From: panyanbin@amss.ac.cn

Sent: Friday, January 05, 2018 7:42 AM
To: pgc-comments

Cc: pgc-forum@list.nist.gov

Subject: OFFICIAL COMMENT: Compact LWE

Dear Designers and all,

We group found that the following statement claimed by the designers is not true.
"even if the hard problems in lattice, such as CVP and SIS, can be effciently solved, the secret values or pri-

vate key in Compact-LWE still cannot be effciently recovered. This allows Compact-LWE to choose very small dimension
parameters, such as n =8 in our experiment”

We group find a ciphertext-only attack against CompactLWE. More precisely, given a ciphertext, we can recover the
corresponding message, without knowing the private key, by solving some (approximation-)CVP instance. Since the
parameters recommended by the authors are small, we just need to solve (approximation-)CVP with a 128-dimensional
lattice, which can be done efficiently with the lattice basis reduction algorithm. In our experiments, we can decrypt all
the ciphertexts. So we make sure that CompactLWE with the small parameters recommended in the paper is NOT
secure. The designers should enlarge the parameters to ensure the security.

The main steps of our attack is as following:

Step 1: Given a Compact-LWE ciphertext c=(la, d, Ipk,lpk’), find a short enough vector I= (I'_1,I'_2,\cdots,I'_m) by
lattice basis reduction algorithm, such that

\sum_{i=0}*m I'_i*a_i =1a ;

\sum_{i=0}*m I' i*pk i =lpkmod q ;

\sum_{i=0}*m I'_i*pk_i' = Ipk' mod q.

Step 2: Compute \sum_{i=0}*m I'_i*u_i, if | is short enough, then we can show that \sum_{i=0}*m I'_i*u_i=\sum_{i=0}*m
|_i*u_i, where \sum_{i=0}*m |_i*u_i is the correct value that can be used to decrypt the ciphertext. So we can
use \sum_{i=0}*m I'_i*u_i to recover the message.

The designers also considered the attack to ciphertexts in their paper. However, they thought that one need to guess
the exact | to recover the message. Due to our attack, we find that we do not need to guess the exact |, a short I' can also
help recover the message very well.

If there is something we miss, please tell us, thank you!

Best regards,

Haoyu Li, Renzhang Liu, Yanbin Pan, Tianyuan Xie

From: Xagawa Keita <xagawa@gmail.com>

Sent: Friday, January 05, 2018 3:15 PM
To: pgc-comments

Cc: pgc-forum@list.nist.gov

Subject: OFFICIAL COMMENT: Compact LWE

Dear designers, dear all,
The following sage script decrypts ciphertexts without the secret key.

https://gist.github.com/xagawa/ee91d51a56bda5292235e52640F57707

This attack is an extension of the plaintext-recovery attack in
https://ia.cr/2017/742
and the same as the Li-Liu-Pan-Xi attack.

Regards,
Jonathan, Mehdi, and Keita

Jonathan Bootle, Mehdi Tibouchi, and Keita Xagawa

https://ia.cr/2017/742
https://gist.github.com/xagawa/ee91d51a56bda5292235e52640f57707

From: Dongxi.Liu@data6l.csiro.au

Sent: Friday, January 05, 2018 3:33 PM

To: panyanbin@amss.ac.cn; pgc-comments

Cc: pgc-forum@list.nist.gov

Subject: Re: [pgc-forum] OFFICIAL COMMENT: Compact LWE

Hi Haoyu Li, Renzhang Liu, Yanbin Pan, Tianyuan Xie,

Would like to share you code? So your attack can be confirmed more conveniently. If this attack can be
confirmed, we will change our scheme slightly by avoiding the use of u_{i} in the calculation of pk_{i} and
pk_{i}' and will try your attack again.

Thanks.

