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Abstract. The main purpose of this work is to raise awareness about a primitive that 
can provide large efficiency gains in post-quantum cryptography: multi-recipient KEMs, or 
mKEMs. In a nutshell, when encapsulating a key to N parties, an mKEM generates a single 
ciphertext that can be decapsulated by all parties. The size of an mKEM ciphertext can be 
significantly smaller than the sum of the sizes of N KEM ciphertexts. Moreover, individual 
receivers only need a small part of the mKEM ciphertext to run decapsulation. 
We then propose mKyber, a very compact mKEM based on Kyber. Asymptotically, the size 
of an mKyber multi-recipient ciphertext is 16 times smaller than the sum of the sizes of N 
Kyber ciphertexts. The algorithmic description and parameters of mKyber and Kyber are 
very similar, which facilitates the re-use of existing security analyses, implementations, and 
formal verification tools that have been developed for Kyber. 
Finally, we showcase some selected applications. mKEMs can be used to greatly reduce the 
bandwidth cost of the group key agreement protocol underlying the Message Layer Security 
(MLS) secure group messaging standard. Reducing bandwidth is one of the primary design 
considerations for MLS. More fundamentally, mKEMs reduce the cost of broadcasting private 
information to groups of recipients (e.g. a fleet of Cloud Hardware Security Modules). 

1 Introduction 

In July, 2022, NIST selected their first post-quantum standards for key agreement and (state-
less) signature: the key encapsulation mechanism (KEM) Kyber [SAB+22], and the signature 
schemes Dilithium [LDK+22], SPHINCS+ [HBD+22] and Falcon [PFH+22]. While this will 
greatly speed up the transition of existing systems to post-quantum cryptography (PQC), 
some challenges will still need to be addressed in the process. 
One of the main challenges in this transition process is the overhead in communication cost. 
For 128 bits of classical security, the size of an ECDH public key is 32 bytes, whereas the size 
of a Kyber ciphertext is 768 bytes, which is 24 times larger. This means that protocols that 
make an extensive use of key exchange or key encapsulation will require more bandwidth 
when migrating to PQC; such protocols include the IETF standard MLS [BBR+23], or 
broadcast protocols. This additional cost may require to scale up the bandwidth capabilities 
of the systems deploying these protocols, a cost that not all end users will be able to shoulder. 

Multi-recipient KEMs (mKEMs). Fortunately, a simple primitive can help to ad-
dress some of the scalability challenges faced by PQC: multi-recipient KEMs, or mKEMs. 
When encapsulating one key K to N distinct encapsulation keys (eki)i∈[N ], the straightfor-
ward solution is to send N distinct ciphertexts cti – one for each eki. With a mKEM, one 



2 How Multi-Recipient KEMs can help the Deployment of Post-Quantum Cryptography 

may instead generate a single ciphertext ct⃗ that can be decrypted by all recipients. For a 
formal definition, see Section 2. 
What makes mKEMs appealing for PQC is the massive efficiency gains they can provide. 
Recent works [KKPP20, HKP+21, AHK+23] have shown that lattice-based mKEMs can be 
asymptotically (in N) one or two orders of magnitude more compact than the use of N 
KEMs in parallel. 

mKyber: a Kyber-based mKEM. We demonstrate the potential of mKEMs by 
proposing mKyber, a mKEM construction based on Kyber. When encrypting the same mes-
sage to a large number of recipients, mKyber can be up to 16 times more compact than 
Kyber, with an amortized cost of 48 bytes per recipient compared to 768 bytes per recipient 
for Kyber. The algorithmic description and parameters of mKyber are very similar to those 
of Kyber. From an implementation perspective, it means that existing implementations of 
Kyber can be easily repurposed to implement mKyber, even in the case of highly optimized 
and/or platform-specific implementations. From a security evaluation perspective, security 
proof techniques and formal verification tools can be adapted. See Section 3 for more details. 

amKyber: an even more secure mKEM. mKyber already enjoys the standard 
notion of IND-CCA security. However, in some settings a stronger notion of IND-CCA 
security with adaptive corruptions may be desired. Roughly, the latter requires IND-CCA 
security against an attacker that can adaptively leak mKEM secret keys. This is particularly 
important in applications using long-term mKEM key pairs. We therefore present amKyber, 
adapted from [AHK+23], which satisfies the stronger security notion. The amKyber public 
keys are only 256 bits larger than those of mKyber and the ciphertexts are only twice larger, 
i.e. 8 times more compact than for Kyber. The algorithms of amKyber are built by adapting 
in a simple way the building blocks of mKyber: the IND-CPA secure encryption scheme and 
the FO transform. Therefore, amKyber is easy to implement given an mKyber implementation 
and security proofs and formal verification tools for mKyber can be adapted. 

Application: MLS and its variants. An immediate application of (post-quantum) 
mKEMs is to reduce the bandwidth cost of post-quantum deployments of secure group 
messaging such as the Messaging Layer Security (MLS) protocol (IETF RFC 9420 [BBR+23]). 
Minimizing bandwidth has been a primary design goal for MLS in the interest of scalability 
and supporting devices connected over low bandwidth networks (e.g. 2G cell phone networks). 
MLS was also designed specifically to make post-quantum secure deployments as easy as 
possible.1 

The MLS use case is particulary significant as MLS is proving to be an unexpectedly versatile 
tool with use cases already reaching well beyond its original domain of human-to-human 
secure messaging. MLS’s scalable key agreement functionality for dynamic groups means it 
will serve as a key component underpinning higher-level multi-party cryptographic protocols 
such as Group Private Set Intersection, Privacy Preserving Federated Learning and end-
to-end encrypted real-time voice/video communication. Its efficiency is also making it an 
attractive tool for IoT fleet command, control and coordination. 
We show that mKEMs can greatly improve the scalability of MLS. Events such as removal 
of users can affect the efficiency of (standard) MLS, and mKEMs provide a simple way 
to mitigate this. In addition, the flexibility of mKEMs allows to come up with optimized 
variants of MLS. See Section 4 for more details. 

