
Citrix Systems, Inc.

Citrix ADC MPX

Hardware Models: 8905 FIPS, 8910 FIPS, 8920 FIPS, 15020-50G FIPS, 15030-50G FIPS, 15040-50G FIPS, 15060-50G FIPS, 15080-50G FIPS, 15100-50G FIPS, 15120-50G FIPS

Firmware Version: 12.1.55.180

Prepared for:

Citrix Systems, Inc. 851 Cypress Creek Road Fort Lauderdale, FL 33309 United States of America

Phone: +1 954 267 3000 www.citrix.com Prepared by:

Corsec Security, Inc. 13921 Park Center Road, Suite 460 Herndon, VA 20171 United States of America

Phone: +1 703 267 6050 www.corsec.com

Table of Contents

1.	Intro	oduction	4
	1.1	Purpose	4
	1.2	References	4
	1.3	Document Organization	4
2.	Citrix	x ADC MPX	5
	2.1	Overview	5
	2.2	Module Specification	8
		2.2.1 Approved and Non-Approved Algorithms	
	2.3	Module Interfaces	
	2.4	Roles and Services	17
		2.4.1 Authorized Roles	17
		2.4.2 Operator Services	19
		2.4.3 Additional Services	25
	2.5	Physical Security	27
	2.6	Operational Environment	
	2.7	Cryptographic Key Management	29
	2.8	EMI / EMC	39
	2.9	Self-Tests	39
		2.9.1 Power-Up Self-Tests	39
		2.9.2 Conditional Self-Tests	40
		2.9.3 Critical Functions Self-Tests	40
		2.9.4 Self-Test Failures	40
	2.10	Mitigation of Other Attacks	41
3.	Secu	ire Operation	43
	3.1	Installation and Setup	
		3.1.1 Initial Tamper-Evident Seal Inspection	43
		3.1.2 Installation	45
		3.1.3 General Configuration	45
		3.1.4 FIPS-Approved Mode Configuration and Status	46
	3.2	Crypto Officer Guidance	48
		3.2.1 Management	48
		3.2.2 On-Demand Self-Tests	48
		3.2.3 Zeroization	48
		3.2.4 Monitoring Status	49
	3.3	User Guidance	49
	3.4	Additional Guidance and Usage Policies	49
	3.5	Non-FIPS-Approved Mode	50
4.	Acro	nyms	51

List of Tables

Table 1 – Security Level per FIPS 140-2 Section	7
Table 2 – Algorithm Certificate Numbers (Citrix ADC CP Cryptographic Library v4)	8
Table 3 – Algorithm Certificate Numbers (Citrix ADC DP Cryptographic Library v4)	11
Table 4 – Algorithm Certificate Numbers (Intel Communication chipset 8955 hardware cryptographic	
accelerator)	12
Table 5 – CVL Certificate Numbers	13
Table 6 – Allowed Algorithm Implementations	14
Table 7 – Mapping of FIPS 140-2 Logical Interfaces to MPX Interfaces	16
Table 8 – LEDs and Status Indications	17
Table 9 – Mapping of Module Services to Roles, CSPs, and Type of Access	19
Table 10 – Additional Services	26
Table 11 – Cryptographic Keys, Cryptographic Key Components, and CSPs	29
Table 12 – Acronyms	51

List of Figures

Figure 1 – Typical Citrix MPX Deployment	6
Figure 2 – MPX 89xx FIPS Ports and Interfaces (Front Panel)	14
Figure 3 –MPX 89xx FIPS Ports and Interfaces (Back Panel)	15
Figure 4 – MPX 15xxx FIPS Ports and Interfaces (Front Panel)	15
Figure 5 – MPX 15xxx FIPS Ports and Interfaces (Back Panel)	15
Figure 6 – Front Cover of the MPX 89xx FIPS	43
Figure 7 – Front Cover of the MPX 15xxx FIPS	43
Figure 8 – Back Panel of the MPX 89xx FIPS	44
Figure 9 – Back Panel of the MPX 15xxx FIPS	44
Figure 10 – Back Left of the MPX 89xx FIPS	44
Figure 11 – Back Right of the MPX 89xx FIPS	44
Figure 12 - Back left of the MPX 15xxx FIPS	45
Figure 13 - Back Right of the MPX 15xxx FIPS	45

1. Introduction

1.1 Purpose

This is a non-proprietary Cryptographic Module Security Policy for the Citrix ADC MPX from Citrix Systems, Inc. (hereafter referred to as Citrix). This Security Policy describes how the Citrix ADC MPX meets the security requirements of Federal Information Processing Standards (FIPS) Publication 140-2, which details the U.S.¹ and Canadian government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the <u>Cryptographic Module Validation Program (CMVP) website</u>, which is maintained by the National Institute of Standards and Technology (NIST) and the Canadian Centre for Cyber Security (CCCS).

This document also describes how to run the module in a secure FIPS-Approved mode of operation. This policy was prepared as part of the Level 2 FIPS 140-2 validation of the module. The Citrix ADC MPX is referred to in this document as "MPX" or "the module".

1.2 References

This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the module from the following sources:

- The Citrix website (<u>https://www.citrix.com</u>) contains information on the full line of products from Citrix.
- The search page on the CMVP website (<u>https://csrc.nist.gov/Projects/cryptographic-module-validation-program/Validated-Modules/Search</u>) can be used to locate and obtain vendor contact information for technical or sales-related questions about the module.

1.3 Document Organization

The Security Policy document is organized into two (2) primary sections. Section 2 provides an overview of the validated module. This includes a general description of the capabilities and the use of cryptography, as well as a presentation of the validation level achieved in each applicable functional area of the FIPS standard. It also provides high-level descriptions of how the module meets FIPS requirements in each functional area. Section 3 documents the guidance needed for the secure use of the module, including initial setup instructions and management methods and policies.

This Security Policy and the other validation submission documentation were produced by Corsec Security, Inc. under contract to Citrix. With the exception of this Non-Proprietary Security Policy, the FIPS 140-2 Submission Package is proprietary to Citrix and is releasable only under appropriate non-disclosure agreements. For access to these documents, please contact Citrix.

¹ U.S. – United States

2. Citrix ADC MPX

2.1 Overview

The MPX product line optimizes delivery of applications over the Internet and private networks. MPX is an application delivery controller (ADC) that performs application-specific traffic analysis to intelligently distribute, optimize, and secure L4-L7² network traffic for web-applications. All these capabilities are combined into a single, integrated appliance for increased productivity, with lower overall total cost of ownership.

The hardware-based MPX appliances employ a multi-core processor design and are available in a wide range of appliance configurations, from sub gigabit throughput to 50 Gbps³. Each leverages a fully hardened and secure operating system.

The MPX appliances are installed in the data center between the clients and the internal customer network. All client requests and server responses pass through it. The internal customer network hosts all load balancing and authentication services, such as LDAP, Kerberos, and SAML⁴. Figure 1 below is an illustration of a typical Citrix MPX deployment. The MPX features are enabled, and the configured policies are then applied to incoming and outgoing traffic. All configuration and management is done at the workstation through the MPX web-based GUI⁵, REST⁶ful Nitro API⁷, and CLI⁸ interfaces. The GUI includes a configuration utility for configuring the appliance and a statistical utility, called Dashboard.

² L4-L7 – Layer 4 – Layer 7

³ Gbps – Gigabits per second

⁴ SAML – Security Assurance Markup Language

⁵ GUI – Graphical User Interface

⁶ REST – Representational State Transfer

 ⁷ API – Application Programming Interface
 ⁸ CLI – Command Line Interface

Citrix ADC MPX ©2021 Citrix Systems, Inc. This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 5 of 54

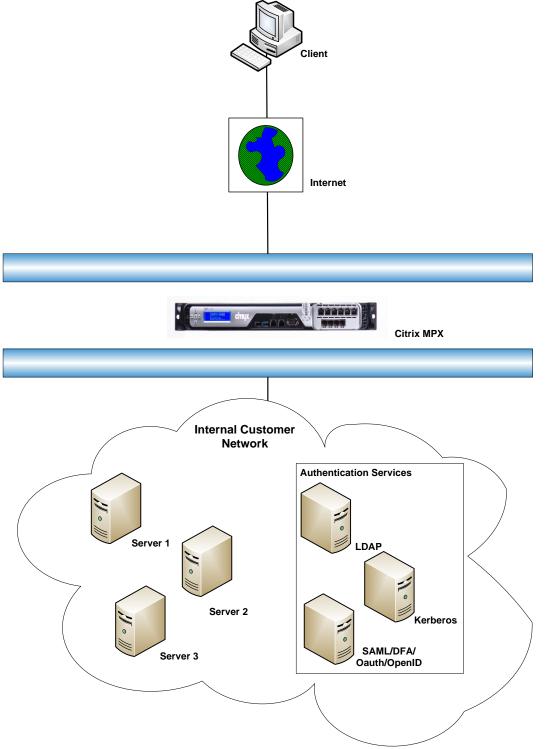


Figure 1 – Typical Citrix MPX Deployment

The MPX feature set can be broadly categorized as consisting of switching features, security and protection features, and server-farm optimization features:

- <u>Switching features</u> When deployed in front of application servers, the MPX ensures optimal distribution
 of traffic by the way in which it directs client requests. Administrators can segment application traffic
 according to information in the body of an HTTP⁹ or TCP¹⁰ request, and on the basis of L4–L7 header
 information such as URL¹¹, application data type, or cookie. Numerous load balancing algorithms and
 extensive server health checks improve application availability by ensuring that client requests are
 directed to the appropriate servers.
- <u>Security and protection features</u> MPX security and protection features protect web applications from Application Layer attacks. The MPX allows legitimate client requests and can block malicious requests. It provides built-in defenses against denial-of-service (DoS) attacks and supports features that protect against legitimate surges in application traffic that would otherwise overwhelm the servers. An available built-in firewall protects web applications from Application Layer attacks, including buffer overflow exploits, SQL¹² injection attempts, cross-site scripting attacks, and more. In addition, the firewall provides identity theft protection by securing confidential corporate information and sensitive customer data.
- <u>Optimization features</u> Optimization features offload resource-intensive operations, such as SSL¹³ processing, data compression, client keep-alive, TCP buffering, and the caching of static and dynamic content from servers. This improves the performance of the servers in the server farm and therefore speeds up applications. The MPX supports several transparent TCP optimizations, which mitigate problems caused by high latency and congested network links, accelerating the delivery of applications while requiring no configuration changes to clients or servers.

The MPX hardware platform consists of a Control Plane processing function (providing all configuration and management processing functions) and one to seven Data Plane(s), which provide data packet processing functions.

The MPX is validated at the FIPS 140-2 Section levels shown in Table 1.

Section	Section Title	Level
1	Cryptographic Module Specification	2
2	Cryptographic Module Ports and Interfaces	2
3	Roles, Services, and Authentication	3
4	Finite State Model	2
5	Physical Security	2
6	Operational Environment	N/A ¹⁴
7	Cryptographic Key Management	2
8	EMI/EMC ¹⁵	2

Table 1 – Security Level per FIPS 140-2 Section

¹⁵ EMI/EMC – Electromagnetic Interference / Electromagnetic Compatibility

⁹ HTTP – Hypertext Transfer Protocol

¹⁰ TCP – Transmission Control Protocol

¹¹ URL – Universal Resource Locator

¹² SQL – Structured Query Language

¹³ SSL – Secure Sockets Layer

 $^{^{\}rm 14}$ N/A – Not Applicable

Section	Section Title	Level
9	Self-tests	2
10	Design Assurance	2
11	Mitigation of Other Attacks	2

2.2 Module Specification

The MPX is a hardware module with a multiple-chip standalone embodiment. The overall security level of the module is 2. The cryptographic boundary is defined by the physical enclosure of the MPX and includes all internal hardware as well as the MPX v12.1.55.180 application firmware. The module includes an Intel[®] Xeon Processor E5-2620 v4 with Intel[®] C612 Chipset and Intel[®] 8955 Chipset. The module leverages the Intel[®] 8955 for cryptographic algorithm acceleration.

The module includes the following cryptographic libraries that provide basic cryptographic functionalities and support secure networking protocols:

- Citrix ADC CP¹⁶ Cryptographic Library v4 (based on OpenSSL FOM¹⁷)
- Citrix ADC DP¹⁸ Cryptographic Library v4 (modified OpenSSL library developed by Citrix)
- Intel Communication chipset 8955 hardware cryptographic accelerator

2.2.1 Approved and Non-Approved Algorithms

Table 2 lists the FIPS-Approved algorithms implemented in the module's Control Plane.

