
Flexible Authenticated Encryption

Sanketh Menda Julia Len Viet Tung Hoang Mihir Bellare Thomas Ristenpart

July 1, 2023

Abstract

We define and build a new type of AEAD scheme that we call flexible. Flexibility is intended as an
answer to the growing list of desired security and performance features for future AEAD standards.
Rather than a scheme per requirement, we offer a single scheme that flexibly incorporates multiple
requirements, yet in a unified, systematic, and performance-optimal way. Mandatory for our definition
are to provide classic unique-nonce AE security and, importantly andmore novel, context commitment;
then additionally to allow keys and nonces of arbitrary length. Beyond this, the scheme is configurable
through an application-chosen input called a configuration. Via this input, one says what further or
advanced security or performance attributes one wants; for example, misuse resistance, nonce-hiding,
preservation of length, or parallelizability. The choice can be made dynamically and the scheme will
provide the chosen set of attributes without changing the key. In providing a flexible scheme, we take
a clean-slate approach. Our Flex scheme is built from a single permutation. Our implementations show
that, for each configuration, the performance of Flex is competitive with that of current, dedicated
schemes that directly and only provide the features named in that particular configuration.

1 Introduction

In this work we propose a new evolution of symmetric encryption, what we refer to as flexible AEAD.
We think this will facilitate and enable upcoming standardization efforts. We give definitions for flexible
AEAD as well as a concrete realization in the form of a scheme we simply call Flex. First we set the stage.

Emerging goals for AEAD. Recall that in a scheme for AEAD (Authenticated Encryption with Asso-
ciated Data) [26], encryption takes key, nonce, associated data and message to deterministically return a
ciphertext. The classical security requirement is unique-nonce AE (UNAE) security. This means privacy
of the message, and authenticity of the message and associated data, assuming encryption never reuses a
nonce. The NIST standard GCM is an example of an AEAD scheme.

Since the standardization of GCM, developers and researchers have identified a number of further, de-
sirable security and operational attributes for AEAD. Security attributes include committing security [1,
3, 11, 14, 17, 18], misuse resistance [28] and AE2-security (also called nonce-hiding) [4]; operational at-
tributes include parallelizability, robustness in the sense of [21] and support for arbitrary-length nonces
and keys. These and other attributes are part of a comprehensive list in the IETF draft on properties of
AEAD algorithms [9]. Let us now expand on (some of) these attributes and why they are desirable.

Committing security.Committing security.Committing security.Committing security.Committing security.Committing security.Committing security.Committing security.Committing security.Committing security.Committing security.Committing security.Committing security.Committing security.Committing security.Committing security.Committing security. A recent line of work has demonstrated the need for key commitment for AEAD
schemes. Key commitment asks that it be hard to find a ciphertext that decrypts correctly under two (or
more) different adversarially-chosen keys [17, 18]. Non-key-committing AEAD was first shown to be a
problem for moderation in encrypted messaging [14,18], and later in password-based encryption [24] and
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envelope encryption [1], among others. These findings have pushed the cryptography community to begin
proposing [1] and deploying new key-committing AEAD schemes [1, 2]. Indeed the recent IETF draft on
properties of AEAD algorithms explicitly cites key commitment as a security goal [9].

Key commitment definitions don’t model attacks in which adversaries exploit lack of commitment to
the associated data or nonce. Bellare and Hoang [3] introduced the notion of context commitment, and
recent work by Menda et al. [25] highlights that many AEAD schemes, including some that achieve key
commitment, do not achieve context commitment. This motivates the need to expand our goal to context
commitment.

Unfortunately, no currently standardized schemes achieve context commitment. This suggests we need
to define and standardize new AEAD schemes.

Misuse resistance.Misuse resistance.Misuse resistance.Misuse resistance.Misuse resistance.Misuse resistance.Misuse resistance.Misuse resistance.Misuse resistance.Misuse resistance.Misuse resistance.Misuse resistance.Misuse resistance.Misuse resistance.Misuse resistance.Misuse resistance.Misuse resistance. Stipulating non-repeating nonces is easy in theory but harder to ensure in practice,
where errors and misconfigurations have been reported to lead to repeating nonces. For many widely
used and standardized UNAE AEAD schemes, this has led to damaging attacks [8]. Misuse-resistant AE
(MRAE) [28] mitigates this by providing UNAE-security when nonces do not repeat, plus as good as pos-
sible security if they do. Standardization of an MRAE scheme is a desirable goal.

AE2 security.AE2 security.AE2 security.AE2 security.AE2 security.AE2 security.AE2 security.AE2 security.AE2 security.AE2 security.AE2 security.AE2 security.AE2 security.AE2 security.AE2 security.AE2 security.AE2 security. Embedded in the syntax and usage of AEAD is a weakness relating to the way nonces
are handled. Namely, since the nonce is needed for decryption, it is sent in the clear unless the receiver
already has it. But, as Bellare, Ng, and Tackmann [4] point out, some choices of nonces compromise
message privacy (for both UNAE and MRAE) and others (like counters) compromise sender anonymity.
AE2 (which comes in two forms, UNAE2 strengthening UNAE, and MRAE2 strengthening MRAE) hides
the nonce, increasing privacy. This is important for anonymous AE [10]. AE2 emerges as another desirable
attribute for a standard.

