
SUSE Linux Enterprise Server NSS
Cryptographic Module

version 3.0

FIPS 140-2 Non-Proprietary Security Policy

Doc version 3.0.5

Last update: 2021-11-23

Prepared by:

atsec information security corporation

9130 Jollyville Road, Suite 260

Austin, TX 78759

www.atsec.com

©2021 SUSE, LLC / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Table of contents
1 Cryptographic Module Specifcation ... 3

1.1 Module Overview .. 3
1.2 Modes of Operation ... 5

2 Cryptographic Module Ports and Interfaces .. 7
2.1 Inhibition of Data Output .. 7
2.2 Output Data Path during key processing .. 7

3 Roles, Services and Authentication .. 8
3.1 Roles ... 8
3.2 Services .. 8
3.3 Operator Authentication ... 13

3.3.1 Strength of the Authentication Mechanism ... 13
3.4 Algorithms .. 14
3.5 Allowed Algorithms ... 16
3.6 Non-Approved Algorithms ... 16

4 Physical Security ... 19
5 Operational Environment .. 20

5.1 Policy ... 20
6 Cryptographic Key Management ... 21

6.1 Random Number Generation .. 22
6.2 Key/CSP Generation .. 22
6.3 Key Agreement .. 23
6.4 Key Transport .. 23
6.5 Key Derivation .. 23
6.6 Key/CSP Entry and Output .. 23
6.7 Key/CSP Storage ... 24
6.8 Key/CSP Zeroization .. 24

7 Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC) 25
8 Self Tests .. 26

8.1 Power-Up Tests ... 26
8.1.1 Integrity Tests ... 26
8.1.2 Cryptographic Algorithm Tests .. 26

8.2 On-Demand Self-Tests .. 27
8.3 Conditional Tests .. 27
8.4 Error states ... 27

9 Guidance .. 29
9.1 Crypto Ofcer Guidance ... 29

9.1.1 Module Installation .. 29
9.1.2 Operating Environment Confguration ... 29
9.1.3 Access to Audit Data ... 30

9.2 User Guidance .. 30
9.2.1 Triple-DES encryption .. 31
9.2.2 Key derivation using SP800-132 PBKDF ... 31

10 Mitigation of Other Attacks .. 33
10.1 Blinding Against RSA Timing Attacks .. 33
10.2 Cache invariant modular exponentiation .. 33
10.3 Double-checking RSA signatures .. 33

Appendix A - CAVP certifcates .. 34
Appendix B - Glossary and Abbreviations .. 36
Appendix C - References ... 37

©2021 SUSE, LLC / atsec information security. Page 2 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

1 Cryptographic Module Specifcation
This document is the non-proprietary security policy for the SUSE Linux Enterprise Server NSS
Cryptographic Module version 3.0. It contains the security rules under which the module must
operate and describes how this module meets the requirements as specifed in FIPS 140-2
(Federal Information Processing Standards Publication 140-2) for a security level 1 module.

FIPS 140-2 details the requirements of the Governments of the U.S. and Canada for
cryptographic modules, aimed at the objective of protecting sensitive but unclassifed
information. For more information on the FIPS 140-2 standard and validation program please
refer to the NIST website at http://csrc.nist.gov/.

Throughout the document, “the NSS module” and “the module” are also used to refer to the
SUSE Linux Enterprise Server NSS Cryptographic Module version 3.0.

1.1 Module Overview
The SUSE Linux Enterprise Server NSS Cryptographic Module (hereafter referred to as "the
module") is a software library implementing general purpose cryptographic algorithms based
on the industry standard PKCS#11 version 2.20. The module provides cryptographic services
to applications running in the user space of the underlying operating system, through a C
language, PKCS#11 compliant application program interface (API).

For the purpose of the FIPS 140-2 validation, the module is a software-only, multi-chip
standalone cryptographic module validated at overall security level 1. Table 1 shows the
security level claimed for each of the eleven sections that comprise the FIPS 140-2 standard:

FIPS 140-2 Section Security
Level

1 Cryptographic Module Specifcation 1

2 Cryptographic Module Ports and Interfaces 1

3 Roles, Services and Authentication 2

4 Finite State Model 1

5 Physical Security N/A

6 Operational Environment 1

7 Cryptographic Key Management 1

8 EMI/EMC 1

9 Self Tests 1

10 Design Assurance 2

11 Mitigation of Other Attacks 1

Table 1: Security Levels

©2021 SUSE, LLC / atsec information security. Page 3 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

http://csrc.nist.gov/

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Table 2 lists the software components of the cryptographic module, which defnes its logical
boundary. The module is provided for the 64-bit Intel architectures.

Component Description

/usr/lib64/libsoftokn3.so PKCS#11 wrapper shared library.

/usr/lib64/libsoftokn3.chk DSA signature for libsoftokn3.so.

/usr/lib64/libnssdbm3.so NSS database management shared library.

/usr/lib64/libnssdbm3.chk DSA signature for libnssdbm3.so.

/lib64/libfreeblpriv3.so General purpose cryptographic shared library.

/lib64/libfreeblpriv3.chk DSA signature for libfreeblpriv3.so.

Table 2: Cryptographic Module Components

The software block diagram below shows the logical boundary of the module, and its
interfaces with the operational environment.

 Figure 1: Software Block Diagram

Note: The libnspr4.so, libplc4.so and libplds4.so shared libraries are part of the mozilla-nspr
package, which is a prerequisite for the module and part of the Operational Environment. See
section 9.1.1 for installation instructions.

©2021 SUSE, LLC / atsec information security. Page 4 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

The module is aimed to run on a general purpose computer (GPC). Table 3 shows the
platform on which the module has been tested:

Platform Processor Test Confguration

Dell EMC PowerEdge 640 Intel® Cascade Lake
Xeon® Gold 6234

SUSE Linux Enterprise Server 15 SP0 with
and without AES-NI (PAA).

Dell EMC PowerEdge 640 Intel® Cascade Lake
Xeon® Gold 6234

SUSE Linux Enterprise Server 15 SP2 with
and without AES-NI (PAA)

IBM System Z/15 IBM z15 SUSE Linux Enterprise Server 15 SP2

Gigabyte R181-T90 Cavium ThunderX2
CN9975 ARMv8

SUSE Linux Enterprise Server 15 SP2

Table 3: Tested Platforms

Note: Per FIPS 140-2 IG G.5, the Cryptographic Module Validation Program (CMVP) makes no
statement as to the correct operation of the module or the security strengths of the
generated keys when this module is ported and executed in an operational environment not
listed on the validation certifcate.

The physical boundary of the module is the surface of the case of the tested platform. Figure
2 shows the hardware block diagram including major hardware components of a GPC.

Figure 2: Hardware Block Diagram

1.2 Modes of Operation
The module supports two modes of operation:

©2021 SUSE, LLC / atsec information security. Page 5 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

• FIPS mode (the Approved mode of operation): only approved or allowed security
functions with sufcient security strength can be used.

• non-FIPS mode (the non-Approved mode of operation): only non-approved security
functions can be used.

The module enters FIPS mode after power-up tests succeed. Once the module is operational,
the mode of operation is implicitly assumed depending on the security function invoked and
the security strength of the cryptographic keys.

Critical security parameters (CSPs) used or stored in FIPS mode are not used in non-FIPS
mode, and vice versa.

©2021 SUSE, LLC / atsec information security. Page 6 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

2 Cryptographic Module Ports and Interfaces
As a software-only module, the module does not have physical ports. For the purpose of the
FIPS 140-2 validation, the physical ports are interpreted to be the physical ports of the
hardware platform on which it runs.

The logical interfaces are the API through which applications request services. The ports and
interfaces are shown in the following table.

FIPS
Interface

Physical Port Logical Interface

Data Input None API input parameters for data.

Data Output None API output parameters for data.

Control Input None API function calls, API input parameters for control
input, /proc/sys/crypto/fps_enabled control fle.

Status Output None API return codes, API output parameters for status
output.

Power Input PC Power Supply Port N/A

Table 4: Ports and Interfaces

The module uses diferent function arguments for input and output to distinguish among data
input, control input, data output, and status output; to disconnect the logical paths followed
by data/control entering the module and data/status exiting the module. The module doesn't
use the same bufer for input and output. The module is designed with an input bufer that
may hold security-related information, it zeroizes the bufer so that if the memory can be
reused later as an output bufer. No sensitive information can be inadvertently leaked.

