
©2021 SUSE, LLC., atsec information security. 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

 
 

SUSE Linux Enterprise Kernel Crypto API 
Cryptographic Module 

Software Module Version 2.1 
 

FIPS 140-2 Non-Proprietary Security Policy 
 

 

Document Version: 1.2 
Document Date: 2021-07-23 

 
 
 
 
 

Prepared by: 
atsec information security corporation 

9130 Jollyville Road, Suite 260 
Austin, TX 78759 
www.atsec.com 

  

http://www.atsec.com/


SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 2 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

 

Table of contents 
1 Introduction ...............................................................................................................................5 

1.1 Purpose ............................................................................................................................5 
1.2 External Resources and References ................................................................................5 
1.3 How this Security Policy was Prepared ............................................................................5 

2 Cryptographic Module Specification .........................................................................................6 
2.1 Module Overview .............................................................................................................6 
2.2 Modes of Operation .........................................................................................................9 

3 Cryptographic Module Ports and Interfaces ........................................................................... 10 
4 Roles, Services and Authentication ....................................................................................... 11 

4.1 Roles ............................................................................................................................. 11 
4.2 Services ........................................................................................................................ 11 

4.2.1 Services in the Approved Mode .......................................................................... 11 
4.2.2 Services in the Non-Approved Mode ................................................................... 12 

4.3 Operator Authentication ............................................................................................... 14 
4.4 Algorithms .................................................................................................................... 14 

4.4.1 Approved Algorithms .......................................................................................... 14 
4.4.2 Non-Approved-But-Allowed Algorithms ............................................................... 20 
4.4.3 Non-Approved Algorithms ................................................................................... 20 

5 Physical Security .................................................................................................................... 22 
6 Operational Environment ....................................................................................................... 23 

6.1 Policy ............................................................................................................................ 23 
7 Cryptographic Key Management ........................................................................................... 24 

7.1 Random Number Generation ........................................................................................ 24 
7.2 Key Generation ............................................................................................................. 25 
7.3 Key Establishment ........................................................................................................ 25 
7.4 Key/CSP Entry and Output ............................................................................................ 25 
7.5 Key/CSP Storage ........................................................................................................... 25 
7.6 Key/CSP Zeroization ..................................................................................................... 26 

8 Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC) ............................. 27 
9 Self Tests ................................................................................................................................ 28 
10 Guidance .............................................................................................................................. 30 

10.1 Crypto Officer Guidance ............................................................................................. 30 
10.1.1 Module Installation ............................................................................................ 30 
10.1.2 Operating Environment Configurations ............................................................ 30 

10.2 User Guidance ............................................................................................................ 31 
10.2.1 Cipher References and Priority ......................................................................... 31 
10.2.2 AES XTS ............................................................................................................. 32 
10.2.3 AES GCM IV ....................................................................................................... 32 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 3 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

10.2.4 Triple-DES encryption........................................................................................ 32 
10.3 Handling Self Test Errors ............................................................................................ 32 

11 Mitigation of Other Attacks .................................................................................................. 33 
Appendix A Glossary and Abbreviations ................................................................................... 34 
Appendix B Algorithm Implementations ................................................................................... 36 
Appendix C References ............................................................................................................. 38 
 
 
 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 4 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

List of Tables 
Table 1: Security levels. ................................................................................................................... 6 
Table 2: Cryptographic module components. .................................................................................. 7 
Table 3: Tested platforms. ................................................................................................................ 8 
Table 4: Ports and interfaces. ......................................................................................................... 10 
Table 5: Services in FIPS mode of operation. ................................................................................. 11 
Table 6: Services in non-FIPS mode of operation. .......................................................................... 12 
Table 7: Approved Cryptographic Algorithms. ............................................................................... 14 
Table 8: Non-Approved but Allowed Algorithms. ............................................................................ 20 
Table 9: Non-Approved Cryptographic Algorithms. ........................................................................ 20 
Table 10: LIfe cycle of keys and other CSPs. .................................................................................. 24 
Table 11: Self tests. ........................................................................................................................ 28 
Table 12: RPM packages. ................................................................................................................ 30 
Table 13: Algorithm implementations and their names in the CAVP certificates. ......................... 36 
 
 
 

List of Figures 
Figure 1: Software Block Diagram. ................................................................................................... 8 
Figure 2: Hardware Block Diagram. ................................................................................................. 9 
 
 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 5 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

1 Introduction 

1.1 Purpose 
This document is the non-proprietary security policy for the SUSE Linux Enterprise Kernel Crypto 
API Cryptographic Module version 2.1 (also referred as “Kernel Crypto API module” or “module” 
throughout this document). It contains the security rules under which the module must operate 
and describes how this module meets the requirements as specified in FIPS 140-2 (Federal 
Information Processing Standards Publication 140-2) for a security level 1 module.  
FIPS 140-2 details the requirements of the Governments of the U.S. and Canada for 
cryptographic modules, aimed at the objective of protecting sensitive but unclassified 
information. For more information on the FIPS 140-2 standard and validation program please 
refer to the NIST website at http://csrc.nist.gov/. 

1.2 External Resources and References 
The SUSE website (www.suse.com) contains information about the module. 
The Cryptographic Module Validation Program website (http://csrc.nist.gov/groups/STM/cmvp/) 
contains links to the FIPS 140-2 certificate and SUSE contact information. 

1.3 How this Security Policy was Prepared 
The vendor has provided the non-proprietary Security Policy of the cryptographic module, which 
was further consolidated into this document by atsec information security together with other 
vendor-supplied documentation. In preparing the Security Policy document, the laboratory 
formatted the vendor-supplied documentation for consolidation without altering the technical 
statements therein contained. The further refining of the Security Policy document was 
conducted iteratively throughout the conformance testing, wherein the Security Policy was 
submitted to the vendor, who would then edit, modify, and add technical contents. The vendor 
would also supply additional documentation, which the laboratory formatted into the existing 
Security Policy, and resubmitted to the vendor for their final editing. 
 

http://csrc.nist.gov/
http://www.suse.com/
http://csrc.nist.gov/groups/STM/cmvp/


SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 6 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

2 Cryptographic Module Specification  

2.1 Module Overview 
The SUSE Linux Enterprise Kernel Crypto API Cryptographic Module is a software cryptographic 
module that provides general-purpose cryptographic services. For the purpose of the FIPS 140-2 
validation, the module is a software-only, multi-chip standalone cryptographic module validated 
at overall security level 1.  
Table 1 shows the security level claimed for each of the eleven sections that comprise the FIPS 
140-2 standard. 

Table 1: Security levels. 

FIPS 140-2 Section Security 
Level 

1 Cryptographic Module Specification 1 

2 Cryptographic Module Ports and Interfaces 1 

3 Roles, Services and Authentication 1 

4 Finite State Model 1 

5 Physical Security N/A 

6 Operational Environment 1 

7 Cryptographic Key Management 1 

8 EMI/EMC 1 

9 Self Tests 1 

10 Design Assurance 1 

11 Mitigation of Other Attacks N/A 

Overall 1 

 
Table 2 lists the software components of the cryptographic module, which define the module’s 
logical boundary. In the table, if the filename differs between the tested platforms (Table 3), then 
the applicable platform will be indicated with the Operating System version (SP4 or SP5) with 
the filename in its own row. 
The Linux kernel version, which is the output of $(uname -r), is: 

• SP5 platform: 4.12.14-122.37-default. 

• SP4 platform: 4.12.14-95.60-default. 
 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 7 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

Table 2: Cryptographic module components. 