Regards,
Dongxi Liu

From: panyanbin@amss.ac.cn <panyanbin@amss.ac.cn>
Sent: Friday, 5 January 2018 11:42 PM

To: pgc-comments@nist.gov

Cc: pgc-forum@list.nist.gov

Subject: [pgc-forum] OFFICIAL COMMENT: Compact LWE

Dear Designers and all,

We group found that the following statement claimed by the designers is not true.

"even if the hard problems in lattice, such as CVP and SIS, can be effciently solved, the secret values or pri-
vate key in Compact-LWE still cannot be effciently recovered. This allows Compact-LWE to choose very small
dimension parameters, such as n =8 in our experiment”

We group find a ciphertext-only attack against CompactLWE. More precisely, given a ciphertext, we can
recover the corresponding message, without knowing the private key, by solving some (approximation-)CVP
instance. Since the parameters recommended by the authors are small, we just need to solve (approximation-
JCVP with a 128-dimensional lattice, which can be done efficiently with the lattice basis reduction algorithm. In
our experiments, we can decrypt all the ciphertexts. So we make sure that CompactLWE with the small
parameters recommended in the paper is NOT secure. The designers should enlarge the parameters to ensure
the security.

The main steps of our attack is as following:

Step 1: Given a Compact-LWE ciphertext c=(la, d, Ipk,Ipk'), find a short enough vector I= (
I' 1,I' 2,\cdots,I'_m) by lattice basis reduction algorithm, such that

\sum_{i=0}*m I'_i*a_i =la ;

http:panyanbin@amss.ac.cn
http:panyanbin@amss.ac.cn

From: Xagawa Keita <xagawa@gmail.com>

Sent: Friday, January 05, 2018 3:54 PM
To: pgc-forum
Subject: Re: [pgc-forum] OFFICIAL COMMENT: Compact LWE

| already sent a mail but let me send it again.
Dear designers and all,

The following sage script decrypts ciphertexts without the secret key.
https://gist.github.com/xagawa/ee91d51a56bda5292235e52640f57707

This attack is an extension of the plaintext-recovery attack in https://ia.cr/2017/742
and the same as the Li-Liu-Pan-Xi attack.

Regards,
Jonathan, Mehdi, and Keita

Jonathan Bootle, Mehdi Tibouchi, and Keita Xagawa

You received this message because you are subscribed to the Google Groups "pqc-forum" group.
To unsubscribe from this group and stop receiving emails from it, send an email to pgc-forum+unsubscribe@list.nist.gov.
Visit this group at https://groups.google.com/a/list.nist.gov/group/pgc-forum/.

https://gist.github.com/xagawa/ee91d51a56bda5292235e52640f57707
https://ia.cr/2017/742
https://groups.google.com/a/list.nist.gov/group/pqc-forum
mailto:pqc-forum+unsubscribe@list.nist.gov

From: Dongxi.Liu@data6l.csiro.au

Sent: Friday, January 05, 2018 3:56 PM
To: xagawa@gmail.com; pgc-forum@list.nist.gov
Subject: Re: [pgc-forum] OFFICIAL COMMENT: Compact LWE

Dear Jonathan, Mehdi, and Keita,
Thanks. Your script will be very helpful. We will have a look.

Regards,
Dongxi

From: Mehdi Tibouchi <tibouchi.mehdi@lab.ntt.co.jp>

Sent: Saturday, January 06, 2018 12:50 AM

To: Xagawa Keita

Cc: pgc-comments; pgc-forum@list.nist.gov

Subject: Re: [pgc-forum] OFFICIAL COMMENT: Compact LWE
Dear all,

For the sake of completeness, let me add to Keita's comment that the attack below (together with a full key recovery
attack on the parameters of ia.cr/2017/685) is accepted for publication at CT-RSA 2018. We will update our eprint paper
shortly to provide timings, etc., for the parameters in the NIST submission.

Based on our analysis, it seems very unlikely that the ways in which Compact-LWE departs from standard LWE-based
schemes can improve security, and in particular that a reasonable level of security is somehow achievable in the very

low dimensions proposed so far, even with further tweaks to the construction.

