C&-‘o
(=
—f
(7]

Radboud University ;g5

e
MiNe s

Digital signatures from equivalence problems - A closer look
at MEDS and ALTEQ

Simona Samardjiska Radboud University, Netherlands
Youming Qiao University of Technology Sydney, Australia

NIST PQC Seminar



Acknowledgement

» The rest of the MEDS team: Tung Chou, Ruben Niederhagen, Edoardo
Persichetti, Tovohery Hajatiana Randrianarisoa, Lars Ran, Krijn Reijnders, Monika

Trimoska

» The rest of the ALTEQ team: Markus Blaser, Dung Hoang Duong, Anand
Kumar Narayanan, Thomas Plantard, Arnaud Sipasseuth, Gang Tang.



Generic hard equivalence problem EQ(Og, O;):
Given Qg and Oy, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)




Generic hard equivalence problem EQ(Og, O;):
Given Qg and Oy, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

Interesting case - when problem is hard! What can we do with it?



Generic hard equivalence problem EQ(Og, O;):
Given Qg and Oy, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

Interesting case - when problem is hard! What can we do with it? Turns out - a lot!



Generic hard equivalence problem EQ(Og, O;):
Given Qg and Oy, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

Interesting case - when problem is hard! What can we do with it? Turns out - a lot!

» Zero-Knowledge protocols



Generic hard equivalence problem EQ(Og, O;):
Given Qg and Oy, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

Interesting case - when problem is hard! What can we do with it? Turns out - a lot!

» Zero-Knowledge protocols

» lIdentification schemes (IDS)



Generic hard equivalence problem EQ(Og, O;):
Given Qg and Oy, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

Interesting case - when problem is hard! What can we do with it? Turns out - a lot!

» Zero-Knowledge protocols
» lIdentification schemes (IDS)
» Digital Signatures via Fiat-Shamir transform

e F-S is a common strategy for PQ signatures
» Dilithium, MQDSS, Picnic in first 3 rounds of NIST competition



Generic hard equivalence problem EQ(Og, O;):
Given Qg and Oy, find (if any) an isomorphism ¢ s.t. O1 = ¢(Oo)

Interesting case - when problem is hard! What can we do with it? Turns out - a lot!

» Zero-Knowledge protocols
» lIdentification schemes (IDS)
» Digital Signatures via Fiat-Shamir transform

e F-S is a common strategy for PQ signatures

» Dilithium, MQDSS, Picnic in first 3 rounds of NIST competition
» More than 15 in the additional round!



Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:

Let ¢ be an isomorphism s.t. O1 = ¢(Oy).

Given Op, O1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing
any information about it
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Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:

Let ¢ be an isomorphism s.t. O1 = ¢(Oy).

Given Op, O1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing
any information about it
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Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:

Let ¢ be an isomorphism s.t. O1 = ¢(Oy).

Given Op, O1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing
any information about it
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Let ¢ be an isomorphism s.t. O1 = ¢(Oy).
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Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:

Let ¢ be an isomorphism s.t. O1 = ¢(Oy).

Given Op, O1, the prover P wants to prove to the verifier V knowledge of ¢ without revealing
any information about it

O ¢0 O/ P(O()?Ol’d)) V(O()’Ol)
0

i com + O’ com

0 _—
¢ ! ch <r {0 1}

| ?1 ch 2

| —
(,;1 resp <— ¢ch resp

B —
O £ $en(Ocn)




Digital Signatures via the Fiat-Shamir transform

IDS

P(Oo, 01, 9) V(Oo, 01)
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_
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Digital Signatures via the Fiat-Shamir transform
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Digital Signatures via the Fiat-Shamir transform

IDS P(Oo, 01, 9) V(Oo, 01)
/ " (r)
com<+ O,0",...,0 i
_
ch “—R {OA 1}’
resp < Pehy, Pehy s - - - 5 en, resn
;7 (y) ?
O = ¢peny (Octy); -+, O = e, (Och,)
Signer(pk, sk) Verifier(pk)
FS signature

com + (0',0",..., O('))

ch « H(m,com) ch < H(m, com)
resp < (¢chy, behys - - -, beh, ) b = Vf(pk, com, ch, resp)
output : o = (com, resp) output : b




