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Introduction 

Traditional public-key algorithms such as RSA, ECDH, and ECDSA are vulnerable 
to polynomial-time quantum attacks via Shor’s algorithm [22]. It has been estimated 
that 2048-bit RSA could be broken in 8 hours on a device with 20 million physical 
qubits [11] and that 256-bit ECDSA could be broken in a day on a device with 
13 million physical qubits [23]. 

On the other hand, symmetric algorithms such as AES are believed to be im-
mune to Shor. In most cases, the best-known quantum key recovery attack uses 
Grover’s algorithm [14] which provides a generic square-root speed-up over classical 
exhaustion in terms of the number of queries to the symmetric algorithm. In other 
words, Grover would recover the 256-bit key for AES-256 with around 2128 quantum 
queries to AES compared to around 2256 classical queries for exhaustion. 

In theory, this means that Grover cuts the security of AES in half. However, 
considering only the query cost can be misleading as it neglects overheads from: 

‹ The cost of implementing the algorithm queried by Grover as a quantum 
circuit; 

‹ The cost of parallelising Grover so that a solution can be found in a reasonable 
amount of time; and 

‹ The cost of quantum error correction so that Grover succeeds with high enough 
probability. 

Previous work. The literature contains a range of estimates for the logical cost 
of quantum AES circuits under diferent optimisation targets; for example, Grassl 
et al. [13], Jaques et al. [16], and Jang et al. [15]. In their Call for Proposals [20], 
NIST provided estimates for the logical cost of Grover in terms of the total gate 
count when the quantum circuit was limited to a given maximum depth. Gheorghiu 
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and Mosca [10] computed estimates for the physical cost of Grover in terms of the 
number of error correction cycles needed when using surface codes. 

However, [10] does not fully consider the impact of Grover parallelisation on the 
physical cost. It contains graphs illustrating the physical cost per Grover instance as 
a function of the number of parallel instances and identifes the number of parallel 
instances needed to recover a key in a year under certain assumptions on hardware 
performance, but it is difcult to determine the total physical cost of parallel Grover. 
Indeed, the quantum security estimates for AES given in Table 1 of [10] are based 
on serial Grover. 

Further, the estimates in [20] and [10] both use the quantum AES circuits from 
[13] which chose to minimise the number of qubits. Unfortunately, Grover does 
not parallelise efciently: reducing the depth by a factor of S, for large S, requires 
S2 parallel instances. Consequently, [16] and [15] were able to improve on [13] by 
considering the cost in terms of (circuit depth) × (logical qubits) and minimising 
(circuit depth)2 × (logical qubits) instead. 

This work. Our paper is drawn from a larger document currently under develop-
ment in the ETSI Quantum Safe Cryptography group on the impact of quantum 
computers on symmetric cryptography. This aims to take existing results from the 
literature on efcient quantum circuits and well-studied quantum error correcting 
codes to estimate the physical resources required by Grover to break standardised 
block ciphers and hash functions in a reasonable amount of time. It also comple-
ments a previous ETSI QSC report [1] which made very conservative assumptions 
about algorithm implementations, quantum error correction, and quantum hard-
ware performance to conclude that 256-bit block ciphers and hash functions will 
remain secure against Grover. 

2 Implementing Grover 

2.1 The algorithm 

Grover’s quantum search algorithm gives an asymptotic square-root speed-up over 
classical algorithms for generic unstructured search problems in terms of the number 
of queries needed. It is asymptotically optimal for such problems [24]. 

Let f : X → {0, 1} be a function defned on a set X of size |X| = N . The 
unstructured search problem is to fnd an input value x ∈ X such that f(x) = 1, 
when f does not have any properties that allow the input set to be searched more 
efciently than simply evaluating the function on elements from X. If f(x) = 1 
for a unique x ∈ X, Grover will fnd x with overwhelming probability after around √ 
(π/4) N quantum queries to f . More generally, if f(x) = 1 for M values x ∈ X, 
where M is signifcantly smaller than N , then Grover will fnd one of the solutionsp
with overwhelming probability after (π/4) N/M quantum queries [3]. 

