
Short Tweak TBC and Its Applications in1

Symmetric Ciphers2

Avik Chakraborti1, Nilanjan Datta1, Ashwin Jha2, Cuauhtemoc3

Mancillas-Lopez3, Mridul Nandi4 and Yu Sasaki54

1Institute for Advancing Intelligence, TCG CREST5

avikchkrbrti@gmail.com,nilanjan.datta@tcgcrest.org6
2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany7

ashwin.jha@cispa.de8
3Indian Statistical Institute, Kolkata, India9

mridul.nandi@gmail.com10
4Computer Science Department, CINVESTAV-IPN, Mexico11

cuauhtemoc.mancillas83@gmail.com12
5NTT Secure Platform Laboratories, Tokyo, Japan13

sasaki.yu@lab.ntt.co.jp14

Abstract. Tweakable block cipher (TBC), a stronger notion than standard block15

ciphers, has wide-scale applications in symmetric-key schemes. At a high level, it16

provides flexibility in design and (possibly) better security bounds. In multi-keyed17

applications, a TBC with short tweak values can be used to replace multiple keys.18

However, the existing TBC construction frameworks, including Tweakey and XEX,19

are designed for general purpose tweak sizes. Specifically, they are not optimized for20

short tweaks, which might render them inefficient for certain resource constrained21

applications. So a dedicated paradigm to construct short-tweak TBCs (tBC) is highly22

desirable. In this paper, as a first contribution, we present a dedicated framework,23

called the Elastic-Tweak framework (ET in short), to convert any reasonably secure24

SPN block cipher into a secure tBC. We apply the ET framework on GIFT and AES25

to construct efficient tBCs, named TweGIFT and TweAES. As our second contribution,26

we propose a nonce misuse resistant, INT-RUP secure lightweight authenticated27

cipher ESTATE that uses short-tweak TBC as the underlying primitive. Finally, we28

show some other applications of ET-based tBCs, which are better than their block29

cipher counterparts in terms of key size, state size, number of block cipher calls, and30

short message processing. Some notable applications include, Twe-FCBC (reduces the31

key size of FCBC, and reduces the state size and the number of block cipher calls of32

CMAC), Twe-LightMAC_Plus (better rate than LightMAC_Plus), Twe-COLM (reduces33

the number of block cipher calls and simplifies the design of COLM).34

Keywords: TBC, GIFT, AES, Tweakey, XEX35

1 Introduction36

Since their advent in late 1970’s, block ciphers [FIP01] have become the ubiquitous37

building blocks in various symmetric-key based cryptographic designs, including encryption38

schemes [ENC01], message authentication codes (MACs) [CMA05], and authenticated39

encryption [CCM04]. Due to their wide-scale applicability, block ciphers are also the most40

well-analyzed symmetric-key primitives. As a result, the cryptographic community bestows41

a high degree of confidence in block cipher based designs. Block cipher structures are42

more or less well formalized and there are generic ways to evaluate the security of a block43

mailto:avikchkrbrti@gmail.com, nilanjan.datta@tcgcrest.org
mailto:ashwin.jha@cispa.de
mailto:mridul.nandi@gmail.com
mailto:cuauhtemoc.mancillas83@gmail.com
mailto:sasaki.yu@lab.ntt.co.jp


2 Short Tweak TBC and Its Applications in Symmetric Ciphers

cipher against the classical linear [Mat93] and differential [BS90] attacks. The literature44

is filled with a plethora of block cipher candidates, AES [FIP01] being the most notable45

among them. AES is currently the NIST standard block cipher [FIP01], and it is the46

recommended choice for several standardized encryption, MAC and AE schemes such as47

CTR [ENC01], CMAC [CMA05], AES-GCM [GCM07] etc. A recent block cipher proposal,48

named GIFT [BPP+17] has generated a lot of interest due to its ultra-lightweight nature.49

1.1 Some Issues in Block Cipher Based Designs50

We would like to mention some issues in the block cipher based designs both in the design51

level and in the practical usage level.52

For the design level, apart from the security, the designers mainly consider a trade off53

between the storage and the circuit complexity (in terms of the number of computations).54

These two points are given below.55

(i) Storage is often measured by the key size, the auxiliary secret state size and the56

internal state size.57

(ii) Circuit complexity is highly dependent on the internal module structures.58

To have an efficient design, the designers always consider (1) to have optimized storage59

and (2) to remove avoidable modules, optimizing the circuit complexity and increasing the60

throughput (faster implementation with lesser operations).61

The points described above are especially important in design of lightweight applications62

on IoT platforms. We elaborate the above mentioned design level issues in detail.63

Key Size of the Designs: Several designs use more than one independent block cipher64

keys, which could be an issue for storage constrained applications. Some notable examples65

of such designs are sum of permutations, EDM [CS16], EWCDM [CS16], CLRW2 [LST12],66

GCM-SIV-2 [IM16], Benes construction [Pat08b]. While some of these designs have been67

reduced to single key variants, reducing a multi-keyed design to single-key design is, in68

general, a challenging problem.69

Auxiliary Secret State: FCBC, a three-key MAC by Black and Rogaway [BR05], is70

a CBC-MAC type construction. CMAC [CMA05], the NIST recommended MAC design,71

reduces number of keys from three to one by using an auxiliary secret state (which is72

nothing but the encryption of zero block). Though CMAC is NIST recommended MAC73

design, it costs an extra block cipher call (compared to FCBC) and holds an additional74

state. This may be an issue in hardware applications, where area and energy consumption75

are very crucial parameters.76

Simplicity of Designs: Design simplification, is a closely related topic to the single-77

keyed vs. multi-keyed debate. A simple design could be beneficial for real life applications,78

and better understanding of designs themselves. Often, the single-keyed variant of a79

block cipher based design is much more complex than the multi-keyed version, both in80

implementation and security analysis. This is due to several auxiliary functions used81

chiefly for domain separation. For instance CLOC and SILC [IMG+16] use several functions82

depending upon the associated data and message length. In contrast, the multi-keyed83

variants of CLOC and SILC would be much simpler.84

Another point to ponder is practical usage level issues. One of the most important85

issues to be considered is efficient processing of short message inputs and the existing86

network standards are not optimized for it. Thus it is important to have designs to handle87

this issue. In fact the standardizing committees (e.g, NIST) are also searching for new88

standards and they are giving importance for efficient short message processing by the89

designs. This is evident from the statement published by NIST in the call for submissions90

for the Lightweight Cryptography Standardization Process.91



Chakraborti et al. 3

92

“Submitted AEAD algorithms and optional hash function algorithms should perform signif-93

icantly better in constrained environments (hardware and embedded software platforms)94

compared to current NIST standards. They should be optimized to be efficient for short95

messages (e.g., as short as 8 bytes).”96

97

Short Message Processing: As pointed out, an essential requirement in lightweight98

applications is efficient short input data processing, while minimizing the memory con-99

sumption and precomputation. In use cases with tight requirements on delay and latency,100

the typical packet sizes are small (way less than 1 Kilobytes) as large packets occupy a101

link for longer duration, causing more delays to subsequent packets and increasing latency.102

For example, Zigbee [Zig], Bluetooth low energy and TinySec [KSW04] limit the maxi-103

mum packet lengths to 127 bytes, 251 bytes and 128 bytes, respectively. Similarly, CAN104

FD [CAN], a well-known transmission protocol in automotive networks, allows message105

length up to 64 bytes. The packet sizes in EPC tag [EPC], which is an alternate to the106

bar code using RFID, is typically 12 bytes.107

Cryptographic designs with low latency for shorter messages could be highly beneficial108

for such applications. As it turns out, for many designs short message performance109

is not that good due to some constant overhead. For instance CMAC uses one block110

cipher call to generate a secret state, and SUNDAE [BBLT18] uses the first call of block111

cipher to distinguish different possibilities of associated data and message lengths. So,112

to process a single block message, SUNDAE requires two block cipher calls. CLOC and113

SILC [IMG+16] have similar drawbacks. They cost 2 and 4 calls to process a single block114

message. LightMAC_Plus [LPTY16], feeds a counter-based encoded input to the block115

cipher, which reduces the rate.1116

1.2 Possible Approach117

The possible approach to address these problems is to design a primitive that can or helps118

to solve the above issues. Tweakable block cipher, a very powerful primitive, can be the119

best fit for this purpose.120

Tweakable block cipher can actually solve most of the aforementioned issues in block121

ciphers quite easily. A secure TBC with distinct tweaks is actually equivalent to indepen-122

dently keyed instantiations of a secure block cipher. This naturally gives a TBC based123

single-keyed design for any block cipher based multi-keyed design. In some cases, TBCs124

can also avoid the extra block cipher calls. It also helps to simplify designs like CLOC and125

SILC.126

In all these cases, we observe that a short tweak space (in most of the cases 2-bit or127

4-bit tweaks) is sufficient. In other words, a short-tweak tweakable block cipher (in short128

we call tBC) would suffice for resolving these issues. Our aim is to describe a design, such129

that, by this design the attackers have degrees of freedom to attack the design only by a130

few bits.131

1.3 Survey of Existing Designs132

We do a short survey of the previous schemes to get some idea on the designs.133

Tweakable Block Ciphers: The Hasty Pudding cipher [Sch98], an unsuccessful134

candidate for AES competition, was one of the first tweakable block ciphers.2 Later, Liskov135

et al. formalized this in their foundational work on tweakable block ciphers [LRW02].136

Tweakable block ciphers (TBCs) are more versatile and find a broad range of applications,137

1No. of message blocks processed per block cipher call.
2It used the term “spice” for tweaks.



4 Short Tweak TBC and Its Applications in Symmetric Ciphers

most notably in authenticated encryption schemes, such as OCB [KR11], COPA [ABL+15],138

and Deoxys [JNP16a]; and message authentication codes, such as ZMAC [IMPS17], NaT139

[CLS15], and ZMAC+ [LN17]. TBCs can be designed from scratch [Cro00,Sch98,FLS+10],140

or they can be built using existing primitives like block ciphers, and public permutations.141

LRW1, LRW2 [LRW02], CLRW2 [LST12], XEX [Rog04] and XHX [JLM+17] are some142

examples of the former category, whereas Tweakable Even-Mansour [CLS15] is an example143

of the latter. All the above constructions are built using generic modes and are provably144

secure. However, all of them use larger tweaks and may not be efficient in several of the145

above scenarios. Later, Tweakey framework tried to solve the performances issues with146

efficient instantiations and currently one of the most efficient framework to solve the above147

issues.148

The Tweakey Framework: At Asiacrypt ’14, Jean et al. presented a generic framework149

for TBC construction, called Tweakey [JNP14a], that considers the tweak and key inputs150

in a unified manner. Basically, the framework formalized the concept of tweak-dependent151

keys. The Tweakey framework gave a much needed impetus to the design of TBCs, with152

several designs like Kiasu [JNP16b], Deoxys [JNP16a], SKINNY and Mantis [BJK+16] etc.153

As Tweakey is conceptualized with general purpose tweak sizes in mind, it is bit difficult to154

optimize Tweakey for tBC. For instance, take the example of SKINNY-128. To process only155

4-bit tweak, the additional register is limited but their computation modes must move from156

TK1 to TK2, which increases the number of rounds by 8. This in turn affects the throughput157

of the cipher. Although, some Tweakey-based designs, especially Kiasu-BC [JNP16b] do not158

need additional rounds, yet this is true in most of the existing Tweakey-based designs. We159

also note here that Kiasu-BC, which is based on AES, is weaker than AES by one round, as160

observed in several previous cryptanalytic works [DEM16,DL17,TAY16].161

So, there is a need for a generic design framework for tBC, which (i) can be applied on162

top of a block cipher, (ii) adds minimal overheads, and (iii) is as secure as the underlying163

block cipher.164

XE and XEX: Rogaway [Rog04], proposed two efficient ways of converting a block cipher165

into a tweakable block cipher, denoted by XE and XEX. These methods are widely used166

in various modes such as PMAC [BR02], OCB [RBB03], COPA [ABL+15], ELmD [DN15]167

etc. However, XE and XEX have several limitations with respect to a short tweak space,168

notably (i) security is limited to birthday bound (security bound degrades to the birthday169

bound of the security of the underlying block cipher), and (ii) precomputation and storage170

overhead to generate the secret state. In addition, it also requires to update the secret171

state for each invocation, which might add some overhead.172

1.4 Our Contributions173

Our contributions are manyfold. The first part describes the new generic Elastic-tweak174

framework which transforms a block cipher into a short tweak tweakable block cipher.175

The second part describes several design level applications that can improve the existing176

designs significantly. Finally, protocol level applications are described that can improve177

throughput and energy of the standard network protocols standard network protocols178

(protocols that process short messages such as CCMP, Bluetooth Low Energy 5.0, TLS 1.2179

etc.).180

1. Elastic-Tweak Framework: In this work, we address the above issues and describe181

a generic framework, called the Elastic-Tweak framework (ET in short), to transform a182

block cipher into a short tweak TBC. A short tweak can be as small as 4 bits and as large183

as 16 bits. This small size ensures that the tweak storage overhead is negligible. Overall,184

our protocol outperforms the others as it provides185

(a) Negligible overheads for short tweaks,186



Chakraborti et al. 5

(b) Generic conversion from BC to tBC,187

(c) confidence over security evaluation as it is based on an existing block cipher,188

(d) simple handling of tweaks provides advantage both in software and hardware imple-189

mentations, and190

(e) The Backward Compatibility feature (tBC with zero tweak functions the same as BC).191

In this framework, given the block cipher, we first expand the short tweak using linear192

code, and then inject the expanded tweak at intervals of some fixed number of rounds, say193

r. Designs under this framework can be flexibly built over a secure block cipher, and are194

as secure as the underlying block cipher.195

The ET framework distributes the effect of the tweak into the block cipher state that196

can generate several active bytes. In particular we choose a linear code with high branch197

number to expand the input tweak. This design is particularly suitable for short tweaks to198

ensure the security against differential cryptanalysis because the small weight of the short199

input always results in a large weight of the output.200

Another advantage of the framework is the easiness of the security evaluation. First,201

for zero tweak value, the plaintext-ciphertext transformation is exactly the same as the202

original cipher (i.e. it has backward compatibility feature). Therefore, to evaluate the203

security of the new construction, we only need to consider the attacks that exploit at least204

one non-zero tweak. Second, the large weight of the expanded tweak ensures relatively205

high security only with a small number of rounds around the tweak injection. This allows206

a designer to focus on the security of the r-round transformation followed by the tweak207

injection and further followed by the r-round transformation, which is called “2r-round208

core."209

We instantiate this framework with the standard and the most popular block cipher210

AES [FIP01] with different tweak sizes varying from 4 to 16. We also instantiate this211

Elastic-tweak with the GIFT [BPP+17] block cipher. We implement the instantiations both212

in software and hardware and find that they have negligible overheads compared to the213

original block ciphers.214

We also present extensive security analysis of all the instantiations. In TweAES, the215

expanded tweak is divided into 8 parts and XORed to the top 2 rows of the state in216

every 2 rounds. We ensure that any non-zero tweak activates at least 15 active S-boxes217

for the 4-round core. We also show that by starting from the middle of the 2-round218

gap, 8 rounds can be attacked with impossible differential attacks. This attack, from a219

different viewpoint, demonstrate that attacking full rounds is difficult by exploiting tweak220

difference. We also discuss difficulties of applying boomerang, meet-in-the-middle, and221

integral attacks. Security of TweGIFT is similarly evaluated. We use MILP-based tools to222

evaluate its security against differential cryptanalysis.223

2. Design of a concrete tBC based AEAD with nonce-misuse resistance:224

We describe a new highly secure and hardware efficient tweakable blockcipher (TBC)225

based authenticated encryption mode, dub it ESTATE (Energy efficient and Single-state226

Tweakable block cipher based MAC-Then-Encrypt). The structure employs MAC-then-227

Encrypt paradigm that employs FCBC [BR05] like MAC followed by OFB [ENC01] like228

encryption both with a 4-bit short tweak TBC (denoted as tBC as in line with [CDJ+19]).229

ESTATE is structurally close to SUNDAE, but with an additional interesting design feature230

of replacing the block cipher by a tBC. We address the points that SUNDAE needs to adopt231

several internal operations to deal with domain separations, SUNDAE does not provide any232

provable INT-RUP security and SUNDAE is near optimal but not optimal in the number of233

block cipher invocations (since it is encrypting a data type and length dependent constant234

during initialization). However, we can resolve all these issues by using a tBC. The most235

interesting point is that, ESTATE does not use the tweak as the counter, rather as the236



6 Short Tweak TBC and Its Applications in Symmetric Ciphers

domain separator. Thus, a short tweak is sufficient. We can solve the above issues in237

SUNDAE by using different tweaks in the underlying tBC to (i) reduce the additional238

primitive invocation (we pre-compute a fixed tBC encrypted nonce with the unique tweak239

value 1 and use it all the time), (ii) provide INT-RUP security (as we use different tweaks240

for the tBC used in the encryption and the first tBC call during authentication), and (iii)241

clean up the other domain separation related operations in SUNDAE by tweak adjustments.242

Thus ESTATE outperforms SUNDAE in various design properties. Overall, ESTATE has243

the following large set of features:244

• Optimum state size: ESTATE has a state size as small as the block size of245

the underlying cipher, and it ensures good implementation characteristics both on246

lightweight and high-performance platforms.247

• Multiplication-free: ESTATE does not require any field multiplications. In fact,248

apart from the tweakable block cipher call it requires just 128-bit XOR per block of249

data, which seems to be the minimum required overhead. Observe that, SUNDAE250

requires constant field multiplications (2, 4) for the purpose of domain separation.251

In contrast, we simply use different tweaks to achieve this.252

• Optimal: ESTATE requires (a + 2m) many primitive invocations to process an253

a block associated data (including the nonce) and m block message. In [CDN18],254

it has been shown that this is the optimal number of non-linear primitive calls255

required for deterministic authenticated encryption. This feature is particularly256

important for short messages from the perspective of energy consumption, which is257

directly dependent upon the number of non-linear primitive calls. SUNDAE requires258

a constant block encryption in the beginning primarily due to the fact that same259

block cipher is used in encryption as well as authentication. We skip that extra call260

by using different tweaks for the block ciphers used in the encryption and the first261

block cipher call during authentication.262

• Inverse-Free: ESTATE is an inverse-free authenticated encryption algorithm. Both263

encryption and decryption algorithms do not require any decryption call to the264

underlying tweakable block cipher. This significantly reduces the overall hardware265

footprint in combined encryption-decryption implementations.266

• Nonce-misuse Resistant: ESTATE is a nonce-misuse resistant authenticated cipher267

and provides full security even with the repetition of the nonce. Alternatively said,268

it can be viewed as a deterministic authenticated encryption where the nonce is269

assumed to be the first block of the associated data.270

• INT-RUP Secure: We separate the block cipher invocations for the OFB functions271

and the first tweakable block cipher input invocation by the usage of different tweaks.272

This essentially helps us to provide INT-RUP security for ESTATE and making it273

much more robust in constraint devices. Here, we note that the related construction274

SUNDAE lacks this feature and the authors of SUNDAE explicitly mentioned that275

“unverified plaintext from the decryption algorithm should not be released.”276

• Robustness: Most of the AEAD schemes require a unique nonce value, in order277

to create a secret (almost) uniform random state. This helps in achieving security278

requirements. But the problem with these schemes is the lack of security in the279

absence of this secret state. In contrast ESTATE mode is quite robust, as evident280

by nonce misuse resistance and RUP security, to a lack of sufficient randomness or281

secret states.282

A Lighter AEAD mode sESTATE: sESTATE is a lighter version of ESTATE and it is283

structurally identical to ESTATE. The only difference between sESTATE and ESTATE is284



Chakraborti et al. 7

that sESTATE uses round reduced version of the underlying tBC to compute the MAC.285

The tBC used in the encryption part remains the same.286

Finally, we instantiate ESTATE with both TweGIFT and TweAES and sESTATE with287

TweAES (and it’s reduce version TweAES-6) as the underlying tBC. We provide complete288

hardware implementation details on FPGA platform.289

3. Design Level Applications of tBC: Here we demonstrate the applicability of tBC290

in various constructions:291

(i) Reducing the Key Size in Multi-Keyed Modes: The primary application292

of tBC is to reduce the key space of several block cipher based modes that use293

multiple independently sampled keys. We depict the applicability of tBC on FCBC294

MAC, Double Block Hash-then-Sum (DbHtS) paradigm, Sum of permutations, EDM,295

EWCDM, CLRW2, GCM-SIV-2 and the Benes construction.296

(ii) Efficient Processing of Short Messages: tBC can be used to reduce the number297

of block cipher calls, which in turn reduces the energy consumption for short messages.298

We take the instance of Twe-LightMAC_Plus to demonstrate this application of tBC.299

Twe-LightMAC_Plus achieves a higher rate as compared to it’s original counterpart300

LightMAC_Plus. In addition, the number of keys is reduced from 3 to 1.301

(iii) Replacement for XE and XEX. tBC can be viewed as an efficient replacement302

of XE and XEX especially when we target short messages (say of size up to 1 MB).303

In such cases, instead of using a secret state (that we need to precompute, store304

and update), one can simply use tBC with the block-counters as the tweak. The305

applicability of this paradigm can be depicted on several MAC modes such as PMAC;306

encryption mode such as COPE and AEAD modes such as ELmD, COLM.307

4. Protocol Level Applications of tBC: Here we demonstrate the applicability308

of tBC in various standard network protocols using CCM mode for authentication and309

encryption.310

(i) Reducing the Block Cipher Invocations in the CCM Mode: The CCM mode311

uses CBC-MAC mode for MAC and CTR mode for encryption. We show that the in-312

jective padding used in the MAC (the injective padding is obtained by concatenation313

of the data length with the data) can be avoided without increasing the key storage314

using our framework. The number of block cipher calls that can be reduced is upper315

bounded by two and lower bounded by one. This is significant for the protocols that316

deal with short messages.317

318

(ii) List the Standard Protocols using CCM with the Data Format Description:319

We list several standard network protocols that works to handle short messages and320

uses the CCM mode for authentication and encryption. We present the data sizes for321

these protocols to show that it is evident to use our proposal to make them more322

efficient.323

1.5 Significance of the Framework in the Light of NIST Lightweight324

Project325

Our framework is explicitly used in two first round candidates in the NIST Lightweight326

Project, namely (i) ESTATE and (ii) LOTUS-AEAD and LOCUS-AEAD [NIS17]. ESTATE327

can be viewed as a tweakable variant of SUNDAE, where the use of 4-bit tweak ensures328

(i) one less block cipher invocation, (ii) RUP security of the design and (iii) no constant329

multiplications for domain separations. In LOTUS-AEAD and LOCUS-AEAD, the short330



8 Short Tweak TBC and Its Applications in Symmetric Ciphers

tweaks are used to especially to have simplicity in the design. Apart from these schemes,331

SIV-Rijndael256 and SIV-TEM-PHOTON are two round 1 submissions to NIST lightweight332

standardization process [NIS17], which independently used the idea of short-tweak tweak-333

able block ciphers. We remark here that the Elastic-Tweak framework seems to be a more334

general approach, while their approach seems to work only for AES like ciphers.335

1.6 Publications336

The Elastic-tweak framework and its applications have been published in [CDJ+21]. The337

specification of ESTATE along with detailed implementation results have been published338

in [CDJ+20].339

2 Preliminaries340

2.1 Notations341

For n ∈ N, we write {0, 1}+ and {0, 1}n to denote the set of all non-empty binary strings,342

and the set of all n-bit binary strings (denoted by data blocks), respectively. We write λ343

to denote the empty string, and {0, 1}∗ = {0, 1}+ ∪ {λ}. For A ∈ {0, 1}∗, |A| denotes the344

length (number of bits) of A, where |λ| = 0 by convention. For all practical purposes, we345

use the little-endian format for representing binary strings, i.e. the least significant bit346

is the right most bit. For any non-empty binary string X, (Xk−1, . . . , X0) n← x denotes347

the n-bit block parsing of X, where |Xi| = n for 0 ≤ i ≤ k − 2, and 1 ≤ |Xk−1| ≤ n. For348

A,B ∈ {0, 1}∗ and |A| = |B|, we write A⊕B to denote the bitwise XOR of A and B. For349

A,B ∈ {0, 1}∗, A‖B denotes the concatenation of A and B. Note that A and B denote350

the most and least significant parts, respectively.351

For n, τ, κ ∈ N, Ẽ-n/τ/κ denotes a tweakable block cipher family Ẽ, parametrized by352

the block length n, tweak length τ , and key length κ. For K ∈ {0, 1}κ, T ∈ {0, 1}τ , and353

M ∈ {0, 1}n, we use Ẽ
T

K(M) := Ẽ(K,T,M) to denote invocation of the encryption function354

of Ẽ on input K, T , and M . We fix positive even integers n, τ , κ, and t to denote the block355

size, tweak size, key size, and tag size, respectively, in bits. Throughout this document, we356

fix n = 128, τ = 4, and κ = 128, and t = n.357

We sometime use the terms (complete/full) blocks for n-bit strings, and partial blocks
for m-bit strings, where m < n. Throughout, we use the function ozs, defined by the
mapping

∀X ∈
n⋃

m=1
{0, 1}m, X 7→

{
0n−|X|−1‖1‖X if |X| < n,

X otherwise,

as the padding rule to map partial blocks to complete blocks. Note that the mapping is358

injective over partial blocks. For any X ∈ {0, 1}+ and 0 ≤ i ≤ |X| − 1, xi denotes the i-th359

bit of X. The function chop takes a string X and an integer i ≤ |X|, and returns the least360

significant i bits of X, i.e. xi−1 · · ·x0. We use the notations X ≪ i and X ≫ i to denote361

i bit left and right, respectively, rotations of the bit string X.362

For some predicates E1 and E2, and possible evaluations a, b, c, d, we define the
conditional operator ? ::: as follows:

(E1; E2) ? a : b : c : d :=


a if E1 ∧ E2

b if E1 ∧ ¬E2

c if ¬E1 ∧ E2

d if ¬E1 ∧ ¬E2



Chakraborti et al. 9

The expression “E ? a : b” is the special case when E1 ≡ E2, i.e. it evaluates to a if E holds363

and b otherwise.364

2.2 Authenticated Encryption365

An authenticated encryption scheme should offer confidentiality, meaning that its ci-366

phertexts are computationally indistinguishable from random, and integrity, meaning367

that its tags are unforgeable. Typically, we combine the above two functionalities of an368

authenticated encryption into a unified one, which is formally defined as:369

Definition 1. Let A = (E ,D,V) be an authenticated encryption scheme. The AE security
of A against an adversary A is defined as

