C&-‘o
(=
—f
(7]

Radboud University ;g5

e
MiNe s

Digital signatures from equivalence problems - A closer look
at MEDS and ALTEQ

Simona Samardjiska Radboud University, Netherlands
Youming Qiao University of Technology Sydney, Australia

NIST PQC Seminar

Acknowledgement

» The rest of the MEDS team: Tung Chou, Ruben Niederhagen, Edoardo
Persichetti, Tovohery Hajatiana Randrianarisoa, Lars Ran, Krijn Reijnders, Monika

Trimoska

» The rest of the ALTEQ team: Markus Blaser, Dung Hoang Duong, Anand
Kumar Narayanan, Thomas Plantard, Arnaud Sipasseuth, Gang Tang.

Generic hard equivalence problem EQ(Og, O;):
Given Qg and Oy, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

Generic hard equivalence problem EQ(Og, O;):
Given Qg and Oy, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

Interesting case - when problem is hard! What can we do with it?

Generic hard equivalence problem EQ(Og, O;):
Given Qg and Oy, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

Interesting case - when problem is hard! What can we do with it? Turns out - a lot!

Generic hard equivalence problem EQ(Og, O;):
Given Qg and Oy, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

Interesting case - when problem is hard! What can we do with it? Turns out - a lot!

» Zero-Knowledge protocols

Generic hard equivalence problem EQ(Og, O;):
Given Qg and Oy, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

Interesting case - when problem is hard! What can we do with it? Turns out - a lot!

» Zero-Knowledge protocols

» lIdentification schemes (IDS)

Generic hard equivalence problem EQ(Og, O;):
Given Qg and Oy, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

Interesting case - when problem is hard! What can we do with it? Turns out - a lot!

» Zero-Knowledge protocols
» lIdentification schemes (IDS)
» Digital Signatures via Fiat-Shamir transform

e F-S is a common strategy for PQ signatures
» Dilithium, MQDSS, Picnic in first 3 rounds of NIST competition

Generic hard equivalence problem EQ(Og, O;):
Given Qg and Oy, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

Interesting case - when problem is hard! What can we do with it? Turns out - a lot!

» Zero-Knowledge protocols
» lIdentification schemes (IDS)
» Digital Signatures via Fiat-Shamir transform

e F-S is a common strategy for PQ signatures

» Dilithium, MQDSS, Picnic in first 3 rounds of NIST competition
» More than 15 in the additional round!

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:

Let ¢ be an isomorphism s.t. O1 = ¢(Oy).

Given Op, O1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing
any information about it

77((’)0,(91,¢>) V(OO’Ol)

S

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:

Let ¢ be an isomorphism s.t. O1 = ¢(Oy).

Given Op, O1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing
any information about it

o o P(O0, 01, 0) V(Oo, 01)

S

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:

Let ¢ be an isomorphism s.t. O1 = ¢(Oy).

Given Op, O1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing
any information about it

%o o P(Oo, O1, ¢) V(Oo, 01)

S

b1

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:

Let ¢ be an isomorphism s.t. O1 = ¢(Oy).

Given Op, O1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing
any information about it

P(Oo, O1, ¢) V(Oo, 01)

S
Q

com + O’

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:

Let ¢ be an isomorphism s.t. O1 = ¢(Oy).

Given Op, O1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing
any information about it

P(Oo, O1, ¢) V(Oo, 01)

S
Q

!
com < O com

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:

Let ¢ be an isomorphism s.t. O1 = ¢(Oy).

Given Op, O1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing
any information about it

P(Oo, O1, ¢) V(Oo, 01)

S
Q

!
com < O com

ch < {0,1}

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:

Let ¢ be an isomorphism s.t. O1 = ¢(Oy).

Given Op, O1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing
any information about it

P(Oo, O1, ¢) V(Oo, 01)
0o o’
1 com + O’ com
0 _—
¢ : ch ch +¢ {07 1}
| —
@

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:

Let ¢ be an isomorphism s.t. O1 = ¢(Oy).

Given Op, O1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing
any information about it

o o P(00,01,9) V(00, 01)

i com « O’ com
¢ T ch <& {0,1}
: o

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:

Let ¢ be an isomorphism s.t. O1 = ¢(Oy).

Given Op, O1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing
any information about it

0 %o o P(Oo, O1, ¢) V(Oo, O1)
0
i com + O’ com
0 _—
P " ch & {0,1}
v —
0O, resp < ¢en resp
_

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:

Let ¢ be an isomorphism s.t. O1 = ¢(Oy).

Given Op, O1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing
any information about it

O o P(Oo, O1, ¢) V(Oo, O1)
i com < O/ com
¢ i ;. T ch <& {0,1}
(;1 resp < dcn resp
N

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:

Let ¢ be an isomorphism s.t. O1 = ¢(Oy).

