
I

June 30, 1989

A TOKEN BASED ACCESS CONTROL SYSTEM FOR COMPUTER NETWORKS

Miles Smid, James Dray, and Robert B.J. Warnar

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

U.S. Government Contribution. Not Subject to Copyright.
Supported by the Defense Advanced Research Projects Agency under
order 6373.

232

Source: National Institute of Standards and Technology, National Computer

Security Center (1989) Proceedings. 12th National Computer Security

Conference, Baltimore, Maryland, October 10-13, 1989 (NIST, Gaithersburg,

MD).

ABSTRACT

This paper describes a Token Based Access Control System (TBACS)
developed by the Security Technology Group of the National
Institute of Standards and Technology (NIST). TBACS replaces
traditional password based access control systems which have
often failed to prevent logins by unauthorized parties. A user's
access to network computers and resources is mediated by a smart
token implementing a transparent cryptographic three-way
handshake with the target computer. The token's onboard
processor and memory are exploited to provide sophisticated
security mechanisms in a portable device. In addition to access
control, the TBACS token may be used for random number
generation, cryptographic key generation, data encryption, data
authentication, and secure data storage.

233

I. INTRODUCTION

A computer is a valuable resource which should be protected. The
information within the computer should be protected from
unauthorized disclosure and modification, and the computing power
should be limited to authorized users. The recent rash of
computer viruses and the previous successes of hackers in gaining
access to computer systems indicates that many computers are not
properly protected. Inadequate protective measures are not
justified by the statement that the computers contained only
unclassified data. The failure to control access to a computer's
resources (whether classified or not) has serious consequences.

Most computer systems attempt to protect their resources by
authenticating the identity of each user attempting to login.
Once the user's identity is established, the system then
controls the access of the user to resources based upon some
predetermined access control policy.

Unfortunate!¥, as we progressed from localized stand-alone
systems to distributed processing s¥stems on lar�e networks, it
became easier to subvert the traditional protective mechanisms.
At one time, access to a computer's resources could be controlled
by limiting the access to the room where the computer was
physically located. Today computers are networked so that remote
users may take advantage of distributed resources without having
to be physically co-located. We now rely on password systems
which are not up to the task of protecting computer resources.

In theory, there are three types of information for
authenticating the identity of computer users (1,2):

1. Something the user KNOWS (such as a password)

2. Something the user POSSESSES (such as a token), and

3. Some PHYSICAL CHARACTERISTIC of the user (such as
fingerprints or other biometric data).

In practice, most computer systems use only the first t¥pe of
information (e.g. passwords) to authenticate user identities.
Password systems predominate because they are inexpensive and
they appear, upon first examination, to be easy to use. Password
systems do not provide the highest level of security. If
properly implemented, password systems can provide effective
security (3). However, these systems are seldom properly
implemented. Time and time again we hear about cases where a
user selected a trivial password, the user wrote down or shared a
password, the operating system debuggers left well known
passwords in the system, or the passwords were transmitted over
an unprotected channel in the clear.

The owners and users of most computer systems have not been
willing to suffer the expense and the effort associated with

234

token and biometric based authentication systems. A major
exception to this rule has been the retail banking community.
Most users of Automatic Teller Machines are accustomed to the
fact that in order to obtain their money, they must produce a
bankcard as well as a password known as a Personnel
Identification Number (PIN). These systems have had some
security problems but it is generally acknowledged that they are
superior to password-only applications. If all computer systems
required tokens for access, most hackers would be prevented from
entering systems to which they were not authorized.

The cost of electronic technolog¥ has decreased substantially
over the last ten years making biometric based authentication
much more feasible. Biometric systems are now being considered
for limited high security a�plications. Although, biometric
systems still have a si�nificant cost, they may some day become
the standard in authentication systems.

Password systems alone are not as easy to use, in a secure
manner, as some previously thought.

1. If passwords are randomly generated, they are written
down. If passwords are generated by humans, they can
often be guessed.

2. If a user needs a different password for each computer to
which access is permitted, then the user becomes
frustrated and writes the passwords down.

3. If the communications link between the user terminal and
the host computer is unprotected, then a line tapper can
determine the password and later login as the user.

This paper describes a Token Based Access Control system (TBACS)
which is being developed by the National Institute Of standards
and Technology (NIST). The first version of TBACS will use a
single user �assword and a smart token containing cryptography to
reduce or eliminate several of the drawbacks associated with
�assword systems. Later versions may employ biometrics for
increased security as that technology becomes more cost
effective.

