
A lean BIKE KEM design for ephemeral key
agreement

Nir Drucker1 , Shay Gueron2,3 , and Dusan Kostic4

1 IBM Research, Israel, 2University of Haifa, Israel,
3Meta, USA 4Amazon, USA

Abstract. The QC-MDPC code-based KEM BIKE is an alternative
candidate for standardization for the NIST Post-Quantum Cryptography
Standardization Project. Per NIST’s report [2] “The BIKE cryptosystem
was initially designed for ephemeral key use but has now been claimed
to also support static key use”. BIKE uses the BGF decoder of [9] where
its Decoding Failure Rate (DFR) is estimated by means of an extrapo-
lation method. While this methodology provides a solid indication for a
very small DFR, which is required for an IND-CCA claim, it may still
be considered short of a proven upper bound, as stated in [2], “... and
an upper bound on the decoding failure rate has yet to be found”. Nev-
ertheless, the IND-CPA security of BIKE is established without a small
DFR requirement on the decoder, and this property sufces for proto-
cols that use ephemeral keys. This is the case for protocols that maintain
the modern notion of forward secrecy (hence avoid static keys), where a
prominent example is TLS 1.3.
This paper examines the communication bandwidth and the performance
of a BIKE design that targets only the ephemeral key use cases, i.e.,
settles with IND-CPA security. We call this design “Lean-BIKE”. This
study illustrates the incremental cost of the IND-CCA property. We ar-
gue that it would be useful to standardize two confgurations of BIKE:
a) “Lean-BIKE” that enjoys the reduced cost of an IND-CPA KEM, for
the major class of forward secrecy supporting usages; b) BIKE whose
IND-CCA security could be established by either a fner proof method-
ology for the BGF decoder or with another decoder that has a proven
DFR upper bound.

Keywords: BIKE, Post-Quantum Cryptography, NIST, QC-MDPC codes, IND-
CPA, IND-CCA, Ephemeral keys, Engineering DFR.

1 Introduction

NIST post-quantum cryptography standardization project is in its Round 4 fnal
stages, where four Key Encapsulation Mechanisms (KEMs) are evaluated for
standardization, as alternatives. Bit Flipping Key Encapsulation (BIKE) is one
of them. It is a Quasi-Cyclic Moderate-Density Parity-Check (QC-MDPC) code-
based KEM, where its latest version is defned in [3].

https://orcid.org/0000-0002-7273-4797
https://orcid.org/0000-0002-9145-7609
https://orcid.org/0000-0002-7415-1587

Per BIKE specifcation [3], BIKE is a CPA KEM secure under the two stan-
dard assumptions on the hardness of: a) Quasi-Cyclic (QC) Syndrome Decod-
ing QCSDr,t; b) QC Codeword Finding QCCFr,w problem. For CCA security
(see [12] for details) a third assumption is needed: the correctness of the decoder
which is being used. This translates to a sufciently low DFR.

1.1 The state of the BIKE

BIKE went through several improvement cycles from Round 1 to Round 4 during
the standardization project. The diferent specifcation document versions of
BIKE are posted at https://bikesuite.org/spec.html.

The initial BIKE design (Round 1) defned three BIKE algorithms named
BIKE-1/BIKE-2/BIKE-3 and targeted only IND-CPA security. As the NIST
report [2] states “The BIKE cryptosystem was initially designed for ephemeral
key use but has now been claimed to also support static key use”,

IND-CCA security was frst claimed with Round 2 version (v3.0). The state-
ment was based on an extrapolation method [16]: simulations on small-dimension
versions of the cryptosystem are used for collecting statistical information on the
decoding failures, and the resulting curve is extrapolated to dimensions that are
estimated to provide the target DFR (2−128 for Level 1 security). This seemed
like a promising direction for claiming IND-CCA security for BIKE. However,
the paper [8], that built a secure decoder that operates in constant time, al-
ready pointed out the existence of weak keys that slipped under the simulations’
radar, and that diferent extrapolation rules could be used and give diferent
DFR estimations. Accordingly, subsequent BIKE versions updated the parame-
ters. Following work tried to characterize larger classes of weak keys. As stated
in the NIST report [2]:

“The BIKE specifcation now claims IND-CCA security, citing additional
analysis to support their claim [17, 18]. Iterative, bit-fipping decoders
are not characterized by a bounded decoding radius; thus, there is an
expected nonzero probability of decoding failure”

Recently, the work of [19] showed that for BIKE Level-1 the average decryption
failure rate can be upper bounded only by 2−116.61 and not by 2−128 as required
for IND-CCA security. This enabled a key recovery attack on BIKE with a
complexity of 2116.61 when ciphertexts cannot be reused, and worse - with 298.77

complexity when ciphertexts reusing is allowed, i.e., in a multi-target setting.
Interestingly, binding BIKE ciphertexts to the public keys to avoid multi-target
attacks for BIKE was proposed and performance-profled in [10] already in 2021.

BIKE specifcation v4.0 converged from three options to a single KEM ver-
sion (called “BIKE”) by leveraging the fast (constant-time) polynomial inversion
algorithm and implementation [7] that improved the key generation of (the pre-
viously called) BIKE-2. This reduced the communication bandwidth of BIKE
to a more competitive level and reduced the implementation complexity of the
BIKE package.

2

https://bikesuite.org/spec.html
https://2�116.61

BIKE specifcation v5.0 proposed a “biased” sampling method intended to
address some timing attacks on the IND-CCA security. As pointed out in [6]
and [11], was unnecessary (the mitigation was already in place in the constant
time implementation [5]) and led to an implementation bug. Version 5.0 was fxed
shortly after its submission and before a public release on NIST’s site making
v5.1 the current version of BIKE.

Our proposal. NIST found BIKE’s IND-CCA claim to be encouraging and

D

selected it as an alternative for standardization to allow BIKE’s developers to
extend their study and perhaps overcome the problem of establishing an upper
bound for the decoder’s DFR. It is unclear (at least to us) how BIKE’s assump-
tion on the BGF decoder’s DFR can be proved and establish the IND-CCA
security claims. For this reason, we go back to BIKE basics and consider defn-
ing an efcient BIKE construction that targets only IND-CPA security, and can
be used (only) in cases where one-time (ephemeral) keys are required. To this
end, we identify the “extra” steps and parameter choices that BIKE uses for the
sake of achieving IND-CCA security, remove or modify them, and measure the
resulting performance. Note that an IND-CPA version of BIKE is discussed in
our previous study [4], but in this paper, we account for all the recent advances
in BIKE such as the Black-Gray-Flip (BGF) decoder [9] and the fast polynomial
inversion [7], where both techniques require specifc parameter choices.

We examine the communication bandwidth and the performance of a BIKE
design that we call “Lean-BIKE”, that targets only the ephemeral keys use
cases. We show an optimized Lean-BIKE design which is more efcient than the
(presumably) IND-CCA secure version. We suggest that this design could be
a useful companion for BIKE, for usages and protocols such as TLS 1.3 that
intend to preserve forward secrecy.

2 BIKE in a nutshell

Preliminaries and notation. Let F2 be the fnite feld of characteristic 2. Let
R be the polynomial ring F2[X]/ ⟨Xr − 1⟩, for some positive r. The Hamming
weight of every element v ∈ R is denoted by wt(v). We denote protocol failures

$
by ⊥. Uniform random sampling from a set W is denoted by w ←− W and

←− W .sampling from a distribution D over W is denoted by w

D

Fixed-weight sampling. Let len, w be positive integers with len > w, and let�
len

�
Slen,w denote the set of subsets of {0, 1, . . . , len − 1} with cardinality w. w
Let D be a probability distribution over Slen,w. An algorithm that samples an

←− Slen,w, iselement from Slen,w according to a distribution D, i.e., executing

called a fxed-weight sampling algorithm. The notation
D←− Slen,w(m) refers to

pseudorandom fxed-weight sampling starting from a seed m,

3

−

−

(sk, σ, h) ← KeyGen()

$− {0, 1}2561. σ ←
D12. h0, h1 ←− (Sr,d)

2

3. sk = (h0, h1, σ)
4. pk = h = h1h

−
0
1

5. Return (sk, pk)

(C, K) ← Encaps(h)

$− {0, 1}2561. m ←
D22. e = (e0, e1) ←− S2r,t(m||h)

3. C = (c0, c1) = (e0 + e1h, m ⊕ L(e0, e1))
4. K = K(m, C)
5. Return (C, K)

m = Decaps(sk, σ, h, C)