Certificate Number	Algorithm	Standard	Mode / Method	Key Lengths / Curves / Moduli	Use
C1920	AES ¹⁹	FIPS PUB 197	CBC ²⁰ , CTR ²¹	128, 192, 256	encryption/decryption
		NIST SP 800-38D	GCM ²²	128, 256	encryption/decryption
Vendor Affirmation	CKG ²³	NIST SP ²⁴ 800-133	-	-	key generation
C1920	CVL ²⁵	NIST SP 800-56Arev3	ECC CDH ²⁶ Primitive	P-224, P-256, P-384, P-521	Shared secret computation per SP 800- 56Arev3 and Key Derivation per SP 800-135 (Certs. #C1563 and #C1921)

¹⁶ CP – Control Plane

¹⁷ FOM – FIPS Object Module

¹⁸ DP – Data Plane

¹⁹ AES – Advance Encryption Standard

²⁰ CBC – Cipher Block Chaining

²¹ CTR – Counter

²² GCM – Galois Counter Mode

²³ CKG – Cryptographic Key Generation

²⁴ SP – Special Publication

²⁵ CVL – Component Validation Listing

²⁶ ECC CDH – Elliptical Curve Cryptography Cofactor Diffie-Hellman

Citrix ADC MPX

©2021 Citrix Systems, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Certificate Number	Algorithm	Standard	Mode / Method	Key Lengths / Curves / Moduli	Use
Vendor Affirmed	KAS-SSC	NIST SP800-56Arev3	ECDH ²⁷	P-224, P-256, P-384, P-521	Key Agreement Scheme - shared secret computation per SP 800- 56Arev3 and Key Derivation per SP 800-135 (Certs. #C1563 and #C1921)
Vendor Affirmed	KAS-SSC		DH (Groups 14, 15, 16, 17, and 18)	112 – 200-bits security strength (MODP-2048,	Key agreement scheme - shared secret computation (KAS-SSC) per SP 800-
			FFC ²⁸ DH ²⁹ Primitive	MODP-3027, MODP-4096, MODP-6144, MODP-8192)	56Arev3 and Key Derivation per SP 800-135 (Certs. #C1561, #C1563, and #C1921)
C1920	DRBG ³⁰	NIST SP 800-90Arev1	CTR-based	-	deterministic random bit generation
C1920	ECDSA ³¹	FIPS PUB 186-4	KPG ³²	P-224, P-256, P-384, P-521	key pair generation
			SIG(gen), SIG(ver)	P-224, P-256, P-384, P-521	digital signature generation and verification
C1920	RSA ³³	FIPS PUB 186-4	KeyGen9.31	2048, 3072	key pair generation
			SigGenPKCS ³⁴ 1.5	2048, 3072	digital signature generation
			SigVerPKCS1.5	2048, 3072	digital signature verification
C1920	HMAC ³⁵	FIPS PUB 198-1	SHA ³⁶ -1, SHA-256, SHA-384, SHA-512	160, 256, 384, 512	message authentication The cryptographic library supports the truncation of HMAC SHA-1 to 96 bits according to NIST SP 800-107rev1.
C1920	SHS ³⁷	FIPS PUB 180-4	SHA-1, SHA-256, SHA-384, SHA- 512	-	message digest
C1920	Triple-DES ³⁸	NIST SP 800-67	CBC	Keying Option 1	encryption/decryption
Vendor Affirmation	PBKDF ³⁹	NIST SP 800-132	Option 1a with HMAC SHA-1, Option 1a with HMAC SHA-256	-	password-based key derivation

²⁷ ECDH – Elliptic Curve Diffie-Hellman

- ²⁸ FFC Finite Field Cryptography
- ²⁹ DH Diffie-Hellman
- ³⁰ DBRG Deterministic Random Bit Generator
- ³¹ ECDSA Elliptic Curve Digital Signature Algorithm
- ³² KPG Key Pair Generation
- ³³ RSA Rivest Shamir Adleman
- $^{\rm 34}$ PKCS Public Key Cryptography Standard
- ³⁵ HMAC (keyed-) Hashed Message Authentication Code

³⁶ SHA – Secure Hash Algorithm

³⁷ SHS – Secure Hash Standard

³⁸ DES – Data Encryption Standard

³⁹ PBKDF – Password-based Key Derivation Function 2

Citrix ADC MPX

©2021 Citrix Systems, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

The vendor affirms the following cryptographic security methods implemented by the Citrix ADC CP Cryptographic Library v4:

- *NIST SP 800-132* the module uses PBKDF option 1 for KEK⁴⁰ and PEM⁴¹:
 - The PBKDF for KEK establishment takes an input salt that is 128 bits in length with a password/passphrase containing at least 8 characters and produces a random value of 256 bits. In addition, the function has an iteration count of 2,048. The underlying pseudorandom function used in this derivation is HMAC SHA-256.
 - The PBKDF for PEM key establishment takes an input salt that is 128 bits in length with a password/passphrase containing at least 8 characters and produces a random value of 256 bits for AES keys and 192-bits for Triple-DES keys. In addition, the function has an iteration count of 2,048. The underlying pseudorandom function used in this derivation is HMAC SHA-1.
 - The keys derived from these PBKDF functions are only used for storage applications.
- *NIST SP 800-133* the module uses the FIPS-Approved counter-based DRBG specified in *NIST SP 800-90A Revision 1* to generate cryptographic keys. The resulting symmetric key or generated seed is an unmodified output from the DRBG.
- Key agreement scheme (shared secret computation) per NIST SP800-56Arev3:
 - The module implements the DH key agreement scheme in compliance with all applicable sections of NIST SP 800-56Arev3 for use of Approved cryptographic methods, key pair owner/recipient assurances, and key pair management. The implementation uses the dhEphem scheme found in section 6.1.2.1 of NIST SP 800-56Arev3. The vendor affirms the shared secret computation. This primitive is used by the dhHybrid1, dhEphem, dhHybridOneFlow, dhOneFlow and dhStatic schemes found in section 6 of that recommendation. The module generates the ephemeral key pairs that it owns using an Approved method in section 5.6.1.1 of NIST SP 800-56Arev3. The module receives ephemeral public keys generated for use in the dhEphem scheme, the module's key agreement scheme implements only Approved key derivation functions found in NIST SP 800-135rev1.
 - The module also implements an ECC CDH shared secret computation for its ECDH key agreement scheme. The shared secret computation is compliant with section 5.7.1.2 of NIST SP 800-56Arev3. This primitive is used by the Full Unified Model, Ephemeral Unified Model, One-Pass Unified Model, One-Pass Diffie-Hellman, and Static Unified Model schemes found in section 6 of that recommendation.

Per IG 7.14, The module generates cryptographic keys whose strengths are modified by available entropy.

Table 3 lists the FIPS-Approved algorithms implemented in the module's Data Plane.

⁴⁰ KEK – Key Encryption Key

⁴¹ PEM – Privacy-Enhanced Mail

Table 2. Also with an Os at Grant Alson being b	
Table 3 – Algorithm Certificate Numbers	(Citrix ADC DP Cryptographic Library V4)

Certificate Number	Algorithm	Standard	Mode / Method	Key Lengths / Curves / Moduli	Use
C1922	AES	FIPS PUB 197	СВС	128, 192, 256	encryption/decryption
		NIST SP 800-38D	GCM	128, 256	encryption/decryption
Vendor Affirmation	СКG	NIST SP 800-133	-	-	key generation
C1922	CVL	NIST SP 800-56Arev3	ECC CDH ⁴² Primitive	P-224, P-256, P-384, P- 521	Shared secret computation per SP 800- 56Arev3 and Key Derivation per SP 800- 135 (Cert. #C1922)
Vendor Affirmed	KAS-SSC ⁴³	NIST SP 800-56Arev3	ECDH	P-224, P-256, P-384, P- 521	Key Agreement Scheme - shared secret computation per SP 800- 56Arev3 and Key Derivation per SP 800-135 (Cert. #C1922)
C1922	DRBG	NIST SP 800-90Arev1	Hash-based	-	deterministic random bit generation
C1922	ECDSA	FIPS PUB 186-4	SIG(gen), SIG(ver)	P-224, P-256, P-384, P- 521	digital signature generation and verification
C1922	RSA	FIPS PUB 186-4	SigGenPKCS1.5	2048, 3072	digital signature generation
			SigVerPKCS1.5	1024, 2048, 3072	digital signature verification
A607			SigGenPKCS1.5	4096	digital signature generation
			SigVerPKCS1.5	4096	digital signature verification
C1922	HMAC	FIPS PUB 198-1	SHA-1, SHA-224, SHA- 256, SHA-384, SHA- 512	160, 224, 256, 384, 512	message authentication
C1922	SHS	FIPS PUB 180-4	SHA-1, SHA-224, SHA- 256, SHA-384, SHA- 512	-	message digest

The vendor affirms the following cryptographic security method implemented by the Citrix ADC DP Cryptographic Library v4:

- *NIST SP 800-133* the module uses the FIPS-Approved hash-based DRBG specified in *NIST SP 800-90A Revision 1* to generate cryptographic keys. The resulting symmetric key or generated seed is an unmodified output from the DRBG.
- Key agreement scheme (shared secret computation) per NIST SP800-56Arev3:
 - The module also implements an ECC CDH shared secret computation for its ECDH key agreement scheme. The shared secret computation is compliant with section 5.7.1.2 of NIST SP 800-56Arev3. This primitive is used by the Full Unified Model, Ephemeral Unified Model, One-Pass Unified

⁴² ECC CDH – Elliptic Curve Cryptography Cofactor Diffie-Hellman
⁴³ KAS-SSC – Key Agreement Scheme – Shared Secret Computation

Model, One-Pass Diffie-Hellman, and Static Unified Model schemes found in section 6 of that recommendation.

Per IG 7.14, The module generates cryptographic keys whose strengths are modified by available entropy.

Table 4 lists the FIPS-Approved algorithms implemented in the Intel 8955 Chipset.

Table 4 – Algorithm Certificate Numbers (Intel Communication chipset 8955 hardware cryptographic accelerator)

Certificate Number	Algorithm Standard		Mode / Method	Key Lengths / Curves / Moduli	Use
C1565	AES	FIPS PUB 197	СВС	128, 256	encryption/decryption
		NIST SP 800-38D	GCM	128, 256	encryption/decryption
Vendor Affirmation	CKG	NIST SP 800-133	-	-	key generation
C1565	CVL	NIST SP 800-56Arev3	ECC CDH ⁴⁴ Primitive	P-224, P-256, P-384, P- 521	Shared secret computation per SP 800- 56Arev3 and Key Derivation per SP 800- 135 (Cert. #C1565)
Vendor Affirmed	KAS-SSC ⁴⁵	NIST SP 800-56Arev3	ECDH	P-224, P-256, P-384, P- 521	Key Agreement Scheme - shared secret computation per SP 800- 56Arev3 and Key Derivation per SP 800-135 (Cert. #C1565)
C1565	ECDSA	FIPS PUB 186-4	SIG(gen), SIG(ver)	P-224, P-256, P-384, P- 521	digital signature generation and verification
C1565	RSA	FIPS PUB 186-4 SigGenPKCS1.5 2048, 3072		2048, 3072	digital signature generation
			SigVerPKCS1.5	1024, 2048, 3072	digital signature verification
A393			SigGenPKCS1.5	4096	digital signature generation
			SigVerPKCS1.5	4096	digital signature verification
C1565	HMAC	FIPS PUB 198-1	SHA-1, SHA-256, SHA- 384, SHA-512	160, 256, 384, 512	message authentication
C1565	SHS	FIPS PUB 180-4	SHA-1, SHA-224, SHA- 256, SHA-384, SHA- 512		message digest

The vendor affirms the following cryptographic security method implemented by the Intel Communication chipset 8955 hardware cryptographic accelerator:

- Key agreement scheme (shared secret computation) per NIST SP800-56Arev3:
 - The module also implements an ECC CDH shared secret computation for its ECDH key agreement scheme. The shared secret computation is compliant with section 5.7.1.2 of NIST SP 800-56Arev3. This primitive is used by the Full Unified Model, Ephemeral Unified Model, One-Pass Unified

⁴⁴ ECC CDH – Elliptic Curve Cryptography Cofactor Diffie-Hellman

⁴⁵ KAS-SSC – Key Agreement Scheme – Shared Secret Computation

Model, One-Pass Diffie-Hellman, and Static Unified Model schemes found in section 6 of that recommendation.

