
Sometimes You Can’t Distribute
Random-Oracle-Based Proofs 

¯_(ツ)_/¯

Yashvanth Kondi
Jack Doerner

Leah Namisa Rosenbloom

NIST Workshop on Multi-Party Threshold Schemes, September 27 2023
eprint.iacr.org/2023/1381

σ

σ

Threshold Signing: What We Want

σ

σ

• Compatibility: 
Verifies w.r.t. original algorithm

• Corruption Resilience: 
Compromising some devices does not leak the signing key

• Efficiency: 
Wall clock time similar to single party signing 
Bandwidth not too high

σ

Threshold Signing: What We Want

• Compatibility: 
Verifies w.r.t. original algorithm

• Corruption Resilience: 
Compromising some devices does not leak the signing key

• Efficiency: 
Wall clock time similar to single party signing 
Bandwidth not too high

σ

Threshold Signing: What We Want

• Compatibility: 
Verifies w.r.t. original algorithm

• Corruption Resilience: 
Compromising some devices does not leak the signing key

• Efficiency: 
Wall clock time similar to single party signing 
Bandwidth not too high

σ

Threshold Signing: What We Want

Achieving “Efficiency”
• Any signing scheme can be distributed via general MPC

• “Practical” efficiency usually requires more fine-grained notions
than just feasibility

• One good proxy: practical threshold signing makes black-box
use of non-linear components of the signing algorithm:

- Integer arithmetic in or

- Elliptic curve group operations

- Hash functions

ℤq ℤ*N Threshold schemes for RSA,
Schnorr/EdDSA, ECDSA,
BLS, BBS+ achieve this!

Concurrently-Secure Non-Interactive

Zero-Knowledge (NIZK) Techniques

The Magic is in the Hash Function

Specifically: security analysis based on 
Straight-Line-Extraction (SLE) in the 

Random Oracle Model (ROM)

Concurrently-Secure Non-Interactive

Zero-Knowledge (NIZK) Techniques

⇔ π
⇔ (x, w)(,)

Distributed Signing Distributed Proving⇔

This talk: Signatures NIZK⇔

The Magic is in the Hash Function

The Magic is in the Hash Function

Post Quantum SecurityTight Security

Specifically: security analysis based on 
Straight-Line-Extraction (SLE) in the 

Random Oracle Model (ROM)

• MPC-in-the-Head

• PCPs/IOPs

• Sigma Protocol + Fischlin/Unruh

Concurrently-Secure Non-Interactive

Zero-Knowledge (NIZK) Techniques

We Prove Limitations

• For some hash based NIZKs , there is an inherent barrier to
designing practical protocols to distribute their computation.

1. NIZKs that have straight-line extractors in the Random-
Oracle Model, and Verifiers that are agnostic to prover count

2. Attack that completely recovers the witness by corrupting
all-but-one distributed provers

3. Protocol that is black-box in the same hash function (i.e.
Random Oracle) as the NIZK

1 2
3

Implications
For NIZKs/Signatures based on

• MPC-in-the-Head

• PCPs/IOPs

• Sigma Protocol + Fischlin/Unruh

We cannot hope to achieve all three:

• Compatibility

• Corruption Resilience

• Black-box Use of Nonlinear Functions

Table Stakes for RSA,
Schnorr/EdDSA,

ECDSA, BLS, BBS+, etc.

Zero-knowledge Proof:

“I know that unlocks ”

Bob

NIZKPoK

V(,)P(,)

Non-Interactive Zero-Knowledge Proof of Knowledge

Zero-knowledge Proof:

“I know that unlocks ”

Bob

NIZKPoK

P(,)

Non-Interactive: only
one message is sent

V(,)

NIZKPoK

Zero-knowledge Proof:

“I know that unlocks ”

Bob

P(,)

Zero-Knowledge:

nothing about leaks

V(,)

NIZKPoK

Zero-knowledge Proof:

“I know that unlocks ”

Bob

P(,)

But what does it mean
to know something?