AdvAE
A := |Pr[AEK ,VK = 1]− Pr[A$,⊥ = 1]|,

where $ is the random oracle that on input (A,M) returns (C, T ) uniformly at random370

and ⊥ be the oracle that on input (A,C, T ), always rejects. The randomness for the first371

probability is defined over K $←− {0, 1}k and also over the random coins of A (if any).372

Similarly, the randomness for the second probability is defined over the randomness of $,373

and over the random choices of A (if any).374

We define
AdvAE

A (t, qe, qv, σe, σv) = max
A

AdvAE
A (A),

where the maximum is considered over all adversaries with running time t, qe encryption375

queries and qv verification queries such that the total number of queried blocks are at most376

σe and σd, respectively.377

Now we provide the extended definition of AE security in the released unverified378

plaintext (RUP) setting. The RUP model combines RUP confidentiality (i.e., PA1) and379

integrity (i.e., INT-RUP) and was proposed by [CDD+19]. In this model, we have two380

worlds: (i) real world that is comprised of encryption, decryption and verification oracle381

of the AE algorithm and (ii) ideal world which is also comprised of three oracles: (a)382

random oracle $ that on input (A,M), samples the ciphertext C of same length uniformly383

at random, (b) the simulator S with access to the history of encryption queries, on384

input (A,C, T ), returns the plaintext in a consistent way, and (c) reject oracle ⊥, that385

on input (A,C, T ) always returns ⊥. Note that, it is sufficient to prove AERUP security386

as AERUP implies AE security i.e, if a scheme is AERUP secure then it is secure under387

conventional confidentiality and authenticity notion. Moreover, it is also secure under388

RUP confidentiality and authenticity notion (it is also called INT-RUP security).389

Definition 2. Let A = (E ,D,V) be an authenticated encryption scheme. Let A be an
adversary with access to a triplet of oracles (O1,O2,O3). The AERUP security of A against
an adversary A is defined as

AdvAERUP
A = | Pr[AEK ,DK ,VK = 1]− Pr[A$,S,⊥ = 1] | , (1)

where the randomness is taken over K $←− {0, 1}k in the first probability calculation and390

the randomness is defined over $, S in the second probability calculation. However the391

randomness is also define over the random coins of A. Note that, A can query to oracle392

O2 with input that is obtained from O1 as a result of some previous encryption query.393

Similar to the previous definition, we define

AdvAERUP
A (t, qe, qd, qv, σe, σd, σv) = max

A
AdvAERUP

A (A),



10 Short Tweak TBC and Its Applications in Symmetric Ciphers

where the maximum is considered over all adversaries with running time t, qe encryption394

queries, qd decryption queries and qv verification queries such that the total number of395

queried blocks are at most σe, σd, σv respectively. For brevity, we write σ = σe + σd + σv.396

In concrete terms, σ and t denotes the data and time complexity, respectively.397

2.3 PRF, (T)PRP Security398

The TPRP-advantage of A against Ẽ is defined as399

AdvTPRP
Ẽ

(A) = |Pr[AẼK = 1]− Pr[AΠ̃ = 1]|,

where Π̃ is a tweakable random permutation uniformly distributed over the set of all
tweakable permutations over tweak space {0, 1}τ and block space {0, 1}n. We remark that
the adversary has full control over both the tweak value and input of the tweakable block
cipher. We write

AdvTPRP
Ẽ

(t, q) = max
A

AdvTPRP
Ẽ

(A),

where the maximum is taken over all adversaries with running time t and q queries.400

The PRF advantage of distinguisher A against a keyed family of functions F := {FK :401

{0, 1}m → {0, 1}n}K∈{0,1}κ is defined as402

AdvPRF
F (A) :=

∣∣Pr[AFK = 1]− Pr[AΓ = 1]
∣∣ ,

where Γ is a random function uniformly distributed over the set of all functions from403

{0, 1}m to {0, 1}n. The PRF security of F is defined as404

AdvPRF
F (q, t) := max

A
AdvPRF

F (A). (2)

The keyed family of functions PRF is called weak PRF family, if the PRF security holds405

when the adversary only gets to see the output of the oracle on uniform random inputs. This406

is clearly a weaker notion than PRF. We denote the weak prf advantage as Advwprf
PRF(q, t).407

2.4 Patarin’s H-Coefficient Technique408

We briefly discuss the H-coefficient technique of Patarin [Pat08a, CS14]. Consider a409

computationally unbounded deterministic adaptive adversary A that interacts with either410

a real oracle Ore or an ideal oracle Oid. After its interaction, A outputs a decision bit.411

The collection of all queries-responses obtained by A during its interaction with its oracle412

are summarized in a transcript τ . This transcript may, in addition, contain additional413

information about the random oracle that is revealed to the adversary after its interaction414

but before it outputs its decision bit. This is without loss of generality: the adversary415

gains more knowledge and hence more distinguishing power.416

Let Xre and Xid be the random variables that take a transcript τ induced by the real417

and the ideal world respectively. The probability of realizing a transcript τ in the ideal418

world (i.e. Pr[Xid = τ ]) is called the ideal interpolation probability and the probability of419

realizing it in the real world is called the real interpolation probability. A transcript τ is420

said to be attainable if the ideal interpolation probability is non zero. We denote the set of421

all attainable transcripts by Θ. Following these notations, we state the main theorem of422

the H-coefficient technique as follows [Pat08a,CS14].423

Theorem 1 (H-coefficient technique). Let A be a fixed computationally unbounded deter-
ministic adversary that has access to either the real oracle Ore or the ideal oracle Oid. Let



Chakraborti et al. 11

Θ = Θgood tΘbad be some partition of the set of all attainable transcripts into good and
bad transcripts. Suppose there exists εratio ≥ 0 such that for any τ ∈ Θgood,

Pr[Xre = τ ]
Pr[Xid = τ ] ≥ 1− εratio ,

and there exists εbad ≥ 0 such that Pr[Xid ∈ Θbad] ≤ εbad. Then,424

Pr[AOre → 1]− Pr[AOid → 1] ≤ εratio + εbad . (3)

3 Short-Tweak Tweakable Block Ciphers425

3.1 The Elastic-Tweak Framework426

In this section, we introduce the Elastic-Tweak framework (illustrated in Figure 1) on SPN427

based block ciphers that allows one to efficiently design tweakable block ciphers with short428

tweaks. As the name suggests, Elastic-Tweak refers to elastic expansion of short tweaks429

and we typically consider tweaks of size less than or equal to 16 bits. Using this framework,430

one can convert a block cipher to a short tweak tweakble block cipher denoted by tBC.431

We briefly recall the SPN structure on which this framework would be applied. An SPN432

block cipher iterates for rnd many rounds, where each round consists of three operations:433

(a) SubCells (divides the state into cells and substitutes each cell by an s-bit S-box which434

is always non-linear),435

(b) PermBits (uses a linear mixing layer over the full state to create diffusion), and436

(c) AddRoundKey (add a round keys to the state).437

The basic idea of the framework is to expand a small tweak (of size t) using a suitable438

linear code of high distance and then the expanded tweak (of size te) is injected (i.e. xored)439

to the internal block cipher state affecting a certain number of S-boxes (say, tic). We apply440

the same process after every gap number of rounds. An important feature of tBC is that441

it is implemented using very low tweak state and without any tweak schedule (only tweak442

expansion). In the following, we describe the linear code to expand the tweak and how443

to inject the tweak into the underlying block cipher state. If BC denotes the underlying444

SPN block cipher, we denote the tweakable block cipher as TweBC [t, te, tic, gap] where445

t, te, tic, gap are suitable parameters as described above.446

3.2 Exp: Expanding the Tweak447

In this section, we describe our method to expand the tweak T of t bits to an expanded448

tweak Te of te bits. We need the parameters to satisfy the following conditions:449

(a) te is divisible by 2t and tic. Let w := te/tic, the underlying word size.450

(b) w divides t and w ≤ s.451

The tweak expansion, called Exp, follows an “Expand then (optional) Copy” style as452

follows:453

(i) Let τ := t/w, and we view T = (T1, . . . , Tτ ) as a 1 × τ vector of elements from454

F2w . We expand T by applying a [2τ, τ, τ ]-linear code3 over F2w with the generating455

matrix Gτ×2τ = [Iτ : Iτ ⊕ Jτ ], where Iτ is the identity matrix of dimension τ and J456

3An [n, k, d]-linear code over a field F is defined by a k × n matrix G called the generator matrix over
F such that for all nonzero vectors v ∈ Fk, v ·G has at least d many nonzero elements.



12 Short Tweak TBC and Its Applications in Symmetric Ciphers

is the all 1 square matrix of dimension τ over F2w . Let T ′ = T ·G be the resultant457

code. Note that, T ′ can be computed as S⊕T1‖ · · · ‖S⊕Tτ where S = T1⊕ · · · ⊕Tτ .458

459

(ii) Finally, we compute the expanded tweak by concatenating te/2t many copies of T ′
i.e.

Te = T ′‖ · · · ‖T ′.

Note that, Te can be viewed as an application of [tic, τ, tic/2]-linear code on T . The main460

rationale behind the choice of this expansion function is that it generates high distance461

codes (which is highly desired from the cryptanalysis point of view) with a low cost (only462

(2τ − 1) addition over F2w is required).463

ExpT
Te

Tweak Expansion and Injection

TeTe Te

P ⊕

RK0

f . . . ⊕

RKgap

f . . . f ⊕

RK2·gap

f f. . . ⊕

RKb rnd−1
gap c.gap

. . . f ⊕

RKrnd

C

Figure 1: Elastic-Tweak Construction.

Function Exp[te, w](T )

1. τ ← |T |
w

2. Te ← φ

3. (T1, T2, . . . , Tτ ) w← T

4. T ′ ← T‖(T ⊕ T · Jτ )
5. for i = 1 to te/2t
6. Te ← Te‖T ′

7. return Te

Algorithm tBC [te, tic, gap](X,K, T )
1. w ← te/tic

2. Te ← Exp[te, w](T )
3. for i = 1 to rnd
4. X ← SubCells(X)
5. X ← PermBits(X)
6. (K,X)← AddRoundKey(K,X, i)
7. if i % gap = 0 and i < rnd
8. AddTweak[tic](X,Te)
9. return X

Figure 2: Function Exp(T, te, w) and tBC (X,K, T ). Here, AddTweak[tic](X,Te) represents the
xoring tweak in to the state of the block cipher.

3.3 Injecting Expanded Tweak into Round Functions464

Note that the expanded tweak can be viewed as Te,1‖ · · · ‖Te,tic where each Te,i is of size465

w-bits and w ≤ s. Now we xor these tweak in addition to the round keys in tic number of466

S-boxes. The exact choices of S-box would be design specific so that the diffusion due to467

tweak difference is high.468

The tweak injection is optional for each round, the tweak injection starts from round469

start and it is injected at an interval of gap rounds and stops at round end. To be precise,470

we inject tweak at the round number start, start + gap , start + 2.gap , . . . , end. To have a471

uniformity in the tweak injection rounds, we typically choose start = gap and inject the472

tweaks at an interval of gap rounds. This implicitly sets end = gap.b rnd−1
gap c.473



Chakraborti et al. 13

Requirements from TweBC. We must ensure TweBC should have same security level as474

the underlying block cipher.475

From the performance point of view, our target is to obtain the above mentioned476

security477

“minimizing te (signifies the area) and te.b rnd−1
gap c (signifies the energy).”478

Features of TweBC.479

1. Our tBC is applied to any SPN based block ciphers.480

2. Due to linear expansion of tweak, tBC with zero tweak turns out to be same as the481

underlying block cipher (note that we keep same number of rounds as the block482

cipher). This feature would be useful to reduce overhead due to nonzero tweak. Later483

we see some applications (e.g., application on FCBC) where the nonzero tweaks is484

only applied to process the last block.485

3.4 Tweakable GIFT and AES486

In this section, we provide various instantiation of tBC built upon the two popular block487

ciphers GIFT and AES. We are primarily interested on tweak size 4, 8, 16, and hence488

considered t ∈ {4, 8, 16}.489

3.4.1 Instantiation of tBC with 4 bit Tweak.490

All the recommendations with 4-bit tweaks have extremely low overhead over the original491

block cipher and they can be ideal for reducing multiple keys scheme to an equivalent492

single key scheme instance with a minuscule loss in efficiency. Detailed description can be493

found in Sect. 5.494

(i) TweGIFT-64[4, 16, 16, 4]. In this case the tweak is expanded from 4 bits to 16 bits495

and the expanded tweak is injected at bit positions 4i+ 3, for i = 0 , . . . , 15.496

497

(ii) TweGIFT-128[4, 32, 32, 5]. Here we expand the 4 bit tweak to 32 bits and the498

expanded tweak is injected at bit positions 4i+ 3, for i = 0 , . . . , 31.499

500

(iii) TweAES[4, 8, 8, 2]. Here we expand the 4 bit tweak to 8 bits and the expanded tweak501

is injected at the least-significant bits of each of the 8 S-Boxes in the top two rows.502

3.4.2 Instantiation of tBC with 8 and 16 bit Tweak.503

tBC with tweak size of 8/16-bits are ideal for replacing the length counter bits (or masking)504

used in many constructions. Detailed description can be found in Sect. 5.505

(i) TweAES[8, 16, 8, 2]. For 8 bit tweak, we only use AES. The tweak is first extended506

to 16 bits and the tweak is injected at the two least-significant bits of each of the 8507

S-Boxes in the top two rows.508

509

(ii) TweGIFT-128[16, 32, 32, 4]. Here we expand the 16 bit tweak to 32 bits and the510

expanded tweak is injected at bit positions 4i+ 3, for i = 0 , . . . , 31.511

512

(iii) TweAES[16, 32, 8, 2]. Here we expand the 16 bit tweak to 32 bits and expanded513

tweak is injected at the four least-significant bits of each of the 8 S-Boxes in the top514

two rows.515



14 Short Tweak TBC and Its Applications in Symmetric Ciphers

2𝑅 𝐴𝐸𝑆 

𝑇𝑒 

2𝑅 𝐴𝐸𝑆 

𝑇𝑒 

2𝑅 𝐴𝐸𝑆 

𝑇𝑒 

2𝑅 𝐴𝐸𝑆 

𝑇𝑒 

2𝑅 𝐴𝐸𝑆 

4-𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑟𝑒 4-𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑟𝑒 

Figure 3: 4-round Core of TweAES[∗,∗,∗,2]

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑇1 𝑇2 𝑇3 𝑇4 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑇1 𝑇2 𝑇3 𝑇4 

(𝟗) 

(𝟎) 

(𝟔) 

(𝟎) 

(𝟎) 

(𝟒) 

(𝟎) 

(𝟏𝟏) 

Figure 4: Two Examples of Differential Trails with 15 Active S-boxes.

3.5 Security Analysis of TweAES and TweGIFT Instances516

In this section, we provide the various cryptanalysis that we performed on the TweAES517

and TweGIFT instances. Note that our target is single-key security, and any related-key518

attacks are out of our scope. The exact security bound, e.g., the lower bound of the519

number of active S-boxes and the upper bound of the maximum differential characteristic520

probability, can be obtained by using various tools based on MILP and SAT, however521

to derive such bounds for the entire construction is often infeasible. Here, we introduce522

an efficient method to ensure the security against differential and linear cryptanalyses by523

exploiting the fact that the expanded tweak has a large weight.524

Suppose that the expanded tweak is injected to the state every r rounds. Then525

we focus on 2r rounds around the tweak injection, namely a sequence of the following526

three operations: the r-round transformation, the tweak injection, and another r-round527

transformation. We call those operations “2r-round core,” which is depicted for AES528

and GIFT-64 in Fig. 22. Because the entire construction includes several 2r-round cores,529

security of the entire construction can be bounded by accumulating the bound for the single530

2r-round core. The large weight of the expanded tweak ensures a strong security bound531

for the 2r-round core, which is sufficient to ensure the security for the entire construction.532

3.5.1 Security Analysis of TweAES533

As explained above, we evaluate the minimum number of differentially and linearly active534

S-boxes for the 4-round core. The 4-bit tweaks of TweAES are divided into 4 parts denoted535

by T1, T2, T3, T4, where the size of each Ti is 1-bit.536

When the tweak input has a non-zero difference, the expanding function ensures that537

at least 4 bytes are affected by the tweak difference. It is easy to check by hand that538

the minimum number of active S-boxes under this constraint is 15. We also modeled the539

problem by MILP and experimentally verified that the minimum number of active S-boxes540

is 15. This is a tight bound and two examples of the differential trails achieving 15 active541

S-boxes are given in Figure 23. Given that the maximum differential probability of the542



Chakraborti et al. 15

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 
𝑇1 𝑇2 𝑇3 𝑇4 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

(𝟎) 

(𝟖) 

(𝟎) 

(𝟏𝟐) 

(𝟖) 

(𝟎) 

(𝟏𝟐) 

(𝟎) 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

(𝟎) (𝟎) 

Figure 5: An Examples of Differential Trails with 40 Active S-boxes.

AES S-box is 2−6, the probability of the differential propagation through the 4-round core543

with non-zero tweak difference is upper bounded by 2−6×15 = 2−90. The probability of544

the differential propagation of TweAES is upper bounded by 2−90×2 = 2−180 because 10545

rounds of TweAES includes two 4-round cores.546

For TweAES, experimentally computing the lower bound of the number of active S-boxes547

is also possible. When the tweak input has a non-zero difference, the minimum number of548

active S-boxes is 40 for the entire construction. This is a tight bound. An example of the549

differential trails achieving 40 active S-boxes is given in Fig. 24. The probability of the550

differential propagation is upper bounded by 2−6×40 = 2−240.551

We argue that the reduced-round versions of TweAES in which the first or the last552

round is located in the middle of the 4-round core can be attacked for relatively long553

rounds. Owing to this unusual setting, the attacks here do not threaten the security of full554

TweAES, however we still demonstrate the attacks for better understanding of the security555

of TweAES.556

7-Round Boomerang/Sandwich Attacks. The first approach is the boomerang attack
or more precisely formulated version called the sandwich attack. The boomerang attack
divides the cipher E into two parts E0 and E1 such that E = E1 ◦ E0, and builds high-
probability differentials for E0 and E1 almost independently. The attack detects a quartet
of plaintext x that satisfy the non-ideal behavior shown below with probability p−2q−2,
where p and q are the differential probability for E0 : α→ β and E1 : γ → δ, respectively.

Pr
[
E−1(E(x)⊕ δ

)
⊕ E−1(E(x⊕ α)⊕ δ

)
= α

]
= p−2q−2.

7-rounds of TweAES including four tweak injections that starts from the tweak injection
are divided into E0 and E1 as follows.

E0 := tweak − 1RAES− 1RAES− tweak − 1RAES,
E1 := 1RAES− tweak − 1RAES− 1RAES− tweak − 1RAES.

With this configuration, the attacker can avoid building the trail over the 4-round core for557

both of E0 and E1.558

The framework of the sandwich attacks show that by dividing the cipher E into three
parts E = E1 ◦ Em ◦ E0, the probability of the above event is calculated as p−2q−2rqua,
where rqua is the probability for a quartet defined as

rqua := Pr
[
E−1
m

(
Em(x)⊕ γ

)
⊕ E−1

m

(
Em(x⊕ β)⊕ γ

)
= β

]
.



16 Short Tweak TBC and Its Applications in Symmetric Ciphers

We define Em of this attack as the first S-box layer in the above E1. The configuration559

and the differential trails are depicted in Fig. 25 The probability when Em is a single S-box560

layer can be measured by using the boomerang connectivity table (BCT). The trails for E0

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 𝑆𝑅 
𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑇1 𝑇2 𝑇3 𝑇4 

𝟐−𝟒𝟖 

𝟐−𝟒𝟖 

𝑇1 𝑇2 𝑇3 𝑇4 

𝟐−𝟑𝟎 

Figure 6: Differential Trails for Boomerang Attacks. The cells filled with black and gray represent
active byte positions in E0 and E1, respectively.

561

and E1 include 4 active S-boxes, hence both of the probability p and q are 2−24. That is,562

p2q2 = 2−96. The BCT of the AES S-box shows that the probability for each S-box in Em563

is either 2−5.4, 2−6, or 2−7 if both of the input and output differences are non-zero, and is564

1 otherwise. Hence, the trail contains 5 active S-boxes with some probabilistic propagation565

and we assume that the probability of each S-box is 2−6. Then, the probability rqar is566

2−6×5 = 2−30. In the end, p−2q−2rqua = 2−126, which would lead to a valid distinguisher567

for 7 rounds.568

8-Round Impossible Differential Attacks against TweAES. Due to 2 interval rounds569

between tweaks, distinguishers based on impossible differential attacks can be constructed570

for relatively long rounds (6 rounds) by canceling the tweak difference with the state571

difference. The distinguisher is depicted in Fig. 26.572

The first and last tweak differences are canceled with the state difference with probability573

1. Then we have 2 blank rounds. After that, the tweak difference is injected to the state,574

which implies that the tweak difference must be propagated to the same tweak difference575

after 2 AES rounds. However, this transformation is impossible because576

• 1-round propagation in forwards have 4 active bytes for the right-most column, while577

• 1-round propagation in backwards have at least 2 inactive bytes in the right-most578

column.579

For the key recovery, two rounds can be appended to the 6-round distinguisher; one is580

at the beginning and the other is at the end, which is illustrated in Fig. 27. As shown581

in Fig. 27 the trail includes 8 and 4 active bytes at the input and output states. Partial582

computations to the middle 6-round distinguisher involve 8 bytes of subkey K1 and 4 bytes583

of subkey K9.584

Recall that the tweak size is 4 bits. The attack procedure is as follows.585

1. Choose all tweak values denoted by T i where i = 0, 1, . . . , 24 − 1.586

2. For each of T i, fix the value of inactive 8 bytes at the input, choose all 8-byte587

values at the active byte positions of the input state. Query those 264 values588



Chakraborti et al. 17

𝑇1 𝑇2 𝑇3 𝑇4 

1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 

𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

Figure 7: 6-round Impossible Differential Distinguisher. The bytes filled with black, white, and
gray have non-zero difference, zero difference, and arbitrary difference, respectively.

𝑇1 𝑇2 𝑇3 𝑇4 

6𝑅 𝑇𝑤𝑒𝐴𝐸𝑆 
𝑆𝐵 
𝑆𝑅 

𝐾9 

𝑆𝐵 
𝑆𝑅 
𝑀𝐶 

𝐾1 

Figure 8: Extension to 8-round Key Recovery

to get the corresponding outputs. Those outputs are stored in the list Li where589

i = 0, 1, . . . , 24 − 1.590

3. For all
(24

2
)
≈ 27 pairs of Li and Lj with i 6= j, find the pairs that do not have591

difference in 12 inactive bytes of the output state. About 27+64+64−96 = 239 pairs592

will be obtained.593

4. For each of the obtained pairs, the tweak difference is fixed and the differences at the594

input and output states are also fixed. Those fix both of input and output differences595

of each S-box in the first round and the last round. Hence, each pair suggests a596

wrong key.597

5. Repeat the procedure 254 times from the first step by changing the inactive byte598

values at the input. After this step, 239+54 = 2103 wrong-key candidates (including599

overlaps) will be obtained. The remaining key space of the involved 12 bytes becomes600

296 × (1− 2−96)2103 ≈ 296 × e−128 ≈ 2−88 < 1. Hence, the 8 bytes of K1 and 4 bytes601

of K9 will be recovered.602

6. Exhaustively search the remaining 8 bytes of K1.603

The data complexity is 24× 264× 253 = 2121. The time complexity is also 2121 memory604

accesses. The memory complexity is to recored the wrong keys of the 12 bytes, which is605

296.606

Remarks on Other Attacks607

• Integral attacks [DKR97,KW02] collect 28 distinct values for a particular byte or608

distinct 232 values for a particular diagonal. Integral attacks exploiting the tweak is609

difficult because the tweak will not affect all the bits in each byte, which prevents to610

collect 28 distinct values for any byte.611



18 Short Tweak TBC and Its Applications in Symmetric Ciphers

• Meet-in-the-middle attacks [DS08,DFJ13] exploit the 4-round truncated differentials612

1 → 4 → 16 → 4 → 1 and focus on the fact that the number of differential613

characteristics satisfying this differential is at most 280. The large-weight of the614

expanded tweak in TweAES does not allow such sparse differential trails, which makes615

it hard to be exploited in the meet-in-the-middle attack.616

Summary. We demonstrated two attacks against reduced-round variants that start from617

the middle of the 4-round core. Because security of TweAES using tweak difference relies618

on the fact that the large-weight tweak difference will diffuse fast in the subsequent 2619

rounds, those reduced-round analysis will not threaten the security of the full TweAES.620

From a different viewpoint, one can see the difficulty to extend the analysis by 1 more621

round from Figs. 25 and 27. The number of involved subkey bytes easily exceeds 16.622

3.5.2 Cryptanalysis of TweAES with non-zero tweak from the initial round.623

In this section, we will show integral attacks, impossible differential attacks and truncated624

differential attacks against reduced-round variants that start form the initial round and625

the tweak is non-zero. The main purpose is to show the difficulty of exploiting 4 bits tweak626

in the attack, thus we do not discuss the case of fixing the tweak. (When tweak is zero,627

security is the same as the original AES, which can also be applied to TweAES but does628

not show any vulnerability introduced by TweAES.) The comparison of the number of629

attacked rounds and the attack complexity for the original AES and TweAES is given in630

Table 15.
Table 1: Comparison of the Attacks on AES and TweAES exploiting tweak. R, D, T and
M denote the number of rounds, data complexity, time complexity and memory complexity,
respectively.

Attack AES TweAES
R D T M ref. R D T M

Integral 7 2128 − 2119 2120 264 [FKL+00] 6 25 245 negl.