235

II. DESIGN REQUIREMENTS

TBACS was designed by NIST to satisfy the following requirements:

1. TBACS shall be easy to use. A TBACS user only needs to
remember one password for all computer systems to which
the user has access. The TBACS user authenticates to the
token via the password, but does not have to type any

-challenges or responses. The token authenticates the
user to all computers (the user workstation and remote
hosts).

2. TBACS shall implement the mechanisms for cryptographic
authentication as well as cryptographic key storage on
the token itself. The closer the security to the user
the better. Once inserted, keys will not leave the
token.

3. TBACS shall be consistent with existing government and
American National Standards Institute (ANSI) standards.
The token implements the Data Encrrption Standard (DES)
cryptographic algorithm specified in Federal Information
Processing Standard (FIPS) 46 [4], and could also be used
to authenticate computer data and messages as specified
in FIPS 113 [5], ANSI X.9 [6], and ANSI X9.19 [7]. TBACS
is consistent with Draft American National Standard for
Financial Institution Sign�On Authentication for
Wholesale Financial Systems (ANSI X9.26) [8].

4. TBACS tokens shall have the capabilitf to store
-additional information such as sensitivity labels and
other access control information.

5. TBACS shall be capable of serving multiple security
needs. Although TBACS token is primarily designed for
user authentication, it can also be used for random
number generation, ·cryptographic key generation, low
speed encryption, low Speed Message Authentication Code
calculation, and secure data storage. Future versions of
TBACS could function with biometric authentication
devices.

NIST decided that the best way to ensure that all its
requirements were met was to specify the exact command set that
the token would implement. In addition to implementing the
desired capabilities, security could be improved because only a
limited well defined command set was allowed.

236

III. SYSTEM DESCRIPTION

The NIST secure computer network research model consists of a Sun
workstation connected to an Ethernet with one or more hosts
(Figure 1). Each computer on the net is interfaced to a token
reader/writer system. Access to the net is granted after a
predefined sequence of authentications have been completed
between the user, the token, the workstation, and any selected
computers on the network.

When the token is inserted into the reader/writer, a C-language
program in the workstation starts the login sequence by making
calls to commands im�lemented in the token. The user is prompted
for the user identifier (ID) and a Personal Identification Number
(PIN) which, if correct, authenticates the user to the token.
From this point on, the token acts for the user to perform a
mutual DES based cryptographic authentication with the
workstation and any other hosts to which the user is permitted
access (Figure 2).

A. Hardware

The smart token consists of a plastic carrier containing a
microprocessor and nonvolatile memory. The carrier has the same
major dimensions as a standard credit card, with six recessed
metallic contacts along one edge. The reader/writer provides the
following electrical connections to the token via the six
contacts: power, ground, hardware reset, clock, serial data in,
and serial data out. The reader/writer connects to the
workstation through a standard asynchronous serial communications
port, eliminating the need for a custom communications interface.

TBACS is desi�ned to operate with workstations operating under
UNIX (TM), which implement the DES in hardware using a
crytogra�hic chip set. The use of personal computers (PCs) as
workstations will also be supported.

B. Software

NIST designed a set of sixteen individual token commands.
Several of these commands must be executed in a predefined
sequence. The sequence is controlled by a set of flags which are
checked each time a command is performed. If the flags are not
in the expected state, the system will return an error and the
current command will not be executed.

The commands are grouped into three classes: the Security Officer
(SO) commands, the user to workstation commands, and the user to
host commands. The so commands provide for the initialization of
tokens including the loading of cryptographic keys, host IDs, and
PINs. The token is read¥ to be issued to the user after the so

has completed the "loading process".

The token key table contains the host IDs and the

237

Figure 1.

NIST Secure Computer Network Model

NIST SECURE COMPUTER NETWORK RESEARCH

--

=

TBACS
HOST

-

. TBACS
� -

COMPUTERS

LI I I lr7
LI LJI

ETHERNET

n- READER / WRITER
,---i-----'-------, --�

□/ :
,.\ k

I 1---1---1 _ l

I \

TBACS-CONTROLLED

WORKSTATION SMART

TOKEN

238

THE SECURE COMPUTER NETWORK USES:

1. SMART TOKEN AUTOMATIC SIGN-ON

2. DES ENCRYPTION

3. THREE-WAY HANDSHAKE AUTHENTICATION

A. USER (-) TOKEN

B. WORKSTATION (-) TOKEN

C. HOST {-) TOKEN

N

w

�

User

Figure 2.