Description OS 
Version 

Component 

Static kernel binary SP4 /boot/vmlinuz-4.12.14-95.60-default 

SP5 /boot/vmlinuz-4.12.14-122.37-default  

Integrity check HMAC 
file for Linux kernel 
static binary 

SP4 /boot/.vmlinuz-4.12.14-95.60-default.hmac 

SP5 /boot/.vmlinuz-4.12.14-122.37-default.hmac 

Cryptographic kernel 
object files 

SP4 /lib/modules/4.12.14-95.60-default/kernel/crypto/*.ko 
/lib/modules/4.12.14-95.60-default/kernel/arch/x86/crypto/*.ko 
(x86 platform) 
/lib/modules/4.12.14-95.60-
default/kernel/arch/s390/crypto/*.ko (z13 platform) 

SP5 /lib/modules/4.12.14-122.37-default/kernel/crypto/*.ko 
/lib/modules/4.12.14-122.37-
default/kernel/arch/x86/crypto/*.ko (x86 platform) 
/lib/modules/4.12.14-122.37-
default/kernel/arch/s390/crypto/*.ko (z13 platform) 

Integrity test utility SP4 and 
SP5 

/usr/lib64/libkcapi/fipscheck 

Integrity check HMAC 
file for integrity test 
utility 

SP4 and 
SP5 

/usr/lib64/libkcapi/.fipscheck.hmac 

 

The software block diagram (Figure 1) shows the logical boundary of the module and its 
interfaces with the operational environment. 
 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 8 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

Figure 1: Software Block Diagram. 

The module is aimed to run on a general purpose computer (GPC). Table 3 shows the platforms 
on which the module has been tested. Note the differences in the “Test Configuration” column, 
namely some platforms use the SP4 version of the Operating System, others use the SP5 version 
of the Operating System. The versions of each component within the Operational Environment is 
given in Table 2. 

Table 3: Tested platforms. 

Platform Processor Operating System 

FUJITSU Server PRIMERGY 
RX4770 M5 

Intel Cascade Lake Xeon 
Platinum 8268 

SUSE Linux Enterprise Server 12 SP4 
with and without PAA (AES-NI) 

FUJITSU Server PRIMERGY 
RX4770 M5 

Intel Cascade Lake Xeon 
Platinum 8268 

SUSE Linux Enterprise Server 12 SP5 
with and without PAA (AES-NI) 

IBM System Z z13 z13 SUSE Linux Enterprise Server 12 SP4 
with and without PAI (CPACF) 

IBM System Z z13 z13 SUSE Linux Enterprise Server 12 SP5 
with and without PAI (CPACF) 

 
Note: Per FIPS 140-2 IG G.5, the Cryptographic Module Validation Program (CMVP) makes no 
statement as to the correct operation of the module or the security strengths of the generated 
keys when this module is ported and executed in an operational environment not listed on the 
validation certificate.  
The physical boundary of the module is the surface of the case (or physical enclosure) of the 
tested platform. Figure 2 shows the hardware block diagram including major hardware 
components of a GPC representing the tested platforms. 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 9 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

Figure 2: Hardware Block Diagram. 

2.2 Modes of Operation 
The module supports two modes of operation:  

• FIPS mode (the Approved mode of operation): only approved or allowed security 
functions with sufficient security strength can be used. 

• non-FIPS mode (the non-Approved mode of operation): only non-approved security 
functions can be used. 

The module enters FIPS mode after power-up tests succeed. Once the module is operational, the 
mode of operation is implicitly assumed depending on the security function invoked and the 
security strength of the cryptographic keys. 
Critical security parameters (CSPs) used or stored (in RAM) in FIPS mode are not shared with the 
non-FIPS mode, and vice versa. The Operational Environment provides context and memory 
separation between processes and users of the module. 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 10 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

3 Cryptographic Module Ports and Interfaces 
As a software-only module, the module does not have physical ports. For the purpose of the FIPS 
140-2 validation, the physical ports are interpreted to be the physical ports of the hardware 
platform on which it runs. 
The logical interfaces are the application program interface (API) through which applications 
request services. Table 4 summarizes the logical interfaces.  

Table 4: Ports and interfaces. 

Logical 
Interface 

Description 

Data Input API input parameters from kernel system calls, AF_ALG type socket.  
Data Output API output parameters from kernel system calls, AF_ALG type socket.  
Control Input API function calls, API input parameters from kernel system calls, AF_ALG 

type socket, kernel command line. 
Status Output API return values, AF_ALG type socket, kernel logs.  

 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 11 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

4 Roles, Services and Authentication 

4.1 Roles 
The module meets all FIPS 140-2 level 1 requirements for Roles and Services, implementing both 
User and Crypto Officer (CO) roles. The module does not allow concurrent operators. The roles 
execute the services as listed below. 

• User role: performs all services, except module installation and configuration. 

• Crypto Officer role: performs module installation and configuration. 
The User and Crypto Officer roles are implicitly assumed by the entity accessing the services 
implemented by the module depending on the service requested. No authentication is required 
by the module for the assumption of a role.  

4.2 Services 
The module provides services to the operators that assume one of the available roles. All 
services are shown in Table 5 and Table 6.  
 For each service, the tables list the associated cryptographic algorithm(s), the role that 
performs the service, the cryptographic keys and other CSPs involved, and their access type(s) 
from the point of view of the service. The details of the approved cryptographic algorithms 
including the CAVP certificate numbers can be found in Table 7. 
The following convention is used to specify access rights from a service to a CSP. 

• Generate (G): the service generates or drives the CSP. 

• Read (R): the service outputs the CSP, so that the CSP can be read by the user. 

• Write (W): the service can update, import, or write (not generate) the CSP. 

• Execute (X): the service uses the CSP in performing a cryptographic operation. 

• Zeroize (Z): the service zeroizes the existing CSP. 

• N/A: the service does not access any CSP during its operation. 

4.2.1 Services in the Approved Mode 
Table 5 lists the services available in FIPS mode. 

Table 5: Services in FIPS mode of operation. 

Service Algorithm Role Keys/CSPs Access 

Symmetric 
encryption and 
decryption 

AES User AES key Execute 

Three-key Triple-DES User Triple-DES key Execute 

Random number 
generation 

DRBG User Entropy input string, 
Internal state 

Generate, 
Write, 
Execute 

Message digest SHA-1, SHA2-224, 
SHA2-256, SHA2-384, 
SHA2-512, SHA3-224, 
SHA3-256, SHA3-384, 
SHA3-512 

User None N/A 

HMAC User HMAC key Execute 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 12 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

Service Algorithm Role Keys/CSPs Access 

Message 
authentication code 
(MAC) 

CMAC-AES User AES key Execute 

CMAC-Triple-DES User Triple-DES key Execute 

Encrypt-then-MAC 
operation 

AES-[CBC, CTR], HMAC-
[SHA-1, SHA2] 

User AES key, HMAC key Execute 

Triple-DES-CBC, HMAC-
[SHA-1, SHA2] 

Triple-DES key, HMAC key Execute 

Key wrapping 
(asymmetric) 

RSA encrypt/decrypt 
primitives 

User RSA public/private keys Execute 

Key wrapping 
(symmetric) 

AES-KW, AES-CCM, 
AES-GCM,  

User AES key Execute 

Key wrapping 
combination 
(symmetric) 

Combination AES-[CBC, 
CTR], Triple-DES-CBC 
and HMAC 

User AES key, Triple-DES key, 
HMAC key 

Execute 

Digital signature 
verification 

Verify signature 
operation using RSA 
PKCS#1v1.5 

User RSA public/private keys Execute 

Zeroization N/A User All CSPs Zeroize 

Self-tests See Section 9 User None N/A 

Other services 

Error detection 
code 

crc32c1, crct10dif User None N/A 

Data compression deflate, lz4, lz4hc, lzo, 
zlib, 842 

User None N/A 

Memory copy 
operation 

ecb(cipher_null) User None N/A 

Show status N/A User None N/A 

Module installation 
and configuration 

N/A Crypto 
Officer 

None N/A 

 

4.2.2 Services in the Non-Approved Mode 
Table 6 lists the services only available in non-FIPS mode of operation. The details of the non-
approved cryptographic algorithms available in non-FIPS mode can be found in Table 9. 

Table 6: Services in non-FIPS mode of operation. 