Application: broadcast. The private broadcast functionality of mKEMs is a funda-
mental one. As such, post-quantum mKEMs have applications outside of MLS. For example, 
mKEMs allow for more efficient synchronization of fleets of (cloud based) Hardware Security 
Modules (HSMs). Such fleets underpin the security of major cloud providers. Privately syn-
chronizing secret states across HSM fleets is indispensable for ensuring reliable operations 
and preventing loss due to hardware failure. See Section 5 for more details. 

1For example, this consideration was an important driver for the MLS working group’s switch from the initial 
ART sub-protocol relying on Diffie-Hellman based Non-Interactive Key Agreement to the TreeKEM design, which 
instead made use of generic KEMs. 
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2 What is an mKEM? 

2.1 Syntax 

A multi-recipient key-encapsulation mechanism (mKEM) allows encapsulating a single key 
for multiple recipients. It consists of the following algorithms. 
Parameter Generation: mKEM.Setup() → pp returns a fresh public parameter pp. 
Key Generation: The key generation algorithm mKEM.Keygen(pp) → (ek, dk) takes as 

input a public parameter pp returns a fresh public/secret key pair (ek, dk). 
Encapsulation: The (multi-recipient) encapsulation algorithm mKEM.Encap(pp, (eki)i∈[N ]) → 

(ct⃗,K) takes in a sequence (of any length n > 0) of public keys and outputs a (multi-
recipient) ciphertext ct⃗ and an encapsulated key K. 

Extract: The deterministic algorithm mKEM.Ext(pp, i, ct⃗ ) → cti takes as input a position 
index i and a multi-recipient ciphertext ct⃗ and returns an individual ciphertext cti for 
the i-th recipient. 

Decapsulation: The decapsulation algorithm mKEM.Decaps(pp, dki, cti) → K/⊥ takes as 
input a secret key dki and an individual ciphertext cti. If decapsulation succeeds it 
returns the encapsulated key K (else ⊥). 

If the size of the individual ciphertext cti output by mKEM.Ext is independent of N , then 
we say that the mKEM is efficiently decomposable. 

2.2 Security 

We now define IND-CCA security for mKEMs, through what is a straightforward adaptation 
of the standard KEM security definition, with the difference that the adversary now gets 
challenged on a set of keys of its choosing, instead of a single public key. Our definition 
distinguishes between two different flavors, depending on whether (adaptive) corruptions by 
the adversary are allowed. Even though no specific attacks exploiting adaptive corruptions 
are known, the distinction is meaningful: known proof techniques for the weaker security 
notion fail when corruptions are allowed due to the so-called commitment problem. This is 
discussed further in Section 2.3. 

The security experiment is described in Fig. 1. Roughly, it illustrates a game between a 
challenger and a stateful adversary A that runs in two parts. The first one, A1, gets a list of 
N public keys of an mKEM, of which it selects a subset on which it wants to be challenged. 

∗Then, A2 is given a ciphertext vector ct⃗ and a key K∗ , and must decide whether K∗ is a 
∗ ∗random key, independent of ct⃗ , or ct⃗ is an encapsulation of K∗ under the subset of keys 

chosen by A1. In order to succeed, the adversary can make use of a state shared between both 
of its parts, as well as a decryption oracle, which allows it to query for decryptions of any 
ciphertext under any key, provided the query is not part of the challenge. For the stronger 
security notion where adaptive corruptions are allowed, A is additionally given access to a 
corruption oracle, which simply returns the secret key of the queried key-pair. Finally, the 
adversary wins if it guesses correctly without having corrupted any of the keys from the 
challenge set. 

Definition 1. Let mKEM be an mKEM scheme and N an integer. We say that mKEM is 
IND-CCA secure if, for all adversaries A running in polynomial time, 

Pr[ExpIND-CCA 
mKEM,N,1(A) → 1] − Pr[ExpIND-CCA 

mKEM,N,1(A) → 0] 

is negligible in the security parameter. 

2.3 Security with Adaptive Corruptions 

Adaptive corruptions allow an adversary to decide, on the fly, what to corrupt depending 
on its full view (e.g. including public parameters, keys and ciphertexts). This makes it a 
strong, yet realistic type of adversary which is why various regular KEM and PKE schemes 
have been the subject of security analyses in adaptive corruptions models. For example, 
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Alg. 1 Experiment ExpIND-CCA Alg. 2 Oracle Dec(i ∈ [N ], ct)
mKEM,N,b(A) 

1: if ct ∗ ≠ ⊥1: (A1, A2) ← A 
2: if ∃j i∗ = i ∧ ct = mKEM.Ext(pp, j, ct ∗)2: pp ← mKEM.Setup() j 
3: return ⊥3: for i ∈ [N ] do 
4: return mKEM.Decaps(pp, dki, ct)4: (eki, dki) ← mKEM.Keygen(pp) 

5: C ← ∅ 
6: ((i∗ ∈ [N ])j∈[n], st) ← A1 

O(pp, (eki)i∈[N ])j
∗ 

7: (ct⃗ ,K0 
∗) ← mKEM.Encap(pp, (eki∗ )j∈[n]) 

