# nuvoTon

NUVOTON
TECHNOLOGY
CORPORATION

8 HASADNAOT STREET

HERZLIA, 46130

ISRAEL

## NPCT6XX TPM 2.0

FIPS 140-2 SECURITY POLICY

**DOCUMENT VERSION: 5.7** 

LAST REVISION: MAY 6, 2021

## **CONTENTS**

| 1. Module Description                                |
|------------------------------------------------------|
| 2. Cryptographic Functions8                          |
| 3. Ports and Interfaces11                            |
| 4. Roles and Services                                |
| 5. Key Management18                                  |
| 6. Power-On Self Tests23                             |
| 7. Conditional Self-Tests24                          |
| 8. Crypto-Officer Guidance25                         |
| 9. User Guidance25                                   |
| 10. Acronyms                                         |
|                                                      |
|                                                      |
| LIST OF TABLES AND FIGURES                           |
| LIST OF TABLES AND FIGURES  Figure 1: TPM 2.0 ImageS |
|                                                      |
| Figure 1: TPM 2.0 ImageS4                            |
| Figure 1: TPM 2.0 ImageS                             |

## 1. MODULE DESCRIPTION

The Nuvoton Trusted Platform Module ("MODULE") is a hardware cryptographic module that implements advanced cryptographic algorithms, including symmetric and asymmetric cryptography, as well as key generation and random number generation.

The Module is a SINGLE-CHIP MODULE that provides cryptographic services utilized by external applications. The Module meets the requirements of FIPS Pub 140-2.

The Module meets commercial-grade specifications for power, temperature, reliability, shock, and vibrations, and includes chip packaging to meet the physical security requirements at Security Level 2.

The Module has two silicon revisions: FB5C85D and FB5C85E. The latter includes several issue fixes related to interface, power management and versioning. The changes have no impact on the security of the Module.

The FIPS 140-2 conformance testing was performed on the following configurations of the Nuvoton NPCT6xx TPM 2.0:

- FIRMWARE VERSIONS: 1.3.0.1, 1.3.1.0, 1.3.2.8
- HARDWARE VERSION 1: FB5C85D IN TSSOP28 PACKAGE
- HARDWARE VERSION 2: FB5C85D IN QFN32 PACKAGE
- HARDWARE VERSION 3: FB5C85E IN TSSOP28 PACKAGE
- HARDWARE VERSION 4: FB5C85E IN QFN32 PACKAGE

## Images depicting the Module are shown in Figure 1:

FIGURE 1: TPM 2.0 IMAGES

FB5C85D IN TSSOP28 PACKAGE



FB5C85D IN QFN32 PACKAGE



## FB5C85E IN TSSOP28 PACKAGE



FB5C85E IN QFN32 PACKAGE



The PHYSICAL CRYPTOGRAPHIC BOUNDARY of the Module is the outer boundary of the chip packaging.

A LOGICAL DIAGRAM of the Module is shown in Figure 2:

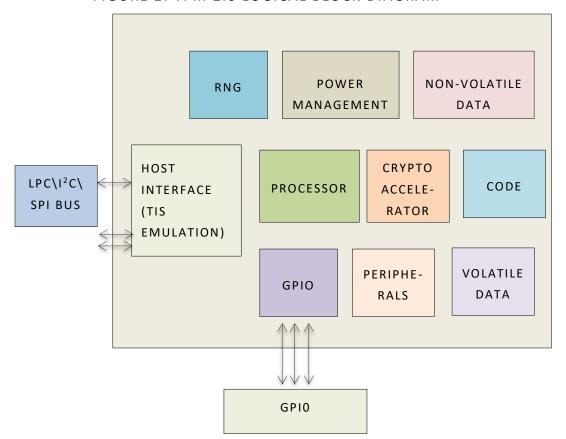



FIGURE 2: TPM 2.0 LOGICAL BLOCK DIAGRAM

The Module was tested to meet OVERALL SECURITY LEVEL 2 of the FIPS PUB 140-2 standard. The Security Level for each section of FIPS PUB 140-2 is specified in Table 1.