Robustness.Robustness.Robustness.Robustness.Robustness.Robustness.Robustness.Robustness.Robustness.Robustness.Robustness.Robustness.Robustness.Robustness.Robustness.Robustness.Robustness. The ciphertext expansion of a scheme is defined as the difference between ciphertext
length and plaintext length. UNAE security requires some ciphertext expansion. (Usually 128 bits for
GCM.) Some applications cannot permit this. An answer is robust AE [21], where one gets the best security
possible with a given constraint on the ciphertext expansion.

Key and nonce lengths.Key and nonce lengths.Key and nonce lengths.Key and nonce lengths.Key and nonce lengths.Key and nonce lengths.Key and nonce lengths.Key and nonce lengths.Key and nonce lengths.Key and nonce lengths.Key and nonce lengths.Key and nonce lengths.Key and nonce lengths.Key and nonce lengths.Key and nonce lengths.Key and nonce lengths.Key and nonce lengths. The 96-bit nonce-length ofGCM is viewed as a limitation because with random
nonces it permits at most 248 encryptions before a key change is needed. Schemes would ideally have either
no maximum nonce length or a very large one. Similarly, different users or applications want different
security levels and thus different key sizes. The need for post-quantum security is also pushing key sizes
for symmetric cryptography up. Ideally, a scheme should handle keys of different and arbitrary lengths.

The challenge for standardization. One approach for standardization would be to standardize a dif-
ferent scheme for each of some choice of goals. However, the dimensions indicated above give rise to
rather a lot of goals. Indeed, there are two choices for AE security (UNAE or MRAE), then a choice for
committing security (yes or no) and another for AE2 (yes or no), already 23 = 8 goals, with further possible
choices for robustness, parallelizability, streaming support, and key and nonce lengths.

An alternative is to standardize a scheme for the strongest goal (for example, MRAE, committing and
AE2) but this will mean that applications needing less stringent attributes will pay unnecessarily in cost.
Indeed, one can’t unfortunately achieve all the goals simultaneously while providing best-possible speed
for each individual goal. Misuse resistance requires a full pass over the plaintext before the first bits
of ciphertext can be produced, and known robust AE construction approaches require building a length-
preserving enciphering scheme and then combining with the encode-then-encipher paradigm [5]. In either
case you cannot have a scheme that is streaming, let alone parallelizable.

With flexibility, we suggest a different route.
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Flexible AEAD. At a high level, our idea is to reformulate AEAD so that it takes as run-time input
a configuration. The configuration, denoted cfg throughout, specifies an operating mode. But the same
secret key can be safely used across different configurations, even on a message-by-message basis. So one
can encrypt one message under a secret key using a fully parallelizable configuration, and another message
under an MRAE configuration, with the same secret key. Protocol developers can use this flexibility as
needed for their applications. In most cases they will presumably use a single configuration; in this case
flexible AEAD provides some defense-in-depth with respect to misconfigurations for the same secret key.

We provide new definitions to capture the syntax, semantics, and security of flexible AEAD. Flexible
AEADwill start with somemandatory (always provided) security and operational attributes. Then through
choices of the above-discussed configuration, it will further provide other attributes as options. Yet, this
will be implemented in a unified way with what is essentially a single scheme.

As mandatory, we ask for classic UNAE and context commitment. The reason for making the latter
mandatory is to avoid errors arising from developers not knowing that they need to turn it on. (Indeed,
the errors and attacks we have seen are arising from applications assuming implicitly that commitment
is present.) We also always ask for the ability to handle arbitrary-length keys and nonces. As optional, if
requested in cfg, we support providing MRAE, AE2 and streaming capability. Other configurations can be
added as needed.

The Flex scheme. Towards realizing flexible AEAD, we propose a clean-slate approach that reimagines
AEAD scheme construction to allow it to provide modern security and performance for a broad range
of application domains. Our Flex scheme conceptually has a straightforward structure: use a key deriva-
tion function (KDF) to derive sub-keys that can be safely used with different underlying schemes. Thus
constructively, Flex, brings into the AEAD what used to be external, namely, a KDF function.

This flexibility would perhaps seem to require a complex AEAD scheme, depending on many under-
lying mechanisms. But we build a “wide waist” strategy: one scheme has a variety of different configura-
tions all using the same underlying primitives. In particular, we build all of Flex’s various configurations
from a single underlying cryptographic permutation. For instance, we use a realization of tweaked Even-
Mansour [13] built from a permutation. While Flex works for any sufficiently wide permutation, we have
mostly focused on instantiations using Simpira [19].

We propose three primary Flex configurations. The OCH configuration provides an OCB-like mode of
operation that is fully parallelizable, but not MR nor robust. It is the most performant. We also provide
CIV (committing synthetic IV) an SIV [29] variant that provides MR security, and is as parallelizable as
possible. Finally, we aim to provide robust AE based on prior constructions [20, 21] using our underlying
tweakable block cipher.

Organization. The rest of the paper is organized as follows. In Section 2 we define our new crypto-
graphic primitive flexible AEAD (F-AEAD). In Section 3 we provide an overview of our F-AEAD construc-
tion called Flex. This includes an overview of the three primary Flex configurations. Finally, in Section 4we
describe preliminary benchmarks on the OCH configuration compared with other AEAD constructions.