Service Algorithm Role Keys Access 

AES-XTS with 192-bit 
key size. 

User AES key Execute 

 

1 This algorithm does not provide any cryptographic attribute, i.e., its purpose in the module is 
not security relevant. 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 13 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

Service Algorithm Role Keys Access 

Symmetric 
encryption and 
decryption 

Generic GCM with 
external IV, RFC4106 
GCM with external IV. 

User AES key Execute 

Anubis block cipher 
Blowfish block cipher 
Camellia block cipher 
CAST5, CAST6 
Serpent block cipher 
Twofish block cipher 
ARC4 stream cipher 
Salsa20 stream cipher 
ChaCha20 stream 
cipher 

User AES, anubis, blowfish, 
camellia, cast5, cast6, 
serpent, twofish, arc4, 
salsa20, chacha20 keys 

Execute 

z13 platform: AES and 
Triple-DES algorithms 
with “generic” 
implementation 

User AES, Triple-DES keys Execute 

Message digest GHASH outside the 
GCM context. 
MD4, MD5 
RIPEMD 
Tiger Hashing 
Whirlpool 
 
z13 platform: SHA3 and 
SHA2 algorithms with 
“generic” 
implementation 

User None N/A 

Message 
authentication code 
(MAC) 

HMAC with key smaller 
than 112-bit keys. 
 
z13 platform: HMAC 
with “generic” 
implementation 

User HMAC key Execute 

RSA signature 
generation 

RSA sign primitive 
operation. 

User RSA public/private keys Execute 

RSA signature 
verification 

RSA verify primitive 
operation with keys 
smaller than 2048 bits. 

User RSA public/private keys Execute 

RSA key wrapping RSA keys smaller than 
2048 bits. 

User RSA public/private keys Execute 

EC key generation EC key generation. User EC public/private keys Generate, 
Execute, 
Write 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 14 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

Service Algorithm Role Keys Access 

Shared Secret 
Computation 

Diffie-Hellman 
EC Diffie-Hellman 

User Diffie-Hellman 
public/private keys 

Execute 

EC Diffie-Hellman 
public/private keys 

Execute 

Shared Secret  Generate, 
Execute, 
Write 

 

4.3 Operator Authentication 
The module does not implement user authentication. The role of the user is implicitly assumed 
based on the service requested. 

4.4 Algorithms 
The module provides multiple implementations of algorithms. Different implementations can be 
invoked by using the unique algorithm driver names. 
Among the implementations, the module supports generic C for all algorithms; generic 
assembler for AES, Triple-DES ciphers, and block modes; AES-NI for AES; CLMUL for GHASH 
within the GCM block mode; AVX, AVX2, SSSE3 for SHA algorithms; constant-time C 
implementation for ciphers, and CPACF instructions for z13. 
Appendix A brings a list of the names contained in the CAVP algorithm certificates that refer to 
the specific algorithm implementations, along with their description. 

4.4.1 Approved Algorithms 
Table 7 lists the approved algorithms, the CAVP certificates, and other associated information of 
the cryptographic implementations available in the FIPS mode.  
Note: the module does not implement all the algorithms, as FIPS approved algorithms, for which 
the CAVP certificates were issued. 

Table 7: Approved Cryptographic Algorithms. 
Algorithm Mode/Method Key Lengths, 

Curves or 
Moduli  
(bits) 

Use Standard CAVP Certs. 

AES ECB 128, 192, 256 Data Encryption and 
Decryption 

FIPS197, 
SP800-38A 

A694 
(RFC4106EIV_CPACF_ASM) 
A695 
(RFC4106IIV_CPACF_ASM) 
A696 (CPACF_ASM) 
A698 (RFC4106EIV_CTI_C) 
A699 (RFC4106IIV_CTI_C) 
A702 (RFC4106EIV_C_C) 
A703 (RFC4106IIV_C_C) 
A706 (RFC4106EIV_CPACF_C) 
A707 (RFC4106IIV_CPACF_C) 
A709 
(RFC4106EIV_AESNI_ASM) 
A710 
(RFC4106IIV_AESNI_ASM) 

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33201
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33202
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33203
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33205
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33206
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33209
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33210
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33213
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33214
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33216
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33217


SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 15 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

Algorithm Mode/Method Key Lengths, 
Curves or 

Moduli  
(bits) 

Use Standard CAVP Certs. 

A714 
(RFC4106EIV_X86ASM_C) 
A715 
(RFC4106IIV_X86ASM_C) 
A719 (RFC4106EIV_AESNI_C) 
A720 (RFC4106IIV_AESNI_C) 

ECB, CBC, CTR 128, 192, 256 Data Encryption and 
Decryption 

FIPS197, 
SP800-38A 

A692 (C_C) 
A696 (CPACF_ASM) 
A701 (CTI_C) 
A708 (CPACF_C) 
A711 (AESNI_ASM) 
A716 (X86ASM_C) 
A721 (AESNI_C) 

KW 128, 192, 256 Key Wrapping SP800-38F A691 (KW_C_C) 
A700 (KW_CTI_C) 
A705 (KW_CPACF_C) 
A713 (KW_X86ASM_C) 
A718 (KW_AESNI_C) 

XTS 128, 256 Data Encryption and 
Decryption for Data 
Storage 

SP800-38E A692 (C_C) 
A696 (CPACF_ASM) 
A701 (CTI_C) 
A708 (CPACF_C) 
A711 (AESNI_ASM) 
A716 (X86ASM_C) 
A721 (AESNI_C) 

GCM with 
external IV 

128, 192, 256 Data Decryption2 SP800-38D A692 (C_C) 
A696 (CPACF_ASM) 
A701 (CTI_C) 
A708 (CPACF_C) 
A711 (AESNI_ASM) 
A716 (X86ASM_C) 
A721 (AESNI_C) 

GCM with 
internal IV 
(RFC4106) 

128, 192, 256 Data Encryption SP800-38D 
RFC4106 

A695 
(RFC4106IIV_CPACF_ASM) 
A699 (RFC4106IIV_CTI_C) 
A703 (RFC4106IIV_C_C) 
A707 (RFC4106IIV_CPACF_C) 
A710 
(RFC4106IIV_AESNI_ASM) 
A715 
(RFC4106IIV_X86ASM_C) 
A720 (RFC4106IIV_AESNI_C) 

GCM with 
external IV 
(RFC4106) 

128, 192, 256 Data Decryption SP800-38D 
RFC4106 

A694 
(RFC4106EIV_CPACF_ASM) 
A698 (RFC4106EIV_CTI_C) 
A702 (RFC4106EIV_C_C) 
A706 (RFC4106EIV_CPACF_C) 

 

2 This algorithm was tested for encryption and decryption, however the encryption operation is 
not approved in the FIPS mode due to the use of external IV. 

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33221
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33222
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33226
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33227
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33199
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33203
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33208
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33215
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33218
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33223
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33228
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33198
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33207
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33212
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33220
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33225
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33199
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33203
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33208
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33215
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33218
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33223
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33228
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33199
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33203
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33208
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33215
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33218
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33223
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33228
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33202
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33206
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33210
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33214
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33217
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33222
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33227
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33201
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33205
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33209
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33213


SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 16 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

Algorithm Mode/Method Key Lengths, 
Curves or 

Moduli  
(bits) 

Use Standard CAVP Certs. 