Given Op, O1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing
any information about it

O ¢0 O/ P(O()?Ol’d)) V(O()’Ol)
0

i com + O’ com

0 _—
¢ ! ch <r {0 1}

| ?1 ch 2

| —
(,;1 resp <— ¢ch resp

B —
O £ $en(Ocn)

Digital Signatures via the Fiat-Shamir transform

IDS

P(Oo, 01, 9) V(Oo, 01)
com + O’ i
_
o ch g {0,1}
-
resp < den T
_—

0" < den (Oan)

Digital Signatures via the Fiat-Shamir transform

IDS | P(90,01,9) V(Oo, Oy)
/ " (r)

com<+ O,0",...,0 -
_—
ch=(chy,...,ch) Ccher{01}
D

resp <— ¢Ch17 ¢Ch21 ey (z)ch, resp
_—

o ; ¢Ch1(OCh1)7 °0o0p O(’) ; eh, (OChr)

Digital Signatures via the Fiat-Shamir transform

IDS P(Oo, 01, 9) V(Oo, 01)
/ " (r)
com<+ O,0",...,0 i
_
ch “—R {OA 1}’
resp < Pehy, Pehy s - - - 5 en, resn
;7 (y) ?
O = ¢peny (Octy); -+, O = e, (Och,)
Signer(pk, sk) Verifier(pk)
FS signature

com + (0',0",..., O('))

ch « H(m,com) ch < H(m, com)
resp < (¢chy, behys - - -, beh,) b = Vf(pk, com, ch, resp)
output : o = (com, resp) output : b

The basic protocol is not very eficient

o P(Oo, O1,9) V(Oo, O1)
Oo o’
: com <+ O .
| —_—
" o ch & {0,1}
A e
! resp < tch resp
_
O1 O L n (Our)

» Challenge space is of size 2 = Soundness error is 1/2

The basic protocol is not very eficient

Yo) P(Oo, 01, 9) V(0o 01)
(?0 @) com - OO O(r)
| b PR COm
‘ —_—
oy ch = (chy,...,ch,) Ccher{01}
| (2} PR,
| resp <— wChla ¢Ch27 900 :wch, resp
Y
_—
- O Z i (Our)
e, 00 L Wen, (Och,)

» Challenge space is of size 2 = Soundness error is 1/2
» For security of A bits, needs to be repeated r =)\ times!

The basic protocol is not very eficient

o) P(Oo, 01, ¢) V(Oo, O1)
O\O © com + O, 0" o
| Ty com
| _—
¢ : ch <R {0 1}’
} ()
| resp < Pchy, Yehys - - - s Yeh, resp
Y
_
01 o' < wchl(odu)
s O L g, (O,

» Challenge space is of size 2 = Soundness error is 1/2
» For security of A bits, needs to be repeated r =)\ times!

» = Signature contains \ isometries (from A rounds)

The basic protocol is not very eficient

o) P(Oo, 01, ¢) V(Oo, O1)
O\O © com + O, 0" o
| Ty com
| _—
¢ : ch <R {0 1}’
} ()
| resp < Pchy, Yehys - - - s Yeh, resp
Y
_
01 o' < wchl(odu)
v, O L g, (O,)

» Challenge space is of size 2 = Soundness error is 1/2
» For security of A bits, needs to be repeated r =)\ times!
» = Signature contains A isometries (from X rounds)

» = All operations in signing and verification need to be repeated A times

Optimization 1: Make the challenge space bigger (Multiple public keys)

P(Oo,...,On,¢1,...,0n) V(Oo,...,On)
com + O’ com
. ch +¢ {0, N — 1}
resp <— ch resp
oL WYeh; (Och;)

» Challenge space is now of size N = Soundness error is 1/N

Optimization 1: Make the challenge space bigger (Multiple public keys)

P(Oo,...,On,d1,...,0n) V(Oo, ..., On)
com « O, 0",...,0" com

_

ch = (chy,...,ch) Ccher{0N—-1}
PR

resp <— wChl) ¢Ch27 OO 7wchr resp

_

0D L g, (Ocn;)

» Challenge space is now of size N = Soundness error is 1/N

» For security of A bits, needs to be repeated r = ﬁ times!

Optimization 1: Make the challenge space bigger (Multiple public keys)

P(Oo,...,On,d1,...,0n) V(Oo, ..., On)
/ 7" (r)
com<«+ 0,070 com
_
ch g {0, N — l}r
resp <— Ychy, Yehyy -+ - Yen, resp
_

0D L g, (Ocn;)

» Challenge space is now of size N = Soundness error is 1/N

» For security of A bits, needs to be repeated r = ﬁ times!
» = Signature contains ﬁ isometries

Optimization 1: Make the challenge space bigger (Multiple public keys)

P(Oo,...,On,d1,...,0n) V(Oo, ..., On)
/ 7" (r)
com<«+ 0,070 com
_
ch g {0, N — l}r
resp <— Ychy, Yehyy -+ - Yen, resp
_

