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Abstract. We present two tweakable wide block cipher modes from doubly-extendable
cryptographic keyed (deck) functions and a keyed hash function: double-decker and
docked-double-decker. Double-decker is a direct generalization of Farfalle-WBC of
Bertoni et al. (ToSC 2017(4)), and is a four-round Feistel network on two arbitrarily
large branches, where the middle two rounds call deck functions and the first and
last rounds call the keyed hash function. Docked-double-decker is a variant of double-
decker where the bulk of the input to the deck functions is moved to the keyed hash
functions. As a consequence, the size of the inputs of the deck functions are constant
and can be conceptually seen as stream ciphers. Concretely, docked-double-decker
can be instantiated using the same primitives as Adiantum, without using any block
cipher, arguably having a slightly more efficient design and being more secure in
certain settings.
Keywords: wide block cipher · tweakable · deck function · double-decker · docked-
double-decker · disk encryption · incremental tweak

1 Introduction
Block ciphers have long been the main building block for symmetric cryptography. However,
block ciphers operate on data of fixed and predetermined length. For example, DES had a
block size of 64 bits and AES has a block size of 128 bits. One can encrypt data of variable
length by using a block cipher in a mode of operation, such as counter mode, CBC or
OFB.

Security of such modes typically depends on a nonce. This might be a random value
that should never be repeated or a counter. In some applications it is desirable to have
security even in the absence of a nonce or in the case of accidental nonce violation. For
example, with full disk encryption the nonce serves as the sector index. When the content
of a sector changes, this is re-encrypted with the same sector index as nonce. Consider
an adversary that may have access to the encrypted sector before and after the change.
In the case of stream encryption it can derive from this the bitwise difference of the
plaintexts: P ⊕ P ′ = C ⊕ C ′. When CBC would be used, it still leaks equality of first
blocks. A solution would be to store a counter in the sector that would increment with
each re-encryption, but often it is undesirable to have a difference between the sector
size with or without encryption. Another example is the Tor protocol for anonymity. It
enciphers the payload in network packets iteratively with different keys. The encryption
should be length-preserving and there is no place for a nonce. For these cases, one can
use a tweakable wide block cipher. This encrypts arbitrarily large strings in such a way
that each bit of the ciphertext depends on each bit of the plaintext and vice versa. If the
plaintext changes, the ciphertext will look completely random, even if the change is just a
single bitflip.

The idea of wide block ciphers is gaining traction: a notable contribution to the field
is Adiantum [CB18], a mode that is specifically developed for disk encryption but still
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fares very well as a general wide block cipher mode. Adiantum follows a structure that
reminds of Feistel but it is asymmetric. It uses two branches: an arbitrary-length branch
for bulk encryption, and a fixed-length branch that is processed using AES and that is
used as a seed for encryption of the arbitrary-length branch. A description of Adiantum is
given in Appendix A. Adopting arbitrary-length branches appears like a fruitful direction,
but decryption requires evaluation of the inverse of AES. Other notable constructions
are HEH [NR97], EME [HR04], HCTR [WFW05], AEZ [HKR15], FAST [CGLS17] and
Tweakable HCTR [DN18]. We refer to Table 1 for an overview of these modes.

1.1 Deck-Based Wide Block Cipher Modes
In this work, we formalize and analyze two similar deck-based tweakable wide block
cipher modes: double-decker and docked-double-decker. Double-decker is an immediate
generalization of Farfalle-WBC, a wide block cipher construction proposed by Bertoni et
al. [BDH+17]. Double-decker follows the well-established Feistel design, but unlike all
previous instances, it is based on two arbitrary-length branches and is built upon two
arbitrary-length primitives called doubly-extendable cryptographic keyed (deck) functions.
Deck functions, a notion of Daemen et al. [DHVV18], are cryptographic primitives that
have arbitrary-length input and output. In this light, they are the natural building block in
our wide block cipher mode whose two branches are both arbitrary-length. Double-decker,
as such, consists of two Feistel rounds of deck functions surrounded by two Feistel rounds
of a keyed hash function.

We also introduce docked-double-decker, a variant of double-decker. It moves the
bulk of the input of the deck functions to the keyed hash functions. This illustrates the
flexibility that the Feistel structure provides: it does not matter which function absorbs
inputs, as long as all input is absorbed by a cryptographic function. Moreover, the input
to the deck functions becomes fixed length, as long as the tweak has a fixed length as well.
This allows one to conceptually view the deck functions as stream ciphers in this case.