A709 
(RFC4106EIV_AESNI_ASM) 
A714 
(RFC4106EIV_X86ASM_C) 
A719 (RFC4106EIV_AESNI_C) 

CMAC 128, 192, 256 MAC Generation and 
Verification 

SP800-38B A692 (C_C) 
A696 (CPACF_ASM) 
A701 (CTI_C) 
A708 (CPACF_C) 
A716 (X86ASM_C) 
A721 (AESNI_C) 

CCM 128, 192, 256 Data Encryption and 
Decryption 

SP800-38C A692 (C_C) 
A696 (CPACF_ASM) 
A701 (CTI_C) 
A708 (CPACF_C) 
A716 (X86ASM_C) 
A721 (AESNI_C) 

GMAC 128, 192, 256 MAC Generation and 
Verification 

SP800-38D A692 (C_C) 
A696 (CPACF_ASM) 
A701 (CTI_C) 
A708 (CPACF_C) 
A716 (X86ASM_C) 
A721 (AESNI_C) 

DRBG CTR_DRBG: 
AES-128, 
AES-192, 
AES-256 with 
derivation 
function, with 
and without PR 

N/A Deterministic 
Random Bit 
Generation 

SP800-90A A692 (C_C) 
A694 
(RFC4106EIV_CPACF_ASM) 
A695 
(RFC4106IIV_CPACF_ASM) 
A696 (CPACF_ASM) 
A698 (RFC4106EIV_CTI_C) 
A699 (RFC4106IIV_CTI_C) 
A701 (CTI_C) 
A702 (RFC4106EIV_C_C) 
A703 (RFC4106IIV_C_C) 
A706 (RFC4106EIV_CPACF_C) 
A707 (RFC4106IIV_CPACF_C) 
A708 (CPACF_C) 
A709 
(RFC4106EIV_AESNI_ASM) 
A710 
(RFC4106IIV_AESNI_ASM) 
A711 (AESNI_ASM) 
A714 
(RFC4106EIV_X86ASM_C) 
A715 
(RFC4106IIV_X86ASM_C) 
A716 (X86ASM_C) 
A719 (RFC4106EIV_AESNI_C) 
A720 (RFC4106IIV_AESNI_C) 
A721 (AESNI_C) 

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33216
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33221
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33226
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33199
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33203
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33208
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33215
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33223
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33228
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33199
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33203
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33208
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33215
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33223
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33228
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33199
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33203
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33208
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33215
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33223
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33228
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33199
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33201
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33202
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33203
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33205
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33206
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33208
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33209
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33210
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33213
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33214
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33215
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33216
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33217
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33218
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33221
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33222
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33223
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33226
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33227
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33228


SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 17 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

Algorithm Mode/Method Key Lengths, 
Curves or 

Moduli  
(bits) 

Use Standard CAVP Certs. 

Hash_DRBG: 
SHA-1, 
SHA2-256, 
SHA2-384, 
SHA2-512 with 
and without PR 

N/A Deterministic 
Random Bit 
Generation 

SP800-90A A692 (C_C) 
A694 
(RFC4106EIV_CPACF_ASM) 
A695 
(RFC4106IIV_CPACF_ASM) 
A698 (RFC4106EIV_CTI_C) 
A699 (RFC4106IIV_CTI_C) 
A701 (CTI_C) 
A702 (RFC4106EIV_C_C) 
A703 (RFC4106IIV_C_C) 
A706 (RFC4106EIV_CPACF_C) 
A707 (RFC4106IIV_CPACF_C) 
A708 (CPACF_C) 
A709 
(RFC4106EIV_AESNI_ASM) 
A710 
(RFC4106IIV_AESNI_ASM) 
A711 (AESNI_ASM) 
A714 
(RFC4106EIV_X86ASM_C) 
A715 
(RFC4106IIV_X86ASM_C) 
A716 (X86ASM_C) 
A719 (RFC4106EIV_AESNI_C) 
A720 (RFC4106IIV_AESNI_C) 
A721 (AESNI_C) 
A723 (AVX2) 
A724 (AVX) 
A725 (SSSE3) 
A726 (X86ASM_ASM) 

HMAC_DRBG: 
HMAC-[SHA-1, 
SHA2-256, 
SHA2-384, 
SHA2-512] with 
and without PR 

N/A Deterministic 
Random Bit 
Generation 

SP800-90A A692 (C_C) 
A694 
(RFC4106EIV_CPACF_ASM) 
A695 
(RFC4106IIV_CPACF_ASM) 
A698 (RFC4106EIV_CTI_C) 
A699 (RFC4106IIV_CTI_C) 
A701 (CTI_C) 
A702 (RFC4106EIV_C_C) 
A703 (RFC4106IIV_C_C) 
A706 (RFC4106EIV_CPACF_C) 
A707 (RFC4106IIV_CPACF_C) 
A708 (CPACF_C) 
A709 
(RFC4106EIV_AESNI_ASM) 
A710 
(RFC4106IIV_AESNI_ASM) 
A711 (AESNI_ASM) 
A714 
(RFC4106EIV_X86ASM_C) 
A715 
(RFC4106IIV_X86ASM_C) 
A716 (X86ASM_C) 
A719 (RFC4106EIV_AESNI_C) 

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33199
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33201
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33202
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33205
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33206
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33208
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33209
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33210
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33213
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33214
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33215
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33216
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33217
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33218
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33221
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33222
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33223
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33226
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33227
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33228
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33230
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33231
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33232
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33233
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33199
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33201
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33202
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33205
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33206
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33208
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33209
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33210
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33213
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33214
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33215
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33216
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33217
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33218
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33221
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33222
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33223
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33226


SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 18 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

Algorithm Mode/Method Key Lengths, 
Curves or 

Moduli  
(bits) 

Use Standard CAVP Certs. 

A720 (RFC4106IIV_AESNI_C) 
A721 (AESNI_C) 
A723 (AVX2) 
A724 (AVX) 
A725 (SSSE3) 
A726 (X86ASM_ASM) 

HMAC HMAC-[SHA-1, 
SHA2-224, 
SHA2-256, 
SHA2-384, 
SHA2-512] 

112 or greater Message 
authentication code 

FIPS198-1 A692 (C_C) 
A708 (CPACF_C) 
A723 (AVX2) 
A724 (AVX) 
A725 (SSSE3) 

HMAC-
[SHA3-224, 
SHA3-256, 
SHA3-384, 
SHA3-512] 

112 or greater Message 
authentication code 

FIPS198-1 A690 (SHA3_C_C) 

RSA PKCS#1v1.5: 
SHA-1, 
SHA2-224, 
SHA2-256, 
SHA2-384, 
SHA2-512 

2048, 3072, 4096  Digital Signature 
Verification 

FIPS186-4 A692 (C_C) 
A708 (CPACF_C) 
A723 (AVX2) 
A724 (AVX) 
A725 (SSSE3) 

SHA-3 SHA3-224, 
SHA3-256, 
SHA3-384, 
SHA3-512 

N/A Message Digest FIPS202 A690 (SHA3_C_C) 

SHS SHA-1, 
SHA2-224, 
SHA2-256, 
SHA2-384, 
SHA2-512 

N/A Message Digest FIPS180-4 A692 (C_C) 
A708 (CPACF_C) 
A723 (AVX2) 
A724 (AVX) 
A725 (SSSE3) 

SHA-1, 
SHA2-256, 
SHA2-512 

N/A Message Digest FIPS180-4 A722 (MB) 

Triple-DES 
(three-key) 

ECB, CBC, CTR 192 Data Encryption and 
Decryption 

SP800-67 
SP800-38A 

A692 (C_C) 
A696 (CPACF_ASM) 
A708 (CPACF_C) 
A716 (X86ASM_C) 
A726 (X86ASM_ASM) 

CMAC 192 MAC Generation and 
Verification 

SP800-67 
SP800-38B 

A692 (C_C) 
A696 (CPACF_ASM) 
A708 (CPACF_C) 
A716 (X86ASM_C) 

KTS AES-KW 128, 192, 256 Key wrapping SP800-38F A691 (KW_C_C) 
A700 (KW_CTI_C) 
A705 (KW_CPACF_C) 
A713 (KW_X86ASM_C) 
A718 (KW_AESNI_C) 

AES-GCM, AES-
CCM 

128, 192, 256 Key wrapping SP800-38F A692 (C_C) 
A696 (CPACF_ASM) 

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33227
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33228
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33230
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33231
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33232
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33233
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33199
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33215
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33230
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33231
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33232
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33197&expanded=true
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33199
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33215
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33230
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33231
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33232
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33197&expanded=true
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33199
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33215
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33230
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33231
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33232
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33229
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33199
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33203
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33215
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33223
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33233
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33199
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33203
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33215
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33223
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33198
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33207
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33212
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33220
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33225


SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 19 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

Algorithm Mode/Method Key Lengths, 
Curves or 

Moduli  
(bits) 

Use Standard CAVP Certs. 

