values, and in step
four the values are used to produce a risk
index. In step five the risk index is mapped
to a particular evaluation class in the DoD
standard. As an example, a risk index of 2

231

maps directly to class B2 in the DoD
standard, indicating that the AIS must meet
B2 requirements. The information in these
five steps is the sa~e information as that
found in the publication entitled Computer
Security Requirements -- Guidance for
Applying the DoD Trusted Computer System
Evaluation criteria in Specific Environments,
that was produced by the Standards Division
in June of 1985.

several other changes to, or departures from,
the original directive were made by the task
force. For instance, the current directive
applies to the protection of classified
information, whereas the draft applies to the
protection of classified and unclassified but
sensitive information.

The Designated Approval Authority (DAA) is
introduced in the draft. Most DoD components
nave already defined and incorporated the
term in their own implementing regulations,
so updating the directive on this issue made
it current with the implementing regulations
of other DoD components.

The responsibilities of the System Security
Officer (SSO) are expanded in the draft
directive. In the current directive, the sso
is not appointed until an AIS is operational.
In the draft, it is required that someone be
appointed the sso early in the life cycle of
a new AIS to ensure that security is
considered during the design and development
stages.

As in the case of the DAA, there were several
other issues in the draft directive that were
updated to bring the draft in line with DoD
implementing regulations.

Status. The draft directive is currently
being coordinated among the DoD components
for their concurrences and comments.

TRUSTED NETWORK GUIDELINE

Background. The standards Division of the
NCSC began a project in late 1983 to draft
what were then known as Trusted Network
Evaluation Criteria. An invitational
workshop was held in New Orleans in March,
1985, to obtain input from the DoD, from
private industry such as vendors and users of
computer networks, and from the academic
community. Using material produced in the
workshop, a draft Trusted Network Evaluation
Criteria was developed and published in July,
1985. The draft, informally known as the
Brown Book, was distributed to several
hundred reviewers for their comments.
Comments received from the reviewers were
extremely disparate, and it was concluded
that the Brown Book could not be modified to
satisfy the diverse viewpoints of the
reviewers.

rhe Brown Book was scrapped and a different
approach was taken. A working group was
formed to interpret the DoD Trusted Computer
System Evaluation Criteria (TCSEC) for
computer networks and prepare a draft
guideline.

Overview of the Proposed Guideline. The
Trusted Network Guideline (TNG) will apply
only to those networks that can be thought of
as having one trusted network base (TNB).
There are other types of networks, and there
are internets that are in some sense also
networks. 'These networks do not support a
single TNB, and, therefore, it may not be
meaningful to assign a rating to them in the
way that we could assign a rating to a
network with a single TNB.

The TNG will apply only to those networks
that provide all users with an interface that
is at the same level of trust. Other net­
works should be connected using what will be
called "interconnection rules, 11 which will be
provided either as an appendix to the TNG or
as a separate document.

Tentatively, the TNG will be comprised of
criteria (from the Orange Book), interpre­
tations of the criteria for networks, and
rationale for the interpretations. New
requirements will be added to address
integrity and denial of service issues.
These issues are significantly more important
for networks than they are for stand-alone
systems.

Status. The draft is being developed and,
once the working group is satisfied with it,
will be distributed to a larger group of
reviewers. The draft will then be revised as
necessary and published and reviewed by as
wide a community as reviewed the Brown Book.
It is our goal to have a comprehensive draft
document published by the end of this year.

GUIDELINE ON OFFICE AUTOMATION

Background. The Standards Division of the
NCSC was tasked by the Standards and Guide­
lines Working Group of the Subcommittee on
Automated Information System Security (SAISS)
with developing a guideline on Office
Automation Security. The goal of this effort
was to produce a document that would provide
guidance for all OA systems in the Federal
Government that are used to process class­
ified or other sensitive information. The
document that has resulted from this effort
is entitled A Guideline on Office Automation
Security.

Overview of the Guideline. This guideline is
intended to provide guidance to users,
security officers, procurement officers, and
others having responsibility for the security
of an office automation system at some time
during its life-cycle.

232

The guideline is divided into four parts.
Part I is an introduction and overview. It
contains the introduction, purpose and scope
of the guideline, as well as a high-level
overview of why the office automation
security problem is different from other
computer security problems.

Part II of the document provides security
guidance for users of OA systems. The class
of users includes secretaries, managers,
technical and non-technical users, and
others. Therefore, this part of the document
has been carefully written to be under­
standable by all who need the guidance it
gives.

Part II contains chapters on the security
responsibilities of OA system users,
operational security guidance for stand-alone
OA systems, and operational security guidance
for connected OA systems.

Part III of the guideline provides guidance
for OA System Security Officers. There is a
chapter that outlines some of the security
responsibilities of the ssos, and a chapter
that discusses various threats, vulnera­
bilities and controls that they should be
aware of.,

Part IV of the guideline gives guidance to
others. There i.s a chapter outlining some of
the security responsibilities of the organi­
zation that oWns or is otherwise responsible
for the system. There is a chapter that
gives guidance to procurement officers con­
cerning important points to consider when it
is time to acquire an OA system. There is
also a chapter on the secure disposal of both
the OA system and the magnetic storage media
that is used in it.

In addition, there is an appendix that
provides a guideline on sensitivity marking
for the OA system and its storage media.
~his appendix suggests a scheme for the
physical labeling of equipment to help
prevent accidental compromise of classified
or other sensitive information.

