

Practical Fault Injection
Analysis of Lattice-based NIST
PQC Standards Kyber and Dilithium

Prasanna Ravi

Temasek Labs, NTU, Singapore

NIST PQC Seminars, 5th May 2023

Notice

Main Motive:

- Flavor of reported fault attacks on Kyber and Dilithium (and countermeasures)
- Algorithmic properties and Implementation Choices facilitate efficient FIA
- Towards fault resistant implementations of Kyber and Dilithium
- Most fault attacks demonstrated on bare-metal PQC software running on ARM Cortex-M4 processor: Clock/Voltage Glitching, EMFI
- Talk includes published works from journals, conferences, and IACR ePrint Archive.
- Talk includes works of other researchers (cited appropriately)
- For easier explanation, we 'simplify' concepts, and contains lots of illustrations!!

Outline

☐ FIA on Kyber: ☐ FIA on Key Generation and Encapsulation ☐ FIA on Decapsulation ☐ FIA on Dilithium ☐ FIA on Signing ☐ FIA on Verification ☐ Conclusion

Outline

☐ Conclusion

☐ FIA on Kyber:
 ☐ FIA on Key Generation and Encapsulation
 ☐ FIA on Decapsulation
 ☐ FIA on Dilithium
 ☐ FIA on Signing
 ☐ FIA on Verification

Key Encapsulation Mechanisms (KEMs)

Two Modes Possible:

- 1. Ephemeral Key
 - 2. Static Key

KEM in Ephemeral Mode: Attacking Alice

- ☐ Single execution to target Key Generation: Key Recovery Attack
 - ☐ Recover Secret key from Faulty but valid Public Key
- ☐ Decapsulation does not serve as an effective target Attacker can only observe binary output (1-bit)

KEM in Ephemeral Mode: Attacking Bob

- ☐ Single execution to target Encapsulation Procedure: Message Recovery Attack
 - ☐ Recover Message from Faulty Ciphertext
 - Results in Decapsulation Failure (CCA Secure)

KEM in Ephemeral Mode: Attacking Bob

- ☐ Single execution to target Encapsulation Procedure: Message Recovery Attack
 - ☐ Recover Message from Faulty Ciphertext
 - ☐ Results in Decapsulation Failure (CCA Secure)
 - ☐ Attacker can still perform a MITM Attack!!!

KEM in Static Mode: Attacking Alice

Chosen Ciphertext	Output		
CT1	Success	.,	
CT2	Failure	Key	Fault Assisted Chosen-Ciphertext
CT3	Success	Recovery	Attacks

Decryption Failure (DF) Oracle through Faults

Fault Attack Characteristics

- We describe known fault attacks with the following characteristics:
 - Attacker's ability to communicate with DUT (DUT_IO_Access):
 - Observe_DUT_IO: Can only passively observe target's IO
 - Communicate_DUT_IO: Can communicate with target
 - Targeted or Not (Profiling, Knowledge of Implementation):
 - Targeted Fault
 - Random_Fault
 - Type of Fault: Control Flow, Data
 - Number of Faults within Single Computation: Single/Multiple
 - Total Number of Faulty Computations

Outline

- ☐ FIA on Kyber:
 - ☐ FIA on Key Generation
 - ☐ FIA on Decapsulation
- ☐ FIA on Dilithium
 - ☐ FIA on Signing
 - ☐ FIA on Verification
- ☐ Conclusion

FIA on Key Generation

- Aim of FIA on KeyGen:
 - Weak LWE instances (easily solveable)
 - Secrets with Low Entropy

FIA on KeyGen: Weak LWE instances [RRB+19]

- Fault Vunerability: Seed used to sample s and e only differ by a single byte
 - Inject fault to force using same seed for s and e

FIA on KeyGen: Weak LWE instances [RRB+19]

- Weak LWE Instance: Solved by Gaussian Elimination
- Applicability to Kyber KEM: Inject k-2k targeted faults
- Round-1 Kyber used rounded public keys, but rounding was removed from Round-2

FIA on KeyGen: Weak LWE instances [RRB+19]