A701 (CTI_C) 
A708 (CPACF_C) 
A711 (AESNI_ASM) 
A716 (X86ASM_C) 
A721 (AESNI_C) 
A695 
(RFC4106IIV_CPACF_ASM) 
A699 (RFC4106IIV_CTI_C) 
A703 (RFC4106IIV_C_C) 
A707 (RFC4106IIV_CPACF_C) 
A710 
(RFC4106IIV_AESNI_ASM) 
A715 
(RFC4106IIV_X86ASM_C) 
A720 (RFC4106IIV_AESNI_C) 
A694 
(RFC4106EIV_CPACF_ASM) 
A698 (RFC4106EIV_CTI_C) 
A702 (RFC4106EIV_C_C) 
A706 (RFC4106EIV_CPACF_C) 
A709 
(RFC4106EIV_AESNI_ASM) 
A714 
(RFC4106EIV_X86ASM_C) 
A719 (RFC4106EIV_AESNI_C) 

Combination 
AES-CBC and 
HMAC-[SHA-1, 
SHA2-256, 
SHA2-512]; 
AES-CTR and 
HMAC-[SHA-1, 
SHA2-256, 
SHA2-384, 
SHA2-512] 

128, 192, 256 Key wrapping SP800-38F 
FIPS140-2 IG 
D.9 

AES 
A692 (C_C) 
A696 (CPACF_ASM) 
A701 (CTI_C) 
A708 (CPACF_C) 
A711 (AESNI_ASM) 
A716 (X86ASM_C) 
A721 (AESNI_C) 
 
HMAC 
A692 (C_C) 
A708 (CPACF_C) 
A723 (AVX2) 
A724 (AVX) 
A725 (SSSE3) 

Combination 
Triple-DES-CBC 
and HMAC-
[SHA-1, 
SHA2-224, 
SHA2-256, 
SHA2-384, 
SHA2-512] 

192 Key wrapping SP800-38F 
FIPS140-2 IG 
D.9 

Triple-DES 
A692 (C_C) 
A696 (CPACF_ASM) 
A708 (CPACF_C) 
A716 (X86ASM_C) 
A726 (X86ASM_ASM) 
 
HMAC 
A692 (C_C) 
A708 (CPACF_C) 
A723 (AVX2) 
A724 (AVX) 

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33199
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33203
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33208
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33215
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33218
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33223
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33228
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33199
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33215
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33230
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33231
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33232
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33199
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33203
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33215
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33223
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33233
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33199
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33215
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33230
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33231


SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 20 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

Algorithm Mode/Method Key Lengths, 
Curves or 

Moduli  
(bits) 

Use Standard CAVP Certs. 

A725 (SSSE3) 

 

4.4.2 Non-Approved-But-Allowed Algorithms 
Table 8 describes the non-Approved but allowed algorithms in FIPS mode: 

Table 8: Non-Approved but Allowed Algorithms. 

Algorithm Use 

NDRNG The module obtains the entropy data from 
NDRNG to seed the DRBG 

RSA encrypt/decrypt primitives with keys 
equal or greater than 2048 bits (including 
15360 bits or more) 

Key transport; allowed per [FIPS140-2_IG] D.8 

4.4.3 Non-Approved Algorithms 
Table 9 shows the non-Approved cryptographic algorithms implemented in the module that are 
only available in non-FIPS mode. 

Table 9: Non-Approved Cryptographic Algorithms. 

Algorithm Implementation 
name 

Use 

Generic GCM encryption with 
external IV 

gcm(aes) with external 
IV 

Data encryption 

RFC4106 GCM encryption with 
external IV  

rfc4106(gcm(aes)) with 
external IV 

Data encryption 

AES-XTS with 192-bit keys xts Data encryption and decryption 

Anubis block cipher anubis-generic Data encryption and decryption 

Blowfish block cipher Any blowfish Data encryption and decryption 

Camellia block cipher Any camellia Data encryption and decryption 

CAST5, CAST6 cast5-generic, cast6-
generic 

Data encryption and decryption 

Serpent block cipher Any serpent Data encryption and decryption 

Twofish block cipher Any twofish Data encryption and decryption 

ARC4 stream cipher ecb(arc4)-generic Data encryption and decryption 

Salsa20 stream cipher Any salsa20 Data encryption and decryption 

ChaCha20 stream cipher Any chacha20 Data encryption and decryption 

RSA digital signature sign 
primitive operation 

rsa Digital signature generation 

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33232


SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 21 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

Algorithm Implementation 
name 

Use 

RSA digital signature verify 
primitive operation with keys 
smaller than 2048 bits. 

rsa Digital signature verification 

EC Key Generation ecdh EC key generation and shared 
secret computation 

RSA encrypt/decrypt with keys 
smaller than 2048 bits 

rsa Key wrapping 

HMAC with less than 112 keys hmac Message authentication code 

MD4, MD5 md4, md5 Message digest 

RACE Integrity Primitives 
Evaluation Message Digest 
(RIPEMD) 

Any rmd Message digest 

Tiger Hashing Any tgr Message digest 

Whirlpool Any wp Message digest 

GHASH ghash Message digest outside the GCM 
mode 

Random number generator Any cprng Random number generator 

EC Diffie-Hellman shared 
secret computation 

ecdh Shared secret computation 

Diffie-Hellman shared secret 
computation 

dh Shared secret computation  

z13 Platform Only (in addition to the above algorithms) 
Algorithms in Table 7 with 
“generic” implementation 

aes-generic 
des3_ede-generic 
sha3-224-generic 
sha3-256-generic 
sha3-384-generic 
sha3-512-generic 
sha512-generic 
sha384-generic 
hmac([sha3*]-generic) 
hmac([sha512, 
sha384]-generic) 

Data encryption and decryption 
Message digest 
Message authentication code 

 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 22 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

5 Physical Security  
The module is comprised of software only and thus does not claim any physical security. 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 23 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

6 Operational Environment  
This module operates in a modifiable operational environment per the FIPS 140-2 level 1 
specifications. 

6.1 Policy  
The operating system is restricted to a single operator mode of operation (i.e., concurrent 
operators are explicitly excluded). The application that requests cryptographic services is the 
single user of the module, even when the application is serving multiple of its own users. 
The ptrace system call, the debugger gdb and strace shall not be used. In addition, other tracing 
mechanisms offered by the Linux environment, such as ftrace or systemtap shall not be used. 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 24 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

7 Cryptographic Key Management  
Table 10 summarizes the Critical Security Parameters (CSPs) that are used by the cryptographic 
services implemented in the module: 

Table 10: LIfe cycle of keys and other CSPs. 

Name Generation Entry and Output Zeroization 

AES key N/A The keys are passed into 
the module via API input 
parameters in plaintext. 

Zeroized when 
freeing the cipher 
handler. Triple-DES key 

HMAC key 

Entropy input string Obtained from 
NDRNG. 

N/A Zeroized when 
freeing the cipher 
handler. 

DRBG internal state: V 
value, C value, key (if 
applicable) and seed 
material 

Derived from 
entropy input as 
defined in SP800-
90A. 

N/A Zeroized when 
freeing the cipher 
handler. 

RSA public/private keys N/A The key is passed into the 
module via API input 
parameters in plaintext. 

Zeroized when 
freeing the cipher 
handler. 

 

The following sections describe how keys and other CSPs are managed during their life cycle. 