Best regards,

Jonathan, Mehdi and Keita.

From: Yanbin Pan <panyanbin@amss.ac.cn>

Sent: Saturday, January 06, 2018 9:47 AM

To: Tibouchi; Keita

Cc: pgc-comments; pgc-forum

Subject: Re: [pgc-forum] OFFICIAL COMMENT: Compact LWE
Dear all,

Thank Keita very much for sharing his code!

Our paper about the attack against NIST Compact-LWE has been posted by Cryptology ePrint Archive
as https://eprint.iacr.org/2018/020 .

Thank Prof. Lepoint very much for telling us Bootle and Tibouchi's work (https://eprint.iacr.org/2017/742) against
the former version of Compact-LWE(ia.cr/2017/685) when we submitted our paper to ePrint with exactly the same
title with their paper. Prof. Lepoint asked us to change the title, cite their paper and make some comparison, and we
did so. We found that the there are many differences between the former version and the current version submitted to
NIST, and we guess that some changes are due to Bootle and Tibouchi's former attack.

If we understand Mehdi correctly, we think their work accpeted by CT-RSA2018 is the attack above against the
former version of Compact-LWE, but NOT the NIST version, since by the paper submission deadline (Oct 1st
(12.00 GMT) 2017) of CT-RSA2018, the NIST version had not appeared anywhere to our best knowledge, and they
did not propose any comments to NIST or the designers before ours. We think we should make this point clear so
that our attack indeed makes sense.

If we miss something, please tell us, thank you very much!

Best regards,
Haoyu, Renzhang, Yanbin, Tianyuan

From: Mehdi Tibouchi

Date: 2018-01-06 13:49

To: Xagawa Keita

CC: pgc-comments; pgc-forum

Subject: Re: [pqc-forum] OFFICIAL COMMENT: Compact LWE
Dear all,

For the sake of completeness, let me add to Keita's comment that the
attack below (together with a full key recovery attack on the parameters
ofia.cr/2017/685) is accepted for publication at CT-RSA 2018. We will
update our eprint paper shortly to provide timings, etc., for the
parameters in the NIST submission.

Based on our analysis, it seems very unlikely that the ways in which
Compact-LWE departs from standard LWE-based schemes can improve security,
and in particular that a reasonable level of security is somehow

achievable in the very low dimensions proposed so far, even with further
tweaks to the construction.

https://eprint.iacr.org/2017/742
https://eprint.iacr.org/2018/020

From: Dongxi.Liu@data6l.csiro.au

Sent: Saturday, January 13, 2018 6:05 PM

To: pgc-comments

Cc: pgc-forum@list.nist.gov

Subject: [pgc-forum] OFFICIAL COMMENT: Compact LWE
Dear All,

As said before, to avoid the attack, we can change our scheme slightly by avoiding the direct use of u_{i}in the
calculation of pk_{i} and pk_{i}’. We have done this change and the change is reflected into the Sage script provided by
Keita. The changed Sage script is in the end of this email and it is also a complete reference implementation of the
revised scheme.

Briefly, we split u_{i} into u_{1i} and u_{2i}, which are now randomly sampled from {0,...,g-1}, instead of from the
much smaller {0,bp-1}, and two noiseless samples are generated in the public key to tackle the change to u_{i}.

Regards,
Dongxi Liu

#= ====
The Sage script (https://gist.github.com/xagawa/ee91d51a56bda5292235e52640f57707)
implements an attack to Compact-LWE found independently by

Haoyu Li, Renzhang Liu, Yanbin Pan, Tianyuan Xie, and

Jonathan Bootle, Mehdi Tibouchi, and Keita Xagawa.

Based on that script, this script implements a slightly revised

Compact-LWE and is used to test that attack again.

In addition, the decryption algorithm of Compact-LWE is

added in this script to make it a complete reference

implementation for checking decryption correctness.