In addition, the module includes several protocol libraries that implement FIPS-Approved KDFs⁴⁶. The IKE⁴⁷ KDFs are implemented by the Citrix ADC CP IKE KDF Library v2 (based on the Racoon2 protocol library), the SSH⁴⁸ KDF is implemented by the Citrix ADC CP SSH KDF Library v2 (based on the open source OpenSSH protocol library), and the SNMP⁴⁹v3 KDF is implemented by the Citrix ADC CP SNMP KDF Library v2 (a modified version of the Net-SNMP protocol library). These libraries all link to the Citrix ADC CP Cryptographic Library v4 for their cryptographic operations.

There are multiple TLS⁵⁰ KDF implementations supported by the module. One is implemented by the Citrix ADC CP TLS KDF Library v4 (based on the OpenSSL libssl protocol library) and uses the Citrix ADC CP Cryptographic Library v4 for its cryptographic operations. A second is implemented by the Citrix ADC DP Cryptographic Library v4. A third TLS KDF is implemented in the Intel Communication chipset 8955 hardware cryptographic accelerator.

The module implements the FIPS-Approved KDFs listed in Table 5 below.

Certificate Number	Algorithm	Specification	Mode / Method	Key Lengths / Curves / Moduli	Use	Library
C1561	CVL IKEv1/v2	NIST SP 800- 135rev1	-	-	key derivation	Citrix ADC CP IKE KDF Library v2
C1562	CVL SNMPv3 KDF	NIST SP 800- 135rev1	-	-	key derivation	Citrix ADC CP SNMP KDF Library v2
C1563	CVL SSH KDF	NIST SP 800- 135rev1	-	-	key derivation	Citrix ADC CP SSH KDF Library v2
C1921	CVL TLS v1.0/1.1/1.2	NIST SP 800- 135rev1	-	-	key derivation	Citrix ADC CP TLS KDF Library v4
C1922	CVL TLS v1.0./1.1/1.2	NIST SP 800- 135rev1	-	-	Key derivation	Citrix ADC DP Cryptographic Library v4
C1565	CVL TLS v1.0/1.1/1.2	NIST SP 800- 135rev1	-	-	Key derivation	Intel Communication chipset 8955 hardware cryptographic accelerator

Table 5 – CVL Certificate Numbers

Note: No parts of the SNMP, SSH, IKE, and TLS protocols, other than the KDFs, have been tested by the CAVP⁵¹.

The algorithm implementations shown in Table 6 below are allowed for use in a FIPS-Approved mode of operation.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

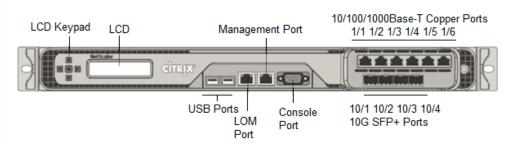
⁴⁶ KDF – Key Derivation Function

⁴⁷ IKE – Internet Key Exchange

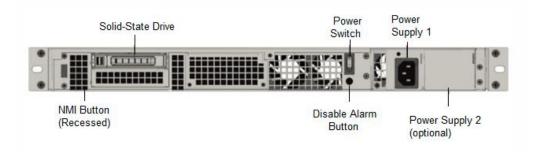
⁴⁸ SSH – Secure Shell

⁴⁹ SNMP – Simple Network Management Protocol

⁵⁰ TLS – Transport Layer Security


⁵¹ CAVP – Cryptographic Algorithm Validation Program

Algorithm Caveat Use key establishment methodology provides 112 key transport (Citrix ADC CP Cryptographic Library v4) or 128 bits of encryption strength key establishment methodology provides 112 key transport RSA or 128 bits of encryption strength (Citrix ADC DP Cryptographic Library v4) key transport key establishment methodology provides 112 (Intel Communication chipset 8955 hardware or 128 bits of encryption strength cryptographic accelerator) MD552 hashing passwords NDRNG⁵³ (FreeBSD seeding for the control plane DRBG /dev/random) NDRNG (Intel seeding for data plane hardware and firmware RDRAND) DRBG


Table 6 – Allowed Algorithm Implementations

2.3 Module Interfaces

The MPX 89xx FIPS model is illustrated in Figure 2 and Figure 3 below.

⁵² MD5 – Message Digest 5

⁵³ NDRNG – Non-Deterministic Random Number Generator

Citrix ADC MPX ©2021 Citrix Systems, Inc. This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 14 of 54

Figure 3 – MPX 89xx FIPS Ports and Interfaces (Back Panel)

The MPX 15xxx-50G model is illustrated in Figure 4 and Figure 5 below.

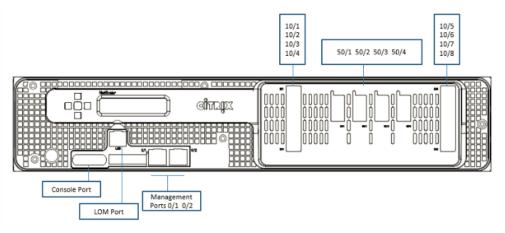


Figure 4 – MPX 15xxx FIPS Ports and Interfaces (Front Panel)

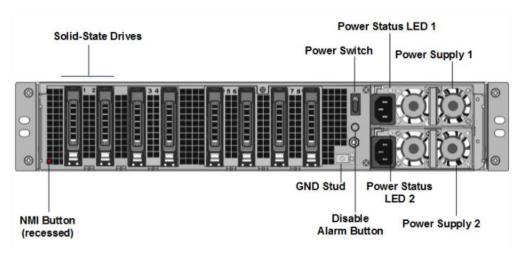


Figure 5 – MPX 15xxx FIPS Ports and Interfaces (Back Panel)

The physical interfaces for the MPX are mapped to the FIPS 140-2 logical interfaces in Table 7 below.

Table 7 – Mapping of FIPS 140-2 Logical Interfaces to MPX Interfaces							
	Qua	ntity					
Physical Port/Interface	MPX 89xx FIPS	MPX 15xxx FIPS	Location	Direction	FIPS 140-2 Interface		
RS-232 serial port	1	1	Front panel	Serial console port used as a connection between the appliance and a computer, allowing direct access to the appliance for initial configuration or troubleshooting	Control inStatus out		
10/100/1000Base-T copper RJ45 Ethernet port	1	1	Front panel	Ethernet LOM ⁵⁴ port used to remotely monitor and manage the appliance independently of the Citrix ADC firmware	Control inStatus out		
10/100/1000Base-T copper RJ45 Ethernet port	1	2	Front panel	Ethernet Management ports used to connect directly to the appliance for Citrix ADC administration functions	Control inStatus out		
10/100/1000Base-T copper RJ45 Ethernet port	6	-	Front panel	Ethernet data ports	 Data in Data out Control in Status out 		
10G SFP+ ⁵⁵ Ethernet port**	4	8	Front panel	Ethernet data ports (fiber)	 Data in Data out		
50G Ethernet port	-	4	Front panel	Ethernet data ports	 Data in Data out Control in Status out 		
LCD Keypad	1	1	Front panel		Control in		
LCD	1	1	Front panel		Status out		
Disable Alarm button	1	1	Back panel	Button used to stop the power alarm from sounding	Control in		
NMI ⁵⁶ button	1	1	Back panel	Button used (at the request of Citrix Technical Support) to initiate a core dump	Control in		
Power switch	1	1	Back panel	Switch used to turn power to the appliance on or off	• Power in		

Table 7 – Mapping of FIPS 140-2 Logical Interfaces to MPX Interfaces

*The Disable Alarm button is functional only if a second power supply is installed.

**1G copper transceivers are supported in 10G slots; 1G fiber transceivers are not supported.

⁵⁴ LOM – Lights Out Management

⁵⁵ SFP+ – Small Form Factor Pluggable Plus

⁵⁶ NMI – Non-Maskable Interrupt

Citrix ADC MPX

©2021 Citrix Systems, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 16 of 54

LED Type	LED Function	Description	FIPS 140-2 Logical Interface		
RJ45 Ethernet port LEDs	Speed	 OFF: no connection GREEN: traffic rate of 100 Mbps AMBER: traffic rate of 1 Gbps 	• Status out		
LEDS	Link/activity	 OFF: no link BLINKING GREEN: link is established; traffic is passing thru the port 	• Status out		
	Speed	OFF: no connectionBLUE: traffic rate of 10 Gbps			
10G SFP+ Ethernet port LEDs	Link/activity	 OFF: no link GREEN: link is established; no traffic is passing thru the port BLINKING GREEN: link is established; traffic is passing thru the port 	• Status out		
Power supply LED	Status	 OFF: no power to any power supply in the appliance FLASHING RED: no power to this power supply RED: power supply failure FLASHING GREEN: power supply is in standby mode GREEN: power supply is functional [on the 15xxx-50G] FLASHING RED and GREEN: Warning (OVP/UVP/OCP/OTP/Fan); OVP = Over Voltage Protection; UVP = Under Voltage Protection; OCP = Over Current Protection; OTP = Over Temperature Protection 	• Status out		

Table 8 – LEDs and Status Indications

2.4 Roles and Services

The sections below describe the module's roles and services and define any authentication methods employed.

2.4.1 Authorized Roles

An operator authenticates to the module with a unique username and password. These credentials are used to identify the operator and determine their given role. Each role determines the functionality available to the operator within the module. As required by FIPS 140-2, the module supports two roles that operators may assume:

• Crypto Officer (CO) – The CO role performs administrative services on the module, such as initialization, configuration, and monitoring of the module. The CO role includes the privileges listed under the read-only, operator, network, and sysadmin MPX command policies.

User – Users can view the current status of the module and employ the services of the module (including IPsec⁵⁷, TLS, SSH, and SNMPv3 services). The User role includes the privileges listed under the read-only MPX command policy.

Operators authenticate to the module using a username and password. Password complexities can be configured by an operator with the Crypto Officer role. All operators are required to follow the complex password restrictions. The password must contain:

- Between 4 and 127 characters
- At least one lowercase letter
- At least one uppercase letter
- At least one digit
- At least one special character (~, `, !, @, #, \$, %, ^, &, *, -, _, =, +, {, }, [,], |, \, :, <, >, /, ., ,, " ")

The minimum length of the password is eight characters, with 90 different case-sensitive alphanumeric characters and symbols possible for usage. The chance of a random attempt falsely succeeding is:

- =1 per 90⁸ possible passwords
- =1 per 4.3x10¹⁵

which is a lesser probability than 1 per 1,000,000 as required by FIPS 140-2.

For more information on the MPX command policies, refer to the <u>Configuring users, user groups, and command</u> <u>policies</u> webpage on Citrix's online product documentation portal.

Operators can also authenticate to the module through certificates associated with the selected protocol. The module supports RSA digital certificate authentication of users during Web GUI/HTTPS (TLS) access. Using conservative estimates and equating a 2048-bit RSA key to a 112-bit symmetric key, the probability for a random attempt to succeed is:

- =1 per 2¹¹²
- =1 per 5.19 x 10³³

which is a lesser probability than 1 per 1,000,000 as required by FIPS 140-2.

The fastest network connection supported by the module is 1000 Mbps. At most $(1 \times 10^9 \text{ bits/second} \times 60 \text{ seconds}) = 6 \times 10^{10} = 60,000,000,000 \text{ bits of data can be transmitted in one minute. The minimum password is 64 bits (8 bits per character x 8 characters), meaning 9.375 \times 10^8 passwords can be passed to the module (assuming there is no overhead). This equates to a 1:4,591,650 chance of a random attempt will succeed, or a false acceptance will occur in a one-minute period, which is less than the required probability.$

Given that there can be 60,000,000,000 bits of data transmitted to the module in one minute and that a certificate contains a 2048-bit RSA key, then at most 60,000,000,000 / 2048 or 2.93×10^7 certificates can be passed to the module in a one-minute period (assuming there is no overhead), meaning if one key has a $1:5.19 \times 10^{33}$ chance of

⁵⁷ IPsec – Internet Protocol Security

succeeding then in a one minute period there is a 2.93x10⁷:5.19x10³³, or 1:1.77x10²⁶ chance of a random attempt succeeding, which is less than the required probability.

2.4.2 Operator Services

Descriptions of the services available to the CO role and User role are provided in Table 9 below. Please note that the keys and Critical Security Parameters (CSPs) listed in the table indicate the type of access required using the following notation:

- R Read: The CSP is read.
- W Write: The CSP is established, generated, or modified.
- X Execute: The CSP is used within an Approved or Allowed security function or authentication mechanism.
- Z Zeroized: The CSP is deleted.