7.1 Random Number Generation 
The module employs a SP 800-90A DRBG as a random number generator for the creation of 
random numbers. In addition, the module provides a Random Number Generation service to 
applications. The DRBG supports the Hash_DRBG, HMAC_DRBG and CTR_DRBG mechanisms. The 
DRBG is initialized during module initialization.  
The module uses a Non-Deterministic Random Number Generator (NDRNG) as the entropy 
source. The NDRNG is based on the Linux RNG and the CPU Time Jitter RNG, both within the 
module's logical boundary.  
For seeding the DRBG, the module obtains an amount of entropy input data from the NDRNG 
that is 1.5 times the security strength expected for the DRBG method. For reseeding, the 
module obtains an amount of entropy input data equivalent to the security strength of the DRBG 
method. 
For seeding and reseeding, the module ensures the following entropy amount per each DRBG 
security strength: 

• DRBG with 128 bits of security strength: 128 bits of entropy in the entropy input from the 
NDRNG. 

• DRBG with 192 bits of security strength: 192 bits of entropy in the entropy input from the 
NDRNG. 

• DRBG with 256 bits of security strength: 256 bits of entropy in the entropy input from the 
NDRNG. 

Therefore, the module ensures that the NDRNG always provides the required amount of entropy 
to meet the security strength of the DRBG methods during initialization (seed) and reseeding. 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 25 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

The module performs conditional self-tests on the output of NDRNG to ensure that consecutive 
random numbers do not repeat, and performs DRBG health tests as defined in Section 11.3 of 
[SP800-90A]. 

7.2 Key Generation 
The module does not provide any dedicated key generation service. However, the Random 
Number Generation service can be called by the user to obtain random numbers that can be 
used as keying material for symmetric algorithms and MAC. 

7.3 Key Establishment 
The module provides AES key wrapping per [SP800-38F] and RSA key wrapping or encapsulation 
as allowed by [FIPS140-2_IG] D.9. 
The module provides approved key transport methods as permitted by IG D.9. These key 
transport methods are provided either by using an approved key wrapping algorithm, an 
approved authenticated encryption mode, or a combination method of approved symmetric 
encryption (AES, Triple-DES) and HMAC-SHA-1/SHA-2 for the AES/Triple-DES modes and HMAC 
implementations in Table 7. 
Table 7 and Table 8 specify the key sizes allowed in the FIPS mode of operation for the specific 
algorithms that participate in the key agreement methods. According to “Table 2: Comparable 
strengths” in [SP800-57], the key sizes of AES and Triple-DESkey wrapping, and RSA key 
wrapping provide the following security strengths: 

• AES-KW key wrapping; key establishment methodology provides between 128 and 256 
bits of encryption strength. 

• AES-GCM and AES-CCM authenticated encryption key wrapping: key establishment 
methodology provides between 128 and 256 bits of encryption strength. 

• Combination method of approved AES-CBC and AES-CTR block mode and message 
authentication code (HMAC-SHA-1/SHA-2) key wrapping: key establishment methodology 
provides between 128 and 256 bits of encryption strength. 

• Combination method of approved Triple-DES-CBC block mode and message 
authentication code (HMAC-SHA-1/SHA-2) key wrapping: key establishment methodology 
provides 112 bits of encryption strength. 

• RSA key wrapping: key establishment methodology provides between 112 and 256 bits of 
encryption strength. 

7.4 Key/CSP Entry and Output 
The module does not support manual key entry. It supports electronic entry of symmetric keys, 
HMAC keys and asymmetric keys via API input parameters in plaintext form. The module does 
not produce key output outside its physical boundary. 
The keys can thus be entered into the module or output from the module in plaintext via API 
parameters, to and from the calling application only. 

7.5 Key/CSP Storage 
The module does not perform persistent storage of keys. The keys and CSPs are stored as 
plaintext in the RAM. The only exceptions are the HMAC keys and RSA public keys used for the 
integrity tests, which are stored in the module and rely on the operating system for protection.  



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 26 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

7.6 Key/CSP Zeroization 
The application is responsible for calling the appropriate destruction functions from the Kernel 
Crypto API. When a calling application calls the appropriate API function, that function overwrites 
the memory with zeros and deallocates the memory when the cipher handler is freed. 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 27 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

8 Electromagnetic Interference/Electromagnetic 
Compatibility (EMI/EMC) 

The test platforms as shown in Table 3 are compliant to 47 CFR FCC Part 15, Subpart B, Class A 
(Business use). 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 28 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

9 Self Tests  
The module performs both power-up self-tests at module initialization and conditional tests 
during operation to ensure that the module is not corrupted and that the cryptographic 
algorithms work as expected.  
The services are only available when the power-up self-tests have succeeded. If the power-up 
self-tests pass, a success message is recorded in the dmesg log and the module transitions to be 
operational, and then all cryptographic services are available. If the power-up self-tests fail, the 
module outputs an error message and enters the error state.  
On-demand self-tests can be invoked by rebooting the operating system.  
Conditional tests are performed during the operation of the module. If a conditional test is 
successful, the module remains operational. If a conditional test fails, the module outputs an 
error message and enters the error state.  
When the module is in the error state, data output is inhibited, and no further operations are 
possible. The operating system must be rebooted to recover from the error state. 
Table 11 lists all the self-tests performed by the module. For algorithms that have more than one 
implementation in the module (per Table 7), the module performs the self-tests independently 
for each of these implementations. 

Table 11: Self tests. 

Self Test Description 

Power-up tests performed at power-up and on demand 

Cryptographic 
Algorithm Known 
Answer Tests (KATs) 

KATs for AES in ECB, CBC, CTR, GCM, CCM and XTS modes; encryption 
and decryption are performed separately.3 
KATs for Triple-DES in ECB, CBC and CTR modes; encryption and 
decryption are performed separately. 
KATs for AES and Triple-DES CMAC, MAC generation and verification. 
KATs for SHA-1, SHA2-224, SHA2-256, SHA2-384 and SHA2-512.  
KATs for SHA3-224, SHA3-256, SHA3-384 and SHA3-512. 
KATs for HMAC-SHA-1, HMAC-SHA2-224, HMAC-SHA2-256, HMAC-SHA2-
384 and HMAC-SHA2-512. 
KATs for HMAC-SHA3-224, HMAC-SHA3-256, HMAC-SHA3-384 and HMAC-
SHA3-512. 
KATs for Hash_DRBG (SHA2-256), HMAC_DRBG (HMAC-SHA2-256), and 
CTR_DRBG (AES-128, AES-192, AES-256), with and without PR, and 
health tests per Section 11.3 of SP800-90A. 
KAT for RSA public key encryption and private key decryption with 2048 
bit keys. 
KAT for RSA signature verification is covered by the integrity tests 
performed on kernel object files. 

Software Integrity 
Test 

The module uses the HMAC-SHA2-256 algorithm for the integrity test of 
the static kernel binary and the fipscheck application. The HMAC 
calculation is performed by the fipscheck application itself.  
The module uses RSA signature verification using SHA2-256 with a 
4096-bit key for the integrity test of each of the kernel object files 
loaded during boot-up time. 

 

3 The KAT for AES-KW is covered by the KAT for AES-GCM per IG 9.4. 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 29 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

Self Test Description 

Conditional tests performed during operation 

Continuous Random 
Number Generator 
Test (CRNGT) 

The module performs conditional self-tests on the output of NDRNG to 
ensure that consecutive random numbers do not repeat. 

On demand execution of self tests 

On Demand Testing Invocation of the self tests on demand can be achieved by rebooting the 
operating system. This will trigger a new power-up self-test procedure. 

 
 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 30 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

10 Guidance 

10.1 Crypto Officer Guidance  
The binaries of the module are contained in the RPM packages for delivery. The Crypto Officer 
shall follow this Security Policy to configure the operational environment and install the module 
to be operated as a FIPS 140-2 validated module.  
Table 12 shows the RPM packages that contain the FIPS validated module. They are separated 
by Operational System version and are applicable for all the tested platforms for the specific 
Operational System version. 

Table 12: RPM packages. 