Nonetheless, there is more to the deck-based modes. As deck functions support multiple
strings as input, we feed a tweak to the inner rounds. This leads to the actual constructions
of Section 4: double-decker depicted in Figure 2 and docked-double-decker depicted in
Figure 3.

1.2 Version History
This paper is based on the previous publication Deck-Based Wide Block Cipher Modes and
an Exposition of the Blinded Keyed Hashing Model [GDM19]. In this version, many technical
details are skipped, most notably the proofs of the theorems. Other parts are expanded,
including the separate Section 7 about possible instantiations of (docked-)double-decker.

1.3 Blinded Keyed Hashing Model
Security of cryptographic constructions based on keyed hash functions often relies on the
universality of the hash function. For example, in the analyses of the schemes listed before,
the keyed hash functions are assumed to be ε-XOR-universal for some small value of ε.
However, not all keyed hash functions fit well in this model. An example of such function
is Xoofffie, whose security claim [DHP+18, Claim 2] uses a different security notion. Based
on this claim, we introduce a more general security model for keyed hash functions: blinded
keyed hashes (bkh).

In a nutshell, bkh does not look at single pairs of inputs at a time, as XOR-universality
does, but instead looks at a whole list of queries at the same time. As not every pair of
inputs is as bad as the worst case, this formalization allows for a more fine-grained security
analysis and allows one to improve the security claim in some cases.
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We show that an ε-XOR-universal function has a bkh advantage of at most
(

q
2
)
ε, but

the bound is not necessarily tight. We demonstrate the power of bkh based on Xoofffie. In
detail, in Section 3.1 we show that the security claim for constructions based on Xoofffie
increases from 64 bits to 128 bits in the common case, just by changing the security model
from XOR-universality to bkh. This gain propagates through the mode, and henceforth
our analyses of double-decker and docked-double-decker will be based on the assumption
that the keyed hash functions are sufficiently bkh secure.

1.4 Security
In Section 5 we prove that a simplified security bound for the deck-based wide block cipher
modes is of the form

2Advprf(σ) +
∑
W

2Advbkh(qW , σW ) , (1)

where σ is the total data complexity, σW is the data complexity with tweak W , qW the
number of queries with tweak W , Advprf is the prf-advantage of the deck function and
Advbkh is the bkh-advantage of the keyed hash function. Our proof is based on ideas of
Iwata and Kurosawa [IK02]. However, a difference is that we base our analysis on the
bkh-security of the keyed hash functions rather than their XOR-universality.

1.5 Reduced Tweak-Dependence
Noting that the deck-based modes have a n-bit keyed hash function, a naive security bound
would have been of the form

2Advprf(σ) + 2Advbkh(q, σ) . (2)

In particular, the loss of the keyed hash function is Advbkh(q, σ) directly. This is indeed
the case for most existing tweakable wide block ciphers, including Adiantum. However,
the deck-based modes are tweakable wide block ciphers, and the tweak turns out to allow
for notable improvement of the bound. Different tweaks separate the domain, hence
the underlying deck function should ideally produce independent outputs resulting in
independent permutations. As given in Section 1.4, the security bound is of the form in
(1).

The bound of (1) significantly improves over the naive bound of (2) if the maximum
number of tweak repetitions is limited. For example, if the cipher is called for q/ℓ tweaks
W , each tweak is used ℓ times and the hash is a traditional ε-XOR-universal function with
Advbkh(q, σ) ⩽

(
q
2
)
ε, the loss on the keyed hash function in (1) is of the form

(q/ℓ)
(

ℓ

2

)
ε = (ℓ− 1)qε≪

(
q

2

)
ε , (3)

provided that ℓ≪ q. Examples of such functions that would fulfill this include GHASH [NIS07]
and Poly1305 [Ber05]. Moreover, if every tweak is used at most once, so ℓ = 1, we see
that the mode has no security loss to the keyed hash functions. In this way our modes
compare favorably with most other tweakable wide block ciphers (see also Table 1). Of
course, queries for different tweaks still influence the first term of (1).