Status. Drafts of the guideline have been
reviewed by members of the Working Group, as
well as by members and observers of the
SAISS. It will be voted on by both the SAISS
and the Subcommittee on Telecommunications
security. If approved, then the NTISSC will
decide whether or not to release the
guideline as an Advisory Memorandum. The
guideline should be available for public
release in the near future.

233

PANEL

ON

DATABASE MANAGEMENT SYSTEM SECURITY REQUIREMENTS

We rely on databases in the defense of
this country, to support our financial and
legal systems, in our medical and educational
systems, and even to receive our paychecks.
Very serious consequences could result from
the penetration andjor alteration of these
systems.

According to an Ohio Un~versity Study in
the September 9, 1985 issue of Computer &
Software News, seventy percent of the top
videotex and database service firm executives
considered unauthorized access to be a
significant problem. Ten percent reported
that tampering occurs on a weekly or more
frequent basis. Another ten percent reported
that tampering incidents occur monthly.
Thirty-two percent cited other intervals of
frequency.

Since the 1982 summer Study on
Multilevel Data Management Security, several
operating system products have appeared on
the Evaluated Products List and many more
candidates are being evaluated. Today,
however, an unsecured database management
system, placed on a trusted operating system,
produces

an overall system where the data is poorly
protected.

A primary research emphasis of the
National Computer Security Center has been
the development of secure operating systems.
With the first of these products developed,
we now turn our attention to an even more
difficult area: database security. The
primary guidance that the Center and vendors

nave had on secure data management has come
from the Summer study report, which details
near- and long-range goals and objectives for
secure data management research. Additional
input has been obtained from the Center' s
technical review group and from the recent
workshop on database security.

This panel will review the validity of
the findings of the Summer study, open a new
forum for discussion on what the user
community ' sees as their current and future
requirements for secure data management, and
present a brief synopsis of database security
research in progress. It would serve as a
kickoff to a general data calJ. planned by the
Center's secure Database Research and
Development Branch to determine its direction
in database security research.

Panel Chair:

Dr. John R. Campbell, National Computer
Security Center

Panel Members:

Dorothy E. Denning, SRI International

Kenneth Eggers, MITRE

Roger Schell, Gemini Computers, Inc.

Charles J. Testa, Infosystems Technology,
Inc.

234

PANEL DISCUSSION

NCSC AND VERIFICATION

Formal Specification and verification
are important technologies in the
production of secure computer systems. As
development of Al (and beyond.Al) systems
increase, greater demands will be placed
on the automated verification tools and
the developers and maintainers who support
their use.

The National Computer Security Center
(NCSC) has made a commitment to support
formal verification. What does such a
commitment mean, and what is the NCSC
doing to fulfill that commitment?

The primary focus of this panel
discussion is to identify the role and
commitment of the Center concerning the
formal specification and verification
technology. The discussion will include
the following topics:

a. The need for verification
(introduction) .

b. The Product Evaluator's
Verification Working Group. This working
group was created to help evaluators with
verification issues concerning Al or
beyond-Al evaluations. A description of
the working group's charter and progress
are presented.

c. Endorsed tools. Questions
such as "What does endorsed mean?" and
"How can a verification system be added or
deleted from the endorsed tools list
(ETL)?" are discussed.

d. Future endeavors (1 year).

e. Milestones. The Center has
been in the forefront of verification
activities. such activities are
highlighted.

f. Future technology. Thoughts
of where verification technology will be
in 5 years.

The panelists are representatives
from all offices within the NCSC and two
recognized verification experts outside of
the NCSC. The format for this panel
session is to have each key panelist talk
for approximately 10 minutes, after which
the panel is open to questions from the
floor.

235

http:beyond.Al

PANEL DISCUSSION

Using the Criteria in Acquisitions

Incorporating trusted system computer security related
requirements into acquisition programs is a difficult task faced
by managers procuring trusted systems. The evolution of the
Department of Defense Trusted Computer Systems Evaluation
Criteria from a guideline (CSC-STD-001) to a Department of
Defense standard (5200.28-STD) will certainly add to the number
of acquisitions requiring trusted systems. Thus, this panel is
geared to provide the audience with information about real world
trusted system acquisitions and how to integrate security,
acquisition, and program requirements. The panelist are key
players involved in program acquisitions ranging from class
Bl - Al. The topics include:

- Computer Security Acquisition Management

- Procurement Guidelines for Multi-level Systems

- Applying the Procurement Guidelines at Class Bl

- InterservicejAgency Automated Message Processing
Exchange (I-S/A AMPE) Experience

- The BLACKER Program and the Criteria

- The FORSCOM SECURITY MONITOR (FSM) Lessons Learned

The panelist are Mrs. suzanne O'Connor, standards and
Products Office of the National Computer Security Center (NCSC);
Miss. Leslee O'Dell, Special Projects Office of the NCSC; Mr.
Gregory Elkmann, Automated Information System Evaluation Office
of NSA; Mr. H. o. Lubbes, Space and Naval Warfare Systems
Command; and Captain William Collier, Automated Information
System Evaluation Office of NSA. The panel chairman is Major
Donald Baker, Technical support Office of the NCSC.

236

AN ECONOMICALLY FEASIBLE APPROACH TO CONTINGENCY PLANNING.