- Single fault enough for NewHope (Ring-LWE) and FrodoKEM (Standard-LWE)
- **Impact**: The algorithm of FrodoKEM (Finalist NIST PQC candidate) was modified in Round 2 to eliminate the fault vulnerability.
 - Completely different seeds were used to sample s and e

[RRB+19] Ravi, Prasanna, Debapriya Basu Roy, Shivam Bhasin, Anupam Chattopadhyay, and Debdeep Mukhopadhyay. "Number "not used" once-practical fault attack on pqm4 implementations of NIST candidates." In *Constructive Side-Channel Analysis and Secure Design: 10th International Workshop, COSADE 2019, Darmstadt, Germany, April 3–5, 2019, Proceedings 10*, pp. 232-250. Springer International Publishing, 2019.

FIA on Kyber KeyGen/Encaps: Summary

Attack Name	DUT_IO_Access	Type of Fault	Targeted_ or_Not	No. of Faults within Single Computation	Total No. of Faulty Computations	Countermeasure
Nonce_Fault _Attack	Observe_DUT_IO	Data /Control	Targeted	k-2k	1	Check equality of s and e Copy Public Key if Pass

17

In MCU, Twiddle Constants are stored in Flash Memory as part of Firmware Binary

Main Observation: Tw_Addr is used as **base-address** to calculate address for all constants

Fault Vulnerability: Can an attacker fault the base address?

Implementation Style used in all publicly available optimized implementations of Kyber and Dilithium for ARM Cortex-M4 Processor

In MCU, Twiddle Constants are stored in Flash Memory as part of Firmware Binary

Observation: Can zeroize the entire twiddle factor array in a single fault

25% of random memory locations yield zeros on ARM Cortex-M4 processor

What happens when twiddle factors are zeroized???

Attack also applies to masked implementations

- Sanity Check on Twiddle Constants:
 - Check Arithmetic Properties of Twiddle Constants:
 - nth root of unity
 - Check Entropy of Twiddle Constants
- Not rely on single base address to access Twiddle Constant Array
- Check Entropy of NTT output

FIA on Kyber KeyGen/Encaps: Summary

Attack Name	DUT_IO_Access	Type of Fault	Targeted_ or_Not	No. of Faults within Single Computation	Total No. of Faulty Computations	Countermeasure
Nonce_Fault_ Attack	Observe_DUT_IO	Data /Control	Targeted	k	1	Check equality of s and e Copy Public Key if Pass
NTT_Fault_ Attack	Observe_DUT_IO	Data	Targeted	1	1	Sanity Check on Twiddle Constants or NTT outputs

Outline

- ☐ FIA on Kyber:
 - ☐ FIA on Key Generation
 - ☐ FIA on Decapsulation
- ☐ FIA on Dilithium
 - ☐ FIA on Signing
 - ☐ FIA on Verification
- ☐ Conclusion

FIA on Decapsulation

Downgrade from CCA to CPA Security

This attack could have been easily avoided with a more careful implementation

[XIU+21] Xagawa, Keita, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi Homma. "Fault-injection attacks against NIST's post-quantum cryptography round 3 KEM candidates." In Advances in Cryptology—ASIACRYPT 2021: 27th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, December 6–10, 2021, Proceedings, Part II 27, pp. 33-61. Springer International Publishing, 2021.

FIA on Kyber Decaps: Summary

Attack Name	DUT_IO_Access	Type of Fault	Targeted_ or_Not	No. of Faults within Single Computation	Total No. of Faulty Computations	Countermeasure
Skip_CT_ Compare	Communicate_DUT _IO	Control	Targeted	1	Few thousand.	Protected Conditional Move

FIA on Decapsulation: Fault Assisted CCA [PP21,HPP21,D22]