8: K1 
∗ ← {0, 1}κ 

j 

Alg. 3 Oracle Cor(i ∈ [N ]) 
∗ 

9: b ′ ← AO 
2 (st, ct⃗ ,Kb 

∗) 1: C ← C ∪ {i}
10: return b = b ′ ∧ {ij ∗ | j ∈ [n]} ∩ C = ∅ 2: return dki 

Figure 1: IND-CCA security experiments for mKEM. With (adaptive) corruptions 
(IND-CCAa-mu), the oracle set is O := {Dec, Cor}. Without corruptions (IND-CCAmu), 
the oracle set is O := {Dec}. 

their security is often analyzed in the multi-user setting, e.g. [BBM00, ABH+21]. Here, 
the IND-CCA adversary chooses which out of N (independently generated) key pairs to 
challenge. Thus we can define two multi-user security notions for an mKEM: the standard 
non-adaptive notion IND-CCAmu in which the adversary decides prior to receiving any inputs 
which keys it will corrupt and IND-CCAa-mu, the strictly stronger adaptive notion in which 
the adversary can decide on the fly as the execution progresses which (non-challenge) secret 
keys to corrupt.2 We depict both in Figure 1. 

Security proofs of mKEMs and KEMs typically consider IND-CCAmu, e.g. [BBM00, ABH+21, 
Kur02, BBS03, BBKS07, PPS14, KKPP20]. For Diffie-Hellman (DH) based schemes this 
allows proving tighter security bounds, i.e., the security loss of the reduction to the DH 
assumption does not depend on N , see e.g. in [ABH+21] (HPKE) or in [Kur02] (a DHIES-
based mKEM). Note that this affects the choice of concrete parameters for the scheme. The 
above proof techniques (which all use random self-reducibility) cannot be used to prove tight 
IND-CCAa-mu security. To the best of our knowledge, all reductions to date proving IND-
CCAa-mu of KEMs or mKEMs lose either the factor N (using the standard hybrid argument) 
or at least the number of corrupted keys [AHKM22]. 

For the case of mKyber we do not know of any proof of IND-CCAa-mu where the reduction 
has a non-exponential security loss in N (resulting from guessing the set of corrupted keys). 
We stress that, we believe it to be very unlikely that there is an actual attack on mKyber 
exploiting adaptivity in the multi-user setting. Instead, our current proof techniques do not 
work here for a technical (i.e. the so-called “commitment”) problem. It is possible that new 
proof techniques could be used in the future to prove IND-CCAa-mu of mKyber. 
We also note that in applications where key pairs live for very short time periods, which 
makes corruptions unlikely, IND-CCAmu can be sufficient. This is the case e.g. for TLS. In 
contrast, for applications like MLS we can expect keys to live for significantly longer periods 
of time, especially in large groups. 

3 Kyber-based mKEMs 

This section defines two mKEM constructions: mKyber in Section 3.1 and amKyber in Sec-
tion 3.2. The latter is secure with (adaptive) corruptions but slightly less efficient. We also 

2Outside this section we use the term IND-CCA to refer to either, for simplicity. Which one is meant will be 
clear from the context. 
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propose in Section 3.3 concrete parameters for mKyber and amKyber. Assuming there are 
many recipients, instantiating (a)mKyber with these parameters results in shorter ciphertexts 
over instantiating them with the parameters of Kyber (which would be secure, though). 

3.1 The mKyber Construction 

Simplifications. For conciseness, the description of Kyber in Fig. 2 is heavily simplified 
compared to the one in [SAB+22]. For example: 

• Some calls to hash functions or PRFs are omitted or merged together; 
• We assume that A is part of ek. For compactness, in practice ek instead contains a 

seed seedA, which can be extended to A by passing it into a XOF: A := XOF(seedA). 
• We simplify details relative to the bit representation of mathematical objects. We also 

omit transitions between the NTT representation and the coefficient representation. 

Making A part of the public parameters. In MLWE-based KEMs such as Kyber, 
the matrix A is different for each keypair. For mKyber, the matrix A is the same for all 
keypairs in order to enable the benefits of mKEMs. See also [KKPP20]. 

Syntax. As explained in (previous section), the syntax of mKEMs is different than for 
regular KEMs. The encapsulation procedure (Algorithm 7) now takes N encapsulation keys 
instead of one as in a regular KEM (Algorithm 6). 
Also note that for mKEMs, the encapsulation procedure outputs a multi-recipient ciphertext( )
ct⃗ := u, (vi)i∈[N ] , but a user with the decryption key dki only needs the partial ciphertext 
cti = (u, vi) as input to its decapsulation procedure (Algorithm 9). 

Decomposable CCA transform. Our mKEM construction is efficiently decompos-( )
able, allowing to convert a multi-recipient ciphertext ct⃗ := u, (vi)i∈[N ] of size O(N) into a 
single-recipient ciphertext cti = (u, vi) of size O(1), where u is independent of the encryption 
keys. Decomposability [KKPP20] can be exploited for further efficiency gains, see Section 4 
In order to achieve decomposability in a CCA setting, we also require a CCA transform 
with a decomposable flavor. To this effect, we replace the Fujisaki-Okamoto transform 
[FO13, HHK17] used in Kyber by a decomposable variant introduced in [KKPP20]. 

3.2 The amKyber Construction Secure with Adaptive Corruptions 

This section describes a variant of mKyber called amKyber, proposed in [AHK+23], which 
achieves the stronger adaptive security notion of IND-CCAa-mu defined in Figure 1. We 
describe amKyber in Figs. 3 and 4. 