Robert H. Courtney, Jr.

Robert Courtney, Inc.

Box 836

Port Ewen, New York 12466

914-338-2525

INTRODUCTION

What is a Contingency Plan?

A contingency plan describes the appropriate
response to any situation which jeopardizes
the safety of data or of data processing and
communications facilities to a degree that
threatens meaningful harm to the organi­
zations supported by those data and facili ­
ties. A contingency plan is not a book~ it is
an action plan.

The threatening situation need not be a
disaster which causes extensive physical
damage. The disruption may cause no damage at
all to the physical facility as is often the
case with a chemical spill which, by forcing
the evacuation of personnel, stops data
processing activities. In fact, the economic
feasibility of a contingency plan may well
lie in its ability to contain small problems
at small cost as well as providing the
ability to fare through the total loss of a
physical facility.

The threats to be anticipated in devising the
contingency plan need only be sufficiently
great in both the magnitudes of the potential
losses and in their probability of occurrence
to justify the preparation of plans to avoid
those losses if a course of action which
costs significantly less than the anticipated
loss can be devised.

It is regrettable that the term "disaster
recovery plan" has become, for many, synony­
mous with "contingency plan". It seems
somewhat more rational to consider the
contingency plan to be a disaster avoidance
plan rather than a way of recovering from a
disaster. Most of our data processing disas­
ters become such only because we are not
prepared to cope with what might have been
only an inconvenience if we had prepared
properly.

Who Needs Them?

Any organization which is susceptible to
significant harm if it loses its data or the
facirities associated with their use needs a
plan with which to respond to reasonably
anticipatable disruptions to normal data
processing operations. These can include
labor problems as well as earthquakes,
leaking roofs as well as floods, gross
mistakes by loyal employees and bombs by
terrorists, area-wide losses of power and
vital communications lines cut by back-hoes.

The losses which mount as a consequence of
system outages vary widely with the nature of.
supported organizations. Some major organiza­
tions will not be seriously hurt with

downtimes as long as a week. Others will
suffer meaningful losses, amounting to as
much as two-thirds gross revenue, starting
within minutes of loss of system support.

Who Has Them?

Truly workable, fully tested, economically
feasible contingency plans are in place for
only a small percentage of the data process­
ing mainframe installations. There are no
untested but workable contingency plans. Such
tests always reveal deficiencies to be fixed.

It is our belief, based upon many discussions
of the subject with DP management and others,
that the principal reason for the absence of
good contingency plans, at least in the
private sector, but to a lesser degree in the
public sector because of the many complicat­
ing factors there, is the continuing belief
by much of the DP management that workable
plans are far too costly or are, in reality,
infeasible. Other important and more urgent
issues do divert management attention from
contingency planning and other security
related considerations as well, but the
principal barrier seems to be lack of confi­
dence that a truly workable plan can be
configured. Until more DP directors are
better informed about the economic feasibil ­
ity and workability of contingency plans,
this situation will not change.

Our goal here is to describe an approach to
contingency planning which is clearly work­
able in many, but certainly not all, organiza­
tions.

THE MAJOR COMPONENTS

We are addressing here contingency plans for
data processing, including communications,
data acquisition, storage, and presentation.
Of no less importance, but not within the
scope of this paper, are the contingency
plans for the critical dependencies which are
not DP related. Preservation of the ability
to take orders and bill customers may lack
importance if there is no means of making
shippable product.

The essential
contingency plan

components
are these:

of a complete

1. Emergency Response Pla
respond promptly and well

n. ­
to

A
a

plan to
potential

disruption so as to limit the damage is
highly desirable. Fire extinguishers are
almost worthless if no one knows how to use
them. In this category, then, are the things
which should be done as soon as there is an
awareness of a potential problem which might
result in the invocation of the contingency
plan.

237

2. Back-Up Plan.- The back-up plan provides
the ability to conduct, by alternate means,
the critical data processing workload. The
critical workload is that portion of the
workload which will generate serious loss if
disrupted for a period exceeding two weeks.
See our comments later here on the selection
of the two week period.

3. Recovery Plan.- The Recovery Plan guides
the return to full and normal data processing
capability.

All three plans must be considered because
all are important, but the first two, the
emergency response and back-up plans, are the
most difficult to put in place and, usually,
are the most urgently needed. There is rarely
any significant overlap of the three categor­
ies. This paper is oriented primarily toward
the provision of economically feasible
back-up capabilities.

THE ALTERNATIVES

Several different approaches to the provision
of back-up capability can be considered. They
are not all equally workable. These should be
considered only under some quite exceptional
circumstances. The principal alternatives,
then, are these:

Doing Nothing.

There are a few organizations quite dependent
upon computer-based systems which will suffer
but little loss if they are without that data
processing support for two weeks or so. Such
loss as they might encounter if they cannot
run their work will be quite small in compar­
ison with the cost of a back-up capability.
Those charged with contingency planning.
should consider the highly desirable possibil ­
ity that their respective organizations may
be in this category.

It is not wholly uncommon to encounter the
absence of need for back-up in headquarters
operations where computers are used primarily
for planning and higher level awareness and
control purposes and where accounting,
payroll, order entry, inventory management
and other such time-dependent tasks are
provided for the enterprise by DP shops in
the operating divisions. Note that these
other DP shops do need back-up capabilities.