Mutual Authentication in the TBACS

(D Smart token reveals
Its TIN to the user

►
@ User sends PIN

to smart token

Smart

Token

@ Host encrypts random
challenge value sent
from smart token

-

[::::;:::::::::::::::::::::::::::::::::;::':::::::::::::::::::::::::::::::::::::►
@ Smart token encrypts

random challenge
value sent by host

Host

Computer

corresponding cryptographic keys. The design supports 100
cryptographic keys for 100 different hosts connected on the
Ethernet. The host IDs and keys are part of a set of the
�arameters that must be entered by the SO during token
initialization. The token uses the keys in this table to perform
encryption and decryption processing during workstation and host
authentications.

A software simulation program has been written in C which
implements the operations of the token as defined b¥ its command
set. The simulation forms the main part of the detailed system
specification and is used to specify the system. The simulation
consists of sixteen functions, one for each token command, plus a
small number of internal functions. The total simulation consists
of about 2500 lines of code.

The workstation software must interact with the user token
through the reader/writer. It must also act as an intermediary
in the authentications between the user and the token and between
the token and the workstation cryptographic module. If the user
wishes to login to a remote host, the workstation software must
implement the necessary communications protocols and prompt the
token to perform authentication functions as required. The
workstation will have security officer controlled software for
enrolling new users. The workstation software will store or be
able to calculate keys for all valid workstation users.

The software of the network host computers must be able to
communicate with the user workstation. Like the workstation, it
must have security officer controlled software for enrolling new
users and maintaining keys.

IV. AUTHENTICATION PROCESSES

In order for a user to gain access to computing resources on a
network using TBACS, a series of authentications between the
smart token, the user, and various host computers must be
performed. TBACS selectively controls access to all computers on
the network, including the user's local workstation. By taking
advantage of the processing capabilities of the smart token, the
login �rocess can proceed trans�arently to the user while
providing a high level of security. The-DES algorithm, operating
firmware, and critical data are stored internally on the smart
token.

A. USER/TOKEN AUTHENTICATIONS

When a user begins the login process on a workstation, the user
should have some means of determining the identity of the token.
A program called the "login manager" is executed on the
workstation when the user initiates a login, and is responsible
for mediating the required series of authentications between the
user, the token, and the workstation. The first step performed

240

by the login manager is to request the token identification
number (TIN) from the token and display it on the user's screen
for visual verification. The user can choose to either continue
the login process or abort. If the user chooses to continue, the
user must prove his identity to the token. The login manager
prompts the user for the user PIN, which is then encrypted by the
workstation and transmitted to the token along with the user ID.
The token decrrpts the user PIN and uses it as the key to encrypt
the user identity. The result. is then compared to the value
stored on the token, and if these values match the token accepts
the identity of the user as authentic. From this point on, TBACS
uses the token to authenticate the user's identity to other
computers.

B. THREE-WAY HANDSHAKE

The three-way handshake is the authentication protocol used
between the token and the workstation and between the token and
the remote host(s). This protocol allows each party to prove
that it possesses the same cryptographic key as the other party
[9] (Figure 3). This protocol works as follows:

1. Party A generates a 64-bit random number and transmits it
to party B.

2. Party B encrypts the random number using its DES key,
generates a second random number, and transmits it to
party A.

3. Party A decrypts the first number and verifies the
result. Party A then encrypts the second random number
and transmits it to party B.

4. Party B decrypts and verifies the second random number.
At this point, each party is satisfied that the other
party possesses the DES key corresponding to the claimed
identitf· Therefore both parties are implicitly
authenticated.

C. USER/WORKSTATION AUTHENTICATIONS

After the user and token authenticate to each other, the token
must authenticate to the workstation. To perform the
authentications between the workstation and the token, the login
manager requests a random number from the token. The three-way
handshake then proceeds with the token acting as party A and the
workstation as party B. If this handshake is completed
successfully, the login manager terminates and the user is logged
in to the system.

D. USER/REMOTE HOST AUTHENTICATIONS

At some point during a session, the user may·decide to connect to
a remote host via the network. The user activates a remote login

241

http:ident1.ty

manager, which requests a table of the allowed TBACS hosts for
this user from the token and displays this table in a menu
format. After the user selects the desired remote host from this
menu, the remote login manager connects to the remote login
server on the remote host. At this point, the local remote login
manager acts primarily as a transparent communications path
between the token and the remote login server. The token is
provided with the host ID, which it uses to select the proper key
for subsequent cryptographic operations. The steps of the
three-way handshake.are then performed between the token and the
remote login server on the remote host. Finally, the remote
login server terminates and the standard remote login process
connects the user to the remote host.

