RBG3-RS

John Kelsey, NIST and KU Leuven

-

_t.;l--_l

~_ source

T JIWI"'---I .

RBG3-RS

.,-E_)
— entropy {’_,% reseed with

min-entropy

generate
S bits

=

SP 800-90

Entropy
Source(s)

(90B)
* 90A: DRBGs

DRBG
(90A)

e Deterministic

RBG Construction

* Requires unpredictable seed (90C)
* 90B: Entropy sources
* Nondeterministic l
* Provides bit strings RBG Output

* With known amount of entropy

* 90C: Random bit generators
* Whole construction
* Provides random bits on demand
 Different constructions = different security guarantees

RBG Constructions

e 90C: different ways to build an RBG
Different engineering requirements
Different security and performance traits

 RBG1 = externally seeded DRBG
RBG2 = internally seeded DRBG
RBGC = chained DRBGs

RBG3 = full-entropy RBG

 RBG3-RS = RBG2 that reseeds faster than it outputs
* XOR = RBG2 XORed with full entropy source

Getting Full Entropy in 800-90

._h.'r\\fﬂ\f”/"'-,_......----I:
Full Entropy??? | = Z, .
= entropy T—-n*eabis cwnsographlc ,.11 bits output
z_f source - ~_min-entropy | m?'_"mg n-2-22 bits entropy
Discussed yesterday %V %l internal width >=

 Each bit of output has (1-2-32) bits min-entropy

* Given 2% output bits, can’t distinguish from ideal random

* Even with unlimited computation

Minimal trust of cryptographic primitives

See NIST-IR 8427 for justification and analysis

RBG3-RS

* Provide full entropy by continually reseeding a DRBG
* Requirement for full entropy:

s +64 bits min-entropy in = s bits out

s = security strength of DRBG

RBG3-RS
N
N —7
AN Z, _
< entropy = reseedr with generate
ff’z source i: s+64 bits DRBG S bits >

— min-entropy

el |
| ! e |r.'-""'-..'_
u-"--ﬂ'v.-'"ﬂ\\,-"f ""_\I

So what's the problem?

We want to output s bits per generate function

... but reseed does not provide enough fresh entropy

=

L
I

entropy
source

P | i
| N |
L W \\'I.- \\II |

P, f’\. /f.
P N |
— I.p"-):li-___:r

“~ reseed with

g_i' s+64 bits

min-entropy

RBG3-RS

{ DRBG

generate
s bits

s

* Reseed normally gets s bits min-entropy
* Allowed to get more but not required

e Can't output more than s bits at a time
e All DRBG can support

Changes from previous draft 90C

Draft 90C: — — 7 7 “*
* lots of complicated options } ?7?7? ~ &
* Complex spec T~ s A —
* Validation people found it confusing O
>
New 90C: a
° OnIy two ways 1o do it RBG3-RS
Much simpler spec ?ET‘:?‘? %?;553:%:, { DREG Jenerate

s+64 bits entropy TN
D y":.__‘ reseed

RBG3-RS J__

/ generate . shits output

DRBG with s bit security strength: ﬁ%

s+64 bits entropy_{/ reseed

For each s bits required: F—_

* Reseed with s+64 bits entropy " generate | s bits output

* Generate s bits output

reseed

™ 4

RBG3-RS call generate arbitrary

number of output bits in this way!
generate

s+64 bits entropy,

s bits output

Problem: Reseed function in 90A

* DRBG reseed function (s bit security):
* Take optional additional input from caller
* Draw at least s bits entropy from source = entropy input
* Combine:

entropy input, additional input, internal state = new internal state

Getting s+64 bits entropy into reseed is the tricky part!