Mutual Aid Agreements.

External. Arrangements made with other,
unaffiliated organizations to provide back-up
data processing support by deferring some of
the supporting company's less critical work
can work under some circumstances. It is
usually fairly easy to arrive at some inform­
al agreement of this type with other organiza­
tions. It is more difficult to establish
formal written agreements which are workable.
It is usually quite difficult to establish
such mutual aid agreements involving ade­
quate, periodic tests of that back-up. In
general, and as we stated rather forcefully
above, untested back-up plans do not work.

These arrangements increase in workability
under the following circumstances:

1. 	 When there are unused shifts
available at the back-up facility
so that less work, if any, is
displaced in the supporting com­
pany.

2. 	 When the work to be backed up is
primarily vanilla batch or with
limited use of in-dial ports only.

3. 	 When the CPU' s are relatively
small.

4. 	 When the need for back~up is such
that delays of a few days will not
be very costly.

s. 	 When the mutually supportive
organizations are in the same
industry areas; e.g., commercial
banking. That two companies are
possible competitors is often an
impediment, but usually not so
great a problem as a complete lack
of appreciation of what the other
is trying to do as when they are in
different businesses.

6. 	 When the two companies are of
roughly the same size.

None of the above factors are without notable
exceptions, but they should provide some
useful guidance in considering a mutual aid
agreement with another organization.

The most useful observation we can make here
about mutual aid agreements between wholly
unaffiliated organizations is that they very
rarely work when they are needed.

Internal. The workability of mutual aid
agreements between groups with some organiza­
tional affinity is dependent upon many
factors. The more prominent of those factors
are these:

1. 	 The strength of the stated desire
of the common management that the
respective organizations arrange
such back-up support.

2. 	 The quality and the degree of
realism reflected in the back-up
plan.

3. 	 The conduct of wholly realistic
tests of the back-up capability.

4. 	 The similarity of the mutually
supportive systems.

5. 	 The simplicity of the required
communication·s support.

6. 	 The physical proximity of the two
sites - provided that they are not
so close as to be affected by the
same source of disruption.

238

7. 	 The availability of time to correct
deficiencies in the back-up support
after disruption and before losses
mount intolerably.

Many other things can be listed, but these
deserve careful consideration before this
option is elected.

The greatest single factor in the workability
of this arrangement is the ability and
willingness of the common management to
require the provision of fully tested back­
up. Other factors are very important, but
this one is usually key.

Open 	Hot Sit_e.

An open hot site is a data processing facili ­
ty operated for profit by making available to
otherwise unaffiliated companies a site on
which they can conduct their data processing
after loss of the use of their own facility.
These are characterized by the facilities of
COMDISCO and SUNGARD.

Monthly subscription rates are paid to
preserve the ability to test the back-up
plans and, when necessary and on payment of
additional fees, to declare an emergency and
move the critical workload onto this alter­
nate facility.

This arrangement is indeed quite workable for
a number_of companies, but it is far from a
universal solution. It can be a partial
solution for some banks, for example, but it
will not solve the problem of data capture,
including the proof operations, so essential
to curtailing losses through disruption to
demand deposit operations.

An analysis of the economic feasibility of
the open hot site as back-up for any specific
facility must include careful and quantita­
tive consideration of the speed with which
key data processing functions must be restor­
ed. The feasibility of this approach clearly
increases with the length of time available
to move people and data, to fix unanticipated
problems, and to adapt the hot site communi­
cations facilities to the peculiar needs of
the using organization. The cost of repeated
tests at a geographically remote location
must also be considered in evaluating this
alternative.

Although it may be argued that such should
not be the case, we have seen too many
instances in which recovery at the hot site
has been deferred for an inordinately long
period while attempts are made to recover at
the primary location to avoid paying the fees
for declaring an emergency or because there
is fear that the contingency plan may not
actually work. Further, if there is some
reasonable possibility of a prompt recovery
at the primary site, prudent management will
be reluctant to send the best people avail ­
able to the hot site, as will be needed to
establish operations in a different location,
when it is clear that operations cannot be
re-established at home without those best
people. This is a difficult dilemma for the

DP Director to resolve when he is faced with
the plethora of problems normally encountered
when a busy facility is suddenly and serious­
ly disrupted.

Closed Hot Site.

A closed hot site is a facility which is
owned by a consortium or which was otherwise
constructed for a specific set of companies
to satisfy some less than highly general need
for back-up capability. Such a facility might
provide proof machines and operators and
check sorters for a group of banks. It might
provide unusually rapid availability of
back-up for organizations which encounter
serious losses beginning with the first
minute of facility outage.

These facilities are rare primarily because
of the heavy requirements for a peculiar
combination of entrepreneurial spirit,
salesmanship, technical strength, and quite
substantial investment (by the participating
companies) needed to get them to an operation­
al state. They can be a highly satisfactory
way of satisfying the back-up needs of
enterprises which cannot afford to be down
for even very short periods, but - the costs
are significantly greater than those seen
with open hot sites. These higher costs are
justified only when they are fully displaced
by sum of the losses avoided by this approach
and the continuing availability of the
facility to the participating companies for
rehearsal of back-up plans and for applica­
tion development and test.

This approach is definitely not the way of
the future for very many organizations. It is
very good for those who need it, but it will
not be economically feasible for very many
others. In some of those organizations for
which it would be the correct approach, the
DP management will not find it acceptable to
ask the corporate management for the neces­
sary funds to participate in such a consorti ­
um.