0D L g, (Ocn;)

» Challenge space is now of size N = Soundness error is 1/N

» For security of A bits, needs to be repeated r = ﬁ times!
» = Signature contains ﬁ isometries

» = All operations in signing and verification need to be repeated @ times

Optimization 1: Make the challenge space bigger (Multiple public keys)

P(Oo,...,On,d1,...,0n) V(Oo, ..., On)
/ 7" (r)
com<«+ 0,070 com
_
ch g {0, N — l}r
resp <— Ychy, Yehyy -+ - Yen, resp
_

0D L g, (Ocn;)

Challenge space is now of size N = Soundness error is 1/N

For security of A bits, needs to be repeated r = ﬁ times!
g
ﬁ isometries

>
>
» = Signature contains
» = All operations in signing and verification need to be repeated @ times
>

There is a cost - N-fold increase in public and private key

Optimization 1: Make the challenge space bigger (Multiple public keys)

P(Oo,...,On,d1,...,0n) V(Oo, ..., On)
/ 7" (r)
com<«+ 0,070 com
_
ch g {0, N — l}r
resp <— Ychy, Yehyy -+ - Yen, resp
_

0D L g, (Ocn;)

= Signature contains

Challenge space is now of size N = Soundness error is 1/N

A

For security of A bits, needs to be repeated r = 2 times!

log N

isometries

= All operations in signing and verification need to be repeated @ times
There is a cost - N-fold increase in public and private key

Always necessary to find the best trade-off

Optimization 2: Reduce signature size by using seeds

P(Oo, ..., On, ¢1, - - -, BN) V(O . ..,0n)
/

com < O o

_—
ch ch ¢ {0, N —1}

-

resp < Ych resp
B —

0D L e (Ocy)

» The map 1) is chosen at random = one can include only seed in signature

Optimization 2: Reduce signature size by using seeds

P(Oo,...,On, 1, .., ¢n) V(Oo, ...,0n)
/ " (r)

com<+ O,07,...,0 -

_—
ch = (chy,...,ch;) ch <& {0, N -1}

PP A

resp < teny, Uchys - - - Yeh, resp
_

0D L .. (Oy)

» The map 1) is chosen at random = one can include only seed in signature
e 1y can be reconstructed from the seed

Optimization 2: Reduce signature size by using seeds

P(Oo,...,ON,¢17...7ON) V(Oo,...,ON)
/ " (r)
com<+ O,07,...,0 -
B —
ch ¢ {O,N — 1}
resp <— wchlywchzv"'vwch, resp
_

0D L .. (Oy)

» The map 1) is chosen at random = one can include only seed in signature
e 1y can be reconstructed from the seed

» Problem: This works only for ch = 0, and probability of choosing challenge 0is 1/N

Optimization 2: Reduce signature size by using seeds

P(Oo,...,ON,¢17...7ON) V(Oo,...,ON)
/ " (r)
com<+ O,07,...,0 -
B —
ch ¢ {O,N — 1}
resp <— wchlywchzv"'vwch, resp
_

0D L . (Oy)

» The map 1) is chosen at random = one can include only seed in signature
e 1y can be reconstructed from the seed

» Problem: This works only for ch = 0, and probability of choosing challenge 0is 1/N
e = not a big benefit in general

Optimization 2: Reduce signature size by using seeds

P(Oo,...,ON,¢17...7ON) V(Oo,...,ON)
/ " (r)
com<+ O,07,...,0 -
B —
ch ¢ {O,N — 1}
resp <— wchlywchzv"'vwch, resp
_

0D L . (Oy)

» The map 1) is chosen at random = one can include only seed in signature
e 1y can be reconstructed from the seed

» Problem: This works only for ch = 0, and probability of choosing challenge 0is 1/N
e = not a big benefit in general
e => signature is not of constant size

Optimization 2: Reduce signature size by using seeds

P(Oo, ..., On, ¢1, - - -, BN) V(O ..., 0n)
/ " (r)
com<+ O,07,...,0 -
_—
ch «¢ {0O,N —1}"
resp <— wchlyl“)chzv"'vwch, resp
_

0D L . (Oy)

» The map 1) is chosen at random = one can include only seed in signature
e 1y can be reconstructed from the seed

» Problem: This works only for ch = 0, and probability of choosing challenge 0is 1/N
e = not a big benefit in general
e => signature is not of constant size

» ldea: Always have a fixed number M of 0 challenges

Optimization 2: Reduce signature size by using seeds

P(Oo, ..., On, ¢1, - - -, BN) V(O ..., 0n)
/ " (r)
com<+ O,07,...,0 -
_—
ch «¢ {0O,N —1}"
resp <— wchlyl“)chzv"'vwch, resp
_

0D L . (Oy)