TABLE 1: SECURITY LEVELS

| FIPS 140-2 SECTION                        | SECURITY LEVEL |
|-------------------------------------------|----------------|
| 1173 140-2 SECTION                        | SECONITI LEVEL |
| CRYPTOGRAPHIC MODULE SPECIFICATION        | 2              |
| CRYPTOGRAPHIC MODULE PORTS AND INTERFACES | 2              |
| ROLES, SERVICES AND AUTHENTICATION        | 2              |
| FINITE STATE MODEL                        | 2              |
| PHYSICAL SECURITY                         | 2              |
| OPERATING ENVIRONMENT                     | N/A            |
| CRYPTOGRAPHIC KEY MANAGEMENT              | 2              |
| EMI/EMC                                   | 2              |
| SELF-TESTS                                | 2              |
| DESIGN ASSURANCE                          | 2              |
| MITIGATION OF OTHER ATTACKS               | N/A            |

# 2. CRYPTOGRAPHIC FUNCTIONS

The Module's cryptographic functions are outlined in Table 2.

TABLE 2: CRYPTOGRAPHIC FUNCTIONS

| FUNCTION                                                                                   | KEYSIZE      | USE                       | CERT NUMBER  |
|--------------------------------------------------------------------------------------------|--------------|---------------------------|--------------|
| APPROVED FUNCTIONS                                                                         |              |                           |              |
| AES MODES: ECB (ENCRYPT), OFB (ENCRYPT/DECRYPT), CFB128(ENCRYPT/DECRYPT), CTR (ENCRYPT)    | 128 BITS     | ENCRYPTION AND DECRYPTION | 3541<br>3542 |
| RSA SIGNATURE                                                                              | 1024 &       | DIGITAL                   | 1819         |
| GENERATION AND VERIFICATION USING RSASSA-PKCS1-V1_5 AND RSASSA-PSS MODES AND SHA-1/SHA-256 | 2048<br>BITS | SIGNATURE<br>VERIFICATION | 1820         |
| ECDSA SIGNATURE GENERATION AND VERIFICATION USING P-256 CURVE AND SHA-1/SHA- 256           | 256 BITS     | DIGITAL<br>SIGNATURES     | 719<br>720   |

|                           | ĺ         |             |          |
|---------------------------|-----------|-------------|----------|
| HMAC KEYED HASH USING     | 160 BITS, | KEYED       | 2262     |
| SHA-1 AND SHA-256         | 256 BITS  | MESSAGE     | 2263     |
|                           |           | DIGEST      |          |
|                           |           |             |          |
|                           |           |             | 2212     |
| SHS HASH USING SHA-1      | 160 BITS, | MESSAGE     | 2919     |
| AND SHA-256               | 256 BITS  | DIGEST      | 2920     |
|                           |           |             |          |
| GENERATION OF RSA KEYS    | 2048      | KEY PAIR    | 1819     |
| FIPS 186-4                | BITS      | GENERATION  | 1820     |
|                           |           |             |          |
| GENERATION OF ECDSA       | 256 BITS  | KEY PAIR    | 719      |
| KEYS                      |           | GENERATION  | 720      |
| FIPS 186-4                |           |             |          |
| 500 Kan A aa              | 25.6      | W           | 66       |
| ECC KEY AGREEMENT         | 256 BITS  | KEY         | 66       |
| USING P-256 CURVE AND     |           | AGREEMENT   | 67       |
| SHA-256                   |           |             |          |
| SP 800-90A DRBG           | N/A       | RANDOM      | 898      |
|                           | ,,,       | NUMBER      | 899      |
|                           |           | GENERATION  |          |
|                           |           | & SYMMETRIC |          |
|                           |           | KEY         |          |
|                           |           | GENERATION  |          |
| Approved Services         |           |             |          |
|                           |           |             |          |
| CVL                       | N/A       | TPM KEY     | 594      |
| SP 800-135 REV1           |           | DERIVATION  | 596      |
| CVL                       | N/A       | TPM KEY     | VENDOR   |
| SP 800-56A REV. 3 USING   |           | DERIVATION  | AFFIRMED |
| P-256 CURVE               |           |             |          |
|                           |           |             |          |
| ALLOWED FOR USE FUNCTIONS |           |             |          |
| RSA KEY WRAPPING          | 2048      | WRAP &      | N/A      |
|                           | BITS      |             |          |
|                           |           |             |          |

|                         |     | UNWRAP<br>SYMMETRIC<br>KEYS          |     |
|-------------------------|-----|--------------------------------------|-----|
| NDRNG (ENTROPY SOURCE). | N/A | GENERATE THE SEED INPUT FOR THE DRBG | N/A |

In the Approved mode of operation, the Module supports a key size of 2048 bits for RSA key wrapping. This is equivalent to a key strength of 112 bits. AES key wrapping functionality is compliant with SP 800-38F Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping since it uses an Approved symmetric encryption algorithm (AES #3541 and #3542) with an Approved authentication technique (HMAC #2262 and #2263). This is designated as KTS (AES Certs. #3541 and #3542 and HMAC Certs. #2262 and #2263) on the certificate.