Revisions are marked by "Change:".

In this script, that attack cannot succeed even if m=32

(instead of m=128 in the submitted version).

When m < 32, the attack also fails sometimes due to invalid lcand.

Compact-LWE parameters in NIST PQC Round 1

wPo0s=224

wNeg=32

b=16

#bp=0 #not needed as a parameter
n=8

=8

R=Integers(q)

sk_max =229119

p_size = 16777216

e_min =457
e_max =3200

def newkeygen():
s =vector(R, [R.random_element() for _in range(n)])
sp=vector(R, [R.random_element() for _in range(n)])
k=0
while ged(k,q)>1:
k = randint(1,9-1)
kp=0
while gcd(kp,q)>1:
kp=randint(1,q9-1)
p=0

#Correctness condition
while gcd(p,q)>1 or sk_max*p + p* (wPos+wNeg) + e_max * p * (wPos+wNeg) >= q:
p = int(g/(sk_max+wPos+wNeg+e_max * (wPos+wNeg))) -randint(0,p_size)

#print "p=", p, sk_max*p + p* (wPos+wNeg) + e_max * p * (wPos+wNeg) < q

#Change: ensruing sk*ck = skp*ckp, co-prime with p
instead of sk*ck + skp*ckp co-prime with p

sk =0
skp =0
ck =0
ckp=0
while gcd(sk,p)>1:
sk = randint(1,sk_max)

while gcd(skp,p)>1:
skp = randint(1,sk_max)

while ged(ck,p)>1:
ck=randint(1,p)

Rp = Integers(p)
ckp= Rp(sk*ck)/Rp(skp)

return s,k,sk,ck,sp,kp,skp,ckp,p

def newsamplegen(s,k,sk,ck,sp,kp,skp,ckp,p):
Rp = Integers(p)
A =random_matrix(ZZ,m,n,x=0,y=b)

#Change: from u =vector(R,[randint(0,bp-1) for _in range(m)]) into ul and u2,
sampled from g instead of bp

ul =vector(R,[randint(0,q-1) for _in range(m)])

u2 =vector(R,[randint(0,q-1) for _in range(m)])

e =vector(R, [randint(e_min,e_max) for _in range(m)])
ep=vector(R, [randint(e_min,e_max) for _in range(m)])

r =vector(R, [randint(0,p-1) for _in range(m)])

rp=vector(R, [(Rp(-ck * r[i].lift())/Rp(ckp)) for i in range(m)])

#Change: v using ul and vp using u2, instead of using the same u
v =A*s+R(1)/R(k) * (sk*¥ul +r + p*e)
vp= A*sp+ R(1)/R(kp)* (skp*u2 + rp + p*ep)

#Change: last two pk samples are new
A[m-1,:] = vector(R,[0 for _in range(n)])
A[m-2,:] = vector(R,[0 for _in range(n)])
v[m-1] =0

v[m-2] =R(sk)/R(k)

vp[m-1] = R(skp)/R(kp)

vp[m-2]=0
ullm-1] =0
ullm-2] =1
u2[m-1] =1
u2[m-2] =0

return A,ul.lift(), u2.lift(), v.lift(),vp.lift(),e,ep

def generate_I():
the sum of positive entries in | will be psel
the sum of negative entries in | will be -nsel
buf = [randint(0,255) for _in range(512)]
if wNeg > 0:
psel =wPos + (buf[0] % wNeg)
nsel = buf[1] % wNeg
else:
psel =wPos
nsel =0
| = [0 for _in range(m)]
posc =0
negc=0
count = psel if (nsel == 0) else (psel/nsel + 1)
foriin range(psel+nsel):
slot = buf[i+2] % (m-2);
if (count > 0) and (posc < psel):
while (I[slot] < 0): # Move away from a negative entry
slot = (slot + 1) % (m-2);
I[slot] = I[slot] + 1
count-=1
posc +=1
else:
vacant=m-2
while (I[slot] > 0) and vacant>0: # Move away from a negative entry
slot = (slot + 1) % (m-2);
vacant-=1
if vacant>0: #check whether all entries are positive
I[slot] = I[slot] - 1