» The map 1) is chosen at random = one can include only seed in signature
e 1y can be reconstructed from the seed
» Problem: This works only for ch = 0, and probability of choosing challenge 0is 1/N
e = not a big benefit in general
e => signature is not of constant size
» ldea: Always have a fixed number M of 0 challenges
e We need a special hash function that always produces fixed weight outputs

Optimization 2: Reduce signature size by using seeds

P(Oo, ..., On, ¢1, - - -, BN) V(O ..., 0n)
/ " (r)
com<+ O,07,...,0 -
_—
ch «¢ {0O,N —1}"
resp <— wchlyl“)chzv"'vwch, resp
_

0D L . (Oy)

» The map 1) is chosen at random = one can include only seed in signature
e 1y can be reconstructed from the seed

» Problem: This works only for ch = 0, and probability of choosing challenge 0is 1/N
e = not a big benefit in general
e => signature is not of constant size
» ldea: Always have a fixed number M of 0 challenges
e We need a special hash function that always produces fixed weight outputs
e Always necessary to find the best trade-off 8

Optimization 2: Reduce signature size by using seeds

P(Oo, ..., On, ¢1, - - -, BN) V(O ..., 0n)
/ " (r)
com<+ O,07,...,0 -
_—
ch «¢ {0O,N —1}"
resp <— wchlyl“)chzv"'vwch, resp
_

0D L . (Oy)

» The map 1) is chosen at random = one can include only seed in signature
e 1y can be reconstructed from the seed

» Problem: This works only for ch = 0, and probability of choosing challenge 0is 1/N
e = not a big benefit in general
e => signature is not of constant size
» ldea: Always have a fixed number M of 0 challenges
e We need a special hash function that always produces fixed weight outputs
e Always necessary to find the best trade-off 8

Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(Op, O;):
Given Op and Oj, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(Op, O;):
Given Op and Oj, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(Op, O;):
Given Op and Oj, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

» Isomorphism of polynomials - Patarin’s signature, 1998

Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(Op, O;):
Given Op and Oj, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

» Isomorphism of polynomials - Patarin’s signature, 1998
» Quasigroup isotopy - Identification scheme, [Denes 2001]

Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(Op, O;):
Given Op and Oj, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

» Isomorphism of polynomials - Patarin’s signature, 1998
» Quasigroup isotopy - Identification scheme, [Denes 2001]
» Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.]

Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(Op, O;):
Given Op and Oj, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

» Isomorphism of polynomials - Patarin’s signature, 1998

» Quasigroup isotopy - Identification scheme, [Denes 2001]

» Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.]

» Code equivalence - LESS - [Biasse et al. 2020], LESS-FM - [Barenghi et al.
2021]

Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(Op, O;):
Given Op and Oj, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

Isomorphism of polynomials - Patarin’s signature, 1998

Quasigroup isotopy - Identification scheme, [Denes 2001]

Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.
Code equivalence - LESS - [Biasse et al. 2020], LESS-FM - [Barenghi et al.
2021]

» Alternate trilinear form equivalence - [Tang et al. 2022]

>
>
>
>

Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(Op, O;):
Given Op and Oj, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

Isomorphism of polynomials - Patarin’s signature, 1998

Quasigroup isotopy - Identification scheme, [Denes 2001]

Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.
Code equivalence - LESS - [Biasse et al. 2020], LESS-FM - [Barenghi et al.
2021]

Alternate trilinear form equivalence - [Tang et al. 2022]

vvyyvyy

vy

Lattice isomorphism - [Ducas-van Woerden 2022]

Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(Op, O;):
Given Op and Oj, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

Isomorphism of polynomials - Patarin’s signature, 1998

Quasigroup isotopy - Identification scheme, [Denes 2001]

Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.
Code equivalence - LESS - [Biasse et al. 2020], LESS-FM - [Barenghi et al.
2021]

Alternate trilinear form equivalence - [Tang et al. 2022]

Lattice isomorphism - [Ducas-van Woerden 2022]

vvyyvyy

vy

» Matrix code equivalence - [Reijnders—Samardjiska—Trimoska 2022]

Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(Op, O;):
Given Op and Oj, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

Isomorphism of polynomials - Patarin’s signature, 1998

Quasigroup isotopy - Identification scheme, [Denes 2001]

Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.
Code equivalence - LESS - [Biasse et al. 2020], LESS-FM - [Barenghi et al.
2021]

Alternate trilinear form equivalence - [Tang et al. 2022]

Lattice isomorphism - [Ducas-van Woerden 2022]

vvyyvyy

Matrix code equivalence - [Reijnders—Samardjiska—Trimoska 2022]

vvyyvyy

Equivalence problems for MEDS and
ALTEQ

MEDS: Matrix Code Equivalence

» MEDS is based on the following equivalence problem.

» Matrix code - a subspace of M ;x,(Fq) of dimension k endowed with rank
metric.

10

MEDS: Matrix Code Equivalence

» MEDS is based on the following equivalence problem.
» Matrix code - a subspace of M ;x,(Fq) of dimension k endowed with rank

metric.