**Note:** Neither the TLS protocol nor the TPM protocol were tested by the CAVP or CMVP.

## 2.1 Non-Approved, Allowed Function

The module supports the following Non-Approved but Allowed functions, as listed in Table 2:

- RSA Key Wrapping; key size is 2048 bits
- NDRNG (proprietary Non-Deterministic Hardware RNG); available entropy is 256 bits

## 2.2 Non-Approved, Non-Allowed Function

The Module supports signature generation using RSA-SHA-1. This function is Non-Approved and is considered equivalent to plaintext or obfuscation.

## 3. PORTS AND INTERFACES

The physical ports of the Module are

- LPC Bus
- SPI Bus
- I2C Bus
- GPIO Bus

The logical interfaces and the mapping of the logical interfaces to the physical ports of the Module are described in Table 3.

TABLE 3: PORTS AND INTERFACES

| LOGICAL<br>INTERFACE     | DESCRIPTION                                                       | PHYSICAL<br>PORTS                         |
|--------------------------|-------------------------------------------------------------------|-------------------------------------------|
| CONTROL INPUT INTERFACE  |                                                                   | LPC BUS SPI BUS I2C BUS GPIO BUS          |
| STATUS OUTPUT INTERFACE  | STATUS DATA OUTPUT BY THE CHIP                                    | LPC Bus<br>SPI Bus<br>I2C Bus<br>GPIO Bus |
| DATA INPUT<br>INTERFACE  | DATA PROVIDED TO THE CHIP AS PART OF THE DATA PROCESSING COMMANDS | SPI Bus                                   |
| DATA OUTPUT<br>INTERFACE | DATA OUTPUT BY THE CHIP A PART OF THE DATA PROCESSING COMMANDS    | SPI Bus                                   |
| POWER<br>INTERFACE       | POWER INTERFACE OF THE                                            | POWER PIN<br>GROUND PIN                   |

The Module does not include a maintenance interface.

#### 4. ROLES AND SERVICES

The OPERATOR ROLES implemented by the Module are summarized in Table 4.

TABLE 4: ROLES

| ROLE           | HIGH LEVEL DESCRIPTION                                                             |
|----------------|------------------------------------------------------------------------------------|
| CRYPTO OFFICER | INSTALLS AND CONFIGURES THE PRODUCT, EXECUTES CRYPTO ALGORITHMS AND GENERATES KEYS |
| USER           | EXECUTES CRYPTO ALGORITHMS AND GENERATES KEYS                                      |

The Module provides the set of SERVICES described in Table 5. For each service, the table includes a description of the service and lists the roles for which the service is available.

The Module implements authentication to authenticate operator actions using authentication tokens. The authentication token length is 32 bytes. Therefore, the total number of authentication token combinations is  $2^256 = 10^77$ , which meets the authentication strength requirements of FIPS 140-2.

The maximum number of authentication attempts before lockout is 10. The recovery time is 7,200 seconds (2 hours), and the lockout recovery time is 86,400 seconds (24 hours). Since only 10 tries are allowed, the probability of a successful random attempt during a one minute period is  $10 / 2^256$ , which is less than one in 100,000.

The Module stores all authentication results in volatile memory, which is cleared when the Module is powered off.

The Module always encrypts cryptographic key on key input and output, which meets the key encryption requirements of FIPS 140-2 and Security Level 2.

The Module provides SP 800-90A DRBG random bit generation services without authentication, as permitted by FIPS 140-2 Implementation Guidance.