Some applications can take advantage of (3) and use different tweaks in the deck-based
modes. We demonstrate this in detail in Section 6 via two use cases. One use case is in the
context of disk encryption, in Section 6.1. The use case sets physical SSD sector numbers
as tweaks, and relies on the fact that the number of write operations to particular SSD
sectors is physically limited [BD10]. In the use case detailed in Section 6.1, an adversary
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Table 1: Comparison of double-decker and docked-double-decker with state of the art. N
is the length of the message, n is a security parameter (i.e., 128 or 256). The cost of keyed
hash functions, stream ciphers (SC) and deck functions are displayed as the number of
processed bits plus the number of generated bits. The cost of (tweakable) block ciphers
((T)BC) is displayed as only the number of processed bits (or equivalent in the case of
AEZ). Refer to Section 1.6 for more information about the properties “Inverse free” and
“Reduced tweak-independence”.

Mode
Keyed
hash SC Deck (T)BC

Inverse
free

Reduced
tweak-

dependence Reference
HEH 4N — — N no no [NR97]
EME — — — 2N + 2 no no [HR04]

HCTR 2N — — N no no [WFW05]
AEZ — — — N + 4 yes no [HKR15]
FAST 2N + 4n — — N yes no [CGLS17]

Tweakable HCTR 2N — — N no yes [DN18]
Adiantum 2N N — n no no [CB18]

Double-decker N + 2n — 2N — yes yes Figure 2
Docked-double-decker 2N — N + 2n — yes yes Figure 3

has an advantage of at most 246ε on the hash functions with the deck-based modes whereas
it would be of the order 274ε for the typical security bound that is met by, for example,
Adiantum. Here we assume that the differentially uniform function is a traditional ε-XOR-
universal function. The second use cases is on incremental tweaks, in Section 6.2. Deck
functions have the pleasant property that inputs consist of a sequence of an arbitrary
number of strings, and in addition, that the inputs are incremental: appending a string
to the sequence costs as much as just processing the new string. One can henceforth use
our deck-based modes in a stateful manner, where the tweak is dependent on all or most
of prior messages exchanged. This way, each new evaluation of the mode is performed
for a new tweak, collisions among hash function evaluations for the same tweak cannot
occur (as one needs at least two evaluations), and the loss on the keyed hash function, the
second term in (1), vanishes.

1.6 Comparison with Prior Solutions
Various tweakable block ciphers have appeared over the last years. The most notable exam-
ples include HCTR [WFW05], HEH [NR97], FAST [CGLS17], Tweakable HCTR [DN18]
and most recently Adiantum [CB18]. A comparison among these ciphers, double-decker
and docked-double-decker can be found in Table 1. Most of these constructions resemble
a Feistel network. However, (Tweakable) HCTR and Adiantum use a block cipher on
a branch. The size of this branch is bounded by the size of a typical block cipher: 128
bits. As the birthday bound applies in some use cases, this limits their security to 64
bits. Furthermore, they require the use of the inverse block cipher, incurring additional
implementation cost for most block ciphers. Double-decker and docked-double-decker do
not have this limitation, without requiring extra passes over the bulk of the data.

Furthermore, double-decker and docked-double-decker have the nice security property
of reduced tweak-dependence (see Section 1.5). This means that collisions in the keyed
hash functions do not reduce the security as long as different tweaks were used. A feature
that is not fulfilled by many earlier schemes; only by Tweakable HCTR.

For efficiency comparisons, we have to instantiate double-decker and docked-double-
decker with concrete functions. See Section 7 for the details. In short, double-decker
can be instantiated using the concrete deck function Xoofff and keyed hash function
Xoofffie [DHVV18,DHP+18]. On a low-end CPU these functions process (long) input or
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output about 4 times faster than AES. Docked-double-decker can be instantiated with
more varied choices as stream ciphers can be used. Concretely, using the same primitive
choices as Adiantum one obtains a similar construction with three advantages: (1) it uses
no block cipher anymore, (2) its design is more efficient with the block cipher replaced by
a stream cipher, strengthened by the fact that the tweak is moved to earlier unused nonce
space and (3) it offers more security as the location of the tweak input allows for reduced
tweak-dependence.

1.7 Related Work
Luby and Rackoff considered the Feistel construction with fixed-length independent pseu-
dorandom function in each round [LR88]. They proved that three rounds are sufficient to
obtain a pseudorandom permutation that can be used in forward direction, and four rounds
are sufficient to obtain a strong pseudorandom permutation that can be used in both
forward and inverse direction. A large amount of research has been aimed at reducing the
requirements for the underlying primitives. One way to do so is by reducing the number
of independent primitives [Pie90,Pat92]. Another avenue is in replacing cryptographically
strong pseudorandom functions by (weaker) universal hash functions. The idea was first
suggested by Lucks [Luc96] and was further investigated in [PRS02, IK02]. Particularly
relevant to our work is the analysis of Iwata and Kurosawa [IK02] that considered a
four-round Feistel construction where the two internal rounds are based on a single pseu-
dorandom function and the two outer rounds on two independent universal hash functions
with certain conditions.

