
— Lightweight usab le cryptography —
A usab ility evaluation of the Ascon 1. 2 fami ly

Arne Padmos

We present a usability study of the Ascon 1.2 family of cryptographic algorithms.
As far as we know, this is the first published experimental evaluation aimed at a
cryptographic design (i.e. not a specific API) with the purpose of informing which
aspects to standardise. While the results show the general difficulty of choosing
and applying cryptographic algorithms, there are some more specific insights.
These include the possibility of confusing multiple variants, the relevance of small
interfaces, and the desire for higher-level wrapper functions (e.g. for protocols).
Overall, many questions are still open, including how usability could be integrated
into the design and evaluation of cryptographic algorithms. Our main takeaway is
that lightweight usable cryptography is an open research area that deserves
greater focus. For the review of NISTIR 7977, the standardisation process of Ascon
as a FIPS, and when exploring potential future SPs, the key criterion of usability
should be based on realistic user testing and on triangulation from other methods.

Introduction

In 1999, the seminal usable-security user study into PGP 5.0 by Whitten & Tygar
showed that usability is an important barrier when it comes to real-world security.
Between the ’90s and now, the usable security field has built up a rich and varied
history. The kinds of topics studied have increased in diversity, while the field has
also become more mainstream over the years.

In the area of cryptography, besides studies related to email encryption and secure
messaging, there has been a handful of studies in the area of cryptographic APIs.
These studies show that outside of a focus on end users, developers have also been
considered. However, as far as we are aware, no studies have yet been published
that approach cryptographic designs from a usable security perspective with the
goal of supporting standardisation processes. This is peculiar as NISTIR 7977,
published back in 2016, notes the importance of usability as one of nine principles
that guide the standards development process of NIST.

NISTIR 7977 states that ‘cryptographic standards and guidelines should be chosen
to minimise the demands on users and implementers as well as the adverse con-
sequences of human mistakes and equipment failures’. As such, we ran a user study
on the Ascon 1.2 family of cryptographic algorithms to identify potential pitfalls.

Methodol ogy

The population of the study was students following a second-year undergraduate
course on information security. Over 80% of students registered for the course
participated in the study. The original intent was for students to work in pairs, but
some students ended up working alone while others worked in larger groups.
Around 55 students participated, leading to around 20 to 25 unique submissions.

The task was to create a Python implementation of a protocol for securing the
communication between a glucose monitor and an insulin pump. To ensure that
each participant had a clear mental model of the problem domain as well as the
relevant security threats to address, the study started with a group discussion in
each of the three study runs. Every discussion consisted of creating a data-flow
diagram (DFD), identifying crown jewels, key assumptions, and trust boundaries,
after which the STRIDE mnemonic was used to elicit what could go wrong. For
each run, three DFDs were sketched: data sent from the sensor to the pump, with
and without acknowledgement, and data fetched from the sensor by the pump.

On the basis of the data-flow diagrams and a list of threats, it was up to the parti-
cipants to create an implementation. They were linked to https://pypi.org/p/ascon
and asked to take three steps of stepwise refinement: defining relevant message
flows, writing pseudocode, and coding in Python. Participants were encouraged to
move on to the next step every 10 minutes. They were also encouraged to refer to
the threats that were previously identified. After around 30 minutes, results were
emailed and participants were provided with individual feedback the same week.

Results

None of the participants managed to implement a complete and correct solution.
Based on exploratory initial qualitative analysis of the solutions, several recurring
issues can be observed. The Ascon AEAD functionality provided by the PyAscon
implementation was often called with zero, one, or just a few parameters instead
of the full parameters specified in the documentation at https://pypi.org/p/ascon.
Also, it was common for solutions to include a wrapper function around exiting
functions in the PyAscon library. This wrapper function commonly took only the
message to be transmitted as input. Relevant cryptographic parameters such as
the key, nonce, associated data, etc. were often hard-coded or missing entirely
(appearing out of thin air when the PyAscon functions were called). Aspects such
as error handling and key diversification were missing from all solutions.

Besides the above general patterns, there were also more specific highlights from
individual submissions. One solution called the Ascon-128 variant for encryption
and the Ascon-128a variant for decryption. Another called the Ascon-80pq variant
with a 128-bit key without good reason (this worked due to a bug in the reference
implementation, making a call specifying the Ascon-80pq variant behave like the
Ascon-128 variant). One solution disregarded the PyPI documentation and instead
invented their own object-oriented API (consisting of creation of an Ascon object
and related ‘encrypt’, ‘send’, ‘receive’, and ‘decrypt’ methods). Some solutions
showed confusion between cryptographic message authentication codes and the
terminology of MAC addresses.