Comico	Оре	rator	Description	Innut	Output	
Service	со	User	Description	Input	Output	CSP and Type of Access
Perform initial network configuration	~		Set up initial network configuration and MPX licenses	Command and parameters	Command response/ status output	None
Create KEK	¥		Create system master key	Command	Status output	KEK Passphrase – R/X KEK – W CTR DRBG Entropy – R/X CTR DRBG Seed – R/W/X CTR DRBG 'V' Value – R/W/X CTR DRBG 'Key' Value – R/W/X
View system information	✓		View system info and statistics; view/end system sessions	Command	Status output	None

Table 9 – Mapping of Module Services to Roles, CSPs, and Type of Access⁵⁸

⁵⁸ For commands and parameters related to the listed services, refer to the Citrix ADC 12.1 webpage on Citrix's online product documentation portal.

	Ope	rator				
Service	со	User	Description	Input	Output	CSP and Type of Access
Reboot	•		Reboot the module	Command	Status output	PEM Passphrase – Z PEM Key – Z AES GCM Key – Z AES GCM IV – Z DH/ECDH/RSA Private Key Component – Z DH/ECDH/RSA Public Key Component – Z SSH Shared Secret – Z SSH Session Key – Z SSH Authentication Key – Z IKE/IPsec Shared Secret – Z IKE/IPsec Authentication Key – Z IKE/IPsec Authentication Key – Z ILS Pre-Master Secret – Z TLS Master Secret – Z TLS Authentication Key – Z TLS DRBG Entropy – Z Hash DRBG Seed – Z CTR DRBG Seed – Z CTR DRBG Seed – Z CTR DRBG "V" Value – Z CTR DRBG "V" Value – Z SNMPv3 Private Key – Z SNMPv3 Authentication Key - Z
Configure system settings	V		Configure modes and features, system settings, and cloud parameters	Command and parameters	Command response/ status output	AES Key – W KEK – X Hash DRBG Entropy – R/X Hash DRBG Seed – R/W/X Hash DRBG 'V' Value – R/W/X Hash DRBG 'C' Value – R/W/X
Configure HA ⁵⁹	~		Configure HA nodes, route monitors, failover interface set	Command and parameters	Status output	None
Manage NTP ⁶⁰ servers	✓		Add, edit, delete NTP servers; configure NTP parameters and synchronization state	Command	Status output	None
Configure system profiles	~		Add, edit, delete system profiles	Command and parameters	Command response/ status output	TLS Master Secret – R/W/X TLS Ticket Encryption Key – R/W TLS Ticket Authentication Key – R/W CTR DRBG Entropy – R/X CTR DRBG Seed – R/W/X CTR DRBG 'V' Value – R/W/X CTR DRBG 'Key' Value – R/W/X KEK – X

⁵⁹ HA – High Availability ⁶⁰ NTP – Network Time Protocol

FIPS 140-2 Non-Proprietary Security Policy, Version 0.2

	Ope	rator				
Service	со	User	Description	Input	Output	CSP and Type of Access
Manage users	✓		Add, edit delete users, groups, and command policies; view user/group partition bindings	Command	Status output	None
Configure system auditing	V		Add, edit, delete syslog/nslog auditing policies and servers; bind classic/advanced global policies	Command and parameters	Command response/ status output	None
View audit logs	~		View authentication, system, and event logs	Command	Status output	None
Configure network settings	~		Configure network routing protocols	Command and parameters	Command response/ status output	ZebOS Router Password – R/W KEK – X
Exchange routing information	V		Exchange routing update information using ZebOS, authenticate source of packets	Command	Status output	ZebOS Router Password – X KEK – X
Configure SSH	×		Configure SSH authentication settings; generate SSH keys	Command and parameters	Command response/ status output	SSH Private Key – W/X SSH Public Key – W CTR DRBG Entropy – R/X CTR DRBG Seed – R/W/X CTR DRBG 'V' Value – R/W/X CTR DRBG 'Key' Value – R/W/X
Establish SSH sessions	•	×	Establish an SSH session	Command	Status output	SSH Public Key – R/X DH Private Key Component – W/X DH Public Key Component – R/X ECDH Private Key Component – W/X ECDH Public Key Component – R/X SSH Shared Secret – W/X SSH Session Key – W/X SSH Authentication Key – W/X CTR DRBG Entropy – R/X CTR DRBG Seed – R/W/X CTR DRBG 'V' Value – R/W/X CTR DRBG 'Key' Value – R/W/X
Configure CloudBridge	~		Configure IPsec profile; configure CloudBridge Connector settings, network bridges, and IP tunnels; view IP tunnel details	Command and parameters	Command response/ status output	IKE/IPsec PSK ⁶¹ – R/W KEK – X

Comico	Ope	rator	Description	Input	Quitaut	
Service	со	User	Description	Input	Output	CSP and Type of Access
Configure clustering	v		Configure an appliance to either be the cluster coordinator or a node in the cluster	Command and parameters	Command response/ status output	Cluster Password – R/W
Establish IPsec session	~	×	Establish an IPsec Session	Command	Status output	DH Private Key Component – W/X DH Public Key Component – R/X IKE/IPsec Shared Secret – W/X IKE/IPsec PSK – X KEK – X IKE/IPsec Session Key – W/X IKE/IPsec Authentication Key – W/X CTR DRBG Entropy – R/X CTR DRBG Entropy – R/X CTR DRBG Seed – R/W/X CTR DRBG 'V' Value – R/W/X CTR DRBG 'Key' Value – R/W/X
Backup and restore	v		Backup/import system configuration files; download and delete backup files; restore	Command	Status output	None
Manage encryption keys	×		Add, edit, delete encryption keys	Command	Status output	AES Key – R/W KEK – X Hash DRBG Entropy – R/X Hash DRBG Seed – R/W/X Hash DRBG 'V' Value – R/W/X Hash DRBG 'C' Value – R/W/X
Manage HMAC keys	×		Add, edit, delete HMAC keys	Command	Status output	HMAC Key – R/W KEK – X Hash DRBG Entropy – R/X Hash DRBG Seed – R/W/X Hash DRBG 'V' Value – R/W/X Hash DRBG 'C' Value – R/W/X

	Ope	rator			.	
Service	со	User	Description	Input	Output	CSP and Type of Access
Configure traffic management	•		Configure TLS; Configure load balancing, priority load balancing, content switching, and cache redirection settings, DNS ⁶² , GSLB ⁶³ , Subscriber, service chaining, and user protocol settings	Command and parameters	Command response/ status output	CA ⁶⁴ Public Key – R/W/X TLS Private Key – R/W/X TLS Public Key – R/W Private DNS KSK ⁶⁵ – R/W/X Public DNS KSK – R/W Private DNS ZSK ⁶⁶ – R/W/X Public DNS ZSK – R/W SSH Private Key – R/W/X SSH Public Key – R/W/X PEM Passphrase – R/W/X PEM Key – W/X KEK – X CTR DRBG Entropy – R/X CTR DRBG Seed – R/W/X CTR DRBG 'V' Value – R/W/X Hash DRBG Seed – R/W/X Hash DRBG Seed – R/W/X Hash DRBG 'C' Value – R/W/X
Establish TLS session	×	×	Establish a web session using TLS protocol	Command	Status output	TLS Public Key – R/X DH Private Key Component – W/X DH Public Key Component – R/X ECDH Private Key Component – W/X ECDH Public Key Component – R/X RSA Private Key Component – R/X RSA Public Key Component – R/X TLS Premaster Secret – R/W/X TLS Master Secret – W/X TLS Authentication Key – W/X AES GCM IV ⁶⁷ – W/X AES GCM Key – W/X PEM Passphrase – R/X PEM Key – W/X KEK – X CTR DRBG Entropy – R/X CTR DRBG Seed – R/W/X CTR DRBG 'V' Value – R/W/X Hash DRBG Seed – R/W/X Hash DRBG Seed – R/W/X Hash DRBG 'C' Value – R/W/X Hash DRBG 'C' Value – R/W/X

⁶² DNS – Domain Name System

⁶³ GSLB – Global Server Load Balancing

⁶⁴ CA – Certificate Authority

⁶⁵ KSK – Key Signing Key

⁶⁶ ZSK – Zone Signing Key

⁶⁷ IV – Initialization Vector

Comitor	Operator			land -		
Service	со	User	Description	Input Output		CSP and Type of Access
Resume TLS session	•	•	Resume a web session using TLS protocol	Command	Status output	TLS Ticket Encryption Key – R/W/X TLS Ticket Authentication Key – R/W/X TLS Session Key – R/X TLS Authentication Key – R/X AES GCM IV – W/X AES GCM Key – W/X KEK – X Hash DRBG Entropy – R/X Hash DRBG Seed – R/W/X Hash DRBG 'V' Value – R/W/X Hash DRBG 'C' Value – R/W/X
Apply data policies	✓		Apply data policies to user data in transit (according to configuration)	Command	Status output	AES Key – X HMAC Key – X KEK – X
Configure security	~		Configure DNS security profiles, application firewall profiles and policies, reputation settings, protection features, and content inspection policies	Command and parameters	Command response/ status output	None
Configure Citrix ADC Gateway	V		Configure Gateway global settings, virtual servers, portal themes, AAA ⁶⁸ groups and users, policies, and resources	Command and parameters	Command response/ status output	RDP ⁶⁹ PSK – W KEK – X
Establish Citrix ADC Gateway connection	✓		Establish Gateway connection based on global settings	Command and parameters	Command response/ status output	RDP ⁷⁰ PSK – R/X KEK – X
Configure external servers for system, AAA, and Gateway authentication	•		Configure LDAP ⁷¹ , Oauth, OpenID, DFA ⁷² , Kerberos, and SAML ⁷³ servers to be used in system, AAA, or Gateway authentication	Command and parameters	Command response/ status output	LDAP Admin Password – R/W Oauth Client Secret – R/W DFA Shared Secret – R/W Kerberos CA Public Key – R/W Kerberos User Public Key – R/W Kerberos User Private Key – R/W KEK – X

This document may be freely reproduced and distributed whole and intact including this copyright notice.

8/5/2021

 $^{^{\}rm 68}$ AAA – Authentication, Authorization, Accounting

⁶⁹ RDP – Remote Desktop Protocol

⁷⁰ RDP – Remote Desktop Protocol

⁷¹ LDAP – Lightweight Directory Access Protocol

 ⁷² DFA – Delegated Form Authentication
 ⁷³ SAML – Security Assertion Markup Language

	Оре	rator				
Service	со	User	Description	Input	Output	CSP and Type of Access
Perform Kerberos functions	~	V	Establish Kerberos session; Access Kerberos service; Perform Kerberos negotiation	Command	Status Output	Kerberos CA Public Key – W/X Kerberos User Public Key – W Kerberos User Private Key – X Kerberos Server Public Key - W Kerberos DH Public Key – R/W/X Kerberos DH Private Key – R/W/X Kerberos Secret Key – W/X Kerberos Client/TGS ⁷⁴ Session Key – R/X Kerberos Client/Server Session Key – W, X
Configure SNMPv3	~		Configure SNMP communities, traps, managers, views, groups, users, alarms, and engine ID ⁷⁵ ; view SNMP OIDs ⁷⁶	Command and parameters	Command response/ status output	SNMPv3 Authentication Passphrase – R/W SNMPv3 Privacy Passphrase – R/W KEK – X
SNMPv3 traps	~	✓ ✓	Provides system condition information	None	Status Output	SNMPv3 Authentication Passphrase – X SNMPv3 Privacy Passphrase – X SNMPv3 Privacy Key – W/X SNMPv3 Authentication Key – W/X
Show status	~	~	Show the system status	Command	Status output	None
Zeroize KEK	~		Zeroize KEK	Command	Status output	KEK – W
Zeroize SSH private keys	~		Zeroize SSH private keys	Command	Status output	SSH Private Key – W

2.4.3 Additional Services

The module provides a limited number of services for which the operator is not required to assume an authorized role. Table 10 lists the services for which the operator is not required to assume an authorized role. None of these services disclose or substitute cryptographic keys and CSPs or otherwise affect the security of the module.