2 Flexible AEAD Definitions

We start with new definitions for AEAD. These build off a variety of prior work, as we explain further
below, but weave in new aspects that we think will benefit secure, flexible deployability and usage.

Basic notation. We let 𝐵 = {0, 1}
8 be the set of 8-bit bytes. To be better aligned with practice, we will

define primitives over byte strings rather than bit strings, but note that our constructions can easily be
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changed to handle arbitrary bit strings.

Elements of F-AEAD. Recall that in classical AEAD [26, 27], encryption 𝐶 ← Enc(𝐾, 𝑁 , 𝐴𝐷,𝑀) takes
key, nonce, AD and message to return a ciphertext, while decryption 𝑀 ← Dec(𝐾, 𝑁 , 𝐴𝐷, 𝐶) takes key,
nonce, AD and ciphertext to return the message. Security can be basic (unique-nonce) [26, 27], requiring
that encryption under a key not repeat a nonce, or advanced (misuse resistant) [28], requiring only that it
not repeat nonce, AD and message.

We provide a slightly different andmore general formalization called flexible AEAD (F-AEAD). A novel
element of our framework is the introduction of an extra initialization algorithm Init which chooses the
appropriate AEAD algorithm based on the parameters specified in a configuration input cfg. For instance,
amongst other things, cfg includes a flag cfg.mr that says whether or not misuse resistance is requested.
This allows a user to dynamically make this choice in different settings without changing the key.

F-AEAD syntax. Formally, a flexible AEAD (F-AEAD) scheme Π specifies several algorithms and asso-
ciated quantities, as follows:
∙ 𝐾∗ ←$ Π.Kg(𝜅): The randomized key generation algorithm takes an integer 𝜅 ∈ Π.KL, which is the key

length (in bytes), and outputs a byte string 𝐾∗ ∈ 𝐵
𝜅 called a (secret) key. Here Π.KL ⊆ ℕ is the set of

allowed key lengths.
∙ 𝐾 ← Π.Init(cfg, 𝐾∗, 𝐴𝐷𝑠): The deterministic initialization algorithm initializes a new configuration

based on parameters specified in the algorithm. It takes as input a configuration cfg, key 𝐾∗, and setup
associated data𝐴𝐷𝑠 ∈ 𝐵

∗. The scheme specifies a setΠ.Cfgs of possible (allowed) configurations, and it
is required that cfg belongs to this set. The algorithm outputs a (secret) subkey 𝐾 ∈ Π.Cfgs×𝐵∗, where
the first component is the configuration and the second component is the encryption key, or it outputs
the distinguished error symbol ⊥. If 𝐾 ≠ ⊥, its encryption key component has length Π.SL(cfg, |𝐾∗|),
where Π.SL is called the subkey-length function. The configuration associated with 𝐾 is specified by
𝐾.cfg.

∙ 𝐶 ← Π.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀): The deterministic encryption algorithm takes as input subkey 𝐾 , nonce
𝑁 ∈ 𝐵

∗, message associated data𝐴𝐷𝑚 ∈ 𝐵
∗, and message𝑀 ∈ 𝐵

∗, and returns a ciphertext 𝐶 ∈ 𝐵
∗
∪{⊥}.

If 𝐶 ≠ ⊥, it has length Π.CL(𝐾.cfg, |𝑁 |, |𝑀|), where Π.CL is called the ciphertext-length function.
∙ 𝑀 ← Π.Dec(𝐾, 𝑁̃ , 𝐴𝐷𝑚, 𝐶): The decryption algorithm takes as input subkey 𝐾 , nonce 𝑁̃ , associated

data 𝐴𝐷𝑚, and ciphertext 𝐶, and returns a message 𝑀 ∈ 𝐵
∗
∪ {⊥} that is either a byte string or the

distinguished error symbol ⊥. If nonce-hiding is desirable, then 𝑁̃ may be set to the empty string 𝜀.
We proceed to some remarks, explanations, and choices.

Configurations.Configurations.Configurations.Configurations.Configurations.Configurations.Configurations.Configurations.Configurations.Configurations.Configurations.Configurations.Configurations.Configurations.Configurations.Configurations.Configurations. Configurations are customizable, but a configuration cfg always includes flags cfg.mr,

cfg.nh ∈ {true, false} indicating whether or not misuse resistant security or nonce-hiding is requested and
cfg.perm ∈ 𝐵

∗ indicating the type of permutation to use. These flags may be set independently of each
other.

Flag Configuration Type
mr misuse resistance boolean
nh nonce-hiding boolean

perm permutation string

Many key lengths.Many key lengths.Many key lengths.Many key lengths.Many key lengths.Many key lengths.Many key lengths.Many key lengths.Many key lengths.Many key lengths.Many key lengths.Many key lengths.Many key lengths.Many key lengths.Many key lengths.Many key lengths.Many key lengths. Typically, an encryption scheme mandates a single length for its key. Our definition
instead allows keys of different lengths. (In our construction, any length up to some maximum.) Security
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will depend on the shortest key length used. The usual setting of a single key length is captured by having
Π.KL be a singleton set. (It contains just one length.)