Split Sites.

Later in this paper we discuss the determina­
tion of the size of the truly critical
workload in a DP mainframe facility.
For our immediate purposes here, it is
sufficient to say that it is very rare to
encounter a conventional data processing
facility supporting a multiplicity of appli ­
cations on a mainframe where the truly
critical workload approaches 50% of the
total. Our definition of critical workload is
that portion of the workload which, if
discontinued for two weeks, would result in
serious loss, not just inconvenience, to the
enterprise. Most commonly, if a reasonably
objective evaluation is made of critical
workload, it will be less than 20% of the
total.

We have found it generally quite feasible to
return to a reasonable semblance of normal
operations within two weeks of even a major
facility loss. For this reason we use the

239

two-week period xn our definition of critical
workload.

If the critical workload on a facility is
significantly less than 50% of the total,
then it is possible to consider splitting an
existing site into two physically separate
parts either of which is large enough to
carry the critical workload. At least theo­
retically, this does not require any increase
in data processing capacity. In actual
practice, that is not quite correct.
However, with a split site, if either is
lost, the other can carry the critical
workload after shedding that portion of the
non-critical workload it was carrying before
loss of that other facility.

It is our contention that, while other
approaches to back-up are sometimes workable,
the most broadly applicable, economically
feasible approach to backing up critical
workloads on mainframes is the split-site
arrangement.

Standby Facilities.

We noted above that it is rarely possible to
provide economic justification for a whole
standby facility which does nothing until the
primary one is lost. It is possible to
compose a scenario in which the consequences
of losing a facility are so dire as to
provide such justification. This is most
commonly true with smaller, dedicated ma­
chines such as those driving automated
warehouses.

In the whole population of computers, there
are enough situations where dedication of
otherwise unused back-up facilities are
justified that that category cannot be
excluded from any reasonably comprehensive
list of alternative approaches.

Data Servicers.

Many organizations would be well-served in
any attempt to reduce or eliminate the
critical workload to consider taking all or a
portion of it, depending on its nature, to a
data servicer such as ADP or McAuto. They not
only might substantially reduce the cost of
operations such as payroll, they can also
have advantage of the extensive facilities of
the larger organizations in that business to
assure a high probability of the continued
support of those delegated functions. In
general, however, the time to place the work
with the data servicers is before and not
after disruption to your facilities.

A complete discussion of the several reasons
for taking payroll and some other common
business functions to outside specialists is
somewhat beyond the scope of this paper, but
the reader should give it appropriate consid­
eration.

Combinations of Alternatives.

It is readily apparent that some combination
of the different alternatives may best suit
the needs of very large organizations and

even a few of the very .small ones~ For
example, a bank may well consider taking its
payroll to ADP, using an open hot site for
its mainframe back-up, and joining a consor­
tium for proof and sorting operations. Many
other equally plausible examples can be
cited.

THE CRITICAL WORKLOAD.

What is the Critical Workload?

Earlier here we said that the critical
workload is that portion of the total work­
load which would cause serious loss if it
could not be conducted for periods of up to
two weeks. The two weeks is fairly arbitrary
but, in reality, most companies do manage
substantial recovery of their data processing
operations in that time even when there has
been catastrophic loss of a major facility.
If the two-week interval seems inappropriate
to any particular environment, it is quite
reasonable to pick some long.er. or shorter
period, although much shorter might be quite
risky.

Another perspective on the problem might
suggest that the critical workload is that
portion of the total which, if it is inter­
rupted, would generate losses great enough to
provide economic justification ·Of a back-up
capability which would obviate such losses.
This view of things is not correct because is
suggests an assessment of criticality based
on cost of back-up. The desirability of
avoiding loss does not change with the
feasibility of avoiding it.

All of the potential losses ·which would
result from an outage should be compiled, not
just those which can be obviated by some.
current notion of the nature of an appropri­
ate back-up capability. Only when those are
available will it be possible to configure a
back-up plan which is sufficiently detailed
to be workable. When these potentially
avoidable losses have been compiled, then we
can evaluate the various approaches available
to us for providing a back-up capability and
select the combination which displaces the
greatest potential loss for the least cost.

EAL =(Cost) (Probability of Occurrence).

The Expected Annual Loss (EAL) which is used
to justify backing up a data processing
function or not should be evaluated in terms
of not just the dollar consequences of an
undesirable event but also the probability
that it will happen. It is not reasonable to
base a contingency plan on an assessment of
consequences alone7 consideration must also
be given the probability (or frequency) of
encountering the interruption. It is clear
that the anticipated loss must be the result
of consideration of both the damage done and
the chance of encountering the problem.

When doing a risk assessment for contingency
planning purposes, it is usually far easier
to assess the consequences of a disruption
than it is to judge the probability of

240

encountering the problem. Fortunately, quite
gross estimates of which we can be reasonably
certain are usually good enough. No attempt
should be made to refine data beyond the
point where ..·the improved precision does not
make a difference in what we do. Only when we
realize that the determinant for a course of
action lies in the area of uncertainty
between the upper and lower bounds of the
value we assign a parameter are we justified
in expending the effort to further refine
those data. Distinctions without differences
are useless; and for there to be a- differ­
ence, a change has to make a difference.