This set-up can be applied naturally to the key recovery problem for AES-128 
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where a matched pair of input plaintext, P , and output ciphertext, C, is known; 
that is, when Enc(K, P ) = C for an unknown key K. Let X = {0, 1}128 be the set 
of all possible key values and defne f : X → {0, 1} by � 

1 if Enc(x, P ) = C, 
f(x) = 

0 otherwise. 

Multiple matched input plaintext and output ciphertext pairs might be needed to 
uniquely determine the key: in this case, the function f will need to evaluate and 
compare all of these pairs. 

2.2 Oracle implementation 

Grover involves iterated queries to the oracle function f implemented as a quantum 
circuit. All quantum gates, and all quantum circuits, need to be reversible. While 
some fundamental classical gates, such as XOR, translate directly to fundamental 
quantum gates, others, such as AND, do not. Instead, the quantum analogue of 
the classical AND gate is the 3-qubit Tofoli gate, which is in turn constructed 
from 1- and 2-qubit gates. The set of fundamental quantum gates supported, and 
their relative costs, will depend on the underlying hardware and the quantum error 
correction scheme. Optimised implementations will need to be tailored to specifc 
platforms. 

The reversibility of quantum circuits also means that any qubits used for inter-
mediate calculations cannot simply by zeroed before re-use or the fnal measurement 
step; they need to be carefully uncomputed. This typically involves performing the 
inverse circuit which potentially adds further overhead to the implementation of the 
quantum oracle, both in the number of required qubits and the depth of the circuit. 

2.3 Parallelisation 

In classical search algorithms, the probability of success is directly proportional to 
the runtime of the algorithm: reducing the runtime by a factor of S reduces the 
probability of success by the same factor. Parallelising classical search by increasing 
the computational resources can reduce the time taken to fnd a solution without 
changing the total amount of work needed. √ 

The same is not true for Grover. It can search a space of size N with (π/4) N 
sequential iterations of the oracle function. Reducing the runtime of a single instance 
by a factor of S means reducing the number of oracle iterations by a factor of S 
which, for large S, will reduce the probability of success by a factor of S2 . Therefore, 
S2 quantum processors will be needed to cover the full search space. Overall costs, 
measured in (time taken) × (computation resources needed), have increased by a 
factor of S. That is, the total amount of work increases as more parallelisation is 
applied. 

There are two approaches for parallelising Grover: 
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‹ Outer parallelisation reduces the number of Grover iterations for each instance, 
reducing the probability of success of each individual instance and increasing 
the overall number of instances required to recover the solution with high 
enough probability. 

‹ Inner parallelisation partitions the search space and performs a separate smaller 
instance of Grover for each partition. 

One advantage of inner parallelisation is that it reduces the impact of spurious 
results (see section 4.3) since each instance recovers its own potential solution. If 
the work is partitioned in such a way that the correct key is in a diferent section of 
the search space from any spurious results, then it will still be recovered. 

2.4 Maximum depth 

During a single Grover instance, queries to the oracle function f are made sequen-
tially so the time taken to recover a solution depends on the circuit depth for Grover; 
that is, the maximum number of sequential operations. This can be estimated as 
the depth of the circuit for a single oracle query multiplied by the number of oracle 
iterations. 

In 2016, NIST suggested considering the following maximum circuit depths when 
assessing the complexity of a quantum attack: 

240 
‹ gates, which they claimed approximately corresponded to the number of 
gates that near-term quantum computing architectures could be expected to 
serially perform in one year; 

264 
‹ gates, which they claimed approximately corresponded to the number of 
gates that current classical computing architectures could perform serially in 
10 years; and 

296 
‹ gates, which they claimed approximately corresponded to the number of 
gates that atomic scale qubits with speed of light propagation times could 
perform in 1000 years. 

