
Health tests in 90B
John Kelsey, NIST and KU Leuven

1

Components of an Entropy Source

 Noise Source
− Where the entropy comes from

 Health tests
− Verify the noise source is still

working correctly
 Conditioning

− Optional processing of noise
source outputs before output.

Reminder: An entropy source provides bitstrings with known entropy/sample 2

Health Tests: Continuous / Startup / On Demand
Continuous Tests
• Going on all the time behind the scenes
• 90B requirements mostly here

Startup Tests
• Run at startup
• May just be continuous tests run over many bits

On Demand
• Run when requested
• May just be rerun of the startup tests

3

1 Why do entropy sources need health tests?

4

Noise sources are fragile

• Total failure –oscillators lock together, component fails, etc.

• Very sensitive to internal parameters/layout
• Parameters outside acceptable range = low entropy
• Examples: TERO, coherent sampling TRNG

• Many ways for parameters to vary
• Process variation
• Environmental variation

5

Validation process issues

• Lab tests outputs from one sample device
• At best, maybe a handful

• Successful products may have millions of instances

• Easy for some fraction to be outside acceptable parameter space
• Process variation, changes to manufacturing, component aging

Critical question: how would we know if this instance bad?

6

Failures can be subtle

• Known answer tests useless

• Some failures obvious
• E.g., output stuck on zero

• Many failures more subtle
• Low entropy output but not obviously bad
• Test to detect must be specific to entropy source and failure mode

• May need to look at internal values

7

Noise source failure invisible

• No interoperability problems
• Everything works fine, just insecure

• Failures masked by conditioning

• Humans never see entropy source outputs
• Used to seed a DRBG
• That will mask anything

8

Entropy sources need health tests!

• Entropy sources can fail undetectably

• Failures can lead to big security problems
• Attacker guessing private key

• Not just a box checking exercise

9

2 Framework

10

A maybe useful framework

• failure  signal  detection  reaction

• Failure: Something causes entropy estimate to be incorrect
• Signal: Observable behavior changes
• Detection: Health test detects signal
• Reaction: Module does something to prevent loss of security

11

Note: there are many other useful ways to think about health tests

Failure: We need to know what to test for
Failure = entropy estimate no longer valid

• Total failure = catastrophic loss of entropy
• Example: Oscillator locks to clock

• More subtle failure
• Parameters out of range for entropy estimate
• Assumption of entropy estimate falsified

• Environmental conditions
• Attacks

Designer needs to know how entropy claim can be wrong
12

Signal: Observable change in behavior

May be a change in statistics of:
• Raw output bits
• Internal values
• Conditioned outputs*

Need to show that failure will lead to signal!

13

Where do we see the signal?

• Raw bits
• Conditioned output bits
• Internal values

• 90B says test raw bits
• That's usually right
• Sometimes makes more sense to test internal values
• Occasionally even OK to test conditioned outputs

• Extra work
• Need to show you can detect failures through conditioning

14

Detection: Health test

Choose health test to detect signal of failure
• Need to consider false positive vs false negative rates

• False alarm: (false positive)
• Entropy source operating correctly
• Alarm raised

• Silent failure: (false negative)
• Entropy source producing less entropy than claimed
• No alarm raised

15

False positive/ false negative

Big problem for continuous tests:
• Running all the time
• Potentially processing millions of bits
• 10-5 false positive rate  lots of false alarms

Cutoff values with extremely low false positive rate 
Only detect gross failures (e.g., stuck on zero)

16

Strategy: under promise, over deliver

• H[real] = lowest expected entropy/bit of source
• H[good] = lowest acceptable entropy/bit of source

• Design source so H[real] > H[good]

• Health tests detect error when entropy < H[good]

17

Choosing test parameters

Consider parameter space of entropy source

• Areal – where we expect source to reside
• Agood – ensures sufficient entropy
• Abad – no guarantee of sufficient entropy

18

In 90B

• H[submitter] is based on model of source

• Source can claim less entropy than H[submitter]

• Claim entropy/output needed for application

• Health tests tuned to claimed entropy/output of entropy source

19

Reaction: what happens when test triggers?