E. SEQUENCE CONTROL

In order for the steps which accomplish the authentications
required by TBACS to function, some mechanism for ensuring that
these steps are executed in the correct order must be provided.
This is a critical desi�n consideration, since the overall
security of the system is dependent on this order. TBACS
controls the order in which the authentication steps are executed
through a set of "sequence flags" stored internally on the token.
These flags are individual bits in the token's memory, which are
set in sequence upon successful completion of each step. The
flags are checked at the beginning of the next step. Since the
flags and the mechanism for controlling them are internal to the
token and no external access is provided, it is difficult to
defeat the correct sequencing of steps.

F. TOKEN DEACTIVATION

In addition to sequence control, the TBACS token is capable of
deactivating itself when certain conditions are detected.
Deactivation is accomplished by deleting the internal token
identification number, after which none of the authentication
steps required for user login will execute. A token is
reactivated when a security officer installs a new token
identification number. All prior user data is retained when a
token is deactivated, avoiding the �roblem of rebuilding this
information when the token is reactivated. The conditions which
cause a token to deactivate itself are as follows:

1. Three failed lo�in attempts. The token maintains a
failure log, which is incremented each time a login
fails.

2. Token expiration date is reached. The token contains an
expiration date, which is compared to the current date at
the beginning of each login session.

242

Figure 3.

Three-Way Handshake

THREE-WAY HANDSHAKE

C PARTY A) C PARTY B)

RANDOM NUMBER (RN1)

E�RN1), RANDOM NUMBER (RN2)

,,

·;,

,::'

V. KEY MANAGEMENT

In the TBACS s¥stem a user has a separate DES key for each
computer on which the user is permitted access. When a user
first wishes to enroll on a TBACS computer, the user must contact
the com�uter's security officer. The security officer
initializes a blank token by loading the security officer ID
encrypted using a security o·fficer PIN, the token expiration
date, the user ID encrypted using an initial user PIN, and a
token identification number. After receiving the token from the
security officer, the token user may reset the PIN to a new value
by supplying the current PIN value.

The security officer initiates a process which generates a DES
key and stores the key on the token encrn,ted using the user's
PIN and indexed by computer's identification. The DES key is
also stored in the computer's key database indexed by the user's
identity. This key database replaces the password database
currently used on most computers.

The user ma¥ now enroll on another TBACS computer b¥ contacting
the appropriate computer securit¥ officer. As previously
described, the security officer initiates a process which
generates a DES key and stores the key in the token and in the
computer's key database. The TBACS token is designed so that
only the security officer who first initialized the token can
delete token keys. Other security officers can only append keys
to the token key table.

In some situations it may be desirable to eliminate the key
database stored in the computer. One possible method for
accomplishing this task is to assign a single master key to the
computer. This master key can be easily stored in the host
computer's encryption module for extra security. DES keys for
user tokens are generated from the master key by encrypting the
user ID using the master key. Whenever the user attempts to
login the user DES key is regenerated by again encrypting the
user ID using the master key. Thus, only a single secret master
key needs to be maintained by the computer or its encryption
module.

244

VI. OTHER CAPABILITIES

A. Random Key Generation

The primary purpose of the token is to generate random challenges
and to perform the encryption of challenges as part of the
three-way handshake used in the authentication process. However,
the token can be used as a portable key generator. The token
can be commanded to generate a 64-bit random number which may be
used to derive a DES key by the workstation or host cryptographic
module.

B. Encryption

The token can also be used for data encryption. Both the
Electronic Codebook and the Cipher Block Chaining modes are
supported [10]. The communications overhead required to pass the
data between the reader/writer and the token along with the
overhead of the algorithm may make encryption of large amounts of
data impractical. Nevertheless, it may be feasible to encrypt
human interactive terminal to host communications. The token can
also be used as part of an automated key distribution system to
decrypt new cryptographic keys sent from the host.

c. MAC Calculation

The token may be used to detect unauthorized modifications to
messages by calculating a Message Authentication Code (MAC) as
defined in ANSI X9.9 [6]. This algorithm is currently being used
to authenticate Electronic Funds Transfer (EFT) messages worth
trillions of dollars each day. The MAC computation is similar to
Cipher Block Chaining encryption except that the MAC is selected
from the last cipher block (Figure 4). The unencrrpted data and
the MAC are transmitted to the receiver. The receiver performs
the MAC computation on the received message and compares the
computed MAC to the received MAC. If the two values are equal
then the message is accepted as unmodified. If the two values
are not equal an unauthorized modification is assumed. As with
data encryption, MAC computations on large messages may prove
time consuming using the token. However, a message digest
algorithm may be used to reduce a large message to a few 64-bit
blocks which are then MACed by the token.