We have found fairly consistently that we are
rarely hampered by difficulty in estimating
probabilities of occurrence. Far more often
than no.t, _when we take the probability to a
level so low- that we are quite comfortable
with it, the consequences are sufficiently
large to provide. adequate justification of
corrective measures. This should not be too
surprising because the ·things with the most
dire. consequences usually happen with the
lowest frequencies otherwise the world
would not be habitable. On the other hand,
small problems often happen with frequencies
so..high that they rival or exceed the EAL of
the catastr9phes.

If, for a particular problem, we cannot
arrive at an estimate of probability (or
consequences) in which we have adequate
confidence, it is often best to simply defer
further consideration until later. Quite
frequently, the appropr·iate corrective action
will be cost-justified by some other'problem
which is more readily assessable. If that
does not happen, then we must do the addition­
al work required.to further refine our data.

In conducting a risk assessment, a small
amount of common sense far outweighs complex
methodologies. We once encountered such blind
obeisance to a£lawed risk assessment method­
ology that, in a prioritized list of critical
data processing tasks for a major manufactur­
ing company, - paying suggestion awards was
ranked first· and higher than accepting
orders, shipping product, invoicing, receiv­
ing payment, and getting out the payroll.

Who Determines the Critical Workload?

Involvement of Functional Area Managers. Our
experience has been that determination of the
critical workload by the information systems
personnel working alone and not in close
cooperation with the managements of the
respective functional areas does not work.
The DP people almost never have the depth of
understanding of the need of the enterprise
for the proper functioning of each of the
essential components to the extent that they
can offer a quantitative evaluation of the
cost of their interruption. All too often,
they don't know that they don't know and, as
a consequence, make gross and seriously
erroneous estimates of the tolerance of the
organization to specific problems. Their
assessment of the importance or criticality
of particular functions as often reflects the
strengths of the personalities of the persons

from that area with whom they have been
working as it does the real situation.

Importance of Policy Statement. We have
almost always found it more difficult to
achieve the involvement of the functional
area managers in any planning for computer­
related security, including contingency
planning, in the absence of a strong policy
statement issued by the. chief executive
officer. The policy stat'ement _should make
specific assignment to futtional managers of
direct responsibility for the safety of data
and the means of proce sing them. The DP
management should have custodial responsibil­
ity for data and an obligation to extend to
the data and the processing means such
safeguards as may be required to contain the
concerns of the managements of the directly
responsible functional areas. The workability
of this arrangement is greatly improved if
the cost of security as defined by the
functional managers is charged back to them.
This provides an incentive for them to
balance their concern for data security, for
which they are held accountable by a proper
policy statement, against the cost of provid­
ing· it so as to make certain that no more is
spent protecting data than it would cost to
leave it unprotected.

Questionnaires versus Interviews. we know of
no paper survey of computer security matters
with other than extremely limited scope, such
as which access control method has been
procured, which has yielded data which are
both accurate and useful. It is far easier to
acquire, by proper questionnaire design, data
which seem useful than it is data which are
accurate. For example, there was in the
Department of Defense a contingency planning
questionnaire which asked, "Is your system is
subject to acts of God?" We never saw that
answered by other than a "No".

A major problem with paper surveys in the
computer security area is that the amount of
explanatory text which must accompany the
questions so badly burdens the task of
preparing the surveys and answering them that
either the writing or the reading (or both)
of that material is too often neglected.

We have found eyeball-to-eyeball interviews
with key managers of functional areas by far
the most satisfactory and least time-consum­
ing approach for everyone concerned. The
skilled interviewer should be accompanied by
a person from the DP area - preferably, the
person who will be charged with maintaining
the contingency plan after its preparation ­
so as to provide learning for him in the
conduct of those interviews. With such an
arrangement, it is usually relatively easy to
reach agreement between the contingency
planners and the functional managers as to
the direct and, very importantly, indirect
costs of losing data or the processing means
as a function of the duration of such loss.
As we noted above, the frequency or probabil­
ity of occurrence may be a little more
difficult, but it is not an overwhelming
burden.

241

http:required.to

THE SPLIT-SITE APPROACH

The most commonly encountered major problems
in achieving and retaining a truly workable
back-up plan are these:

1. 	 Identifying the critical workload.
Not only must it be initially
identified, it must be continually
assessed as new applications evolve
and as the organization's priori ­
ties change.

2. 	 Assuring suitably prompt availabil ­
ity of adequate computer(s) when
they are needed.

3. 	 Establishment of enough of the
normally required communications
network to provide adequate limp­
along capability.

4. 	 Conducting realistic tests of the
contingency plan in the face of
opposition to the cost of the
tests, to the disruption to non-cri ­
tical workload and to the potential
for disruption to the critical
workload.

5. 	 Assuring availability of data. With
the rapidly growing size of some
data bases, this problem is becom­
ing increasingly severe if only
because of the time and costs
required to unload and load the
amount of data required to support
the critical workload. Planning
and assuring the availability of
back-up data has become an impor­
tant and fairly costly part of good
systems management. It is wholly
essential to workable contingency_
plans.

6. 	 Assuring the availability of the
skill levels required to respond
promptly to a need to back-up the
critical tasks and to phase off­
line gracefully the non-critical
tasks.