′ ′ ′ 1. e = (e0, e1) = Decode(sk, C)
2. m ′ = c1 ⊕ L(e ′)

′ ′ ′ 3. If Sn,t(m ||h) ̸= e then m = σ.
4. Return K(m ′ , C)

Fig. 1. A schematic description of the KEM BIKE in its Fourth Round BIKE spec-
ifcation v5.1 [3]. Here, D1 and D2 are two diferent “biased” (nonuniform) distribu-
tions [6, 15]. The red colored elements are those that are not required for IND-CPA
security and that we can remove for the Lean-BIKE. The concatenation of h, marked
in blue, that is not part of BIKE v5.1, is the recommendation made in [10] in order
to bind the public key to the errors vector e, which was proposed in order to thwart
multi-key (multi-target). It may be a useful protective measure to be added in the
IND-CCA setting. The communication bandwidth of the KEM depends on the value
of r.

BIKE. Defned with parameters r, t, w, d (where d = w/2), the KEM BIKE (as
in [3]) is outlined in Figure 1. The functions K and L are treated as random ora-
cles, each having a specifc instantiation. The Decode function takes a ciphertext
(syndrome s ∈ R) and a secret key (parity-check polynomials (h0, h1) ∈ (Sr,d)2)
as input, and produces a sparse vector (e0, e1) ∈ S2r,t as output.

3 The cost of IND-CCA design

To achieve the IND-CCA property BIKE uses the implicit-rejection version of
Fujisaki-Okamoto (FO) transformation (FO ̸⊥ , as described in [14]). Figure 1

4

marks these steps in red. The key generation needs to use an extra 256 bits of
randomness (σ) and also store them as part of the secret key. The encapsula-
tion extends the ciphertext with additional 256 bits of data (m ⊕ L(e0, e1)) and
requires computing the value L(e0, e1). Lastly, the decapsulation is no longer
allowed to return ⊥ on decoding failure, while also needing to perform the re-
encryption step to verify that the encapsulator followed the encapsulation pro-
cess.

The implementation of IND-CCA introduces higher costs due to the require-
′ ment that the re-encryption and equality check Sn,t(m ′) ≠ e implementation

must run in constant time, as failing to do so would leave the system vulnerable
to the attack outlined in [13]. This additional step was incorporated into the
IND-CCA version of BIKE for re-encryption purposes.

One might argue that, even when only considering IND-CPA security for
BIKE, it could be valuable, from a security standpoint, to maintain the FO ̸⊥

transformation and, specifcally, the aforementioned step. Here, the question is
whether a constant-time implementation is still necessary. Even with timing
leakage, the leaked information cannot be used for the same (ephemeral) key
again. Nevertheless, we argue that there is still a potential risk of multi-target
attacks because the timing depends solely on m (and not on the secret-public
key pair). To address this concern, a possible mitigation strategy (except for a
constant-time implementation) is to follow our recommendation in [10], which
suggests binding the errors vector to the public key during encapsulation (see
the blue h in Figure 1).

Finally, we note that using the FO ̸⊥ transformation is not mandatory for
IND-CPA BIKE.

Engineering DFR notion and targets for IND-CPA designs. IND-CPA
security, manifested by using ephemeral keys, has much lower requirements on
the KEM design, and specifcally for BIKE. Here, decoding failures need not
be hidden from a passive observer of the ciphertext nor from an adversary that
submits a “poisoned” ciphertext and checks for a decoding failure. Obviously, no
information is gleaned from a decoding failure when the private key is used only
once. In this scenario, the DFR of the decoder is not a security feature. Thus,
we replace the requirement for a (low) upper bound on the DFR with a notion
that we call “engineering DFR”:

Engineering DFR: design (parameterize) a decoder such that its DFR
conforms with the tolerance level of failure in the system.

In real systems, the tolerance level is much more lenient than the 2−128 DFR
required (for L1) to support IND-CCA security. As an illustration, consider the
well known target “fve nines” (99.999%) gold standard of system availability.

(10−5)This would translate to a DFR of no more than 2log2 = 2−16.61 (similarly,
for 6 nines (99.9999%) and 7 nines (99.99999%) reliability, we would need to
mandate a DFR of 2−19.93 and 2−23.25 , respectively). Network errors in server-
client communication occur at higher rates.