2.1 Inhibition of Data Output
All data output via the data output interface is inhibited when the module is performing
power-up self-tests or is in the error state:

• During power-up self-tests: The module performs power-up self-tests automatically
without any operator intervention. All data output via the data output interface is
inhibited while self-tests are executed.

• In the error state: If the power-up self-tests fail, the module will be aborted and no
service can be invoked. If the conditional self-tests fail during operation, the module
will enter the error state and only the API functions that shut down and restart the
module, reinitialize the module, or output status information can be invoked. These
functions are FC_GetFunctionList, FC_Initialize, FC_Finalize, FC_GetInfo,
FC_GetSlotList, FC_GetSlotInfo, FC_GetTokenInfo, FC_InitToken, FC_CloseSession,
and FC_CloseAllSessions.

2.2 Output Data Path during key processing
During key generation and key zeroization, the module may perform audit logging, but the
audit records do not contain any sensitive information. The module does not return any
output until key generation or key zeroization is fnished. Therefore, the logical paths used by
data output are logically disconnected from the processes/threads performing key generation
and key zeroization.

©2021 SUSE, LLC / atsec information security. Page 7 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

3 Roles, Services and Authentication

3.1 Roles
The module supports the following roles:

⚫ User role: performs all cryptographic services (in both FIPS mode and non-FIPS mode),
including those that require authentication and access to secret or private keys.

⚫ Crypto Ofcer role: performs module installation, confguration and initialization; and
cryptographic services that do not require authentication, like message digest,
random number generation, and status services.

3.2 Services
The module provides services via an application program interface (API) that is compliant
with the PKCS#11 standard. The API functions are available to the calling application via the
FC_GetFunctionList function, which in the only function exported and thus callable by its
name. The rest of the API functions are accessible once this function returns a
CK_FUNCTION_LIST structure containing the corresponding function pointers to the API
functions.

This security policy uses the naming convention provided by the API documentation which
defnes the API functions prefxed with "FC_" (e.g. FC_GetFunctionList, FC_Initialize). Please
refer to section 9 for how to initialize the module and invoke the API functions.

Services are available to users that assume one of the available roles. Crypto Ofcer role
services do not require operator authentication, whereas user role services requires operator
authentication, as they access secret and private keys and other CSPs associated with the
user role.

For instance, message digest services are available to the Crypto Ofcer role only when CSPs
are not accessed; the FC_DigestKey function computes the message digest (hash) of the value
of a secret key, so it is available only to the User role. User role services, which access CSPs
(e.g. FC_GenerateKey, FC_GenerateKeyPair), always require operator authentication.

Table 5 lists the services available in the module. FIPS-approved services must be requested
using the FIPS-approved security functions specifed in Table 6, or the FIPS-allowed security
functions specifed in Table 7. Invoking the services with those security functions implicitly
turns the module into FIPS mode of operation.

Non-approved services are requested using the same API functions specifed in Table 5, but
using the non-approved security functions specifed in Table 8. Invoking the services with
those security functions implicitly turns the module into non-FIPS mode of operation.

For each service, the table lists the associated API functions, the role that can perform the
service (User for the user role, CO for the Crypto Ofcer role), the cryptographic keys or CSPs
involved, and their access type(s). The following convention is used to specify access rights to
a CSP:

• Create: the calling application can create a new CSP.

• Read: the calling application can read the CSP.

• Update: the calling application can write a new value to the CSP.

• Zeroize: the calling application can zeroize the CSP.

• n/a: the calling application does not access any CSP or key during its operation.

©2021 SUSE, LLC / atsec information security. Page 8 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Service Role API Function Description Keys/CSPs Access

Get the list
of API
functions

CO
User

FC_GetFunctionList Return a list of function
pointers.

None n/a

Module
Initialization

CO
User

FC_InitToken Initialize the token. User Password Zeroize

All keys in key
database

CO
User

FC_InitPIN Set the initial user's
password.

User Password Create

General
Purpose

CO
User

FC_Initialize Initialize the module
library.

None n/a

CO
User

FC_Finalize Finalize (shutdown) the
module library.

All keys Zeroize

CO
User

FC_GetInfo Obtain general
information about the
library.

None n/a

Slot and
Token
Management

CO
User

FC_GetSlotList Obtain the list of slots in
the system.

None n/a

CO
User

FC_GetSlotInfo Obtain information about
a particular slot.

None n/a

CO
User

FC_GetTokenInfo Obtain information about
the token.

None n/a

CO
User

FC_GetMechanismList Obtain the list of
mechanisms
(cryptographic algorithms)
supported by the token

None n/a

CO
User

FC_GetMechanismInfo Obtain information about
a particular mechanism.

None n/a

User FC_SetPIN Change the user's
password.

User Password Update

Session
Management

CO
User

FC_OpenSession Open a connection
between the application
and a token.

None n/a

CO
User

FC_CloseSession Close a session. All keys in
session.

n/a

CO
User

FC_CloseAllSessions Close all sessions in a
token.

All keys in
sessions.

Zeroize

CO
User

FC_GetSessionInfo Obtain information about
the session.

None n/a

CO
User

FC_GetOperationState Save the state of the
session (only
implemented for message
digest).

None n/a

CO
User

FC_SetOperationState Restore the state of the
session (only
implemented for message
digest).

None n/a

User FC_Login Log into a token. User password Read

User FC_Logout Log out from a token. None n/a

Object User FC_CreateObject Create a new object None n/a

©2021 SUSE, LLC / atsec information security. Page 9 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Service Role API Function Description Keys/CSPs Access

Management User FC_CopyObject Create a copy of an object Original key (any
key type).

Read

New key (same
as original key).

Create

User FC_DestroyObject Destroy an object Any key type. Zeroize

User FC_GetObjectSize Obtain the size of an
object.

Any key type. Read

User FC_GetAttributeValue Obtain an attribute value
of an object.

Any key type. Read

User FC_SetAttributeValue Modify an attribute value
of an object.

Any key type. Update

User FC_FindObjectsInit Initialize an object search
operation.

None n/a

User FC_FindObjects Continue an object search
operation

Any key type
matching the
search criteria.

Read

User FC_FindObjectsFinal Finish an object search
operation.

None n/a

Data
Encryption

User FC_EncryptInit Initialize encryption
operation.

AES/Triple-DES
key

Read

User FC_Encrypt Single-part encryption. AES/Triple-DES
key

Read

User FC_EncryptUpdate Continue multi-part
encryption

AES/Triple-DES
key

Read

User FC_EncryptFinal Finish multi-part
encryption.

AES/Triple-DES
key

Read

Data
Decryption

User FC_DecryptInit Initialize decryption
operation.

AES/Triple-DES
key

Read

User FC_Decrypt Single-part decryption. AES/Triple-DES
key

Read

User FC_DecryptUpdate Continue multi-part
decryption

AES/Triple-DES
key

Read

User FC_DecryptFinal Finish multi-part
decryption.

AES/Triple-DES
key

Read

Message
Digest

CO
User

FC_DigestInit Initialize message digest
operation.

None n/a

CO
User

FC_Digest Single-part message
digest.

None n/a

CO
User

FC_DigestUpdate Continue multi-part
message digest.

None n/a

User FC_DigestKey Continue multi-part
message digest using key.

HMAC key Read

CO
User

FC_DigestFinal Finish multi-part message
digest.

None n/a

Signature
Generation,
MAC
generation

User FC_SignInit Initialize signature
generation.

DSA/ECDSA/RSA
private key, HMAC
key

Read

User FC_Sign Single-part signature
generation.

DSA/ECDSA/RSA
private key, HMAC
key

Read

©2021 SUSE, LLC / atsec information security. Page 10 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Service Role API Function Description Keys/CSPs Access

User FC_SignUpdate Continue multi-part
signature generation.

DSA/ECDSA/RSA
private key, HMAC
key

Read

User FC_SignFinal Finish multi-part signature
generation.

DSA, ECDSA, RSA
private keys,
HMAC key

Read

User FC_SignRecoverInit Initialize signature
generation, where the
data can be recovered
from the signature.

DSA, ECDSA, RSA
private keys,
HMAC key

Read

User FC_SignRecover Single-part signature
generation where the data
can be recovered from the
signature.