The basic protocol is not very eficient
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Oo o’
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" o ch & {0,1}
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_
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» Challenge space is of size 2 = Soundness error is 1/2



The basic protocol is not very eficient

Yo ) P(Oo, 01, 9) V(0o 01)
(?0 @) com - OO O(r)
| b PR COm
‘ —_—
oy ch = (chy,...,ch,) Ccher{01}
| (2} PR,
| resp <— wChla ¢Ch27 900 :wch, resp
Y
_—
- O Z i (Our)
e, 00 L Wen, (Och,)

» Challenge space is of size 2 = Soundness error is 1/2
» For security of A bits, needs to be repeated r = )\ times!



The basic protocol is not very eficient

o ) P(Oo, 01, ¢) V(Oo, O1)
O\O © com + O, 0" o
| Ty com
| _—
¢ : ch <R {0 1}’
} ()
| resp < Pchy, Yehys - - - s Yeh, resp
Y
_
01 o' < wchl(odu)
s O L g, (O,

» Challenge space is of size 2 = Soundness error is 1/2
» For security of A bits, needs to be repeated r = )\ times!

» = Signature contains \ isometries (from A rounds)



The basic protocol is not very eficient

o ) P(Oo, 01, ¢) V(Oo, O1)
O\O © com + O, 0" o
| Ty com
| _—
¢ : ch <R {0 1}’
} ()
| resp < Pchy, Yehys - - - s Yeh, resp
Y
_
01 o' < wchl(odu)
v, O L g, (O, )

» Challenge space is of size 2 = Soundness error is 1/2
» For security of A bits, needs to be repeated r = )\ times!
» = Signature contains A isometries (from X rounds)

» = All operations in signing and verification need to be repeated A times



Optimization 1: Make the challenge space bigger (Multiple public keys)
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Optimization 1: Make the challenge space bigger (Multiple public keys)

P(Oo,...,On,d1,...,0n) V(Oo, ..., On)
/ 7" (r)
com<«+ 0,07 ....0 com
_
ch g {0, N — l}r
resp <— Ychy, Yehyy -+ - Yen, resp
_

0D L g, (Ocn;)

= Signature contains

Challenge space is now of size N = Soundness error is 1/N

A

For security of A bits, needs to be repeated r = 2 times!

log N

isometries

= All operations in signing and verification need to be repeated @ times
There is a cost - N-fold increase in public and private key

Always necessary to find the best trade-off
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MEDS: Matrix Code Equivalence

» MEDS is based on the following equivalence problem.

» Matrix code - a subspace of M ;x,(Fq) of dimension k endowed with rank
metric.
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MEDS: Matrix Code Equivalence

» MEDS is based on the following equivalence problem.
» Matrix code - a subspace of M ;x,(Fq) of dimension k endowed with rank

metric.

Matrix Code Equivalence (MCE) problem [Berger,2003]

MCE(k,n,m,q,C,D):
Input: Two k-dimensional matrix codes C,D C M, »(q)
Question: Find —if any — A € GL,(gq),B € GL,(q) s.t. for all C € C, it holds that

ACB € D

10



ALTEQ: Alternating Trilinear Form Equivalence

» ALTEQ is based on the following equivalence problem.
» Alternating trilinear form - a map ¢ : Fg x Fg x Fg — Fq that

(1) is linear in each argument, and
(2) evaluates to 0 whenever two arguments are the same.
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ALTEQ: Alternating Trilinear Form Equivalence

» ALTEQ is based on the following equivalence problem.
» Alternating trilinear form - a map ¢ : Fg x Fg x Fg — Fq that

(1) is linear in each argument, and
(2) evaluates to 0 whenever two arguments are the same.

Alternating Trilinear Form Equivalence (ATFE) [Grochow-Qiao-Tang, 2021]

ALTEQ(n, q, ¢, ¢):
Input: Two alternating trilinear forms ¢, : Fg x Fg x Fg — Fy.