⁷⁴ TGS – Ticket Granting Service

⁷⁵ ID – Identifier

⁷⁶ OID – Object Identifier

Service	Description	Input	Output	CSP and Type of Access
Zeroize	Zeroize keys and CSPs	Power cycle	Status output	PEM Passphrase – Z PEM Key – Z AES GCM Key – Z AES GCM IV – Z DH/ECDH/RSA Private Key Component – Z DH/ECDH/RSA Public Key Component – Z SSH Shared Secret – Z SSH Shared Secret – Z SSH Authentication Key – Z IKE/IPsec Shared Secret – Z IKE/IPsec Authentication Key – Z ILS Pre-Master Secret – Z TLS Master Secret – Z TLS Master Secret – Z TLS Authentication Key – Z TLS DRBG Entropy – Z CTR DRBG Seed – Z CTR DRBG "V" Value – Z CTR DRBG "Key" Value – Z SNMPv3 Private Key – Z SNMPv3 Authentication Key - Z

Table 10 – Additional Services⁷⁷

⁷⁷ For commands and parameters related to the listed services, refer to the Ctrix ADC 12.1 Product Documentation located at <u>https://docs.citrix.com/en-us/citrix-adc/12-1.html</u>.

Service	Description	Input	Output	CSP and Type of Access
Perform On-Demand Self-Tests	Perform self-tests on demand	Power cycle	Status output	PEM Passphrase – Z PEM Key – Z AES GCM Key – Z AES GCM IV – Z DH/ECDH/RSA Private Key Component – Z DH/ECDH/RSA Public Key Component – Z SSH Shared Secret – Z SSH Shared Secret – Z SSH Authentication Key – Z IKE/IPsec Shared Secret – Z IKE/IPsec Authentication Key – Z IKE/IPsec Authentication Key – Z ILS Pre-Master Secret – Z TLS Master Secret – Z TLS Master Secret – Z TLS Authentication Key – Z ILS Authentication Key – Z ILS Authentication Key – Z TLS Authentication Key – Z Hash DRBG Entropy – Z Hash DRBG "C" Value – Z CTR DRBG Seed – Z Hash DRBG "C" Value – Z CTR DRBG "V" Value – Z CTR DRBG "V" Value – Z SNMPv3 Private Key – Z SNMPv3 Authentication Key - Z
Authenticate operators	Used for operator logins to the module	Command	Status output	Operator Password - R LDAP Admin Password – R/X SSH Public Key – X Oauth Client Secret – X DFA Shared Secret – X TLS Public Key – X AES Key – X AES GCM Key – X AES GCM IV – X KEK – X

2.5 Physical Security

The MPX is a multiple-chip standalone cryptographic module. The contents of the module, including hardware components, firmware, plaintext keys, and CSPs are all protected by the module enclosure. The module enclosure consists of a hard production-grade metal case that completely encloses all of its internal components.

In addition, all of the internal components of the module are production-grade and coated with commercialstandard passivation.

The MPX enclosure has a removable front and back cover. Each cover is secured with screws and serialized tamperevident seals.

2.6 **Operational Environment**

The module employs a non-modifiable operating environment. The MPX firmware is executed by the module's processor as indicated below:

- 8905 FIPS (Intel® Xeon Processor E5-2620 v4 with Intel® C612 Chipset and Intel® 8955 Chipset)
- 8910 FIPS (Intel[®] Xeon Processor E5-2620 v4 with Intel[®] C612 Chipset and Intel[®] 8955 Chipset)
- 8920 FIPS (Intel[®] Xeon Processor E5-2620 v4 with Intel[®] C612 Chipset and Intel[®] 8955 Chipset)
- 15020-50G FIPS (Intel[®] Xeon Processor E5-2620 v4 with Intel[®] C612 Chipset and Intel[®] 8955 Chipset)
- 15030-50G FIPS (Intel[®] Xeon Processor E5-2620 v4 with Intel[®] C612 Chipset and Intel[®] 8955 Chipset)
- 15040-50G FIPS (Intel[®] Xeon Processor E5-2620 v4 with Intel[®] C612 Chipset and Intel[®] 8955 Chipset)
- 15060-50G FIPS (Intel[®] Xeon Processor E5-2620 v4 with Intel[®] C612 Chipset and Intel[®] 8955 Chipset)
- 15080-50G FIPS (Intel[®] Xeon Processor E5-2620 v4 with Intel[®] C612 Chipset and Intel[®] 8955 Chipset)
- 15100-50G FIPS (Intel[®] Xeon Processor E5-2620 v4 with Intel[®] C612 Chipset and Intel[®] 8955 Chipset)
- 15120-50G FIPS (Intel[®] Xeon Processor E5-2620 v4 with Intel[®] C612 Chipset and Intel[®] 8955 Chipset)

The module runs a customized operating system based on FreeBSD v8.4, which cannot be modified and does not provide a general-purpose computing environment.

The module's entropy source has a min-entropy over 80%. Thus, a request for 256 bits of entropy to seed the 256bit CTR and Hash DRBGs will result in more than the minimum FIPS requirement of 112 bits of entropy.

2.7 Cryptographic Key Management

The module supports the CSPs listed below in Table 11.

CSP	CSP Type	Generation / Input	Output	Storage	Zeroization	Use
KEK Passphrase	Alphanumeric string	Generated externally, input in plaintext form via local console or in encrypted form via SSH session	Never exits the module	Plaintext in volatile memory	N/A	Derivation of KEK
КЕК	256-bit AES key	Generated internally via PBKDF	Never exits the module	Plaintext on disk	CLI command	Encryption and decryption of passwords and passphrases
PEM Passphrase	Alphanumeric string (8-31 characters)	Generated externally, input in plaintext form via local console or in encrypted form via TLS or SSH session	Exits the module in encrypted form as part of config backup file	Plaintext in volatile memory or encrypted on disk (via KEK)	[for plaintext] Reboot; remove power	Derivation of PEM Key
РЕМ Кеу	256-bit AES key 192-bit Triple-DES key	Generated internally via PBKDF	Never exits the module	Plaintext in volatile memory	Reboot; remove power	Encryption and decryption of asymmetric private keys
AES key	128/192/256-bit AES key	Generated internally via Approved DRBG OR Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session	Exits the module in encrypted form as part of config backup file	Encrypted on disk (via KEK)	N/A	Encryption and decryption
AES GCM key	256-bit AES GCM key	Generated internally via Approved DRBG	Never exits the module	Plaintext in volatile memory	Reboot; remove power	Encryption and decryption
AES GCM IV	96 and 128-bit IV	Internally generated deterministically in compliance with TLS 1.2 GCM Cipher Suites for TLS and Section 8.2.1 of NIST SP 800-38D	Never exits the module	Plaintext in volatile memory	Reboot; remove power	IV for AES GCM

Table 11 – Cryptographic Keys, Cryptographic Key Components, and CSPs

CSP	CSP Туре	Generation / Input	Output	Storage	Zeroization	Use
HMAC Key	160/224/256/384/512-bit HMAC key	Generated internally via Approved DRBG OR Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session	Exits the module in encrypted form as part of config backup file	Encrypted on disk (via KEK)	N/A	Message authentication with SHS
CA Public Key	1024/2048/3072/4096-bit RSA public key P-224/P-256/P-384/P-521 ECDSA public key	Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session	Exits the module in plaintext form	Plaintext on disk	N/A	TLS certificate authentication 1024-bit RSA public keys are used for signature verification only
DH Private Key Component	[for SSH sessions] 2048, 4096, 8192-bit DH private key [for TLS sessions] 2048, 3072, 4096-bit DH private key [for IKE sessions] 2048-bit DH private key	Generated internally via Approved DRBG	Never exits the module	Plaintext in volatile memory	Reboot; remove power; session termination	Generation of SSH, TLS, and IKE shared secrets
DH Public Key Component	[for SSH sessions] 2048, 4096, 8192-bit DH public key [for TLS sessions] 2048, 3072, 4096-bit DH public key [for IKE sessions] 2048-bit DH public key	[for the module] Generated internally via Approved DRBG [for a peer] Input in plaintext form	[for the module] Exits the module in plaintext form [for a peer] Never exits the module	Plaintext in volatile memory	Reboot; remove power; session termination	Generation of SSH, TLS, and IKE shared secrets

CSP	СЅР Туре	Generation / Input	Output	Storage	Zeroization	Use
ECDH Private Key Component	Private key of ECDH protocol (P-224/P-256/P-384/P-521 curves)	Generated internally via Approved DRBG	Never exits the module	Plaintext in volatile memory	Reboot; remove power; session termination	Generation of SSH and TLS shared secrets
ECDH Public Key Component	Public key of ECDH protocol (P-224/P-256/P-384/P-521 curves)	[for the module] Generated internally via Approved DRBG [for a peer] Input in plaintext form	[for the module] Exits the module in plaintext form [for a peer] Never exits the module	Plaintext in volatile memory	Reboot; remove power; session termination	Generation of SSH and TLS shared secrets
RSA Private Key Component	2048, 3072-bit RSA Private Key	Generated internally via Approved DRBG	Never exits the module	Plaintext in volatile memory	Reboot; remove power; session termination	Generation of TLS shared secrets
RSA Public Key Component	2048, 3072-bit RSA Public Key	[for the module] Generated internally via Approved DRBG [for a peer] Input in plaintext form	[for the module] Exits the module in plaintext form [for a peer] Never exits the module	Plaintext in volatile memory	Reboot; remove power; session termination	Generation of TLS shared secrets
SSH Public Key	2048/3072-bit RSA public key P-224/P-256/P-384/P-521 ECDSA public key	[for the module] Generated internally via Approved DRBG OR Generated externally, imported in plaintext form	[for the module] Exits the module in plaintext form	[for the module] Plaintext on disk	N/A	Authentication during SSH session negotiation; GSLB configuration sync
		[for a peer] Input in plaintext form	[for a peer] Never exits the module	[for a peer] Plaintext in volatile memory		

CSP	CSP Туре	Generation / Input	Output	Storage	Zeroization	Use
SSH Private Key	2048/3072-bit RSA private key P-224/P-256/P-384/P-521 ECDSA public key	Generated internally via Approved DRBG	Exits the module in encrypted form as part of config backup file	Plaintext on disk	CLI command	Authentication during SSH session negotiation; RBA ⁷⁸ Authentication for LDAP; GSLB configuration sync
SSH Shared Secret	Shared secret	Derived internally via DH/ECDH shared secret computation	Never exits the module	Plaintext in volatile memory	Reboot; remove power; session termination	Derivation of the SSH Session Key and SSH Authentication Key
SSH Session Key	128/192/256-bit AES key (CBC and CTR mode) 192-bit Triple-DES key	Derived internally via SSH KDF	Never exits the module	Plaintext in volatile memory	Reboot; remove power; session termination	Encryption and decryption of SSH session packets
SSH Authentication Key	160/256/512-bit HMAC key	Derived internally via SSH KDF	Never exits the module	Plaintext in volatile memory	Reboot; remove power; session termination	Authentication of SSH session packets
IKE/IPsec Shared Secret	Shared secret	Derived internally via DH shared secret computation	Never exits the module	Plaintext in volatile memory	Reboot; remove power; session termination	Derivation of the IKE/IPsec Session Keys and IKE/IPsec Authentication Keys
IKE/IPsec PSK	Pre-shared key	Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session	Exits the module in encrypted form as part of config backup file	Encrypted on disk (via KEK)	N/A	Authentication during IKE/IPsec session negotiation [IKEv1 Only] Derivation of the IKE/IPsec Session Keys and IKE/IPsec Authentication Keys
IKE/IPsec Session Key	128/192/256-bit AES key	Derived internally via IKE KDF	Never exits the module	Plaintext in volatile memory	Reboot; remove power; session termination	Encryption and decryption of IKE/IPsec session packets
IKE/IPsec Authentication Key	160/256/384/512-bit HMAC key	Derived internally via IKE KDF	Never exits the module	Plaintext in volatile memory	Reboot; remove power; session termination	Authentication of IKE/IPsec session packets