#### TABLE 5: SERVICES

| SERVICE        | DESCRIPTION                                                                                                                                                                                                                                                    | ROLE                      |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| GET STATUS     | THE MODULE IMPLEMENTS A GET STATUS COMMAND THAT RETURNS THE STATUS OF THE MODULE, INCLUDING SUCCESS OR FAILURE OF SELF-TESTS.  NOTE: THIS SERVICE DOES NOT                                                                                                     | OFFICER                   |
| RUN SELF-TESTS | THE MODULE RUNS POWER-UP SELF- TESTS AUTOMATICALLY WHEN POWERED ON. ONE CAN EXECUTE SELF-TESTS ON DEMAND BY POWER-CYCLING THE MODULE.                                                                                                                          | CRYPTO<br>OFFICER<br>USER |
| ENCRYPT        | USED TO ENCRYPT DATA                                                                                                                                                                                                                                           | CRYPTO<br>OFFICER<br>USER |
| DECRYPT        | USED TO DECRYPT DATA                                                                                                                                                                                                                                           | CRYPTO<br>OFFICER<br>USER |
| ZEROIZE        | USED TO ZEROIZE (IRREVERSIBLY DESTROY) MODULE'S CRYPTOGRAPHIC KEYS AND CSPS. THE KEYS AND CSPS STORED IN THE NON-VOLATILE AND VOLATILE MEMORY ARE ZEROIZED BY EXECUTING THE CORRESPONDING KEY/ENTITY ZEROIZATION COMMANDS:  1. TPM2_FLUSHCONTEXT 2. TPM2_CLEAR | CRYPTO<br>OFFICER<br>USER |

| MAC & MAC VERIFY | USED TO CALCULATE AND VERIFY MACFOR DATA                 | CRYPTO<br>OFFICER<br>USER |
|------------------|----------------------------------------------------------|---------------------------|
| KEY GENERATE     | USED TO GENERATE KEYS                                    | CRYPTO<br>Officer<br>USER |
| RSA VERIFY       | USED TO VERIFY DATA USING RSA                            | CRYPTO<br>OFFICER<br>USER |
| ECDSA VERIFY     | USED TO VERIFY DATA USING ECDSA                          | CRYPTO<br>Officer         |
| ECDSA SIGN       | USED TO SIGN DATA USING ECDSA                            | USER CRYPTO OFFICER USER  |
|                  | USED TO WRAP & UNWRAP CRYPTOGRAPHIC KEYS USING RSA       | CRYPTO OFFICER USER       |
| KEY IMPORT       | USED TO IMPORT KEYS                                      | CRYPTO<br>OFFICER<br>USER |
| KEY AGREEMENT    | USED TO DERIVE A KEY                                     | CRYPTO<br>OFFICER<br>USER |
| TPM IDENTITY     | USED TO AUTHENTICATE TPM IDENTITY TO OTHER PARTIES       | CRYPTO<br>Officer<br>USER |
| TPM ENDORSEMENT  | USED TO PROVE TO OTHER PARTIES THAT TPM IS A GENUINE TPM | CRYPTO<br>OFFICER<br>USER |

| TPM GET RANDOM  | USED TO GENERATE RANDOM DATA                       | CRYPTO<br>Officer         |
|-----------------|----------------------------------------------------|---------------------------|
|                 | NOTE: THIS SERVICE DOES NOT REQUIRE AUTHENTICATION | USER                      |
| TPM STIR RANDOM | USED TO ADD ENTROPY TO THE RANDOM BIT GENERATOR    | CRYPTO<br>OFFICER<br>USER |
| INSTALL MODULE  | Installs Module                                    | CRYPTO<br>Officer         |
| FIRMWARE UPDATE | UPDATES MODULE'S FIRMWARE                          | CRYPTO<br>Officer<br>USER |

## 5. KEY MANAGEMENT

Table 6 specifies each cryptographic key utilized by the Module. For each key, the table provides a description of its use; derivation or import; and storage.

**Note: READ** is defined as read access; **WRITE** is defined as write access.

TABLE 6: CRYPTOGRAPHIC KEYS

| KEY OR CSP | USAGE           | SERVICE & ACCESS | ORIGIN & STORAGE |
|------------|-----------------|------------------|------------------|
| AES        | USED TO ENCRYPT | ENCRYPT          | GENERATED        |
| SYMMETRIC  | AND DECRYPT     | READ             | OR IMPORTED      |
| ENCRYPTION | DATA            |                  | BY THE           |
| KEYS       |                 | DECRYPT          | MODULE,          |
|            |                 | READ             | STORED IN        |
|            |                 |                  | OTP OR IN        |
|            |                 | KEY GEN          | NON-VOLATILE     |
|            |                 | WRITE            | FLASH IN         |
|            |                 |                  | PLAINTEXT        |
|            |                 | KEY WRAPPING     |                  |
|            |                 | /UNWRAPPING      |                  |
|            |                 | WRITE            |                  |
|            |                 | KEY IMPORT       |                  |
|            |                 | WRITE            |                  |
|            |                 | ZEROIZE          |                  |
|            |                 | WRITE            |                  |
|            |                 |                  |                  |
|            |                 |                  |                  |
|            |                 |                  |                  |
|            |                 |                  |                  |