In Sections 2.5 and 2.6, we will discuss the overheads introduced by quantum 
error correction, and estimates for a single cycle time. Estimating a plausible cycle 
time of 200ns [9], we suggest also considering the following maximum circuit depths: 

248 
‹ , which is approximately the number of 200ns cycles that can be completed 
in two years; and 

256 
‹ , which is approximately the number of 200ns cycles that can be completed 
in 500 years. 
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The other practical reason for restricting the maximum circuit depth is that it 
is not possible to checkpoint and restart Grover in the same way as a long-running 
classical computation. If the computation is paused, the quantum state needs to 
be maintained for the duration of the pause. If the quantum state is lost, the 
computation needs to restart from the beginning. This places further constraints on 
the length of time that might be considered reasonable for a Grover run to complete: 
not just the length of time that an adversary is prepared to wait, but the length of 
time a quantum processor, and its classical supporting hardware, can be expected 
to run without a failure or requiring maintenance downtime. 

2.5 Quantum error correction 

It is important to distinguish between the logical qubits and quantum gates that 
are use to describe quantum algorithms and the physical qubits and quantum gates 
that are implemented in quantum hardware. 

Logical qubits are high-fdelity and long-lived. Physical qubits are inherently 
noisy and short-lived due to the difculty of isolating them from their external 
environment. Most quantum algorithms, including Grover, will require quantum 
error correction to construct individual logical qubits from groups of physical qubits. 
This is needed both for correcting errors when quantum gates are applied and also 
maintaining information stored in idle qubits. Longer quantum algorithms have 
more opportunities for an error to occur and so require stronger error correction to 
prevent this. 

Quantum error correction adds overheads to the implementation of quantum 
algorithms, both in the number of physical qubits required and in the time taken 
to apply logical gate operations. For a given error correction scheme to apply, the 
physical qubit coherence times and physical gate fdelities need to meet certain min-
imum thresholds. In any error correction scheme, there will be logical gates that 
are not compatible with the error correction and cannot be implemented directly 
on the logical qubits [7]. These logical gates require the use of high-accuracy quan-
tum states produced through a process called magic state distillation and can be 
substantially more expensive than other gates. 

2.6 Cycle time 

Error correction involves several rounds of quantum syndrome measurement, classi-
cal processing, and qubit correction. The reaction time of an error correcting code 
is the time taken to complete one such round. However, we will consider quantum 
operations in terms of the (measurement) cycle time which only covers the time 
needed for one round of syndrome measurements. In other words, we will neglect 
the classical processing and qubit correction. 

The exact cycle time will vary depending on the physical qubit and quantum gate 
performance achieved in the underlying hardware, and the error correction scheme 
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that is applied. For example, Google’s superconducting qubit platform Sycamore 
achieved a cycle time of around 1µs in 2022 [6], whereas Honeywell’s trapped ion 
qubit platform achieved a cycle time of around 200ms in 2021 [21]. 

Often, the cycle time is dominated by the qubit initialisation and measurement 
times. Current superconducting qubit technology can achieve 140ns initialisation 
and measurement gate times with an error rate slightly above 10−3 . Ion trap hard-
ware is slower with 50µs initialisation and 30µs measurement gates for a similar 
error rate. (For an overview of quantum computing progress, see [5].) 

We will follow [9] and take 200ns as a plausible cycle time. In comparison, the 
RSA [11] and ECDH [23] results assumed a 1µs cycle time, although the 8 hour 
claim in [11] was determined by the 10µs reaction time. The results in [10] used a 
140ns cycle time. 

Max. Cycle time 
depth 1µs 200ns 1ns 

240 12.7 days 2.55 days 18.3 mins 
248 8.92 years 1.78 years 3.26 days 
256 2,280 years 457 years 2.28 years 
264 585,000 years 117,000 years 585 years 

Table 1. Conversion between maximum depth and time. 