Validity of inputs.Validity of inputs.Validity of inputs.Validity of inputs.Validity of inputs.Validity of inputs.Validity of inputs.Validity of inputs.Validity of inputs.Validity of inputs.Validity of inputs.Validity of inputs.Validity of inputs.Validity of inputs.Validity of inputs.Validity of inputs.Validity of inputs.Whether or notΠ.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀) returns⊥ is required to depend only on𝐾.cfg, |𝐾 |,
|𝐴𝐷𝑚|, |𝑀| and can be easily computed given these quantities. We require that Π.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀) = ⊥

if 𝐾.cfg ∉ Π.Cfgs. Furthermore, if 𝐾.cfg.mr = true, meaning that misuse resistance is requested, then we
require thatΠ.Dec(𝐾, 𝑁̃ , 𝐴𝐷𝑚, 𝐶) = ⊥ if 𝑁̃ ≠ 𝜀. This is because specifying a nonce during decryption when
nonce misuse is requested should indicate an error.

Correctness.Correctness.Correctness.Correctness.Correctness.Correctness.Correctness.Correctness.Correctness.Correctness.Correctness.Correctness.Correctness.Correctness.Correctness.Correctness.Correctness. For correctness, we require that decryption of legitimate ciphertexts always succeeds. In
detail, for any𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀 , if𝐶 ← Π.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀) ≠ ⊥ and𝐾.cfg.mr = false, thenΠ.Dec(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝐶) =

𝑀 . Otherwise, if 𝐾.cfg.mr = true, then it should be that Π.Dec(𝐾, 𝜀, 𝐴𝐷𝑚, 𝐶) = 𝑀 .

Tidiness.Tidiness.Tidiness.Tidiness.Tidiness.Tidiness.Tidiness.Tidiness.Tidiness.Tidiness.Tidiness.Tidiness.Tidiness.Tidiness.Tidiness.Tidiness.Tidiness. Extending [28], we say that Π is tidy if: For any 𝐾, 𝑁 , 𝐴𝐷𝑚, 𝐶, if𝑀 ← Π.Dec(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝐶) ≠

⊥ then Π.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀) = 𝐶. This is not always required, but our schemes provide it.

Ciphertext length.Ciphertext length.Ciphertext length.Ciphertext length.Ciphertext length.Ciphertext length.Ciphertext length.Ciphertext length.Ciphertext length.Ciphertext length.Ciphertext length.Ciphertext length.Ciphertext length.Ciphertext length.Ciphertext length.Ciphertext length.Ciphertext length. Typically the ciphertext is stretched by some constant 𝜏 as compared with the plain-
text message. But we may have schemes for which the configuration dictates different security levels, and
in turn config-dependent stretch.

3 The Flex AEAD

We propose an F-AEAD called Flex. Flex offers solutions to common deployment settings and security
across different configurations, while retaining performance that is competitive with or beats the best
known (non-flexible) AEAD schemes. To do so, Flex’s design is modular, and can be viewed as baking into
the AEAD’s design what is traditionally left to users of AEAD, namely choice of different AEAD types
(misuse-resistance versus not) and key derivation. We will show how this affords Flex to easily adapt to
application requirements, while maintaining programmatic configuration for developers with associated
simple-to-use APIs.

Overview. We build Flex modularly. At a high level there are four main components all built from the
same underlying permutation 𝜋:
∙ A key derivation function (KDF) that achieves CR-PRF security. It is used to derive a subkey from

the secret subkey, associated data, and configuration. By default this is a simple sponge-style hash
construction, but we also give modes that allow parallelization and precomputation of static elements
of the input, such as the associated data .

∙ A non-misuse resistant encryption mode called OCH that is an OCB-like mode that provides context
committing security and nonce-hiding while being fully parallelizable.

∙ A misuse resistant encryption mode called CIV that is an SIV-like mode that provides context com-
mitting security and nonce-hiding while being maximally parallelizable.

∙ A robust encryption mode.
All components are new to this work, but of course use some design elements seen in prior work as we
will highlight where relevant. We can then mix-and-match the different KDF modes with the different
encryption modes to provide various designs, which enables a wide variety of AEAD schemes. At this
level our individual constructions follow the Hash-then-Encrypt mechanism from Bellare and Hoang [3]
that transforms a key-committing AEAD into a context-committing AEAD. But we carefully arrange our
constructions, down to the level of using a fast-to-rekey specially constructed Even-Mansour [16] cipher,
to avoid inefficiencies.
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Preliminaries. Let 𝜋 ∶ {0, 1}
𝑛
→ {0, 1}

𝑛 be a permutation that we will model as an ideal permutation.
Fix a number 𝜏 < 𝑛. We will target security of 𝜏/2 bits or greater. As a running example we will use
𝜏 = 256 and 𝑛 = 512, giving 128-bit security.

A permutation-based function. We use a few basic primitives built from 𝜋. The first is a variable-
output-length function 𝐹 ∶ {0, 1}

∗
× ℤ × {0, 1}

∗
→ {0, 1}

∗. We define that 𝐹(𝐾, 𝓁, 𝑋) outputs a bit string of
length 𝓁 using key 𝐾 . We will require that 𝐹 be a collision-resistant (CR) pseudorandom function (PRF).
One possibility for 𝐹 is to use a sponge-type construction [6] with the desired output length prepended to
the message. In this work, we provide our own construction that minimizes the underlying calls to 𝜋. For
simplicity, we do not describe the details of this construction here.