|              | USED TO VERIFY SIGNATURES ON | RSA VERIFY<br>READ | GENERATED OR IMPORTED BY THE |
|--------------|------------------------------|--------------------|------------------------------|
| KEYS         | DATA                         |                    | MODULE,                      |
| KETS         |                              | KEY GEN            | STORED IN                    |
|              |                              | WRITE              | VOLATILE RAM                 |
|              |                              |                    | OR IN NON-                   |
|              |                              | ZEROIZE            | VOLATILE                     |
|              |                              | WRITE              | FLASH IN                     |
|              |                              |                    | PLAINTEXT                    |
|              |                              | KEY WRAPPING       |                              |
|              |                              | /UNWRAPPING        |                              |
|              |                              | WRITE              |                              |
|              |                              | KEY IMPORT         |                              |
|              |                              | WRITE              |                              |
| RSA PUBLIC   | USED TO WRAP                 | RSA                | GENERATED                    |
| STORAGE KEYS | SYMMETRIC KEYS               | WRAP/UNWRAP        | OR IMPORTED                  |
|              |                              | READ               | BY THE                       |
|              |                              |                    | Module,                      |
|              |                              |                    | STORED IN                    |
|              |                              | KEY IMPORT         | VOLATILE RAM                 |
|              |                              | WRITE              | OR IN NON-                   |
|              |                              |                    | VOLATILE                     |
|              |                              | RSA KEY GEN        | FLASH IN                     |
|              |                              | WRITE              | PLAINTEXT                    |
|              |                              | ZEROIZE            |                              |
|              |                              | WRITE              |                              |
|              |                              |                    |                              |
|              |                              |                    |                              |
|              |                              |                    |                              |
|              |                              |                    |                              |
|              |                              |                    |                              |

| RSA PRIVATE   | USED TO UNWRAP  | RSA          | GENERATED    |
|---------------|-----------------|--------------|--------------|
| STORAGE KEYS  | SYMMETRIC KEYS  | WRAP/UNWRAP  | OR IMPORTED  |
|               |                 | READ         | BY THE       |
|               |                 |              | Module,      |
|               |                 | RSA KEY GEN  | STORED IN    |
|               |                 | WRITE        | VOLATILE RAM |
|               |                 |              | OR IN NON-   |
|               |                 | KEY IMPORT   | VOLATILE     |
|               |                 | WRITE        | FLASH IN     |
|               |                 |              | PLAINTEXT    |
|               |                 | ZEROIZE      |              |
|               |                 | WRITE        |              |
| IDENTITY KEYS | AUTHENTICATION  | TPM IDENTITY | GENERATED    |
|               | TOKENS USED TO  | READ         | OR IMPORTED  |
|               | PROVE TPM       |              | BY THE       |
|               | IDENTITY TO     |              | Module,      |
|               | OTHER PARTIES   | RSA KEY GEN  | STORED IN    |
|               |                 | WRITE        | VOLATILE RAM |
|               |                 |              | OR IN NON-   |
|               |                 | KEY IMPORT   | VOLATILE     |
|               |                 | WRITE        | FLASH IN     |
|               |                 |              | PLAINTEXT    |
|               |                 | ZEROIZE      |              |
|               |                 | WRITE        |              |
| RSA PRIVATE   | USED TO UNBIND  | DATA BINDING | GENERATED    |
| BINDING KEYS  | (UNWRAP) A KEY  | READ         | OR IMPORTED  |
|               | BOUND BY AN     |              | BY THE       |
|               | EXTERNAL ENTITY |              | Module,      |
|               |                 | RSA KEY GEN  | STORED IN    |
|               |                 | WRITE        | VOLATILE RAM |
|               |                 |              | OR IN NON-   |
|               |                 |              | VOLATILE     |
|               |                 | ZEROIZE      | FLASH IN     |
|               |                 | WRITE        | PLAINTEXT    |