DSA, ECDSA, RSA
private keys,
HMAC key

Read

Signature
Verifcation,
MAC
Verifcation

User FC_VerifyInit Initialize signature
verifcation.

DSA, ECDSA, RSA
public keys, HMAC
key

Read

User FC_Verify Single-part signature
verifcation.

DSA, ECDSA, RSA
public keys, HMAC
key

Read

User FC_VerifyUpdate Continue multi-part
signature verifcation.

DSA, ECDSA, RSA
public keys, HMAC
key

Read

User FC_VerifyFinal Finish multi-part signature
verifcation.

DSA, ECDSA, RSA
public key, HMAC
key

Read

User FC_VerifyRecoverInit Initialize signature
verifcation, where the
data is recovered from the
signature.

DSA, ECDSA, RSA
public key, HMAC
key

Read

User FC_VerifyRecover Single-part signature
verifcation where the
data is recovered from the
signature.

DSA, ECDSA, RSA
public keys, HMAC
key

Read

Dual-
function
Crypto
Operations

User FC_DigestEncryptUpdate Continue a multi-part
digesting and encryption
operation.

AES, Triple-DES
keys

Read

User FC_DecryptDigestUpdate Continue a multi-part
decryption and digesting
operation.

AES, Triple-DES
keys

Read

User FC_SignEncryptUpdate Continue a multi-part
signing and encryption
operation.

DSA, ECDSA, RSA
private keys,
HMAC key

Read

User FC_DecryptVerifyUpdate Continue a multi-part
decryption and verifying
operation.

DSA, ECDSA, RSA
public keys, HMAC
key

Read

Key
Generation

User FC_GenerateKey Generate symmetric key. AES, Triple-DES,
HMAC keys

Create

Generate TLS pre-master
secret.

TLS pre-master
secret

Create

User FC_GenerateKeyPair Generate asymmetric key. DSA, ECDSA, RSA
key pairs

Create

Key
Agreement

User FC_GenerateKeyPair Generate assymmetric
key

Dife-Hellman and
EC Dife-Hellman
key pairs

Create

©2021 SUSE, LLC / atsec information security. Page 11 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Service Role API Function Description Keys/CSPs Access

User FC_DeriveKey Shared secret
computation

Dife-Hellman and
EC Dife-Hellman
key pairs

Read

Dife-Hellman and
EC Dife-Hellman
shared secrets

Create

Key
Transport

User FC_WrapKey Wrap and output a key
using AES(KW) or RSA
encapsulation.

Wrapping key Read

Key to wrap Read

User FC_UnwrapKey Wrap and import a key
using AES(KW) or RSA
encapsulation.

Wrapping key Read

Key to unwrap Create

Key
Derivation

User FC_DeriveKey Derive a key from TLS pre-
master secret using TLS
KDF.

TLS pre-master
secret

Read

TLS master secret Create

Derive a key from TLS
master secret using TLS
KDF.

TLS master secret Read

TLS derived keys Create

User FC_DeriveKey Derive keys from IKE
shared secret using IKE
KDF.

IKE shared secret Read

IKE derived keys Create

User FC_GenerateKey Derive a key from a
password or passphrase
using PBKDF

Password or
passphrase

Read

PBKDF derived
key

Create

Random
Number
Generation

CO
User

FC_SeedRandom Provide additional seed
material to the DRBG.

DRBG V and C
values.

Update

CO
User

FC_GenerateRandom Generate random data. DRBG V and C
values.

Update

Parallel
Function
Management

CO
User

FC_GetFunctionStatus Returns value
0x00000051 (legacy
function)

None n/a

CO
User

FC_CancelFunction Returns value
0x00000051 (legacy
function)

None n/a

Show Status CO
User

FC_GetTokenInfo Obtain information about
the token.

None n/a

CO
User

FC_GetSessionInfo Obtain information about
the session.

None n/a

Self tests CO
User

None Self-tests are performed
automatically when
loading the module.

DSA 2048-bit
public key.

Read

Zeroization User FC_DestroyObject Destroy an object Key stored in key
database.

Zeroize

CO
User

FC_InitToken Initialize the token. All keys stored in
key database

Zeroize

CO
User

FC_Finalize Finalize (shutdown) the
module.

All keys in all
sessions.

Zeroize

CO
User

FC_CloseSession Close the session. All keys in the
session.

Zeroize

CO
User

FC_CloseAllSessions Close all sessions in a
token.

All keys in all
sessions.

Zeroize

©2021 SUSE, LLC / atsec information security. Page 12 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Service Role API Function Description Keys/CSPs Access

Module
installation
and
confguration

CO None n/a None n/a

Table 5: Services

Notes:

1. "Any key type", "original key" and "new key" are any AES, Triple-DES, HMAC key or
any DSA, ECDSA, RSA public/private key pairs.

2. "wrapping key" corresponds to the AES key or RSA public/private key pair used to
wrap or unwrap another key.

3. "key to wrap" is the key (of any type) that is wrapped by the "wrapping key" and
output from the module.

4. "key to unwrap" is the key (of any type) that is unwrapped by the "wrapping key" and
input to the module.

5. "derived key" is the key obtained by a key derivation function (TLS KDF, IKE KDF, and
PBKDF).

3.3 Operator Authentication
The module implements role-based authentication. The module implements a password-
based authentication for the user role; the crypto ofcer is assumed by default and no
authentication is required.

To perform any security services with the user role, an operator must log into the module and
complete the authentication procedure using the password, which is unique to the user role
operator. This authentication provides access to the certifcate and private key databases,
needed by the module to performed those services. There is only one password to access the
databases.

The password is passed to the module via the FC_Login function as one of its input arguments
and will not be displayed. The return value of the function is the only feedback mechanism,
which does not provide any information that could be used to guess or determine the
password. The password is initialized by the Crypto Ofcer role as part of module initialization
via the FC_InitPIN function and can be changed by the user role operator via the FC_SetPIN
function.

If a service allowed to the user role is called before the operator is authenticated, the module
returns the CKR_USER_NOT_LOGGED_IN error code. The operator must call the FC_Login function
to perform the required authentication.

Once a password has been established for the module, the user role is allowed to use the
security services if and only if the user role is successfully authenticated to the module.
Password establishment and authentication are required for the operation of the module.

3.3.1 Strength of the Authentication Mechanism
The module enforces the following requirements on the user password during password
initialization or change.

• The password must be at least seven characters long.

• The password must consist of characters from three or more of the following fve
character classes:

◦ digits (0-9). The last character of the password is not counted for this character
class.

©2021 SUSE, LLC / atsec information security. Page 13 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

◦ ASCII lowercase letters (a-z).

◦ ASCII uppercase letters (A-Z). The frst character of the password is not counted for
this character class.

◦ ASCII non-alphanumeric characters (space and other ASCII special characters such
as '$', '!')

◦ non-ASCII characters (Latin characters such as 'é', 'ß'; Greek characters such as
'Ω', 'θ'; other non-ASCII special characters such as '¿')

• To estimate the maximum probability of a successful random guess of the password,
we assume that:

• The characters of the password are independent with each other.

• The password contains the smallest combination of the character classes, which is fve
digits, one ASCII lowercase letter and one ASCII uppercase letter, and the probability
to guess every character successfully is (1/10)5 . (1/26) . (1/26) = 1/67,600,000.

Since the password can contain seven characters from any three or more of the
aforementioned fve character classes, the probability that a random guess of the password
will succeed is less than or equal to 1/67,600,000, which is smaller than the required
threshold of 1/1,000,000.

After each failed authentication attempt in the FIPS mode, the module inserts a one-second
delay before returning to the caller, allowing at most 60 authentication attempts during a
one-minute period. Therefore, the probability of a successful random guess of the password
during a one-minute period is less than or equal to 60 * (1/67,600,000) = 0.089 * (1/100,000),
which is smaller than the required threshold of 1/100,000.

3.4 Algorithms
The module provides a generic C implementation of cryptographic algorithms, as well as an
implementation using AESNI instructions for the AES cryptographic algorithm on the Intel x86
architecture. Table 6 lists the approved algorithms, the CAVP certifcates, and other
associated information of the cryptographic implementations in FIPS mode.