Question: Find — if any — A € GL,(q) s.t. for any u,v,w € F? o(u,v,w) =
P(A*(u), Af(v), Af(w)).

11



MCE and ATFE look very similar!

Matrix codes:

Dy Ck

D2 C2
D1 Cl
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Matrix codes:

Dy Ck

D, T Val | |

MCE:

» matrix codes of rectangular matrices
> isometry (A, B)
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MCE and ATFE look very similar!

» An alternating trilinear form is ¢ : Fg x Fg x Fg — Fq.

» We can record ¢ as an n x n x n 3-way array C = [¢; j k], where ¢« = ¢(e;, €, ex).
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MCE and ATFE look very similar!

» An alternating trilinear form is ¢ : Fg x Fg x Fg — Fq.

» We can record ¢ as an n x n x n 3-way array C = [¢; j k], where ¢« = ¢(e;, €, ex).

® Note that ¢ijk = —Gik = —Chkjii = —Cikj = Gki = Chiy-
» A 3-way array C can also be represented as a matrix tuple (Cy, ..., C,), C; € M,(q).
D, ([=——7 (o
Dy G
D, G \4‘—\
Dy (I — Fal | |
A AT

ATFE:

> matrix codes with “symmetries in the three directions”.

» isometry (A,AT) and A on the third direction too
13



MCE and ATFE are polynomial-time equivalent

» The objects in MCE and ATFE are both 3-way arrays.
e A 2-way array, [¢; ], is a matrix.
e A 3-way array, [¢;j .|, is sometimes called a 3-tensor.
e The 3-way arrays from ATFE are subject to certain structural constraints.
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MCE and ATFE are polynomial-time equivalent

» The objects in MCE and ATFE are both 3-way arrays.
e A 2-way array, [¢; ], is a matrix.
e A 3-way array, [¢;j .|, is sometimes called a 3-tensor.
e The 3-way arrays from ATFE are subject to certain structural constraints.

» The isomorphisms in MCE and ATFE are both invertible matrices.
e LR e GLy(g) sends C € Mu(q) to L'CR.
e LR, T =(tij)€GLy(q)sends (Cy,.... C,) € Mu(q)" to (L'C{R, ..., L'C}R),
where C,-/ = ZJ- t,"jCj.
e The isomorphism in ATFE imposes that L=R = T.
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MCE and ATFE are polynomial-time equivalent

» The objects in MCE and ATFE are both 3-way arrays.

e A 2-way array, [¢; ], is a matrix.
e A 3-way array, [¢;j .|, is sometimes called a 3-tensor.
e The 3-way arrays from ATFE are subject to certain structural constraints.

» The isomorphisms in MCE and ATFE are both invertible matrices.
e LR e GLy(g) sends C € Mu(q) to L'CR.
e LR, T =(tij)€GLy(q)sends (Cy,.... C,) € Mu(q)" to (L'C{R, ..., L'C/R),
where C,-/ = ZJ- t;ijj.
e The isomorphism in ATFE imposes that L=R = T.
Theorem ([Grochow-Qiao-Tang, 2023])
MCE and ATFE are polynomial-time equivalent.
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A complexity class for isomorphism problems of algebraic structures

» Relations between isomorphism problems for some algebraic structures are studied in
[Reijnders—Samardjiska—Trimoska, Grochow—Qiao—Tang, D'Alconzo,
Couvreur—Debris-Alazard—Gaborit. . . |
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e MCE was called 3-Tensor Isomorphism in [Grochow-Qiao].
e In analogy with the complexity class Gl for Graph Isomorphism.

» MCE and ATFE are Tl-complete.
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A complexity class for isomorphism problems of algebraic structures

» Relations between isomorphism problems for some algebraic structures are studied in
[Reijnders—Samardjiska—Trimoska, Grochow—Qiao—Tang, D'Alconzo,
Couvreur—Debris-Alazard—Gaborit. . . |

» The complexity class Tl was defined in [Grochow-Qiao], consisting of problems
polynomial-time reducible to MCE.

e MCE was called 3-Tensor Isomorphism in [Grochow-Qiao].
e In analogy with the complexity class Gl for Graph Isomorphism.