Matrix Code Equivalence (MCE) problem [Berger,2003]

MCE(k,n,m,q,C,D):
Input: Two k-dimensional matrix codes C,D C M, »(q)
Question: Find —if any — A € GL,(gq),B € GL,(q) s.t. for all C € C, it holds that

ACB € D

10

ALTEQ: Alternating Trilinear Form Equivalence

» ALTEQ is based on the following equivalence problem.
» Alternating trilinear form - a map ¢ : Fg x Fg x Fg — Fq that

(1) is linear in each argument, and
(2) evaluates to 0 whenever two arguments are the same.

11

ALTEQ: Alternating Trilinear Form Equivalence

» ALTEQ is based on the following equivalence problem.
» Alternating trilinear form - a map ¢ : Fg x Fg x Fg — Fq that

(1) is linear in each argument, and
(2) evaluates to 0 whenever two arguments are the same.

Alternating Trilinear Form Equivalence (ATFE) [Grochow-Qiao-Tang, 2021]

ALTEQ(n, q, ¢, ¢):
Input: Two alternating trilinear forms ¢, : Fg x Fg x Fg — Fy.

Question: Find — if any — A € GL,(q) s.t. for any u,v,w € F? o(u,v,w) =
P(A*(u), Af(v), Af(w)).

11

MCE and ATFE look very similar!

Matrix codes:

Dy Ck

D2 C2
D1 Cl

12

MCE and ATFE look very similar!

Matrix codes:

Dy Ck

D2 C2
D1 Cl

MCE:

» matrix codes of rectangular matrices

12

MCE and ATFE look very similar!

Matrix codes:

Dy Ck

D, T Val | |

MCE:

» matrix codes of rectangular matrices
> isometry (A, B)

12

MCE and ATFE look very similar!

» An alternating trilinear form is ¢ : Fg x Fg x Fg — Fq.

» We can record ¢ as an n x n x n 3-way array C = [¢; j k], where ¢« = ¢(e;, €, ex).
® Note that ¢ijx = —Gjjk = —Ckji = ~Cikj = Gki = Ck,irj-

» A 3-way array C can also be represented as a matrix tuple (Cy, ..., C,), C; € M,(q).

13

MCE and ATFE look very similar!

» An alternating trilinear form is ¢ : Fg x Fg x Fg — Fq.

» We can record ¢ as an n x n x n 3-way array C = [¢; j k], where ¢« = ¢(e;, €, ex).

® Note that ¢ijk = —Gik = —Chkjii = —Cikj = Gki = Chiy-
» A 3-way array C can also be represented as a matrix tuple (Cy, ..., C,), C; € M,(q).
D, ([=——7 (o
Dy G
D, G \4‘—\
Dy (I — Fal | |
A AT

ATFE:

> matrix codes with “symmetries in the three directions”.

» isometry (A,AT) and A on the third direction too
13

MCE and ATFE are polynomial-time equivalent

» The objects in MCE and ATFE are both 3-way arrays.
e A 2-way array, [¢;], is a matrix.
e A 3-way array, [¢;j .|, is sometimes called a 3-tensor.
e The 3-way arrays from ATFE are subject to certain structural constraints.

14

MCE and ATFE are polynomial-time equivalent

» The objects in MCE and ATFE are both 3-way arrays.
e A 2-way array, [¢;], is a matrix.
e A 3-way array, [¢;j .|, is sometimes called a 3-tensor.
e The 3-way arrays from ATFE are subject to certain structural constraints.

» The isomorphisms in MCE and ATFE are both invertible matrices.
e LR e GLy(g) sends C € Mu(q) to L'CR.
e LR, T =(tij)€GLy(q)sends (Cy,.... C,) € Mu(q)" to (L'C{R, ..., L'C}R),
where C,-/ = ZJ- t,"jCj.
e The isomorphism in ATFE imposes that L=R = T.

14

MCE and ATFE are polynomial-time equivalent

» The objects in MCE and ATFE are both 3-way arrays.

e A 2-way array, [¢;], is a matrix.
e A 3-way array, [¢;j .|, is sometimes called a 3-tensor.
e The 3-way arrays from ATFE are subject to certain structural constraints.

» The isomorphisms in MCE and ATFE are both invertible matrices.
e LR e GLy(g) sends C € Mu(q) to L'CR.
e LR, T =(tij)€GLy(q)sends (Cy,.... C,) € Mu(q)" to (L'C{R, ..., L'C/R),
where C,-/ = ZJ- t;ijj.
e The isomorphism in ATFE imposes that L=R = T.
Theorem ([Grochow-Qiao-Tang, 2023])
MCE and ATFE are polynomial-time equivalent.