Algorithm Mode / Method Key Lengths,
Curves (in bits)

Use Standard CAVP
Certs

AES ECB, CBC, CTR 128, 192, 256 Data encryption
and decryption

FIPS197,
SP800-38A

#A245
#A247
#A473
#A474

KW 128, 192, 256 Key wrapping
and unwrapping

SP800-38F #A337
#A338
#A476
#A477

DRBG Hash_DRBG:
SHA-256 with and
without PR

N/A Deterministic
random bit
generation

SP800-90A #A245
#A473

DSA L=2048, N=224
L=2048, N=256
L=3072, N=256

Key pair
generation

FIPS186-4 #A245
#A473

SHA-224 L=2048, N=224 Domain
parameter
generationSHA-256 L=2048, N=256

L=3072, N=256

SHA-224, SHA-256 L=2048, N=224
L=2048, N=256
L=3072, N=256

Digital signature
generation

©2021 SUSE, LLC / atsec information security. Page 14 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Algorithm Mode / Method Key Lengths,
Curves (in bits)

Use Standard CAVP
Certs

SHA-1 L=1024, N=160 Domain
parameter
verifcationSHA-224 L=2048, N=224

SHA-256 L=2048, N=256
L=3072, N=256

SHA-1, SHA-224,
SHA-256, SHA-384,
SHA-512

L=1024, N=160
L=2048, N=224
L=2048, N=256
L=3072, N=256

Digital signature
verifcation

ECDSA P-256, P-384,
P-521

Key pair
generation
Public key
verifcation

FIPS186-4 #A245
#A473

SHA-224, SHA-256,
SHA-384, SHA-512

P-256, P-384,
P-521

Digital signature
generation

SHA-1, SHA-224,
SHA-256, SHA-384,
SHA-512

P-256, P-384,
P-521

Digital signature
verifcation

HMAC SHA-1, SHA-224,
SHA-256, SHA-384,
SHA-512

112 or greater Message
authentication
code

FIPS198-1 #A245
#A473

KAS-ECC-
SSC

ephemeralUnifed
scheme

KAS Role: initiator,
responder

P-256, P-384, P-
521

EC Dife-
Hellman shared
secret
computation

SP800-
56Ar3

#A681
#A682

KAS-FFC-
SSC

dhEphem scheme

KAS Role: initiator,
responder

fdhe2048,
fdhe3072,
fdhe4096,
fdhe6144,
fdhe8192,
MODP-2048,
MODP-3072,
MODP-4096,
MODP-6144,
MODP-8192

Dife-Hellman
shared secret
computation

SP800-
56Ar3

#A681
#A682

PBKDF HMAC with
SHA-1, SHA-224,
SHA-256, SHA-384,
SHA-512

Key derivation SP800-132 #A245
#A473

KDF TLS TLS v1.0/1.1, v1.2
with SHA-256, SHA-
384, SHA-512

Key derivation SP800-135 CVLs.
#A245
#A473

KDF IKE IKEv1 and IKEv2 with
SHA-1, SHA-256,
SHA-384, SHA-512

Key derivation SP800-135 CVLs.
#A246
#A475

RSA 2048, 3072, 4096 Key pair
generation

FIPS186-4
(B.3.3)

#A245
#A473

PKCS#1v1.5:
SHA-256, SHA-384,
SHA-512

2048, 3072, 4096 Digital signature
generation

FIPS186-4

©2021 SUSE, LLC / atsec information security. Page 15 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Algorithm Mode / Method Key Lengths,
Curves (in bits)

Use Standard CAVP
Certs

PKCS#1v1.5:
SHA-1, SHA-256,
SHA-384, SHA-512

2048, 3072, 4096 Digital signature
verifcation

Safe
Primes Key
Generation

Safe Prime
Groups:

fdhe2048,
fdhe3072,
fdhe4096,
fdhe6144,
fdhe8192,
MODP-2048,
MODP-3072,
MODP-4096,
MODP-6144,
MODP-8192

Safe Primes Key
Generation

SP800-
56Ar3

#A681
#A682

SHS SHA-1, SHA-224,
SHA-256, SHA-384,
SHA-512

N/A Message digest FIPS180-4 #A245
#A473

Triple-DES ECB, CBC 192 (two-key
Triple-DES)

Data decryption SP800-67
SP800-38A

#A245
#A473

192 (three-key
Triple-DES)

Data encryption
and decryption

CKG AES, Triple-DES,
HMAC key
generation

SP800-133 vendor
afrmed

RSA, DSA,
ECDSA public
and private key
generation

FIPS186-4 #A245
#A473

KTS AES KW 128, 192, 256 Key Wrapping
and unwrapping

SP800-38F #A337
#A338
#A476
#A477

Table 6: Approved Cryptographic Algorithms

3.5 Allowed Algorithms
Table 7 describes the non-approved but allowed algorithms in FIPS mode.

Algorithm Use

NDRNG The module obtains the entropy data from a
NDRNG to seed the DRBG.

RSA key encapsulation with encryption and
decryption primitives with keys equal or larger
than 2048 bits up to 15360 or more.

Key establishment; allowed per [FIPS140-
2_IG] D.9

Table 7: Non-Approved but Allowed Algorithms

3.6 Non-Approved Algorithms
Table 8 shows the non-Approved cryptographic algorithms implemented in the module that
are only available in non-FIPS mode.

©2021 SUSE, LLC / atsec information security. Page 16 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Algorithm Use

AES in CTS mode Data encryption and decryption

AES in GCM mode1, CBC-MAC and XCBC-MAC
modes

Authenticated data encryption and
decryption

AES in KWP mode Key wrapping

Camellia, CAST, CAST3, CAST5, ChaCha20,
DES, IDEA, RC2, RC4, RC5, SEED

Key generation, data encryption and
decryption

2-key Triple-DES Key generation, data encryption

Triple-DES in CBC-MAC mode Authenticated data encryption and
decryption

Poly1305 Authenticated data encryption and
decryption, message authentication code

MD2, MD5 Message digest

CMAC for AES Message authentication code

HMAC using keys less than 112 bits of length

HMAC with non-approved message digest
algorithms

Message authentication code

GMAC Message authentication code

SHA-1 Message digest in digital signature
generation

DSA with L=1024 N=160 Key pair generation, domain parameter
generation, digital signature generation

DSA with L=2048 N=224, L=2048 N=256 or
L=3072 N=256 and using SHA-1, SHA-384, or
SHA-512

Digital signature generation

RSA PSS Digital signature generation and verifcation

RSA PKCS#1v1.5 with keys smaller than 2048
bits or greater than 4096 bits

Key pair generation, digital signature
generation

RSA PKCS#1v1.5 with keys smaller than 1024
bits or greater than 4096 bits

Digital signature verifcation

RSA PKCS#1v1.5 with keys smaller than 2048
bits

Key encapsulation

Curve25519 Key pair generation, domain parameter
generation and verifcation, digital signature
generation and verifcation

J-PAKE Key agreement

CDMF Key generation, data encryption and
decryption

HKDF, PBKDF1 Key derivation

Dife-Hellman with keys generated with
domain parameters other than safe primes.

Shared Secret computation.

1 AES in GCM mode does not meet IG A.5 requirements.

©2021 SUSE, LLC / atsec information security. Page 17 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Algorithm Use

EC Dife-Hellman with P-192 curve, K curves,
B curves and non-NIST curves.

Shared Secret computation.

Table 8: Non-Approved Cryptographic Algorithms

©2021 SUSE, LLC / atsec information security. Page 18 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

4 Physical Security
The module is comprised of software only and thus does not claim any physical security.

©2021 SUSE, LLC / atsec information security. Page 19 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

5 Operational Environment
This module operates in a modifable operational environment per the FIPS 140-2 level 1
specifcations. The module runs on a commercially available general-purpose operating
system executing on the hardware specifed in Table 3.

The SUSE Linux Enterprise Server operating system is used as the basis of other products
which include but are not limited to:

• SLES

• SLES for SAP

• SLED

• SLE Micro

Compliance is maintained for these products whenever the binary is found unchanged.

Note: The CMVP makes no statement as to the correct operation of the module or the
security strengths of the generated keys when so ported if the specifc operational
environment is not listed on the validation certifcate.

5.1 Policy
The operating system is restricted to a single operator; concurrent operators are explicitly
excluded.

The application that requests cryptographic services is the single user of the module.