Two ways to do it

1. Change DRBG implementation
» Reseed draws s+64 bits entropy (instead of just s bits)
* This was always allowed (no rule against too much entropy)
* CTR-DRBG without derivation function already guarantees this

2. Put extra 64 bits entropy into additional input to reseed
* Reseed gets s bits entropy internally, additional input gets 64 bits

Original:

* Reseed(ai):
* SEED = Get_entropy (s)
* STATE = F(STATE, SEED, ai)

New:

* Reseed(ai):
* SEED = Get_entropy (s +64)
» STATE = F(STATE, SEED, ai)

s+64 bits entropy_ /

e

reseed

generate

s+64 bits entropy_;”ﬂ

s+64 bits entropy_{/

reseed

generate |

. generate
e

H:Iii;ﬁ

.

s hits output

>

S bits output

S bits output

>

>

This guarantees s+64 bits entropy/reseed

For each s bits required:

* Reseed with s+64 bits entropy € reseeding with extra entropy
* Generate s bits output

Implementation still compliant with 90A

* It's always permissible to provide more entropy than required!
* Maybe not obvious this was allowed from 90A

* SO we can use same implementation for RBG2

Strategy 2: entropy in additional input

* Suppose we can’t change DRBG implementation
* Stuck with reseed getting only s bits entropy

* We can use additional input in reseed call

For each s bits required:

e ai = Get_entropy (64)

 Call reseed(ai) < Reseed gets s bits entropy internally
+ 64 bits entropy from ai

* Generate s bits output

Result: DRBG reseeded with a total of s+64 bits min-entropy

Both techniques work

Strategy 1:

* While more bits needed:
* Draw extra 64 bits entropy inside reseed
* Generate s bits output from DRBG

Strategy 2:

* While more bits needed:
* Draw extra 64 bits entropy outside reseed
* Pass in to reseed call as additional input
* Generate s bits output from DRBG

s+64 bits entropy, e

s+64 bits entropyrg’/!

s+64 bits entropy.,;’/’

reseed

generate

reseed

generate

generate

\ - .-’/‘l

s bits output

s bits output

s bits output

Simpler spec, fewer options

For each S bit output:

* Reseed DRBG with s+64 bits entropy
e Using either strategy

* Generate s bits output from DRBG

RBG3-RS
=l L .
< entropy = reseed with
~. source = S+64 bits DRBG

2y — min-entropy

~
e /\\f ~

generate
S bits

.

15

Accessing DRBG

* Full entropy bits slow
e QOutlet rate limited by entropy source

* Sometimes we just want DRBG outputs
* RBG2 security, not full entropy

* We can do this with RBG3-RS

* Reseed
* Generate as many RBG2 bits as you need

s+64 bits entropy’:./'/

" reseed |
\"\._____ /

| §
{

.r/, \\-.
(generate)

~

s bits output

-'III i:]-

s+64 bits entropy}_{"/ reseed

DRBG
,_“\f Access

—

generate "\ Lots of bits output.
\\ "

s bits output

Reseed needed to guarantee full entropy of previous s-bit output

16

s+64 bits entro / \
P y"i_,‘ reseed)

Wrap up J_%

s bits output

generate

Previous draft: (-

* RBG3-RS spec too complicated 5+64 bits entmpy,;’””ﬁreseed

* Too many options N

* Confusing " generate) S bits output

Now: s+64 bits entropyh;”/r

. e

* Two options

* RBG3-RS always works the same way

generate s bits output

17

Extras

Why can’t we just do it in Generate call?

Hash DRBG_Generate Process:
If (additional input = Null), then do

w = Hash (0x02 || V|| additional input) €& w is only n bits wide!
Can’t put n+64 bits entropy in!
V=(V+w) mod 2seedlen
(returned_bits) = Hashgen (requested number of bits, V)

H = Hash (0x03 || V)

V=(V+ H+ C+ reseed counter) mod 2seedlen

	RBG3-RS
	SP 800-90
	RBG Constructions
	Full Entropy???
	RBG3-RS
	So what's the problem?
	Changes from previous draft 90C
	RBG3-RS
	Problem: Reseed function in 90A
	Two ways to do it
	Strategy 1: change implementation
	This guarantees s+64 bits entropy/reseed
	Strategy 2: entropy in additional input
	Both techniques work
	Simpler spec, fewer options
	Accessing DRBG
	Wrap up
	Extras
	Why can’t we just do it in Generate call?