| HMAC KEYS   | USED TO          | MAC/MAC     | GENERATED     |
|-------------|------------------|-------------|---------------|
|             | CALCULATE AND    | VERIFY      | OR IMPORTED   |
|             | VERIFY MAC       | READ        | BY THE        |
|             | CODES FOR DATA   |             | Module,       |
|             |                  |             | STORED IN     |
|             |                  | KEY GEN     | VOLATILE RAM  |
|             |                  | READ        | OR IN NON-    |
|             |                  |             | VOLATILE      |
|             |                  |             | FLASH IN      |
|             |                  | KEY IMPORT  | PLAINTEXT     |
|             |                  | WRITE       |               |
|             |                  |             |               |
|             |                  | ZEROIZE     |               |
|             |                  | WRITE       |               |
|             |                  |             |               |
| DRBG SEEDS  | USED TO SEED THE | KEY GEN     | GENERATED BY  |
|             | DRBG             | READ        | THE MODULE    |
|             |                  |             | USING THE     |
|             |                  |             | NON-          |
|             |                  | RSA KEY GEN | APPROVED      |
|             |                  | READ        | NON-          |
|             |                  |             | DETERMINISTIC |
|             |                  |             | HARDWARE      |
|             |                  |             | RNG           |
|             |                  | ZEROIZE     | (ENTROPY      |
|             |                  | WRITE       | SOURCE)       |
|             |                  |             | STORED IN     |
|             |                  |             | VOLATILE RAM  |
|             |                  |             | IN PLAINTEXT  |
|             |                  |             |               |
| ENDORSEMENT | AUTHENTICATION   | TPM         | GENERATED BY  |
| KEYS        | TOKENS USED TO   | ENDORSEMENT | THE MODULE    |
|             | PROVE TO THE     | READ        |               |
|             | EXTERNAL PARTIES |             |               |
|             | THAT TPM IS A    |             |               |
|             | GENUINE TPM      |             |               |
|             |                  |             |               |
|             |                  |             |               |

| PLATFORM<br>KEYS               | KEYS USED BY THE PLATFORM FIRMWARE           | RSA KEY GEN<br>WRITE       | GENERATED BY             |
|--------------------------------|----------------------------------------------|----------------------------|--------------------------|
|                                |                                              | ECDSA KEY GEN<br>WRITE     |                          |
| HMAC<br>AUTHENTICATI<br>ON KEY | USED FOR HMAC AUTHENTICATION OF DATA         | KEY GENERATE<br>WRITE      | GENERATED BY             |
|                                |                                              | MAC/MAC<br>VERIFY<br>READ  |                          |
| FIRMWARE<br>UPDATE KEY         | USED TO VERIFY SIGNATURE ON FIRMWARE UPDATES | FIRMWARE<br>UPDATE<br>READ | INSTALLED AT THE FACTORY |

## 6. POWER-ON SELF TESTS

The Module implements a power-up integrity check using a 256-bit error detection code.

The Module implements power-up cryptographic algorithm tests that are described in Table 7.

TABLE 7: SELF-TESTS

| CRYPTO FUNCTION             | TEST TYPE                  |
|-----------------------------|----------------------------|
| AES CTR ENCRYPT (ALL MODES) | KNOWN ANSWER TEST          |
| AND DECRYPT (ALL MODES)     | (ENCRYPT AND DECRYPT)      |
| RSA VERIFY                  | KNOWN ANSWER TEST (VERIFY) |
| ECDSA SIGN/VERIFY           | PAIR-WISE CONSISTENCY TEST |
| ECC KEY AGREEMENT           | PAIR-WISE CONSISTENCY TEST |
| HMAC KEYED HASH             | KNOWN ANSWER TEST          |
|                             | (KEYED HASH)               |
| SHS HASH                    | KNOWN ANSWER TEST (HASH)   |
| DRBG RANDOM NUMBER          | Known Answer Test          |
| GENERATION                  | (GENERATE RANDOM BLOCK)    |

## 7. CONDITIONAL SELF-TESTS

The Module executes the following tests and checks:

- Continuous DRBG test on each execution of the SP 800-90A DRBG (both the entropy source and the approved algorithm are tested).
- Conditional pair-wise consistency check for RSA publicprivate key pairs each time an RSA key pair is generated, using FIPS 186-4 key pair generation algorithm.
- Conditional pair-wise consistency check for ECDSA public-private key pairs each time an ECDSA key pair is generated, using FIPS 186-4 key pair generation algorithm.
- Firmware update test during the firmware update. The digital signature is verified on the firmware image using an RSA (SHA-256) algorithm, utilizing a 2048-bit firmware update key.