14

A complexity class for isomorphism problems of algebraic structures

» Relations between isomorphism problems for some algebraic structures are studied in
[Reijnders—Samardjiska—Trimoska, Grochow—Qiao—Tang, D'Alconzo,
Couvreur—Debris-Alazard—Gaborit. . . |

15

A complexity class for isomorphism problems of algebraic structures

» Relations between isomorphism problems for some algebraic structures are studied in
[Reijnders—Samardjiska—Trimoska, Grochow—Qiao—Tang, D'Alconzo,
Couvreur—Debris-Alazard—Gaborit. . . |

» The complexity class Tl was defined in [Grochow-Qiao], consisting of problems
polynomial-time reducible to MCE.

e MCE was called 3-Tensor Isomorphism in [Grochow-Qiao].
e In analogy with the complexity class Gl for Graph Isomorphism.

» MCE and ATFE are Tl-complete.

15

A complexity class for isomorphism problems of algebraic structures

» Relations between isomorphism problems for some algebraic structures are studied in
[Reijnders—Samardjiska—Trimoska, Grochow—Qiao—Tang, D'Alconzo,
Couvreur—Debris-Alazard—Gaborit. . . |

» The complexity class Tl was defined in [Grochow-Qiao], consisting of problems
polynomial-time reducible to MCE.

e MCE was called 3-Tensor Isomorphism in [Grochow-Qiao].
e In analogy with the complexity class Gl for Graph Isomorphism.

» MCE and ATFE are Tl-complete.

» Tl-complete problems include isomorphism problems for tensors, finite groups,
(associative and Lie) algebras, (systems of) polynomials. ..

15

Relations with other isomorphism problems

» Tl-complete problems appear in computational group theory, multivariate cryptography,
and quantum information.

e Experiences from these areas suggest that Tl-complete problems are difficult to solve
in practice.

16

Relations with other isomorphism problems

» Tl-complete problems appear in computational group theory, multivariate cryptography,
and quantum information.
e Experiences from these areas suggest that Tl-complete problems are difficult to solve

in practice.

» Isomorphism problems for cubic forms and quadratic polynomial systems, as studied since
1996 [Patarin], are Tl-complete.

e Results from the study of polynomial isomorphism are valuable for MCE and ATFE.

16

Relations with other isomorphism problems

» Tl-complete problems appear in computational group theory, multivariate cryptography,

and quantum information.

e Experiences from these areas suggest that Tl-complete problems are difficult to solve
in practice.

» Isomorphism problems for cubic forms and quadratic polynomial systems, as studied since

1996 [Patarin], are Tl-complete.
e Results from the study of polynomial isomorphism are valuable for MCE and ATFE.

» Linear code monomial equivalence and graph isomorphism are in Tl
[Couvreur—Debris-Alazard-Gaborit, Grochow—Qiao].

e Linear code monomial equivalence supports LESS.

16

Why use MCE and ATFE in post-quantum cryptography?

» A natural development of Shor's quantum algorithms for integer factorisation and
discrete logarithm is the hidden subgroup problem framework.

» MCE and ATFE can be cast in this framework for general linear groups.

17

Why use MCE and ATFE in post-quantum cryptography?

» A natural development of Shor's quantum algorithms for integer factorisation and
discrete logarithm is the hidden subgroup problem framework.

» MCE and ATFE can be cast in this framework for general linear groups.

> A strong negative evidence for the “standard technique” to work in this setting
[Hallgren-Moore-Rétteler-Russell-Sen, 2010].

[Moore-Russell-Vazirani] . .. the strongest such insights we have about the lim-
its of quantum algorithms.

17

Cryptanalysis for MCE and ATFE

Algorithms for MCE and ATFE

» Consider 3-way arrays of size n x n x n over Fy under the action of (L,R, T) or
(T, T,T) € GLa(q) x GLa(q) GLa(q) .

» Brute-force algorithm: q”2 - poly(n,log q).
e After fixing T, to recover L and R can be done in time poly(n, log q).

18

Algorithms for MCE and ATFE

» Consider 3-way arrays of size n x n x n over Fy under the action of (L,R, T) or
(T, T,T) e GLn(qg) x GLa(q) x GLA(q) -
» Brute-force algorithm: q”2 - poly(n,log q).
e After fixing T, to recover L and R can be done in time poly(n, log q).
» We will introduce three approaches.

e Direct Grobner basis attack.
e Hybrid Grobner basis: g" - poly(n, log q).
e Utilising low-rank points (via birthday paradox and invariants).

18

Direct Grobner basis attack: the basic idea

» Let C=[cj] and D = [d; «] be two n x n x n 3-way arrays over Fg.

» We view C as a matrix tuple (Cy,...,C,), G € Mp(q).

19

Direct Grobner basis attack: the basic idea

» Let C=[cj] and D = [d; «] be two n x n x n 3-way arrays over Fg.
» We view C as a matrix tuple (Cy,...,C,), G € Mp(q).

» Recall that L, R, T = (t;j) € GL,(q) sends (Cy,..., Cs) € My(q)" to
(LECIR, ..., LEC,R), where C] = ¥, £;G;.