» MCE and ATFE are Tl-complete.

» Tl-complete problems include isomorphism problems for tensors, finite groups,
(associative and Lie) algebras, (systems of) polynomials. ..
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Relations with other isomorphism problems

» Tl-complete problems appear in computational group theory, multivariate cryptography,
and quantum information.

e Experiences from these areas suggest that Tl-complete problems are difficult to solve
in practice.
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» Isomorphism problems for cubic forms and quadratic polynomial systems, as studied since
1996 [Patarin], are Tl-complete.
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Relations with other isomorphism problems

» Tl-complete problems appear in computational group theory, multivariate cryptography,

and quantum information.

e Experiences from these areas suggest that Tl-complete problems are difficult to solve
in practice.

» Isomorphism problems for cubic forms and quadratic polynomial systems, as studied since

1996 [Patarin], are Tl-complete.
e Results from the study of polynomial isomorphism are valuable for MCE and ATFE.

» Linear code monomial equivalence and graph isomorphism are in Tl
[Couvreur—Debris-Alazard-Gaborit, Grochow—Qiao].

e Linear code monomial equivalence supports LESS.
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Why use MCE and ATFE in post-quantum cryptography?

» A natural development of Shor's quantum algorithms for integer factorisation and
discrete logarithm is the hidden subgroup problem framework.

» MCE and ATFE can be cast in this framework for general linear groups.
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Why use MCE and ATFE in post-quantum cryptography?

» A natural development of Shor's quantum algorithms for integer factorisation and
discrete logarithm is the hidden subgroup problem framework.

» MCE and ATFE can be cast in this framework for general linear groups.

> A strong negative evidence for the “standard technique” to work in this setting
[Hallgren-Moore-Rétteler-Russell-Sen, 2010].

[Moore-Russell-Vazirani] . .. the strongest such insights we have about the lim-
its of quantum algorithms.
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Cryptanalysis for MCE and ATFE




Algorithms for MCE and ATFE

» Consider 3-way arrays of size n x n x n over Fy under the action of (L,R, T) or
(T, T,T) € GLa(q) x GLa(q)  GLa(q) .

» Brute-force algorithm: q”2 - poly(n,log q).
e After fixing T, to recover L and R can be done in time poly(n, log q).
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Algorithms for MCE and ATFE

» Consider 3-way arrays of size n x n x n over Fy under the action of (L,R, T) or
(T, T,T) e GLn(qg) x GLa(q) x GLA(q) -
» Brute-force algorithm: q”2 - poly(n,log q).
e After fixing T, to recover L and R can be done in time poly(n, log q).
» We will introduce three approaches.

e Direct Grobner basis attack.
e Hybrid Grobner basis: g" - poly(n, log q).
e Utilising low-rank points (via birthday paradox and invariants).

18



Direct Grobner basis attack: the basic idea

» Let C=[cj ] and D = [d; «] be two n x n x n 3-way arrays over Fg.

» We view C as a matrix tuple (Cy,...,C,), G € Mp(q).
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Direct Grobner basis attack: the basic idea

» Let C=[cj ] and D = [d; «] be two n x n x n 3-way arrays over Fg.

We view C as a matrix tuple (Cy, ..., Cp), C;i € Mu(q).

» Recall that L, R, T = (t;j) € GL,(q) sends (Cy,..., Cs) € My(q)" to
(L'C{R....,L'C,R), where C/ = 3" t;,;C;.