⁷⁸ RBA – Role-based Authentication

CSP	СЅР Туре	Generation / Input	Output	Storage	Zeroization	Use
TLS Public Key	1024/2048/3072/4096-bit RSA public key P-224/P-256/P-384/P-521 ECDSA public key	[for the module] Generated internally via Approved DRBG (1024/2048/3072-bit) OR Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session (1024/2048/3072/4096- bit) [for a peer] Input in plaintext form as part of TLS session negotiation 1024/2048/3072/4096-bit	[for the module] Exits the module in plaintext form [for a peer] Never exits the module	[for the module] Plaintext on disk [for a peer] Plaintext in volatile memory	N/A	TLS authentication; SAML authentication (RSA only); OpenID authentication (RSA only) 1024-bit RSA public keys are used for signature verification only
TLS Private Key	2048/3072/4096-bit RSA private key P-224/P-256/P-384/P-521 ECDSA public key	Generated internally via Approved DRBG (2048/3072-bit) OR Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session (2048/3072/4096-bit)	Exits the module in encrypted form as part of config backup file	Encrypted on disk (via PEM key)	N/A	TLS authentication; SAML authentication (RSA only); OpenID authentication (RSA only)
TLS Pre-Master Secret	[for RSA cipher suites] 384-bit random value [for DH/ECDH cipher suites] DH/ECDH shared secret	[for RSA cipher suites and module acting as client] Generated internally via FIPS-Approved DRBG [for RSA cipher suites and module acting as server] Generated externally, imported in encrypted form via RSA key transport [for DH/ECDH cipher suites] Derived internally via DH/ECDH shared secret computation	[for RSA cipher suites and module acting as client] Exits the module in encrypted form via RSA key transport [for RSA cipher suites and module acting as server] Never exits the module [for DH/ECDH cipher suites] Never exits the module	Plaintext in volatile memory	Reboot; remove power; completion of TLS Session Key and TLS Authentication Key derivation	Derivation of the TLS Master Secret

CSP	СЅР Туре	Generation / Input	Output	Storage	Zeroization	Use
TLS Master Secret	384-bit shared secret	Derived internally using the TLS Pre-Master Secret via TLS KDF	Never exits the module	Plaintext in volatile memory	Reboot; remove power; session termination	Derivation of the TLS Session Key and TLS Authentication Key
TLS Session Key	128/256-bit AES key 128/256-bit AES GCM key	Derived internally using the TLS Master Secret via TLS KDF	Never exits the module	Plaintext in volatile memory	Reboot; remove power; session termination	Encryption and decryption of TLS session packets
TLS Authentication Key	160/256/384-bit HMAC key	Derived internally using the TLS Master Secret via TLS KDF	Never exits the module	Plaintext in volatile memory	Reboot; remove power; session termination	Authentication of TLS session packets
TLS Ticket Encryption Key	128-bit AES key	Generated internally via Approved DRBG OR	Never exits the module	[for internally generated keys] Plaintext in volatile memory	[for internally generated keys] Reboot; remove power	Encryption and decryption of TLS session tickets
		Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session		[for imported keys] Encrypted on disk (via KEK)		
TLS Ticket Authentication Key	256-bit HMAC key	Generated internally via Approved DRBG OR	Never exits the module	[for internally generated keys] Plaintext in volatile memory	[for internally generated keys] Reboot; remove power	Computes the digest of TLS session tickets
		Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session		[for imported keys] Encrypted on disk (via KEK)		
Hash DRBG Entropy	256-bit value	Generated externally	Never exits the module	Plaintext in volatile memory	Reboot; remove power	Entropy input for Hash DRBG
Hash DRBG Seed	440-bit value	Generated internally	Never exits the module	Plaintext in volatile memory	Reboot; remove power	Seed material for Hash DRBG
Hash DRBG 'V' Value	Internal state value	Generated internally	Never exits the module	Plaintext in volatile memory	Reboot; remove power	Internal state value used with Hash DRBG
Hash DRBG 'C' Value	Internal state value	Generated internally	Never exits the module	Plaintext in volatile memory	Reboot; remove power	Internal state value used with Hash DRBG

CSP	СЅР Туре	Generation / Input	Output	Storage	Zeroization	Use
CTR DRBG Entropy	256-bit value	Generated externally	Never exits the module	Plaintext in volatile memory	Reboot; remove power	Entropy input for CTR DRBG
CTR DRBG Seed	384-bit value	Generated internally	Never exits the module	Plaintext in volatile memory	Reboot; remove power	Seed material for CTR DRBG
CTR DRBG 'V' Value	128-bit value	Generated internally	Never exits the module	Plaintext in volatile memory	Reboot; remove power	Internal state value used with CTR DRBG
CTR DRBG 'Key' Value	256-bit AES key	Generated internally	Never exits the module	Plaintext in volatile memory	Reboot; remove power	Internal state value used with CTR DRBG
SNMPv3 Privacy Passphrase	Alphanumeric string	Input in plaintext form via local console or in encrypted form via TLS or SSH session	Exits the module in encrypted form as part of config backup file	Encrypted on disk (via KEK)	N/A	Derivation of the SNMPv3 Privacy Key
SNMPv3 Authentication Passphrase	Alphanumeric string	Input in plaintext form via local console or in encrypted form via TLS or SSH session	Exits the module in encrypted form as part of config backup file	Encrypted on disk (via KEK)	N/A	Derivation of the SNMPv3 Authentication Key
SNMPv3 Privacy Key	128-bit AES key	Derived internally via the SNMP KDF	Never exits the module	Plaintext in volatile memory	Reboot; remove power	Encryption and decryption of SNMPv3 packets
SNMPv3 Authentication Key	160-bit HMAC key	Derived internally via the SNMP KDF	Never exits the module	Plaintext in volatile memory	Reboot; remove power	Authentication of SNMPv3 packets
LDAP Admin Password	Alphanumeric string	Input in plaintext form via local console or in encrypted form via TLS or SSH session	Exits the module in encrypted form as part of config backup file	Encrypted on disk (via KEK)	N/A	Used to bind to the LDAP server
RDP PSK	Shared secret	Input in plaintext form via local console or in encrypted form via TLS or SSH session	Exits the module in encrypted form as part of config backup file	Encrypted on disk (via KEK)	N/A	Encryption and decryption of RDP user and target information
Oauth Client Secret	Shared secret	Input in plaintext form via local console or in encrypted form via TLS or SSH session	Exits the module in encrypted form as part of config backup file	Encrypted on disk (via KEK)	N/A	Oauth and Oauth IDP ⁷⁹ authentication to the module
DFA Shared Secret	Shared secret	Input in plaintext form via local console or in encrypted form via TLS or SSH session	Exits the module in encrypted form as part of config backup file	Encrypted on disk (via KEK)	N/A	DFA authentication to the module

⁷⁹ IDP – Identity Provider

CSP	CSP Туре	Generation / Input	Output	Storage	Zeroization	Use
ZebOS Router Password	Alphanumeric string	Input in plaintext form via local console or in encrypted form via TLS or SSH session	Exits the module in encrypted form as part of config backup file	Encrypted on disk (via KEK)	N/A	Router authentication
Public DNS KSK	2048/3072/4096-bit RSA public key	Generated internally (2048/3072- bit) Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session (2048/3072/4096-bit)	Exits the module in plaintext form as part of config backup file	Plaintext on disk	N/A	Public DNS ZSK authentication
Private DNS KSK	2048/3072/4096-bit RSA private key	Generated internally (2048/3072- bit) Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session (2048/3072/4096-bit)	Exits the module in encrypted form as part of config backup file	Encrypted on disk (via PEM key)	N/A	Public DNS ZSK signature generation
Public DNS ZSK	2048/3072/4096-bit RSA public key	Generated internally (2048/3072- bit) Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session (2048/3072/4096-bit)	Exits the module in plaintext form as part of config backup file	Plaintext on disk	N/A	DNS zone authentication
Private DNS ZSK	2048/3072/4096-bit RSA private key	Generated internally (2048/3072- bit Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session (2048/3072/4096-bit)	Exits the module in encrypted form as part of config backup file	Encrypted on disk (via PEM key)	N/A	DNS zone signature generation
Kerberos CA Public Key	2048-bit RSA public key	Generated externally, imported into the module [for a peer] Input in plaintext form as part of the Kerberos authentication	Exits the module in plaintext [for a peer] Never exits the module	Plaintext on disk [for a peer] Plaintext in volatile memory	Reboot; remove power	Used in Kerberos authentication

Citrix ADC MPX ©2021 Citrix Systems, Inc. This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 36 of 54

CSP	CSP Type	Generation / Input	Output	Storage	Zeroization	Use
Kerberos User Public Key	2048-bit RSA public key	Generated internally via Approved DRBG	Exits the module in plaintext	Plaintext on disk	Reboot; remove power	Used in Kerberos authentication
		OR				
		Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session				
Kerberos User Private Key	2048-bit RSA private key	Generated internally via Approved DRBG	Never exits the module	Encrypted on disk (via PEM key)	Reboot; remove power	Used to sign authentication request
		OR				
		Generated externally, imported in plaintext form via local console or in encrypted form via TLS or SSH session				
Kerberos Server Public Key	2048-bit RSA public key	Generated externally, imported into the module in plaintext	Never exits the module	Plaintext in volatile memory	Reboot; remove power	Used in Kerberos authentication
Kerberos DH Public Key	2048-bit DH public key	{For the module} Generated internally	Exits the module in plaintext form	Plaintext in volatile memory	Reboot; remove power	Used to generate the Kerberos secret key
		[For a peer] Generated externally, imported into the module in plaintext				
Kerberos DH Private Key	2048-bit DH private key	Generated internally	Never exits the module	Plaintext in volatile memory	Reboot; remove power	Used to generate the Kerberos secret key
Kerberos Secret Key	256-bit AES key	Generated internally using DH components	Never exits the module	Plaintext in volatile memory	Reboot; remove power	Used to encrypt the Kerberos Client/TGS Session Key
Kerberos Client/TGS Session Key	256-bit AES key	Generated externally, imported electronically in encrypted form	Never exits the module	Plaintext in volatile memory	Reboot; remove power	Used in the Kerberos Client Authentication. Used to decrypt the Kerberos Client/Server Session Key.
Kerberos Client/Server Session Key	256-bit AES key	Generated externally, imported electronically in encrypted form	Never exits the module	Plaintext in volatile memory	Reboot; remove power	Used to authenticate to the Kerberos Service Server

Citrix ADC MPX ©2021 Citrix Systems, Inc. This document may be freely reproduced and distributed whole and intact including this copyright notice.

CSP	CSP Type	Generation / Input	Output	Storage	Zeroization	Use
Cluster Password	Alphanumeric string	Input in plaintext form via local console or in encrypted form via TLS or SSH session	Exits the module in encrypted form	Encrypted on disk (via KEK)	N/A	Used to connect nodes to the cluster coordinator
Operator Password	Alphanumeric string	Input in plaintext form via TLS or SSH session	Exists the module in encrypted form	Plaintext in volatile memory	power	Authenticate the operator to the module via an external authentication service

*Keys derived from the PBKDF function are only used for storage applications.

Notes:

All RSA and ECDSA keys at 2048 and 3072-bit modulus size are generated internally by the Citrix ADC CP Cryptographic Library v1. All RSA and ECDSA keys at the 4096-bit modulus size are generated outside of the module and input either in plaintext form via local console or encrypted form via a TLS or SSH session.

The AES-GCM IV is used in the following protocols:

• TLS - The AES-GCM IV is used in the TLS protocol. The TLS AES-GCM IV is generated in compliance with TLS v1.2 GCM cipher suites as specified in RFC⁸⁰ 5288 and section 3.3.1 of NIST SP 800-52rev1. Per RFC 5246, when the nonce_explicit part of the IV exhausts the maximum number of possible values for a given session key, the module will trigger a handshake to establish a new encryption key. The AES-GCM IV is a random 96-bit value generated with available entropy provided by the available entropy source.

⁸⁰ RFC – Request For Comment

2.8 EMI / EMC

The modules were tested and found conformant to the EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class A (business use).

2.9 Self-Tests

Cryptographic self-tests are performed automatically by the module when the module is first powered up and loaded into memory as well as conditionally. The following sections list the self-tests performed by the module, their expected error status, and the error resolutions.