Like mKyber (and Kyber), the amKyber mKEM is built by applying an FO transform to an 
underlying CPA secure mPKE (or PKE in the case of Kyber). As shown in [AHK+23], the FO 
transform preserves the (quantum and classic) adaptive security of the underlying mPKE 
resulting in an adaptively secure mKEM. Thus, en lieu of the mPKE underlying mKyber 
(which we shall call mKyberPKE), we use one called amKyberPKE which [AHK+23] shows to 
be an adaptively secure IND-CPA mPKE. amKyber is then obtained from amKyberPKE by 
applying the same FO as produces mKyber from mKyberPKE. 

In more detail, amKyberPKE adapts to the mPKE setting, the ideas of [GW09] for building 
adaptively-secure broadcast encryption. At a high level, amKyberPKE runs two parallel in-
stances of mKyberPKE. In particular, an amKyberPKE public key consists of two mKyberPKE 
public keys, bl (left) and br (right) but the corresponding amKyberPKE secret key contains 
just one of the two matching mKyberPKE secret keys. Which one is chosen privately and 
at random during key generation. As such, we can use an alternative public key generation 
method for the other key pair which does not produce the corresponding secret key but 
therefore allows for a more compact representation of the resulting amKyberPKE public key. 
Namely, rather than encoding the two mKyberPKE public keys explicitly as (bl, br), they 
are instead encoded as the (much shorter) pair (bl, seed) where seed is a string of 256 bits. 
Together they define the second public key to be br := HashToEk(seed) − bl where HashToEk 
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Alg. 4 Kyber.Keygen (pp) 

1: seed ← {0, 1}256 

← {0, 1}2562: seed ′ 

3: A, s, e := PRF(seed ′ ) ▷ A ∈ Rk×k 
q 

4: b := A · s + e ▷ b, s, e ∈ Rk 
q 

5: ek := (A, b) 
6: dk := (s, ek, seed) 
7: return ek, dk 

Alg. 6 Kyber.Encap (ek = b) 

1: msg ← {0, 1}256 

2: msg := H(msg) 
3: (K ′ , coin) := G(msg, H(ek)) 

′ ′′ 4: r, e , e := PRF(coin) 
′ ′ ∈ R1×k▷ u, r, e q5: u := r · A + e 

Alg. 8 Kyber.Decaps (dk, ct = (u, v)) 

1: (s, b, seed) ← dk 
2: u := Decompress(u, du) 
3: v := Decompress(v, dv) 
4: msg := Decode(v − u · s) 
5: (K ′ , coin) := G(msg, H(ek)) 

′ ′′ 6: r̄, ē , ē := PRF(coin) 

Alg. 5 mKyber.Keygen(pp ∋ A ) 

1: seed ← {0, 1}256 

← {0, 1}2562: seed ′ 

3: s, e := PRF(seed ′ ) 
4: b := A · s + e 
5: ek := b 
6: dk := (s, ek, seed) 
7: return ek, dk 

( )
Alg. 7 mKyber.Encap (eki = bi)i∈[N ] 

1: msg ← {0, 1}κ 

2: msg := H(msg) 
3: K ′ := H(msg) 
4: coin := G1(msg) 
5: r, e ′ := PRF1(coin) 

′′′ ′′ 6: v := r · b+e +Encode(msg) ▷ v, e ∈ Rq 6: u := r · A + e 
7: u := Compress(u, du) u := Compress(u, du)7: 

8: v := Compress(v, dv) 8: for i ∈ [N ] do 
9: return ct := (u, v),K := KDF(K ′ , ct) 9: coini := G2(eki, msg) 

10: e′′ i := PRF2(coini) 
11: vi := r · bi + e′′ i + Encode(msg) 
12: vi := Compress(vi, dv)( )
13: ct⃗ := u, (vi)i∈[N ] 

′ 14: return ct⃗,K := KDF(K , ct) 

( )
Alg. 9 mKyber.Decaps dki, cti = (u, vi) 

1: (si, bi, seedi) ← dk 
2: u := Decompress(u, du) 
3: vi := Decompress(vi, dv) 
4: msg := Decode(vi − u · si) 
5: K ′ := H(msg) 
6: coin := G1(msg)

R
e-

en
cr

yp
tio

n 

12: if ct̄ = ct 12: ū := Compress(ū, du) 
′ 13: return K := KDF(K , ct) 13: v̄i := Compress(v̄i, dv) 

14: else 14: ct̄ i := (ū, v̄i) 
15: return K := KDF(seed, ct) 15: if ct̄ i = cti 

16: return K := KDF(K ′ , cti) 
17: else 
18: return K := KDF(seedi, cti) 

R
e-

en
cr

yp
tio

n′ ′ 7: ū := r̄ · A + ē := PRF1(coin)7: r, e 
′′ v̄ := r̄ · b + e + Encode(msg) coini := G2(eki, msg)8: 8: 

e ′′ i := PRF2(coini) 
′ 

9: ū := Compress(ū, du) 9: 

u := r · A + ev̄ := Compress(v̄, dv) 10: 10: 
′′¯ vi := r · bi + ei + Encode(msg)ct := ū, ̄v 11: 11: 

Figure 2: Side-by-side comparison of Kyber (Algorithms 4, 6 and 8) and mKyber 
(Algorithms 5, 7 and 9). The main algorithmic differences are highlighted, and we 
discuss them in Section 3.1. 
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is a public hash function mapping seeds to public keys. To generate an amKyberPKE key 
pair first choose a uniform random seed. Next flip a fair coin and, depending on the outcome, 
generate either (dkl, bl) or (dkr, br) using mKyberPKE key generation algorithm. Finally, set 
remaining mKyberPKE public key such that bl := HashToEk(seed) − br. 