Imp. Diff. 7 2106.2 2110.2 290.2 [MDRM10] 6 2119 2119 272

Trunc. Diff. 6 272.8 2105 233 [Gra19] 5 25 226 224

631

Integral Attacks. Because the tweak starts to appear only after the second round, to play632

with plaintexts is difficult to extend the integral attacks. The most reasonable approach to633

exploit the tweak is to set the plaintext constant and collect all possible 24 tweak inputs.634

The propagation of the property is given in Fig. 28. Because the plaintext can be fixed,635

the state does not change during the first two rounds. By examining 16 possible tweaks,636

each bit of the expanded tweak becomes zero for 8 choices and one for 8 choices. Hence,637

when the value before the tweak injection is c, the value after the tweak injection is either638

c or c ⊕ 1 and both occur 8 times. From the similar analysis, the balanced property is639

preserved after 2 rounds from the tweak injection.640

The key recovery starts with 16 ciphertexts. The attacker guesses the 4 bytes of the641

last subkey as indicated in Fig. 28. Let W5 be MC−1(K5). Then, by guessing a byte of642

W5, the corresponding byte position can be partially decrypted until the beginning of643

round 5, and thus the attacker can check whether or not the balanced property (a sum of644

the byte value among 16 texts is 0) is satisfied. The probability that the balanced property645

is observed is 2−8, hence only 1 choice of the byte-difference at W5 will remain as a right646

key candidate. The analysis can be iterated for 4 bytes of W5. In the end, for each 232
647

choice of 4 bytes of K6, the corresponding 4 bytes of W5 will be fixed. Namely, 64 bits of648



Chakraborti et al. 19

𝑆𝐵 𝑆𝑅 𝑀𝐶

𝑆𝐵 𝑆𝑅 𝑀𝐶

𝑆𝐵 𝑆𝑅 𝑀𝐶

𝑆𝐵 𝑆𝑅

𝐾0

𝐾1

𝐾2

𝐾3

𝐾6

𝑇

2 2 2 2
2 2 2 2

2 2 2 2
2 2 2 2

4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4

2 2 2 2
2 2 2 2

𝑈 𝑈 𝑈 𝑈
𝑈 𝑈 𝑈 𝑈
𝑈 𝑈 𝑈 𝑈
𝑈 𝑈 𝑈 𝑈

𝐵 𝐵 𝐵 𝐵
𝐵 𝐵 𝐵 𝐵
𝐵 𝐵 𝐵 𝐵
𝐵 𝐵 𝐵 𝐵

𝑆𝐵 𝑆𝑅 𝑀𝐶 𝐾4

4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4

4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4

4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4

𝐵 𝐵 𝐵 𝐵
𝐵 𝐵 𝐵 𝐵
𝐵 𝐵 𝐵 𝐵
𝐵 𝐵 𝐵 𝐵

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝑆𝐵 𝑆𝑅 𝑀𝐶 𝐾5

𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡

𝑟𝑜𝑢𝑛𝑑 1

𝑟𝑜𝑢𝑛𝑑 2

𝑟𝑜𝑢𝑛𝑑 3

𝑟𝑜𝑢𝑛𝑑 4

𝑟𝑜𝑢𝑛𝑑 5

𝑟𝑜𝑢𝑛𝑑 6

𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡

Figure 9: Integral Distinguisher on TweAES via Tweak. ‘2’ represents that two kinds of values
appear 8 times each and ‘4’ represents that four kinds of values appear 4 times each. By following
the convention, ‘B’ and ‘U ’ denote ‘balanced’ and ‘unknown’ properties, respectively.

the key space is reduced to 32 bits. By using another set of a plaintext with 16 different649

tweaks, the key space is reduce to 1.650

The memory complexity can be saved by first preparing two sets of 16 texts, and then651

the bytes of K6 is guessed. We can apply the same analysis to all 4 different columns652

to determine the key without exhaustive search. Hence, the data complexity is 25, the653

computational cost is 25 · 232 · 28 = 245, the memory amount is negligible.654

Compared to the integral attack against original AES, we can exploit two blank rounds655

thanks to the tweak injection in every two rounds but then the property disappears more656

quickly because we need to active at least 4 byte positions. The attack on the original657

AES appends 1 more round at the beginning of the integral distinguisher, which is difficult658

for TweAES via non-zero tweak because of the existence of the 2 AES rounds before the659

first tweak injection.660

Impossible Differential Attacks. With non-zero tweak difference, the strategy to build an661

impossible differential is to inject it in the middle of the conventional 3.5-round impossible662

differential distinguisher, as indicated by Fig. 29. Namely, the top left and the bottom left663

bytes are active with probability 1 in the forward direction, while those byte are inactive664

with probability 1 in the backward direction.665

For the key recovery, one round and two rounds can be appended to the beginning and666

the end of the 3-round distinguisher, which is illustrated in Fig. 27.667

Because the tweak does not appear during the key recovery rounds, the procedure is668

the same as the one with the conventional 3.5-round impossible differential distinguisher.669

To collect the data, the attacker constructs a structure, a set of 232 plaintexts in which 232
670

values are considered for active 4 bytes and the other 12 bytes are fixed. This generates671



20 Short Tweak TBC and Its Applications in Symmetric Ciphers

𝑇1𝑇2𝑇3𝑇4

𝑅𝑜𝑢𝑛𝑑 2 𝑅𝑜𝑢𝑛𝑑 3 𝑅𝑜𝑢𝑛𝑑 4

𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛

Figure 10: 3-round Impossible Differential Distinguisher using Tweak Difference.

𝑅𝑜𝑢𝑛𝑑 1 𝑆𝐵5

𝐾0 𝑀𝐶−1(𝐾5)

𝑆𝑅5

𝑀𝐶5

𝑆𝐵6

𝑆𝑅6

𝐾6

𝑑𝑖𝑠𝑡𝑖𝑛𝑔𝑢𝑖𝑠ℎ𝑒𝑟

Figure 11: Extension to 6-round Key Recovery

(232

2
)
≈ 263 ciphertext pairs. This can be iterated X times by changing the value of the672

fixed 12 bytes of the plaintexts, which results in X · 232 queries and X · 263 ciphertext673

pairs. We only pick up the pairs that have 12 inactive bytes at the ciphertext, thus we674

obtain X · 263/296 = X · 2−33 pairs.675

For each of X · 2−33 pairs, the attacker generates the wrong keys of 9 key bytes; 4 bytes
of K0, 1 byte of MC−1(K5) and 4 bytes of K6 as illustrated in Fig. 30. This can be done
by choosing all possible (28) 1-byte difference after the first round and propagate it back
to the S-box output in round 1. Then each active S-box in round 1 has fixed input and
output differences, which indicates the corresponding values for those 4 S-boxes. For each
difference after round 1, the attacker obtains 1 value for those 4 S-boxes on average, thus
obtains 1 candidate of 4 bytes of K0 by taking the xor with plaintext. By analyzing 28

differences after round 1, the attacker collects 28 wrong candidates. Similarly, by choosing
1-byte difference at the input of round 5 and 4-byte difference at the input of round 6,
the attacker collects 240 wrong keys for the 5 key bytes. By merging the results from two
directions, the attacker obtains 248 wrong keys for 9 key bytes. By iterating the analysis
for X · 2−33 pairs, the attacker obtains X · 215 wrong keys for 9 key bytes. The remaining
key space for those 9 bytes can be computed as follows.

272 ·
(

(1− 2−96)X·2
15
)

= 272 ·
(

(1− 2−96)296·X·2−81
)
≈ 272 · e−X·2

−81
.

Considering e−64 ≈ 2−92, by setting X = 287, the remaining key space becomes less than676

one, thus only the right key will remain. After 4 bytes of K0 is recovered, the remaining677

12 bytes can be recovered by the exhaustive search.678

The attack complexity is 287+32 = 2119 queries and memory access to collect the pairs.679

287−33+48 = 2102 partial AES round operations to compute wrong keys. To record the680

detected wrong keys, we use the memory of size 272.681

Truncated Differential Attacks. So fat the most successful attempts can break up to682

5 rounds of TweAES. There are two possible approaches. The first approach does not683



Chakraborti et al. 21

inject the difference from the plaintext and starts the differential propagation from the684

first tweak injection. The second one is to inject the difference from the plaintext and to685

cancel it at the first tweak injection, which makes the subsequent two rounds blank. Here686

we describe both approaches.687

The truncated differential trail for the first approach is shown in Fig. 31. The trail

𝑇1𝑇2𝑇3𝑇4

2𝑅 1𝑅
𝑆𝐵
𝑆𝑅

𝑀𝐶
𝑆𝐵
𝑆𝑅

𝑀𝐶−1(𝐾4) 𝐾5

Figure 12: 5-round Truncated Differential Attack using Tweak Difference (type 1).
688

can be satisfied with probability 1. After one pair of ciphertexts is obtained, the attacker689

analyzes the last subkey column by column. Namely, the possible number of difference690

before MixColumns in round 4 is 224. For each of them, the attacker can derive 1 candidate691

of the corresponding 4 subkey bytes of K5, thus the key space is reduced by a factor of692

28. The involved byte positions for 1 column is stressed in Fig. 31 by the bold line. The693

same analysis can be iterated by using 4 pairs of ciphertexts to reduce the key space to694

1. The key for the other columns can also be identified similarly. The data complexity695

is 24 paired queries, which is 25. Time complexity is 4 iterations of derivation of 224 key696

candidates which is 226. The memory amount is 224.697

One may wonder if it is possible to inject the difference to the plaintext and to cancel698

it with the first tweak addition. This is indeed possible and the key can be recovered up to699

5 rounds, while it requires much higher attack complexity. We will explain this inefficient700

attack to demonstrate that exploiting the plaintext to control the middle tweak injection701

is difficult. The truncated differential trail for the second approach is shown in Fig. 32.702

The trail can be satisfied with probability 2−128; 2−64 for the first round and 2−64 towards

𝑇1𝑇2𝑇3𝑇4

1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 2𝑅 𝐴𝐸𝑆
L𝑎𝑠𝑡
𝐴𝐸𝑆

Figure 13: 5-round Truncated Differential Attack using Tweak Difference (type 2).
703

the cancellation at the first tweak injection. Hence by generating 2128 pairs, we can expect704

one pair following the truncated differential trail.705

The attacker makes 264.5 encryption queries of randomly generated distinct plaintexts706

to pick up the pairs having 12 inactive bytes at the ciphertext in the byte positions shown707

in Fig. 32. Among about 2128 pairs, 232 pairs will satisfy the 12 inactive bytes at the708

ciphertext and 1 pair is expected to follow the trail. For each of 232 pairs, the attacker709

generates 264 candidate values for the first round key. Hence the 128-bit key space for710

the first subkey is reduce to 96 bits (232 × 264). By starting from 266.5 queries to obtain711

2132 pairs, the 128-bit key space is reduced to 1. The data complexity is 266.5, the time712

complexity is 298 and the memory complexity is 296.713

We have tried various differential trails to attack 6 rounds of TweAES, while no attempts714



22 Short Tweak TBC and Its Applications in Symmetric Ciphers

could successfully attack 6 rounds with a complexity significantly lower than the exhaustive715

key search. To find the attack on more than 5 rounds is an open problem.716

3.6 Security Analysis of TweAES-6717

We also provide a round reduced version TweAES denoted by TweAES-6 (to be used in718

one of our applications). In TweAES-6, the number of rounds is reduced from TweAES719

from 10 to 6 by considering that the attackers do not have full control over the block720

cipher invocation in the modes. From this background, we do not analyze the security of721

TweAES-6 as a standalone tweakable block cipher, but show that the number of active722

S-boxes is sufficient to prevent attacks.723

As a result of running the MILP-based tool, it turned out that the differential trail724

achieving the minimum number of active S-boxes with some non-zero tweak difference is725

20. Examples of the differential trails achieving 20 active S-boxes is the first six or the last726

six rounds of the trail in Fig. 24.727

Given that the maximum differential probability of the AES S-box is 2−6, the probability728

of the differential propagation is upper bounded by 2−6×20 = 2−120. Because our mode729

does not allow the attacker to make 2120 queries, it is impossible to perform the differential730

cryptanalysis.731

Note that AEAD schemes based on the original AES often adopt 4-round AES in the732

mode, and the minimum number of the active S-boxes for 4-round AES is 25. We designed733

TweAES-6 to offer the similar security level as 4-round AES, and no attack is known on734

the 4-round AES in proper modes under the restriction of the birthday-bound query limit.735

3.7 Security Analysis of TweGIFT736

We only consider the security of TweGIFT against attacks exploiting the tweak injection,737

because, without the tweak injection, the security of TweGIFT is exactly the same as the738

original GIFT-128.739

Differential Cryptanalysis. The 4-bit tweak expands to 8 bits and those 8 bits are copied740

three times to achieve a 32-bit tweak. When the 4-bit tweak has some non-zero difference,741

the expanded 32-bit tweak is ensured to have at least 16 active bits, which ensures at least742

16 active S-boxes in 2 rounds around the tweak injection.743

We modeled the differential trail search for TweGIFT with MILP under the constraints744

that at least 1 bit of tweak has a difference. However, owing to the large state size,745

it is infeasible to find the tight bound of the maximum probability of the differential746

characteristic even for the 10-round core. The tool so far provided that the probability of747

the differential characteristic is upper bounded by 2−72.6. Given that the entire TweGIFT-748

128 consists of 40 rounds and thus contains 4 of the 10-round cores, the upper bound of749

the entire construction is 2−72.6×4 = 2−300.4, which is sufficient to resist the attack.750

Note that it is also difficult to apply the MILP-based differential trail search to the751

original GIFT-128 because of the large state size. The designers showed that the lower752

bound of the number of active S-boxes for 9 rounds of GIFT-128 is 19 [BPP+17, Table753

11] and the bound is tight. The designers also evaluated the differential probability (not754

characteristic probability) of the trail matching the bound, which was 2−46.99. Zhu et755

al. [ZDY19] introduced some heuristic to search for differential trails of the reduced-round756

GIFT-128 with some aid of MILP. They found 12-, 14-, 18-round differential characteristics757

with probability 2−62.415, 2−85, and 2−109, respectively [ZDY19, Table 9]. By comparing758

those probabilities with the upper bound for the 10-round core, we believe that the best759

differential trail would not exploit the tweak difference, thus the tweak injection of TweAES760

does not introduce any vulnerability. The comparison of the bounds for the original761

GIFT-128 and TweGIFT is given in Table 16.762



Chakraborti et al. 23

Table 2: Comparison of the Guaranteed Differential Property for GIFT-128 and TweGIFT via
Non-Zero Tweak

target rounds evaluated object bound type probability reference
GIFT-128 9 differential probability tight bound 2−46.99 [BPP+17]
GIFT-128 12 characteristic probability lower bound 2−62.415 [ZDY19]
GIFT-128 14 characteristic probability lower bound 2−85 [ZDY19]
GIFT-128 18 characteristic probability lower bound 2−109 [ZDY19]
TweGIFT 10 characteristic probability upper bound 2−72.6 Ours
TweGIFT 10 characteristic probability lower bound 2−79 Ours

Basically, GIFT-128 allows a sparse differential propagation. For example, the 18-round763

differential trail found by Zhu et al. [ZDY19] is described in Table 17.
Table 3: 18-Round Sparse Differential Trail by Zhu et al. [ZDY19, Table 10]
Round Input Difference Probability

0000 0000 7060 0000 0000 0000 0000 0000
1 0000 0000 0000 0000 0000 0000 00a0 0000 2−5

2 0000 0010 0000 0000 0000 0000 0000 0000 2−7

3 0000 0000 0800 0000 0000 0000 0000 0000 2−10

4 0020 0000 0010 0000 0000 0000 0000 0000 2−12

5 0000 0000 0000 0000 4040 0000 2020 0000 2−17

6 0000 5050 0000 0000 0000 5050 0000 0000 2−25

7 0000 0000 0000 0000 0000 0000 0a00 0a00 2−37

8 0000 0000 0000 0011 0000 0000 0000 0000 2−41

9 0008 0000 0008 0000 0000 0000 0000 0000 2−57

10 0000 0000 0000 0000 2020 0000 1010 0000 2−41

11 0000 5050 0000 0000 0000 5050 0000 0000 2−61

12 0000 0000 0a00 0a00 0000 0000 0000 0000 2−73

13 0000 0000 0011 0000 0000 0000 0000 0000 2−77

14 0090 0000 00c0 0000 0000 0000 0000 0000 2−83

15 1000 0000 0080 0000 0000 0000 0000 0000 2−89

16 0010 0000 0000 0000 0000 0000 8020 0000 2−94

17 0000 0000 8000 0020 0000 0050 0000 0020 2−101

18 0000 0100 0020 0800 0014 0404 0002 0202 2−109

764

The differential mask for the first and last rounds in Table 17 have a relatively large765

weight, however this is because the trail is optimized for 18 rounds. The sparse differential766

propagation of GIFT-128 is the ground of our belief that to have 16 active S-boxes around767

the tweak injection by using non-zero tweak difference is inefficient.768

Boomerang Attacks. If the number of attacked rounds is reduced significantly, the tweak769

injection actually helps an attacker to attack TweGIFT more efficiently than the original770

GIFT-128. An example is the boomerang attack for 10 rounds. If the attacker starts from771

the zero plaintext difference with some non-zero tweak difference, the first 5 rounds do not772

have any difference. The tweak injection will introduce differences to multiple S-boxes, but773

we change the trail by following the framework of the boomerang attack. In the second774

trail that starts from round 6, we also choose the zero-difference to the state input, and775

some non-zero difference in the tweak. This also gives another 5 empty rounds. In total,776

we have two 5-round trails with probability 1, that easily enables attackers to attack 10777

rounds plus a few more rounds by appending some key-recovery rounds. It would also778



24 Short Tweak TBC and Its Applications in Symmetric Ciphers

be possible to extend a few more rounds at the border of the two trails by using the779

BCT [CHP+18].780

In the original GIFT-128, the minimum number of the active S-boxes for 5 rounds is781

5. Hence, the 10-round boomerang trail will certainly require a non-negligible amount of782

the data complexity to recovery the key. The 10-round attack against TweGIFT should be783

much more efficient than the one against original GIFT-128.784

However, because the probability of the trails is squared in the boomerang attack, it is785

highly unlikely that the attacker can extend the differential trail significantly. Moreover,786

recall that the probability of the differential characteristic is upper bounded by 2−72.6 for787

the 10-round core. The squared probability is 2−145.2, which has already been more than788

the code-book size. The boomerang attack may work efficiently for 10 and a few more789

rounds of TweGIFT, but given that the differential trail in Table 17 reaches 18 rounds, we790

do not think that the boomerang attack can be the best approach for attacking TweGIFT.791

3.8 Hardware Performance of the TweAES and TweGIFT Instances792

In this section, we provide the hardware implementation details for all our recommended793

TweGIFT and TweAES versions and compare their hardware overheads respective to their794

original counterparts GIFT and AES. We give a brief comparison on software implementation795

of TweAES and AES in supplementary material ??. For each instantiations, we present796

both the encryption/decryption (ED) version and only encryption (E) version. The VHDL797

code of our implementations are synthesized using Xilinx ISE 14.7 tool in a Virtex 7 FPGA798

(XC7VX415TFFG1761). We have used the default options (optimized for speed) and all799

the S-boxes and memories to store the round keys are mapped to LUTs, and no block800

rams are used. We present the results obtained from the tool after performing place and801

route process.802

Table 4: Implementation results for AES and TweAES on Virtex 7 FPGA.

BC or tBC LUTs FF Slices Frequency Clock Throughput
(MHz) cycles (Mbps)

AES-ED 2945 533 943 297.88 11 3466.24
TweAES-ED[4,8,8,2] 2960 534 1044 295.97 11 3444.01

TweAES-ED[8,16,8,2] 2976 534 1129 295.81 11 3442.15
TweAES-ED[16,32,8,2] 3006 534 1134 292.87 11 3407.94

AES-E 1605 524 559 330.52 11 3846.05
TweAES-E[4,8,8,2] 1617 524 574 328.27 11 3819.87

TweAES-E[8,16,8,2] 1632 524 593 325.17 11 3783.79
TweAES-E[16,32,8,2] 1659 524 592 326.56 11 3799.97

Table 18 depicts that the area-overhead (LUT counts) introduced by the tweak injection is803

negligeable. For Considering the combined encryption-decryption (ED) implementation,804

TweAES have overheads (in LUTs) of 0.5%, 1.05% and 2.07% for tweak size of 4, 8 and 16805

bits respectively. As we move to the encryption (E) only implementation, our recommended806

TweAES versions have negligeable area overheads of 0.7%, 1.68% and 3.36% respectively.807

Note that, the reduction in the speed is also negligeable.808

Table 19 summerizes the hardware performances of our recommended TweGIFT versions809

along with the original GIFT. For ED implementation, our recommended version of810

TweGIFT-64 has an overheads of 0.3% for 4 bit tweaks, and TweGIFT-128 has overheads811

of 4.04% and 9.89% for tweak size of 4 and 16 bits respectively. As we move to the E812

implementation, TweGIFT-64 has an overheads of 6.68% for 4 bit tweaks, and TweGIFT-128813

has overheads of 4.32% and 5.5% for tweak size of 4 and 16 bits respectively.814



Chakraborti et al. 25

Table 5: Implementation results for GIFT and TweGIFT on Virtex 7 FPGA.

BC or tBC LUTs FF Slices Frequency Clock Throughput
(MHz) cycles (Mbps)

GIFT-64-ED 615 277 236 455.17 29 1004.51
TweGIFT-64-ED[4,16,16,4] 617 277 234 430.29 29 946.60

GIFT-64-E 449 275 153 596.66 29 1316.77
TweGIFT-64-E[4,16,16,4] 479 275 179 595.09 29 1313.30

GIFT-128-ED 1113 408 432 447.83 41 1398.10
TweGIFT-128-ED[4,32,32,5] 1158 408 419 416.50 41 1300.29

TweGIFT-128-ED[16,32,32,4] 1223 408 428 429.32 41 1340.31
GIFT-128-E 763 403 330 596.30 41 1861.62

TweGIFT-128-E[4,32,32,5] 796 403 332 597.59 41 1865.65
TweGIFT-128-E[16,32,32,4] 805 403 377 598.78 41 1869.36

4 ESTATE: A tBC Based Nonce-misuse Resistant AEAD815

The AEAD ESTATE uses the following three instances of TweAES and TweGIFT ciphers.816

For the sake of simplicity we use TweAES, TweAES-6, and TweGIFT for the underlying817

tBCs (we optimize using the tweakable blockcipher instance names as less as possible).818

Precisely, the underlying tBCs are as follows.819

• TweAES is the same as TweAES[4, 8, 8, 2],820

• TweAES-6 is the round reduced version of TweAES, such that the number of rounds821

is reduced to 6 from 10, and822

• TweGIFT is the same as TweGIFT-128[4, 32, 32, 5].823

4.1 ESTATE AEAD Mode824

ESTATE authenticated encryption mode receives an encryption key K ∈ {0, 1}κ, a nonce825

N ∈ {0, 1}n, an associated data A ∈ {0, 1}∗, and a message M ∈ {0, 1}∗ as inputs, and826

returns a ciphertext C ∈ {0, 1}|M |, and a tag T ∈ {0, 1}n. The decryption algorithm827

receives a keyK ∈ {0, 1}κ, a nonceN ∈ {0, 1}n, an associated dataA ∈ {0, 1}∗, a ciphertext828

C ∈ {0, 1}∗, and a tag T ∈ {0, 1}n as inputs, and return the plaintext M ∈ {0, 1}|C|829

corresponding to C, if the tag T is valid.830

ESTATE is roughly based on the MAC-then-Encrypt paradigm. It is composed of an831

FCBC like MAC, we call FCBC?, and the OFB mode of encryption. ESTATE is parametrized832

by its underlying tweakable block cipher Ẽ-n/τ/κ. It operates on n-bit data blocks at a833

time using a tweakable block cipher. Complete specification of ESTATE is presented in834

Algorithm 1. The pictorial description is given in Figure 14, 15, and 16.835

4.1.1 FCBC?: Tag Generation Phase836

The tag generation phase is a tweakable variant of FCBC, where distinct tweaks are used to837

instantiate multiple instantiations of the block cipher. The distinctness in tweaks is used to838

separate different cases based on the length of associated data and message. We represent839

a tweak value in 4 bits and the tweak value i represents the 4-bit binary representation840

of integer i. The processing of first block (i.e. nonce N) uses the tweak value 1. The841

intermediate blocks are always processed with tweak 0, to minimize the overheads842



26 Short Tweak TBC and Its Applications in Symmetric Ciphers

4.1.2 OFB: Encryption Phase843

The encryption phase is built on the well-known OFB mode, where we fix the tweak value844

to 0, again to minimize the tweak injection overhead.845

Algorithm 1 ESTATE Authenticated Encryption and Verified Decryption Algorithm

1: function ESTATE.Enc[Ẽ](K, N, A, M)
2: T ← MAC[Ẽ](K, N, A, M)
3: C ← OFB[Ẽ](K, T, M)
4: return (C, T )

5: function MAC[Ẽ](K, N, A, M)
6: if |A| = 0 and |M | = 0 then
7: return T ← Ẽ

8
K(N)

8: T ← Ẽ
1
K(N)

9: if |A| > 0 then
10: A[1]‖ · · · ‖A[a]← A

11: t← (|M | > 0 ; |A[a]| = n) ? 2 : 3 : 6 : 7
12: T ← FCBC?[Ẽ](K, T, A, t)
13: if |M | > 0 then
14: M [1]‖ · · · ‖M [m]←M

15: t← (|M [m]| = n)? 4 : 5
16: T ← FCBC?[Ẽ](K, T, M, t)
17: return T

1: function ESTATE.DEC[Ẽ](K, N, A, C, T )
2: M ← OFB[Ẽ](K, T, C)
3: T ′ ← MAC[Ẽ](K, N, A, M)
4: return (T ′ = T )? M : ⊥

5: function FCBC?[Ẽ](K, T, D, t)
6: D[1]‖ · · · ‖D[d]← D

7: for i = 1 to d− 1 do
8: T ← Ẽ

0
K(T ⊕D[i])

9: T ← Ẽ
t

K

(
T ⊕ ozp(D[d])

)
10: return T

11: function OFB[Ẽ](K, T, M)
12: M [1]‖ · · · ‖M [m]←M

13: for i = 1 to m do
14: T ← Ẽ

0
K(T )

15: C[i]← chop(T, |M [i]|)⊕M [i]
16: return (C[1]‖ · · · ‖C[m])

N V

A[1] A[a]

E1
K E0

K E0
K E

2/3
K

⊕ ⊕· · ·

V T

M [1] M [m]

E0
K E0

K E
4/5
K

⊕ ⊕· · ·

E0
K E0

K E0
K

⊕ ⊕ ⊕

T

M [1]