count = psel if (nsel == 0) else (psel/nsel + 1)
negc+=1

return |

def sample_I(u):
| = generate_|()
#Change: checking of | not necessary
#while not check_I(l,u):
|=generate_ ()
return |

def rol(z,d):
cyclic left shift
return int((z<<d)/t) + (z<<d)%t

def find_zp(z,t):
zp = int(z/t)
while ged(zp,t) > 1:
zp +=1
return zp

def ske_encrypt(z,mu):
zp = find_zp(z,t)

z =7%t
d = ((mu * rol(z,int(log(t,2)/2))) * zp) % t
return d

def ske_decrypt(z,d):
zp = find_zp(z,t)
z =z%t
zpinv = inverse_mod(zp,t)
return ((zpinv * d) % t) A rol(z,int(log(t,2)/2))

def encrypt(A,ul,u2, v,vp,mu):

#Change: the last two elements in | are calculated from z1 and z2,
not randomly sampled as other elements in |

bp = int(q/(sk_max+wPos+wNeg+e_max * (WPos+wNeg))) - 2*p_size
z1 = randint(0, int(bp/2)-1)

z2 = randint(0, int(bp/2)-1)

z is a session key of KEM

z=21+122

| = vector(ZZ,sample_l(ul))
[[m-2] = (z1- I*ul) % q
[[m-1] = (z2- I*u2) % q

a=I|*A
x=(1*v)%q

xp= (1 *vp) % q

d = ske_encrypt(z,mu)
return a.change_ring(ZZ),x,xp,d, |,z

def dec(s,k,sk,ck,sp,kp,skp,ckp,p,a,x,xp,d):
d1 = ((x-s*a)*k)%q
d2 = ((xp-sp*a)*kp)%q

d3 = (ck*d1.lift()+ckp*d2.lift())%p #skp*ckp*z

Rp = Integers(p)
z = Rp(d3)/Rp(skp*ckp)

mu = ske_decrypt(z.lift(),d)

return mu

def subsetsumdecrypt(A,v,vp,a,x,xp):

kappa=q

kappa2=q

kappal=t

L=block_matrix(ZZ, \
[[1, 0, -kappa*a.row(), -kappa2 * x, -kappa2 * xp], \
[0, kappal*identity_matrix(m), kappa*A, kappa2 * v.column(), kappa2 * vp.column()], \
[0, O, O, kappa2*q, 0],\
[0, 0, 0, 0, kappa2*q]])

L=L.BKZ(block_size=10)

#index of first non-zero entry in the first column of L

idx=next((i for i,x in enumerate(L.column(0).list()) if x!=0))

Icand = vector(ZZ,L[idx][1:m+1]/kappal) if L[idx][0] == 1 else vector(ZZ,-L[idx][1:m+1]/kappal)
return lcand

def test_decrypt(trials=10,pairs=10,debug=true):

succ=0

correctness=0

tottime=0.0

if debug:
print "Start!!"

for npair in range(pairs):
s,k,sk,ck,sp,kp,skp,ckp,p = newkeygen()
A,ul,u2,v,vp,e,ep = newsamplegen(s,k,sk,ck,sp,kp,skp,ckp,p)
print "\n Key pair %d" % (npair)

succnow=0
correctnessnow=0
for _in range(trials):
mu = randint(0,t-1)
a,x,xp,d,l,z = encrypt(A,ul,u2,v,vp,mu)

if(dec(s,k,sk,ck,sp,kp,skp,ckp,p,a,x,xp,d)==mu):
correctnessnow+=1

tm=cputime(subprocesses=True)
Icand = subsetsumdecrypt(A,v,vp,a,x,xp)
tottime+=float(cputime(tm))

if debug:
print "\nCipher ", a,x,xp,d
print "Cracked ", Icand*A, (lcand*v) %q, (Icand*vp)%q

print "I*u%qin Enc :", z #(1*ul+l*u2)%q,
print "I'*u%q in Cracked:", (Icand*ul+lcand*u2)%q
if (al=lcand*A) or x!=(Icand*v) %q or xp!=(lcand*vp)%q:
print "invalid I' generated by subsetsumdecrypt"
if zI=(1*ul+1*u2)%q:
print "\n----------------- Implementation Bug-----------------