Modus Operandi: Inject Faults to realize a Decryption Failure (DF) Oracle

[PP21] Pessl, Peter, and Lukas Prokop. "Fault attacks on CCA-secure lattice KEMs." *IACR Transactions on Cryptographic Hardware and Embedded Systems* (2021): 37-60. [HPP21] Hermelink, Julius, Peter Pessl, and Thomas Pöppelmann. "Fault-enabled chosen-ciphertext attacks on Kyber." In *Progress in Cryptology–INDOCRYPT 2021: 22nd International Conference on Cryptology in India, Jaipur, India, December 12–15, 2021, Proceedings 22*, pp. 311-334. Springer International Publishing, 2021. [D22] Delvaux, Jeroen. "Roulette: A Diverse Family of Feasible Fault Attacks on Masked Kyber." *IACR Transactions on Cryptographic Hardware and Embedded Systems* (2022)

FIA on Decapsulation: Fault Assisted CCA [PP21,HPP21,D22]

Decryption

Knowledge of $\mathbf{e}_{small}[i] < 0$ or $\mathbf{e}_{small}[i] > 0$ for chosen-ciphertexts

Modus Operandi:

Use faults to learn $\mathbf{e}_{small}[i] < 0$ or $\mathbf{e}_{small}[i] > 0$ for chosen-ciphertexts

FIA on Decapsulation: Ineffective Fault Analysis [PP21]

[PP21] Pessl, Peter, and Lukas Prokop. "Fault attacks on CCA-secure lattice KEMs." *IACR Transactions on Cryptographic Hardware and Embedded Systems* (2021): 37-60.

FIA on Kyber Decaps: Summary

Attack Name	DUT_IO_Access	Type of Fault	Targeted_or _Not	No. of Faults within Single Computation	Total No. of Faulty Computations	Countermeasure
Skip_CT_ Compare	Communicate_DUT _IO	Control	Targeted	1	Few thousands (1k-3k)	Protected Conditional Move
Ineffective_FIA	Communicate_DUT _IO	Control	Targeted	1	Few thousands (5k-7k)	Shuffle Message Decoding

FIA on Decapsulation: Fault Correction Attack [HPP21]

[HPP21] Hermelink, Julius, Peter Pessl, and Thomas Pöppelmann. "Fault-enabled chosen-ciphertext attacks on Kyber." In *Progress in Cryptology–INDOCRYPT 2021: 22nd International Conference on Cryptology in India, Jaipur, India, December 12–15, 2021, Proceedings 22*, pp. 311-334. Springer International Publishing, 2021.

FIA on Decapsulation: Fault Correction Attack [HPP21]

[HPP21] Hermelink, Julius, Peter Pessl, and Thomas Pöppelmann. "Fault-enabled chosen-ciphertext attacks on Kyber." In *Progress in Cryptology–INDOCRYPT 2021: 22nd International Conference on Cryptology in India, Jaipur, India, December 12–15, 2021, Proceedings 22*, pp. 311-334. Springer International Publishing, 2021.

FIA on Decapsulation: Fault Correction Attack [HPP21]

- Compute Hash of Ciphertext and Compare with Hash
 - Inject fault before ciphertext sent to hash function
 - Reduces Attack Surface, but does not prevent attack
- Attack of [HPP21] improved in Roulette Attack [D22]:
 - Larger Attack Surface:
 - Operations in Re-Encryption: Sampler, INTT
 - Relaxed Fault Models:
 - Set-to-0, random faults, arbitrary bit flips, instruction skips
 - Allows larger errors:
 - ≅ 25%

FIA on Kyber Decaps: Summary

Attack Name	DUT_IO_Access	Type of Fault	Targeted_or_Not	No. of Faults within Single Computation	Total No. of Faulty Computations	Countermeasure
Skip_CT_ Compare	Communicate_DUT _IO	Control	Targeted	1	Few thousands (1k-3k)	Protected Conditional Move
Ineffective_FIA	Communicate_DUT _IO	Control	Targeted	1	Few thousands (5k-7k)	Shuffle Message Decoding
Fault_Correction _Attack_1	Communicate_DUT _IO	Control	Targeted (Bit Flip)	1	Few thousands (5k-7k)	Redundancy
Fault_Correction _Attack_2	Communicate_DUT _IO	Control	Targeted (More Relaxed Fault Models)	1	Few tens-hundred thousands (10k-100k)	Redundancy