C[1]

M [m− 1]

C[m− 1]

M [m]

C[m]

· · ·

Figure 14: ESTATE with a AD blocks and m message blocks

4.2 sESTATE: A Lighter Variant of ESTATE846

Along with ESTATE, we also define a lighter version of ESTATE, called sESTATE where847

we use two tweakable block ciphers: Ẽ and a round-reduced variant of Ẽ, represented by848

F̃. The tweakable block cipher F̃ replaces Ẽ in processing of non-last blocks in the MAC849

function. For all other tweakable block cipher calls, i.e. for processing the last block850

in MAC function and the full OFB processing, Ẽ is used as usual. Further F̃, is always851

employed with tweak value 15, in order to maintain maximum distance between the 0852



Chakraborti et al. 27

N T

M [1] M [m]

E1
K E0

K E0
K E

4/5
K

⊕ ⊕· · ·

E0
K E0

K E0
K

⊕ ⊕ ⊕

T

M [1]

C[1]

M [m− 1]

C[m− 1]

M [m]

C[m]

· · ·

Figure 15: ESTATE with empty AD and m message blocks

N T

A[1] A[a]

E1
K E0

K E0
K E

6/7
K

⊕ ⊕· · ·

Figure 16: ESTATE with a AD blocks and empty message

tweak calls to Ẽ and calls to F̃.853

Algorithm 2 sESTATE Authenticated Encryption and Verified Decryption Algorithm.
Here F̃ is a round-reduced variant of Ẽ

1: function sESTATE.Enc[̃E,̃F](K,N,A,M)
2: T ← MAC[̃E, F̃](K,N,A,M)
3: C ← OFB[̃E](K,T,M)
4: return (C, T )

5: function MAC[̃E,̃F](K,N,A,M)
6: if |A| = 0 and |M | = 0 then
7: return T ← Ẽ

8
K(N)

8: T ← F̃
15
K (N)

9: if |A| > 0 then
10: A[1]‖ · · · ‖A[a]← A

11: t← (|M | > 0 ; |A[a]| = n) ? 2 : 3 : 6 : 7
12: T ← FCBC? [̃E, F̃](K,T,A, t)
13: if |M | > 0 then
14: M [1]‖ · · · ‖M [m]←M

15: t← (|M [m]| = n)? 4 : 5
16: T ← FCBC? [̃E, F̃](K,T,M, t)
17: return T

1: function sESTATE.DEC[̃E,̃F](K,N,A,C, T )
2: M ← OFB[̃E](K,T,C)
3: T ′ ← MAC[̃E, F̃](K,N,A,M)
4: return (T ′ = T )? M : ⊥

5: function FCBC? [̃E,̃F](K,T,D, t)
6: D[1]‖ · · · ‖D[d]← D

7: for i = 1 to d− 1 do
8: T ← F̃

15
K (T ⊕D[i])

9: T ← Ẽ
t

K

(
T ⊕ ozp(D[d])

)
10: return T

11: function OFB[̃E](K,T,M)
12: M [1]‖ · · · ‖M [m]←M

13: for i = 1 to m do
14: T ← Ẽ

0
K(T )

15: Ci ← chop(T, |M [i]|)⊕M [i]
16: return (C[1]‖ · · · ‖C[m])

4.2.1 Tweak Choices854

Tweak Choices for sESTATE. For sESTATE, we always use tweak 15 for the round-reduced855

block ciphers to maximize the distance with other tweaks, most importantly tweak 0 whose856

inputs and outputs are observed through OFB. In this way, we make TweAES-6 with tweak857

value 15 and TweAES with tweak value 0 as much independent as possible.858



28 Short Tweak TBC and Its Applications in Symmetric Ciphers

4.3 Design Rationale859

We briefly describe the rationale of our proposal:860

1. Choice of the Mode. Our basic goal is to design an ultra-lightweight mode, which861

is especially efficient for short messages, and secure against nonce misuses. For this,862

we choose SIV as base and then introduce various tweaks to make the construction863

single-state and inverse free, much in the same vein as in the case of SUNDAE.864

2. Use of Tweakable Block Cipher. We use tweakable block cipher with 4-bit865

tweak primarily for the purpose of various domain separations such as the type of866

the current data (associated data or message), completeness of the final data block867

(partial or full), whether the associated data and/or message is empty etc. Note that,868

without the use of these tweaks, these domain separations would cost a few constant869

field multiplications and/or additional block cipher invocations, which would in870

turn increase the hardware footprint as well as decrease the energy efficiency and871

throughput for short messages.872

3. Rationale of the Tweaks. Here we provide a detailed justification for the choice873

of the tweaks.874

(i) Tweak for Processing Bulk Messages. We use tweak 0 for all the block ciphers875

used in the OFB part and all the intermediate block ciphers in the MAC function.876

Since TweAES and TweGIFT with zero tweaks are essentially AES and GIFT877

respectively, no additional overhead is introduced in the software for longer878

messages due to the use of tweakable block ciphers.879

(ii) Tweak for First Block Cipher Invocation. We use a separate tweak (tweak880

value 1) for the first block cipher invocation in the MAC function so that the881

adversary does not have any control over the inputs of the intermediate block882

ciphers. This essentially ensures the RUP security of the mode.883

(iii) Tweak for Finalization. For the purpose of domain separation, we use tweak 2884

and 3 (full and partial resp.) for the final AD block processing and tweak 4885

and 5 (full and partial resp.) for the final plaintext block processing.886

4. Rationale of the Tweak Injection Positions for TweAES. The overall structure887

of TweAES is similar as KIASU-BC [JNP14b], which takes a 64-bit tweak as input and888

inject it to top two rows of the state in every rounds. The designers of KIASU-BC889

pointed out that if the injection position is two columns, it immediately leads to an890

efficient related-key related-tweak attacks. This is also the reason for the designers of891

KIASU-BC for not supporting a 128-bit and a 96-bit tweak. The proposed analysis is892

reasonable and we follow the similar analysis in the design of TweAES, i.e. to inject893

the 8-bit expanded tweak to the LSB of each byte in the top rows. Bit position894

inside the byte can be different, however we determined to inject only to the LSB895

from the implementation reasons.896

We also took into account the fact that several researchers [DEM16,TAY16,DL17,897

LSG+19] pointed out that many of the attack approaches on AES were extended by898

1 more round when they were applied to KIASU-BC. This is mainly caused by the899

fact that the same tweak is injected in every round and the expanded tweak can be900

directly controlled by the attacker at least for one round. In TweAES, the expansion901

by computing the linear code makes it difficult for the attackers to control the value902

of the expanded tweak, and the injection in every a few rounds does not allow any903

single-round iterative characteristic.904



Chakraborti et al. 29

4.4 Recommended Instantiations905

We recommend the following concrete instantiations:906

• ESTATE_TweAES: This AEAD scheme obtained by instantiating ESTATE mode of907

operation with Ẽ:=TweAES block cipher. Here the size of the key, nonce and tag are908

128 bits each.909

• ESTATE_TweGIFT: This AEAD scheme is obtained by instantiating ESTATE mode910

of operation with Ẽ:= TweGIFT-128. Here the size of the key, nonce and tag are 128911

bits each. We recommend ESTATE_TweGIFT, for hardware-oriented ultra-lightweight912

applications.913

• : This AEAD scheme is obtained by instantiating sESTATE mode of operation with914

Ẽ:=TweAES, F̃:=TweAES-6, such that F̃ is the 6-round version of TweAES. Again, the915

size of the key, nonce and tag are 128 bits each. Notably, the last round of TweAES-6916

(6-th round) includes the MixColumns operations, and the tweaks are added in the917

2-nd and 4-th rounds. We recommend , for higher throughput demanding, and918

energy-constrained applications.919

4.5 Security of ESTATE920

In this section, we prove that ESTATE is a AERUP secure authenticated encryption scheme:921

Theorem 2 (AERUP security of ESTATE). Consider ESTATE authenticated encryption
scheme based on tweakable block cipher E : {0, 1}k × {0, 1}n × {0, 1}t → {0, 1}n. For any
adversary A having encryption complexity σe, decryption complexity σd, and verification
complexity σv, and operating in time t,

AdvAERUP
ESTATE(A) ≤ AdvTPRP

E (B) + σ2

2n + qv
2n ,

where B is some TPRP adversary that makes σ = σe + σd + σv queries to its oracle.922

We consider any adversary A that has access to either (EK ,DK ,VK) or ($,S,⊥), and
tries to distinguish both worlds. The adversary has encryption complexity σe, decryption
complexity σd, and verification complexity σv, with σe + σd + σv = σ, and operates in
time t. As a first step, we replace E0

K , . . . , E
7
K by random permutations P0, . . . , P7, where

each Pi
$←− P(n), at the cost of AdvTPRP

E (B) for some distinguisher B that makes σ queries
to its oracle and operates in time t′ ≈ t. As a second step, we switch from P0, . . . , P7 to a
random functions R0, . . . , R7 where Ri

$←− F(n) at the cost of
(
σ
2
)
/2n. For brevity, denote

the resulting construction by Π = (E [R0, . . . , R7],D[R0, . . . , R7],V[R0, . . . , R7]). We have
thus obtained

AdvAERUP
ESTATE(A) ≤ AdvTPRP

E (B) +
(
σ

2

)
/2n + AdvAERUP

Π (A) , (4)

and our focus is on upper bounding the remaining distance AdvAERUP
Π (A). The theorem923

follows as we bound AdvAERUP
Π (A) ≤ σ2

2n + qv
2n in the following subsection.924

4.5.1 Bounding AdvAERUP
Π (A)925

Without loss of generality, A is deterministic. Suppose it makes qe encryption queries926

(A+
i ,M

+
i )qei=1 to the encryption oracle, where the block lengths of A+

i and M+
i are denoted927

by a+
i and m+

i , with an aggregate of total σe blocks, qd decryption queries (A−i , C
−
i , T

−
i )qdi=1928

to the decryption oracle, where the block lengths of A−i and C−i are denoted by a−i and929



30 Short Tweak TBC and Its Applications in Symmetric Ciphers

c−i , with an aggregate of total σd blocks, and qv verification queries (A?i , C?i , T ?i )qvi=1 to930

the verification oracle, where the block lengths of A?i and C?i are denoted by a?i and c?i ,931

with an aggregate of total σv blocks. We assume that A is non-trivial and non-repeating,932

which means that all queries are distinct and there is no (A?i , C?i , T ?i ) that is an answer933

of an earlier encryption query. By (i,}), we mean the i-th message of type }, where934

} ∈ {+,−, ?}. We use the notation (j,}) ≺ (i,~) to denote that j-th message of type }935

was queried prior to the i-th message of type ~.936

Description of the Real World. The real world Ore consists of the encryption oracle937

Π.E [R], the decryption oracle Π.D[R], and the verification oracle Π.V[R] as outlined938

above. After the adversary has made all its queries, the oracles release all the internal939

variables. The encryption and verification oracles reveal all (X,Y )’s (block cipher input-940

outputs corresponding to authentication part) and all (U, V )’s (block cipher input-outputs941

corresponding to OFB part). The decryption oracle reveals all (U, V )’s corresponding to942

decryption (the oracle does not verify the MAC). Note that there is some redundancy in943

the values, as the U ’s can be deduced from the values M , C, and V , but we reveal these944

for completeness.945

Description of the Ideal World. The ideal world Oid consists of three oracles ($,S,⊥).946

The verification oracle ⊥ simply responds with the ⊥-sign for each input (A?i , C?i , T ?i ). We947

will elaborate on the remaining two oracles, encryption $ and decryption S, in detail. For948

these two oracles, we maintain an initially empty table L to store (U, V )-tuples.949

The encryption oracle $ is a random function that for each input (A+
i ,M

+
i ) =

(A+
i [1 . . . a+

i ],M+
i [1 . . .m+

i ]) generates a ciphertext and tag as

C+
i = C+

i [1 . . .m+
i ] $←− {0, 1}|M

+
i
| ,

T+
i

$←− {0, 1}n .

For later purposes, $ will in addition set the following internal variables, which correspond
to the inputs and outputs of R that are determined by M+

i , C
+
i , T

+
i :

(
U+
i [k] , V +

i [k]
)
←

{(
T+
i , M+

i [1]⊕ C+
i [1]

)
, for k = 1 ,(

V +
i [k − 1] , M+

i [k]⊕ C+
i [k]

)
, for k = 2, . . . ,m+

i .

It stores all the individual (U+
i , V

+
i ) tuples in table L. The decryption oracle S is a950

simulator that we define to operate as follows on input of a query (A−i , C
−
i , T

−
i ) =951

(A−i [1, . . . , a−i ], C−i [1, . . . , c−i ], T−i ):952

• Sets k ← 1 and U−i [1]← T−i953

• While U−i [k] ∈ L, sets V −i [k] ← L(U−i [k]), defines M−i [k] ← V −i [k] ⊕ C−i [k] and954

U−i [k + 1]← V −i [k] and increment k by 1.955

• For j = k to c−i , samples M−i [j] $←− {0, 1}n, sets V −i [j]←M−i [j]⊕ C−i [j], U−i [j]←956

V −i [j − 1] and adds (U−i [j], V −i [j]) to L.957

• Finally returns M−i [1 . . . c−i ]958

Once the adversary has made all queries, we move to an offline phase where the959

adversary will be given the internal values (X,Y ) and (U, V ), just like in the real world.960

Note that the (U, V )’s have already been defined for encryption and decryption oracle. For961

any input query (A?i , C?i , T ?i ), verification oracle ⊥ defines (U, V ) in exactly the similar962

way as the decryption oracle defines for an input query (A−i , C
−
i , T

−
i ) and also determines963

the underlying message M?
i [1 . . . c?i ] which is released to the adversary. For the (X,Y )’s964

we use the following technique to define them. Note that we only have to focus on the965



Chakraborti et al. 31

encryption and verification queries; we do not bother about the (X,Y )’s for decryption966

queries as a decryption call does not verify the tag. For any query (i,}) with } ∈ {+, ?},967

we first find the query (j,~) which has the longest common prefix with (i,}). Let968

p < `}i be the length of the longest common prefix of (A}
i ‖M

}
i ) and (A~

j ‖M
~
j ). Next,969

we set Y }
i [k] ← Y ~

j [k] for 1 ≤ k ≤ p, and Y }
i [k] $←− {0, 1}n, for p + 1 ≤ k ≤ `}i .970

Finally, we set all the X}
i [j] values for j = 1, . . . , `}i . Finally, when the sampling971

of internal values is over, Oid returns all the internal values. These are (X+
i , Y

+
i ) =972

(X+
i [1 . . . `+i ], Y +

i [1 . . . `+i ]) , (U+
i , V

+
i ) = (U+

i [1 . . .m+
i ], V +

i [1 . . .m+
i ]), for each encryp-973

tion query (A+
i ,M

+
i , C

+
i , T

+
i ); (U−i , V

−
i ) = (U−i [1 . . . c−i ], Y −i [1 . . . c−i ]), for each decryp-974

tion query (A−i ,M
−
i , C

−
i , T

−
i ), and (X?

i , Y
?
i ) = (X?

i [1 . . . `?i ], Y ?i [1 . . . `?i ]) , (U?i , V ?i ) =975

(U?i [1 . . .m?
i ], V ?i [1 . . .m?

i ]), for each verification query (A?i ,M?
i , C

?
i , T

?
i , b

?
i ).976

Attainable Transcripts. The overall transcript of the attack is τ = (τe, τd, τv), where

τe = (A+
i ,M

+
i , C

+
i , T

+
i , X

+
i , Y

+
i , U

+
i , V

+
i )qei=1 ,

τd = (A−i ,M
−
i , C

−
i , T

−
i , U

−
i , V

−
i )qdi=1 ,

τv = (A?i ,M?
i , C

?
i , T

?
i , X

?
i , Y

?
i , U

?
i , V

?
i , b

?
i )
qv
i=1 .

A transcript τ = (τe, τd, τv) is said to be attainable (with respect to A) if the probability977

to realize this transcript in the ideal world Oid is non-zero. Note that, particularly, for an978

attainable transcript τ , any verification query in τv satisfies b?i = ⊥. Following Sect. 2.4,979

we denote by Θ the set of all attainable transcripts, and by Xre and Xid the probability980

distributions of transcript τ induced by the real world and ideal world, respectively.981

Definition of Bad Transcripts We say that an attainable transcript τ is bad if one of982

the following events hold:983

1. AccXX1: ∃(j,~) � (i,}) : X}
i [a}i ] = X~

j [a~j ], where A}
i 6= A~

j .984

2. AccXX2: ∃(j,~) � (i,}) : X}
i [`}i ] = X~

j [`~j ].985

3. AccXX3: ∃(j,~) � (i,}), k, k′( 6= k) : X}
i [k] = X~

j [k′].986

4. AccXX4: ∃(j,~) � (i,}), k ≤ a}i : X}
i [k] = X~

j [k], where A}
i [1 . . . k] 6= A~

j [1 . . . k].987

5. AccXX5: ∃(j,~) � (i,}), k > a}i : X}
i [k] = X~

j [k], where A}
i = A~

j ,M
}
i [1 . . . (k −988

a})] 6= M~
j [1 . . . (k − a})].989

6. AccXU: ∃(j,~), (i,}), k(6= 1, `}i ), k′ such that U}
i [k′] = X~

j [k].990

7. AccUU: ∃(j,~) � (i,}), k, k′ with
(
} = + or U}

i [1] 6= U~
j [k − k′ + 1]

)
such that U}

i [k′] =991

U~
j [k].992

8. Forge: ∃(i, ?) such that Y ?i [`?i ] = T ?i .993

Note that, considering the real world, AccXX denotes the event of an accidental collision994

between two inputs to R in the authentication part, where we exclude trivial collisions due995

to common prefix. Event AccXU corresponds to accidental collisions between an input to R996

in the authentication and one in the encryption part. Event AccUU corresponds to accidental997

collisions between two inputs to R in the encryption part, where we exclude trivial collisions998

triggered by a decryption query for a known U -value. Event Forge corresponds to the999

event that for any verification query, the last block cipher output in the MAC function1000

collides with the given tag in the verification query.1001

In line with the H-coefficient technique (Theorem 1), Θbad denotes the set of all1002

attainable transcripts that are bad.1003

Probability of Bad Transcripts. We now bound the probability of a bad event in the1004

ideal world.1005



32 Short Tweak TBC and Its Applications in Symmetric Ciphers

Lemma 1. Let Xid and Θbad be as defined as above. Then,

Pr[Xid ∈ Θbad] ≤
(
σ

2

)
· 1

2n + qv
2n .

Proof. By applying the union bound,

Pr[Xid ∈ Θbad] ≤ Pr[AccXX] + Pr[AccXU] + Pr[AccUU] + Pr[Forge] ,

and we bound the three probabilities individually. We let #X be the number of X’s in1006

the transcript and #U the number of U ’s.1007

Bounding AccXX. For all the first four cases, the probability of each case can be bounded
by 1

2n due to the random sampling of Y ~
j [k − 1]. Combining all the four cases, we obtain

Pr[AccXX] ≤
(

#X
2

)
· 1

2n .

Bounding AccXU. The event implies C}
i [k′]⊕M}

i [k′] = Y ~
j [k − 1]⊕ A~

j [k]. If (j,~) ≺
(i,}), we can bound this event by 1

2n due to the random sampling of C}
i [k′] or M}

i [k′] or
Y ~
j [k − 1]. We therefore obtain

Pr[AccXU] ≤ (#X ·#U) · 1
2n .

Bounding AccUU. We consider the following cases:1008

We obtain

Pr[AccUU] ≤
(

#U
2

)
· 1

2n .

Bounding Forge. For a fixed verification query, the event is trivially bounded by 2−n as
Y ?i [`?] is sampled uniformly at random. Summing over all possible choices of the index i,
we have

Pr[Forge] ≤ qv/2n.

Conclusion. We obtain that

Pr[Xid ∈ Θbad] ≤
((

#X
2

)
+ (#X ·#U) +

(
#U

2

))
· 1

2n .

This completes the proof, noting that(
#X

2

)
+ (#X ·#U) +

(
#U

2

)
=
(

#X + #U
2

)
≤
(
σ

2

)
,

and in addition #U ≤ σ.1009

Analysis of Good Transcripts. In this section we show that for a good transcript τ ,1010

realizing τ is almost as likely in the real world as in the ideal world. Formally, we prove1011

the following lemma.1012

Lemma 2. Let Xre, Xid, and Θbad be as defined as above. For any good transcript
τ = (τe, τv, τd) ∈ Θ\Θbad,

Pr[Xre = τ ]
Pr[Xid = τ ] = 1 .



Chakraborti et al. 33

Proof. Let τ = (τe, τv, τd) be a good transcript. Let se be the number of distinct X
values in X+ := (X+

1 , . . . , X
+
qe) tuple and sv be the number of distinct X values in

X? := (X?
1 , . . . , X

?
qv ). Moreover, let ki be the number of non-fresh blocks for i-th decryption

query and k′i be the number of non-fresh blocks for i-th verification query. Therefore, there

are σ′d := (σd−
qd∑
i=1

ki) many M ′

i values and σ′v := (σv −
qv∑
i=1

k′i) many M?
i values have been

sampled. This in particular allows us to compute the ideal interpolation probability as
follows: in the online phase the encryption oracle samples qe many tag values and σqe
many cipher text blocks uniformly at random. The decryption oracle samples σ′d many
message blocks and the verification oracle samples σ′v many message blocks. In the offline
phase, the ideal oracle samples total se + sv many Y values. Hence,

Pr[Xid = τ ] =
(

1
2n

)qe
·
(

1
2n

)σe
·
(

1
2n

)σ′d
·
(

1
2n

)σ′v
·
(

1
2n

)se+sv
Now, we compute the real interpolation probability for τ . Since, τ is a good transcript,
X+
i [`i] is fresh. Therefore, T+

i is uniformly distributed. Moreover, we do not have any
collision in the tuple U+ := (U+

1 , . . . , U
+
qe) as τ is good which gives the uniform distribution

on the cipher text blocks. It is easy to see that the decryption oracle samples exactly
σ′d many message blocks and verification oracle samples exactly σ′v many message blocks.
Morever, as there are se + sv many distinct X values in encryption and verification query
history, we have,

Pr[Xre = τ ] =
(

1
2n

)qe
·
(

1
2n

)σe
·
(

1
2n

)σ′d
·
(

1
2n

)σ′v
·
(

1
2n

)se+sv
This gives the ratio of the real to ideal interpolation probability 1.1013

Conclusion. By the H-coefficient technique of Theorem 1, we obtain for the remaining
distance of (4):

AdvAERUP
Π (A) ≤ εratio + εbad ,

where εratio = 0 given the bound of Lemma 2 and εbad is set to be the bound of Lemma 1.1014

4.6 Hardware Implementation1015

In this section, we describe the hardware implementation details of our cipher family1016

ESTATE. All the members of ESTATE have the same structure. The only difference lies in1017

the choice of the underlying primitives. Hence, it is reasonable to describe the details with1018

respect to one of the members ESTATE_TweAES. We start with a very brief description1019

of the implementation of TweAES. Next we describe hardware architecture details of1020

ESTATE_TweAES. Finally, we provide our implementation results of all the members1021

of the ESTATE family along with the implementation results of SUNDAE_AES-128 and1022

SUNDAE_GIFT-128. Note that, we implement both the instantiations of SUNDAE by own1023

using exactly the same interface and following the same architectural properties to have1024

a fair comparison. In addition, we use the AES only encryption core provided in GMU1025

Caesar Package [GMU16] for both ESTATE_TweAES and SUNDAE_AES-128. The details1026

are given below.1027

4.6.1 Hardware Architecture of ESTATE_TweAES1028

In this section, we describe the implementation of combined encryption/decryption archi-1029

tecture of ESTATE_TweAES. It is described in Fig. 17. The main modules are described1030

below:1031



34 Short Tweak TBC and Its Applications in Symmetric Ciphers

M
u
x
1

M
u
x
2

tweAES
Pad

b b

b

N , A i , M i , C i , T

rst

mode

last ad

last msg

b

b

V F

Control
unit

incomplete

AD empty
Msg empty

rdy

data in

start
ini key

done keys

Verification

t

t

 T

N, A, M, C, T

K

C, T, M

Figure 17: Hardware Architectures of ESTATE_TweAES

• Registers. An 128-bit register is used in ESTATE_TweAES to maintain the TweAES1032

state. It is evident as ESTATE is based on feedback based modes CBC and OFB1033

and we do not require any additional information to store during the lifetime of the1034

encryption and decryption (not the verification). During verification, it is necessary1035

to use the nonce to decrypt in the OFB mode and we need to store the tag in the1036

register labeled as T .1037

• Multiplexers. Mux1 selects the input to TweAES. TweAES can perform three1038

operations: encrypt one single block in ECB mode, compute the CBC mode or1039

generate the encryption/decryption stream in the OFB mode. Using Mux1, TweAES1040

gets the instruction which mode it should work. The output from TweAES (direct1041

or xored with input block) is input to Mux2 (to denote whether the architecture1042

executes encryption or decryption or tag generation).1043

• Pad. This module receives as input the selected output from Mux2 and outputs1044

either the full block for tag or partial block for message or cipher text.1045

• VF. It performs the verification process when the architecture is executed in the1046

decryption mode, and it compares the content of the register T with the output of1047

TweAES computed from the associated data and the decrypted message.1048

• Control unit. It provides specific signals to different modules in the architecture.1049