Above-mentioned results so far achieve n/2-bit security, where n is the size of the
branches. Patarin proved security beyond n/2 of the Feistel construction with 5 or more
rounds [Pat98,Pat03,Pat04]. We refer to Nachef et al. [NPV17] for a detailed discussion
of the security of multiple-round Feistel networks.

One can consider length doublers as a specific type of wide block ciphers. Length
doublers use a block cipher with block size n, and transform it to an encryption primitive
that allows encryption of strings of length between n and 2n− 1. Due to their flexibility,
they suit well as building blocks for arbitrary-length (authenticated) encryption. Ristenpart
and Rogaway [RR07] introduced the concept in 2007 and presented XLS, a construction
later broken by Nandi [Nan14]. Other length doublers are DE by Nandi [Nan09] and HEM
by Zhang [Zha12], both based on block ciphers and both birthday-bound secure in the
block size of the primitive, and LDT by Chen et al. [CLMP17,CMN18], beyond n/2 secure
but based on a tweakable block cipher.

2 Preliminaries
2.1 Security Model
Our schemes will be parameterized by a security parameter n. This security parameter
will restrict messages to be at least 2n bits long in our mode. For technical reasons we
also limit the maximum message size to some natural number L. This allows us to more
easily define a security model, as it is simpler to randomly draw from a finite set. We
define message space

M =
L⋃

i=2n

{0, 1}i ,

key space K, and tweak space W, and consider a tweakable wide block cipher

E : K ×W ×M→M .
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For fixed key K, we write EK = E(K, ·, ·). We require it to preserve length (i.e.,
|EK(W, P )| = |P | for any (K, W, P ) ∈ K × W ×M). We also require it to be invert-
ible for fixed (K, W ) ∈ K ×W and denote its inverse with abuse of notation by E−1

K (i.e.,
E−1

K (W, EK(W, P )) = P for any (K, W, P ) ∈ K ×W ×M).
For a tweakable wide block cipher E with security parameter n and maximum message

size L, the distinguishing advantage of an adversary D is

Adv±tprp
E (D) =

∣∣∣P[
K

$←− K : DEK ,E−1
K = 1

]
− P

[
π

$←− TPerm(M) : Dπ,π−1
= 1

]∣∣∣ ,

where TPerm(M) is the set of all length-preserving tweakable permutations over the
message space M, i.e., the set of all π : W ×M→M such that |π(W, P )| = |P | for all
(W, P ) ∈ W ×M and π(W, ·) invertible for any fixed W ∈ W . Again, we denote its inverse
with abuse of notation by π−1.

2.2 Deck Functions
We adopt a simplification of the definition of a deck function of Daemen et al. [DHVV18].
A deck (doubly-extendable cryptographic keyed) function F takes as input a secret key
K ∈ KF , two arbitrarily long strings W, X ∈ {0, 1}∗, produces a potentially infinite string
of bits and takes from it the range starting from a specified offset q ∈ N and for a specified
length n ∈ N. We denote this as

0n ⊕ FK(W, X)≪ q .

As a deck function has an arbitrary long input and a potentially infinite output, a powerful
security definition is that it should behave like a pseudo-random function (prf). This leads
to the following security definition for a deck function F :

Advprf
F (L,D) =

∣∣∣P [
K

$←− KF : DFK = 1
]
− P

[
G

$←− PRF[L] : DG = 1
]∣∣∣ ,

where PRF[L] is the set of all pseudo-random functions with two arguments with maximum
size L, i.e., the set of all G : X × X → {0, 1}L, where X = ∪L

i=0{0, 1}i. We define

Advprf
F (σ) = sup

D∈D(σ)
Advprf

F (L,D) ,

where D(σ) is the set of all distinguishers such that
∑

i σ(i) ⩽ σ, where σ(i) = |W (i)| +
|X(i)|+ n(i) is the data complexity of query i and where L = maxi σ(i) is the maximum
size of the inputs and outputs.

2.3 Differentially Uniform Hash Functions
Consider a keyed hash H = {HK : {0, 1}∗ → {0, 1}n | K ∈ KH}. It is called ε-XOR-
universal if for any two distinct elements X, X ′ ∈ {0, 1}∗ and any element Y ∈ {0, 1}n

P
[
K

$←− KH : HK(X)⊕HK(X ′) = Y
]
⩽ ε .