5

Table 1. Latency in processor cycles of BIKE’s keygen + decapsulation with diferent
decoder confgurations (using a diferent number of iterations) that meet a diferent
Engineering DFR levels. The boldfaced row is the current BIKE (v5.1) that targets
IND-CCA security.

Level r #iter DFR
(log10)

AES or
SHA3

AVX2 AVX512
BIKE [3] -FO̸⊥ BIKE [3] -FO̸⊥

L1 10,499 3 -5 A 930,055 876,080 563,777 523,922
L1 10,499 3 -5 S 963,061 893,378 568,439 513,432
L1 10,627 3 -6 A 911,090 857,115 577,264 537,409
L1 10,627 3 -6 S 937,813 868,130 593,661 538,654
L1 10,499 4 -7 A 1,050,742 996,767 625,755 585,900
L1 10,499 4 -7 S 1,062,933 993,250 634,734 579,727
L1 12,323 5 S 1,434,345 796,453
L3 20,233 3 -5 A 2,898,945 2,773,710 1,581,796 1,495,419
L3 20,233 3 -5 S 2,972,337 2,816,474 1,607,429 1,492,798
L3 20,107 4 -6 A 3,340,856 3,215,621 1,751,045 1,664,668
L3 20,107 4 -6 S 3,294,385 3,138,522 1,776,840 1,662,209
L3 20,261 4 -7 A 3,305,129 3,179,894 1,768,474 1,682,097
L3 20,261 4 -7 S 3,331,911 3,176,048 1,801,795 1,687,164
L3 24,659 5 S 4,471,475 2,116,853

The Lean-BIKE confguration. Our proposed Lean-BIKE design is a con-
fguration of BIKE where we:

1. Remove the FO ̸⊥ transformation.
2. Select the parameters for the BGF decoder to target Engineering DFR.
3. Instantiate L, K functions with AES-CTR PRNG and SHA-2.
4. Use uniform random sampling.

We refer the reader to the illustration in Figure 1. We also mention some
advantages of (re-)using AES for the PRNG, in addition to higher performance
compared to SHA3: a real usage would use the shared key established through
the KEM in order to encrypt/authenticate some payload, and this encryption is
likely to use AES. Furthermore, a multi-block hash could be used for enhanced
performance, as described in [4].

4 Results: Lean-BIKE performance

To evaluate Lean-BIKE performance, we compare it to the implementation of
the current BIKE specifcation [3]. We explore several variants of Lean-BIKE to
illustrate the relative impact of the diferent components of the KEM.

For each variant, we measured a constant-time implementation (available
in [5]) and ran it on an Intel AVX2 and an Intel AVX512 architecture. For that,
we used an Intel(R) Xeon(R) Platinum 8488C CPU @ 2.40GHz processor.

For the Lean-BIKE confguration, we decided to select three levels of engi-
neering DFR for testing targeting reliability of fve, six, and seven 9’s (99.999%,

6

1.00

0.74

0.67

0.66

1.00

0.85

0.86

0.85

BIKE [2]

L-BIKE 7-9s

L-BIKE 6-9s

L-BIKE 5-9s

Runtime Bandwidth

Fig. 2. Runtime and bandwidth requirement of Lean-BIKE L1 relative to BIKE [3].
Three versions of Lean-BIKE are given, achieving reliability of fve, six, and seven 9’s.

99.9999%, and 99.99999%). For each DFR target we chose a set of (r, #iter)
pairs (where #iter denotes the number of iterations for the BGF decoder) that
achieved the DFR, measured the performance, and selected the best (r, #iter)
pair. The results are summarized in Table 4. Figures 2 and 3 show the relative
performance results of the diferent confgurations, for BIKE L1 and BIKE L3,
respectively. In both fgures, the reference point (corresponding to ”1”) is the
implementation of BIKE as specifed in [3].

Defending against multi-target attacks is an especially useful property for
IND-CCA KEMs. Adding binding of the public key to the message in BIKE to
address multi-target attacks, as proposed in [10], introduces additional latency in
BIKE’s encapsulation. For example, this would make BIKE’s IND-CCA version
encapsulation about 20% slower (consequently, making the Lean-BIKE variants
relatively even more efcient).