#print "lcand=", Icand
z = (lcand*ul) %q + (Icand*u2) %q
if ske_decrypt(z,d) == mu:
succhow+=1
#if z == (lcand*u)%t:
succnow+=1
succ+=succnow
correctness+=correctnessnow
print "Key pair %d complete. \n Attack success rate: %d / %d" % \
(npair,succnow, trials)
print" Decryption correctness: ", correctnessnow," /" trials

print "\nSuccessful recoveries with only ciphertexts: %d/%d (%f)." % \
(succ,trials*pairs,RR(100*succ/trials/pairs))

print "Correct decryption with private key: %d/%d (%f)." % \
(correctness,trials*pairs,RR(100*correctness/trials/pairs))

print "Average time: %f seconds." % (tottime/trials/pairs)

use PRG for reproducibility
set_random_seed(0)

test_decrypt(10,10,true)

#=>
Successful recoveries: 10/10 (100.000000).
Average time: 3.395185 seconds.

You received this message because you are subscribed to the Google Groups "pgc-forum" group.

6

From: Yanbin Pan <panyanbin@amss.ac.cn>

Sent: Sunday, January 14, 2018 3:36 AM

To: Dongxi.Liu@data61.csiro.au; pgc-comments

Cc: pgc-forum

Subject: Re: [pgc-forum] OFFICIAL COMMENT: Compact LWE

Dear Dongxi and all,

We found a similar attack against the new version. See the following code. The idea behind the attack is
similar to the former one: make the first m-2 components of | small enough, make | satisfy the equaion
like before, and make \sum |_i ul_i and \sum_i |_i u2_i small (this is a new condition).

For m=50, we recover all the 10 instances.

For m =128, we can recover 7 instances in the 10 instances.

However, we note that the attack depends on the choice of the parameters in the attack heavily (such as
kappa,kappa2), so we believe that if we adjust the parameters well or employ some other tricks, we can
recover more, since the idea behind it is clear. Since we think the current attack has shown the weakness

of the scheme, we won't do more experiments with more parameters.

Best regards,
Yanbin

def subsetsumdecrypt4(A,v,vp,a,x,xp,ul,u2):
bp = int(g/(sk_max+wPos+wNeg+e_max * (WPos+wNeg))) - 2*p_size
z1 = randint(0, int(bp/2)-1)
kappa=q*218
kappa2=q*2/8
kappal=t*218
kappa3=1
L=block_matrix(ZZ, \
[[1*kappal, O, -kappa*a.row(), -kappa2 * x, -kappa2 * xp,0,0], \
[0, kappal*identity_matrix(m-2), kappa*A[0:m-2,:], kappa2 * v[0:(m-2)].column(), kappa2 * vp[0:(m-
2)].column(),kappa3*ul[0:(m-2)].column(),kappa3*u2[0:(m-2)].column()], \
[0, 0, kappa*A[m-2:m,:], kappa2 * v[(m-2):m].column(), kappa2 * vp[(m-2):m].column(),kappa3*ul[(m-
2):m].column(),kappa3*u2[(m-2):m].column()], \
[0, 0, 0, kappa2*q, 0,0,0],\
[0, 0, 0, O, kappa2*q,0,0],\