The value ε is typically of the form 2a−n for a small value a.

3 Blinded Keyed Hashes
Consider a keyed hash H = {HK : {0, 1}∗ → {0, 1}n | K ∈ KH}. We do not look at its
output directly, instead we first blind it through a random oracle: a function that returns
an independent random value for every new input. The keyed hash is called a blinded
keyed hash (bkh) if the distinguishing advantage between the following two worlds, with
inputs (X, ∆), is small:
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• Real world O: RO1(HK(X)⊕∆) with K
$←− KH and a secret random oracle RO1;

• Ideal world P: RO2(X, ∆) with a secret random oracle RO2.

RO1 RO2HKX
X
∆

∆

Figure 1: The distinguishability setup for bkh. Left is the real world O and right is the
ideal world P.

We denote its advantage by

Advbkh
H (D) =

∣∣P [
DO = 1

]
− P

[
DP = 1

]∣∣ .

For a fixed list of queries Q, we define

Advbkh
H (Q) = sup

D∈D(Q)
Advbkh

H (D) ,

where D(Q) is the set of all distinguishers that make the fixed list of queries Q. And for a
total number of q queries with data complexity σ =

∑
i |X(i)|+ |∆(i)|, we define

Advbkh
H (q, σ) = sup

D∈D(q,σ)
Advbkh

H (D) ,

where D(q, σ) is the set of all distinguishers that make at most q queries with data
complexity σ =

∑
i |X(i)|+ |∆(i)|.

3.1 Relation to Differentially Uniform Functions
The more common definition of differentially uniform functions given in Section 2.3 is
roughly equivalent to the definition of blinded keyed hashes. Proposition 1 shows the
relation between ε-XOR-universal and bkh functions. We can reduce any ε to a bkh
advantage bound and vice-versa, but the ε-XOR-universal definition is more strict. It
requires an upper bound ε on the probability of collisions, but not all inputs have to be
near this ε as the probabilities do not have to be uniform. On the other hand, the bkh
definition allows for more flexibility as it looks at a list of queries and makes a claim about
an attack as a whole. Indeed, some functions have much better guarantees with the bkh
definition than the ε-XOR-universal one. For example Xoofffie has the following security
claim [DHP+18, Claim 2]:

Advbkh
Xoofffie(q, σ) ⩽ M

2128 + M2

2n−4 ,

where M = ⌈σ/384⌉ is the data complexity expressed in the number of input blocks and
where n can be chosen variably. If n− 4 is larger than 256, the quadratic term is negligible
and Xoofffie claims to have around 128 bits of security. We would not get this level of
security in the claim when we look at the traditional ε-XOR-universal definition. By
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Proposition 1, Xoofffie is ε-XOR-universal with

ε = Advbkh
Xoofffie(2, 2 · 384)

⩽
2

2128 + 22

2n−4

≈ 2−127 .

Here, we assume that Xoofffie is only called with one block inputs. If it is called with more
input, its ε-XOR-universal security becomes even worse. However, with this definition we
approximate the advantage of Xoofffie as

(
q
2
)
/2127 ⩽

(
M
2

)
/2127, which would suggest that

Xoofffie only has around 64 bits of security. By using the bkh definition, we can make use
of these better security properties.

To our knowledge, the only currently known cryptographic primitive with a bkh-model
security claim is Xoofffie [DHP+18, Claim 2]. As a bkh claim is more general than
a differential-uniformity one, proofs using the bkh-model are also valid for the latter.
However, conversely, a bkh-model security claim can give a better security bound for high
data complexity. In particular, in Farfalle-like keyed hash functions, similar claims can be
made when using permutations such as the Ascon permutation [DEMS16], Gimli [BKL+17]
or Keccak-p[r = 6] as in Kravatte [BDH+17].

Proposition 1. The following two properties hold.

1. If H is ε-XOR-universal, then H is bkh with advantage Advbkh
H (q, σ) ⩽ ε

(
q
2
)
.

2. If H is bkh, then H is ε-XOR-universal with ε = Advbkh
H (2, 2l), where l is the

maximum allowed query length.

The proof of Proposition 1 can be found in the original publication [GDM19].

4 Deck-Based Wide Block Cipher Modes
We introduce two modes: double-decker, directly based on Farfalle-WBC [BDH+17], and
docked-double-decker, a slight modification of double-decker that moves the bulk of the
input from the deck functions to the hash functions.