D. User Authorization Code Storage-

The TBACS token can store user authorization codes which may
control user access to information in the workstation or host
computers. These codes can be passwords or read/write
permissions for specific files or categories of files. A code
may also indicate the security level of the user to help enforce
mandatory access controls. The possible benefits of storing
access control information in a token rather than in the target
computer is a topic for future study.

245

11=01

01

+

02

· · ,

�ii�!\
✓--·x_...,,._.,

':.·.;..:-_�-:-·-.;

Figure 4.

ANSI X9.9 DES Baaed MAC Calculation

12

02

+

�

II - 64-bit DES Input Block
01 - 64-blt DES Output Block
Di - 64-bit Message Block

ln-1

Dn

1
.-

:o_E
_

S
....,' I - Data Encryption Standard Al,,orithm

I�!
"'

� - Cryptographic Key

® Bitwise Exclusive-OR Operation

246

In

On

MAC

VII. CONCLUSION

Smart tokens can play a major role in solving access control and
other security problems. The computational capability of smart
tokens can be used to perform cryptographic functions to
authenticate users and protect data from disclosure and
modification. Smart tokens permit cryptographic security
mechanisms to be moved closer to the user where they may be
protected by the user. Smart tokens can also provide
conveniences for the user which make improved security
requirements acceptable.

247

REFERENCES

1. Beardsley, Charles w., Is Your Computer Insecure? IEEE
Spectrum, IEEE, Inc., New York, NY, January 1972, pp. 67-68.

2. Walker, Burce J., and Ian F. Blake, Computer Security
Protection Structures, Dowden, Hutchinson and Ross, Inc.,
1977.

3. Password Usage, National Institute of Standards and
Technology (U.S.), Federal Information Processing Standards
Publication 112, National Technical Information Service,
Springfield, VA, May 1985.

4. Data Encryption Standard (DES), National Bureau of Standards
(U.S.), Federal Information Processing Standards Publication
46, National Technical Information Service, Springfield, VA,
April 1977.

5. Computer Data Authentication, National Institute of Standards
and Technology (U.S.), Federal Information Processing
Standards Publication 113, National Technical Information
Service, Springfield, VA, May 1985.

6. American National Standard for Financial Institution Message
Authentication (Wholesale), ANSI X9.9-1986, American Bankers
Association, Washington, DC.

7. American National Standard for Financial Institution Message
Authentication (Retail), ANSI X9.19-1985, American Bankers
Association, Washington, DC.

8. Draft American National standard for Financial Institution
Sign-on Authentication for Wholesale Financial Sfstems, ANSI
X9.26-198x, Draft 6.1, American Bankers Association,
Washington, DC.

9. Smart card Technology: New Methods for Computer Access
Control, National Institute of Standards and Technology,
Special Publication 500-157, National Technical Information
Service, Springfield, VA, September 1988.

10. DES Modes of Operation, National Bureau of Standards
(U.S.), Federal Information Processing Standards Publication
81, National Technical Information Service, Springfield, VA,
December 1980.

248

1) COMMAND:

INPUTS:

PURPOSE:

2) COMMAND:

INPUTS:

PURPOSE:

3) COMMAND:

INPUTS:

PURPOSE:

4) COMMAND:

INPUTS:

PURPOSE:

5) COMMAND:

INPUTS:

PURPOSE:

APPENDIX A: TOKEN COMMAND SET

00- RESET

NONE··

To allow for recovery from a critical error by
resetting the token's temporary global variables
to their initial state at power-on. The values
stored in non-volatile memory are not affected.

03- Enter so PIN

so PIN, so ID, Token expiration date

This command allows an SO to initialize a blank
token by entering the required input parameters.
After this command has been executed, only this
so will be �ble to enter the user PIN, null a
value in the key table, or reactivate a token.