Operational System (All Platforms) RPM Package 

Linux Enterprise Server 12 SP4 dracut-044.2-10.32.1.rpm  
dracut-fips-044.2-10.32.1.rpm 
kernel-default-4.12.14-95.60.rpm 
libkcapi-0.13.0-8.1.rpm 

Linux Enterprise Server 12 SP5 dracut-044.2-10.32.1.rpm  
dracut-fips-044.2-10.32.1.rpm 
kernel-default-4.12.14-122.37.1.rpm 
libkcapi-0.13.0-8.1.rpm 

 
Additional kernel components that register with the Kernel Crypto API shall not be loaded as the 
kernel configuration is fixed in approved mode. 

10.1.1 Module Installation 
The Crypto Officer shall install the RPM packages containing the module as listed in Table 12 
using the zypper tool. The integrity of the RPM package is automatically verified during the 
installation, and the Crypto Officer shall not install the RPM package if there is any integrity 
error. 

10.1.2 Operating Environment Configurations 
The operating environment needs to be configured to support FIPS, so the following steps shall 
be performed with the root privilege: 
Install the dracut-fips RPM package: 

# zypper install dracut-044.2-10.32.1.rpm dracut-fips-044.2-10.32.1.rpm 
 
Recreate the INITRAMFS image: 

# dracut -f  
 
After regenerating the initrd, the Crypto Officer has to append the following parameter in the 
/etc/default/grub configuration file in the GRUB_CMDLINE_LINUX_DEFAULT line:  

fips=1 
 

After editing the configuration file, please run the following command to change the setting in 
the boot loader: 

# grub2-mkconfig -o /boot/grub2/grub.cfg 
 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 31 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

If /boot or /boot/efi resides on a separate partition, the kernel parameter boot=<partition of 
/boot or /boot/efi> must be supplied. The partition can be identified with the command "df 
/boot" or "df /boot/efi" respectively. For example: 

# df /boot 
Filesystem     1K-blocks     Used     Available     Use%     Mounted on 
/dev/sda1      233191        30454    190296        14%     /boot 

 
The partition of /boot is located on /dev/sda1 in this example. Therefore, the following string 
needs to be appended in the aforementioned grub file: 

"boot=/dev/sda1" 
 
Reboot to apply these settings. 
Now, the operating environment is configured to support FIPS operation. The Crypto Officer 
should check the existence of the file /proc/sys/crypto/fips_enabled, and verify it contains a 
numeric value “1”. If the file does not exist or does not contain “1”, the operating environment 
is not configured to support FIPS and the module will not operate as the proper FIPS validated 
module.  

10.2 User Guidance 

10.2.1 Cipher References and Priority 
The cryptographic module provides multiple implementations of different algorithms as shown in 
Section 4.4 and Appendix B. 
If more than one of the kernel components are loaded, the respective implementation can be 
requested by using the following cipher mechanism strings with the initialization calls (such as 
crypto_alloc_blkcipher): 

⚫ aes-generic kernel component: “aes-generic”. 
⚫ aesni-intel kernel component: "__aes-aesni". 
⚫ aes-x86_64 kernel component: "aes-asm". 

The AES cipher can also be loaded by simply using the string "aes" with the initialization call. In 
this case, the AES implementation whose kernel component is loaded with the highest priority is 
used. The following priority exists: 

⚫ aesni-intel. 
⚫ aes-x86_64. 
⚫ aes-generic. 

For example: If the kernel components aesni-intel and aes-asm are loaded and the caller uses 
the initialization call (such as crypto_alloc_blkcipher) with the cipher string of "aes", the aesni-
intel implementation is used. On the other hand, if only the kernel components of aes-x86_64 
and aes-generic are loaded, the cipher string of "aes" implies that the aes-x86_64 
implementation is used. 
The discussion about the naming and priorities of the AES implementation also applies when 
cipher strings are used that include the block modes, such as "cbc(aes-asm)", "cbc(aes)", or 
"cbc(__aes-aesni)". 
When using the module, the user shall utilize the Linux kernel crypto API-provided memory 
allocation mechanisms. In addition, the user shall not use the function copy_to_user() on any 
portion of the data structures used to communicate with the Linux kernel crypto API. 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 32 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

10.2.2 AES XTS 
As specified in SP800-38E, the AES algorithm in XTS mode is designed for the cryptographic 
protection of data on storage devices. Thus, it can only be used for the disk encryption 
functionality offered by dm-crypt (i.e., the hard disk encryption scheme). For dm-crypt, the 
length of a single data unit encrypted with AES XTS mode is at most 65,536 bytes (64KiB of 
data), which does not exceed 220  AES blocks (16MiB of data). 
To meet the requirement stated in IG A.9, the module implements a check to ensure that the two 
AES keys used in AES XTS mode are not identical. 
Note: AES-XTS shall be used with 128 and 256-bit keys only. AES-XTS with 192-bit keys is not an 
Approved service. 

10.2.3 AES GCM IV 
In case the module's power is lost and then restored, the key used for the AES GCM encryption 
or decryption shall be redistributed. 
When a GCM IV is used for encryption, the module complies with IG A.5 Scenario 2 [FIPS140-
2_IG], in which the GCM IV is generated internally at its entirety randomly by the module’s 
DRGB. The DRBG seeds itself from the NDRNG, which is within the module's boundary. The GCM 
IV is 96 bits in length. Per Section 7.1, this 96-bit IV contains 96 bits of entropy.  
When a GCM IV is used for decryption, the responsibility for the IV generation lies with the party 
that performs the AES GCM encryption and therefore there is no restriction on the IV generation. 

10.2.4 Triple-DES encryption 
Data encryption using the same three-key Triple-DES key shall not exceed 216 Triple-DES blocks 
(2GiB of data), in accordance with SP800-67 and IG A.13. The user of the module is responsible 
for ensuring the module’s compliance with this requirement. 

10.3 Handling Self Test Errors 
Self test failure within the kernel crypto API module will panic the kernel and the operating 
system will not load and/or halt immediately.  
Error recovery and return to operational state can be accomplished by rebooting the system. If 
the failure continues, the Crypto Officer must re-install the software package and make sure to 
follow all instructions. If the software was downloaded, the package hash value must be verified 
to confirm a proper download. Please contact SUSE if these steps do not resolve the problem.  
The kernel dumps self-test success and failure messages into the kernel message ring buffer. 
Post boot, the messages are moved to /var/log/messages.  
Use dmesg to read the contents of the kernel ring buffer. The format of the ringbuffer (dmesg) 
output is: 

alg: self-tests for %s (%s) passed 
 
Typical messages are similar to "alg: self-tests for xts(aes) (xts(aes-x86_64)) passed" for each 
algorithm/sub-algorithm type. 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 33 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

11 Mitigation of Other Attacks 
The module does not offer mitigation of other attacks. 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 34 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

Appendix A Glossary and Abbreviations 
 

AES Advanced Encryption Specification 

AES_NI Intel Advanced Encryption Standard (AES) New Instructions 

AVX Advanced Vector Extensions 

AVX2 Advanced Vector Extensions 2 

CAVP Cryptographic Algorithm Validation Program 

CBC Cipher Block Chaining 

CCM Counter with Cipher Block Chaining Message Authentication Code 

CE Cryptographic Extensions 

CLMUL Carry-less Multiplication 

CMAC Cipher-based Message Authentication Code 

CMVP Cryptographic Module Validation Program 

CPACF CP Assist for Cryptographic Functions 

CSP Critical Security Parameter 

CTI Constant-Time 

CTR Counter Mode 

DES Data Encryption Standard 

DRBG Deterministic Random Bit Generator 

ECB Electronic Code Book 

FIPS Federal Information Processing Standards Publication 

GCM Galois Counter Mode 

HMAC Hash-based Message Authentication Code, keyed-Hash Message 
Authenticated Code 

MAC Message Authentication Code 

NIST National Institute of Science and Technology 

PKCS Public Key Cryptography Standards 

PR Prediction Resistance 

RNG Random Number Generator 

RPM Red hat Package Manager 

RSA Rivest, Shamir, Addleman 

SHA Secure Hash Algorithm 

SHS Secure Hash Standard 

SSSE3 Supplemental Streaming SIMD (Single Instruction, Multiple Data) Extensions 3 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 35 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

XTS XEX Tweakable Block Cipher with Ciphertext Stealing 
 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 36 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

Appendix B Algorithm Implementations 
Table 13 describes the names utilized in the algorithm certificates and the implementations to 
which they refer for the test platforms.  