Double-decker and docked-double-decker are tweakable wide block ciphers that take
as input three keys (K, K1, K2) ∈ K = KH ×KF ×KF , a tweak W ∈ W, and a message
P ∈M, and transform it to a ciphertext C ∈M. Instead of using two keys K1, K2 ∈ KF ,
it is also possible to use a single key and apply domain separation between the functions, as
that gives two independent functions as well. Both double-decker and docked-double-decker
are a generalized four-round Feistel construction based on two independent deck functions
FK1 and FK2 and two evaluations of a bkh function HK .

Double-decker is illustrated in Figure 2. Here, the message P is first split into the
inputs to the two branches U and V using a split function split. This function split takes
as input the length of the message P and outputs the length of the left branch, |U |. The
states U and V are further split into UL, UR, VL and VR with the outside branches length
n, so |UL| = |VR| = n. This means that we have a condition that n ⩽ split(|P |) ⩽ |P | − n
for all P . In other words, split can be an arbitrary function, as long as it is defined for
input strings of at least 2n bits, and its corresponding branches are of length at least n.

Docked-double-decker is illustrated in Figure 3. It is similar to double-decker, but with
two differences. First, the branch VL is removed, i.e. split(|P |) = |P |−n. Second, the bulk
of the input to FK1 , on branch UR, is moved from the deck function FK1 to the first bkh
function HK . This illustrates the flexibility that the Feistel structure provides: it does not
matter which function absorbs inputs, as long as all input is absorbed by a cryptographic
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function. Moreover, the input to the deck functions FK1 and KK2 becomes fixed length,
as long as the tweak has a fixed length as well. This allows one to conceptually view the
deck functions as stream ciphers in this case.

VL

YL

UR

XR

FK1

FK2

HK

W

UL

HK

XL

VR

YR

function Encrypt(W , P )
U∥V ← P , with |U | = split(|P |)
L← U ⊕ (HK(V ) ∥ 0|U |−n)
R← V ⊕ FK1(W, L)
X ← L⊕ FK2(W, Y )
Y ← R⊕ (0|R|−n ∥ HK(X))
C ← X∥Y
return C

function Decrypt(W , C)
X∥Y ← C, with |X| = split(|C|)
R← Y ⊕ (0|Y |−n ∥ HK(X))
L← X ⊕ FK2(W, R)
V ← R⊕ FK1(W, L)
U ← L⊕ (HK(V ) ∥ 0|L|−n)
P ← U∥V
return P

Figure 2: Double-decker tweakable wide block cipher. The parsing of P into states
UL, UR, VL, VR, where |UL| = |VR| = n and |U | = split(|P |) is not depicted.

V

Z

U

Y

FK1

FK2

HK

W

T

HK

X

function Encrypt(W , P )
T∥U∥V ← P , with |T | = |V | = n
L← T ⊕HK(U∥V )
R← V ⊕ FK1(W, L)
X ← L⊕ FK2(W, R)
Y ← U ⊕ FK2(W, R)≪ n
Z ← R⊕HK(X∥Y )
C ← X∥Y ∥Z
return C

function Decrypt(W , C)
X∥Y ∥Z ← C, with |X| = |Z| = n
R← Z ⊕ (HK(X∥Y )
L← X ⊕ FK2(W, R)
U ← Y ⊕ FK2(W, R)≪ n
V ← R⊕ FK1(W, L)
T ← L⊕ (HK(U∥V )
P ← T∥U∥V
return P

Figure 3: Docked-double-decker tweakable wide block cipher. The parsing of P into states
T, U, V , where |T | = |V | = n is not depicted.
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5 Analysis
We prove security of both the double-decker and the docked-double-decker construction of
Section 4.

Theorem 1. Let E be either the double-decker construction or the docked-double-decker
construction of Section 4. For any distinguisher D making at most q queries with a length
of at most L, we have

Adv±tprp
E (D) ⩽ Advprf

F (σF1) + Advprf
F (σF2)

+
∑

W ∈W

(
Advbkh

H (qW , σH1,W ) + Advbkh
H (qW , σH2,W ) +

(
qW

2

)
2−2n

)
,

where σF1 , σF2 are the total data complexities on each F and where σH1,W , σH2,W are
the data complexities on each H and qW is the number of queries with tweak W made by
distinguisher D. For double-decker we have

σF1 = σF2 =
q∑

i=1
|W (i)|+ |P (i)| ,

σH1,W =
q∑

i=1
W (i)=W

|P (i)| − split(|P (i)|) + n ,

σH2,W =
q∑

i=1
W (i)=W

split(|P (i)|) + n .