04- Authenticate SO

SO PIN, SO ID

To authenticate the so by matching the input
parameters against those stored on the token.
Flag F2 is set upon successful completion.

os� Enter User PIN

Old User PIN, New User PIN, User ID

Allows so to enter User PIN onto the token. The
ID is encrypted under the PIN and then stored.·
This command can also be executed by the user in
order to change the value previously stored on
the token.

06- Load Key

Host ID, Key, User PIN

Allows an SO to load a host ID and corresponding
key onto the token, granting the user access to
that host. The token encrypts the key under the
user PIN and stores the resulting value.

249

6) COMMAND:

INPUTS:

OUTPUTS:

PURPOSE:

7) COMMAND:

INPUTS:

OUTPUTS:

PURPOSE:

8) COMMAND:

INPUTS:

PURPOSE:

9) COMMAND:

INPUTS:

PURPOSE:

10) COMMAND:

INPUTS:

OUTPUTS:

07- Authenticate Token

Workstation ID, Random Number (RNl), date
(YYYYMMDD)

Token PIN

To verify the authenticity of the token to the
user. The workstation displays the TIN to the
user for verification.

08- Generate Challenge

Workstation ID

Random Number (RNl)

This command is the first step of the three-way
handshake authentication. The workstation ID is
stored for later use in key selection, and a
random number is generated, stored and
transmitted back to the workstation.

09- Authenticate User

eK(user PIN XOR RNl), user ID

Verifies the authenticity of the user based on
the user PIN and ID. The user PIN is
decrypted, extracted from RNl, and then used as
the ke¥ to encrypt the user ID. The resulting
value is then compared to the value stored on the
token.

10- Change Token PIN

(old token PIN), (new token PIN), workstation
ID

Allows the user or so to change the current
token PIN. If the old token PIN matches the
value stored on the token, the new PIN is stored.

11- Workstation Verify and Respond

eK(RNl), RN2

eK(RN2)

250

PURPOSE:

11) COMMAND:

INPUTS:

OUTPUTS:

PURPOSE:

12) COMMAND:

INPUTS:

OUTPUTS:

PURPOSE:

13) COMMAND:

INPUTS:

OUTPUTS:

PURPOSE:

To complete the final steps of the
three-war handshake between the token and the
workstation. The workstation encrypts the random
number (RNl) received from the previous generate
challenge command and generates a second random
number (RN2). These values are sent to the token
as input parameters for this command, which
decrypts and verifies RNl. RN2 is encrypted and
sent back to the workstation, which then decrypts
and verifies it. This completes the three-way
handshake.

12- Output ID Table

none

Data block containing host IDs from key table

Transfers the token's table of host IDs to
the workstation, which uses this information to
display a menu of available hosts to the
user. Since the ID table may be larger than the
capacity of the buffer, this command returns a
NACK each time it is executed until the entire ID
table has been transferred, at which time an ACK
is returned. The workstation software checks this
return value and repeatedly executes this command
until an ACK is transmitted.

13- Host Verify and Respond

eK(RNl), RN2

eK(RN2)

Completes the three-way handshake process
between the token and a remote host. This command
is analogous to the workstation verify and
respond.

14- Read Zone

zone name

Contents of the specified zone

To access the contents of a memory zone.

TABLE OF PERMISSIONS FOR ZONE COMMANDS

ACCESS TYPE:

251

14) COMMAND:

INPUTS:

PURPOSE:

15) COMMAND:

INPUTS:

PURPOSE:

16) COMMAND:

INPUTS:

OUTPUTS:

17) COMMAND:

NOTE:

INPUTS:

OUTPUTS:

WRITE APPEND ZONE

0

READ

all
user

�----. ------

15- Write Zone

user
none

zone name, data block

user
so

To transfer data to a given memory zone on the
token.

16- Append Zone

zone name, data block

To append data to a given memory zone on the
token.

17- CALLDES

2-byte mode selector:

Bit o - set new key
Bit 1 - encrypt/decrrpt
Bit 2 - load B from input buffer
Bit 3 - xor two input values (A � B)
Bit 4 - produce output

16-byte key or padding(required)
16-byte ASCII hex data string A
16-byte ASCII hex data string B (optional)

NACK or ACK and 16-byte result, unless output is
suppressed (bit 4 of mode byte is O).

19- TEST

The inputs consist of a 1-byte mode selector and
additional parameters which are dependent on the
mode selected, as follows:

MODE:

0 1
------ ------

data none

data f _log)
"NULL"

252

PURPOSE: This command provides the following test modes:

o- Echo data
1- Current token status

253