Table 13: Algorithm implementations and their names in the CAVP certificates. 

Name Description 

AESNI_ASM AES cipher with AESNI, and block modes with assembler 

AESNI_C AES cipher with AESNI, and block modes with C 

AVX SHA using AVX instructions 

AVX2 SHA using AVX2 instructions 

C_C Cipher in C, block modes in C 

CPACF_ASM AES and Triple-DES using CPACF instructions, block mode using 
assembler 

CPACF_C AES and Triple-DES using CPACF instructions, block mode using C 

CPACF_SHA3 SHA3 using CPACF instructions 

CTI_C Cipher in constant time C implementation, block mode in C 

KW_AESNI_C AES-KW: AES with AESNI, block mode with generic non-optimized 
C 

KW_C_C AES-KW: AES in C, block mode in C 

KW_CPACF_C AES-KW: AES using CP Assist for Cryptographic Functions 
(CPACF), block mode using C 

KW_CTI_C AES-KW: AES using constant-time C implementation, block mode 
using C 

KW_X86ASM_C AES-KW: AES using assembler implementation, block mode using 
C 

MB Multi-Buffer SHA implementation 

RFC4106EIV_AESNI_ASM RFC4106 GCM with external IV generation: AES using AESNI, 
block mode using assembler 

RFC4106EIV_AESNI_C RFC4106 GCM with external IV generation: AES using AESNI, 
block mode using C 

RFC4106EIV_C_C RFC4106 GCM with external IV generation: AES using C, block 
mode using C 

RFC4106EIV_CPACF_ASM 
RFC4106 GCM with external IV generation: AES using CP Assist 
for Cryptographic Functions (CPACF), block mode using 
assembler 

RFC4106EIV_CPACF_C RFC4106 GCM with external IV generation: AES using CP Assist 
for Cryptographic Functions (CPACF), block mode using C 

RFC4106EIV_CTI_C RFC4106 GCM with external IV generation: AES using constant-
time C, block mode using C 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 37 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

Name Description 

RFC4106EIV_X86ASM_C RFC4106 GCM with external IV generation: AES using assembler 
block mode using C 

RFC4106IIV_AESNI_ASM RFC4106 GCM with internal IV generation: AES using AESNI, 
block mode using assembler 

RFC4106IIV_AESNI_C RFC4106 GCM with internal IV generation: AES using AESNI, 
block mode using C 

RFC4106IIV_C_C RFC4106 GCM with internal IV generation: AES using C, block 
mode using C 

RFC4106IIV_CPACF_ASM 
RFC4106 GCM with internal IV generation: AES using CP Assist 
for Cryptographic Functions (CPACF), block mode using 
assembler 

RFC4106IIV_CPACF_C RFC4106 GCM with internal IV generation: AES using CP Assist 
for Cryptographic Functions (CPACF), block mode using C 

RFC4106IIV_CTI_C RFC4106 GCM with internal IV generation: AES using constant-
time C, block mode using C 

RFC4106IIV_X86ASM_C RFC4106 GCM with internal IV generation: AES using assembler 
block mode using C 

SHA3_C_C SHA-3 implementation in generic C 

SSSE3 SHA implementation using SSSE3 

X86ASM_ASM Cipher in assembler, block mode in assembler 

X86ASM_C Cipher in assembler, block mode in C 
 
 



SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 38 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

Appendix C References 
 

FIPS 140-2 FIPS PUB 140-2 - Security Requirements for Cryptographic Modules 
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf 

FIPS 140-2_IG Implementation Guidance for FIPS PUB 140-2 and the 
Cryptographic Module Validation Program 
August 28, 2020 
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf 

FIPS180-4 Secure Hash Standard (SHS) 
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf 

FIPS186-4 Digital Signature Standard (DSS) 
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf 

FIPS197 Advanced Encryption Standard 
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf 

FIPS198-1 The Keyed Hash Message Authentication Code (HMAC) 
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf 

FIPS202 SHA-3 Standard Permutation-Based Hash and Extendable-Output 
Functions 
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf 

PKCS#1 Public Key Cryptography Standards (PKCS) #1: RSA Cryptography 
Specifications Version 2.1 
http://www.ietf.org/rfc/rfc3447.txt 

SP800-38A NIST Special Publication 800-38A - Recommendation for Block 
Cipher Modes of Operation   Methods and Techniques 
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
38a.pdf 

SP800-38B NIST Special Publication 800-38B - Recommendation for Block 
Cipher Modes of Operation: The CMAC Mode for Authentication 
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf 

SP800-38C NIST Special Publication 800-38C - Recommendation for Block Cipher Modes 
of Operation: the CCM Mode for Authentication and Confidentiality 
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
38c.pdf 

SP800-38D NIST Special Publication 800-38D - Recommendation for Block 
Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC 
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
38d.pdf 

SP800-38E NIST Special Publication 800-38E - Recommendation for Block Cipher Modes 
of Operation: The XTS AES Mode for Confidentiality on Storage Devices 
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
38e.pdf 

SP800-38F NIST Special Publication 800-38F - Recommendation for Block 
Cipher Modes of Operation: Methods for Key Wrapping 
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf 

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://www.ietf.org/rfc/rfc3447.txt
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf


SUSE Linux Enterprise Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy 
 

©2021 SUSE, LLC., atsec information security. Page 39 of 39 
This document can be reproduced and distributed only whole and intact, including this copyright notice. 

 

SP800-67 NIST Special Publication 800-67 Revision 1 - Recommendation for 
the Triple Data Encryption Algorithm (TDEA) Block Cipher 
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
67r1.pdf 

SP800-90A NIST Special Publication 800-90A Revision 1 - Recommendation for Random 
Number Generation Using Deterministic Random Bit Generators 
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf 

SP800-131A NIST Special Publication 800-131A Revision 1- Transitions: Recommendation 
for Transitioning the Use of Cryptographic Algorithms and Key Lengths 
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf 

 

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-67r1.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-67r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

	1 Introduction
	1.1 Purpose
	1.2 External Resources and References
	1.3 How this Security Policy was Prepared

	2 Cryptographic Module Specification
	2.1 Module Overview
	2.2 Modes of Operation

	3 Cryptographic Module Ports and Interfaces
	4 Roles, Services and Authentication
	4.1 Roles
	4.2 Services
	4.2.1 Services in the Approved Mode
	4.2.2 Services in the Non-Approved Mode

	4.3 Operator Authentication
	4.4 Algorithms
	4.4.1 Approved Algorithms
	4.4.2 Non-Approved-But-Allowed Algorithms
	4.4.3 Non-Approved Algorithms


	5 Physical Security
	6 Operational Environment
	6.1 Policy

	7 Cryptographic Key Management
	7.1 Random Number Generation
	7.2 Key Generation
	7.3 Key Establishment
	7.4 Key/CSP Entry and Output
	7.5 Key/CSP Storage
	7.6 Key/CSP Zeroization

	8 Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)
	9 Self Tests
	10 Guidance
	10.1 Crypto Officer Guidance
	10.1.1 Module Installation
	10.1.2 Operating Environment Configurations

	10.2 User Guidance
	10.2.1 Cipher References and Priority
	10.2.2 AES XTS
	10.2.3 AES GCM IV
	10.2.4 Triple-DES encryption

	10.3 Handling Self Test Errors

	11 Mitigation of Other Attacks
	Appendix A Glossary and Abbreviations
	Appendix B Algorithm Implementations
	Appendix C References