The ptrace system call, the debugger gdb and strace, as well as other tracing mechanisms
ofered by the Linux environment (ftrace, systemtap) shall not be used.

©2021 SUSE, LLC / atsec information security. Page 20 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

6 Cryptographic Key Management
Table 9 summarizes the Critical Security Parameters (CSPs) that are used by the
cryptographic services implemented in the module. Key sizes allowed in the approved mode
of operation are specifed in Table 6 and Table 7.

Name Generation Entry and Output Zeroization

AES keys Generated using the SP800-
90A DRBG via the
FC_GenerateKey function.

Keys are input and output in
encrypted form via
FC_UnwrapKey and
FC_WrapKey functions.

Zeroized in RAM with
FC_Finalize,
FC_CloseSession or
FC_CloseAllSession.

Zeroized in key storage
with FC_DestroyObject
or FC_InitToken.

Triple-DES keys

HMAC keys

RSA public and
private keys

Public and private keys are
generated using the FIPS
186-4 key generation
method via the
FC_GenerateKeyPair
function; the key seed is
obtained from the SP800-
90A DRBG.

Keys are input and output in
encrypted form via
FC_UnwrapKey and
FC_WrapKey functions.DSA public and

private keys

ECDSA public
and private keys

Dife-Hellman
public and
private keys

Public and private keys are
generated using the SP800-
56ARev3 Safe Primes key
generation method via the
FC_GenerateKeyPair
function; random values are
obtained from the SP800-
90A DRBG.

EC Dife-
Hellman public
and private keys

Public and private keys are
generated using the FIPS
186-4 key generation
method via the
FC_GenerateKeyPair
function; random values are
obtained from the SP800-
90A DRBG.

Dife-Hellman
shared secret

Generated during shared
secret computation via
FC_DeriveKey.

Shared secret is output in
plaintext form.

Zeroized in RAM with
FC_Finalize,
FC_CloseSession or
FC_CloseAllSession.

Zeroized in key storage
with FC_DestroyObject
or FC_InitToken.

EC Dife-
Hellman shared
secret

Password or
passphrase

Not applicable. The
password is entered via API
parameters.

The password is passed into
the module via API input
parameters in plaintext.

Zeroized in RAM with
FC_Finalize,
FC_CloseSession or
FC_CloseAllSession.

PBKDF derived
key

Generated during the
PBKDF

The key is output in
encrypted form via
FC_WrapKey functions.

Zeroized in key storage
with FC_DestroyObject
or FC_InitToken.

TLS pre-master
secret

Generated using the SP800-
90A DRBG via the
FC_GenerateKey function.

Generated during shared
secret computation via
FC_DeriveKey.

The key is output in
encrypted form via
FC_WrapKey functions.

Zeroized in RAM with
FC_Finalize,
FC_CloseSession or
FC_CloseAllSession.

TLS master Generated during the TLS The TLS master secret is Zeroized in key storage

©2021 SUSE, LLC / atsec information security. Page 21 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Name Generation Entry and Output Zeroization

secret v1.0/1.1 and v1.2 KDFs from
TLS pre-master secret.

output in plaintext form. with FC_DestroyObject
or FC_InitToken.

TLS derived keys Generated during the TLS
v1.0/1.1 and v1.2 KDFs from
TLS master-secret

Keys are output in plaintext
form.

Zeroized in key storage
with FC_DestroyObject
or FC_InitToken.

IKE shared
secret

Obtained from Dife-
Hellman or EC Dife-
Hellman shared secret
computation.

The IKE shared secret is
output in plaintext form.

Zeroized in RAM with
FC_Finalize,
FC_CloseSession or
FC_CloseAllSession.

IKE derived keys Generated during the IKEv1
and IKEv2 KDFs

Keys are output in plaintext
form.

Zeroized in key storage
with FC_DestroyObject
or FC_InitToken.

Entropy input
string and seed
material

Obtained from the NDRNG Not applicable, it remains
within the logical boundary.

Zeroized in RAM with
FC_Finalize,
FC_CloseSession or
FC_CloseAllSession.

DRBG internal
state: V and C
values

Derived from entropy input
as defned in SP800-90A

Not applicable, it remains
within the logical boundary.

User password
for
authentication

Not applicable; provided via
API parameter.

User password is passed
into the module via API
input parameters in
plaintext.

Zeroized in RAM with
FC_Finalize,
FC_CloseSession or
FC_CloseAllSession.

Table 9: Life cycle of Keys or CSPs

The following sections describe how CSPs, in particular cryptographic keys, are managed
during its life cycle.

6.1 Random Number Generation
The module employs a Deterministic Random Bit Generator (DRBG) based on [SP800-90A] for
the creation of seeds for symmetric keys, asymmetric keys, and DSA and ECDSA signature
generation. In addition, the module provides a Random Number Generation service to calling
applications.

The DRBG supports the Hash_DRBG mechanism using SHA-256 and without prediction
resistance.

The module uses a Non-Deterministic Random Number Generator (NDRNG) as the entropy
source for seeding the DRBG. The NDRNG is provided by the operational environment (i.e.,
Linux RNG), which is within the module’s physical boundary but outside of the module’s
logical boundary. The NDRNG provides at least 256 bits of entropy to the DRBG during
initialization (seed) and reseeding (reseed). The module periodically reseeds its DRBG: after
2⁴⁸ calls to the random number generator, the module reseeds the DRBG automatically. The
calling application can also enforce reseeding the DRBG by calling the FC_SeedRandom
function.

The Linux kernel performs conditional self-tests on the output of NDRNG to ensure that
consecutive random numbers do not repeat. The module performs the DRBG health tests as
defned in section 11.3 of [SP800-90A].

6.2 Key/CSP Generation
The module provides an SP800-90A-compliant Deterministic Random Bit Generator (DRBG)
for creation of symmetric keys, key components of asymmetric keys, and random number
generation.

©2021 SUSE, LLC / atsec information security. Page 22 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

The key generation methods implemented in the module for Approved services in FIPS mode
is compliant with [SP800-133] (vendor afrmed).

For generating RSA, DSA and ECDSA keys the module implements asymmetric key
generation services compliant with [FIPS186-4]. A seed (i.e. the random value) used in
asymmetric key generation is directly obtained from the [SP800-90A] DRBG.

The public and private keys used in the EC Dife-Hellman key agreement schemes are
generated internally by the module using ECDSA key generation compliant with [FIPS186-4]
and [SP800-56ARev3]. The Dife-Hellman key agreement scheme is also compliant with
[SP800-56ARev3], and generates keys using safe primes defned in RFC7919 and RFC3526,
as described in the next section.

6.3 Key Agreement
The module provides Dife-Hellman and EC Dife-Hellman shared secret computation
compliant with SP800-56ARev3, in accordance with scenario X1 (1) of IG D.8.

For Dife-Hellman, the module supports the use of safe primes defned in RFC7919 for
domain parameters and key generation, which are used in TLS key exchange. Note that the
module only implements key generation and verifcation, and shared secret computation of
safe primes, and no other part of the TLS protocol (with the exception of the TLS KDF, which
is separately implemented).

• TLS (RFC7919)

◦ fdhe2048 (ID = 256)

◦ fdhe3072 (ID = 257)

◦ fdhe4096 (ID = 258)

◦ fdhe6144 (ID = 259)

◦ fdhe8192 (ID = 260)

The module also supports the use of safe primes defned in RFC3526, which are part of the
Modular Exponential (MODP) Dife-Hellman groups that can be used for Internet Key
Exchange (IKE). Note that the module only implements key generation and verifcation, and
shared secret computation of safe primes, and no other part of the IKE protocol (with the
exception of the IKE KDF, which is separately implemented).

• IKEv2 (RFC3526)

◦ MODP-2048 (ID=14)

◦ MODP-3072 (ID=15)

◦ MODP-4096 (ID=16)

◦ MODP-6144 (ID=17)

◦ MODP-8192 (ID=18)

According to Table 2: Comparable strengths in [SP 800-57], the key sizes of Dife-Hellman
and EC Dife-Hellman provide the following security strength in FIPS mode of operation:

• Dife-Hellman shared secret computation provides between 112 and 200 bits of
encryption strength.