5 Conclusion

Design fexibility. An interesting property of an IND-CPA version of BIKE
is that some design choices can be made, unilaterally, by the communicating
parties, without interoperability consequences. For example, the decapsulating
party can choose diferent decoders that meet its engineering DFR and perfor-
mance targets and possibly other design metrics (e.g., hardware cost or software
simplicity). Similarly, when no re-encryption step is involved, the encapsulating
party can employ diferent PRNGs for computing the errors vector. Furthermore,

7

1.00

0.79

0.79

0.71

1.00

0.82

0.82

0.82

BIKE [2]

L-BIKE 7-9s

L-BIKE 6-9s

L-BIKE 5-9s

Runtime Bandwidth

Fig. 3. Runtime and bandwidth requirement of Lean-BIKE L3 relative to BIKE [3].
Three versions of Lean-BIKE are given, achieving reliability of fve, six, and seven 9’s.

the FO ̸⊥ transformation has more efect on the decapsulating party than on the
encapsulating party, due to the re-encryption step. Consequently, one option
for device designers who consider implementing only the encapsulation steps in
their devices is to always use the IND-CCA version of BIKE. This will allow
them to be interoperable with both IND-CPA and IND-CCA servers, leaving
the responsibility of choosing the security guarantees to the server’s confgura-
tion. Of course, the device’s implementation should be fexible enough to support
diferent r values.

IND-CCA, IND-CPA, and forward secrecy. NIST has selected “Kyber”
for a KEM standardization which is currently undergoing. It is also approaching
a decision on standardizing an alternative KEM that is not lattice-based, and
where BIKE is one of the candidates. It is therefore important to consider some
merits, shortcomings, and options for BIKE. In this context, we outlined the
difculty of claiming a proven IND-CCA property for BIKE. As shown in [12]
if BIKE is instantiated with a decoder that has a DFR of 2−128 (for Level 1
security) it would be IND-CCA secure. However, the current methodology for
estimating the DFR of a QC-MDPC decoder relies on simulations statistics over
low dimensions (where failures can be observed) followed by extrapolation to
the required higher dimensions. Such a study [9] supports the DFR estimation
of the BGF decoder (that BIKE uses) with some solid confdence but it does
not establish a proven upper bound. Future advances may close this gap, so
we recommend keeping the full-fedged version of BIKE [3]. On the other hand,
usages (e.g., TLS 1.3) that target forward secrecy and hence use ephemeral keys
can settle with an IND-CPA KEM. These seem to be a signifcant class of usages,
and we cite the following quote:

8

[M. Campagna & P. Kampanakis; pqc-forum; Dec 12, 2023]
... For systems that don’t require forward secrecy, the only use cases we
see are ones in which there is a requirement that both the ciphertext and
the data to be encrypted are relatively small. Not too many use cases
come to mind, ofine key escrow where storage or transmission is at a
premium. ... It may also encourage developers to forgo providing forward
secrecy at the prospects of bandwidth benefts. We see this as a rollback
in cryptographic engineering practices.

Targeting IND-CCA property. We point out that, at least for two code-
based KEMs that remain in NIST’s standardization project, Hamming Quasi-
Cyclic (HQC) [1] and BIKE, achieving an IND-CCA security claim is a much
higher bar to chase and to implement, compared to IND-CPA.

HQC. Similarly to BIKE, the IND-CCA property of HQC requires a sufciently
low upper bound for the decoding failure. Currently this property depends on
the validity of a modeling assumption [1]:

“to provide an upper bound on the decryption failure probability, an
analysis of the distribution of the error vector [..] is provided in Section
2.4”,

where Section 2.4 states that
′ ′ “We will make the simplifying assumption that the coordinates e of ek

are independent variables [..] We support this modeling of the otherwise
′ intractable weight distribution of e by extensive simulations”,

which are further described in [1].
Thus, currently two fnalist code-based KEMs, HQC and BIKE, need to

rely on some assumption that is backed up by (extensive) simulations for the
IND-CCA claim. Without getting into assessing the assumptions and their ex-
perimental justifcation, it is obvious that no such assumptions are required for
only IND-CPA security, and for this property there is a direct reduction to a
hard problem in coding theory.