[0,0,0,0, 0, kappa3*q,0],\
[0, 0,0, 0, 0,0, kappa3*q]l)
L=L.BKZ(block_size=10)

vtemp = vector(ZZ, [0 for _in range(m-2)])
#index of first non-zero entry in the first column of L
idx=next((i for i,x in enumerate(L.column(0).list()) if (x/kappal == 1) or (x/kappal == -1)))
print idx;
if idx==m+5: # never happen in the experiments, although return Icand is not correct, we do not
change
print "error"
return Icand
print L[idx][:];
lcand = vector(ZZ,L[idx][1:m+1]/kappal) if L[idx][0] == kappal else vector(ZZ,-L[idx][1:m+1]/kappal)
vtemp = Icand[0:m-2]
lcand[m-2] = L[idx,m+n+1]/kappa3 - vtemp*ul[0:m-2] if L[idx][0] == kappal else -
1*L[idx,m+n+1]/kappa3 - vtemp*ul[0:m-2]
lcand[m-1] = L[idx,m+n+2]/kappa3 - vtemp*u2[0:m-2] if L[idx][0] == kappal else -
1*L[idx,m+n+2]/kappa3 - vtemp*u2[0:m-2]
return Icand

Yanbin Pan

From: Dongxi.Liu@data61.csiro.au

Date: 2018-01-14 07:04

To: pgc-comments@nist.gov

CC: pgc-forum@list.nist.gov

Subject: [pgc-forum] OFFICIAL COMMENT: Compact LWE
Dear All,

As said before, to avoid the attack, we can change our scheme slightly by avoiding the direct use of u_{i}
in the calculation of pk_{i} and pk_{i}. We have done this change and the change is reflected into the Sage
script provided by Keita. The changed Sage script is in the end of this email and it is also a complete reference
implementation of the revised scheme.

Briefly, we split u_{i}into u_{1i} and u_{2i}, which are now randomly sampled from {0,...,g-1}, instead of from
the much smaller {0,bp-1}, and two noiseless samples are generated in the public key to tackle the change to

u_{i}.

From: Dongxi.Liu@data6l.csiro.au

Sent: Sunday, January 14, 2018 5:55 AM

To: panyanbin@amss.ac.cn; pgc-comments

Cc: pgc-forum@list.nist.gov

Subject: Re: [pgc-forum] OFFICIAL COMMENT: Compact LWE

Dear Yanbin,

Thanks for your finding. | can confirm your new attack. We will look more on the weakness of our
scheme.

Regards,
Dongxi

From: Yanbin Pan <panyanbin@amss.ac.cn>

Sent: Sunday, 14 January 2018 7:35 PM

To: Liu, Dongxi (Data61, Marsfield); pgc-comments

Cc: pgc-forum

Subject: Re: [pgc-forum] OFFICIAL COMMENT: Compact LWE

Dear Dongxi and all,

We found a similar attack against the new version. See the following code. The idea behind the attack is
similar to the former one: make the first m-2 components of | small enough, make | satisfy the equaion like
before, and make \sum |_i ul_i and \sum_i|_i u2_i small (this is a new condition).

For m=50, we recover all the 10 instances.

For m =128, we can recover 7 instances in the 10 instances.

However, we note that the attack depends on the choice of the parameters in the attack heavily (such as
kappa,kappa2), so we believe that if we adjust the parameters well or employ some other tricks, we can
recover more, since the idea behind it is clear. Since we think the current attack has shown the weakness of
the scheme, we won't do more experiments with more parameters.

Best regards,
Yanbin

def subsetsumdecrypt4(A,v,vp,a,x,xp,ul,u):
bp = int(g/(sk_max+wPos+wNeg+e_max * (wPos+wNeg))) - 2*p_size
z1 = randint(0, int(bp/2)-1)
kappa=q*2.8
kappa2=q*2"8
kappal=t*218
kappa3=1
L=block_matrix(ZZ, \
[[1*kappal, O, -kappa*a.row(), -kappa2 * x, -kappa2 * xp,0,0], \

1