• EC Dife-Hellman shared secret computation provides between 128 and 256 bits of
encryption strength.

6.4 Key Transport
The module provides the following key transport mechanisms:

• Key wrapping using AES-KW.

©2021 SUSE, LLC / atsec information security. Page 23 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

• RSA key encapsulation using private key encryption and public key decryption.

According to Table 2: Comparable strengths in [SP 800-57], the key sizes of AES and RSA
provide the following security strength in FIPS mode of operation:

• AES key wrapping provides between 128 and 256 bits of encryption strength.

• RSA key wrapping2 provides between 112 and 256 bits of encryption strength.

Note: As the module supports RSA key pairs greater than 2048 bits up to 15360 bits or more,
the encryption strength 256 bits is claimed for RSA key encapsulation.

6.5 Key Derivation
The module supports the following key derivation methods according to [SP800-135]:

• KDF for the TLS protocol, used as pseudo-random functions (PRF) for TLSv1.0/1.1 and
TLSv1.2.

• KDF for the IKE protocol.

The module also supports password-based key derivation (PBKDF). The implementation is
compliant with option 1a of [SP-800-132]. Keys derived from passwords or passphrases using
this method can only be used in storage applications.

6.6 Key/CSP Entry and Output
The module does not support manual key entry or intermediate key generation key output.
The keys are provided to the module via API input parameters in encrypted form (using the
FC_UnwrapKey function) and output via API output parameters also in encrypted form (using
the FC_WrapKey function).

6.7 Key/CSP Storage
The module employs the cryptographic keys and CSPs in FIPS Approved mode of operation as
listed in Table 9. The module does not perform persistent storage of keys. Note that the
private key database (provided with the fles key3.db/key4.db) is within the module's physical
boundary but outside its logical boundary.

6.8 Key/CSP Zeroization
The memory occupied by keys is allocated by regular memory allocation operating system
calls. The application is responsible for calling the appropriate zeroization functions provided
in the module's API and listed in Table 9:

• The FC_Finalize, FC_CloseSession or FC_CloseAllSession functions overwrite the
memory occupied by keys with “zeros” and deallocate the memory with the regular
memory deallocation operating system call.

• The FC_DestroyObject function overwrites with "zeros" the area occupied by the
secret key in the private key database. The FC_InitToken function overwrites with
"zeros" the whole private key database.

2 Key wrapping” is used instead of “key encapsulation” to show how the algorithm will
appear in the certifcate per IG G.13.

©2021 SUSE, LLC / atsec information security. Page 24 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

7 Electromagnetic Interference/Electromagnetic
Compatibility (EMI/EMC)

The test platforms as shown in Table 3 are compliant to 47 CFR FCC Part 15, Subpart B, Class
A (Business use).

©2021 SUSE, LLC / atsec information security. Page 25 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

8 Self Tests

8.1 Power-Up Tests
The module performs power-up tests when the module is loaded into memory, without
operator intervention. Power-up tests ensure that the module is not corrupted and that the
cryptographic algorithms work as expected.

While the module is executing the power-up tests, services are not available, and input and
output are inhibited. The module is not available for use by the calling application until the
power-up tests are completed successfully.

If any of the power-up test fails, the module enters the Error state. Subsequent calls to the
module will also fail; no further cryptographic operations are possible. If the power-up tests
complete successfully, the module will become operational and accept cryptographic
operation service requests.

In order to verify whether the self-tests have succeeded, the calling application may invoke
the FC_Initialize function. The function will return CKR_OK if the module is operational,
CKR_DEVICE_ERROR if the module is in the Error state.

8.1.1 Integrity Tests
The integrity of the module is verifed by performing a DSA signature verifcation for each
component that comprises the module. The module uses DSA signature verifcation with a
2048-bit key and SHA-256. If the DSA signature for any of the components cannot be verifed,
the test fails and the module enters the error state.

8.1.2 Cryptographic Algorithm Tests
The module performs self-tests on all FIPS-Approved cryptographic algorithms supported in
the Approved mode of operation, using the Known Answer Tests (KAT) shown in the following
table.

Algorithm Power-Up Tests

AES KAT AES in ECB mode with 128, 192 and 256 bit keys, encryption and
decryption (separately tested).

KAT AES in CBC mode with 128, 192 and 256 bit keys, encryption and
decryption (separately tested).

KAT AES in KW mode with 128, 192 and 256 bit keys, encryption and
decryption (separately tested).

Dife-Hellman Primitive “Z” Computation KAT with 2048-bit key

DRBG KAT Hash_DRBG with SHA-256 without PR.

DSA KAT DSA signature generation and verifcation with L=2048, N=224 and
SHA-224 (separately tested).

EC Dife-Hellman Primitive “Z” Computation KAT with P-256 curve

ECDSA KAT ECDSA signature generation and verifcation with P-256 and SHA-256
(separately tested).

HMAC KAT HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384,
HMAC-SHA-512.

IKE KDF SP800-135 IKE PRF using SHA-1, SHA-256, SHA-384 and SHA-512.

PBKDF KDF KAT

©2021 SUSE, LLC / atsec information security. Page 26 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Algorithm Power-Up Tests

RSA KAT RSA PKCS#1 v1.5 signature generation and verifcation with 2048-bit
key and SHA-256, SHA-384 and SHA-512 (separately tested).

KAT RSA with 2048-bit key, public key encryption and private key
decryption (separately tested).

SHS KAT SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512.

TLS KDF TLS 1.0 PRF KAT and TLS 1.2 KAT using SHA-224, SHA-256, SHA-384 and
SHA-512

Triple-DES KAT Triple-DES ECB mode, encryption and decryption (separately tested).

KAT Triple-DES CBC mode, encryption and decryption (separately tested).

Table 10: Self-Tests

For the KAT, the module calculates the result and compares it with the known value. If the
answer does not match the known answer, the KAT fails and the module enters the Error
state.

8.2 On-Demand Self-Tests
On-Demand self-tests can be invoked by powering-of and reloading the module, which cause
the module to run the power-up tests again. During the execution of the on-demand self-
tests, services are not available and no data output or input is possible.

During the execution of the on-demand self-tests, services are not available and no data
output or input is possible.

8.3 Conditional Tests
The module performs conditional tests on the cryptographic algorithms, using the Pair-wise
Consistency Tests (PCT) shown in the following table. If the conditional test fails, the module
returns the CKR_DEVICE_ERROR error code to the calling application and enters the Error state.
When the module is in the Error state, no data is output and cryptographic operations are not
allowed.

Algorithm Conditional Tests

DSA key generation PCT using SHA-256, signature generation and verifcation.

ECDSA key generation PCT using SHA-256, signature generation and verifcation.

RSA key generation PCT using SHA-256, signature generation and verifcation.

PCT using public encryption and private decryption.

Table 11: Conditional Tests

8.4 Error states
The Module enters the Error state returning the CKR_DEVICE_ERROR error code, on failure of
power-on self-tests or conditional test. In the Error state, all data output is inhibited and no
cryptographic operation is allowed. The error can be recovered by powering-of and reloading
the module.

©2021 SUSE, LLC / atsec information security. Page 27 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

9 Guidance

9.1 Crypto Ofcer Guidance
The binaries of the module are contained in the RPM packages for delivery. The Crypto Ofcer
shall follow this Security Policy to confgure the operational environment and install the
module to be operated as a FIPS 140-2 validated module.

The following RPM packages contain the FIPS validated module:

Processor Architecture RPM Packages

Intel 64-bit libsoftokn3-3.47.1-3.51.1.x86_64.rpm
libsoftokn3-hmac-3.47.1-3.51.1.x86_64.rpm
libfreebl3-3.47.1-3.51.1.x86_64.rpm
libfreebl3-hmac-3.47.1-3.51.1.x86_64.rpm

IBM z15 libsoftokn3-3.47.1-3.51.1.s390x.rpm
libsoftokn3-hmac-3.47.1-3.51.1.s390x.rpm
libfreebl3-3.47.1-3.51.1.s390x.rpm
libfreebl3-hmac-3.47.1-3.51.1.s390x.rpm

ARMv8 64-bit libsoftokn3-3.47.1-3.51.1.aarch64.rpm
libsoftokn3-hmac-3.47.1-3.51.1.aarch64.rpm
libfreebl3-3.47.1-3.51.1.aarch64.rpm
libfreebl3-hmac-3.47.1-3.51.1.aarch64.rpm

Table 12: RPM packages

9.1.1 Module Installation
The Netscape Portable Runtime (NSPR) package (mozilla-nspr-4.23-3.9.1.x86_64.rpm) is a
prerequisite for the module. The mozilla-nspr package must be installed in the operating
environment.