Alg. 10 amKyber.Keygen(pp = A) 

1: (ek ′ , dk ′ ) := mKyber.Keygen(pp) 
2: seed ← {0, 1}256 

3: swpEk ← {0, 1}
4: if swpEk = 1 
5: ek ′ := HashToEk(seed) − ek ′ 

6: return ek := (ek ′ , seed), dk := (dk ′ , swpEk, ek ′ , seed) 

( ) ( )
Alg. 11 mKyber.Encap (eki = bi)i∈[N ] Alg. 12 amKyber.Encap (eki)i∈[N ] 

1: msg ← {0, 1}κ 

2: msg := H(msg) 
′ 3: K := H(msg) 

4: (u, ∗) := CpaEncU(msg) 
5: for i ∈ [N ] do 
6: vi := CpaEncV(msg, eki, G2(msg, eki))( )
7: ct⃗ := u, (vi)i∈[N ] 

′ 8: return ct⃗,K := KDF(K , ct) 

1: msg ← {0, 1}κ 

2: msg := H(msg) 
K ′ 3: := H(msg) 

4: msgl, msg := G3(msg)r 
5: (ul, ∗) := CpaEncU(msgl) 
6: u := (ul, ur) 
7: (ur, ∗) := CpaEncU(msg )r 
8: for i ∈ [N ] do 
9: (bl, seed) := eki 

10: br := HashToEk(seed) − bl 

11: 

12: 

swpC := G4(msg, eki) ∈ {0, 1}
if swpC = 1 

13: (bl, br) ← (br, bl) 

14: vl := CpaEncV(msg, bl, G2(msgl, eki)) 
15: vr := CpaEncV(msg, br, G2(msg , eki))r 
16: vi := (vl, vr, swpC)( )
17: ct⃗ := u, (vi)i∈[N ] 

′ 18: return ct⃗,K := KDF(K , ct) ) 

Figure 3: Key generation of amKyber (Algorithm 10) as well as a side-by-side com-
parison of the encapsulation of mKyber (Algorithm 11) and amKyber (Algorithm 12). 
The main algorithmic differences are highlighted, and we discuss them in Section 3.2. 

To encrypt msg to multiple recipients, amKyberPKE also runs mKyberPKE’s encryption twice: 
It first generates two vectors u called ul and ur. Then, for each recipient, it flips a fair coin 
(using the random oracle on msg as required by the FO transform) to decide which of the 
recipient’s keys, bl or br, goes to the recipients left mKyber instance (i.e. with public key ul) 
and which goes to the right instance. To decrypt msg, the recipient in amKyberPKE runs 
mKyberPKE with the secret key it knows and the corresponding invocation indicated by the 
sender. 

Security. amKyber uses the same parameters as mKyber. The adaptive security proof of 
amKyber can be found in [KKPP20, AHK+23]. In particular, [KKPP20] proves mKyberPKE 
to be (non-adaptively) IND-CPA secure mPKE. Next, in [AHK+23] proves their transfor-
mation of mKyberPKE into amKyberPKE results in an adaptively IND-CPA secure mPKE. 
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( )
Alg. 13 mKyber.Decaps dki, cti = (u, vi) 

1: (si, bi, seedi, ek ′ ) ← dk 
2: u := Decompress(u, du) 
3: vi := Decompress(vi, dv) 
4: msg := Decode(vi − u · si) 

′ 5: K := H(msg) 
6: (ū, ∗) := CpaEncU(msg) 
7: v̄ := CpaEncV(msg, bi, G2(msg, eki)) 
8: ct̄ i := (ū, ̄v) 
9: if ct̄ i = cti 

′ 10: return K := KDF(K , cti) 
11: else 
12: return K := KDF(seedi, cti) 

Alg. 15 CpaEncU(msg) 
′ 1: r, e := PRF1(G1(msg)) 

′ 2: u := r · A + e 
3: u := Compress(u, du) 
4: return (u, r) 

Figure 4: Side-by-side comparison of decapsulation of mKyber (Algorithm 11) and 
amKyber (Algorithm 12). The main algorithmic differences are highlighted, and we 
discuss them in Section 3.2. 

( )
Alg. 14 amKyber.Decaps dki, cti = (u, vi) 

1: (dk ′ , swpEk, bl, seed) := dki 
2: br := HashToEk(seed) − bl 

3: (vl, vr, swpC) := vi 
4: (ul, ur) := ui 
5: eki := (bl, seed) 
6: if swpEk XOR swpC = 0 
7: side := l 
8: else 
9: side := r 

10: (s, b, seed) := dk ′ 

11: u := Decompress(uside , du) 
12: v := Decompress(vside , dv) 
13: msg := Decode(v − u · s) 
14: K ′ := H(msg) 
15: msgl, msg := G3(msg)r 
16: for side ∈ {l, r} do 
17: (ūside, ∗) := CpaEncU(msgside) 
18: coin := G2(msgside, eki) 
19: v̄side := CpaEncV(msg, bside, coin) 

20: swpC := G4(msg, eki) 
21: 

22: 

if (ūl, ̄vl, ̄ur, ̄vr, swpC) = (ul, vl, ur, vr, swpC) 
return K := KDF(K ′ , cti) 

23: else 
24: return K := KDF(seedi, cti) 

Alg. 16 CpaEncV(msg, eki = bi, coini) 

1: (∗, r) := CpaEncU(msg) 
′′ 2: ei := PRF2(coini) 

′′ 3: vi := r · bi + ei + Encode(msg) 
4: return vi := Compress(vi, dv) 
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The same paper also proves that the FO transform of [KKPP20] applied to amKyberPKE 
produces amKyber; an adaptively IND-CCAa-mu secure mKEM. We note that all of the above 
security statements hold both against classical and quantum adversaries. 
Together, these results provide strong evidence for the security of amKyber design. 