Although we are neglecting the classical processing involved in quantum error 
correction, this will have a non-trivial cost. Each logical qubit will require dedicated 
classical hardware capable of decoding the errors from the syndrome. Amy et al. [2] 
describe it as being comparable to a single block cipher or hash function call. To 
match a 200ns cycle time, this would correspond to a 640Mbps throughput. AES 
implementations ofering throughputs above 1Gbps have been available for may 
years (see [18] from 2007). 

3 Surface codes 

3.1 Overview 

When correcting errors in the classical realm, we might receive some noisy bits and 
then use redundant information encoded in the bits to detect and correct bit fips. 
A similar principle applies to quantum error correction, except that the space of 
possible errors is larger and measuring an entangled quantum state would destroy 
the information encoded therein. 

The surface code is an example of a quantum error correcting code which at-
tempts to overcome these problems. There are several variants, including the 
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Data Qubit 

Measurement Qubit 

X Stabiliser 

Z Stabiliser 

Figure 1: A surface code qubit with d = 5 

toric and planar surface codes. The planar surface code can be embedded in a 2-
dimensional space, making it easier to implement physically than some other codes. 
Logical qubits with a code distance of size d are built up from a square grid of 
d × d data qubits overlaid with d × d − 1 measurement qubits, for a total of 2d2 − 1 
physical qubits. Only nearest neighbour connections are required, which for most 
systems is an easier engineering requirement to satisfy than codes requiring non-local 
communication between physical qubits. 

The measurement qubits are repeatedly measured with so-called ‘stabiliser mea-
surements’, which determine whether a error has occurred in one or more of the 
surrounding data qubits. Two types of stabiliser measurement are tiled in a chess-
board pattern across the grid. By studying the pattern of measured values across 
all of the measurement qubits, we can establish which data qubits have errors, and 
what those errors are, and apply the necessary corrections. � �

d+1A grid of width d physical qubits should be able to detect and correct 2 
errors. If the base error rate in the physical qubits is too high, then adding more of 
them makes the error rate worse. Once the physical qubit error rate, pphy, reaches a 
minimum threshold value, pth, the error correction scales exponentially as the code 
distance increases: 

2 ⌋Plog = c (pphy/pth)⌊
d+1 

The threshold pth and scaling factor c depend on the error model and must be 
determined experimentally. We will use pth = 0.01 and c = 0.1, from [8]. The code 
distance is then determined by setting the maximum allowable error per logical 
qubit cycle, which is the allowable overall error divided by the number of logical 
qubit cycles required to complete a run, and fnding the minimum distance that 
achieves this rate. Each surface code cycle involves d2 − 1 stabiliser measurements 
for a single logical qubit and a complete round of error correction involves d surface 
code cycles. 
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3.2 Gate Operations 

Logical gate operations must also be carried out in an error-corrected fashion. Some 
logical gates, such as T-gates, cannot be executed directly on the logical qubits 
and must instead be performed by preparing a so-called ‘magic state’, which is 
then injected to efect the desired outcome on the calculation. The magic state is 
consumed during this process, so we must prepare one per operation. The quantum 
analogue of an AND gate, the Tofoli gate, can be decomposed into several T-gates, 
which can be applied using the following magic state: 

1 |m⟩ = √ (|0⟩ + eiπ/4|1⟩)
2 

This magic state must be prepared to a sufciently high degree of accuracy 
that it does not increase the overall error in the calculation beyond the allowable 
levels. For calculations involving NT T-gates, this means each magic state must be 
prepared with accuracy ∼ 1/NT . The NT values we will be targeting in this paper 
are signifcantly larger (1014 - 1031) than those estimated for quantum algorithms 
such as Shor for factorising RSA moduli (∼ 108 , see [11]). 