A permutation-based TBC. Our second underlying primitive is a tweakable blockcipher (TBC), also
built from 𝜋. Let  = {0, 1}

≤𝑛−8 be the set of all bit strings whose length is at most 𝑛 − 8. Then we use a
tweakable blockcipher 𝐸̃ ∶ Keys×Tweaks×{0, 1}𝑛 → {0, 1}

𝑛 whose key space is Keys = {0, 1}
𝜏
×{0, 1}

𝜏
×{0, 1}

𝜏 ,
tweak space is Tweaks = {0, 1, (1, 1), (1, 2)} ∪ (ℤ × [1, 2, 3] × ) and whose block length is 𝑛 bits. The set of
possible nonces includes any bit string 𝑁 with 0 ≤ |𝑁 | ≤ 𝑛 − 1.

At a high level, 𝐸̃ is constructed using a special version of tweaked Even-Mansour [13] built from a
permutation. For simplicity, we will not cover the details of the construction here.

3.1 Flex Overview

We provide a top-down description of Flex. It supports up to 256 different configurations, allowing cfg

to be represented by one byte. For clarity in our presentation, in addition to the configuration flags we
specify in Section 2, we let cfg.TL indicate the number of bits of tag we desire, cfg.NL indicate the length
of the nonce, and cfg.SL indicate value 𝜏 such that the subkey is length 3𝜏. We define Flex as follows.

∙ Flex.Kg(𝜅) outputs a uniform bit string 𝐾∗ of length 𝜅.
∙ Flex.Init(cfg, 𝐾∗, 𝐴𝐷𝑠) verifies that cfg belongs to the set of possible (allowed) configurations Π.Cfgs

and that |𝐾∗| is in the set of allowed key lengths Π.KL. If not, it outputs an error. Otherwise, it
applies the key derivation function KD(𝐾∗, cfg, 𝐴𝐷𝑠) to generate three keys (𝐾1, 𝐾2, 𝐾3) each of length
𝜏 = cfg.SL bits and forms subkey 𝐾 ← (cfg, 𝐾1 ‖ 𝐾2 ‖ 𝐾3). We thus define Π.SL(cfg, |𝐾∗|) as returning
3⋅cfg.SL. Optionally it may perform some precomputation of values that will help speed-up encryption
(e.g., the table L used for fast computation of our TBC).We refer to such values that get used bymultiple
encryption calls as state, and notate it by 𝑠𝑡.

∙ Flex.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀) works in different ways depending on 𝐾.cfg. For instance, if 𝐾.cfg.mr = true,
then misuse resistant mode CIV is chosen for encryption; otherwise, non-misuse resistant mode OCH
is chosen. The output is a ciphertext consisting of a triple (𝐶hdr, 𝐶, 𝑇 ) consisting of a (possibly empty)
ciphertext header 𝐶hdr, a ciphertext body 𝐶, and a tag 𝑇 and an updated state 𝑠𝑡. Some modes may
have 𝐶hdr empty.

∙ Flex.Dec(𝐾, 𝑁̃ , 𝐴𝐷𝑚, 𝐶), like encryption, proceeds depending on the parameters specified in 𝐾.cfg. If
𝐾.cfg.nh = true and 𝑁̃ ≠ 𝜀, then decryption returns an error. Otherwise, it proceeds according to the
mode specified by the configuration to return the message 𝑀 .

3.2 The Flex KDF

We start by describing the KDF used by Flex, which simply combines an encoding of the inputs (cfg, 𝐾∗, 𝐴𝐷𝑠)

and generates subkeys 𝐾1, 𝐾2, 𝐾3 and (optionally) some pre-computed state.
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Checksum0τ

τ

Figure 1. Illustration of OCH. Given a nonce 𝑁 and a message 𝑀 , we parse 𝑁 ‖ 𝑀 into 𝑃1 ⋯𝑃𝑚, where each |𝑃𝑖| =

𝑛. When 𝑁 ‖ 𝑀 is block-aligned, |𝑁 | + |𝑀| ≥ 𝑛, and 𝑛 ≥ 2𝜏, Checksum is computed as the first 𝑛 − 𝜏 bits of
𝑃1 ⊕ 𝑃2 ⊕ 𝑃3 ⊕ 𝑃4 ⊕ 𝑃5.

We compute an encoding 𝐾 ′ of the key 𝐾∗ to serve as the PRF key. In particular, if Flex.KL is a singleton
set (only one allowed key length), then we let 𝐾 ′ be 𝐾∗. Otherwise, we let 𝐾 ′ be a 64-bit encoding of the
key length followed by the key: ⟨|𝐾∗|⟩64 ‖𝐾∗. The bit string encoding 𝑆 is computed as follows. The first byte
of 𝑆 is cfg. Similar to how 𝐾∗ is encoded, if cfg allows only a single setup AD length, then we append 𝐴𝐷𝑠

and otherwise append a 64-bit encoding of the length and then the AD. All of this ensures an unambiguous
encoding of cfg and 𝐴𝐷𝑠 . We then apply 𝐹(𝐾

′
, 3𝜏, 𝑆) to yield an encryption subkey triple (𝐾1, 𝐾2, 𝐾3). In

our scheme, 𝐾1 will serve as a commitment to the input.