Efficiency. An amKyber public key has only 256 bits in addition to an mKyber public key. 
An amKyber ciphertext is twice larger than an mKyber ciphertext. Note that asymptotically, 
amKyber is still 8 times smaller than the sum of sizes of N Kyber ciphertexts. 

3.3 Parameters Selection 

In Table 1, we propose concrete mKyber parameters targeting the NIST security level I (at 
least as hard as key-recovery on AES-128). As discussed in Section 1, the parameters are 
largely similar to those of Kyber; we only tweaked the parameters (du, dv, |msg|), as it allows 
to greatly decrease the size of |v|. While Kyber and mKyber are largely similar, the mKEM 
setting impact both the efficiency analysis and the security analysis. We analyse both of 
them separately. 

Table 1: Parameter sets of Kyber512 and mKyber512. 

Parameters Sizes in bytes 
q n k η1 η2 du dv |msg| |ek| |u| |v| 

Kyber512 3329 256 2 3 2 10 4 32 800 640 128 
mKyber512 3329 256 2 3 2 11 3 16 768 704 48 

Efficiency. Let us note |x| the size in bytes of an object. In the KEM regime, it is of 
interest for most applications to minimize the ciphertext size |ct|, the encapsulation key 
size |ek|, or some linear combination of the two. In the mKEM regime, a multi-recipient ( )
ciphertext is of the form ct⃗ := u, (vi)i∈[N ] . Therefore there is a high incentive to minimize 
|vi|, since asymptotically |ct⃗ | ∼ N · |vi|. There are a few tricks we can use to minimize |vi|. 

1. Shorter msg. In Kyber, the message msg is 256 bits long across all parameter sets. 
However, if we note κ is the targeted bit-security level (i.e. κ ∈ {128, 192, 256} for the 
NIST level I, III, V), it suffices to take a message of κ bits. 

2. Coefficient dropping. When applying the previous idea, we only need to encode κ 
bits in a polynomial vi of 256 coefficients. We only need to send κ coefficients of vi 
instead of n coefficients. In effect, this divides |vi| by factor 256/κ, which is a factor 
two when κ = 128. 

3. Bit dropping. It is customary to apply bit dropping on u and v. This is parametrized 
by du and dv, which are the number of bits sent per coeffient of u and vi, respectively. 
The bitsize of vi is therefore κ · dv. 
Since our goal is to minimize |vi|, we reduce dv from 4 to 3. This increases the decryption 
failure rate (DFR), so we increase du from 10 to 11 in order to keep the DFR low. 

Putting these optimisations together, we manage to obtain |vi| = 48. 

Security. Both Kyber and mKyber rely on MLWE for the security of the encapsulation 
key. For the ciphertext, due to the simultaneous presence of additive noise and rounding 
(via Compress), they both rely on a hybrid between MLWE and MLWR which we will call ( )
MLWER. The major difference is that a mKyber multi-ciphertext ct⃗ := u, (vi)i∈[N ] contains 
a number of MLWER samples that is affine in N . This new parameter has varying impacts on 
the existing methods to solve MLWE, MLWR and MLWER. There are roughly three families 
of such methods: 

1. Lattices. Methods based on (primal or dual) lattice reduction are usually the most 
relevant for most parametrizations of lattice-based schemes. For these methods, having 
a large number of samples provide results little to no advantage. 
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2. Algebraic. Algebraic methods, such as Arora-Ge and its variants, rely on linearization. 
They require a large number of samples: (k · n)D, where D is the size of the support of 
the errors (both due to additive noise and to rounding). While the required number of 
samples is too large in the KEM regime, mKEM ciphertexts contain a large number of 
MLWER samples. The relevance of Arora-Ge therefore needs to be re-assessed. 
Fortunately, the ciphertexts in mKyber are very noisy. Indeed, each vi undergoes heavy 
bit dropping on each coefficient, see Table 1. This makes the required number of 
samples much larger than 2κ, which rules out the Arora-Ge attack in its current form. 

3. Combinatorial. Combinatorial methods, such as BKW, combine lattice attacks and 
guessing. Like Arora-Ge, BKW and its variants need a large number of samples and 
therefore need to be considered for mKyber. Fortunately, they are also very sensitive 
to the size of the errors’ supports. Due to the heavy rounding performed on the vi, 
BKW requires an intractable number of samples and is in effect inoperative against the 
parameters in Table 1. 

A fully detailed discussion on the security analysis of mKEMs against known attacks can be 
found in [HKP+21, Appendix G]. The insights and trade-offs discussed in this section are 
summarized in Table 2. 

Table 2: Impact of parameters on security and performance metrics. Terminology: 
↗ (resp. =, resp. ↘) indicates that increasing this parameter has a positive (resp. 
essentially neutral, resp. negative) impact on the considered metric. 