A fnal statement. We assert that for targeting IND-CPA-only usages, we
might as well consider a leaner version of BIKE, with a security reduction to
a well established assumption on coding. To this end, we proposed the Lean-
BIKE confguration that enjoys higher performance and lower communication
bandwidth compared to its (potential) IND-CCA counterpart. We recommend
standardizing BIKE in both confgurations.

References

1. Aguilar Melchor, C., Aragon, N., Bettaieb, S., Lo ic, B., Blazy, O., Bos, J.,
Deneuville, J.C., Dion, A., Gaborit, P., Lacan, J., Persichetti, E., Robert, J.M.,
Véron, P., Zémor, G.: Hamming Quasi-Cyclic (HQC) (2024), https://pqc-
hqc.org/download.php?file=hqc-specification 2024-02-23.pdf

9

https://pqc-hqc.org/download.php?file=hqc-specification_2024-02-23.pdf
https://pqc-hqc.org/download.php?file=hqc-specification_2024-02-23.pdf

2. Alagic, Gorjan and Apon, Daniel and Cooper, David and Dang, Quynh and
Dang, Thinh and Kelsey, John and Lichtinger, Jacob and Miller, Carl and
Moody, Dustin and Peralta, Rene and Perlner, Ray and Robinson, Angela
and Smith-Tone, Daniel and Liu, Yi-Kai: Status Report on the Third Round
of the NIST Post-Quantum Cryptography Standardization Process (2022).
https://doi.org/https://doi.org/10.6028/NIST.IR.8413-upd1

3. Aragon, N., Barreto, P.S.L.M., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville,
J.C., Gaborit, P., Ghosh, S., Gueron, S., Güneysu, T., Melchor, C.A., Misoczki,
R., Persichetti, E., Richter-Brockmann, J., Sendrier, N., Tillich, J.P., Vasseur,
V., Zémor, G.: BIKE: Bit Flipping Key Encapsulation v5.1 (oct 2022), https:
//bikesuite.org/files/v5.0/BIKE Spec.2022.10.10.1.pdf

4. Drucker, N., Gueron, S.: A toolbox for software optimization of QC-MDPC code-
based cryptosystems. Journal of Cryptographic Engineering pp. 1–17 (jan 2019).
https://doi.org/10.1007/s13389-018-00200-4

5. Drucker, N., Gueron, S., Dusan, K.: Additional implementation of BIKE (Bit Flip-
ping Key Encapsulation), commit 40519b8338ebe1f7bcd0efd8419a180642d94aa4.
https://github.com/awslabs/bike-kem (2022)

6. Drucker, N., Gueron, S., Dusan, K.: Isochronous imple-
mentation of the errors-vector generation of BIKE, commit
46d757bfdb359e38847d355ad69306d3ea66259a. https://github.com/awslabs/
bike-kem/blob/master/BIKE Rejection Sampling.pdf (2022)

7. Drucker, N., Gueron, S., Kostic, D.: Fast Polynomial Inversion for Post Quantum
QC-MDPC Cryptography. In: Dolev, S., Kolesnikov, V., Lodha, S., Weiss, G. (eds.)
Cyber Security Cryptography and Machine Learning. pp. 110–127. Springer Inter-
national Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-49785-9 8

8. Drucker, N., Gueron, S., Kostic, D.: On Constant-Time QC-MDPC Decoders with
Negligible Failure Rate. In: Baldi, M., Persichetti, E., Santini, P. (eds.) Code-
Based Cryptography. pp. 50–79. Springer International Publishing, Cham (2020).
https://doi.org/10.1007/978-3-030-54074-6 4

9. Drucker, N., Gueron, S., Kostic, D.: QC-MDPC Decoders with Several Shades of
Gray. In: Ding, J., Tillich, J.P. (eds.) Post-Quantum Cryptography. pp. 35–50.
Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-
030-44223-1 3

10. Drucker, N., Gueron, S., Kostic, D.: Binding BIKE Errors to a Key Pair. In: Dolev,
S., Margalit, O., Pinkas, B., Schwarzmann, A. (eds.) Cyber Security Cryptogra-
phy and Machine Learning. pp. 275–281. Springer International Publishing, Cham
(2021). https://doi.org/978-3-030-78086-9 21