To follow the ESTATE_TweAES algorithm, we implement a finite state machine1050

shown in Fig. 18 containing the following states:1051

1. Reset: This state resets all the internal variables and signals and prepares the1052

circuit to start. The control from the Reset state goes to the Wait state.1053

2. Wait: This state indicates that we should now initialize the cipher functionalities.1054

It waits until the signal start or ini_keys change to 1.1055

3. Ini_keys: This state performs the computation of the round keys for TweAES.1056

4. Enc_N: During the execution of this state, the architecture performs the TBC1057

encryption of the Nonce. When the message and associated data are empty,1058

the output generated in this state by TweAES is given as the tag. The only1059

change for both the cases is the value of the tweak.1060

5. FCBC_AD: This state executes the CBC mode with associated data blocks as1061

the input.1062



Chakraborti et al. 35

Reset Wait Ini keys

Enc N

FCBC ADFCBC MsgVerif cation

OFB

Rst=1
ini keys = 1

rdy keys = 1

star t = 1 and mode = 0

mode=1

mode = 0

mode = 1 and i = m

star
t =

1 a
nd

mo
de=

1

|M
| =

0
A = 0 a

nd
rdy

C = 1

ini keys = 0 and star t = 0

rdy keys = 0

rdyC = 0

|A | > 0 and rdyC = 1

i < a

i = a

i <
m

i =
m and

mode
= 0

Figure 18: Finite State Machine

6. FCBC_Msg: Same as FCBC_AD but here the input is the message block, the1063

last output is the tag.1064

7. OFB: In this state, the architecture is configured to compute the encryption or1065

decryption in the OFB mode.1066

8. Verification: This state just activates the output from the component VF.1067

It is important to note that the value for the tweak is generated inside the state machine1068

and they are supplied to the TweAES module as shown in Figure 17. Depending on the1069

facts1070

• whether the encryption or the decryption is performed and1071

• whether at least one of the associated data and the message is empty,1072

the order of execution of the states change. The possible scenarios are shown in Table 6.1073

Table 6: Execution order of states for encryption/decryption and depending on the above points
Encryption Sequence of states
a > 0,m > 0 Wait→ Enc_N→ FCBC_AD→ FCBC_Msg→ OFB→Wait
a > 0,m = 0 Wait→ Enc_N→ FCBC_AD→Wait
a = 0,m > 0 Wait→ Enc_N→ FCBC_Msg→ OFB→Wait
a = 0,m = 0 Wait→ Enc_N→Wait
Decryption Sequence of states
a > 0,m > 0 Wait→ OFB→ Enc_N→ FCBC_AD→ FCBC_Msg→Wait
a = 0,m > 0 Wait→ OFB→ Enc_N→ FCBC_Msg→Wait

4.6.2 Implementation Results of ESTATE and Benchmark with SUNDAE1074

In this section, we present our implementation of all the members of the ESTATE family. We1075

also implement both SUNDAE_AES-128 and SUNDAE_GIFT-128 using the same interface.1076

The hardware implementation codes of ESTATE and SUNDAE members are written in1077

VHDL and are implemented on Virtex 7 xc7vx485t (Vivado v.2018.2.2). We use the RTL1078

approach and use a basic round-based architecture. The areas are provided in terms of1079

the number of slice registers, slice LUTs and the number of occupied slices. The detailed1080

implementation results are depicted in Table 7.1081



36 Short Tweak TBC and Its Applications in Symmetric Ciphers

Table 7: ESTATE and SUNDAE (combined enc/dec circuit) Implemented FPGA Results
Scheme # Slice

Registers # LUTs # Slices Frequency
(MHZ)

Throughput
(Gbps)

Mbps/
LUT

Mbps/
Slice

ESTATE_TweAES 803 1901 602 303.00 1.94 1.02 3.22
sESTATE_TweAES 813 1903 602 302.20 2.42 1.27 4.02

ESTATE_TweGIFT-128 796 681 263 526.00 0.84 1.23 3.20
SUNDAE_AES-128 799 1922 614 302.81 1.93 1.01 3.16
SUNDAE_GIFT-128 682 931 310 526.03 0.84 0.90 2.71

Table 8: Throughput Comparison for Short Message Processing
SUNDAE_AES-128 ESTATE_TweAES

Message Length (bytes) 16 32 64 128 512 2048 16 32 64 128 512 2048
Clock Cycles 41 61 101 181 661 2581 31 51 91 171 651 2571

Throughput (Mbps) 945.36 1270.81 1535.04 1713.13 1876.41 1922.21 1251.10 1520.94 1704.79 1814.46 1906.43 1930.90

We can observe that the overhead introduced by the implementation of STATE is more1082

significant in case of ESTATE_TweGIFT-128 since GIFT is significantly smaller than AES.1083

The latency for TweAES is 10 clock cycles configured as bulk encryption while for the1084

reduced 6-round version it is 6 clock cycles, this is directly reflected in the throughput.1085

Computing the throughput to process a message, ESTATE_TweAES uses 20 clock cycles1086

per block and sESTATE_TweAES uses 16. Observe that, both the versions of ESTATE are1087

better (in hardware area) than SUNDAE. However, ESTATE_TweGIFT-128 is significantly1088

area-efficient than SUNDAE_GIFT-128.1089

4.6.3 Short Message Processing for SUNDAE and ESTATE1090

Regarding short message processing, we only compare between ESTATE_TweAES and1091

SUNDAE_AES-128. We can briefly mention the difference in the number of clock cycles by1092

taking an example of one input data block (16 bytes). To calculate the values, we make1093

the following assumption. A possible nonce based version of SUNDAE prepends the nonce1094

with the associated data (this assumption is also used in the NIST submitted version of1095

SUNDAE [BBP+19]). Hence considering the nonce as the first block of the associated data,1096

we assume the associated data length is always 16 bytes or one block. When we say that1097

the message length is 16 bytes, then overall we consider one block associated data (i.e, the1098

nonce) and one block message. In this case, SUNDAE invokes four block cipher calls, such1099

that we need one block cipher call to encrypt the constant, one block cipher call to encrypt1100

the nonce and two block cipher calls for the message. ESTATE avoids the block cipher1101

call for the constant and makes three block cipher calls. In our architecture, to process a1102

16-byte message, ESTATE_TweAES requires 31 cycles where as SUNDAE_AES-128 needs1103

41 clock cycles. Details with larger messages are given in Table 8 below. Note that, the1104

throughputs for both the schemes converge to the same value with an increase in the input1105

lengths.1106

4.6.4 Handling the 2-Pass Mode1107

ESTATE is a 2-pass mode and the message is processed twice for MAC and Encrypt. Very1108

briefly, the adopted technique for handling the 2-pass mode can be storing the message in1109

a buffer exactly similar as proposed in GMU Lightweight interface (Sect. 2.1 in [KDT+]).1110

To be precise, the associated data is processed first and next the message using the MAC1111

to generate the tag. In addition, the message is stored in a buffer to be encrypted. For1112

decryption, first the ciphertext is decrypted to the message which is stored to a buffer to1113

be authenticated. Note that, our implementation assumes arrival of the message twice1114

while this technique needs a large buffer with size bounded by the upper bound of the1115

input length.1116



Chakraborti et al. 37

4.6.5 Very Small Implementation of ESTATE_TweAES1117

We also introduce a tiny FPGA implementation of ESTATE_TweAES. The main motivation1118

for this implementation is to analyze the area-efficiency tradeoff for the energy efficient1119

version ESTATE_TweAES with low area implementation. In this case, we use a 32-bit1120

data-path AES based on the implementation introduced in [RSQL04]. This implementation1121

uses TBOXES stored in Block RAMs, and it takes 45 clock cycles to encrypt the first1122

block; after that, it can work in bulk mode with one encryption running for 44 clock cycles.1123

The results depict that the tradeoff remain almost the same (i.e, area efficiency)on Virtex1124

7 with a significant decrease in the circuit area with a factor of 5 but with an increase in1125

the throughput with almost the same factor. We can observe that our implementation of1126

ESTATE_TweAES in a low power device Artix 7 xc7a12tlcpg238-2L, occupies almost the1127

same resources as in Virtex 7 device but the frequency is much smaller. It is interesting to1128

see that we can have an DAE mode of operation using AES in just less than 130 slices.1129

Also the overhead introduced by the mode is less than the size of AES itself. In Table 91130

we show the experimental results.1131

Table 9: Very Small Implementation of ESTATE_TweAES in FPGA Results
Scheme # Slice

Registers # LUTs # Slices Frequency
(MHZ)

Throughput
(Mbps)

Mbps/
LUT

Mbps/
Slice

AES Artix 7 161 221 88 150.34 437.35 1.97 4.97
AES Virtex 7 165 222 89 280.29 815.39 3.67 9.16

TweAES Artix 7 190 299 102 148.5 432 4.24
TweAES Virtex 7 190 285 104 277.59 807.53 2.83 7.76

ESTATE_TweAES Artix 7 289 377 120 147.06 213.91 0.56 1.78
ESTATE_TweAES Virtex 7 289 376 124 270.27 393.12 1.05 3.17

4.6.6 Power Consumption Results for ESTATE_TweAES1132

We perform a power consumption analysis on the energy efficient recommendation1133

ESTATE_TweAES. We also perform a simulation for the two proposed architectures:1134

one with 128-bit datapath and the other 32-bit datapath (tiny implementation of ES-1135

TATE_TweAES). We first generate 100 random pairs of AD and Message, next we perform1136

a post-implementation simulation saving the switching activity. Finally, the saved result1137

is used by Vivado Power Analyzer to estimate the power consumption under different1138

operating frequencies. In Table 10 we show the results obtained from the Power Analyzer.1139

As we are using FPGA platform, the static power is almost constant for both the1140

architectures implemented in Virtex 7, but the only variation is in the dynamic power,1141

which is related to the switching activity in the design. We did the power estimation for1142

the 32-bit data-path architecture in both Artix 7 and Virtex 7 to see the difference in1143

power consumption. From Table 10, we observe that static power in Virtex 7 is more than1144

four times than in Artix 7, as Artix 7 is a low power device while Virtex 7 is a high-end one.1145

The dynamic power is a bit bigger in Virtex 7. For the 128-bit data-path architecture, we1146

performed the power estimation only in Virtex 7, and its behavior in Artix 7 is expected1147

to be very similar only with differences in the static power.1148

4.6.7 Benchmarking ESTATE1149

We provide a benchmark of the hardware implementation results of all the members in the1150

ESTATE family using some of the implementation listed in Athena website [ATHa] along1151

with the implementation results in [NMSS18,CIMN17a,CIMN17b,CDNY18a,CDNY18b]1152

on Virtex 7. The results depict that ESTATE provides a very competitive performance. In1153

fact, ESTATE_TweAES with 32-bit datapath tiny implementation outperforms significantly1154

the other designs (except SAEB). ESTATE_TweGIFT-128 is also one of the best in the1155

literature (only next to tiny ESTATE_TweAES, SAEB and ACORN). Note that, we directly1156



38 Short Tweak TBC and Its Applications in Symmetric Ciphers

Table 10: Power consumption of the two proposed architectures for ESTATE_TweAES in FPGA

Device # Frequency
(MHz)

# Data-path
size

Static
Power (mW)

Dynamic
Power (mW)

Total
Power (mW)

10 58 2 60
Artix 7 50 32 58 8 66

100 58 16 74
148.5 58 23 81
10 242 2 244

Virtex 7 50 32 242 10 252
100 242 20 262

270.27 243 45 288
10 242 3 245

Virtex 7 50 128 243 17 259
100 243 40 283

270.27 244 195 439

use the AES only encryption core provided in the GMU Caesar Package [GMU16] and we1157

use our own implementation for TweGIFT-128.1158

Component Wise Area Calculation for AES We show how the area is occupied by the1159

different components for the hardware implementation of ESTATE_TweAES. We observe1160

that, the majority of the hardware area is consumed by TweAES. The distributions are1161

described in Fig. 19 below. The area labeled as Logic corresponds to the circuits introduced1162

by the non TBC components to implement OFB and CBC modes of operations. The1163

region labeled as registers in FF distribution corresponds to the input/output registers of1164

the architecture.1165

Figure 19: Distribution of #LUTs (left) and #FF (right) for ESTATE_TweAES implementation

5 Other Applications of Short Tweak tBC1166

Now, we present some use cases where an efficient tBC could be beneficial. Please see1167

supplementary material A for details on security notions used here.1168

5.1 Reducing the Key Size in Multi-Keyed Modes of Operation1169

Several block cipher based modes of operation employ a block cipher with multiple1170

independently sampled keys. In general, this is done either to boost the security, or to1171

simplify the analysis of the overall construction. The number of keys can be naturally1172

reduced to a single key by replacing the multi-keyed block cipher with a single keyed1173

tBC where distinct tweaks are used to simulate independent block cipher instantiations.1174

Proposition 1 below gives the theoretical justification for this remedy. The proof is obvious1175

from the definitions of (tweakable) random permutation.1176

Proposition 1. For some fixed t ∈ N, and k ∈ [2t]. Let1177

(Π1, . . . ,Πk)←$ (Perm[n])k and Π̃←$ TPerm[t, n]. Let OΠ;k and OΠ̃;k be two oracles giv-1178

ing bidirectional access to (Π1, . . . ,Πk), and (Π̃1, . . . , Π̃k), respectively. Then, for all1179



Chakraborti et al. 39

Table 11: Comparison on Virtex 7 with some of the implementation results in [ATHb]. Here BC
denotes block cipher, SC denotes Stream cipher, (T)BC denotes (Tweakable) block cipher and
BC-RF denotes the block cipher’s round function,‘-’ means that the data is not available

Scheme Underlying
Primitive # LUTs # Slices Gbps Mbps/

LUT
Mbps/
Slice

ESTATE_TweAES (32-bit datapath Implementation) tBC 376 124 0.393 1.05 3.17
ESTATE_TweAES tBC 1901 602 1.94 1.02 3.22
sESTATE_TweAES tBC 1903 602 2.42 1.27 4.02

ESTATE_TweGIFT-128 tBC (non AES) 681 263 0.84 1.23 3.20
AES-OTR [Min16] BC 4263 1204 3.187 0.748 2.647
AES-OCB [KR16] BC 4269 1228 3.608 0.845 2.889

AES-COPA [ABL+15] BC 7795 2221 2.770 0.355 1.247
AES-GCM BC 3478 949 3.837 1.103 4.043

CLOC-AES [IMG+16] BC 3552 1087 3.252 0.478 1.561
CLOC-TWINE [IMG+16] BC (non AES) 1552 439 0.432 0.278 0.984
SILC-AES [IMG+16] BC 3040 910 4.365 1.436 4.796
SILC-LED [IMG+16] BC (non AES) 1682 524 0.267 0.159 0.510

SILC-PRESENT [IMG+16] BC (non AES) 1514 484 0.479 0.316 0.990
ELmD [DN15] BC 4490 1306 4.025 0.896 3.082

JAMBU-AES [WH16] BC 1595 457 1.824 1.144 3.991
JAMBU-SIMON [WH16] BC (non AES) 1200 419 0.368 0.307 0.878

COFB-AES [CIMN17a,CIMN17a] BC 1456 555 2.820 2.220 5.080
SAEB [NMSS18] BC 348 − − − −
AEGIS [WP16] BC-RF 7504 1983 94.208 12.554 47.508

DEOXYS [JNP16a] TBC 3234 954 1.472 0.455 2.981
Beetle[Light+] [CDNY18a,CDNY18b] Sponge 608 312 2.095 3.445 6.715
Beetle[Secure+] [CDNY18a,CDNY18b] Sponge 1101 512 2.993 2.718 5.846

ASCON-128 [DEMS16] Sponge 1373 401 3.852 2.806 9.606
Ketje-Jr [BJDAK16] Sponge 1567 518 4.080 2.604 7.876

NORX [AJN16] Sponge 2881 857 10.328 3.585 12.051
PRIMATES-HANUMAN [ABB+16] Sponge 1148 370 1.072 0.934 2.897

ACORN [Wu16] Stream cipher 499 155 3.437 6.888 22.174
TriviA-ck [CCHN15,CCHN18,CN15] Stream cipher 2221 684 14.852 6.687 21.713

distinguisher A, we have1180

∆A(OΠ;k;OΠ̃;k) :=
∣∣∣Pr[AOΠ;k = 1]− Pr[AOΠ̃;k = 1]

∣∣∣ = 0.

Now, we demonstrate the utility of this idea through some examples.1181

5.1.1 FCBC MAC1182

FCBC mode is a 3-key message authentication code, by Black and Rogaway [BR05], which
is defined as follows:

Σ := EK0

(
Mm−1 ⊕ EK0

(
Mm−2 ⊕ EK0

(
· · · ⊕ (M2 ⊕ EK0(M1 ⊕ IV ))

)))
,

FCBC[E](IV,M) := EKt
(
Σ⊕ ozp(Mm)

)
, where t← (|Mm| = n)? 1 : 2.

Here IV is called the initial vector, which is generally set to a fixed constant value. But1183

one can also use a random IV or use some other way (like encrypted nonce) to generate1184

the IV .1185

FCBC has not received much appreciation in its existing 3-key form, even though it
offers the similar security to CMAC [IK03,CMA05,CJN22a,CJN22b]. However, we observe
CMAC uses an n-bit state for the final message block masking and also uses a block cipher
call to generate the mask. Keeping these in mind, we define Twe-FCBC, as follows:

Σ := Ẽ
0
K

(
Mm−1 ⊕ Ẽ

0
K

(
Mm−2 ⊕ Ẽ

0
K

(
· · · ⊕ (M2 ⊕ Ẽ

0
K(M1 ⊕ IV ))

)))
,

Twe-FCBC[Ẽ](IV,M) := Ẽ
t

K

(
Σ⊕ ozp(Mm)

)
,

where t← (|Mm| = n)? 1 : 2. It is clear that Twe-FCBC is a variant of FCBC, that follows1186

the principle established in Proposition 1, and replaces the 3 block ciphers EK0 , EK1 , EK21187

with Ẽ
0
K , Ẽ

1
K and Ẽ

2
K , respectively. Using Proposition 1 and [JN16, Theorem 3 and Remark1188

5], we get the PRF security for Twe-FCBC in a straightforward manner in Proposition 2.1189



40 Short Tweak TBC and Its Applications in Symmetric Ciphers

Proposition 2. Assuming all queries are of length ` ≤ 2n/4, and σ ≤ q`, we have1190

AdvPRF
Twe-FCBC[̃E]

(t, q, σ) ≤ AdvTPRP
Ẽ

(t′, σ) +O

(
q2

2n

)
.

Twe-FCBC vs CMAC: Here we show two major advantages of Twe-FCBC over CMAC, which1191

is both SP 800-38B and ISO/IEC/9797-1 standard:1192

(a) No need to hold an additional state for final message block masking,1193

(b) In addition, Twe-FCBC can also avoid the additional block cipher call used to generate1194

the masking. Due to backward compatibility, except the last block we have used1195

the original block cipher. So the performance overhead due to nonzero tweak only1196

applies to the last block cipher call. This features ensures to get similar performance1197

(or even better) for long message.1198

5.1.2 Double Block Hash-then-Sum:1199

The very basic version of Double-block Hash-then-Sum or DbHtS [DDNP18], is defined as
below

DbHtS(M) := EK1(Σ)⊕ EK2(Θ),

where H is a 2n-bit output hash function, (Σ,Θ) := HL(M), and L,K1,K2 are all sampled
independently. DbHtS is a generic design paradigm that captures several popular BBB
secure MACs such as 3kf9, SUM_ECBC, PMAC_Plus and LightMAC_Plus. Using a tBC,
the two block cipher keys can now simply be replaced by a single tweakable block cipher
key and two distinct tweaks. Formally, we define Twe-DbHtS as follows

Twe-DbHtS(M) := Ẽ
1
K(Σ)⊕ Ẽ

2
K(Θ).

Moreover, one can also generate the dedicated hash key using the tweakable block1200

cipher key itself. Suppose the hash function is block cipher based, then the tBC key can be1201

used along with a different tweak to replace the dedicated hash key. In all other cases, the1202

hash key can be derived as L := (Ẽ
0
K(0)‖Ẽ

0
K(1)‖ · · · ‖Ẽ

0
K(h− 1)), where |L| = hn. Since1203

Ẽ
0
K(i)’s are sampled in without replacement manner, this adds an additional factor of h

2

2n1204

due to the PRP-PRF switching, which can be ignored for small h. One can easily verify1205

that due to Proposition 1, the result on DbHtS [DDNP18, Theorem 2.(iii)] also applies to1206

Twe-DbHtS. Formally, the security of Twe-DbHtS is given by Proposition 5.1207

AdvPRF
Twe-DbHtS[H,̃E]

(q, `, t) ≤ 2AdvTPRP
Ẽ

(2q, t′)

+AdvPRF
C∗3 [H,π0,π1,π2](q, `, t).

In this way, we have one-key versions of different well known designs 3kf9, SUM_ECBC,1208

PMAC_Plus, LightMAC_Plus etc. We note that one key version of PMAC_Plus based on1209

solely block cipher has been proposed [DDN+17a]. However, one key version of the other1210

designs either are not known or it can be shown to be secure up to the birthday bound.41211

f9 vs Twe-3kf9: The 3rd Generation Partnership Project (3GPP) proposes f9 as its first1212

MAC algorithm which provides birthday bound security. Zhang et.al proposes 3kf9 that1213

achives beyond the birthday bound security but at the cost of 3 independent keys. We can1214

directly use Twe-3kf9 here which provides security beyond the birthday bound with just a1215

single key.1216

41kf9 is proposed in ePrint [DDN+17b], which later found to be attacked in birthday complexity [LNS18].



Chakraborti et al. 41

5.1.3 Other Designs:1217

Several more constructions use multiple keys to achieve better security. Some notable1218

examples are (1) sum of two permutations (2) Encrypted Davis Meyer (EDM) [CS16] (3)1219

Encrypted Wegman Carter Davis Meyer (EWCDM) [CS16] (4) Chained LRW2 (CLRW2)1220

[LST12] (5) GCM-SIV-2 [IM16] and (6) The Benes Construction [Pat08b]. One can apply1221

similar treatment as above to reduce these multi-keyed constructions to single-keyed designs1222

with exactly same security guarantee. We provide some details on the tBC variants for1223

(1)-(6) in the supplementary material B.1224

Remark: Note that, OCB like schemes use encrypted nonce as the masking value, so the1225

above idea (i.e. removal of the masking value using tBC) is not applicable to them. Still,1226

the advantage of using tBC in such cases is that we do not have to update the mask for1227

each block, rather the block counter, which is used as the tweak takes care of that.1228

5.2 Efficient Processing for Short Messages1229

In energy constrained environments, reducing the number of primitive invocations is crucial,1230

as for short messages, this reduction leads to efficient energy consumption. The tBC1231

framework can be used to reduce the number of primitive invocations for many existing1232

constructions such as LightMAC_Plus [Nai17].1233

LightMAC_Plus is a counter-based PMAC_Plus in which 〈i〉m‖Mi is input to the i-th1234

keyed block cipher call, where 〈i〉m is the m-bit binary representation of i and Mi is the1235

i-th message block of n −m bits. The counters ensure that there is no input collision,1236

which indirectly helps in negating the influence of `. LightMAC_Plus has been shown to1237

have O(q3/22n) PRF security. However, it has two shortcomings: (i) it requires 3 keys,1238

and (ii) it has rate 1−m/n which increases the number of block cipher calls. This is highly1239

undesirable in low memory and energy constrained scenarios.1240

To resolve these shortcomings specifically for short to moderate length messages1241

(slightly less than 1 Megabyte), we propose Twe-LightMAC_Plus, which can be viewed as1242

an amalgamation of LightMAC_Plus [Nai17] and PMACx [LN17]. The key idea is to use1243

the block counters as tweak in hash layer, while having distinct tweaks for the finalization.1244

The pictorical description of the algorithm is given in Fig. ??. It is easy to see that1245

Twe-LightMAC_Plus is single-keyed and it achieves rate 1. This reduces the number of1246

block cipher calls by up to 50% for short messages, which has direct effect on reducing the1247

energy consumption.1248

M1

E2
K

⊕

M2

E3
K

⊕

M`

E`+1
K

⊕· · ·0

⊕ � �⊕ ⊕· · ·0

2 2
E0
K

E1
K

Σ

Θ
⊕ T

We claim that Twe-LightMAC_Plus is as secure as LightMAC_Plus. Formally, we have1249

the following security result.1250

Proposition 3. For q ≤ 2n−1,1251

AdvPRF
Twe-LightMAC_Plus[̃E]

(t, q, `) ≤ AdvTPRP
Ẽ

(t′, q`) +O

(
q3

22n

)
.



42 Short Tweak TBC and Its Applications in Symmetric Ciphers

The proof can be found in C. We note that similar improvements can also be applied1252

to PMAC, PMAC_Plus.1253

5.3 Elastic-Tweak vs XE and XEX1254

The XE and XEX modes, by Rogaway [Rog04], are two reasonably efficient ways of
converting a block cipher into a tweakable block cipher. These methods are widely used in
various modes such as PMAC [BR02], OCB [RBB03], COPA [ABL+15], ELmD [DN15] etc.
The XE scheme to generate a TBC Ẽ from a BC E is defined as

XE : Ẽ
i1,··· ,it
K (M) := EK(∆⊕M)

where ∆ = αi11 · · ·α
it
t ·L. Here L is generally an n-bit secret state, which is generated using1255

block cipher call.5 It is sufficient for us to compare XE and tBC, as XEX is much similar1256

to XE. Now one may think of using XE instead of tBC to convert multi-keyed modes to1257

single-keyed mode, as above. But in comparison to tBC, XE lacks two important features:1258

(i) Degradation to Birthday Bound Security: XE (and XEX) is proved to be1259

birthday bound secure TBC mode. This is not a big issue for birthday secure1260

multi-keyed modes. In fact, the CMAC mode can be viewed as an example that uses1261

the XE mode, much in the same way as Twe-FCBC uses tBC. However, if we use XE in1262

multi-keyed applications such as DbHtS or XOR2, the security of these constructions1263

would degrade to birthday bound. So, we cannot use XE or XEX, in a black box1264

fashion, to instantiate the tweakable variants, without a significant degradation in1265

the security of the modified mode. In contrast, tBC directly works on the block1266

cipher level, and hence does not suffer from such degradation unless the block cipher1267

is itself weak.1268

(ii) Additional Computational and Storage Overheads: The XE mode requires,1269

pre-computation of the secret state L, (ii) an additional block cipher invocation to1270

generate L, and (iii) an additional storage to store L. This cannot be neglected in1271

constrained computation and communication environments, as mentioned earlier.1272

On the other hand, the tBC framework incurs far less overheads. Here we provide a1273

motivating example.1274

COLM vs Twe-COLM: COLM is an authenticated encryption included in the CAESAR1275

portfolio. Here we show how we can define a tweakable variant of COLM with several1276

advantages over COLM. Let us define Twe-COLM, which is same as COLM [ABD+]1277

except that: (i) it does not have any masking, (ii) it uses tBC with a 16 bit tweak1278

(with 13 bits used to denote the block number and 3 bits for domain separation).1279

Twe-COLM has the following several major advantages over COLM:1280

(a) No need to hold an additional state for final message block masking,1281

(b) It avoids the additional block cipher call used to generate the masking, which1282

is typically important for shorter messages making it energy efficient.1283

(c) No need for any multiplications by 2, 3, 32, 7, 72, which saves hardware area.1284

Similar tBC variants can be defined for PMAC [Rog04] (based on XE), COPE [ABL+15]1285

(based on XEX) etc. much along the same line as Twe-LightMAC_Plus and COLM.1286

5Alternative constructions to define ∆ can be found in [CS08,GJMN16].