V(,)

NIZKPoK

Zero-knowledge Proof:

“I know that unlocks ”

Bob

P(,)

Proof of Knowledge

is formalized by Extraction

𝖤𝗑𝗍

NIZKPoK
Proof of Knowledge

is formalized by Extraction

Pr [V(,) = 1] ≈ Pr [𝖤𝗑𝗍(,) =]
P(,)Over the coins of

How is Special?𝖤𝗑𝗍
• cannot be an algorithm that anybody can run

• has carefully chosen special privileges:

- Powerful enough to accomplish extraction

- Still meaningful as a security claim

• Common special privilege: the ability to rewind time
for the prover and fork the proof protocol

𝖤𝗑𝗍

𝖤𝗑𝗍

• cannot be an algorithm that anybody can run

• has carefully chosen special privileges:

- Powerful enough to accomplish extraction

- Still meaningful as a security claim

• Common special privilege: the ability to rewind time
for the prover and fork the proof protocol

𝖤𝗑𝗍

𝖤𝗑𝗍

How is Special?𝖤𝗑𝗍

Bad news for:

• Composability

• Tightness

• Post Quantum Security

• cannot be an algorithm that anybody can run

• has carefully chosen special privileges:

- Powerful enough to accomplish extraction

- Still meaningful as a security claim

• Straight-line Extraction (SLE): no rewinding. 
Instead, use other trapdoor like CRS, RO, etc.

𝖤𝗑𝗍

𝖤𝗑𝗍

How is Special?𝖤𝗑𝗍

Q1 Q2 Qi Qn⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Random Oracle Model

H

H : {0,1}* ↦ {0,1}ℓ

Random Oracles as Privilege𝖤𝗑𝗍

Q1 Q2 Qi Qn⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
H H : {0,1}* ↦ {0,1}ℓ

P(,)

Random Oracles as Privilege𝖤𝗑𝗍

Q1 Q2 Qi Qn⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
H H : {0,1}* ↦ {0,1}ℓ

P(,)

V(,)

𝖤𝗑𝗍

Random Oracles as Privilege𝖤𝗑𝗍

Q1 Q2 Qi Qn⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
H

H
Accept/Reject

H : {0,1}* ↦ {0,1}ℓ

P(,)

V(,)

• Why is it a meaningful trapdoor?

- Hash functions are complex and highly unstructured

- Bob must “query” each to to obtain

- gets without rewinding

• Practical usage:

- No “trusted setup”, each query is very cheap

Qi H H(Qi)
𝖤𝗑𝗍 {Qi}

Random Oracles as Privilege𝖤𝗑𝗍

• Multiparty protocols to securely compute RO-based
NIZKs should ideally make black-box use of

- Conceptually: should not have a circuit description

- Practically: hash functions have large circuits

• We such protocols “Oracle Respecting Distributed”
(ORD) Provers

H
H

Distributing NIZKs in the ROM

Trivial Oracle Respecting Distribution
π ← P(x, w) V(x, π) = 1

Consider languages where can be “secret shared”:

 (think DLog)

(x, w)
x0 + x1 + x2 = x w0 + w1 + w2 = w
(x0, w0), (x1, w1), (x2, w2) ∈ L ⇔ (x, w) ∈ L

Trivial Oracle Respecting Distribution

P3(x, w) :
w0 w1 w2, , ← 𝖲𝗁𝖺𝗋𝖾(w)
𝖮𝗎𝗍𝗉𝗎𝗍

π ← P(x, w) V(x, π) = 1
Consider languages where can be “secret shared”:

 (think DLog)

(x, w)

x0 + x1 + x2 = x w0 + w1 + w2 = w
(x0, w0), (x1, w1), (x2, w2) ∈ L ⇔ (x, w) ∈ L

{πi = P(xi, wi)}i∈[3]

V3(x, π0, π1, π2) :
V(x0, π0)∧ V(x1, π1)
∧ V(x2, π2)

Trivial Oracle Respecting Distribution

P3(x, w) :
w0 w1 w2, , ← 𝖲𝗁𝖺𝗋𝖾(w)
𝖮𝗎𝗍𝗉𝗎𝗍 {πi = P(xi, wi)}i∈[3]

V(x0, π0)∧ V(x1, π1)
∧ V(x2, π2)

V3(x, π0, π1, π2) :

Trivial Oracle Respecting Distribution

𝖮𝗎𝗍𝗉𝗎𝗍 (π0, π1, π2)

w0 w1 w2

P3(x, w) :

π0 ← P(w0) π2 ← P(w2)π1 ← P(w1)
H H H

Additive secret sharing: 
Resilience to two corruptions

Π

Oracle Respecting Distribution

This usually breaks compatibility

• Imagine if had to be distributed among four parties
instead of three

• In general: that outputs can be distributed
amongst parties, as long as is aware of

• We show that for any NIZK that is SLE in the ROM, this
is inherent in the corruption setting

P3

P* n × π
n V* n

n − 1

 is agnostic to V n

• Consider a ROM-SLE NIZK for some language

• Assumption: is a strict upper bound on
queries made by to the random oracle

- Holds for most ‘natural’ schemes

• We will show: any -party protocol that ORD-computes
 will leak the witness to parties