For docked-double-decker we have

σF1 =
q∑

i=1
|W (i)|+ 2n ,

σF2 =
q∑

i=1
|W (i)|+ |P (i)| ,

σH1,W = σH2,W =
q∑

i=1
W (i)=W

|P (i)| .

The proof of Theorem 1 can be found in the original publication [GDM19].

6 Application
6.1 Disk Encryption
In our deck-based modes, a naive security loss to the hash functions would be of the
form 2Advbkh

H (q, σ), where q is the total number of queries and σ the total data com-
plexity. However, the more fine-grained security loss given in Theorem 1 is of the form∑

W ∈W 2Advbkh
H (qW , σW ), where qW is the number of queries and σW the data complexity

with tweak W . This is a significant improvement over the naive security loss for some
functions if the tweak varies a lot. It does not give a real improvement for hash functions
with a more linear security loss in the bkh model. However, some hash functions have
a quadratic security loss, even in the bkh model. Examples of such functions include
GHASH [NIS07] and Poly1305 [Ber05]. In these cases, the naive security loss to the hash
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functions would be of the form 2
(

q
2
)
ε and the more fine-grained one given in Theorem 1

would be of the form
∑

W ∈W 2
(

qW

2
)
ε.

This turns out to give a significant gain in the context of disk encryption, if the
deck-based modes are called with the physical sector number as tweak. In this case, every
sector basically gets its own dedicated wide block cipher. This is especially useful in the
context of SSDs. As SSDs get damaged every time data is written to a sector, the firmware
of the SSD tries to distribute the data uniformly over its sectors [GT05]. If a sector is
written to too many times, the sector cannot be used anymore [BD10]. In the context of
the bound of Theorem 1, this means that the distinguisher is limited in its attack: every
tweak can only be used at most a constant number of times.

We outline the gain with a concrete example. The Kingston UV500 960 GB [Kin18]
has a Total Bytes Written specification of 480 TB. This means that every sector can be
written at most 480TB/960GB = 500 times. For a sector size of 4 KiB, which implies
N = 960GB/4KiB ≈ 228 sectors, this concretely means a security loss on the hash functions
of

2N

(
500
2

)
ε ≈ 246ε .

This is an improvement over the typical birthday bound of

2
(

500N

2

)
ε ≈ 274ε

that would we achieved by, for example, Adiantum [CB18]. Concretely, the security level
goes up log2 N bits, and the gain would become particularly meaningful if ε is not very
small.

6.2 Incremental Tweak
Following Daemen et al. [DHVV18], deck functions have two features:

(i) their inputs consist of a sequence of an arbitrary number of strings, each of arbitrary
length;

(ii) their inputs are incremental: appending a string to the input sequence costs only the
processing of the new string.

These features, along with the reduced tweak-dependence of the bounds of our constructions,
leads to pleasant use cases for double-decker and docked-double-decker.

In more detail, in our constructions we already make use of feature (i) by presenting
the tweak and intermediate result as a sequence of two strings. We do not yet use feature
(ii). However, suppose we make the tweak dependent on prior messages exchanged, or in
general on the history of the protocol. It suffices to clone the state of the deck function
after absorbing the new tweak string and in the next construction call start from this state.
The tweak used in the computation of a construction call will consist of the sequence of
the tweak strings that were absorbed in all previous construction calls. This tweak is
different for each evaluation of double-decker/docked-double-decker, which, in the context
of the security bound, implies qW = 1 for each tweak W . Note that this use case comes at
modest cost only: by incrementality (feature (ii)), appending data to the earlier sequence
costs only the processing of the new string.

We remark that this use case is not far-fetched: similar ideas may be found in several
modern protocols. One example is the TLS handshake [TD08], where a hash is computed
over all steps and where only this hash is signed later on. Another example is the STROBE
protocol framework of Hamburg [Ham17]. STROBE makes use of stateful objects in such a
way that all strings absorbed by the object impact its state. Hence, any output generated
by the stateful object depends on the concatenation of all that came before.
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7 Instantiations
To evaluate the efficiency of the deck-based modes, we need to look into instantiations
with concrete deck functions and keyed hash functions. We consider instantiations for
both double-decker and docked-double-decker.