3.3 Magic State Distillation 

One approach to creating magic states with a sufcient level of accuracy is to ‘inject’ 
lower quality states and then ‘distill’ them by combining them to produce a single 
higher quality state. This process is known as magic state distillation, and will 
require additional quantum hardware alongside that being used to create the logical 
qubits for carrying out the calculation. Magic state distillation is expected to be 
a signifcant factor in the overheads of introducing error correction to quantum 
computing. 

Distillation is often envisaged in terms of m-to-n protocols, where m lower quality 
quantum states are combined to produce n higher quality states. We will use a 
simple 15-to-1 protocol frst described in [4] as the building block for the majority 
of our factory costing. Algorithm 4 in [2] explains how to derive the code distances 
for each distillation level. We also consider the optimised factories provided in [19] 
when no more than two levels are required. 

4 Logical cost of Grover 

4.1 Methodology 

For each of k = 128, 192 and 256 we will estimate the total number of logical qubits 
and the DW-cost, the total number logical qubit-cycles, for AES-k key recovery 
using Grover. 
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Oracle implementation. Each iteration of Grover involves computing the AES 
circuit, performing the ciphertext comparison, uncomputing AES, and then applying 
the Grover difusion operator. If the AES circuit has depth DAES with WAES logical 
qubits then, naively, this suggests a circuit of depth at least 2DAES with at least 
WAES + 1 logical qubits. However, optimising the circuit can reduce the depth 
signifcantly; compare, for example, Tables 3 and 8 in [16]. Consequently, we will 
assume that one iteration corresponds to a circuit of depth DAES using WAES logical 
qubits. 

Parallelisation. For a given maximum circuit depth, Dmax, the maximum number 
of Grover iterations per instance is Dmax/DAES. We will assume that all parallelisa-
tion is achieved by multiple quantum computers rather than multiple repeated runs 
on the same computer. Unless the depth is bounded by error correction limits, it is 
always benefcial to perform a longer single Grover run than multiple shorter runs, 
due to parallelisation overheads. 

If Dmax/DAES ≥ (π/4)2k/2 , then no parallelisation will be required since taking 
the number of Grove iterations to be Niter = (π/4)2k/2 for a single instance S = 1 
will almost certainly succeed. Otherwise, we set Niter = Dmax/DAES and choose the 
number of parallel instances, S, such that �π � 2k/2 

Niter = √ . 
4 S 

Logical cost. The total number of logical qubits over the S parallel instances will 
be Wtot = SWAES and the total depth of each instance will be Dtot = NiterDAES. 
The total cost in logical qubit-cycles is therefore Ctot = DtotWtot. 

In the case where no parallelisation is required this gives 

Ctot = 
�π � 

2k/2DAESWAES,
4 

so the total cost is minimised, for a fxed k, by minimising DAESWAES. Otherwise, �π �2 2kD2 WAES
Ctot = AES ,

4 Dmax 

which is minimised, for fxed k and Dmax, by minimising D2 
AESWAES. 

4.2 AES implementation 

There are a variety of AES implementations for quantum architectures available in 
the literature. Unfortunately, not every source provides resource estimate for key 
lengths of 192 and 256 bits, and often the full depth of the circuit is not reported. 
Table 2 compares the costs of quantum AES circuits from [13] and three variants 
from [15]. It is clear that, although [13] requires fewer logical qubits, the variants 
from [15] incur signifcantly lower overheads. We will use the parameters highlighted 
in bold. 
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Circuit 
depth 

Logical 
qubits 

Serial 
overhead 

Parallel 
overhead 

Ref. 

k DAES WAES DAESWAES D2 
AESWAES 

128 

110,799 
1,090 
731 
667 

984 
2,896 
3,428 
4,708 

226.7 

221.6 

221.3 

221.6 

243.5 

231.7 

230.8 

231.0 

[13] 
[15] 
[15] 
[15] 

192 

96,956 
1,294 
874 
797 

1,112 
3,216 
3,748 
5,284 

226.7 

222.0 

221.6 

222.0 

243.2 

232.3 

231.4 

231.6 

[13] 
[15] 
[15] 
[15] 

256 

130,929 
1,516 
1,025 
934 

1,336 
3,536 
4,036 
5,828 

227.4 

222.4 

222.0 

222.4 

244.4 

232.9 

232.0 

232.2 

[13] 
[15] 
[15] 
[15] 

Table 2. AES quantum circuit costs. 