7. 	 Maintenance of management support
for contingency planning.

8. 	 Preservation of an awareness on the
part of planners and developers
that ease and cost of back-up and
recovery should be weighed along
with all of the other operable
factors when planning new applica­
tions and the refurbishing of old
ones.

The list above is not necessarily in priority
sequence. The re),ative importance of these
things will vary with the organization.

Now, given a wide variety of candidate
approaches to back-up, most of which were
listed earlier (with notable and generally
unworkable exceptions, such as dedicated and
unused floor space with no DP hardware) and

given these more common difficulties, we must
pick an approach that promises the greatest
potential workability. More often than not,
it is .the split site.

While the split site is most often the most
workab.le approach to back-up, it is . not
necessarily the approach chosen even when· it.
is the most appropriate. Too often there is
an unwillingness to solicit management
support for any approach which will have
significant cost, even when it is cost-justi ­
fied. I·f the cost will require a .diversion of
resource which would otherwise be available
to increase data processing services or . if
the implementation of a good back-up plan
would require recognition by the senior
management of the high jeopardy with which
they have .been living for some time while
assuming .risks about which they had not been
told, the DP management may opt· for a less
workable, basically cosmetic approach to
back-up which avoids rousing the ire of that
senior management. For our purposes here, we
will assume that there is a sincere, politi ­
cally unfettered desire to implement the most
cost-effective plan.

The split-site approach is not always the
best approach, but, more often .. than not, it
provides the most cost-effective, workable
one with the least encumbrance by the several
negative factors listed above. We will now
attempt to support that assertion.

We stated above that it is very rare for the
critical workload to exceed 50% of the total
workload and, more commonly, it is in the
order of 20% of the total. Even during first
shift on systems with heavy interactive,
real-time loads, well more than 50% of the
work is usually divertable to the non-criti ­
cal category. When such is not the case, the
most burdensome applications should be
examined to see whether some of.the work done
under them should. not have been relegated to
batch and is, instead, being done unnecessar­
ily in the real time environment.

If less than half of the total workload,. is
critical, then it is clear that, at least
conceptually, we can convert a single facili ­
ty into two without increasing. the total
capability and have either of the two parts
be large enough to carry the critical work­
load. Under these circumstances, we would not
need to involve the facilities · of other
organizations to have a back-up capability.
It is clear that systems do not cut cleanly
into two parts of precisely the relative
sizes we might want, but that is not a major
problem.

Split-Site Costs.

It is clear that one cannot divide an exist ­
ing facility into two parts easily or without
added cost. If it is planned carefully,
however, it can be done at costs sufficiently
low as to make it an attractive proposition
for most organizations. The smaller the
critical workload, the smaller the second
facility must be and, normally, the lower the
cost of establishing and. operating that site.

242

http:workab.le

The economies of scale dictate it to be less
expensive to carry a workload in one location
rather than two or more. This is not a
commentary on the desirability of distributed
processing or putting DP under the direct
control of the functional areas supported. A
given DP workload is normally less costly if
it is done all at one place. Because, in this
case, there, is a reason for, splitting the
workload between locations, we want to do it
in such a way as to minimize that cost.

It is reasonably obvious that the smaller the
second site, the less the increase in the
operating cost of the two sites over the cost
of the initial single site. Thus, the second
site should be as small as possible and still
carry the critical workload and, of great
importance, be a fully viable facility for
carrying whatever normal workload is appro..:
priate for placement there. We have found
that the second site increases the operating
costs of that portion of the work brought to
the second site by about 20%. Thus, if 20%
of the workload is moved to a new site which
has a capability of about 20% of the initial
facility, the increase in costs incurred by
operating at the two , sites instead of one
will be roughly (0.20 X 0.20) or 4%. The 20%
figure is useful only for initial guidance
and should be confirmed by hard estimates of
the costs in the specific operating environ­
ments under consideration. Many factors may
influence its actual value.

If the 20% increase can be confirmed for a
specific environment, then it is clear that
the split-site provides a highly desirable
back-up option if there are no other signifi­
cant barriers to that approach.

Dividing the Workload for Split Sites.

There is probably no need to note here that,
when split sites are planned, as much as
possible of the critical workload should be
placed in the facility which is least likely
to be disrupted for any reason. This is not
always practicable, but, where it is, it
should be done.

Many organizations already have a split
between processors handling the normal
workload and those supporting development and
test, although these processors are often in
the same physical area and are, therefore,
jeopardized by the same infrastructure
disruptions. It is not uncommon to find that
the test and development capability is large
enough to carry the critical workload provid­
ed only that appropriate access to essential
communications and DASD can be provided.

Because test and development is almost always
a prime candidate for suspension when normal
processing is disrupted and back-up of
critical applications is required, running
them in. the site most likely to be used for
back-up often affords an ease of transition
to the critical work when that is needed.

Putting test and development at the most
secure site might, because it would not be
needed normally, preclude the availability of

continuing attachment of that site to those
communications facilities needed to support
the critical applications. Even though there
might be an intent to preserve the ability to
provide the communications necessary to the
back-up capability at that site, it is
terribly easy for that ability to atrophy
unnoticed and not be available when needed.
Care must be taken to avoid that problem.

If the normal workload at the second site
requires availability to the communications
facilities which support the critical appli­
cations, then no hardware or extensive
logical shifts need be made to run those
backed-up applications there. It is quite
fortunate when such an arrangement is feasi­
ble.