7.1 Double-decker
Recently, concrete deck functions and keyed hash functions have been proposed in
[BDH+17], Kravatte and Short-Kravatte, and in [DHVV18,DHP+18], Xoofff and Xoofffie.
The former are built on the 1600-bit permutation Keccak-p with 6 rounds and the latter
on the 384-bit permutation Xoodoo. For the latter, [DHVV18, Table 5] gives performance
numbers. On ARM Cortex M0 and M3, representative for low-end CPU, Xoofff and
Xoofffie process (long) input or output about 4 times faster than AES. So a Xoofff call
with N bits of input and M bits of output is about four times as fast as applying AES-128
CBC-MAC to an N -bit input and then AES-128 in counter mode generating an M -bit
keystream.

On high-end CPUs like Intel Skylake the presence of dedicated AES instructions makes
the difference between Xoofff and AES smaller, but still on the recent Intel SkylakeX,
Xoofff beats AES in speed.

Of course Xoofff has not gone through the amount of scrutiny that Rijndael/AES
has, but these performance numbers indicate that there is great potential should Xoofff
and Xoofffie turn out to stand up to their security claims, that are actually much more
ambitious than those of AES.

7.2 Docked-double-decker
Docked-double-decker is a bit more general and has less assumptions on the primitive
used. It still uses a keyed hash, but it does not require a deck function, just a stream
cipher. These can still be instantiated by Xoofffie and Xoofff, although the generality
allows for other choices as well. For example, the primitives used in Adiantum [CB18],
a combination of NH [Kro00] and Poly1305 [Ber05] for the keyed hash function and
XChaCha12 [B+08,Ber11] for the stream cipher, are still compatible with docked-double-
decker. Like Adiantum, the small lanes remain 128 bits, but unlike it the tweak is moved
to the stream cipher. As XChaCha12 takes a 192-bit nonce, there is still sufficient room
for a 64-bit tweak. Additionally, this move of the tweak allows for the use of reduced
tweak-dependence. In short, docked-double-decker with these primitives has the following
advantages over Adiantum:

1. Less primitives: docked-double-decker reduces the number of primitives used from 3
to 2, eliminating the use of a block cipher completely.

2. Arguably more efficient design: as the block cipher is replaced with a stream cipher
while maintaining the same number of passes over the data, docked-double-decker has
a more efficient design than Adiantum. Furthermore, docked-double-decker moves
the location of the tweak to previously unused space in the nonce of XChaCha12,
slightly reducing the input to the keyed hash functions, which also slightly increases
the efficiency.

3. More security in certain settings: another improvement of moving the tweak input to
the nonce of the stream cipher is that this allows for reduced tweak-dependence. This,
depending on the application, reduces the contribution of the keyed hash function in
the security bound, improving the security of the construction.
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The only limitations are that the minimum size is 2n instead of n, with n the size of the
small lane(s), and that the size of the tweak is limited to 64 bits. As a stream cipher
needs n bits as input and also needs to output n bits to have a good security bound, it
looks improbable that the minimum size of 2n can be reduced without having an invertible
primitive like a block cipher. However, in many applications, including disk encryption,
this minimum required size and only having a 64-bit tweak are no problem.

Although the usage of the tweak in docked-double-decker requires a longer nonce
for the stream cipher, this limitation can be averted by moving the tweak from the
stream ciphers to the keyed hash functions. The security proof remains very similar, but
there is one important difference: tweak-dependence. Where both double-decker and
docked-double-decker enjoy reduced tweak-dependence, this modification removes it.
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A Adiantum
Adiantum is a (tweakable) wide block cipher design of Crowley and Biggers [CB18]. We
describe its mode, in our notation and terminology, in Figure 4. Here, H is a ε-almost-∆-
universal hash function, F a stream cipher, and B a block cipher.
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HK
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HK

X Y

function Encrypt(W, P )
U∥V ← P , with |V | = n
R← V ⊞ HK(W, U)
R← BK1(R)
X ← U ⊕ FK2(R, |U |)
Y ← R ⊟ HK(W, X)
C ← X∥Y
return C

function Decrypt(W, C)
X∥Y ← C, with |Y | = n
R← Y ⊞ HK(W, X)
U ← X ⊕ FK2(R, |X|)
R← B−1

K2
(R)

V ← R ⊟ HK(W, U)
P ← U∥V
return P

Figure 4: Adiantum mode (originally called HBSH in [CB18]).
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