The Crypto Ofcer can install the RPM packages containing the module as listed in Table 12
using the zypper tool. The integrity of the RPM package is automatically verifed during the
installation, and the Crypto Ofcer shall not install the RPM package if there is any integrity
error.

9.1.2 Operating Environment Confguration
The operating environment needs to be confgured to support FIPS, so the following steps
shall be performed with the root privilege:

1. Install the dracut-fps RPM package:

 # zypper install dracut-fips

2. Recreate the INITRAMFS image:

 # dracut -f

3. After regenerating the initrd, the Crypto Ofcer has to append the following parameter in
the /etc/default/grub confguration fle in the GRUB_CMDLINE_LINUX_DEFAULT line:

 fips=1

4. After editing the confguration fle, please run the following command to change the setting
in the boot loader:

 # grub2-mkconfig -o /boot/grub2/grub.cfg

©2021 SUSE, LLC / atsec information security. Page 28 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

If /boot or /boot/ef resides on a separate partition, the kernel parameter boot=<partition
of /boot or /boot/ef> must be supplied. The partition can be identifed with the command
"df /boot" or "df /boot/ef" respectively. For example:

 # df /boot

 Filesystem 1K-blocks Used Available Use% Mounted on

 /dev/sda1 233191 30454 190296 14% /boot

The partition of /boot is located on /dev/sda1 in this example. Therefore, the following string
needs to be appended in the aforementioned grub fle:

 "boot=/dev/sda1"

5. Reboot to apply these settings.

Now, the operating environment is confgured to support FIPS operation. The Crypto Ofcer
should check the existence of the fle /proc/sys/crypto/fps_enabled, and verify it contains a
numeric value “1”. If the fle does not exist or does not contain “1”, the operating
environment is not confgured to support FIPS and the module will not operate as a FIPS
validated module properly.

9.1.3 Access to Audit Data
The module may use the Unix syslog function and the audit mechanism provided by the
operating system to audit events. Auditing is turned of by default. Auditing capability must
be turned on as part of the initialization procedures by setting the environment variable
NSS_ENABLE_AUDIT to 1. The Crypto Ofcer must also confgure the operating system's audit
mechanism.

The module uses the syslog function to audit events, so the audit data are stored in the
system log. Only the root user can modify the system log. On some platforms, only the root
user can read the system log; on other platforms, all users can read the system log. The
system log is usually under the /var/log directory. The exact location of the system log is
specifed in the /etc/syslog.conf fle. The module uses the default user facility and the info,
warning, and err severity levels for its log messages.

The module can also be confgured to use the audit mechanism provided by the operating
system to audit events. The audit data would then be stored in the system audit log. Only the
root user can read or modify the system audit log. To turn on this capability it is necessary to
create a symbolic link from the library fle /usr/lib64/libaudit.so.1 to
/usr/lib64/libaudit.so.1.0.0.

9.2 User Guidance
In order to run in FIPS mode, the module must be operated using the FIPS-approved services,
with their corresponding FIPS-approved and FIPS-allowed cryptographic algorithms provided
in this Security Policy (see section 3.2). In addition, key sizes must comply with [SP800-131A].

The following module initialization steps must be followed before starting to use the NSS
module:

• Set the environment variable NSS_ENABLE_AUDIT to 1 before using the module.

• Use the FC_GetFunctionList function to obtain pointer references to the API. The
function returns a CK_FUNCTION_LIST structure containing function pointers named as
the API functions but with the "C_" prefx (e.g. C_Initialize and C_Finalize). The
function pointers reference the "FC_" prefxed functions.

• Use FC_Initialize (function pointer C_Initialize) to initialize the module. Ensure that
the function returns CKR_OK, which means that the module was properly confgured
and the power-on self-tests were successful. If the function returns a diferent code,
the module must be reset and initialized again.

©2021 SUSE, LLC / atsec information security. Page 29 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

• For the frst login, use FC_Login (function pointer C_Login) with a NULL password. This
is required to set the initial user password of the token. Then, set the initial user role
password using FC_InitPIN (function pointer C_InitPIN). Lastly, logout using the
function FC_Logout (function pointer C_Logout).

• The user role can now be adopted on the module by logging in using the user
password. The Crypto Ofcer role can be implicitly assumed by performing the Crypto
Ofcer services as listed in Section 3.1.

The module can be confgured to use diferent private key database formats: key3.db or
key4.db. “key3.db” format is based on the Berkeley DataBase engine and should not be used
by more than one process concurrently. “key4.db” format is based on SQL DataBase engine
and can be used concurrently by multiple processes. Both databases are considered outside
the cryptographic boundary and all data stored in these databases are considered stored in
plaintext. The interface code of the NSS cryptographic module that accesses data stored in
the database is considered part of the cryptographic boundary.

Secret and private keys, plaintext passwords, and other security-relevant data items are
maintained under the control of the cryptographic module. Secret and private keys must be
entered to the module from the calling application and output from the module to the calling
application in encrypted form using the FC_WrapKey and FC_UnwrapKey functions, respectively.
The cryptographic algorithms allowed for this purpose in the FIPS mode of operation are AES
in KW mode, and RSA key encapsulation using the corresponding approved modes and key
sizes.

All cryptographic keys used in the FIPS Approved mode of operation must be generated in the
FIPS Approved mode or imported while running in the FIPS Approved mode.

9.2.1 Triple-DES encryption
Data encryption using the same three-key Triple-DES key shall not exceed 216 Triple-DES
blocks (2GB of data), in accordance to SP800-67 and IG A.13.

[SP800-67] imposes a restriction on the number of 64-bit block encryptions performed under
the same three-key Triple-DES key.

When the three-key Triple-DES is generated as part of a recognized IETF protocol, the module
is limited to 220 64-bit data block encryptions. This scenario occurs in the following protocols:

• Transport Layer Security (TLS) versions 1.1 and 1.2, conformant with [RFC5246]

• Secure Shell (SSH) protocol, conformant with [RFC4253]

• Internet Key Exchange (IKE) versions 1 and 2, conformant with [RFC7296]

In any other scenario, the module cannot perform more than 216 64-bit data block
encryptions.

The user is responsible for ensuring the module’s compliance with this requirement.

9.2.2 Key derivation using SP800-132 PBKDF
The module provides password-based key derivation (PBKDF), compliant with SP800-132. The
module supports option 1a from section 5.4 of [SP800-132], in which the Master Key (MK) or a
segment of it is used directly as the Data Protection Key (DPK).

In accordance to [SP800-132], the following requirements shall be met.

• Derived keys shall only be used in storage applications. The Master Key (MK) shall not
be used for other purposes. The length of the MK or DPK shall be of 112 bits or more.

• A portion of the salt, with a length of at least 128 bits, shall be generated randomly
using the SP800-90A DRBG,

• The iteration count shall be selected as large as possible, as long as the time required
to generate the key using the entered password is acceptable for the users. The
minimum value shall be 1000.

©2021 SUSE, LLC / atsec information security. Page 30 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

• Passwords or passphrases, used as an input for the PBKDF, shall not be used as
cryptographic keys.

• The length of the password or passphrase shall be of at least 20 characters, and shall
consist of lower-case, upper-case and numeric characters. The probability of guessing
the value is estimated to be 1/6220 = 10-36, which is less than 2-112.

The calling application shall also observe the rest of the requirements and recommendations
specifed in [SP800-132].

©2021 SUSE, LLC / atsec information security. Page 31 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

10 Mitigation of Other Attacks

10.1 Blinding Against RSA Timing Attacks
RSA is vulnerable to timing attacks. In a setup where attackers can measure the time of RSA
decryption or signature operations, blinding must be used to protect the RSA operation from
that attack.

The module uses the following blinding technique: instead of using the RSA decryption
directly, a blinded value y = x re mod n is decrypted and the unblinded value x' = y' r−1 mod n
returned. The blinding value r is a random value with the size of the modulus n.