4.3 Solution Uniqueness 

AES uses 128-bit message blocks for all key lengths. This means that a single 
matched plaintext-ciphertext pair will not be sufcient to uniquely determine the 
correct key, even for AES-128. 

We assume that any potential solutions recovered from a Grover run can be 
tested against a large number of plaintext-ciphertext pairs to identify the correct 
key. Parallelisation therefore means that it is sufcient to limit the probability of a 
spurious key falling in the same subset as the correct key below a desired bound. 

As we are trying to minimise the value D2 W , multiple plaintext-ciphertext AES 
pairs should be compared via simultaneous rather than sequential quantum imple-
mentations of AES. That is, for r matched pairs, we increase the width of the oracle 
by a factor of r, rather than increase the depth by the same factor. 

It is shown in [16] that for a k-bit key, an n-bit message block, r matched 
plaintext-ciphertext pairs and a parallelisation factor of S, the probability of a spu-
rious key falling in the correct key’s subset is approximately 

−2k−rn/S1 − e 

< 296 296Setting r = 1 for maximum depth Dmax , and r = 2 for Dmax = is 
sufcient to reduce this probability below 10−5 . With no bound on the maximum 
depth, we need r = 2 for AES-128 and AES-192, and r = 3 for AES-256. 
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4.4 Logical qubit-cycle costs 

Table 3 shows the signifcant overheads that come from the parallelisation required 
when the maximum depth of a single Grover instance is restricted. Near-term 
quantum architectures will be closest in performance to the smaller Dmax = 40 
or 48 values. These give logical qubit-cycle costs that are only 10-20 bits below the 
classical security levels and require unrealistic numbers of logical qubits. 

Grover 
iterations 

Parallel 
instances 

Logical 
depth 

Logical 
qubits 

Logical 
cost 

k Dmax r Niter S Dtot Wtot Ctot 

128 

240 

248 

256 

264 

– 

1 
1 
1 
1 
2 

230.5 

238.5 

246.5 

254.5 

263.7 

266.3 

250.3 

234.3 

218.3 

1 

240.0 

248.0 

256.0 

264.0 

273.2 

278.1 

262.1 

246.1 

230.1 

212.7 

2118.1 

2110.1 

2102.1 

294.1 

285.9 

192 

240 

248 

256 

264 

296 

– 

1 
1 
1 
1 
2 
2 

230.2 

238.2 

246.2 

254.2 

286.2 

295.7 

2130.8 

2114.8 

298.8 

282.8 

218.8 

1 

240.0 

248.0 

256.0 

264.0 

296.0 

2105.4 

2142.7 

2126.7 

2110.7 

294.7 

231.7 

212.9 

2182.7 

2174.7 

2166.7 

2158.7 

2127.7 

2118.3 

256 

240 

248 

256 

264 

296 

– 

1 
1 
1 
1 
2 
3 

230.0 

238.0 

246.0 

254.0 

286.0 

2127.7 

2195.3 

2179.3 

2163.3 

2147.3 

283.3 

1 

240.0 

248.0 

256.0 

264.0 

296.0 

2137.7 

2207.3 

2191.3 

2175.3 

2159.3 

296.3 

213.6 

2247.3 

2239.3 

2231.3 

2223.3 

2192.3 

2151.2 

Table 3. AES key recovery cost in logical qubit-cycles. 

