
RBG3-RS
John Kelsey, NIST and KU Leuven

1

SP 800-90

• 90A: DRBGs
• Deterministic
• Requires unpredictable seed

• 90B: Entropy sources
• Nondeterministic
• Provides bit strings
• With known amount of entropy

• 90C: Random bit generators
• Whole construction
• Provides random bits on demand
• Different constructions = different security guarantees

2

RBG Constructions

• 90C: different ways to build an RBG
Different engineering requirements
Different security and performance traits

• RBG1 = externally seeded DRBG
• RBG2 = internally seeded DRBG
• RBGC = chained DRBGs

• RBG3 = full-entropy RBG
• RBG3-RS = RBG2 that reseeds faster than it outputs
• XOR = RBG2 XORed with full entropy source

3

Full Entropy???

Discussed yesterday

• Each bit of output has (1-2-32) bits min-entropy

• Given 264 output bits, can’t distinguish from ideal random
• Even with unlimited computation

Minimal trust of cryptographic primitives

See NIST-IR 8427 for justification and analysis

4

RBG3-RS

• Provide full entropy by continually reseeding a DRBG
• Requirement for full entropy:

s +64 bits min-entropy in  s bits out
s = security strength of DRBG

5

So what's the problem?

We want to output s bits per generate function
… but reseed does not provide enough fresh entropy

• Reseed normally gets s bits min-entropy
• Allowed to get more but not required

• Can't output more than s bits at a time
• All DRBG can support

6

Changes from previous draft 90C

Draft 90C:
• lots of complicated options
• Complex spec
• Validation people found it confusing

New 90C:
• Only two ways to do it
• Much simpler spec

7

RBG3-RS

DRBG with s bit security strength:

For each s bits required:
• Reseed with s+64 bits entropy
• Generate s bits output

RBG3-RS call generate arbitrary
number of output bits in this way!

8

Problem: Reseed function in 90A

• DRBG reseed function (s bit security):
• Take optional additional input from caller
• Draw at least s bits entropy from source  entropy input
• Combine:

entropy input, additional input, internal state  new internal state

Getting s+64 bits entropy into reseed is the tricky part!

9

Two ways to do it

1. Change DRBG implementation
• Reseed draws s+64 bits entropy (instead of just s bits)
• This was always allowed (no rule against too much entropy)
• CTR-DRBG without derivation function already guarantees this

2. Put extra 64 bits entropy into additional input to reseed
• Reseed gets s bits entropy internally, additional input gets 64 bits

10

Strategy 1: change implementation

Original:
• Reseed(ai):

• SEED = Get_entropy (s)
• STATE = F(STATE, SEED, ai)

New:
• Reseed(ai):

• SEED = Get_entropy (s +64)
• STATE = F(STATE, SEED, ai)

11

This guarantees s+64 bits entropy/reseed

For each s bits required:
• Reseed with s+64 bits entropy  reseeding with extra entropy
• Generate s bits output

Implementation still compliant with 90A
• It's always permissible to provide more entropy than required!

• Maybe not obvious this was allowed from 90A

• So we can use same implementation for RBG2

12

Strategy 2: entropy in additional input

• Suppose we can’t change DRBG implementation
• Stuck with reseed getting only s bits entropy

• We can use additional input in reseed call

For each s bits required:
• ai = Get_entropy (64)
• Call reseed(ai)  Reseed gets s bits entropy internally

+ 64 bits entropy from ai
• Generate s bits output

Result: DRBG reseeded with a total of s+64 bits min-entropy

13

Both techniques work

Strategy 1:
• While more bits needed:

• Draw extra 64 bits entropy inside reseed
• Generate s bits output from DRBG

Strategy 2:
• While more bits needed:

• Draw extra 64 bits entropy outside reseed
• Pass in to reseed call as additional input
• Generate s bits output from DRBG

14

Simpler spec, fewer options

For each S bit output:
• Reseed DRBG with s+64 bits entropy

• Using either strategy

• Generate s bits output from DRBG

15

Accessing DRBG

• Full entropy bits slow
• Outlet rate limited by entropy source

• Sometimes we just want DRBG outputs
• RBG2 security, not full entropy

• We can do this with RBG3-RS
• Reseed
• Generate as many RBG2 bits as you need

Reseed needed to guarantee full entropy of previous s-bit output

16

Wrap up

Previous draft:
• RBG3-RS spec too complicated
• Too many options
• Confusing

Now:
• Two options
• RBG3-RS always works the same way

17

Extras

18

Why can’t we just do it in Generate call?

Hash_DRBG_Generate Process:

If (additional_input = Null), then do

w = Hash (0x02 || V || additional_input)  w is only n bits wide!
Can’t put n+64 bits entropy in!

V = (V + w) mod 2seedlen

(returned_bits) = Hashgen (requested_number_of_bits, V)

H = Hash (0x03 || V)

V = (V + H + C + reseed_counter) mod 2seedlen
19

	RBG3-RS
	SP 800-90
	RBG Constructions
	Full Entropy???
	RBG3-RS
	So what's the problem?
	Changes from previous draft 90C
	RBG3-RS
	Problem: Reseed function in 90A
	Two ways to do it
	Strategy 1: change implementation
	This guarantees s+64 bits entropy/reseed
	Strategy 2: entropy in additional input
	Both techniques work
	Simpler spec, fewer options
	Accessing DRBG
	Wrap up
	Extras
	Why can’t we just do it in Generate call?