Interestingly, while the group discussion included a consideration of threats to
confidentiality, some solutions described only countermeasures for authentication
and not encryption of messages. A single solution included a detailed overview of
relevant threats from the group discussion, but this didn’t appear to provide much
help in arriving at a working solution. Only one solution included a description of
a protocol based on counters and the keeping of state. While the general protocol
flow appeared to provide a relevant basis for a correct solution, the submission did
not include refinement into Python code using the PyAscon library.

Discussion

The solutions to the exercise illustrate the difficulties that developers face in the
proper selection and application of cryptographic algorithms. Confusion around
the term ‘MAC’ indicates that prior knowledge can interfere with cryptographic
concepts, suggesting that those who name cryptographic functions should think
about potential confusion with similar terms from other fields. Another aspect
relates to the number, type, and ordering of parameters to functions. Automatic
generation of parameters like nonces – especially when these are 160 bits long –
as well as defining standard serialisation formats such as nonce+ciphertext+tag
may reduce the need for a multitude of parameters.

The results indicate that there are many open questions regarding the interfaces
provided by cryptographic building blocks as well as how these are instantiated in
(the API of) reference implementations. For example, is the parameters order of
some function signatures more natural than others? Do programming paradigms
have any influence on the likelihood of making different kinds of mistakes? Can
compatible user-friendly wrappers be created? Especially this last question seems
to be a challenge that is very hard to address in a simple and clean manner unless
usability is considered early on and at a fundamental level. Developers that have
clarity as to the general protocol concepts involved and a clear idea of the threats
to be addressed should not have to reinvent the wheel.

Limitations

The participants to this study were students, which might not be representative of
those using Ascon out in the field. Those designing cryptographic protocols might
be more experienced – e.g. when it comes to products like Signal – but we would
claim that the participants of this user study are an overestimate of the capability
and effort that most IoT developers will put into the selection and application of
cryptographic algorithms.

The task included one library applied to a single use case. For the latter concern,
this study could be repeated with a different use case, e.g. communication between
smart lights and a hub. As to just one implementation being tested, we note that
this reference implementation has been developed by one of the Ascon designers,
which prevented the researcher carrying out the user study from developing an
implementation in line with prior expectations. On the other hand, expanding on
insights from the usability field, more usable interfaces could be designed prior to
evaluation. Based on audience feedback at the 2023 Permutation-based Crypto
workshop, how and when to integrate usability considerations into development
life-cycles of cryptographic algorithms as well as how designs should be evaluated
from a usability perspective during a competition are still open questions.

Note that this user study involved interpretation of artefacts. Having participants
‘think aloud’ while they complete these exercises might provide more details as to
the thoughts behind the outcomes. However, besides such an improvement to
laboratory experiments, it appears valuable to explore complementary usability
methods. The field of ethnography has provided a rich source of inspiration for
various user-experience research techniques. Similar approaches might be useful
when it comes to gaining insights into lightweight usable cryptography.

Cl osing thoughts

Usability is dependent on the user, task, and context. Standardisation aims to find
a common denominator. Whereas the former has a grounding in approaches such
ethnography, the latter may be more engineering oriented. During standardisation
processes, an important pitfall to consider is evaluating (simplicity of) designs in
too restricted a context, which could lead to not considering the added complexity
and overhead within broader systems. Relatedly, before standardising features
that may turn out to be foot guns or foot cannons, evaluation should be performed
in a realistic context of use for a given application domain in order to properly
weigh risks and benefits.

Similar considerations apply when it comes to the relevant features to consider.
Historically speaking, protocol security has been a mess. Mistakes were even
found years after the publication of protocols by renowned authors (some modes
such as OCB2 suffered the same fate, with published proofs later turning out to
be faulty). In light of this history, it seem appropriate to consider where and how
Ascon will be used. At first glance, two-party half-duplex record protocols with
ratcheting are an interesting test case for evaluating whether the proposed Ascon
modes and parameters provide extensibility for a common setting.

Bibliography

Y. Acar et al. (2016). A research agenda for usable security and privacy research beyond end users. IEEE.

D.J. Bernstein et al. (2017). Challenges in authenticated encryption. ECRYPT-CSA.

CTG (2016). NISTIR 7977: cryptographic standards and guidelines development process. NIST.

A. Whitten & J.D. Tygar (1999). Why Johnny can't encrypt: a usability evaluation of PGP 5.0. USENIX.

https://teamusec.de/pdf/conf-secdev-AcarFM16.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.7977.pdf
https://chae.cr.yp.to/chae-20170301.pdf
https://people.eecs.berkeley.edu/~tygar/papers/Why_Johnny_Cant_Encrypt/USENIX.pdf