19

Direct Grobner basis attack: the basic idea

» Let C=[cj] and D = [d; «] be two n x n x n 3-way arrays over Fg.

We view C as a matrix tuple (Cy, ..., Cp), C;i € Mu(q).

» Recall that L, R, T = (t;j) € GL,(q) sends (Cy,..., Cs) € My(q)" to
(L'C{R....,L'C,R), where C/ = 3" t;,;C;.

> Viewing the entries of L, R and T as variables, the question is whether
(LECIR,...,LEC'R) = (D1, ..., Dy).

e This amounts to n® cubic polynomials in 31” variables.

v

19

Direct Grobner basis attack: more efficient modellings

Cubic modelling (L'C{R,...,L'*C/R) = (Dx,...,D,) where C/ = Zj & 5 Che
» This gives rise to n® cubic polynomials in 31 variables for MCE.
» And (g) cubic polynomials in n” variables for ATFE.

20

Direct Grobner basis attack: more efficient modellings

Cubic modelling (L*C{R,...,L'CiR) = (Dx,...,D,) where C/ =3, t;;C;.
» This gives rise to n® cubic polynomials in 31 variables for MCE.
» And (g) cubic polynomials in n” variables for ATFE.
Quadratic inverse modelling For ATFE, let T’ = [t/]]. Then set
(T*GT,..., T*C, T) = (Dy,...,D;) where D =3t/ .D;, and TT' = I,.
» This is by [Bouillaguet-Faugere-Fouque-Perret, 2010].
» n- (5) 4+ n* quadratic polynomials in 21” variables.

20

Direct Grobner basis attack: more efficient modellings

Cubic modelling (L'C{R,...,L'*C/R) = (Dx,...,D,) where C/ = Zj & 5 Che
» This gives rise to n® cubic polynomials in 31 variables for MCE.
» And (g) cubic polynomials in n” variables for ATFE.
Quadratic inverse modelling For ATFE, let T’ = [t/]]. Then set
(T*GT,..., T*C, T) = (Dy,...,D;) where D =3t/ .D;, and TT' = I,.
» This is by [Bouillaguet-Faugere-Fouque-Perret, 2010].
» n- (5) 4+ n* quadratic polynomials in 21” variables.
Quadratic dual modelling Use the dual space of D to express that L'C;R € D.
» This is by [Chou-Niederhagen-Persichetti-Randrianarisoa-Reijnders-
Samardjiska-Trimoska].
» This gives rise to n- (n?> — n) homogeneous quadratic polynomials in 21°
variables for MCE.
» And n- ((g) — n) quadratic polynomials in n” variables for ATFE.
» Note that some syzygies arise, complicating the analysis [MEDS spec].

20

Hybrid Grobner basis attacks

> We set up n x n variable matrices L and R for MCE (or T and T’ for ATFE).

» In [Faugere-Perret, 2006], it was discovered that Grobner basis runs in polynomial time,
provided that one (or two) rows of L are known.

21

Hybrid Grobner basis attacks

> We set up n x n variable matrices L and R for MCE (or T and T’ for ATFE).

» In [Faugere-Perret, 2006], it was discovered that Grobner basis runs in polynomial time,
provided that one (or two) rows of L are known.

» For ATFE, knowing one row of T is enough, leading to a ¢" - poly(n, log g)-time
algorithm.

» For MCE, knowing two rows of L is enough, leading to an ¢*" - poly(n, log q)-time
algorithm.

21

Hybrid Grobner basis attacks

> We set up n x n variable matrices L and R for MCE (or T and T’ for ATFE).

» In [Faugere-Perret, 2006], it was discovered that Grobner basis runs in polynomial time,
provided that one (or two) rows of L are known.

» For ATFE, knowing one row of T is enough, leading to a ¢" - poly(n, log g)-time
algorithm.

» For MCE, knowing two rows of L is enough, leading to an ¢*" - poly(n, log q)-time
algorithm.

» Further observations from [Beullens, 2023]:

e Knowing one row of T up to scalar is enough.
e For low-rank points, the kernel information can be incorporated.

21

Utilising low-rank points

> Let ¢: Fg x Fg x Fg — F, be an alternating trilinear form.
» For u e Ty, let ¢, : Fg x Fg — Fg by ¢u(v,w) = ¢(u, v, w).

» An isomorphism invariant for u: r = Rank(¢,).

22

Utilising low-rank points

> Let ¢: Fg x Fg x Fg — F, be an alternating trilinear form.
» For u e Ty, let ¢, : Fg x Fg — Fg by ¢pu(v,w) = ¢(u, v, w).
» An isomorphism invariant for u: r = Rank(¢,).
» Algorithms based on birthday paradox and hybrid Grobner basis
[Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].
e Suppose there exist ~ gk-many rank-r points for a random ¢.
(1) Sample g*/2-many rank-r points for ¢ and 1, respectively.
(2) For every pair, use hybrid Grobner basis to find a “matched” pair.

k/2

e Algorithm cost: O(g*/? - samp-cost + g* - gb-cost).