The overhead from the quantum AES circuit is linear in the number of logical 
qubits and quadratic in the depth. Reducing the number of logical qubits directly 
reduces the logical qubit-cycle cost by the same factor. Reducing the depth of the 
AES circuit, on the other hand, allows better parallelisation and so has a more 
pronounced impact on the logical qubit-cycle cost. However, our chosen quantum 
AES circuit has already been optimised for the relevant measure AES W , andD2 

Table 2 shows that any reduction in DAES or WAES can be more than ofset by an 
increase in the other. While further improvements are certainly possible, returns 
are necessarily bounded by the inherent complexity of AES. 

11 



5 Surface code cost of Grover 

5.1 Methodology 

For each of k = 128, 192, and 256, we will estimate the total number of physical 
qubits and surface code cycles required to apply Grover to AES-k. We will begin 
by estimating the physical cost of the computational qubits; that is, excluding state 
distillation; and then separately consider the costs of distillation using either the 
simple approach from [4] or the optimised approach from [19]. 

Physical error rates. When deriving costs under a quantum error correction 
scheme, assumptions must be made about the potential error rate of physical qubits 
and quantum gates. For simplicity, we will assume a physical error rate, pphy, that 
is the same for qubits and all quantum gates. 

We will take pphy = 10−4 as an optimistic estimate of near-term physical error 
rates and pphy = 10−6 as a signifcant, but still plausible, improvement. For com-
parison, superconducting qubits can already achieve initialisation and quantum gate 
error rates around 10−3 and ion trap qubits can have 1-qubit gate error rates below 
10−4 (see [5]). 

Success probability. When choosing the surface code distance or distillation 
strategy, it will not be possible to eliminate errors completely. Instead, we will aim 
for a success probability of at least 0.5 for each independent Grover instance. Note 
that we only need the instance corresponding to the correct key to succeed with 
high enough probability. It is not necessary to have a combined success probability 
of 0.5 over all instances. 

AES implementation. We reuse the same quantum AES circuits from [15] as in 
Section 4. 

k DAES WAES T-depth T-count 

128 
192 
256 

731 
874 
1,025 

3,428 
3,748 
4,036 

160 
192 
224 

86,660 
98,000 
122,024 

Table 4. AES quantum circuit T-cost. 

The trade-ofs between T-depth, T-count, overall depth and width are less clear 
for calculations of the surface code costs, so it is possible that other implementations 
would lead to lower fnal values. However, we continue with the same implementa-
tion to provide a direct comparison of the overheads added by this error correction 
scheme. 
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5.2 Computational qubits 

Surface code distance. Error correction for a single logical qubit using a surface 
code of distance d takes 2d2 − 1 physical qubits and d surface code cycles. This 
means that the computational logical qubits for a single Grover iteration will require 
(2d2 − 1)WAES physical qubits and dDAES cycles. For an odd distance d and a 
physical error rate of pphy, the error rate per logical qubit is 

Plog(d) = 0.1(pphy/0.01)
(d+1)/2 . 

For a given maximum circuit depth, Dmax, the maximum number of Grover 
iterations per instance is now Niter = Dmax/dDAES but, assuming that some paral-
lelisation will be necessary, the total number of surface code cycles per instance is 
still DmaxWAES. We want the combined probability that one of logical qubits fails 
to be less than 0.5 per instance so we pick the smallest distance d such that 

(1 − Plog(d))
DmaxWAES > 0.5. 

Parallelisation. The number of parallel Grover instances S will be such that �π � 2k/2 

Niter = √ . 
4 S 

For the computational qubits, this gives a total physical qubit count of 

Wtot = (2d2 − 1)SWAES 

and a surface code cycle cost of �π �2 2kD2 
AESWAES 

= d2Ctot = WtotDtot . 
4 Dmax 

This implies that the overhead of error correction for the computational qubits is 
quadratic in the surface code distance. 

Results. Table 5 contains physical resource estimates for the computational qubits 
with pphy = 10−4 or 10−6 . 

5.3 Bravyi-Kitaev distillation 

We will use the 15-to-1 state distillation protocol from [4] and adapt the approach 
to fnding the distillation distances from [2] as follows. For details, see [2]. 