10.2 Cache invariant modular exponentiation
Modular exponentiation used in DSA and RSA is vulnerable to cache-timing attacks. The
module implements a variant of the modular exponentiation proposed by Colin Percival to
defend against these attacks.

10.3 Double-checking RSA signatures
Arithmetic errors in RSA signatures might leak the private key. The module verifes the RSA
signature generated after the cryptographic operation is performed.

©2021 SUSE, LLC / atsec information security. Page 32 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Appendix A - CAVP certifcates
The tables below show the certifcates obtained from the CAVP for all the target platforms
included in Table 3. The CAVP certifcates validate all algorithm implementations used as
approved or allowed security functions in FIPS mode of operation. The tables include the
certifcate number, the label used in the CAVP certifcate for reference and a description of
the algorithm implementation.

Cert# CAVP Label Algorithm Implementation

A247 AESNI AES using AESNI instructions.

A337 AESNI_KW AES-KW using AESNI instructions

A246 IKE_KDF Internet Key exchange key derivation function
implementation.

A245 Generic C Generic C implementation of cryptographic algorithms

A338 Generic C KW Generic C implementation for key wrapping.

A681 SP800 56A rev 3 SP800-56A rev 3 compliant implementation.

Table 13: CAVP certifcates for the Intel Xeon processor for SLES 15 SP0

Cert# CAVP Label Algorithm Implementation

A474 AESNI AES using AESNI instructions.

A477 AESNI_KW AES-KW using AESNI instructions

A475 IKE_KDF Internet Key exchange key derivation function
implementation.

A473 Generic C Generic C implementation of cryptographic algorithms

A476 Generic C KW Generic C implementation for key wrapping.

A682 SP800 56A rev 3 SP800-56A rev 3 compliant implementation.

Table 14: CAVP certifcates for the Intel Xeon processor for SLES 15 SP2

Cert# CAVP Label Algorithm Implementation

A475 IKE_KDF Internet Key exchange key derivation function
implementation.

A473 Generic C Generic C implementation of cryptographic algorithms

A476 Generic C KW Generic C implementation for key wrapping.

A682 SP800 56A rev 3 SP800-56A rev 3 compliant implementation.

Table 15: CAVP certifcates for the IBM z15 processor for SLES 15 SP2

©2021 SUSE, LLC / atsec information security. Page 33 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Cert# CAVP Label Algorithm Implementation

A475 IKE_KDF Internet Key exchange key derivation function
implementation.

A473 Generic C Generic C implementation of cryptographic algorithms

A476 Generic C KW Generic C implementation for key wrapping.

A682 SP800 56A rev 3 SP800-56A rev 3 compliant implementation.

Table 16: CAVP certifcates for the ARMv8 processor for SLES 15 SP2

©2021 SUSE, LLC / atsec information security. Page 34 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Appendix B - Glossary and Abbreviations

AES Advanced Encryption Specifcation

AES_NI Intel® Advanced Encryption Standard (AES) New Instructions

CAVP Cryptographic Algorithm Validation Program

CBC Cipher Block Chaining

CCM Counter with Cipher Block Chaining Message Authentication Code

CDMF Commercial Data Masking Facility

CMAC Cipher-based Message Authentication Code

CMVP Cryptographic Module Validation Program

CSP Critical Security Parameter

CTR Counter Mode

DES Data Encryption Standard

DRBG Deterministic Random Bit Generator

ECB Electronic Code Book

FIPS Federal Information Processing Standards Publication

GCM Galois Counter Mode

HKDF HMAC-based Extract-and-Expand Key Derivation Function

HMAC Hash Message Authentication Code

IDEA International Data Encryption Algorithm

J-PAKE Password Authenticated Key Exchange by Juggling

MAC Message Authentication Code

NIST National Institute of Science and Technology

PKCS Public Key Cryptography Standards

RNG Random Number Generator

RPM Red hat Package Manager

RSA Rivest, Shamir, Addleman

SHA Secure Hash Algorithm

SHS Secure Hash Standard

TDES Triple-DES

©2021 SUSE, LLC / atsec information security. Page 35 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Appendix C - References
FIPS 140-2 FIPS PUB 140-2 - Security Requirements for Cryptographic

Modules
http://csrc.nist.gov/publications/fps/fps140-2/fps1402.pdf

FIPS 140-2_IG Implementation Guidance for FIPS PUB 140-2 and the
Cryptographic Module Validation Program
December 3, 2019
http://csrc.nist.gov/groups/STM/cmvp/documents/fps140-
2/FIPS1402IG.pdf

FIPS180-4 Secure Hash Standard (SHS)
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

FIPS186-4 Digital Signature Standard (DSS)
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

FIPS197 Advanced Encryption Standard
http://csrc.nist.gov/publications/fps/fps197/fps-197.pdf

FIPS198-1 The Keyed Hash Message Authentication Code (HMAC)
http://csrc.nist.gov/publications/fps/fps198-1/FIPS-198-1_fnal.pdf

PKCS#1 Public Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifcations Version 2.1
http://www.ietf.org/rfc/rfc3447.txt

SP800-38A NIST Special Publication 800-38A - Recommendation for Block
Cipher Modes of Operation Methods and Techniques
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
38a.pdf

SP800-38B NIST Special Publication 800-38B - Recommendation for Block
Cipher Modes of Operation: The CMAC Mode for Authentication
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf

SP800-38D NIST Special Publication 800-38D - Recommendation for Block
Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
38d.pdf

SP800-38F NIST Special Publication 800-38F - Recommendation for Block
Cipher Modes of Operation: Methods for Key Wrapping
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

SP800-67 NIST Special Publication 800-67 Revision 1 - Recommendation for
the Triple Data Encryption Algorithm (TDEA) Block Cipher
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
67r1.pdf

SP800-90A NIST Special Publication 800-90A Revision 1 - Recommendation
for Random Number Generation Using Deterministic Random Bit
Generators
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
90Ar1.pdf

©2021 SUSE, LLC / atsec information security. Page 36 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-67r1.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-67r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
http://www.ietf.org/rfc/rfc3447.txt
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

SUSE Linux Enterprise Server NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

SP800-131A NIST Special Publication 800-131A Revision 1- Transitions:
Recommendation for Transitioning the Use of Cryptographic
Algorithms and Key Lengths
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
90Ar1.pdf

SP800-132 NIST Special Publication 800-132 - Recommendation for
Password-Based Key Derivation - Part 1: Storage Applications
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
132.pdf

©2021 SUSE, LLC / atsec information security. Page 37 of 37
This document can be reproduced and distributed only whole and intact, including this copyright notice.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

	1 Cryptographic Module Specification
	1.1 Module Overview
	1.2 Modes of Operation

	2 Cryptographic Module Ports and Interfaces
	2.1 Inhibition of Data Output
	2.2 Output Data Path during key processing

	3 Roles, Services and Authentication
	3.1 Roles
	3.2 Services
	3.3 Operator Authentication
	3.3.1 Strength of the Authentication Mechanism

	3.4 Algorithms
	3.5 Allowed Algorithms
	3.6 Non-Approved Algorithms

	4 Physical Security
	5 Operational Environment
	5.1 Policy

	6 Cryptographic Key Management
	6.1 Random Number Generation
	6.2 Key/CSP Generation
	6.3 Key Agreement
	6.4 Key Transport
	6.5 Key Derivation
	6.6 Key/CSP Entry and Output
	6.7 Key/CSP Storage
	6.8 Key/CSP Zeroization

	7 Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)
	8 Self Tests
	8.1 Power-Up Tests
	8.1.1 Integrity Tests
	8.1.2 Cryptographic Algorithm Tests

	8.2 On-Demand Self-Tests
	8.3 Conditional Tests
	8.4 Error states

	9 Guidance
	9.1 Crypto Officer Guidance
	9.1.1 Module Installation
	9.1.2 Operating Environment Configuration
	9.1.3 Access to Audit Data

	9.2 User Guidance
	9.2.1 Triple-DES encryption
	9.2.2 Key derivation using SP800-132 PBKDF

	10 Mitigation of Other Attacks
	10.1 Blinding Against RSA Timing Attacks
	10.2 Cache invariant modular exponentiation
	10.3 Double-checking RSA signatures

	Appendix A - CAVP certificates
	Appendix B - Glossary and Abbreviations
	Appendix C - References