22

Utilising low-rank points

> Let ¢: Fg x Fg x Fg — F, be an alternating trilinear form.
» For u e Ty, let ¢, : Fg x Fg — Fg by ¢u(v,w) = ¢(u, v, w).
» An isomorphism invariant for u: r = Rank(¢,).
» Algorithms based on birthday paradox and hybrid Grobner basis

[Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].

e Suppose there exist ~ gk-many rank-r points for a random ¢.
(1) Sample g*/2-many rank-r points for ¢ and 1, respectively.
(2) For every pair, use hybrid Grobner basis to find a “matched” pair.

k/2

e Algorithm cost: O(g*/? - samp-cost + g* - gb-cost).

» Sampling step: min-rank or graph-walking [Beullens, 2023]

22

Utilising low-rank points, cont’d

» Algorithms based on distinguishing isomorphism invariants with low-rank points
[Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].

e Suppose there exist ~ gk-many rank-r points for a random ¢.
e Suppose there exist distinguishing isomorphism invariants associated with such
points.

23

Utilising low-rank points, cont’d

» Algorithms based on distinguishing isomorphism invariants with low-rank points
[Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].
e Suppose there exist ~ gk-many rank-r points for a random ¢.

e Suppose there exist distinguishing isomorphism invariants associated with such
points.

—~~
—_
~

Sample g*/?-many rank-r points for ¢ and 1), respectively.
For every point, compute the isomorphism invariant.

By birthday paradox, there exists a pair of points of the same invariant. Use hybrid
Grobner basis to complete.

—_
w N
— —

23

Utilising low-rank points, cont’d

» Algorithms based on distinguishing isomorphism invariants with low-rank points
[Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].

e Suppose there exist ~ gk-many rank-r points for a random ¢.

e Suppose there exist distinguishing isomorphism invariants associated with such
points.

—~~
—_
~

Sample g¥/2-many rank-r points for ¢ and 1, respectively.

For every point, compute the isomorphism invariant.

By birthday paradox, there exists a pair of points of the same invariant. Use hybrid
Grobner basis to complete.

—_
w N
— —

e Algorithm cost: O(g*/? - (samp-cost + inv-cost) + gb-cost).

23

Utilising low-rank points, cont’d

» Algorithms based on distinguishing isomorphism invariants with low-rank points
[Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].

e Suppose there exist ~ gk-many rank-r points for a random ¢.

e Suppose there exist distinguishing isomorphism invariants associated with such
points.

—
—
~

Sample g¥/2-many rank-r points for ¢ and 1, respectively.

For every point, compute the isomorphism invariant.

By birthday paradox, there exists a pair of points of the same invariant. Use hybrid
Grobner basis to complete.

—_
w N
— —

e Algorithm cost: O(g*/? - (samp-cost + inv-cost) + gb-cost).

» Distinguishing isomorphism invariant candidates: ranks of the neighbours of low-rank
points, and more [Narayanan-Qiao-Tang].

23

Parameters and performances of
MEDS and ALTEQ

Parameters and performance of MEDS

vt | . | PRI | e | | |
| MEDS-9923 9.9 9.9 1 272 271
MEDS-13220 13.2 13 1.3 46.7 46
" MEDS-41711 41.7 41 5.1 779 762
MEDS-69497 55.6 54.7 6.7 203.8 | 200.4

Table: An overview of the parameters and performance of MEDS.

Optimizations:
» Standard: Multiple Public Keys + Fixed-Weight Challenge Strings + Seed tree
» New: Public Key Compression
e generate public key partially from seed = signature size reduction

e Work in progress: use similar idea during signing
24

Parameters and performance of ALTEQ

vt | mote | Pty | e [y | e |
| Balanced 8 16 0.093 | 0.629 | 0.496
ShortSig 512 10 1.902 | 0.194 | 0.092
" Balanced 32 48 0.582 | 6.986 | 6.483
ShortSig 1024 24 5.152 | 1.705 | 1.304

Table: An overview of the parameters and performance of ALTEQ.

Optimizations:

» Standard: Multiple Public Keys + Fixed-Weight Challenge Strings (+ Seed tree)
» New: Invertible matrix decomposition
e Represent an invertible matrix as a product of column matrices for faster signing and

verification
25

» Digital signature based on equivalence problems: design and optimisations

» Matrix code equivalence (MCE) and alternating trilinear form equivalence (ATFE)
» Algorithms for MCE and ATFE

» MEDS and ALTEQ: parameters and performances

26

Thank you for listening!

27

	Equivalence problems for MEDS and ALTEQ
	Cryptanalysis for MCE and ATFE
	Parameters and performances of MEDS and ALTEQ