Open Research Directions: Development of Algorithmic Countermeasures against fault assisted DF oracle attacks

Outline

- ☐ FIA on Kyber:
 - ☐ FIA on Key Generation
 - ☐ FIA on Decapsulation
- ☐ FIA on Dilithium
 - ☐ FIA on Signing
 - ☐ FIA on Verification
- ☐ Conclusion

Signature Scheme: Background

Signature Scheme: Attacking Alice

- ☐ Single execution to target Key Generation: Key Recovery Attack
 - Recover Secret key from Faulty but valid Public Key
 - ☐ But, key generation mostly done offline (PKI Infrastructure)

Signature Scheme: Attacking Alice

- ☐ Multiple Executions to target Signing Procedure:
 - ☐ Single/Multiple faulty signatures used to recover secret key
 - ☐ Most attractive target for attacker

Signature Scheme: Attacking Bob

- ☐ Single Execution to bypass Signature Verification:
 - ☐ Application: Secure Boot

Outline

- ☐ FIA on Kyber:
 - ☐ FIA on Key Generation
 - ☐ FIA on Decapsulation
- ☐ FIA on Dilithium
 - ☐ FIA on Signing
 - ☐ FIA on Verification
- ☐ Conclusion

FIA on Signing Procedure: Background

[BP18] Bruinderink, Leon Groot, and Peter Pessl. "Differential fault attacks on deterministic lattice signatures." *IACR Transactions on Cryptographic Hardware and Embedded Systems* (2018): 21-43.

[BP18] Bruinderink, Leon Groot, and Peter Pessl. "Differential fault attacks on deterministic lattice signatures." *IACR Transactions on Cryptographic Hardware and Embedded Systems* (2018): 21-43.

Valid Sig.

Faulty Sig.

$$z = s \cdot c + n$$
 $z^* = s \cdot c^* + n$
 $(z - z^*) = s \cdot (c - c^*)$
 $s = (z - z^*) \cdot (c - c^*)^{-1}$

60% operations are vulnerable to DFA

48

49

FIA on Dilithium Signing: Summary

Attack Name	DUT_IO_Access	Type of Fault	Targeted_or_Not	No. of Faults within Single Computation	Total No. of Faulty Computations	Countermeasure
Generic_DFA	Communicate_DUTIO	Data/ Control	Non_Targeted	1	1	Verify_after_Sign Redundancy (Nonce Sample)

FIA on Signing Procedure: Loop Abort Fault [EFG+18]

52

FIA on Signing Procedure: Loop Abort Fault [EFG+18]

- Initializing nonce to random values and then sample
- Sanity Check of Nonce
 - Check for high number of zeros
 - Entropy Check

FIA on Dilithium Signing: Summary

Attack Name	DUT_IO_Access	Type of Fault	Targeted_or_Not	No. of Faults within Single Computation	Total No. of Faulty Computations	Countermeasure
Generic_DFA	Communicate_DUTIO	Data/ Control	Non_Targeted	1	1	Verify_after_Sign Redundancy (Nonce Sample)
Loop_Abort	Observe_DUT_IO	Control	Targeted	1	1	Redundancy (Nonce Sample) Sanity Check on Nonce Random Initialization

FIA on Signing Procedure: Skip Addition [RJH+19]

55

FIA on Signing Procedure: Skip Addition [RJH+19]

FIA on Dilithium Signing: Summary

Attack Name	DUT_IO_Access	Type of Fault	Targeted_or_No t	No. of Faults within Single Computation	Total No. of Faulty Computations	Countermeasure
Generic_DFA	Communicate_DUTIO	Data/ Control	Non_Targeted	1	1	Verify_after_Sign Redundancy (Nonce Sample)
Loop_Abort	Observe_DUT_IO	Control	Targeted	1	1	Redundancy (Nonce Sample) Sanity Check on Nonce Random Initialization
Skip_Addition	Communicate_DUT _IO/Observe_DUT_ IO	Data/ Control	Targeted	1	Few thousand	Verify After Sign Redundancy (Final Addition) NTT Addition