3.3 The Flex Non-Misuse Resistant Mode: OCH

We now describe the OCH AEAD scheme used by Flex when the configuration specifies that misuse resis-
tance is not needed. It is by default nonce-hiding and context committing. Recall that 𝜏 = cfg.SL, which
is used to derive the length of the subkey, and 𝑛 is the block length of our TBC 𝐸̃. For this construction,
we assume 𝜏 < 𝑛. Detailed pseudocode is provided in Figure 2, while an example illustration is provided
in Figure 1.

Encryption takes as input a subkey 𝐾 = (cfg, 𝐾1 ‖ 𝐾2 ‖ 𝐾3) where each 𝐾𝑖 for 𝑖 ∈ {1, 2, 3} is of size 𝜏. In
addition, it takes as input the per-message associated data𝐴𝐷𝑚, and a plaintext𝑀 . Encryption first verifies
that the length of the nonce matches that specified by cfg.NL and returns the error symbol ⊥ otherwise.
If |𝐴𝐷𝑚| > 0, the algorithm then computes a new subkey 𝐾1 via 𝐾1 ← 𝐹(𝐾1, 𝜏, 𝐴𝐷𝑚). Encryption proceeds
depending on the length of the nonce and message, whether they are block-aligned, and how 𝑛 compares
to 𝜏. For simplicity, we will describe the case when 𝑁 ‖ 𝑀 is block-aligned and 𝑛 ≥ 2𝜏, but details of each
case are presented in Figure 2.

Encryption. When 𝓁 = |𝑁 | + |𝑀| ≥ 𝑛 and 𝓁 is a multiple of 𝑛, we use an OCB-style mode to en-
crypt 𝑃 = 𝑁 ‖ 𝑀 . We assume here that |𝑁 | is fixed by cfg.NL, or otherwise simple concatenation would
be an ambiguous encoding. To encrypt, we first split 𝑃 into 𝑚 blocks 𝑃1, … , 𝑃𝑚, each of length 𝑛 bits. The
algorithm then computes 𝐶1 ← 𝐸̃

1

𝐾
(𝑃1) and for 2 ≤ 𝑖 ≤ 𝑚 it computes 𝐶𝑖 ← 𝐸̃

𝑖,𝑁

𝐾
(𝑃𝑖). To generate the tag,

we compute Checksum ← 𝑃1 ⊕ ⋯ ⊕ 𝑃𝑚 and then we let 𝑇 ← 𝐸̃
𝑚,2,𝑁

𝐾
(0

𝜏
‖ Checksum[1..𝑛 − 𝜏])[1..𝜏]. This

corresponds to having enough room in 𝑛 to allow us to commit to the key 𝐾1 — our design of 𝐸̃ guarantees
that prepending 0

𝜏 for any tweak is committing to 𝐾1 if 𝑛 ≥ 2𝜏 — while simultaneously using 𝐸̃ as a PRF
to complete generation of an authentication tag. Note that here we don’t actually require all of Checksum
to be processed, so we truncate it to a sufficiently large amount.
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OCH.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀)OCH.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀)OCH.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀)OCH.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀)OCH.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀)OCH.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀)OCH.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀)OCH.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀)OCH.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀)OCH.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀)OCH.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀)OCH.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀)OCH.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀)OCH.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀)OCH.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀)OCH.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀)OCH.Enc(𝐾, 𝑁 , 𝐴𝐷𝑚, 𝑀)

If |𝑁 | ≠ cfg.NL then return ⊥

(cfg, 𝐾1 ‖ 𝐾2 ‖ 𝐾3) ← 𝐾

𝜏 ← cfg.SL

If |𝐴𝐷𝑚 | > 0:
𝐾1 ← 𝐹(𝐾1, 𝜏, 𝐴𝐷𝑚)

𝐾 ← (𝐾1, 𝐾2, 𝐾3)

𝑃1, … , 𝑃𝑚𝑃∗ ← 𝑁 ‖ 𝑀 where each
|𝑃𝑖 | = 𝑛 and 𝑃∗ < 𝑛

If |𝑁 | + |𝑀| < 𝑛:
𝑇𝑝𝑟𝑒 ← 𝐸̃

1,2

𝐾
(𝑁 ‖ 𝑀 ‖ 10

∗
)[1..𝜏/2]

𝑇 ← 𝐸̃
0

𝐾
(0

𝑛−(𝜏/2)
‖ 𝑇𝑝𝑟𝑒)

𝑇 ← 𝑇 [1..𝜏]

Pad ← 𝐸̃
1,1

𝐾
(𝑇 ‖ 10

∗
)

𝐶hdr ← 𝑁 ⊕ Pad[1..|𝑁 |]

𝐶 ← 𝑀 ⊕ Pad[|𝑁 | + 1..|𝑁 | + |𝑀|]

Return (𝐶hdr, 𝐶, 𝑇 )

𝐶1 ← 𝐸̃
1

𝐾
(𝑃1)

Checksum ← 𝑃1; 𝐶∗ ← 𝜀

For 𝑖 ← 2 to 𝑚:
𝐶𝑖 ← 𝐸̃

𝑖,𝑁

𝐾
(𝑃𝑖)