Chakraborti et al. 43

References1287

[ABB+16] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian Mendel,1288

Bart Mennink, Nicky Mouha, Qingju Wang, and Kan Yasuda. PRIMATEs1289

v1.02. Submission to CAESAR, 2016. https://competitions.cr.yp.to/1290

round2/primatesv102.pdf.1291

[ABD+] Elena Andreeva, Andrey Bogdanov, Nilanjan Datta, Atul Luykx, Bart Men-1292

nink, Mridul Nandi, Elmar Tischhauser, and Kan Yasuda. COLM v1. CAE-1293

SAR Competition.1294

[ABL+15] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tis-1295

chhauser, and Kan Yasuda. AES-COPA v.2. Submission to CAESAR, 2015.1296

https://competitions.cr.yp.to/round2/aescopav2.pdf.1297

[AJN16] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX v3.0.1298

Submission to CAESAR, 2016. https://competitions.cr.yp.to/round3/1299

norxv30.pdf.1300

[ATHa] ATHENa: Automated Tool for Hardware Evaluation. https://1301

cryptography.gmu.edu/athena.1302

[ATHb] Authenticated Encryption FPGA Ranking. https://cryptography.gmu.1303

edu/athenadb/fpga_auth_cipher/rankings_view.1304

[BBLT18] Subhadeep Banik, Andrey Bogdanov, Atul Luykx, and Elmar Tischhauser.1305

Sundae: Small universal deterministic authenticated encryption for the inter-1306

net of things. IACR Transactions on Symmetric Cryptology, 2018(3):1–35,1307

Sep. 2018.1308

[BBP+19] Subhadeep Banik, Andrey Bogdanov, Thomas Peyrin, Yu Sasaki,1309

Siang Meng Sim1, Elmar Tischhauser, , and Yosuke Todo.1310

SUNDAE-GIFT v1.0, 2019. https://csrc.nist.gov/CSRC/media/1311

Projects/Lightweight-Cryptography/documents/round-1/spec-doc/1312

SUNDAE-GIFT-spec.pdf.1313

[BJDAK16] Guido Bertoni, Michaël Peeters Joan Daemen, Gilles Van Assche, and1314

Ronny Van Keer. Ketje v2. Submission to CAESAR, 2016. https:1315

//competitions.cr.yp.to/round3/ketjev2.pdf.1316

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,1317

Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The1318

SKINNY family of block ciphers and its low-latency variant MANTIS. In1319

Advances in Cryptology - CRYPTO 2016. Proceedings, Part II, pages 123–153,1320

2016.1321

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,1322

Siang Meng Sim, and Yosuke Todo. GIFT: A small present - towards reaching1323

the limit of lightweight encryption. In Cryptographic Hardware and Embed-1324

ded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,1325

September 25-28, 2017, Proceedings, pages 321–345, 2017.1326

[BR02] John Black and Phillip Rogaway. A block-cipher mode of operation for paral-1327

lelizable message authentication. In Advances in Cryptology - EUROCRYPT1328

2002. Proceedings, pages 384–397, 2002.1329

[BR05] John Black and Phillip Rogaway. CBC macs for arbitrary-length messages:1330

The three-key constructions. J. Cryptology, 18(2):111–131, 2005.1331

https://competitions.cr.yp.to/round2/primatesv102.pdf
https://competitions.cr.yp.to/round2/primatesv102.pdf
https://competitions.cr.yp.to/round2/primatesv102.pdf
https://competitions.cr.yp.to/round2/aescopav2.pdf
https://competitions.cr.yp.to/round3/norxv30.pdf
https://competitions.cr.yp.to/round3/norxv30.pdf
https://competitions.cr.yp.to/round3/norxv30.pdf
https://cryptography.gmu.edu/athena
https://cryptography.gmu.edu/athena
https://cryptography.gmu.edu/athena
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/SUNDAE-GIFT-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/SUNDAE-GIFT-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/SUNDAE-GIFT-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/SUNDAE-GIFT-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/SUNDAE-GIFT-spec.pdf
https://competitions.cr.yp.to/round3/ketjev2.pdf
https://competitions.cr.yp.to/round3/ketjev2.pdf
https://competitions.cr.yp.to/round3/ketjev2.pdf


44 Short Tweak TBC and Its Applications in Symmetric Ciphers

[BS90] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosystems.1332

In Advances in Cryptology - CRYPTO ’90, Proceedings, pages 2–21, 1990.1333

[CAN] Can fd standards and recommendations. https://www.can-cia.org/news/1334

cia-in-action/view/can-fd-standards-and-recommendations/2016/9/1335

30/.1336

[CCHN15] Avik Chakraborti, Anupam Chattopadhyay, Muhammad Hassan, and Mridul1337

Nandi. Trivia: A fast and secure authenticated encryption scheme. In CHES1338

2015, pages 330–353, 2015.1339

[CCHN18] Avik Chakraborti, Anupam Chattopadhyay, Muhammad Hassan, and Mridul1340

Nandi. Trivia and utrivia: two fast and secure authenticated encryption1341

schemes. J. Cryptographic Engineering, 8(1):29–48, 2018.1342

[CCM04] Recommendation for Block Cipher Modes of Operation: The CCM Mode for1343

Authentication and Confidentiality . NIST Special Publication 800-38C, 2004.1344

National Institute of Standards and Technology.1345

[CDD+19] Donghoon Chang, Nilanjan Datta, Avijit Dutta, Bart Mennink, Mridul Nandi,1346

Somitra Sanadhya, and Ferdinand Sibleyras. Release of unverified plaintext:1347

Tight unified model and application to anydae. IACR Cryptology ePrint1348

Archive, 2019:1326, 2019.1349

[CDJ+19] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas-López,1350

Mridul Nandi, and Yu Sasaki. Elastic-tweak: A framework for short tweak1351

tweakable block cipher. IACR Cryptology ePrint Archive, 2019:440, 2019.1352

[CDJ+20] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas-López,1353

Mridul Nandi, and Yu Sasaki. ESTATE: A lightweight and low energy authen-1354

ticated encryption mode. IACR Trans. Symmetric Cryptol., 2020(S1):350–389,1355

2020.1356

[CDJ+21] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas-López,1357

Mridul Nandi, and Yu Sasaki. Elastic-tweak: A framework for short tweak1358

tweakable block cipher. In Avishek Adhikari, Ralf Küsters, and Bart Preneel,1359

editors, Progress in Cryptology - INDOCRYPT 2021 - 22nd International1360

Conference on Cryptology in India, Jaipur, India, December 12-15, 2021,1361

Proceedings, volume 13143 of Lecture Notes in Computer Science, pages1362

114–137. Springer, 2021.1363

[CDN18] Avik Chakraborti, Nilanjan Datta, and Mridul Nandi. On the optimality1364

of non-linear computations for symmetric key primitives. J. Mathematical1365

Cryptology, 12(4):241–259, 2018.1366

[CDNY18a] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle1367

family of lightweight and secure authenticated encryption ciphers. IACR1368

Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):218–241, 2018.1369

[CDNY18b] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle1370

family of lightweight and secure authenticated encryption ciphers. IACR1371

Cryptology ePrint Archive, 2018:805, 2018.1372

[CHP+18] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. Boomerang1373

Connectivity Table: A New Cryptanalysis Tool. In EUROCRYPT 2018, Part1374

II, volume 10821 of LNCS, pages 683–714. Springer, 2018.1375

https://www.can-cia.org/news/cia-in-action/view/can-fd-standards-and-recommendations/2016/9/30/
https://www.can-cia.org/news/cia-in-action/view/can-fd-standards-and-recommendations/2016/9/30/
https://www.can-cia.org/news/cia-in-action/view/can-fd-standards-and-recommendations/2016/9/30/
https://www.can-cia.org/news/cia-in-action/view/can-fd-standards-and-recommendations/2016/9/30/
https://www.can-cia.org/news/cia-in-action/view/can-fd-standards-and-recommendations/2016/9/30/


Chakraborti et al. 45

[CIMN17a] Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.1376

Blockcipher-based authenticated encryption: How small can we go? In1377

Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th Interna-1378

tional Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, pages1379

277–298, 2017.1380

[CIMN17b] Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.1381

Blockcipher-based authenticated encryption: How small can we go? IACR1382

Cryptology ePrint Archive, 2017:649, 2017.1383

[CJN22a] Soumya Chattopadhyay, Ashwin Jha, and Mridul Nandi. Towards tight1384

security bounds for omac, XCBC and TMAC. In Shweta Agrawal and Dongdai1385

Lin, editors, Advances in Cryptology - ASIACRYPT 2022 - 28th International1386

Conference on the Theory and Application of Cryptology and Information1387

Security, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part I, volume1388

13791 of Lecture Notes in Computer Science, pages 348–378. Springer, 2022.1389

[CJN22b] Soumya Chattopadhyay, Ashwin Jha, and Mridul Nandi. Towards tight1390

security bounds for omac, XCBC and TMAC. IACR Cryptol. ePrint Arch.,1391

page 1234, 2022.1392

[CLS15] Benoit Cogliati, Rodolphe Lampe, and Yannick Seurin. Tweaking even-1393

mansour ciphers. In CRYPTO 2015. Proceedings, Part I, pages 189–208,1394

2015.1395

[CMA05] Recommendation for Block Cipher Modes of Operation: The CMAC Mode for1396

Authentication. NIST Special Publication 800-38B, 2005. National Institute1397

of Standards and Technology.1398

[CN15] Avik Chakraborti and Mridul Nandi. TriviA-ck-v2. Submission to CAESAR,1399

2015. https://competitions.cr.yp.to/round2/triviackv2.pdf.1400

[Cro00] Paul Crowley. Mercy: A fast large block cipher for disk sector encryption. In1401

Fast Software Encryption – FSE 2000. Proceedings, pages 49–63, 2000.1402

[CS08] Debrup Chakraborty and Palash Sarkar. A general construction of tweakable1403

block ciphers and different modes of operations. IEEE Trans. Information1404

Theory, 54(5):1991–2006, 2008.1405

[CS14] Shan Chen and John P. Steinberger. Tight security bounds for key-alternating1406

ciphers. In Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual1407

International Conference on the Theory and Applications of Cryptographic1408

Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages1409

327–350, 2014.1410

[CS16] Benoît Cogliati and Yannick Seurin. EWCDM: an efficient, beyond-birthday1411

secure, nonce-misuse resistant MAC. In CRYPTO 2016, Proceedings, Part I,1412

pages 121–149, 2016.1413

[DDN+17a] Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul, and Liting1414

Zhang. Single key variant of pmac_plus. IACR Trans. Symmetric Cryptol.,1415

2017(4):268–305, 2017.1416

[DDN+17b] Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul, and Liting Zhang.1417

Single key variant of pmac_plus. IACR Cryptology ePrint Archive, 2017:848,1418

2017.1419

https://competitions.cr.yp.to/round2/triviackv2.pdf


46 Short Tweak TBC and Its Applications in Symmetric Ciphers

[DDNP18] Nilanjan Datta, Avijit Dutta, Mridul Nandi, and Goutam Paul. Double-block1420

Hash-then-Sum: A Paradigm for Constructing BBB Secure PRF. IACR1421

Trans. Symmetric Cryptol., 2018(3):36–92, 2018.1422

[DEM16] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Square attack1423

on 7-round Kiasu-BC. In Mark Manulis, Ahmad-Reza Sadeghi, and Steve1424

Schneider, editors, ACNS 2016, volume 9696 of LNCS, pages 500–517. Springer,1425

2016.1426

[DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.1427

Ascon v1.2. Submission to CAESAR, 2016. https://competitions.cr.yp.1428

to/round3/asconv12.pdf.1429

[DFJ13] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved Key Recov-1430

ery Attacks on Reduced-Round AES in the Single-Key Setting. In EURO-1431

CRYPT 2013, volume 7881 of LNCS, pages 371–387. Springer, 2013.1432

[DHT17] Wei Dai, Viet Tung Hoang, and Stefano Tessaro. Information-Theoretic1433

Indistinguishability via the Chi-Squared Method. In Advances in Cryptology -1434

CRYPTO 2017. Proceedings, Part III, pages 497–523, 2017.1435

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The Block Cipher1436

Square. In Eli Biham, editor, FSE 1997, volume 1267 of LNCS, pages 149–165.1437

Springer, 1997.1438

[DL17] Christoph Dobraunig and Eik List. Impossible-differential and boomerang1439

cryptanalysis of round-reduced Kiasu-BC. In Helena Handschuh, editor,1440

CT-RSA 2017, volume 10159 of LNCS, pages 207–222. Springer, 2017.1441

[DN15] Nilanjan Datta and Mridul Nandi. Proposal of ELmD v2.1. Submission to1442

CAESAR, 2015. https://competitions.cr.yp.to/round2/elmdv21.pdf.1443

[DS08] Hüseyin Demirci and Ali Aydin Selçuk. A Meet-in-the-Middle Attack on1444

8-Round AES. In Kaisa Nyberg, editor, FSE 2008, volume 5086 of LNCS,1445

pages 116–126. Springer, 2008.1446

[ENC01] Recommendation for Block Cipher Modes of Operation: Methods and Tech-1447

niques. NIST Special Publication 800-38A, 2001. National Institute of1448

Standards and Technology.1449

[EPC] Electronic product code (epc) tag data standard (tds). http://www.1450

epcglobalinc.org/standards/tds/.1451

[FIP01] NIST FIPS. Advanced Encryption Standard (AES). Federal Information1452

Processing Standards Publication, 197, 2001.1453

[FKL+00] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay,1454

David A. Wagner, and Doug Whiting. Improved cryptanalysis of rijndael. In1455

Bruce Schneier, editor, Fast Software Encryption, 7th International Workshop,1456

FSE 2000, New York, NY, USA, April 10-12, 2000, Proceedings, volume 19781457

of Lecture Notes in Computer Science, pages 213–230. Springer, 2000.1458

[FLS+10] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare,1459

Tadayoshi Kohno, Jon Callas, and Jesse Walker. The skein hash function1460

family. In Submission to NIST (round 3), 7(7.5):3, 2010.1461

https://competitions.cr.yp.to/round3/asconv12.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
https://competitions.cr.yp.to/round2/elmdv21.pdf
http://www.epcglobalinc.org/standards/tds/
http://www.epcglobalinc.org/standards/tds/
http://www.epcglobalinc.org/standards/tds/


Chakraborti et al. 47

[GCM07] Recommendation for Block Cipher Modes of Operation: Galois/Counter1462

Mode (GCM) and GMAC. NIST Special Publication 800-38D, 2007. National1463

Institute of Standards and Technology.1464

[GJMN16] Robert Granger, Philipp Jovanovic, Bart Mennink, and Samuel Neves. Im-1465

proved masking for tweakable blockciphers with applications to authenticated1466

encryption. In EUROCRYPT 2016. Proceedings, Part I, pages 263–293, 2016.1467

[GL15] Shay Gueron and Yehuda Lindell. GCM-SIV: full nonce misuse-resistant1468

authenticated encryption at under one cycle per byte. In Proceedings of the1469

22nd ACM SIGSAC Conference on Computer and Communications Security,1470

Denver, CO, USA, October 12-16, 2015, pages 109–119, 2015.1471

[GMU16] CAESAR Development Package, 2016. https://cryptography.gmu.edu/1472

athena/index.php?id=download.1473

[Gra19] Lorenzo Grassi. Probabilistic mixture differential cryptanalysis on round-1474

reduced AES. In Kenneth G. Paterson and Douglas Stebila, editors, Selected1475

Areas in Cryptography - SAC 2019, volume 11959 of LNCS, pages 53–84.1476

Springer, 2019.1477

[IK03] Tetsu Iwata and Kaoru Kurosawa. OMAC: One-Key CBC MAC. In FSE,1478

pages 129–153, 2003.1479

[IM16] Tetsu Iwata and Kazuhiko Minematsu. Stronger security variants of GCM-SIV.1480

IACR Cryptology ePrint Archive, 2016:853, 2016.1481

[IMG+16] Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio Morioka, and Eita1482

Kobayashi. CLOC and SILC. Submission to CAESAR, 2016. https://1483

competitions.cr.yp.to/round3/clocsilcv3.pdf.1484

[IMPS17] Tetsu Iwata, Kazuhiko Minematsu, Thomas Peyrin, and Yannick Seurin.1485

ZMAC: A Fast Tweakable Block Cipher Mode for Highly Secure Message1486

Authentication. In Advances in Cryptology - CRYPTO ’17. Proceedings, Part1487

III, pages 34–65, 2017.1488

[JLM+17] Ashwin Jha, Eik List, Kazuhiko Minematsu, Sweta Mishra, and Mridul Nandi.1489

XHX - A framework for optimally secure tweakable block ciphers from classical1490

ciphers and universal hashing. IACR Cryptology ePrint Archive, 2017:1075,1491

2017.1492

[JN16] Ashwin Jha and Mridul Nandi. Revisiting Structure Graph and Its Applica-1493

tions to CBC-MAC and EMAC. IACR Cryptology ePrint Archive, 2016:161,1494

2016.1495

[JNP14a] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block ci-1496

phers: The TWEAKEY framework. In Advances in Cryptology - ASIACRYPT1497

2014. Proceedings, Part II, pages 274–288, 2014.1498

[JNP14b] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and Keys for Block1499

Ciphers: The TWEAKEY Framework. In ASIACRYPT 2014, pages 274–288,1500

2014.1501

[JNP16a] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Deoxys v1.41. Submission1502

to CAESAR, 2016. https://competitions.cr.yp.to/round3/deoxysv141.1503

pdf.1504

https://cryptography.gmu.edu/athena/index.php?id=download
https://cryptography.gmu.edu/athena/index.php?id=download
https://cryptography.gmu.edu/athena/index.php?id=download
https://competitions.cr.yp.to/round3/clocsilcv3.pdf
https://competitions.cr.yp.to/round3/clocsilcv3.pdf
https://competitions.cr.yp.to/round3/clocsilcv3.pdf
https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://competitions.cr.yp.to/round3/deoxysv141.pdf


48 Short Tweak TBC and Its Applications in Symmetric Ciphers

[JNP16b] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. KIASU v1. Submission to1505

CAESAR, 2016. https://competitions.cr.yp.to/round1/kiasuv1.pdf.1506

[KDT+] Jens-Peter Kaps, William Diehl, Michael Tempelmeier, Farnoud Farah-1507

mand, Ekawat Homsirikamol, and Kris Gaj. A comprehensive frame-1508

work for fair and efficient benchmarking of hardware implementations of1509

lightweight cryptography. https://cryptography.gmu.edu/athena/LWC/1510

LWC_HW_Benchmarking_Framework.pdf.1511

[KR11] Ted Krovetz and Phillip Rogaway. The Software Performance of Authenticated-1512

Encryption Modes. In FSE, pages 306–327, 2011.1513

[KR16] Ted Krovetz and Phillip Rogaway. OCB(v1.1). Submission to CAESAR, 2016.1514

https://competitions.cr.yp.to/round3/ocbv11.pdf.1515

[KSW04] Chris Karlof, Naveen Sastry, and David Wagner. Tinysec: A link layer1516

security architecture for wireless sensor networks. In Proceedings of Embedded1517

Networked Sensor Systems, SenSys ’04, pages 162–175. ACM, 2004.1518

[KW02] Lars R. Knudsen and David A. Wagner. Integral Cryptanalysis. In Joan1519

Daemen and Vincent Rijmen, editors, FSE 2002, volume 2365 of LNCS, pages1520

112–127. Springer, 2002.1521

[LN17] Eik List and Mridul Nandi. ZMAC+ - an efficient variable-output-length1522

variant of ZMAC. IACR Trans. Symmetric Cryptol., 2017(4):306–325, 2017.1523

[LNS18] Gaëtan Leurent, Mridul Nandi, and Ferdinand Sibleyras. Generic attacks1524

against beyond-birthday-bound macs. In Advances in Cryptology - CRYPTO1525

2018. Proceedings, Part I, pages 306–336, 2018.1526

[LPTY16] Atul Luykx, Bart Preneel, Elmar Tischhauser, and Kan Yasuda. A MAC1527

Mode for Lightweight Block Ciphers. In FSE 2016, pages 43–59, 2016.1528

[LRW02] Moses Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable block1529

ciphers. In CRYPTO 2002, pages 31–46, 2002.1530

[LS13] Rodolphe Lampe and Yannick Seurin. Tweakable Blockciphers with Asymp-1531

totically Optimal Security. In FSE 2013. Revised Selected Papers, pages1532

133–151, 2013.1533

[LSG+19] Ya Liu, Yifan Shi, Dawu Gu, Zhiqiang Zeng, Fengyu Zhao, Wei Li, Zhiqiang1534

Liu, and Yang Bao. Improved meet-in-the-middle attacks on reduced-round1535

Kiasu-BC and Joltik-BC. Comput. J., 62(12):1761–1776, 2019.1536

[LST12] Will Landecker, Thomas Shrimpton, and R. Seth Terashima. Tweakable1537

blockciphers with beyond birthday-bound security. In Advances in Cryptology1538

- CRYPTO 2012. Proceedings, pages 14–30, 2012.1539

[Mat93] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Advances1540

in Cryptology - EUROCRYPT ’93, Proceedings, pages 386–397, 1993.1541

[MDRM10] Hamid Mala, Mohammad Dakhilalian, Vincent Rijmen, and Mahmoud1542

Modarres-Hashemi. Improved impossible differential cryptanalysis of 7-round1543

AES-128. In Guang Gong and Kishan Chand Gupta, editors, INDOCRYPT1544

2010, volume 6498 of LNCS, pages 282–291. Springer, 2010.1545

[Min16] Kazuhiko Minematsu. AES-OTR v3.1. Submission to CAESAR, 2016. https:1546

//competitions.cr.yp.to/round3/aesotrv31.pdf.1547

https://competitions.cr.yp.to/round1/kiasuv1.pdf
https://cryptography.gmu.edu/athena/LWC/LWC_HW_Benchmarking_Framework.pdf
https://cryptography.gmu.edu/athena/LWC/LWC_HW_Benchmarking_Framework.pdf
https://cryptography.gmu.edu/athena/LWC/LWC_HW_Benchmarking_Framework.pdf
https://competitions.cr.yp.to/round3/ocbv11.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf


Chakraborti et al. 49

[Nai17] Yusuke Naito. Blockcipher-based macs: Beyond the birthday bound without1548

message length. In Advances in Cryptology - ASIACRYPT 2017. Proceedings,1549

Part III, pages 446–470, 2017.1550

[NIS17] Report on Lightweight Cryptography, 2017. http://nvlpubs.nist.gov/1551

nistpubs/ir/2017/NIST.IR.8114.pdf.1552

[NMSS18] Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara, and Daisuke Suzuki. SAEB:1553

A lightweight blockcipher-based AEAD mode of operation. IACR Trans.1554

Cryptogr. Hardw. Embed. Syst., 2018(2):192–217, 2018.1555

[NRS14] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Recon-1556

sidering generic composition. In Advances in Cryptology - EUROCRYPT1557

2014 - 33rd Annual International Conference on the Theory and Applica-1558

tions of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014.1559

Proceedings, pages 257–274, 2014.1560

[Pat08a] Jacques Patarin. The "coefficients h" technique. In Selected Areas in Cryptog-1561

raphy, 15th International Workshop, SAC 2008, Sackville, New Brunswick,1562

Canada, August 14-15, Revised Selected Papers, pages 328–345, 2008.1563

[Pat08b] Jacques Patarin. A proof of security in o(2n) for the benes scheme. In Progress1564

in Cryptology - AFRICACRYPT 2008, pages 209–220, 2008.1565

[Pat13] Jacques Patarin. Security in O(2n) for the Xor of Two Random Permutations1566

- Proof with the standard H technique -. IACR Cryptology ePrint Archive,1567

2013:368, 2013.1568

[RBB03] Phillip Rogaway, Mihir Bellare, and John Black. OCB: A block-cipher mode1569

of operation for efficient authenticated encryption. ACM Trans. Inf. Syst.1570

Secur., 6(3):365–403, 2003.1571

[Rog04] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refine-1572

ments to modes OCB and PMAC. In Advances in Cryptology - ASIACRYPT1573

2004, 10th International Conference on the Theory and Application of Cryp-1574

tology and Information Security, Jeju Island, Korea, December 5-9, 2004,1575

Proceedings, pages 16–31, 2004.1576

[RS06] Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of1577

the Key-Wrap Problem. In EUROCRYPT, pages 373–390, 2006.1578

[RSQL04] Gaël Rouvroy, François-Xavier Standaert, Jean-Jacques Quisquater, and Jean-1579

Didier Legat. Compact and efficient encryption/decryption module for FPGA1580

implementation of the AES rijndael very well suited for small embedded1581

applications. In International Conference on Information Technology: Coding1582

and Computing (ITCC’04), Volume 2, April 5-7, 2004, Las Vegas, Nevada,1583

USA, pages 583–587, 2004.1584

[Sch98] Richard Schroeppel. The Hasty Pudding Cipher. 1998.1585

[TAY16] Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef. A meet in1586

the middle attack on reduced round Kiasu-BC. IEICE Transactions, 99-1587

A(10):1888–1890, 2016.1588

[WH16] Hongjun Wu and Tao Huang. The JAMBU Lightweight Authentica-1589

tion Encryption Mode (v2.1). Submission to CAESAR, 2016. https:1590

//competitions.cr.yp.to/round3/jambuv21.pdf.1591

http://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf
https://competitions.cr.yp.to/round3/jambuv21.pdf
https://competitions.cr.yp.to/round3/jambuv21.pdf
https://competitions.cr.yp.to/round3/jambuv21.pdf


50 Short Tweak TBC and Its Applications in Symmetric Ciphers

[WP16] Hongjun Wu and Bart Preneel. AEGIS : A Fast Authenticated Encryption1592

Algorithm (v1.1). Submission to CAESAR, 2016. https://competitions.1593

cr.yp.to/round3/aegisv11.pdf.1594

[Wu16] Hongjun Wu. ACORN: A Lightweight Authenticated Cipher (v3). Submission1595

to CAESAR, 2016. https://competitions.cr.yp.to/round3/acornv3.1596

pdf.1597

[ZDY19] Baoyu Zhu, Xiaoyang Dong, and Hongbo Yu. Milp-based differential attack1598

on round-reduced GIFT. In Mitsuru Matsui, editor, CT-RSA 2019, volume1599

11405 of LNCS, pages 372–390. Springer, 2019.1600

[Zig] ZigBee Alliance. http://www.zigbee.org.1601

Appendix1602

A Security Definitions1603

(Tweakable) Random Permutation and Random Function: For any finite set X ,1604

X←$X denotes uniform and random sampling of X from X .1605

We call Π←$ Perm(n) a (uniform) random permutation, and Π̃←$ TPerm(τ, n) a tweak-1606

able (uniform) random permutation on tweak space {0, 1}τ and block space {0, 1}n. Note1607

that, Π̃i is independent of Π̃j for all i 6= j ∈ {0, 1}τ . We call Γ←$ Func(m,n) a (uniform)1608

random function from {0, 1}m to {0, 1}n.1609

We say that a distinguisher is “sane” if it does not make duplicate queries, or queries1610

whose answer is derivable from previous query responses. In this paper, we assume that1611

the distinguisher is limited to at most q queries and t computations.1612

Tweakable Strong Pseudorandom Permutation (TSPRP): The TSPRP ad-1613

vantage of any distinguisher A against Ẽ instantiated with key K←$ {0, 1}κ, is defined1614

as1615

Advtsprp
Ẽ

(A) :=
∣∣∣∣Pr[AẼ

±
K = 1]− Pr[AΠ̃± = 1]

∣∣∣∣ .
The TSPRP security of Ẽ, is defined as1616

Advtsprp
Ẽ

(q, t) := max
A

Advtsprp
Ẽ

(A). (5)

TPRP or tweakable pseudorandom permutation and its advantage AdvTPRP
Ẽ

(q, t) is defined1617

similarly when adversary has no access of the inverse oracle.1618

Pseudorandom Function (PRF): The PRF advantage of distinguisher A against a1619

keyed family of functions PRF := {PRFK : {0, 1}m → {0, 1}n}K∈{0,1}κ is defined as1620

AdvPRF
PRF(A) :=

∣∣∣∣ Pr
K←$ {0,1}κ

[APRFK = 1]− Pr[AΓ = 1]
∣∣∣∣ .