If any of the conditional or power-on self-tests fail, the Module enters an error state where both data output and cryptographic services are disabled.

In addition, the Module executes DRBG Instantiate, DRBG Generation, DRBG reseed, and DRBG Instantiate tests, as prescribed by SP 800-90A.

## 8. CRYPTO-OFFICER GUIDANCE

To install the Module in the Approved Mode of operation, the following steps must be followed:

- The Module must be physically controlled during the installation.
- The Module must be placed on the PCB as described in the Module technical specifications.
- The Module arrives from the manufacturer, typically preconfigured with FIPS mode enabled according to the *NPCT65x TPM2.0 Programmer's Guide* (CFG\_H[0] is zero). If the initialization sequence was not executed by the manufacturer, the Crypto Officer must initialize the Module using the NTC2\_PreConfig command (see Section 3.1 in the *NPCT65x TPM2.0 Programmer's Guide*).

## 9. USER GUIDANCE

The user shall take security measures to protect the tokens used to authenticate the user to the Module.

#### 10. ACRONYMS

AES Advanced Encryption Algorithm

CPU Central Processing Unit

ECC Elliptic Curve Cryptography

EMC Electro-Magnetic Compatibility

EMI Electro-Magnetic Interference

FIPS Federal Information Processing Standard

GPIO General-Purpose Input Output bus

HMAC Hash-based Message Authentication Code

I2C Inter-Integrated Circuit bus

LPC Low Pin Count bus

OTP One-Time Programmable Memory

PCB Printed Circuit Board

RAM Random Access Memory

DRBG Deterministic Random Bit Generator

RSA Rivest-Shamir-Adleman

SHS Secure Hash Standard

SP Special Publication

SPI Serial Peripheral Interface bus

TCG Trusted Computing Group

TIS TPM Interface Specification

TPM Trusted Platform Module

## Nuvoton provides comprehensive service and support. For product information and technical assistance, contact the nearest Nuvoton center.

| Headquarters                    | Nuvoton Technology Corporation America | Nuvoton Technology (Shanghai) Ltd. |
|---------------------------------|----------------------------------------|------------------------------------|
|                                 |                                        |                                    |
| No. 4, Creation Rd. 3           | 2727 North First Street                | 27F, 2299 Yan An W. Rd.            |
| Science-Based Industrial Park   | San Jose, CA 95134, U.S.A.             | Shanghai, 200336 China             |
| Hsinchu, Taiwan, R.O.C          | TEL: 1-408-9436666                     | TEL: 86-21-62365999                |
| TEL: 886-3-5770066              | FAX: 1-408-5441798                     | FAX: 86-21-62365998                |
| FAX: 886-3-5665577              |                                        |                                    |
| http://www.nuvoton.com.tw (Ch.) |                                        |                                    |
| http://www.nuvoton.com (Eng.)   |                                        |                                    |

| Taipei Office                   | Winbond Electronics Corporation Japan | Nuvoton Technology (H.K.) Ltd.    |
|---------------------------------|---------------------------------------|-----------------------------------|
| 1F, No.192, Jingye 1st Rd       | NO. 2 Ueno-Bldg., 7-18, 3-chome       | Unit 9-15, 22F, Millennium City 2 |
| Zhongshan District, Taipei, 104 | Shinyokohama Kohoku-ku                | 378 Kwun Tong Rd                  |
| Taiwan, R.O.C.                  | Yokohama, 222-0033                    | Kowloon, Hong Kong                |
| TEL: 886-2-2658-8066            | TEL: 81-45-4781881                    | TEL: 852-27513100                 |
| FAX: 886-2-8751-3579            | FAX: 81-45-4781800                    | FAX: 852-27552064                 |
|                                 |                                       |                                   |

For Advanced PC Product Line information contact:  $\underline{APC.Support@nuvoton.com}$ 

© 2021 Nuvoton Technology Corporation. All rights reserved