Checksum ← Checksum ⊕ 𝑃𝑖

If 𝑃∗ = 𝜀 and 𝑛 ≥ 2𝜏:
𝑇 ← 𝐸̃

𝑚,2,𝑁

𝐾
(0

𝜏
‖ Checksum[1..𝑛 − 𝜏])

Else if 𝑃∗ = 𝜀 and 𝑛 < 2𝜏:
𝑥 ← 𝐸̃

𝑚,2,𝑁

𝐾
(Checksum)

𝑇 ← 𝐸̃
0

𝐾
(0

𝜏
‖ 𝑥[1..𝑛 − 𝜏])

Else:
Pad ← 𝐸̃

𝑚,1,𝑁

𝐾
(0

𝑛
)

𝐶∗ ← 𝑃∗ ⊕ Pad[1..|𝑃∗ |]
Checksum ← Checksum ⊕ 𝑃∗10

∗

𝑇 ← 𝐸̃
𝑚,3,𝑁

𝐾
(0

𝜏
‖ Checksum[1..𝑛 − 𝜏])

𝐶hdr ← 𝐶1[1..|𝑁 |]

𝐶 ← 𝐶1[|𝑁 | + 1..𝑛]…𝐶𝑚𝐶∗

𝑇 ← 𝑇 [1..𝜏]

Return (𝐶hdr, 𝐶, 𝑇 )

OCH.Dec(𝐾, 𝑁̃ , 𝐴𝐷𝑚, 𝐶)OCH.Dec(𝐾, 𝑁̃ , 𝐴𝐷𝑚, 𝐶)OCH.Dec(𝐾, 𝑁̃ , 𝐴𝐷𝑚, 𝐶)OCH.Dec(𝐾, 𝑁̃ , 𝐴𝐷𝑚, 𝐶)OCH.Dec(𝐾, 𝑁̃ , 𝐴𝐷𝑚, 𝐶)OCH.Dec(𝐾, 𝑁̃ , 𝐴𝐷𝑚, 𝐶)OCH.Dec(𝐾, 𝑁̃ , 𝐴𝐷𝑚, 𝐶)OCH.Dec(𝐾, 𝑁̃ , 𝐴𝐷𝑚, 𝐶)OCH.Dec(𝐾, 𝑁̃ , 𝐴𝐷𝑚, 𝐶)OCH.Dec(𝐾, 𝑁̃ , 𝐴𝐷𝑚, 𝐶)OCH.Dec(𝐾, 𝑁̃ , 𝐴𝐷𝑚, 𝐶)OCH.Dec(𝐾, 𝑁̃ , 𝐴𝐷𝑚, 𝐶)OCH.Dec(𝐾, 𝑁̃ , 𝐴𝐷𝑚, 𝐶)OCH.Dec(𝐾, 𝑁̃ , 𝐴𝐷𝑚, 𝐶)OCH.Dec(𝐾, 𝑁̃ , 𝐴𝐷𝑚, 𝐶)OCH.Dec(𝐾, 𝑁̃ , 𝐴𝐷𝑚, 𝐶)OCH.Dec(𝐾, 𝑁̃ , 𝐴𝐷𝑚, 𝐶)

If 𝑁̃ ≠ 𝜀 then return ⊥

(cfg, 𝐾1 ‖ 𝐾2 ‖ 𝐾3) ← 𝐾

𝜏 ← cfg.SL

If |𝐴𝐷𝑚 | > 0:
𝐾1 ← 𝐹(𝐾1, 𝜏, 𝐴𝐷𝑚)

𝐾 ← (𝐾1, 𝐾2, 𝐾3)

(𝐶hdr, 𝐶, 𝑇 ) ← 𝐶

𝐶1, … , 𝐶𝑚, 𝐶∗ ← 𝐶hdr ‖ 𝐶 where each
|𝐶𝑖 | = 𝑛 and 𝐶∗ < 𝑛

If |𝐶hdr | + |𝐶| < 𝑛:
Pad ← 𝐸̃

1,1

𝐾
(𝑇 ‖ 10

∗
)

𝑁 ← 𝐶hdr ⊕ Pad[1..|𝐶hdr |]
𝑀 ← 𝐶 ⊕ Pad[|𝐶hdr | + 1..|𝐶hdr | + |𝐶|]

𝑇𝑝𝑟𝑒 ← 𝐸̃
1,2

𝐾
(𝑁 ‖ 𝑀 ‖ 10

∗
)[1..𝜏/2]

𝑇
′
← 𝐸̃

0

𝐾
(0

𝑛−(𝜏/2)
‖ 𝑇𝑝𝑟𝑒)

𝑇
′
← 𝑇

′
[1..𝜏]

If 𝑇 ≠ 𝑇
′ then return ⊥

Return 𝑀

𝑃1 ← 𝐷̃
1

𝐾
(𝐶1)

𝑁 ← 𝑃1[1..cfg.NL]

Checksum ← 𝑃1; 𝑃∗ ← 𝜀

For 𝑖 ← 2 to 𝑚:
𝑃𝑖 ← 𝐷̃

𝑖,𝑁

𝐾
(𝐶𝑖)