> Viewing the entries of L, R and T as variables, the question is whether
(LECIR,...,LEC'R) = (D1, ..., Dy).

e This amounts to n® cubic polynomials in 31” variables.

v
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Direct Grobner basis attack: more efficient modellings

Cubic modelling (L'C{R,...,L'*C/R) = (Dx,...,D,) where C/ = Zj & 5 Che
» This gives rise to n® cubic polynomials in 31 variables for MCE.
» And (g) cubic polynomials in n” variables for ATFE.
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Direct Grobner basis attack: more efficient modellings

Cubic modelling (L*C{R,...,L'CiR) = (Dx,...,D,) where C/ =3, t;;C;.
» This gives rise to n® cubic polynomials in 31 variables for MCE.
» And (g) cubic polynomials in n” variables for ATFE.
Quadratic inverse modelling For ATFE, let T’ = [t/ ]]. Then set
(T*GT,..., T*C, T) = (Dy,...,D;) where D =3t/ .D;, and TT' = I,.
» This is by [Bouillaguet-Faugere-Fouque-Perret, 2010].
» n- (5) 4+ n* quadratic polynomials in 21” variables.
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Direct Grobner basis attack: more efficient modellings

Cubic modelling (L'C{R,...,L'*C/R) = (Dx,...,D,) where C/ = Zj & 5 Che
» This gives rise to n® cubic polynomials in 31 variables for MCE.
» And (g) cubic polynomials in n” variables for ATFE.
Quadratic inverse modelling For ATFE, let T’ = [t/ ]]. Then set
(T*GT,..., T*C, T) = (Dy,...,D;) where D =3t/ .D;, and TT' = I,.
» This is by [Bouillaguet-Faugere-Fouque-Perret, 2010].
» n- (5) 4+ n* quadratic polynomials in 21” variables.
Quadratic dual modelling Use the dual space of D to express that L'C;R € D.
» This is by [Chou-Niederhagen-Persichetti-Randrianarisoa-Reijnders-
Samardjiska-Trimoska].
» This gives rise to n- (n?> — n) homogeneous quadratic polynomials in 21°
variables for MCE.
» And n- ((g) — n) quadratic polynomials in n” variables for ATFE.
» Note that some syzygies arise, complicating the analysis [MEDS spec].
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Hybrid Grobner basis attacks

> We set up n x n variable matrices L and R for MCE (or T and T’ for ATFE).

» In [Faugere-Perret, 2006], it was discovered that Grobner basis runs in polynomial time,
provided that one (or two) rows of L are known.
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algorithm.

» For MCE, knowing two rows of L is enough, leading to an ¢*" - poly(n, log q)-time
algorithm.
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Hybrid Grobner basis attacks

> We set up n x n variable matrices L and R for MCE (or T and T’ for ATFE).

» In [Faugere-Perret, 2006], it was discovered that Grobner basis runs in polynomial time,
provided that one (or two) rows of L are known.

» For ATFE, knowing one row of T is enough, leading to a ¢" - poly(n, log g)-time
algorithm.

» For MCE, knowing two rows of L is enough, leading to an ¢*" - poly(n, log q)-time
algorithm.

» Further observations from [Beullens, 2023]:

e Knowing one row of T up to scalar is enough.
e For low-rank points, the kernel information can be incorporated.
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Utilising low-rank points

> Let ¢: Fg x Fg x Fg — F, be an alternating trilinear form.
» For u e Ty, let ¢, : Fg x Fg — Fg by ¢u(v,w) = ¢(u, v, w).

» An isomorphism invariant for u: r = Rank(¢,).
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Utilising low-rank points

> Let ¢: Fg x Fg x Fg — F, be an alternating trilinear form.
» For u e Ty, let ¢, : Fg x Fg — Fg by ¢pu(v,w) = ¢(u, v, w).
» An isomorphism invariant for u: r = Rank(¢,).
» Algorithms based on birthday paradox and hybrid Grobner basis
[Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].
e Suppose there exist ~ gk-many rank-r points for a random ¢.
(1) Sample g*/2-many rank-r points for ¢ and 1, respectively.
(2) For every pair, use hybrid Grobner basis to find a “matched” pair.

k/2

e Algorithm cost: O(g*/? - samp-cost + g* - gb-cost).
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Utilising low-rank points

> Let ¢: Fg x Fg x Fg — F, be an alternating trilinear form.
» For u e Ty, let ¢, : Fg x Fg — Fg by ¢u(v,w) = ¢(u, v, w).
» An isomorphism invariant for u: r = Rank(¢,).
» Algorithms based on birthday paradox and hybrid Grobner basis

[Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].

e Suppose there exist ~ gk-many rank-r points for a random ¢.
(1) Sample g*/2-many rank-r points for ¢ and 1, respectively.
(2) For every pair, use hybrid Grobner basis to find a “matched” pair.

k/2

e Algorithm cost: O(g*/? - samp-cost + g* - gb-cost).