The PRF security of PRF against A(q, t) is defined as1621

AdvPRF
PRF(q, t) := max

A
AdvPRF

PRF(A). (6)

The keyed family of functions PRF is called weak PRF family, if the PRF security holds1622

when the adversary only gets to see the output of the oracle on uniform random inputs. This1623

is clearly a weaker notion than PRF. We denote the weak prf advantage as Advwprf
PRF(q, t).1624

https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf
http://www.zigbee.org


Chakraborti et al. 51

IV-Based Encryption: An IV-Based Encryption iv-enc scheme is a tuple Ψ :=1625

(K,N ,M, E ,D). Encryption algorithm E takes a key K ∈ K and a message M ∈ M1626

and returns (iv, C) = E(K,M), where iv ∈ N is the initialization vector and C ∈ M1627

is the ciphertext. Decryption algorithm D takes K, iv, C and returns M = D(K, iv, C).1628

Correctness condition says that for all K ∈ K and M ∈ M D(K, E(K,M)) = M . The1629

Priv$ advantage [IM16,GL15,NRS14,RS06] of A is defined as1630

Advpriv
iv-enc(A) :=

∣∣∣Pr
K

[
AEK = 1

]
− Pr

Γ

[
AΓ = 1

]∣∣∣
where K←$K and Γ is a random function fromM→N ×M. The Priv$ security of iv-enc,1631

is defined as1632

Advpriv
iv-enc(q, t) := max

A
Advpriv

iv-enc(A). (7)

1633

(Nonce-Based) Authenticated Encryption with Associated Data: A (nonce-1634

based) authenticated encryption with associated data or NAEAD scheme A consists of1635

a key space K, a (possibly empty) nonce space N , a message space M, an associated1636

data space , and a tag space T , along with two functions E : K × N × ×M →M× T ,1637

and D : K × N × ×M × T → M ∪ {⊥}, with the correctness condition that for any1638

K ∈ K, N ∈ N , A ∈,M ∈ M, we must have D(K,N,A, E(M)) = M . When the nonce1639

space is empty, we call the AE scheme a deterministic AE or DAE scheme.1640

Following the security definition in [IM16,GL15,NRS14,RS06], we define the NAEAD1641

(DAE for deterministic AE) advantage of A as1642

AdvAE
A (A) :=

∣∣∣Pr
K

[
AEK,DK = 1

]
− Pr

Γ

[
AΓ,⊥ = 1

]∣∣∣,
where K←$K and Γ is a random function from N ××M→M×T , and ⊥ is the reject1643

oracle that takes (N,A,C, T ) as input and returns the reject symbol ⊥. The NAEAD/DAE1644

security of A, is defined as1645

AdvAE
A (q, t) := max

A
AdvAE

A (A). (8)

B Other Applications1646

B.1 Sum of Permutations1647

The sum of permutations is a popular approach of constructing an n-bit length preserving1648

PRF. Given 2 independent instantiations, EK0 and EK1 , of a secure block cipher over {0, 1}n,1649

the sum of permutations, denoted XOR2, is defined by the mapping x 7→ EK0(x)⊕ EK1(x).1650

The XOR2 construction has been proved to be n-bit secure independently by Patarin1651

[Pat13] and Dai et al. [DHT17], though the proof by Patarin still has some unresolved1652

gaps. There is a single key variant of XOR2, but it sacrifices one bit (i.e. defined1653

from {0, 1}n−1 to {0, 1}n) for domain separation. Instead we can use a tBC to simply1654

replace the two block cipher keys with one tBC key and two distinct tweaks. We define1655

Twe-XOR2(x) := Ẽ
0
K(x)⊕ Ẽ

1
K(x). Again combining Proposition 1 with [DHT17, Theorem1656

], we obtain1657

Proposition 4. For q ≤ 2n−4,1658

AdvPRF
Twe-XOR2(t, q) ≤ AdvTPRP

Ẽ
(t′, q) + (q/2n)1.5.



52 Short Tweak TBC and Its Applications in Symmetric Ciphers

B.2 Tweaking Various Other Constructions1659

In the following list, we apply similar technique as above to several other constructions1660

with multiple keys. The security of all the tBC-based variants is similar to the multi-key1661

original constructions, so we skip their explicit security statements.1662

1. Encrypted Davis Meyer (EDM) [CS16]: EDM uses two keys and obtains BBB1663

PRF security. We define the tBC-based variant as follows:1664

Twe-EDM(x) := Ẽ
1
K(Ẽ

0
K(x)⊕ x).

2. Encrypted Wegman Carter Davis Meyer (EWCDM) [CS16]: EWCDM is a1665

nonce-based BBB secure MAC that requires two block cipher keys and a hash key.1666

The tBC-based variant of EWCDM is defined as:1667

Twe-EWCDM(N,M) := Ẽ
2
K

(
Ẽ

1
K(N)⊕N ⊕H

Ẽ
0
K(0)

(M)
)
.

3. Chained LRW2 (CLRW2) [LST12]: The CLRW2 construction is a TBC that1668

achieves BBB TSPRP security using two independent block cipher keys and two1669

independent hash keys. We define a tBC-based variant of CLRW2 as follows:1670

Twe-CLRW2(M,T ) := Ẽ
2
K

(
Ẽ

1
K(M ⊕ hL1(T ))⊕ hL1(T )⊕ hL2(T )

)
⊕ hL2(T ),

where L1 and L2 can be derived using Ẽ as before. It is easy to see that one can1671

easily extend the idea to obtain single keyed CLRWr [LS13] using r distinct tweaks.1672

4. GCM-SIV-2 [IM16]. GCM-SIV-2 is an MRAE scheme with 2n/3-bit security. How-1673

ever, it requires 6 independent block cipher keys along with 2 independent hash keys.1674

We can easily make it single keyed using a tBC:1675

V1 := H
Ẽ

0
K(0)

(N,A,M) , V2 := H
Ẽ

0
K(1)

(N,A,M)

T1 := Ẽ
1
K(V1)⊕ Ẽ

2
K(V2) , T2 := Ẽ

3
K(V1)⊕ Ẽ

4
K(V2),

Ci := Mi ⊕ Ẽ
5
K(T1 ⊕ i)⊕ Ẽ

6
K(T2 ⊕ i).

Extending the same approach, one can get a single keyed version of GCM-SIV-ras1676

well.1677

5. The Benes Construction [Pat08b]: The Benes construction is a method to
construct 2n-bit length preserving PRF construction with n-bit security that uses 8
independent n bit to n bit PRFs. Formally,

L′ := f1(L)⊕ f2(R)
R′ := f3(L)⊕ f4(R)

Benes(L,R) := (f5(L′)⊕ f6(R′), f7(L′)⊕ f8(R′)).

Now these fi functions can be constructed using sum of two permutations, however1678

that would essentially require 16 block cipher keys. With a tBC, we can reduce the1679

number of keys to one by instantiating fi := Ẽ
2i
K ⊕ Ẽ

2i+1
K for each i ∈ [8].1680



Chakraborti et al. 53

C Proof of Proposition 4.31681

Proof. Twe-LightMAC_Plus is an instance of Twe-DbHtS, and hence offers similar security.1682

The security bound of Twe-DbHtS includes a term1683

AdvPRF
C∗3 [H,π0,π1,π2](q, `, t)

from [DDNP18]. One can verify from [DDNP18, Proof of Theorem 2.(iii)], that this term1684

is predominantly bounded by two probabilities:1685

1. Pr[∃ distinct i, j, k such that Σi = Σj ,Θi = Θk].1686

2. Pr[∃ distinct i, j such that Σi = Σj ,Θi = Θj ].1687

Now the hash layer of Twe-LightMAC_Plus is exactly same as the PHASHx of [LN17].1688

Using similar arguments as in [LN17, Proof of Theorem 1] it can be shown that 1. is upper1689

bounded by O(q3/22n), and 2. is upper bounded by O(q2/22n). The result follows by1690

combining 1 and 2.1691

D Specification of GIFT1692

GIFT [BPP+17] is a lightweight block cipher supporting 64- and 128-bit block and 128-bit1693

key size. The former and the latter are called GIFT64 and GIFT128, respectively. Here1694

we introduce the specification GIFT64. Refer to the original specification for the detailed1695

description of GIFT128.1696

A 64-bit plaintext P is loaded to a 64-bit state s0. Then the state is updated by1697

iteratively applying a round function RF : {0, 1}64 × {0, 1}32 7→ {0, 1}64 28 times as1698

si ← RF (si−1, ki−1) for i = 1, 2, · · · , 28, where ki are 28 round keys generated from a1699

128-bit user-specified key K by a key scheduling function KF : {0, 1}128 7→ ({0, 1}32)28 as1700

(k0, k1, · · · , k27)← KF (K). We call the computation for index i “round i." The last state,1701

s28, is a ciphertext C.1702

D.1 Round Function (RF ).1703

Let x63, x62, · · · , x0 be a 64-bit state value. The round function consists of the following1704

three operations: SubCells, PermBits, and AddRoundKey.1705

SubCells: It applies a 4-bit to 4-bit S-box S shown in Table 12 to 16 nibbles x4i+3, x4i+2, x4i+1, x4i,1706

∀i = 0, 1, · · · , 15 in parallel.
Table 12: S-box.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

1707

PermBits: A bit-permutation π specified in Table 13 is applied to the 64-bit state.1708

AddRoundKey: This step consists of adding a round key and a round constant. A 32-bit
round key ki−1 is extracted from the key state, it is further partitioned into two
16-bit words ki−1 = U‖V = u15u14 · · ·u0‖v15v14 · · · v0. For GIFT-64, U and V are
XORed to x4i+1 and x4i of the state respectively.

x4i+1 ← x4i+1 ⊕ ui, x4i ← x4i ⊕ vi, ∀i ∈ {0, 1, · · · , 15}.



54 Short Tweak TBC and Its Applications in Symmetric Ciphers

Table 13: Bit-Permutation.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(x) 0 17 34 51 48 1 18 35 32 49 2 19 16 33 50 3
x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

π(x) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7
x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

π(x) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11
x 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

π(x) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15

Then, a single bit ‘1’ and a 6-bit round constant are XORed to the state at bit positions1709

63, 23, 19, 15, 11, 7 and 3. Round constants are generated by a simple linear feedback1710

shift register. In our analysis, the round constants do not have any impact, thus we ignore1711

them hereafter. The schematic diagram of the GIFT round function is shown in Fig. 20.

𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 

𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 

63 0 1 2 3 

𝑈 
𝑉 

𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 

𝑈 
𝑉 

Figure 20: Schematic Diagram of Two Rounds of GIFT64.
1712

D.2 Key Schedule Function (KF ).1713

A 128-bit user-specified key K is loaded to a 128-bit key state that is composed of eight
16-bit words κ7,κ6,κ5,κ4,κ3,κ2,κ1, and κ0. A round key is first extracted from the key
state before the key state update. For GIFT64, two 16-bit words of the key state are
extracted as the round key ki−1 = U‖V ,

U ← κ1, V ← κ0.

The key state is then updated as follows,

κ7‖κ6‖κ5‖ · · · ‖κ1‖κ0 ← RotR(κ1, 2)‖RotR(κ0, 12)‖κ7‖ · · · ‖κ3‖κ2,

where RotR(X, i) is an i-bit right rotation of X within a 16-bit word. The schematic1714

diagram of the GIFT key schedule function is illustrated in Fig. 21.1715

D.3 Short Remarks on GIFT128.1716

The state size of GIFT128 is 128 bits, which consists of thirty-two 4-bit nibbles. SubCells1717

operation apply the same S-box as GIFT64 to 32 nibbles and a 128-bit permutation1718



Chakraborti et al. 55

𝜅7 

𝜅6 

𝜅5 

𝜅4 

𝜅3 

𝜅2 

𝜅1 

𝜅0 
0 1 15 ⋯ 2 

>>> 12 

>>> 2 

𝑈 𝑉 

𝜅1 >>> 2 

𝜅0 >>> 12 

𝜅7 

𝜅6 

𝜅5 

𝜅4 

𝜅3 

𝜅2 

Figure 21: Schematic Diagram of Key Schedule Function of GIFT64.

is applied to the state. AddRoundKey extracts 64 bits from the key state and adds1719

bit-position 4i+ 1 and 4i+ 2, where i = 0, 1, . . . , 31, of the state.1720

E Hardware Implementation of TweGIFT1721

Since TweGIFT is explicitly designed for ultra-lightweight implementations, we only provide1722

the hardware implementation results for TweGIFT.
Table 14: Implementation results for GIFT and TweGIFT on Virtex 7 FPGA.

BC or tBC LUTs FF Slices Frequency Clock Throughput
(MHz) cycles (Mbps)

GIFT-64-ED 615 277 236 455.17 29 1004.51
TweGIFT-64-ED[4,16,16,4] 617 277 234 430.29 29 946.60

GIFT-64-E 449 275 153 596.66 29 1316.77
TweGIFT-64-E[4,16,16,4] 479 275 179 595.09 29 1313.30

GIFT-128-ED 1113 408 432 447.83 41 1398.10
TweGIFT-128-ED[4,32,32,5] 1158 408 419 416.50 41 1300.29
TweGIFT-128-ED[16,32,32,4] 1223 408 428 429.32 41 1340.31

GIFT-128-E 763 403 330 596.30 41 1861.62
TweGIFT-128-E[4,32,32,5] 796 403 332 597.59 41 1865.65
TweGIFT-128-E[16,32,32,4] 805 403 377 598.78 41 1869.36

1723

Table 19 summerizes the hardware performances of our recommended TweGIFT versions1724

along with the original GIFT. For ED implementation, our recommended version of1725

TweGIFT-64 has an overheads of 0.3% for 4 bit tweaks, and TweGIFT-128 has overheads1726

of 4.04% and 9.89% for tweak size of 4 and 16 bits respectively. As we move to the E1727

implementation, TweGIFT-64 has an overheads of 6.68% for 4 bit tweaks, and TweGIFT-1281728

has overheads of 4.32% and 5.5% for tweak size of 4 and 16 bits respectively.1729

E.1 Security Analysis of TweAES and TweGIFT Instances1730

In this section, we provide the various cryptanalysis that we performed on the TweAES1731

and TweGIFT instances. Note that our target is single-key security, and any related-key1732

attacks are out of our scope. The exact security bound, e.g., the lower bound of the1733



56 Short Tweak TBC and Its Applications in Symmetric Ciphers

2𝑅 𝐴𝐸𝑆 

𝑇𝑒 

2𝑅 𝐴𝐸𝑆 

𝑇𝑒 

2𝑅 𝐴𝐸𝑆 

𝑇𝑒 

2𝑅 𝐴𝐸𝑆 

𝑇𝑒 

2𝑅 𝐴𝐸𝑆 

4-𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑟𝑒 4-𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑟𝑒 

Figure 22: 4-round Core of TweAES[∗,∗,∗,2]

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑇1 𝑇2 𝑇3 𝑇4 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑇1 𝑇2 𝑇3 𝑇4 

(𝟗) 

(𝟎) 

(𝟔) 

(𝟎) 

(𝟎) 

(𝟒) 

(𝟎) 

(𝟏𝟏) 

Figure 23: Two Examples of Differential Trails with 15 Active S-boxes.

number of active S-boxes and the upper bound of the maximum differential characteristic1734

probability, can be obtained by using various tools based on MILP and SAT, however1735

to derive such bounds for the entire construction is often infeasible. Here, we introduce1736

an efficient method to ensure the security against differential and linear cryptanalyses by1737

exploiting the fact that the expanded tweak has a large weight.1738

Suppose that the expanded tweak is injected to the state every r rounds. Then1739

we focus on 2r rounds around the tweak injection, namely a sequence of the following1740

three operations: the r-round transformation, the tweak injection, and another r-round1741

transformation. We call those operations “2r-round core,” which is depicted for AES1742

and GIFT-64 in Fig. 22. Because the entire construction includes several 2r-round cores,1743

security of the entire construction can be bounded by accumulating the bound for the single1744

2r-round core. The large weight of the expanded tweak ensures a strong security bound1745

for the 2r-round core, which is sufficient to ensure the security for the entire construction.1746

E.1.1 Security Analysis of TweAES1747

As explained above, we evaluate the minimum number of differentially and linearly active1748

S-boxes for the 4-round core. The 4-bit tweaks of TweAES are divided into 4 parts denoted1749

by T1, T2, T3, T4, where the size of each Ti is 1-bit.1750

When the tweak input has a non-zero difference, the expanding function ensures that1751

at least 4 bytes are affected by the tweak difference. It is easy to check by hand that1752

the minimum number of active S-boxes under this constraint is 15. We also modeled the1753

problem by MILP and experimentally verified that the minimum number of active S-boxes1754

is 15. This is a tight bound and two examples of the differential trails achieving 15 active1755

S-boxes are given in Figure 23. Given that the maximum differential probability of the1756

AES S-box is 2−6, the probability of the differential propagation through the 4-round core1757

with non-zero tweak difference is upper bounded by 2−6×15 = 2−90. The probability of1758

the differential propagation of TweAES is upper bounded by 2−90×2 = 2−180 because 101759

rounds of TweAES includes two 4-round cores.1760

For TweAES, experimentally computing the lower bound of the number of active S-boxes1761



Chakraborti et al. 57

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 
𝑇1 𝑇2 𝑇3 𝑇4 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

(𝟎) 

(𝟖) 

(𝟎) 

(𝟏𝟐) 

(𝟖) 

(𝟎) 

(𝟏𝟐) 

(𝟎) 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

(𝟎) (𝟎) 

Figure 24: An Examples of Differential Trails with 40 Active S-boxes.

is also possible. When the tweak input has a non-zero difference, the minimum number of1762

active S-boxes is 40 for the entire construction. This is a tight bound. An example of the1763

differential trails achieving 40 active S-boxes is given in Fig. 24. The probability of the1764

differential propagation is upper bounded by 2−6×40 = 2−240.1765

We argue that the reduced-round versions of TweAES in which the first or the last1766

round is located in the middle of the 4-round core can be attacked for relatively long1767

rounds. Owing to this unusual setting, the attacks here do not threaten the security of full1768

TweAES, however we still demonstrate the attacks for better understanding of the security1769

of TweAES.1770

7-Round Boomerang/Sandwich Attacks. The first approach is the boomerang attack
or more precisely formulated version called the sandwich attack. The boomerang attack
divides the cipher E into two parts E0 and E1 such that E = E1 ◦ E0, and builds high-
probability differentials for E0 and E1 almost independently. The attack detects a quartet
of plaintext x that satisfy the non-ideal behavior shown below with probability p−2q−2,
where p and q are the differential probability for E0 : α→ β and E1 : γ → δ, respectively.

Pr
[
E−1(E(x)⊕ δ

)
⊕ E−1(E(x⊕ α)⊕ δ

)
= α

]
= p−2q−2.

7-rounds of TweAES including four tweak injections that starts from the tweak injection
are divided into E0 and E1 as follows.

E0 := tweak − 1RAES− 1RAES− tweak − 1RAES,
E1 := 1RAES− tweak − 1RAES− 1RAES− tweak − 1RAES.

With this configuration, the attacker can avoid building the trail over the 4-round core for1771

both of E0 and E1.1772

The framework of the sandwich attacks show that by dividing the cipher E into three
parts E = E1 ◦ Em ◦ E0, the probability of the above event is calculated as p−2q−2rqua,
where rqua is the probability for a quartet defined as

rqua := Pr
[
E−1
m

(
Em(x)⊕ γ

)
⊕ E−1

m

(
Em(x⊕ β)⊕ γ

)
= β

]
.

We define Em of this attack as the first S-box layer in the above E1. The configuration1773

and the differential trails are depicted in Fig. 25 The probability when Em is a single S-box1774

layer can be measured by using the boomerang connectivity table (BCT). The trails for E01775

and E1 include 4 active S-boxes, hence both of the probability p and q are 2−24. That is,1776

p2q2 = 2−96. The BCT of the AES S-box shows that the probability for each S-box in Em1777



58 Short Tweak TBC and Its Applications in Symmetric Ciphers

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 𝑆𝑅 
𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑇1 𝑇2 𝑇3 𝑇4 

𝟐−𝟒𝟖 

𝟐−𝟒𝟖 

𝑇1 𝑇2 𝑇3 𝑇4 

𝟐−𝟑𝟎 

Figure 25: Differential Trails for Boomerang Attacks. The cells filled with black and gray
represent active byte positions in E0 and E1, respectively.

is either 2−5.4, 2−6, or 2−7 if both of the input and output differences are non-zero, and is1778

1 otherwise. Hence, the trail contains 5 active S-boxes with some probabilistic propagation1779

and we assume that the probability of each S-box is 2−6. Then, the probability rqar is1780

2−6×5 = 2−30. In the end, p−2q−2rqua = 2−126, which would lead to a valid distinguisher1781

for 7 rounds.1782

8-Round Impossible Differential Attacks against TweAES. Due to 2 interval rounds1783

between tweaks, distinguishers based on impossible differential attacks can be constructed1784

for relatively long rounds (6 rounds) by canceling the tweak difference with the state1785

difference. The distinguisher is depicted in Fig. 26.1786

The first and last tweak differences are canceled with the state difference with probability1787

1. Then we have 2 blank rounds. After that, the tweak difference is injected to the state,1788

which implies that the tweak difference must be propagated to the same tweak difference1789

after 2 AES rounds. However, this transformation is impossible because1790

• 1-round propagation in forwards have 4 active bytes for the right-most column, while1791

• 1-round propagation in backwards have at least 2 inactive bytes in the right-most1792

column.1793

𝑇1 𝑇2 𝑇3 𝑇4 

1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 

𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

Figure 26: 6-round Impossible Differential Distinguisher. The bytes filled with black, white, and
gray have non-zero difference, zero difference, and arbitrary difference, respectively.

For the key recovery, two rounds can be appended to the 6-round distinguisher; one is1794

at the beginning and the other is at the end, which is illustrated in Fig. 27. As shown1795



Chakraborti et al. 59

𝑇1 𝑇2 𝑇3 𝑇4 

6𝑅 𝑇𝑤𝑒𝐴𝐸𝑆 
𝑆𝐵 
𝑆𝑅 

𝐾9 

𝑆𝐵 
𝑆𝑅 
𝑀𝐶 

𝐾1 

Figure 27: Extension to 8-round Key Recovery

in Fig. 27 the trail includes 8 and 4 active bytes at the input and output states. Partial1796

computations to the middle 6-round distinguisher involve 8 bytes of subkey K1 and 4 bytes1797

of subkey K9.1798

Recall that the tweak size is 4 bits. The attack procedure is as follows.1799

1. Choose all tweak values denoted by T i where i = 0, 1, . . . , 24 − 1.1800

2. For each of T i, fix the value of inactive 8 bytes at the input, choose all 8-byte1801

values at the active byte positions of the input state. Query those 264 values1802

to get the corresponding outputs. Those outputs are stored in the list Li where1803

i = 0, 1, . . . , 24 − 1.1804

3. For all
(24

2
)
≈ 27 pairs of Li and Lj with i 6= j, find the pairs that do not have1805

difference in 12 inactive bytes of the output state. About 27+64+64−96 = 239 pairs1806

will be obtained.1807

4. For each of the obtained pairs, the tweak difference is fixed and the differences at the1808

input and output states are also fixed. Those fix both of input and output differences1809

of each S-box in the first round and the last round. Hence, each pair suggests a1810

wrong key.1811

5. Repeat the procedure 254 times from the first step by changing the inactive byte1812

values at the input. After this step, 239+54 = 2103 wrong-key candidates (including1813

overlaps) will be obtained. The remaining key space of the involved 12 bytes becomes1814

296 × (1− 2−96)2103 ≈ 296 × e−128 ≈ 2−88 < 1. Hence, the 8 bytes of K1 and 4 bytes1815

of K9 will be recovered.1816

6. Exhaustively search the remaining 8 bytes of K1.1817

The data complexity is 24× 264× 253 = 2121. The time complexity is also 2121 memory1818

accesses. The memory complexity is to recored the wrong keys of the 12 bytes, which is1819

296.1820

Remarks on Other Attacks1821

• Integral attacks [DKR97,KW02] collect 28 distinct values for a particular byte or1822

distinct 232 values for a particular diagonal. Integral attacks exploiting the tweak is1823

difficult because the tweak will not affect all the bits in each byte, which prevents to1824

collect 28 distinct values for any byte.1825

• Meet-in-the-middle attacks [DS08,DFJ13] exploit the 4-round truncated differentials1826

1 → 4 → 16 → 4 → 1 and focus on the fact that the number of differential1827

characteristics satisfying this differential is at most 280. The large-weight of the1828

expanded tweak in TweAES does not allow such sparse differential trails, which makes1829

it hard to be exploited in the meet-in-the-middle attack.1830



60 Short Tweak TBC and Its Applications in Symmetric Ciphers

Summary. We demonstrated two attacks against reduced-round variants that start from1831

the middle of the 4-round core. Because security of TweAES using tweak difference relies1832

on the fact that the large-weight tweak difference will diffuse fast in the subsequent 21833

rounds, those reduced-round analysis will not threaten the security of the full TweAES.1834

From a different viewpoint, one can see the difficulty to extend the analysis by 1 more1835

round from Figs. 25 and 27. The number of involved subkey bytes easily exceeds 16.1836

E.1.2 Cryptanalysis of TweAES with non-zero tweak from the initial round.1837

In this section, we will show integral attacks, impossible differential attacks and truncated1838

differential attacks against reduced-round variants that start form the initial round and1839

the tweak is non-zero. The main purpose is to show the difficulty of exploiting 4 bits tweak1840

in the attack, thus we do not discuss the case of fixing the tweak. (When tweak is zero,1841

security is the same as the original AES, which can also be applied to TweAES but does1842

not show any vulnerability introduced by TweAES.) The comparison of the number of1843

attacked rounds and the attack complexity for the original AES and TweAES is given in1844

Table 15.
Table 15: Comparison of the Attacks on AES and TweAES exploiting tweak. R, D, T and
M denote the number of rounds, data complexity, time complexity and memory complexity,
respectively.