Checksum ← Checksum ⊕ 𝑃𝑖

If 𝐶∗ = 𝜀 and 𝑛 ≥ 2𝜏:
𝑇
′
← 𝐸̃

𝑚,2,𝑁

𝐾
(0

𝜏
‖ Checksum[1..𝑛 − 𝜏])

Else if 𝐶∗ = 𝜀 and 𝑛 < 2𝜏:
𝑥 ← 𝐸̃

𝑚,2,𝑁

𝐾
(Checksum)

𝑇
′
← 𝐸̃

0

𝐾
(0

𝜏
‖ 𝑥[1..𝑛 − 𝜏])

Else:
Pad ← 𝐸̃

𝑚,1,𝑁

𝐾
(0

𝑛
)

𝑃∗ ← 𝐶∗ ⊕ Pad[1..|𝐶∗ |]
Checksum ← Checksum ⊕ 𝑃∗10

∗

𝑇
′
← 𝐸̃

𝑚,3,𝑁

𝐾
(0

𝜏
‖ Checksum[1..𝑛 − 𝜏])

𝑇
′
← 𝑇

′
[1..𝜏]

If 𝑇 ≠ 𝑇
′ then return ⊥

𝑃1 ← 𝑃1[cfg.NL + 1..𝑛]

Return 𝑃1 …𝑃𝑚𝑃∗

Figure 2. The OCH encryption and decryption subroutines.

Decryption. The decryption algorithm of OCH proceeds as expected. Since OCH is nonce-hiding, if the
nonce 𝑁̃ is specified rather than left as the 𝜀, the algorithm returns error symbol ⊥. The algorithm decrypts
each ciphertext block, then recomputes the authentication tag, and verifies that it matches the tag that is
part of the ciphertext. If they do not match, then decryption fails and returns error symbol ⊥. Otherwise,
decryption returns the plaintext message.

Removing nonce hiding. OCH provides nonce hiding as a default property and so also encrypts the
nonce. If it is desired to use a more basic setting that assumes unique-nonce security and no nonce hiding,
then OCH can be updated so that only the message is encrypted and the nonce is then given as an input
during decryption.
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Figure 3. Encryption prformance on an Intel i7-9750H, an x86_64 processor with AES-NI. The x-axis shows message
length in bytes and the y-axis shows the throughput in CPU cycles-per-byte (lower is better). (Left) Performance
on medium-size messages, in linear scale. (Right) Performance on large-size messages, in log scale.

3.4 Other Flex Modes

We briefly describe the other modes provided by Flex.

The MR configuration CIV. CIV is the misuse resistant mode associated with Flex. It is used when
the configuration specifies that MR is requested via cfg.mr = true. We briefly give an overview of how it
works here. More details on its construction will be forthcoming.

At a high level, the construction first computes a PRF based on PMAC [7] over the message using the
subkey. It computes a CR hash over the output of the PRF and the subkey to generate the authentication
tag, which serves as the synthetic IV. Finally, it uses a CTR-mode with the subkey to encrypt the message
and form the ciphertext.

The robust configuration. As we mention in the introduction, another desirable functionality for Flex
is to provide a robust AEADmode. Robust AEAD schemes allow specifying themaximal ciphertext stretch,
where ciphertext integrity should be achieved up to the maximal possible.

We aim to support robust AEADby using a prior TBC, such as encode-then-encipherwith an EME∗ [20]
mode or AEZ [21]. Like our MR configuration, more details on this construction will be forthcoming.

4 Performance

Figure 3 compares the performance of OCH to GCM [15], OCB3 [22,23], and the CTX construction [12] in-
stantiated with GCM and HMAC-SHA256. GCM and OCB3 represent the performance of widely deployed
AEAD schemes, while CTX with GCM and HMAC-SHA256 represents the performance of current 128-bit
context committing AEAD schemes.

The implementation of GCM is from Ring [30] which uses OpenSSL’s assembly GCM implementation1.
The implementation of OCB3 is the optimized C implementation from the OCB3 webpage2. The CTX

1https://github.com/briansmith/ring/blob/95948b39/crypto/fipsmodule/modes/asm/aesni-gcm-x86_64.pl
2https://www.cs.ucdavis.edu/~rogaway/ocb/news/
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implementation was created by combining Ring’s GCM with Ring’s HMAC-SHA256.
During benchmarking, we fixed the size of the associated data to be 16 bytes, and used default size

nonces (12 bytes for GCM, OCB3, and CTX; and 32 bytes for OCH). A message buffer of the specified
length was initialized with random bytes and this buffer was iteratively encrypted. This encryption was
repeated at least 100,000 times for each configuration of message size and scheme, and preceded by a
warm-up of at least 100,000 executions (to warm caches). Cycle counts were measured periodically using
the RDTSC instruction. After ensuring that the variance between these periodic measurements was low,
they were averaged to get the final measurements. Finally, the full experiment was repeated two times to
check that the variance across runs was also low.

On medium-size messages (256 to 2048 bytes), OCH outperforms CTX, because of the high cost of
invoking HMAC-SHA256. But, for large-size messages (4096 bytes and larger), since HMAC-SHA256 is
only invoked once and its inputs (GCM tag, associated data, nonce, and key) don’t vary with message
size, this cost is amortized. Thus CTX outperforms OCH and eventually matches the performance of plain
GCM.

Benchmarks on other platforms and against other AEAD schemes are forthcoming.
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