2.9.1 Power-Up Self-Tests

The MPX performs the following self-tests at power-up:

- Firmware integrity test (using RSA 2048 with SHA-512)
- Citrix ADC CP Cryptographic Library self-tests
 - AES encrypt KAT⁸¹
 - AES decrypt KAT
 - AES GCM encrypt KAT
 - AES GCM decrypt KAT
 - Triple-DES encrypt KAT
 - Triple-DES decrypt KAT
 - SHA-1, SHA-256, SHA-512 KAT
 - HMAC KAT with SHA-1, SHA-256, and SHA-512
 - CTR DRBG KAT
 - RSA sign/verify KAT
 - ECDSA PCT⁸² (P-256)
 - DH primitive "Z" computation test
 - ECDH primitive "Z" computation test
- Citrix ADC DP Cryptographic Library self-tests
 - o AES encrypt KAT
 - AES decrypt KAT
 - o AES GCM encrypt KAT
 - AES GCM decrypt KAT
 - o SHA-1, SHA-256, SHA-512 KAT
 - HMAC KAT with SHA-1, SHA-256, and SHA-512
 - Hash DRBG KAT
 - RSA sign/verify KAT
 - o ECDSA PCT (P-256)
 - ECDH Primitive "Z" computation test
- Intel Communication chipset 8955 hardware cryptographic accelerator self-tests
 - o AES encrypt KAT
 - AES decrypt KAT

⁸¹ KAT – Known Answer Test

⁸² PCT – Pairwise Consistency Test

- AES GCM encrypt KAT
- AES GCM decrypt KAT
- SHA-1, SHA-256, SHA-512 KAT
- HMAC KAT with SHA-256
- RSA sign/verify KAT
- ECDSA sign/verify PCT
- ECDH Primitive "Z" computation test

2.9.2 Conditional Self-Tests

The MPX performs the following conditional self-tests:

- Citrix ADC CP Cryptographic Library conditional self-tests
 - CRNGT⁸³ for NDRNG
 - RSA PCT for sign/verify
 - RSA PCT for encrypt/decrypt
 - ECDSA PCT for sign/verify
- Citrix ADC DP Cryptographic Library conditional self-tests
 - CRNGT for NDRNG

2.9.3 Critical Functions Self-Tests

MPX implements the SP 800-90A Hash DRBG and CTR DRBG as its random number generators. The SP 800-90A specification requires that certain critical functions be tested to ensure the security of the DRBGs. Therefore, the following power-up critical function tests are implemented by the cryptographic module for the Hash and CTR DRBG:

- SP 800-90A Instantiate Critical Function Test
- SP 800-90A Generate Critical Function Test
- SP 800-90A Reseed Critical Function Test

2.9.4 Self-Test Failures

If any of the power-up self-tests fail, the module enters a critical error state and an error message is logged. In this state, cryptographic operations are halted, and the module inhibits all data output from the module.

If the module enters the critical error state due to a failure of the integrity test, the boot sequence and entire system is halted. The only action available from this state is to reboot the module to trigger the re-execution of the integrity test. The error condition is considered to have been cleared if the module successfully passes the integrity test and then all subsequent power-up self-tests. If the module continues to return to a halted state, the module is considered to be malfunctioning or compromised, and Citrix Customer Support must be contacted.

If the module enters the critical error state due to a failure of any of the remaining power-up self-tests, the module will automatically reboot to clear the error state and an error message will be logged. The CO must contact Citrix Customer Support if this error occurs.

⁸³ CRNGT – Continuous Random Number Generator Test

The successful completion or failure of the power-up self-tests can be verified by checking the log files. Successful completion of the Citrix ADC DP Cryptographic Library v4 self-tests are indicated by "FIPS POST Successful" in /var/log/ns.log and successful completion of the Citrix ADC CP Cryptographic Library v4 self-tests in indicated by "POST Success" in /var/log/FIPS-post.log. Failure of the Citrix ADC DP Cryptographic Library v4 self-tests is indicated by "FIPS Post Failed" in /var/log/ns.log and failure of the Citrix ADC CP Cryptographic Library v4 self-tests is indicated by "FIPS Post Failed" in /var/log/ns.log and failure of the Citrix ADC CP Cryptographic Library v4 self-tests is indicated by "FIPS Post Failed" in /var/log/FIPS-post.log (both messages indicate a critical error state).

If any of the conditional self-tests fail, the module goes through a soft error state and the following message is displayed:

"Internal failure in SSL cert/key generation tool"

Once the message is displayed (and the error is logged), the module returns to an operational state. The user may retry the service (which calls the conditional self-test again) or move to other operations. Successful completion of the conditional self-test is indicated by the absence of an error message.

2.10 Mitigation of Other Attacks

The module's firmware includes several features that provide defenses against a wide range of application and web server DoS attacks. These features (including packet inspection, priority queuing, bypassing the cache, rate limiting, and packet rejection) prevent the allocation of server resources for specific connections. Additionally, the module mitigates SYN flood attacks by utilizing SYN cookies rather than maintaining half-open connections on the system memory stack. DNS DoS attacks are mitigated using parameters that protect the DNS cache memory.

The module's built-in Web App Firewall provides configurable security checks to detect and mitigate Web attacks (including attacks on operating system and web server firmware vulnerabilities, SQL database vulnerabilities, errors in the design and coding of web sites and web devices, and failures to secure sites that host or can access sensitive information). Web requests or responses that violate security checks are blocked or transformed (making the attack harmless). Specific attacks mitigated by the Web App Firewall include:

- HTML⁸⁴/XML⁸⁵ Cross-Site Scripting (XSS) attacks
- HTML/XML SQL injection attacks
- HTML Cross-Site Request Forgery (CSRF) attacks
- HTML Form/hidden field and parameter manipulation
- XML DoS attacks
- Cookie or session poisoning
- Forceful browsing
- Buffer overflow attacks
- XML-based attacks using invalid or poorly-formed XML requests, content injection, or inconsistencies in XML interoperability

The IP Reputation feature of the module protects against password cracking attacks (via botnets), Windows exploit attacks, and phishing proxy attacks by identifying IP addresses that are sending unwanted request and rejecting requests received from an IP with a bad reputation.

⁸⁴ HTML – Hypertext Markup Language

⁸⁵ XML – Extensible Markup Language

The module's DNS Security Options feature and configurable DNS parameters are used to mitigate DNS-based attacks. These attacks include random subdomain/NXDOMAIN/NODATA attacks, root referral amplification attacks, cache poisoning, and Slowloris attacks. The attacks are mitigated by preventing the insertion of corrupt data into the DNS cache, restricting access to root referrals for unrelated domains that are not configured or cached, forcing DNS transactions to use TCP instead of UDP⁸⁶ when clients send a flood of queries but cannot handle responses, and dropping DNS queries that exceed a specified length or are split into multiple packets.

The module firmware includes defenses against TCP spoofing. TCP spoofing is mitigated by enabling configurable parameters to respond to invalid sequence numbers with a corrective acknowledgement, and/or to drop invalid SYN packets.

⁸⁶ UDP – User Datagram Protocol

3. Secure Operation

The sections below describe how to place and keep the module in the FIPS-Approved mode of operation. Any operation of the module without following the guidance provided below will result in non-compliant use and is outside the scope of this Security Policy.

3.1 Installation and Setup

The module is shipped to the customer in a non-configured state. The CO is responsible for all initial setup activities, including installing and configuring the MPX firmware. Prior to the installation, the CO should read the document entries within the <u>Getting Started with Citrix ADC</u> webpage on Citrix's online product documentation portal.

The following sections provide references to step-by-step instructions for the setup and installation of the MPX, as well as the steps necessary to configure the module for its FIPS-Approved mode of operation.

3.1.1 Initial Tamper-Evident Seal Inspection

Tamper evident seals are applied at the factory to the modules to protect against unauthorized access to the module. When the module is received, the operator must confirm placement of all tamper evident seals.

A tamper evident seal is placed on the front cover connecting the front and top of the enclosure. Evidence of the cover being removed will also be visible by the disconnecting of a wire that connects the front cover to the components inside. Figure 6 and Figure 7 below show the placement of the tamper evident seal on the front cover of the MPX 89xx FIPS and MPX 15xxx FIPS.

Figure 6 – Front Cover of the MPX 89xx FIPS

Figure 7 – Front Cover of the MPX 15xxx FIPS

Citrix ADC MPX ©2021 Citrix Systems, Inc. This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 43 of 54 A single tamper evident seal is placed on the back of the enclosure connecting the back to the top. Figure 8 and Figure 9 below show the placement of the tamper evident seal on the back panel of the MPX 89xx FIPS and MPX 15xxx FIPS.

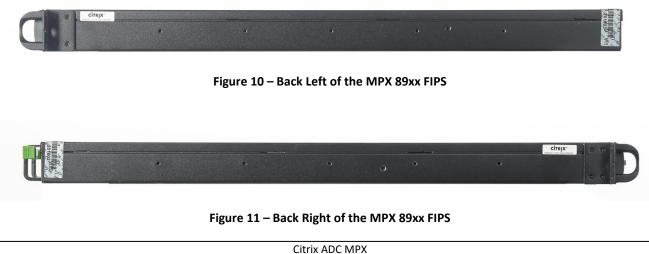


Figure 8 – Back Panel of the MPX 89xx FIPS

Figure 9 – Back Panel of the MPX 15xxx FIPS

Tamper evident seals are placed on the left and right side of the enclosure. These seals connect the sides to the top. Figure 10, Figure 11, Figure 12, and Figure 13 below show the placement of these seals.

Citrix ADC MPX ©2021 Citrix Systems, Inc. This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 44 of 54

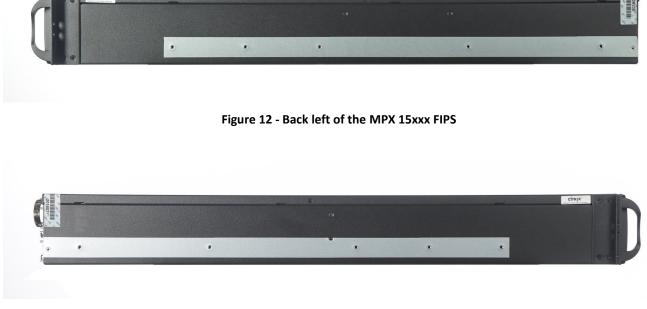


Figure 13 - Back Right of the MPX 15xxx FIPS

All tamper evident seals are required for the module to be considered operating in a FIPS-Approved mode of operation. If any seals show signs of tampering, the CO must contact Citrix Customer Support immediately.

3.1.2 Installation

For detailed guidance regarding the installation of MPX, please see the <u>Getting Started with Citrix ADC</u> webpage on Citrix's online product documentation portal and refer to the following document entries:

- <u>Citrix ADC MPX hardware-software compatibility matrix</u>
- Prepare for Installation
- Install the Hardware

The above document entries include the MPX support matrix and usage guidelines, prerequisites for setting up the MPX appliance, and MPX installation instructions. To install the required license files, the CO must follow the instructions on the <u>Citrix ADC licensing overview</u> webpage on Citrix's online product documentation portal. Once the license files are installed, reboot the module so all licenses are applied.

3.1.3 General Configuration

After the MPX appliance has been setup, the CO is responsible for the general configuration of the module. The Web GUI (configuration utility) or CLI can be used for the general configuration of the module. All general configuration must be complete before performing configuration necessary to place the module in a FIPS-Approved mode of operation.

The general configuration requirements and instructions are described in the "Quick Start Installation and Configuration" section of the <u>Citrix ADC Deployment Guide</u> found on Citrix's online product documentation portal.

3.1.4 FIPS-Approved Mode Configuration and Status

The CO is responsible for the security-relevant configuration of the module. To initialize the MPX for FIPS mode of operation, the CO must:

- Enforce strong passphrase requirements
- Replace the default TLS certificate
- Disable HTTP access to the Web GUI
- Create the KEK master key
- Disable local authentication after initial configuration

To accomplish these tasks, the CO must follow the procedures detailed in the sections below (for more information, please see the "Configuration Guidelines" section of the document entry <u>Citrix ADC Deployment</u> <u>Guide</u>.

3.1.4.1 Enforce strong passphrase requirements

Passphrases are used to derive keys using PBKDF. The CO must enable strong passphrase requirements. This is accomplished with the following steps from the MPX GUI:

- 1. In the Configuration navigation pane, go to **System** and click the **Settings** node.
- 2. In the Settings section, click the Change Global System Settings link.
- 3. In the Strong Password field, select Enable All.
- 4. In the **Min Password Length** field, type "8".
- 5. Click OK.

3.1.4.2 Replace the default TLS certificate

By default, the MPX includes a factory-provisioned RSA certificate for TLS connections (ns-server.cert and ns-server.key). This certificate is not intended for use in production deployments and must be replaced. The CO must replace the default certificate with a newly-generated certificate after the initial installation.

To replace the default TLS certificate, the CO must follow these steps:

1. Run the following CLI command to set the hostname of the MPX:

set ns hostName [hostname]

- 2. From the MPX GUI, complete the following procedure to create a Certificate Signing Request (CSR):
 - In the Configuration navigation pane, go to **Traffic Management** and click the **SSL** node.
 - In the SSL Certificates section, click the Create Certificate Request link.