» Sampling step: min-rank or graph-walking [Beullens, 2023]
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Utilising low-rank points, cont’d

» Algorithms based on distinguishing isomorphism invariants with low-rank points
[Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].

e Suppose there exist ~ gk-many rank-r points for a random ¢.
e Suppose there exist distinguishing isomorphism invariants associated with such
points.
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Utilising low-rank points, cont’d

» Algorithms based on distinguishing isomorphism invariants with low-rank points
[Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].
e Suppose there exist ~ gk-many rank-r points for a random ¢.

e Suppose there exist distinguishing isomorphism invariants associated with such
points.

—~~
—_
~

Sample g*/?-many rank-r points for ¢ and 1), respectively.
For every point, compute the isomorphism invariant.

By birthday paradox, there exists a pair of points of the same invariant. Use hybrid
Grobner basis to complete.

—_
w N
— —
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Utilising low-rank points, cont’d

» Algorithms based on distinguishing isomorphism invariants with low-rank points
[Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].

e Suppose there exist ~ gk-many rank-r points for a random ¢.

e Suppose there exist distinguishing isomorphism invariants associated with such
points.

—~~
—_
~

Sample g¥/2-many rank-r points for ¢ and 1, respectively.

For every point, compute the isomorphism invariant.

By birthday paradox, there exists a pair of points of the same invariant. Use hybrid
Grobner basis to complete.

—_
w N
— —

e Algorithm cost: O(g*/? - (samp-cost + inv-cost) + gb-cost).
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Utilising low-rank points, cont’d

» Algorithms based on distinguishing isomorphism invariants with low-rank points
[Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].

e Suppose there exist ~ gk-many rank-r points for a random ¢.

e Suppose there exist distinguishing isomorphism invariants associated with such
points.

—
—
~

Sample g¥/2-many rank-r points for ¢ and 1, respectively.

For every point, compute the isomorphism invariant.

By birthday paradox, there exists a pair of points of the same invariant. Use hybrid
Grobner basis to complete.

—_
w N
— —

e Algorithm cost: O(g*/? - (samp-cost + inv-cost) + gb-cost).

» Distinguishing isomorphism invariant candidates: ranks of the neighbours of low-rank
points, and more [Narayanan-Qiao-Tang].
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MEDS and ALTEQ




Parameters and performance of MEDS

vt | . | PRI | e | | |
| MEDS-9923 9.9 9.9 1 272 271
MEDS-13220 13.2 13 1.3 46.7 46
" MEDS-41711 41.7 41 5.1 779 762
MEDS-69497 55.6 54.7 6.7 203.8 | 200.4

Table: An overview of the parameters and performance of MEDS.

Optimizations:
» Standard: Multiple Public Keys + Fixed-Weight Challenge Strings + Seed tree
» New: Public Key Compression
e generate public key partially from seed = signature size reduction

e Work in progress: use similar idea during signing
24



Parameters and performance of ALTEQ

vt | mote | Pty | e [y | e |
| Balanced 8 16 0.093 | 0.629 | 0.496
ShortSig 512 10 1.902 | 0.194 | 0.092
" Balanced 32 48 0.582 | 6.986 | 6.483
ShortSig 1024 24 5.152 | 1.705 | 1.304

Table: An overview of the parameters and performance of ALTEQ.

Optimizations:

» Standard: Multiple Public Keys + Fixed-Weight Challenge Strings (+ Seed tree)
» New: Invertible matrix decomposition
e Represent an invertible matrix as a product of column matrices for faster signing and

verification
25



» Digital signature based on equivalence problems: design and optimisations

» Matrix code equivalence (MCE) and alternating trilinear form equivalence (ATFE)
» Algorithms for MCE and ATFE

» MEDS and ALTEQ: parameters and performances
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Thank you for listening!
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