Communication cost Correctness Ciphertext security 
ek u Arora-Ge BKW Latticevi 

N = = = = ↘ ↘ = 
q ↘ = = ↗ = = ↘ 
n ↘ ↘ = ↘ ↗ ↗ ↗ 
k ↘ ↘ = ↘ ↗ ↗ ↗ 

= = = ↘ ↗ ↗ ↗η1 

= = = ↘ ↗ ↗ ↗η2 

= ↘ = ↘ ↗ ↗ ↗du 

= = ↘ ↘ ↗ ↗ ↗dv 

4 Application: MLS and its Variants 

MLS and TreeKEM. Messaging Layer Security (MLS), is a protocol for end-to-end 
security. MLS has been standardized by IETF under RFC 9420 [BBR+23] in March 2023, 
and enjoys the support of several industry actors (Google, Amazon, Cisco, etc.). 
The notion of continuous group key agreement (CGKA) was put forward to capture the 
notion of secure group management which lies at the core of secure group messaging and 
other protocols. The main function of a CGKA is to ensure the secure distribution of a 
shared key K inside a group of N users connected to an untrusted server. A CGKA must 
be able to support the addition or removal of users to the group, as well as properties such 
as forward secrecy and post-compromise security. 
Inside MLS, the sub-protocol TreeKEM3 performs the function of a CGKA. In TreeKEM, 
the N users inside a group are positioned at the leaves of a binary tree called the ratchet 
tree, see Fig. 5a. To each node i of the ratchet tree is associated an encapsulation keypair 
(eki, dki). The ratchet tree maintains the following tree invariant [BBR+23, §4.2]: 

(TI) “The private key for a node in the tree is known to a member of the group if and only 
if the node’s subtree contains that member’s leaf.” 

3While the term “TreeKEM” itself does not appear in the MLS RFC [BBR+23], it is implemented through 
the concept of “ratchet trees”. The term TreeKEM is commonly used as shorthand in research articles to refer to 
this particular part of MLS. We follow the same practice here. 
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A critical operation in MLS/TreeKEM consists of a user refreshing their cryptographic keys 
inside the ratchet tree. They do so via the following steps: 

1. Generate a node secret s0 for their leaf node; 
2. For each node i in their direct path, i.e. the path from their leaf node to the root, 

starting from the leaf node, use the node secret si as follows: 
(a) Pass si into a PRF to derive its parent node’s secret sparent(i) = si+1 (except when 

i is the root). 
(b) Pass si through a PRF with a different input than in Item 2a and use the output 

to derive a KEM key pair (eki, dki). 
(c) Compute a ciphertext cti encrypting si+1 under the encapsulation key of the sibling 

node of i using the KEM-DEM paradigm and concretely HPKE, defined in RFC 
9180 [BBLW22]. (Except for the leaf node) 

3. Broadcast a commit message containing all the (eki, cti) for i on the path of the user. 
One can show that this preserves the tree invariant (TI). This method enjoys great communi-
cation complexity; a commit message contains ⌈log N⌉ public keys and as many ciphertexts. 
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(b) TreeKEM after a user has been removed and 
their direct path blanked out. The three boxed 
ciphertexts encrypt the same value: the node secret 
of the root. 
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(c) m-ary TreeKEM [KKPP20], full ratchet tree (d) Chained CmPKE [HKP+21] 

Figure 5: Illustration of the refresh operation for four scenarii (involving three dis-
tinct CGKAs). In each scenario, the leftmost user refreshes their cryptographic keys 
by broadcasting a commit message. Each figure highlights the nodes for which the 
commit message contains a public key ( ) or a ciphertext ( ). When k ciphertexts 
encrypt the same message, they are regrouped in a same box ( ); when this is 
the case, we may use a mKEM multi-ciphertext instead of k KEM ciphertexts. 

Blanking. When a user j is removed from a group in TreeKEM, in order to preserve the 
tree invariant (TI), all the nodes in their path are blanked out, meaning that these nodes are 
now considered empty. A blank node becomes populated again if: (i) a user i refreshes their 
key by broadcasting a commit message and (ii) the user i has the blank node in their path. 
Note that, due to the tree invariant (TI), a user may not generate a node secret for a node 
that is not in their co-path. By blanking up to ⌈log N⌉ nodes, removing users may disrupt 
the topology of the ratchet tree. This is illustrated by Fig. 5b: the ninth user (from the left) 
has been removed from the group and their direct path blanked out. When the leftmost user 
sends a commit message, they now need to send 6 ciphertexts instead of 4, since the node 
secret of the root needs to be encrypted to 3 nodes instead of 1. In large groups, blank nodes 
can have a significant adverse effect on the efficiency of TreeKEM. 
Our first application of mKEMs is TreeKEM. When implemented with a mKEM instead of a 
KEM, the efficiency of TreeKEM is more resilient to topology changes provoked by removing 
users. For the example of Fig. 5b, switching from Kyber to mKyber decreases the (m)KEM-
related overhead from 12320 to 6176 bytes, a 50% improvement. 
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m-ary TreeKEM. A second application of mKEMs can be found by leveraging their 
flexibility to explore the design space of TreeKEM for better trade-offs. Indeed, instead of 
a binary tree, one could instantiate TreeKEM with an m-ary tree, for m > 2. An example 
is provided in Fig. 5c for m = 4. In a commit message for a full ratchet tree, this reduces 
the number of public keys to ⌈log N⌉ but increases the number of ciphertexts to (m −m 
1) ⌈log N⌉, so it’s far from obvious that it would be a good trade-off in general. m 
Fortunately, for each layer of the ratchet tree, the m−1 ciphertexts in this layer all encrypt the 
same message. This means these m − 1 KEM ciphertexts can be replaced by a single mKEM 
ciphertext for m − 1 recipients, which size may be much shorter in practice. For 16 users, 
switching from (binary) TreeKEM with Kyber to 4-ary TreeKEM with mKyber decreases the 
(m)KEM-related bandwidth overhead from 6272 to 3232 bytes. A more detailed presentation 
of m-ary TreeKEM is found in [KKPP20] 