(P, V)

n − 1 ∈ 𝗉𝗈𝗅𝗒(κ)
V H

n
P n − 1

π

Trimming Resilience

H

P(x, w)
πQ1 Q2 Q5Q3 Q4 Q7Q6 Q8 Q9

V(x,)

Trimming Resilience

H

H
V(x,)

Q3 Q6

 checks at most
 queries

V
n − 1 = 2

Q1 Q2 Q5Q3 Q4 Q7Q6 Q8 Q9 π

π

P(x, w)

Trimming Resilience

Q1 Q2 Q5

H

Q3 Q4 Q7Q6 Q8 Q9

H

At most two partitions
will be touched by V

Randomly selected partition: 
𝖯𝗋[untouched by V] ≥ 1/3

V(x,)π

P(x, w)

 checks at most
 queries

V
n − 1 = 2

Trimming Resilience

Q1 Q2 Q5

H

Q3 Q4 Q7Q6 Q8 Q9

H

At most two partitions
will be touched by V

Randomly selected partition: 
𝖯𝗋[untouched by V] ≥ 1/3

V(x,)π

P(x, w)

 checks at most
 queries

V
n − 1 = 2

Trimming Resilience

Q1 Q2 Q5

H

Q3 Q4 Q7Q6 Q8 Q9

H*

V(x,)π

P(x, w)

 checks at most
 queries

V
n − 1 = 2

Trimming Resilience

Q1 Q2 Q5

H

Q3 Q4 Q7Q6 Q8 Q9

H

H*

V(x,)π

P(x, w)

= 0

 checks at most
 queries

V
n − 1 = 2

Never “leaves”
prover

Trimming Resilience

Q1 Q2 Q5

H

Q3 Q4 Q7Q6 Q8 Q9

H

H*

𝖯𝗋[V accepts] ≥ 1/3

V(x,)π

P(x, w)

= 1

 checks at most
 queries

V
n − 1 = 2

Never “leaves”
prover

Trimming Resilience

Q1 Q2 Q5

H

Q3 Q4 Q7Q6 Q8 Q9

H

with 𝖯𝗋 ≳ 1/3

H*
𝖤𝗑𝗍 w

𝖯𝗋[V accepts] ≥ 1/3

V(x,)π

P(x, w)

= 1

 checks at most
 queries

V
n − 1 = 2

Never “leaves”
prover

Trimming Resilience

Q1 Q2Q5

H

Q3 Q4Q7 Q6Q8 Q9

H

with 𝖯𝗋 ≳ 1/3

H*
𝖤𝗑𝗍 w

(for any 3-partitioning)

𝖯𝗋[V accepts] ≥ 1/3

V(x,)π

P(x, w)

= 1

 checks at most
 queries

V
n − 1 = 2

(w. noticeable
probability) (random)

Trimming Resilience

Q1 Q2Q5

H

P(x, w)
Q3 Q4Q7 Q6Q8 Q9

H*
𝖤𝗑𝗍 w

V(x,)π

Lemma: For any -partitioning of RO queries,
omitting one partition still allows extraction if the

verifier checks at most queries

n

n − 1

Oracle Respecting Distribution

(x, w)
w0 w1 w2, , ← 𝖲𝗁𝖺𝗋𝖾(w)

Oracle Respecting Distribution

w0 w1 w2

H H H
(x, w)

π

V(x,)

Oracle Respecting Distribution

w0 w1 w2

H H H
(x, w)

H V(x,)π
 checks at most

 queries
V
n − 1 = 2

Oracle Respecting Distribution

w1

H

w0

H

w2

H
(x, w)

Natural partitioning

H V(x,)π
 checks at most

 queries
V
n − 1 = 2

w𝖤𝗑𝗍
Trimming Resilience Lemma

Oracle Respecting Distribution

w1

H
(x, w)

Natural partitioning

Two views are sufficient to reconstruct the witness

 party ORD protocol can not withstand passive corruptions3 2n n-1

V(x,)π

w0

H

Other Corruption Levels?
• Previous technique cannot be directly extended for

fewer than corruptions

 NIZKPoK of DLog s.t. for any constant , -party
ORD protocol to securely compute with tolerance to

 malicious corruptions

• However, ORD protocols for NIZKs where needs a
single private query of seem unlikely for even one
corruption

n − O(1)
∃ π c ∃ n

π
c ⋅ n

𝖤𝗑𝗍
P

A Question

Should threshold signature size
grow with signer count?

Sometimes You Can’t Distribute
Random-Oracle-Based Proofs 

¯_(ツ)_/¯

Yashvanth Kondi
Jack Doerner

Leah Namisa Rosenbloom

eprint.iacr.org/2023/1381 Thanks Eysa Lee for