Attack AES TweAES
R D T M ref. R D T M

Integral 7 2128 − 2119 2120 264 [FKL+00] 6 25 245 negl.

Imp. Diff. 7 2106.2 2110.2 290.2 [MDRM10] 6 2119 2119 272

Trunc. Diff. 6 272.8 2105 233 [Gra19] 5 25 226 224

1845

Integral Attacks. Because the tweak starts to appear only after the second round, to play1846

with plaintexts is difficult to extend the integral attacks. The most reasonable approach to1847

exploit the tweak is to set the plaintext constant and collect all possible 24 tweak inputs.1848

The propagation of the property is given in Fig. 28. Because the plaintext can be fixed,1849

the state does not change during the first two rounds. By examining 16 possible tweaks,1850

each bit of the expanded tweak becomes zero for 8 choices and one for 8 choices. Hence,1851

when the value before the tweak injection is c, the value after the tweak injection is either1852

c or c ⊕ 1 and both occur 8 times. From the similar analysis, the balanced property is1853

preserved after 2 rounds from the tweak injection.1854

The key recovery starts with 16 ciphertexts. The attacker guesses the 4 bytes of the1855

last subkey as indicated in Fig. 28. Let W5 be MC−1(K5). Then, by guessing a byte of1856

W5, the corresponding byte position can be partially decrypted until the beginning of1857

round 5, and thus the attacker can check whether or not the balanced property (a sum of1858

the byte value among 16 texts is 0) is satisfied. The probability that the balanced property1859

is observed is 2−8, hence only 1 choice of the byte-difference at W5 will remain as a right1860

key candidate. The analysis can be iterated for 4 bytes of W5. In the end, for each 232
1861

choice of 4 bytes of K6, the corresponding 4 bytes of W5 will be fixed. Namely, 64 bits of1862

the key space is reduced to 32 bits. By using another set of a plaintext with 16 different1863

tweaks, the key space is reduce to 1.1864

The memory complexity can be saved by first preparing two sets of 16 texts, and then1865

the bytes of K6 is guessed. We can apply the same analysis to all 4 different columns1866

to determine the key without exhaustive search. Hence, the data complexity is 25, the1867

computational cost is 25 · 232 · 28 = 245, the memory amount is negligible.1868

Compared to the integral attack against original AES, we can exploit two blank rounds1869



Chakraborti et al. 61

𝑆𝐵 𝑆𝑅 𝑀𝐶

𝑆𝐵 𝑆𝑅 𝑀𝐶

𝑆𝐵 𝑆𝑅 𝑀𝐶

𝑆𝐵 𝑆𝑅

𝐾0

𝐾1

𝐾2

𝐾3

𝐾6

𝑇

2 2 2 2
2 2 2 2

2 2 2 2
2 2 2 2

4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4

2 2 2 2
2 2 2 2

𝑈 𝑈 𝑈 𝑈
𝑈 𝑈 𝑈 𝑈
𝑈 𝑈 𝑈 𝑈
𝑈 𝑈 𝑈 𝑈

𝐵 𝐵 𝐵 𝐵
𝐵 𝐵 𝐵 𝐵
𝐵 𝐵 𝐵 𝐵
𝐵 𝐵 𝐵 𝐵

𝑆𝐵 𝑆𝑅 𝑀𝐶 𝐾4

4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4

4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4

4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4

𝐵 𝐵 𝐵 𝐵
𝐵 𝐵 𝐵 𝐵
𝐵 𝐵 𝐵 𝐵
𝐵 𝐵 𝐵 𝐵

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝑆𝐵 𝑆𝑅 𝑀𝐶 𝐾5

𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡

𝑟𝑜𝑢𝑛𝑑 1

𝑟𝑜𝑢𝑛𝑑 2

𝑟𝑜𝑢𝑛𝑑 3

𝑟𝑜𝑢𝑛𝑑 4

𝑟𝑜𝑢𝑛𝑑 5

𝑟𝑜𝑢𝑛𝑑 6

𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡

Figure 28: Integral Distinguisher on TweAES via Tweak. ‘2’ represents that two kinds of values
appear 8 times each and ‘4’ represents that four kinds of values appear 4 times each. By following
the convention, ‘B’ and ‘U ’ denote ‘balanced’ and ‘unknown’ properties, respectively.

thanks to the tweak injection in every two rounds but then the property disappears more1870

quickly because we need to active at least 4 byte positions. The attack on the original1871

AES appends 1 more round at the beginning of the integral distinguisher, which is difficult1872

for TweAES via non-zero tweak because of the existence of the 2 AES rounds before the1873

first tweak injection.1874

Impossible Differential Attacks. With non-zero tweak difference, the strategy to build an1875

impossible differential is to inject it in the middle of the conventional 3.5-round impossible1876

differential distinguisher, as indicated by Fig. 29. Namely, the top left and the bottom left1877

bytes are active with probability 1 in the forward direction, while those byte are inactive1878

with probability 1 in the backward direction.1879

𝑇1𝑇2𝑇3𝑇4

𝑅𝑜𝑢𝑛𝑑 2 𝑅𝑜𝑢𝑛𝑑 3 𝑅𝑜𝑢𝑛𝑑 4

𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛

Figure 29: 3-round Impossible Differential Distinguisher using Tweak Difference.

For the key recovery, one round and two rounds can be appended to the beginning and1880



62 Short Tweak TBC and Its Applications in Symmetric Ciphers

the end of the 3-round distinguisher, which is illustrated in Fig. 27.

𝑅𝑜𝑢𝑛𝑑 1 𝑆𝐵5

𝐾0 𝑀𝐶−1(𝐾5)

𝑆𝑅5

𝑀𝐶5

𝑆𝐵6

𝑆𝑅6

𝐾6

𝑑𝑖𝑠𝑡𝑖𝑛𝑔𝑢𝑖𝑠ℎ𝑒𝑟

Figure 30: Extension to 6-round Key Recovery
1881

Because the tweak does not appear during the key recovery rounds, the procedure is1882

the same as the one with the conventional 3.5-round impossible differential distinguisher.1883

To collect the data, the attacker constructs a structure, a set of 232 plaintexts in which 232
1884

values are considered for active 4 bytes and the other 12 bytes are fixed. This generates1885 (232

2
)
≈ 263 ciphertext pairs. This can be iterated X times by changing the value of the1886

fixed 12 bytes of the plaintexts, which results in X · 232 queries and X · 263 ciphertext1887

pairs. We only pick up the pairs that have 12 inactive bytes at the ciphertext, thus we1888

obtain X · 263/296 = X · 2−33 pairs.1889

For each of X · 2−33 pairs, the attacker generates the wrong keys of 9 key bytes; 4 bytes
of K0, 1 byte of MC−1(K5) and 4 bytes of K6 as illustrated in Fig. 30. This can be done
by choosing all possible (28) 1-byte difference after the first round and propagate it back
to the S-box output in round 1. Then each active S-box in round 1 has fixed input and
output differences, which indicates the corresponding values for those 4 S-boxes. For each
difference after round 1, the attacker obtains 1 value for those 4 S-boxes on average, thus
obtains 1 candidate of 4 bytes of K0 by taking the xor with plaintext. By analyzing 28

differences after round 1, the attacker collects 28 wrong candidates. Similarly, by choosing
1-byte difference at the input of round 5 and 4-byte difference at the input of round 6,
the attacker collects 240 wrong keys for the 5 key bytes. By merging the results from two
directions, the attacker obtains 248 wrong keys for 9 key bytes. By iterating the analysis
for X · 2−33 pairs, the attacker obtains X · 215 wrong keys for 9 key bytes. The remaining
key space for those 9 bytes can be computed as follows.

272 ·
(

(1− 2−96)X·2
15
)

= 272 ·
(

(1− 2−96)296·X·2−81
)
≈ 272 · e−X·2

−81
.

Considering e−64 ≈ 2−92, by setting X = 287, the remaining key space becomes less than1890

one, thus only the right key will remain. After 4 bytes of K0 is recovered, the remaining1891

12 bytes can be recovered by the exhaustive search.1892

The attack complexity is 287+32 = 2119 queries and memory access to collect the pairs.1893

287−33+48 = 2102 partial AES round operations to compute wrong keys. To record the1894

detected wrong keys, we use the memory of size 272.1895

Truncated Differential Attacks. So fat the most successful attempts can break up to1896

5 rounds of TweAES. There are two possible approaches. The first approach does not1897

inject the difference from the plaintext and starts the differential propagation from the1898

first tweak injection. The second one is to inject the difference from the plaintext and to1899

cancel it at the first tweak injection, which makes the subsequent two rounds blank. Here1900

we describe both approaches.1901

The truncated differential trail for the first approach is shown in Fig. 31. The trail1902

can be satisfied with probability 1. After one pair of ciphertexts is obtained, the attacker1903

analyzes the last subkey column by column. Namely, the possible number of difference1904

before MixColumns in round 4 is 224. For each of them, the attacker can derive 1 candidate1905

of the corresponding 4 subkey bytes of K5, thus the key space is reduced by a factor of1906



Chakraborti et al. 63

𝑇1𝑇2𝑇3𝑇4

2𝑅 1𝑅
𝑆𝐵
𝑆𝑅

𝑀𝐶
𝑆𝐵
𝑆𝑅

𝑀𝐶−1(𝐾4) 𝐾5

Figure 31: 5-round Truncated Differential Attack using Tweak Difference (type 1).

28. The involved byte positions for 1 column is stressed in Fig. 31 by the bold line. The1907

same analysis can be iterated by using 4 pairs of ciphertexts to reduce the key space to1908

1. The key for the other columns can also be identified similarly. The data complexity1909

is 24 paired queries, which is 25. Time complexity is 4 iterations of derivation of 224 key1910

candidates which is 226. The memory amount is 224.1911

One may wonder if it is possible to inject the difference to the plaintext and to cancel1912

it with the first tweak addition. This is indeed possible and the key can be recovered up to1913

5 rounds, while it requires much higher attack complexity. We will explain this inefficient1914

attack to demonstrate that exploiting the plaintext to control the middle tweak injection1915

is difficult. The truncated differential trail for the second approach is shown in Fig. 32.1916

The trail can be satisfied with probability 2−128; 2−64 for the first round and 2−64 towards

𝑇1𝑇2𝑇3𝑇4

1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 2𝑅 𝐴𝐸𝑆
L𝑎𝑠𝑡
𝐴𝐸𝑆

Figure 32: 5-round Truncated Differential Attack using Tweak Difference (type 2).
1917

the cancellation at the first tweak injection. Hence by generating 2128 pairs, we can expect1918

one pair following the truncated differential trail.1919

The attacker makes 264.5 encryption queries of randomly generated distinct plaintexts1920

to pick up the pairs having 12 inactive bytes at the ciphertext in the byte positions shown1921

in Fig. 32. Among about 2128 pairs, 232 pairs will satisfy the 12 inactive bytes at the1922

ciphertext and 1 pair is expected to follow the trail. For each of 232 pairs, the attacker1923

generates 264 candidate values for the first round key. Hence the 128-bit key space for1924

the first subkey is reduce to 96 bits (232 × 264). By starting from 266.5 queries to obtain1925

2132 pairs, the 128-bit key space is reduced to 1. The data complexity is 266.5, the time1926

complexity is 298 and the memory complexity is 296.1927

We have tried various differential trails to attack 6 rounds of TweAES, while no attempts1928

could successfully attack 6 rounds with a complexity significantly lower than the exhaustive1929

key search. To find the attack on more than 5 rounds is an open problem.1930

E.2 Security Analysis of TweAES-61931

We also provide a round reduced version TweAES denoted by TweAES-6 (to be used in1932

one of our applications). In TweAES-6, the number of rounds is reduced from TweAES1933

from 10 to 6 by considering that the attackers do not have full control over the block1934



64 Short Tweak TBC and Its Applications in Symmetric Ciphers

cipher invocation in the modes. From this background, we do not analyze the security of1935

TweAES-6 as a standalone tweakable block cipher, but show that the number of active1936

S-boxes is sufficient to prevent attacks.1937

As a result of running the MILP-based tool, it turned out that the differential trail1938

achieving the minimum number of active S-boxes with some non-zero tweak difference is1939

20. Examples of the differential trails achieving 20 active S-boxes is the first six or the last1940

six rounds of the trail in Fig. 24.1941

Given that the maximum differential probability of the AES S-box is 2−6, the probability1942

of the differential propagation is upper bounded by 2−6×20 = 2−120. Because our mode1943

does not allow the attacker to make 2120 queries, it is impossible to perform the differential1944

cryptanalysis.1945

Note that AEAD schemes based on the original AES often adopt 4-round AES in the1946

mode, and the minimum number of the active S-boxes for 4-round AES is 25. We designed1947

TweAES-6 to offer the similar security level as 4-round AES, and no attack is known on1948

the 4-round AES in proper modes under the restriction of the birthday-bound query limit.1949

E.3 Security Analysis of TweGIFT1950

We only consider the security of TweGIFT against attacks exploiting the tweak injection,1951

because, without the tweak injection, the security of TweGIFT is exactly the same as the1952

original GIFT-128.1953

Differential Cryptanalysis. The 4-bit tweak expands to 8 bits and those 8 bits are copied1954

three times to achieve a 32-bit tweak. When the 4-bit tweak has some non-zero difference,1955

the expanded 32-bit tweak is ensured to have at least 16 active bits, which ensures at least1956

16 active S-boxes in 2 rounds around the tweak injection.1957

We modeled the differential trail search for TweGIFT with MILP under the constraints1958

that at least 1 bit of tweak has a difference. However, owing to the large state size,1959

it is infeasible to find the tight bound of the maximum probability of the differential1960

characteristic even for the 10-round core. The tool so far provided that the probability of1961

the differential characteristic is upper bounded by 2−72.6. Given that the entire TweGIFT-1962

128 consists of 40 rounds and thus contains 4 of the 10-round cores, the upper bound of1963

the entire construction is 2−72.6×4 = 2−300.4, which is sufficient to resist the attack.1964

Note that it is also difficult to apply the MILP-based differential trail search to the1965

original GIFT-128 because of the large state size. The designers showed that the lower1966

bound of the number of active S-boxes for 9 rounds of GIFT-128 is 19 [BPP+17, Table1967

11] and the bound is tight. The designers also evaluated the differential probability (not1968

characteristic probability) of the trail matching the bound, which was 2−46.99. Zhu et1969

al. [ZDY19] introduced some heuristic to search for differential trails of the reduced-round1970

GIFT-128 with some aid of MILP. They found 12-, 14-, 18-round differential characteristics1971

with probability 2−62.415, 2−85, and 2−109, respectively [ZDY19, Table 9]. By comparing1972

those probabilities with the upper bound for the 10-round core, we believe that the best1973

differential trail would not exploit the tweak difference, thus the tweak injection of TweAES1974

does not introduce any vulnerability. The comparison of the bounds for the original1975

GIFT-128 and TweGIFT is given in Table 16.1976

Basically, GIFT-128 allows a sparse differential propagation. For example, the 18-round1977

differential trail found by Zhu et al. [ZDY19] is described in Table 17.1978

The differential mask for the first and last rounds in Table 17 have a relatively large1979

weight, however this is because the trail is optimized for 18 rounds. The sparse differential1980

propagation of GIFT-128 is the ground of our belief that to have 16 active S-boxes around1981

the tweak injection by using non-zero tweak difference is inefficient.1982



Chakraborti et al. 65

Table 16: Comparison of the Guaranteed Differential Property for GIFT-128 and TweGIFT via
Non-Zero Tweak

target rounds evaluated object bound type probability reference
GIFT-128 9 differential probability tight bound 2−46.99 [BPP+17]
GIFT-128 12 characteristic probability lower bound 2−62.415 [ZDY19]
GIFT-128 14 characteristic probability lower bound 2−85 [ZDY19]
GIFT-128 18 characteristic probability lower bound 2−109 [ZDY19]
TweGIFT 10 characteristic probability upper bound 2−72.6 Ours
TweGIFT 10 characteristic probability lower bound 2−79 Ours

Table 17: 18-Round Sparse Differential Trail by Zhu et al. [ZDY19, Table 10]
Round Input Difference Probability

0000 0000 7060 0000 0000 0000 0000 0000
1 0000 0000 0000 0000 0000 0000 00a0 0000 2−5

2 0000 0010 0000 0000 0000 0000 0000 0000 2−7

3 0000 0000 0800 0000 0000 0000 0000 0000 2−10

4 0020 0000 0010 0000 0000 0000 0000 0000 2−12

5 0000 0000 0000 0000 4040 0000 2020 0000 2−17

6 0000 5050 0000 0000 0000 5050 0000 0000 2−25

7 0000 0000 0000 0000 0000 0000 0a00 0a00 2−37

8 0000 0000 0000 0011 0000 0000 0000 0000 2−41

9 0008 0000 0008 0000 0000 0000 0000 0000 2−57

10 0000 0000 0000 0000 2020 0000 1010 0000 2−41

11 0000 5050 0000 0000 0000 5050 0000 0000 2−61

12 0000 0000 0a00 0a00 0000 0000 0000 0000 2−73

13 0000 0000 0011 0000 0000 0000 0000 0000 2−77

14 0090 0000 00c0 0000 0000 0000 0000 0000 2−83

15 1000 0000 0080 0000 0000 0000 0000 0000 2−89

16 0010 0000 0000 0000 0000 0000 8020 0000 2−94

17 0000 0000 8000 0020 0000 0050 0000 0020 2−101

18 0000 0100 0020 0800 0014 0404 0002 0202 2−109

Boomerang Attacks. If the number of attacked rounds is reduced significantly, the tweak1983

injection actually helps an attacker to attack TweGIFT more efficiently than the original1984

GIFT-128. An example is the boomerang attack for 10 rounds. If the attacker starts from1985

the zero plaintext difference with some non-zero tweak difference, the first 5 rounds do not1986

have any difference. The tweak injection will introduce differences to multiple S-boxes, but1987

we change the trail by following the framework of the boomerang attack. In the second1988

trail that starts from round 6, we also choose the zero-difference to the state input, and1989

some non-zero difference in the tweak. This also gives another 5 empty rounds. In total,1990

we have two 5-round trails with probability 1, that easily enables attackers to attack 101991

rounds plus a few more rounds by appending some key-recovery rounds. It would also1992

be possible to extend a few more rounds at the border of the two trails by using the1993

BCT [CHP+18].1994

In the original GIFT-128, the minimum number of the active S-boxes for 5 rounds is1995

5. Hence, the 10-round boomerang trail will certainly require a non-negligible amount of1996

the data complexity to recovery the key. The 10-round attack against TweGIFT should be1997

much more efficient than the one against original GIFT-128.1998

However, because the probability of the trails is squared in the boomerang attack, it is1999



66 Short Tweak TBC and Its Applications in Symmetric Ciphers

highly unlikely that the attacker can extend the differential trail significantly. Moreover,2000

recall that the probability of the differential characteristic is upper bounded by 2−72.6 for2001

the 10-round core. The squared probability is 2−145.2, which has already been more than2002

the code-book size. The boomerang attack may work efficiently for 10 and a few more2003

rounds of TweGIFT, but given that the differential trail in Table 17 reaches 18 rounds, we2004

do not think that the boomerang attack can be the best approach for attacking TweGIFT.2005

E.4 Hardware Performance of the TweAES and TweGIFT Instances2006

In this section, we provide the hardware implementation details for all our recommended2007

TweGIFT and TweAES versions and compare their hardware overheads respective to their2008

original counterparts GIFT and AES. We give a brief comparison on software implementation2009

of TweAES and AES in supplementary material ??. For each instantiations, we present2010

both the encryption/decryption (ED) version and only encryption (E) version. The VHDL2011

code of our implementations are synthesized using Xilinx ISE 14.7 tool in a Virtex 7 FPGA2012

(XC7VX415TFFG1761). We have used the default options (optimized for speed) and all2013

the S-boxes and memories to store the round keys are mapped to LUTs, and no block2014

rams are used. We present the results obtained from the tool after performing place and2015

route process.2016

Table 18: Implementation results for AES and TweAES on Virtex 7 FPGA.

BC or tBC LUTs FF Slices Frequency Clock Throughput
(MHz) cycles (Mbps)

AES-ED 2945 533 943 297.88 11 3466.24
TweAES-ED[4,8,8,2] 2960 534 1044 295.97 11 3444.01

TweAES-ED[8,16,8,2] 2976 534 1129 295.81 11 3442.15
TweAES-ED[16,32,8,2] 3006 534 1134 292.87 11 3407.94

AES-E 1605 524 559 330.52 11 3846.05
TweAES-E[4,8,8,2] 1617 524 574 328.27 11 3819.87

TweAES-E[8,16,8,2] 1632 524 593 325.17 11 3783.79
TweAES-E[16,32,8,2] 1659 524 592 326.56 11 3799.97

Table 18 depicts that the area-overhead (LUT counts) introduced by the tweak injection is2017

negligeable. For Considering the combined encryption-decryption (ED) implementation,2018

TweAES have overheads (in LUTs) of 0.5%, 1.05% and 2.07% for tweak size of 4, 8 and 162019

bits respectively. As we move to the encryption (E) only implementation, our recommended2020

TweAES versions have negligeable area overheads of 0.7%, 1.68% and 3.36% respectively.2021

Note that, the reduction in the speed is also negligeable.2022

Table 19: Implementation results for GIFT and TweGIFT on Virtex 7 FPGA.

BC or tBC LUTs FF Slices Frequency Clock Throughput
(MHz) cycles (Mbps)

GIFT-64-ED 615 277 236 455.17 29 1004.51
TweGIFT-64-ED[4,16,16,4] 617 277 234 430.29 29 946.60

GIFT-64-E 449 275 153 596.66 29 1316.77
TweGIFT-64-E[4,16,16,4] 479 275 179 595.09 29 1313.30

GIFT-128-ED 1113 408 432 447.83 41 1398.10
TweGIFT-128-ED[4,32,32,5] 1158 408 419 416.50 41 1300.29

TweGIFT-128-ED[16,32,32,4] 1223 408 428 429.32 41 1340.31
GIFT-128-E 763 403 330 596.30 41 1861.62

TweGIFT-128-E[4,32,32,5] 796 403 332 597.59 41 1865.65
TweGIFT-128-E[16,32,32,4] 805 403 377 598.78 41 1869.36



Chakraborti et al. 67

Table 19 summerizes the hardware performances of our recommended TweGIFT versions2023

along with the original GIFT. For ED implementation, our recommended version of2024

TweGIFT-64 has an overheads of 0.3% for 4 bit tweaks, and TweGIFT-128 has overheads2025

of 4.04% and 9.89% for tweak size of 4 and 16 bits respectively. As we move to the E2026

implementation, TweGIFT-64 has an overheads of 6.68% for 4 bit tweaks, and TweGIFT-1282027

has overheads of 4.32% and 5.5% for tweak size of 4 and 16 bits respectively.2028


	Introduction
	Some Issues in Block Cipher Based Designs
	Possible Approach
	Survey of Existing Designs
	Our Contributions
	Significance of the Framework in the Light of NIST Lightweight Project
	Publications

	Preliminaries
	Notations
	Authenticated Encryption
	PRF, (T)PRP Security
	Patarin's H-Coefficient Technique

	Short-Tweak Tweakable Block Ciphers
	The Elastic-Tweak Framework
	Exp: Expanding the Tweak
	Injecting Expanded Tweak into Round Functions
	Tweakable GIFT and AES
	Security Analysis of TweAES and TweGIFT Instances
	Security Analysis of TweAES-6
	Security Analysis of TweGIFT
	Hardware Performance of the TweAES and TweGIFT Instances

	ESTATE: A tBC Based Nonce-misuse Resistant AEAD
	ESTATE AEAD Mode
	sESTATE: A Lighter Variant of ESTATE
	Design Rationale
	Recommended Instantiations
	Security of ESTATE
	Hardware Implementation

	Other Applications of Short Tweak tBC
	Reducing the Key Size in Multi-Keyed Modes of Operation
	Efficient Processing for Short Messages
	Elastic-Tweak vs XE and XEX

	Security Definitions
	Other Applications
	Sum of Permutations
	Tweaking Various Other Constructions

	Proof of Proposition 4.3
	Specification of GIFT
	Round Function (RF).
	Key Schedule Function (KF).
	Short Remarks on GIFT 128.

	Hardware Implementation of TweGIFT
	Security Analysis of TweAES and TweGIFT Instances
	Security Analysis of TweAES-6
	Security Analysis of TweGIFT
	Hardware Performance of the TweAES and TweGIFT Instances