11. Drucker, N., Gueron, S., Kostic, D.: To Reject or Not Reject: That Is the Question.
The Case of BIKE Post Quantum KEM. In: Latif, S. (ed.) ITNG 2023 20th In-
ternational Conference on Information Technology-New Generations. pp. 125–131.
Springer International Publishing, Cham (2023). https://doi.org/978-3-031-28332-
1 15

12. Drucker, N., Gueron, S., Kostic, D., Persichetti, E.: On the appli-
cability of the Fujisaki-Okamoto transformation to the BIKE KEM.
Int. J. Comput. Math. Comput. Syst. Theory 6(4), 364–374 (2021).
https://doi.org/10.1080/23799927.2021.1930176

13. Guo, Q., Hlauschek, C., Johansson, T., Lahr, N., Nilsson, A., Schröder, R.L.: Don’t
Reject This: Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and
BIKE. IACR Transactions on Cryptographic Hardware and Embedded Systems
2022(3), 223–263 (Jun 2022), https://doi.org/10.46586/tches.v2022.i3.223-
263

10

https://doi.org/https://doi.org/10.6028/NIST.IR.8413-upd1
https://bikesuite.org/files/v5.0/BIKE_Spec.2022.10.10.1.pdf
https://bikesuite.org/files/v5.0/BIKE_Spec.2022.10.10.1.pdf
https://doi.org/10.1007/s13389-018-00200-4
https://github.com/awslabs/bike-kem
https://github.com/awslabs/bike-kem/blob/master/BIKE_Rejection_Sampling.pdf
https://github.com/awslabs/bike-kem/blob/master/BIKE_Rejection_Sampling.pdf
https://doi.org/10.1007/978-3-030-49785-9_8
https://doi.org/10.1007/978-3-030-54074-6_4
https://doi.org/10.1007/978-3-030-44223-1_3
https://doi.org/10.1007/978-3-030-44223-1_3
https://doi.org/978-3-030-78086-9_21
https://doi.org/978-3-031-28332-1_15
https://doi.org/978-3-031-28332-1_15
https://doi.org/10.1080/23799927.2021.1930176
https://doi.org/10.46586/tches.v2022.i3.223-263
https://doi.org/10.46586/tches.v2022.i3.223-263

14. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A Modular Analysis of the
Fujisaki-Okamoto Transformation. In: Kalai, Y., Reyzin, L. (eds.) Theory of
Cryptography. pp. 341–371. Springer International Publishing, Cham (2017).
https://doi.org/10.1007/978-3-319-70500-2 12

15. Sendrier, N.: Secure sampling of constant-weight words – application to bike.
Cryptology ePrint Archive, Paper 2021/1631 (2021), https://eprint.iacr.org/
archive/2021/1631/20220927:074053

16. Sendrier, N., Vasseur, V.: On the Decoding Failure Rate of QC-MDPC Bit-
Flipping Decoders. In: Ding, J., Steinwandt, R. (eds.) Post-Quantum Cryp-
tography. vol. 2, pp. 404–416. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-25510-7

17. Vasseur, V.: Post-quantum cryptography: a study of the decoding of QC-MDPC
codes. Theses, Université de Paris (Mar 2021), https://theses.hal.science/tel-
03254461

18. Vasseur, V.: Qc-mdpc codes dfr and the ind-cca security of bike. Cryptology ePrint
Archive, Paper 2021/1458 (2021), https://eprint.iacr.org/2021/1458

19. Wang, T., Wang, A., Wang, X.: Exploring decryption failures of bike: New class of
weak keys and key recovery attacks. In: Handschuh, H., Lysyanskaya, A. (eds.) Ad-
vances in Cryptology – CRYPTO 2023. pp. 70–100. Springer Nature Switzerland,
Cham (2023). https://doi.org/978-3-031-38548-3 3

11

https://doi.org/10.1007/978-3-319-70500-2_12
https://eprint.iacr.org/archive/2021/1631/20220927:074053
https://eprint.iacr.org/archive/2021/1631/20220927:074053
https://doi.org/10.1007/978-3-030-25510-7
https://theses.hal.science/tel-03254461
https://theses.hal.science/tel-03254461
https://eprint.iacr.org/2021/1458
https://doi.org/978-3-031-38548-3_3

	A lean BIKE KEM design for ephemeral key agreement