If all facilities on which the critical
applications might be run when back-up is
needed are on the same SNA network, then many
~f the communications problems are fairly
readily resolved provided only that the
disruption did not incapacitate a signifi­
cantly large segment of the communications
network.

It is imperative that the back-up plan
provide adequate means for back-up of essen­
tial communications facilities. They are too
frequently neglected in our contingency
plans. Each year more data processing time is
lost to catastrophically damaged cables, both
copper and glass, than is lost to physical
damage to all other DP components.

Split Site Management.

It is almost uniformly true that success in
bringing any good contingency plan to frui­
tion is dependent upon the support of the
director of data processing, by whatever
title. In many companies the person in that
position has fought long and hard to preserve
the integrity of his fiefdom and is, quite
understandably, very reluctant to see it
fractionated. If the company now has but a
single site under each of one or more such
persons, it must be anticipated that they
might well oppose the establishment of a
split-site arrangement unless it is quite
clear that they will retain responsibility
for both sites.

This frequently encountered opposition by the
DP manager to a second site unless it is also
under his management is a good thing
sometimes for the wrong reason, but it is
usually a good thing. It is difficult to
imagine a situation in which both sites of a
split-site arrangement should not be under
the same management. It is important that
control over the two converge at a level not
too high for the common management to be
fully aware of any activities at either site
which might threaten the ability of each to
pick up the critical applications.

It is far more likely that two sites will
remain compatible if they are under common
management than if they are not.

243

There are, unfortunately, many examples of
back-up arrangements within the same organi­
zations, many of which were fully and success­
fully tested in the past, but where the
systems, which were supposed to be and
thought by the senior management to be
mutually supportive, grew in ways which
negated the capability to back up each other.

In a number of the more notable examples,
these differences were intentionally intro­
duced by the DP directors to achieve for
their particular facility some superior
capability or service level not possessed by
the other.

Site 	Locations.

It may not be possible to satisfy all of the
desiderata appropriate to the location of
split sites. The relative importance of each,
and, thus, the need to satisfy it, is best
judged in the light of the particular operat­
ing environment. The more important ones are
these:

1. 	 Proximity.- The two sites should be
sufficiently close that it is
logistically feasible for each to
store the back-up data for the
other. In general, this is to say
that the two should be within a few
hours driv.e by motor vehicle.

2. 	 Physical Dispersion.- They should
be far enough apart that they are
not subject to the same causes of
disruption provided that the
probability of encountering those
problems is weighed realistically.

3. 	 Independence.- So far as possible,
the facilities should be located so
as to be free of dependence upon
elements in the infrastructure
which are known to be shaky. These
include factors ranging from power,
communications, water, sewer,
transportation, susceptibility to
tornadoes and hurricanes, flood
plain problems, riot-prone neigh­
borhoods, proximity to major
highways and railroads which offer
the potential for chemical spills
which will require evacuation of
the facilities, and other such
factors.

THE FUTURE

Distributed processing, the growth of depart­
mental computers, and the rapid proliferation
of microcomputers will all contribute in
large measure to the problems of contingency
planning just as they contribute greatly to
both the efficacy and the complexity of our
information systems. We can find no reason
for an assumption that they will serve to
decrease the size of single-site data aggre­
gations to which access will be required for
the efficient conduct of our businesses.

The 	 cost of data storage continues to de­
crease as do access times and both of which

serve to accelerate growth in the volume of
data to which we want access. It is inevita­
ble that continued growth in data aggregation
size will greatly change the nature of
contingency plans which are practicable in
support of very large, high data~volume
business systems.

We expect to see the advent of super-safe
underground DASD facilities connectable t~
geographically-remote large and small proces­
sors through very high-speed communications
facilities leaving us with the need to back
up only the processors and provide alternate
means of communications.

At this time, we find very little reflection
in workable contingency plans of recognition
of our growing dependence on microcomputers
and minis. It may well be that we will not
see significant change in that until some
major organization has a very serious problem
as a result of being unprepared, but we have
almost no confidence in that as a motivator
of others. The problems of others has not
been a primary source of motivation for such
contingency planning as we have seen about
mainframe facilities. Most such losses are
not broadly publicized.

The slowly increasing competence of internal
auditors in the technical aspects of data
processing should serve, in the foreseeable
future, to alert corporate managements to the
need for better contingency planning. We
expect that, rather than the grief of others,
to accelerate the emphasis on contingency
plans which address the whole of the data
processing dependency as well as recognition
that there are many other parts of our
businesses other than data processing which,
if disrupted, have the potential for causing
great harm.

SUMMARY

A wide variety of approaches to contingency
planning is available to the persons charged
with designing such plans. The task requires
innovation, much common sense, rejection of
all cookbook approaches, and, above all,
prior identification and quantification of
the losses potentially averted by the proper
plans. No contingency plans are so inherently
desirable that they should be implemented
without solid economic justification.

Contingency planning is as much dependent
upon understanding human nature as it is on
understanding the technical aspects of our
systems. Unless people at each organizational
level from which we need support, or, at
least, lack of opposition, can be motivated
to support back up and recovery, it is very
difficult to put in place. Strong senior
management support born of awareness of the
need for it contributes more than any other
factor to the success of contingency planning
- but even that is not a guarantor.

One thing of which we are certain, because it
has been demonstrated repeatedly, is that
good, workable contingency plans are
economically feasible.

244