FIA on Signing Procedure: Erroneous Secret Key [IMS+22]

58

FIA on Dilithium Signing: Summary

Attack Name	DUT_IO_Access	Type of Fault	Targeted_or_No t	No. of Faults within Single Computation	Total No. of Faulty Computations	Countermeasure
Generic_DFA	Communicate_DUTIO	Data/ Control	Non_Targeted	1	1	Verify_after_Sign Redundancy (Nonce Sample)
Loop_Abort	Observe_DUT_IO	Control	Targeted	1	1	Redundancy (Nonce Sample) Sanity Check on Nonce Random Initialization
Skip_Addition	Communicate_DUT _IO/Observe_DUT_ IO	Data/ Control	Targeted	1	Few thousand	Verify After Sign Redundancy (Final Addition) NTT Addition
Erroneous_ Secret_Key	Observe_DUT_IO	Data	Targeted	1	Few thousand	Verify After Sign

FIA on Signing Procedure: NTT Fault Attack [RYB+23]

[RYB+23] Ravi, Prasanna, Bolin Yang, Shivam Bhasin, Fan Zhang, and Anupam Chattopadhyay. "Fiddling the Twiddle Constants-Fault Injection Analysis of the Number Theoretic Transform." *IACR Transactions on Cryptographic Hardware and Embedded Systems* (2023): 447-481.

FIA on Signing Procedure: NTT Fault Attack [RYB+23]

61

FIA on Dilithium Signing: Summary

Attack Name	DUT_IO_Access	Type of Fault	Targeted_or_No t	No. of Faults within Single Computation	Total No. of Faulty Computations	Countermeasure
Generic_DFA	Communicate_DUTIO	Data/ Control	Non_Targeted	1	1	Verify_after_Sign Redundancy (Nonce Sample)
Loop_Abort	Observe_DUT_IO	Control	Targeted	1	1	Redundancy (Nonce Sample) Sanity Check on Nonce Random Initialization
Skip_Addition	Communicate_DUT _IO/Observe_DUT_ IO	Data/ Control	Targeted	1	Few thousand	Verify After Sign Redundancy (Final Addition) NTT Addition
Erroneous_ Secret_Key	Observe_DUT_IO	Data	Targeted	1	Few thousand	Verify After Sign
NTT_Fault_ Attack	Communicate_DUT _IO/Observe_DUT_ IO	Data	Targeted	1	1	Sanity Check on Twiddle Constants or NTT outputs

Outline

- ☐ FIA on Kyber:
 - ☐ FIA on Key Generation
 - ☐ FIA on Decapsulation
- ☐ FIA on Dilithium
 - ☐ FIA on Signing
 - ☐ FIA on Verification
- Conclusion

FIA on Verification Procedure

FIA on Verification: NTT Fault Attack [RYB+23]

Signature: (z, c), m

Public Key: (pk₀, pk₁)

Outline

- ☐ FIA on Kyber:
 - ☐ FIA on Key Generation
 - ☐ FIA on Decapsulation
- ☐ FIA on Dilithium
 - ☐ FIA on Signing
 - ☐ FIA on Verification
- ☐ Conclusion and Open Questions

Conclusion

Variety of FIA are possible on unprotected Kyber and Dilithium Non-Monolitic nature of scheme: Arithmetic Domain, Boolean Domain Underlying algorithmic features and implementation choices render them susceptible to SCA and FIA Questions: ☐ Should we use dedicated countermeasures for every attack? Can we exploit algorithmic features for efficient and low-cost countermeasures? Refer to [RDB+22] for a systematic study of SCA, FIA of Kyber and Dilithium (NIST PQC Standards)

"In a way, these things are like gold nuggets that God left in the forest. If I'm walking along in the forest and I stubbed my toe on it, who's to say I deserve credit for discovering it?"

-- Dr. Martin Hellman on the discovery of Public-Key Cryptography

Thank you!

Prasanna Ravi, Temasek Labs, NTU Singapore

E-mail: prasanna.ravi@ntu.edu.sg

GitHub: https://github.com/PRASANNA-RAVI