- Make sure to provide values for all the required fields marked with an "*" and then click **Create**. Note that the **Common Name** field will contain the value of hostname created in step 1 above.
- 3. Submit the CSR file to a trusted CA. The CSR file is available in the /nsconfig/ssl directory.
- 4. After receiving the certificate from the trusted CA, copy the file to the /nsconfig/ssl directory.
- 5. From the MPX GUI, navigate to **Traffic Management** > **SSL** and choose **ns-server-certificate**.
- 6. Click Update.
- 7. In the Certificate File Name field, choose the certificate file that was received from the CA. Use the Browse option to choose the file that you have received from CA after signing. Choose the Browse > Local option if the file is saved on your workstation/local drive.
- 8. In the **Private Key File Name** field, specify the default private key file name (ns-server.key).
- 9. Select the **No Domain Check** option.
- 10. Click **OK**.

For more information, please refer to the Citrix Support Knowledge Center article <u>CTX122521</u>) on Citrix's online product documentation portal.

3.1.4.3 Disable HTTP access to the Web GUI

To protect traffic to the administrative interface and Web GUI, the MPX must be configured to use HTTPS⁸⁷. Once the MPX has been configured to use new TLS and SSH certificates (see section 3.1.4.1 above), the CO must disable HTTP access to the GUI management interface with the following CLI command:

set ns ip <NSIP> -gui SECUREONLY

3.1.4.4 Create the KEK Master Key

The KEK master key is used to encrypt passphrases and other sensitive information. To prevent the default KEK from being used, the CO must create a new KEK. To create the KEK, the CO must follow these steps:

1. Run the following CLI command:

create system kek

2. When prompted, enter a strong passphrase (the KEK will be derived from this).

3.1.4.5 Disable local authentication

The nsroot account is a default account with root CLI access (superuser) privileges that is required for initial configuration. During initial configuration, the CO shall disable local system authentication to block access to all local accounts (including the nsroot account), and the CO shall ensure that superuser privileges are not assigned to any user account. To disable local system authentication and enable external system authentication, the CO must follow these steps:

1. Run the following CLI command to disable local authentication:

set system parameter -localauth disabled

⁸⁷ HTTPS – Hypertext Transfer Protocol Secure

Once the module is configured in FIPS-Approved mode and the nsroot account is disabled, then external authentication must be configured. Follow the instructions on the <u>Configuring external user authentication</u> webpage found on the Citrix online product documentation portal to configure external system authentication. The CO must ensure the following before enabling external authentication:

- Ensure a secure connection is established with the external authentication service.
- Ensure shell access is disabled for all profiles on the external authentication service.

3.2 Crypto Officer Guidance

The CO is responsible for ensuring that the module is operating in the FIPS-Approved mode of operation. When configured and operated according to the guidance in this Security Policy (including the previous instructions in section 3.1.4), the module only runs in the FIPS-Approved mode of operation.

3.2.1 Management

Once installed and configured, the Crypto Officer is responsible for maintaining and monitoring the status of the module to ensure that it is running in its FIPS-Approved mode. Please refer to sections 3.1.4, 3.2, and 3.4 for guidance that the Crypto Officer must follow to ensure that the module is operating in a FIPS-Approved manner.

3.2.2 On-Demand Self-Tests

Although power-up self-tests are performed automatically during module power up, they can also be manually launched on demand. Self-tests can be executed by power-cycling the module, using the reset button on the platform (if applicable), the reboot CLI command, the reboot API method, or via the Web GUI by navigating to **Configuration > System Information** and clicking the **Reboot** button.

3.2.3 Zeroization

There are many CSPs within the module's cryptographic boundary including symmetric keys, private keys, public keys, and passphrases. CSPs reside in multiple storage media including the RAM and system memory. All ephemeral keys are zeroized on module reboot, power removal, or session termination.

The KEK is stored as plaintext in non-volatile memory. The zeroization of the KEK renders all passphrases and passwords stored in the non-volatile memory unrecoverable, effectively zeroizing them. The KEK is zeroized via the following CLI command:

rm system csps -type KEK

SSH private keys are stored as plaintext in non-volatile memory. SSH private keys are zeroized via the following CLI command:

```
rm system csps -type SSH_HOST_KEYS
```

3.2.4 Monitoring Status

The CO shall be responsible for regularly monitoring the module's status for the FIPS-Approved mode of operation. When configured according to the CO's guidance, the module only operates in the FIPS-Approved mode. Thus, the current status of the module when operational is always in the FIPS-Approved mode.

An operator logged in via the CLI can view the operational status by using the following CLI commands:

- show ns info shows details about the firmware, including firmware version, enabled and disabled features, and configured network information.
- show ns version shows version and build number of the appliance.
- show ns hardware shows details of the appliance hardware and information such as the host ID⁸⁸ and serial number.

The RESTful Nitro API can be used with the GET method to view the operational status by using the following URLs:

- https://<Citrix ADC-ip-address>/nitro/v4/config/nshardware
- https://< Citrix ADC-ip-address>/nitro/v4/config/nsversion

An operator logged in via the Web GUI can also view the operational status by navigating to **Configuration > System > System Information**.

This will display general system and hardware information about the device, including the platform version, CPU information, and appliance serial number. Additionally, the Web GUI's dashboard includes a system overview section with information such as system HA state, system master state, and system uptime.

3.3 User Guidance

The User role does not have the ability to configure sensitive information on the module. The User must be diligent to select strong passwords and must not reveal their password to anyone. Additionally, User role operators should be careful to protect any secret or private keys in their possession.

3.4 Additional Guidance and Usage Policies

This section notes additional policies below that must be followed by module operators:

- All private keys (except for SSH private keys) must be stored as PEM files in encrypted format using a FIPS-Approved encryption algorithm listed in Table 2 or Table 3.
- Upon successful bootup of the module, the MPX is configured by default to use only SP800-52rev2 recommended cipher suites for TLS connections. If modified, the CO must ensure that only FIPS-Approved cipher suites are configured while in the FIPS-Approved mode. It is recommended to use the list of approved TLS cipher suites in section 3.3 of <u>NIST SP 800-52 Revision 1</u> as guidance.

⁸⁸ ID – Identifier

- The MPX must be configured to use PSK-based authentication for IPsec connections. The CO must provide a PSK value when configuring IPsec profiles via the GUI, CLI, or API. Configuring digital certificate-based authentication for IPsec connections is prohibited while in the FIPS-Approved mode of operation.
- The MPX supports Kerberos traffic management. The Crypto Officer is responsible for ensuring that the module is only used with Kerberos servers that are configured to use PKINIT⁸⁹. Once configured the module restricts Kerberos to using only FIPS-Approved ciphersuites. For details on configuring the protocol to use PKINIT refer to *Citrix ADC 12.1 An Overview of Citrix ADC Kerberos SSO*.
- The MPX supports client-side Kerberos. The CO must configure a password or keytab file to use this feature. MPX will only accept packages using FIPS 140-2 encryption. For details on configuring client-side Kerberos refer to *Citrix ADC 12.1 Configuring Kerberos Authentication on the Citrix ADC Appliance.*
- The MPX supports clustering. An MPX may either be the cluster coordinator or the cluster node. Once appliances are clustered together, all configuration is done on the cluster coordinator and pushed to nodes within the cluster. For details on configuring clusters, refer to *Citrix ADC 12.1 Clustering*.
- The CO must ensure that communication between the module and the external authentication service is secure.
- The CO must ensure that shell access is disabled for all profiles on the external authentication service.
- The CO must ensure that the "Key" and "AutoKey" authentication parameters are not set when adding NTP servers via the GUI, CLI, or API.
- If the module's power is lost and then restored, the module operator shall establish a new key for AES GCM encryption.
- In compliance with IG A.13, the module operator shall ensure that the number of encryptions performed by the TDES key is performed no more than 2¹⁶ times by periodically rebooting the module.
- The MPX has built-in CA tools used to create self-signed certificates for testing purposes. While the feature does include the generation of keys, because it's not being used for production purposes or true protection of data, those keys are not considered CSPs. The CO must ensure that all certificates are signed using a trusted CA and not by a self-signed certificate.

3.5 Non-FIPS-Approved Mode

When initialized, configured, and operated according to the guidance in this Security Policy, the module does not support a non-FIPS-Approved mode of operation.

⁸⁹ PKINIT – Public Key Cryptography for Initial Authentication in Kerberos – details for PKINIT in the Kerberos protocol are in RFC #4556

4. Acronyms

Table 12 provides definitions for the acronyms used in this document.

Acronym	Definition
AAA	Authentication, Authorization, Accounting
ADC	Application Delivery Controller
AES	Advanced Encryption Standard
API	Application Programming Interface
AWS	Amazon Web Services
СА	Certificate Authority
CAVP	Cryptographic Algorithm Validation Program
СВС	Cipher Block Chaining
cccs	Canadian Centre for Cyber Security
СКС	Cryptographic Key Generation
CLI	Command Line Interface
СМVР	Cryptographic Module Validation Program
СО	Crypto Officer
CPU	Central Processing Unit
CRNGT	Continuous Random Number Generator Test
CSP	Critical Security Parameter
CSR	Certificate Signing Request
CSRF	Cross-Site Request Forgery
CTR	Counter
CVL	Component Validation List
DES	Data Encryption Standard
DFA	Delegated Form Authentication
DH	Diffie-Hellman
DNS	Domain Name System
DoS	Denial-of-Service
DRBG	Deterministic Random Bit Generator
ECC CDH	Elliptic Curve Cryptography Cofactor Diffie-Hellman
ECDH	Elliptic Curve Diffie-Hellman
ECDSA	Elliptic Curve Digital Signature Algorithm
EMI/EMC	Electromagnetic Interference/Electromagnetic Compatibility

Table 12 – Acronyms

Citrix ADC MPX

©2021 Citrix Systems, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

8/5/2021

Page 51 of 54

Acronym	Definition	
FIPS	Federal Information Processing Standard	
FOM	FIPS Object Module	
GCM	Galois/Counter Mode	
GCP	Google Cloud Platform	
GHz	Gigahertz	
GSLB	Global Server Load Balancing	
GUI	Graphical User Interface	
НА	High Availability	
НМАС	(keyed-) Hash Message Authentication Code	
HTML	Hypertext Markup Language	
НТТР	Hypertext Transfer Protocol	
HTTPS	Hypertext Transfer Protocol Secure	
ID	Identifier	
IDP	Identity Provider	
IKE	Internet Key Exchange	
IP	Internet Protocol	
IPsec	Internet Protocol Security	
IV	Initialization Vector	
КАТ	Known Answer Test	
KDF	Key Derivation Function	
КЕК	Key Encryption Key	
KPG	Key Pair Generation	
КЅК	Key Signing Key	
кум	Kernel-based Virtual Machine	
L4-L7	Layer 4 through Layer 7	
LDAP	Lightweight Directory Access Protocol	
LED	Light Emitting Diode	
LTS	Long Term Support	
LTSR	Long Term Service Release	
MAC	Media Access Control	
MD5	Message Digest 5	
N/A	Not Applicable	
NAT	Network Address Translation	
NDRNG	Non-Deterministic Random Number Generator	
NIST	National Institute of Standards and Technology	
NTP	Network Time Protocol	

Acronym	Definition
OID	Object Identifier
OS	Operating System
PBKDF	Password-based Key Derivation Function
РСТ	Pairwise Consistency Test
PEM	Privacy-Enhanced Mail
РКСЅ	Public Key Cryptography Standard
PSK	Pre-shared Key
RAM	Random Access Memory
RBA	Role-Based Authentication
RDP	Remote Desktop Protocol
REST	Representational State Transfer
RSA	Rivest Shamir Adleman
SAML	Security Assertion Markup Language
SHA	Secure Hash Algorithm
SHS	Secure Hash Standard
SNMP	Simple Network Management Protocol
SP	Special Publication
SQL	Structured Query Language
SSH	Secure Shell
SSL	Secure Socket Layer
ТСР	Transmission Control Protocol
TLS	Transport Layer Security
U2	Update 2
UDP	User Datagram Protocol
URL	Uniform Resource Locator
U.S.	United States
XML	Extensible Markup Language
XSS	Cross-Site Scripting
ZSK	Zone Signing Key

Prepared by: Corsec Security, Inc.

13921 Park Center Road, Suite 460 Herndon, VA 20171 United States of America

> Phone: +1 703 267 6050 Email: <u>info@corsec.com</u> <u>http://www.corsec.com</u>