• At some point, raise error condition and stop source

• Some tests fail only when source definitely bad
• VERY low false positive rate, total failure
• Shut it down

Generally: very low false positive rate  can’t detect much
• Use test with higher false positive rate
• Don’t shut down the source on first failed test

20

Reaction: alternatives to immediate shutdown
• Stop output and run additional tests

• Suppress output until test stops failing

• Don’t count outputs as having entropy

• Keep track of failed tests: too many  fatal error
• E.g., window of last 64 tests run
• Too many fails  shut it down

• Alter some internal parameters
• E.g., slow down sampling

Must be some point at which signal error and stop entropy source 21

General pattern

• Failure: Something goes wrong causing loss of entropy
• Signal: Observable behavior changes
• Detection: Health test detects signal
• Reaction: Module does something to prevent loss of security

22

Example 1

• Oscillator locks to clock
• Output bit stuck on constant value
• Repetition count test detects repeated values
• Error condition raised, RNG shuts down

23

Example 2

• Less variability in sampling interval than expected
• Ex: σnoise lower than expected

• Measured sampling interval repeats too often
• Health test detects too many repetitions
• Error condition raised, RNG shuts down

24

Our Continuous Health Tests

• Repetition Count Test – Detect when the source gets “stuck” on one
output for much longer than expected.

• Adaptive Proportion Test – Detect when one value becomes much
more common in output than expected.

• Note that tests:
• Require minimal resources
• Outputs can be used as they are produced
• Allow tunable false-positive rates

All we need to know is entropy/sample!
25

In our framework

Repetition Count Test – Detect when the source gets “stuck” on one
output for much longer than expected.

• Signal: too many identical outputs in a row

Adaptive Proportion Test – Detect when one value becomes much
more common in output than expected.

• Signal: same value appears too many times in a window

26

Vendor-Defined Tests

• Designers should understand their sources much better than we can.

• Ideally: designers come up with their own health tests, based on
• How might entropy estimate be wrong?
• What observable effect will each failure have?

• Our tests are intended as a MINIMUM bar
• We want vendors to do better.

27

Vendor-Defined Tests: Requirements

• Submitters need to show that their tests detect the same signals as
ours:

• Detect if a value repeats too often (the source gets stuck).
• Detect if some value becomes much too likely.

• Submitters can show this by:
• Proof or convincing argument
• Statistical simulation

28

What to test
Raw bits/ raw random numbers
• Often best place to put statistical tests
• Sanity check –can detect catastrophic failures you don’t expect

Internal values
• Often only way to detect problem quickly
• Example: Circuit to detect oscillators locking

Conditioned output bits
• Sometimes possible to detect failures through conditioner

29

Applying test to conditioned outputs
Lots of extra work

Have to show:

• Failure  signal

• Signal shows up in conditioned outputs

• Test detects failure with high probability

30

Example: testing conditioned outputs
• Failure = oscillator locks to clock

• Signal in raw bits=alternating 10101010… pattern

• Conditioning: Von Neuman unbiasing

• Signal in conditioned bits=same output bit repeated forever

• RCT on conditioned bits will detect that failure

31

Wrap up

• Health tests critical for entropy sources

• Failure: Understanding how noise source can fail = first step
• Conditions that invalidate entropy estimate

• Signal: Observable effect of a failure
• Detection: Test that reliably detect signal
• Reaction: Do something to avoid security loss

32

	Health tests in 90B
	Slide Number 2
	Slide Number 3
	1 Why do entropy sources need health tests?
	Noise sources are fragile
	Validation process issues
	Failures can be subtle
	Noise source failure invisible
	Entropy sources need health tests!
	2 Framework
	A maybe useful framework
	Failure: We need to know what to test for
	Signal: Observable change in behavior
	Slide Number 14
	Detection: Health test
	Slide Number 16
	Slide Number 17
	Slide Number 18
	In 90B
	Reaction: what happens when test triggers?
	Slide Number 21
	General pattern
	Example 1
	Example 2
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Wrap up