Chained CmPKE. A final application of mKEMs can be found by taking the m-ary 
TreeKEM idea to the extreme: by setting m = N , we get a flat tree. This is the basis of the 
Chained CmPKE protocol, illustrated in Fig. 5d; for this example, the bandwidth overhead 
related to mKyber is 1472 + (N − 1) · 48 = 2192 bytes, a 65% gain compared to the standard 
TreeKEM with Kyber. 
Note that the bandwidth overhead is linear in N . Fortunately, we can also exploit the fact 
that mKyber is efficiently decomposable. The uploaded commit message contains a multi-
recipient ciphertext that is a N -uple (u, (vi)i), but each recipient only needs to download 
(u, vi) to decrypt the message. This allows further savings in the overall protocol. More 
details can be found in [HKP+21]. 

Table 3: Comparison of the bandwidth costs when using Kyber vs mKyber, for the 
four scenarii in Fig. 5. For clarity, these numbers ignore (m)KEM-independent values 
that may be included in the commit message4. 

Cost with Kyber Cost with mKyber 
Reference Description ek ct Overhead ek u vi Overhead 

Fig. 5a TreeKEM (full tree) 4 4 6272 4 4 4 6080 
Fig. 5b TreeKEM (blanked) 4 6 12320 4 4 6 6176 
Fig. 5c 4-ary TreeKEM 2 6 6208 2 2 6 3232 
Fig. 5d Chained CmPKE 1 15 7808 1 1 15 2192 

5 Application: Broadcast Scenario 

The broadcast scenario, in which one sender transmits the same keying material simulta-
neously to multiple receivers with authentic static public-keys (discussed within NIST SP 
800-56A-rev2) remains an important use-case for the cloud. In particular, this is the case 
for vendors that network a collection of hosts in a high-availability setting that require the 
synchronization of cryptographic state/keys across hosts. 
A common example of such an application is within a fleet of cloud Hardware Security 
Modules (HMSs) that provides a key management system to generate, manage and distribute 
key material for encryption and authentication of user data across cloud computing or large 
cluster environments. In order for the fleet to synchronize state across all other members, it 
must first establish a key transport mechanism. To achieve this, SP 800-56A-rev2 relaxes the 
prohibition against the reuse of an ephemeral Diffie-Hellman key pair in broadcast scenarios, 
such that the key transport sender can use the same ephemeral key pair when establishing 
key-wrapping keys with the multiple key-transport receivers. 
In such broadcast scenarios, key agreement is often performed by first collecting all static 
public-keys of members in the group (HSMs) into a public-key repository, which can then 

4In addition to the (m)KEM-related overhead, commit messages also contain additional data such as a signa-
ture, a hash, a constant-size header, etc. See [AHKM22, Figure 8] for an estimate. 
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be distributed among the fleet so that individual key exchanges can be performed by users 
as needed. As such, the asymmetric cryptography used in key establishment across large 
groups can bottleneck fleet performance, particularly in settings in which group members are 
dynamic and members are changing frequently, or in systems that rotate key establishment 
keys frequently for forward security requirements. Such issues are exacerbated further when 
considering the requirement for quantum-resistance. Post-quantum KEMs generally have 
much larger public keys and ciphertexts than their classical counter parts e.g., 800B for a 
Kyber512 public key vs. 33B for a (compressed) ECDH P-256 public key. 
Using an mKEM instead of a KEM mitigates this bottleneck in multiple ways. First, it dras-
tically decreases bandwidth and computation requirements from the sender, asymptotically 
16 times with mKyber instead of Kyber. Second, since the goal is to establish a single group 
key, the sender equipped with a regular KEM has to use the KEM-DEM paradigm to wrap 
the group key. On the other hand, an mKEM already produces a single key. This means 
that to send a key to N members with Kyber, the sender generates N Kyber ciphertexts 
and N symmetric encryptions, while with mKyber it generates one mKyber ciphertext and 
no symmetric encryptions. In other words, we take advantage of the fact that Kyber already 
consists of an underlying encryption scheme where we can choose the key to be the same. 
This reduces sender and receiver computation and bandwidth cost. 

6 Further reading 

Due to space constraints, this paper only gives a high-level view of mKEMs and their appli-
cations. We provide further references here. 

Classical mKEMs. The possibility of saving bandwidth when encrypting to multiple 
recipients has first been studied in [BBM00, Kur02, BBS03], via multi-recipient constructions 
based on El Gamal and Cramer-Shoup, which rely on classical assumptions. The term mKEM 
has been coined by Smart [Sma05] and studied further in works [HK07, BF07, MH13]. 

Post-quantum mKEMs. Comparatively, the study of post-quantum mKEMs is much 
more recent. A LPN-based construction was proposed in [CLQY18] but later proven in-
secure due in [KKPP20] to a misuse of the Fujisaki-Okamoto transform. The first secure 
constructions for post-quantum mKEMs have been proposed in [KKPP20] and further devel-
oped in [HKP+21, AHK+23]. These three papers propose multi-recipient adaptations of the 
LPR/Lindner-Peikert framework [LPR10, LP11], which underlied many of the candidates to 
the 2017 NIST PQC call: Kyber (future ML-KEM), FrodoKEM, Saber, etc.5 

Applications. The works of [KKPP20, HKP+21, AHKM22] apply mKEMs in the context 
of secure messaging, particularly the MLS protocol [BBR+23]. The present work proposes a 
natural application in the context of broadcast scenarios (Section 5), and we expect further 
applications to be found. 
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