State injection. The state injection error rate in [2] was set to be pinj = 10pphy 

based on the argument that at least 10 gates need to be applied before any error 
correction can occur. More recent post-selection techniques can achieve state injec-
tion error rates close to or below pphy. We will instead set pinj = (34/15)pphy since 
we are assuming the same physical error rate for all gates [17]. 

13 



k Dmax pphy d 
Grover 

iterations 
Parallel 
instances 

Physical 
qubits 

Surface 
code cycles 

240 10−4 

10−6 
13 
7 

226.8 

227.7 
273.7 

271.9 
293.9 

290.3 
2125.5 

2123.7 

248 10−4 

10−6 
15 
9 

234.6 

235.3 
258.1 

256.7 
278.7 

275.8 
2117.9 

2116.4 

128 
256 10−4 

10−6 
19 
9 

242.2 

243.3 
242.8 

240.7 
264.1 

259.8 
2110.6 

2108.4 

264 10−4 

10−6 
21 
11 

250.1 

251.0 
227.1 

225.2 
248.6 

244.9 
2102.9 

2101.0 

10−4 25 263.7 1 223.0 290.6 
– 

10−6 13 263.7 1 221.1 289.6 

240 10−4 

10−6 
13 
7 

226.5 

227.4 
2138.2 

2136.5 
2158.5 

2155.0 
2190.1 

2188.3 

248 10−4 

10−6 
17 
9 

234.1 

235.1 
2123.0 

2121.2 
2144.1 

2140.4 
2182.9 

2181.1 

192 
256 10−4 

10−6 
19 
9 

242.0 

243.1 
2107.3 

2105.2 
2128.7 

2124.4 
2175.2 

2173.1 

264 10−4 

10−6 
21 
11 

249.8 

250.8 
291.6 

289.8 
2113.3 

2109.6 
2167.5 

2165.6 

296 10−4 

10−6 
31 
15 

281.3 

282.3 
228.8 

226.7 
252.5 

248.3 
2137.6 

2135.5 

240 10−4 

10−6 
13 
7 

226.3 

227.2 
2202.7 

2200.9 
2223.1 

2219.5 
2254.7 

2252.9 

248 10−4 

10−6 
17 
9 

233.9 

234.8 
2187.5 

2185.6 
2208.6 

2205.0 
2247.5 

2245.6 

256 
256 10−4 

10−6 
19 
9 

241.8 

242.8 
2171.8 

2169.6 
2193.3 

2189.0 
2239.8 

2237.6 

264 10−4 

10−6 
21 
11 

249.6 

250.5 
2156.1 

2154.2 
2177.9 

2174.1 
2232.1 

2230.2 

296 10−4 

10−6 
31 
15 

281.0 

282.1 
293.2 

291.1 
2117.1 

2112.9 
2202.2 

2200.1 

Table 5. Physical cost excluding state distillation in surface code cycles. 
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dx 

dx 

dx 

ancilla 

dx dz dz dz dz 

ancilla 

Figure 2: Confguration of the (15-to-1)dx,dz,dm distillation factory 

Error reduction. We also use the refned analysis from [19] that shows each round 
3of 15-to-1 distillation can give a reduced error rate of p2 = 35(8/27)p1 instead of 

3p2 = 35p1. Combined with the improved state injection, this means that we can 
avoid three-level state distillation for Dmax = 264 and below. 

Scaled costs. For ℓ-level distillation with distances d1 < · · · < dℓ, the distillation 
process takes 10(d1 + · · · + dℓ) cycles and the total number of logical qubits required 
for the distillation factory is 16 · 15ℓ−1 + · · · + 16. 

Litinski [19] notes that the logical qubits in each level of distillation correspond to 
surface codes with diferent distances. In particular, the logical qubits with distance 
d1 will be less expensive than the logical qubits with distance dℓ. Consequently, we 
follow [19] and, when computing our surface code cycle costs, scale the cost of the 
surface code cycle of distance di by (di/d)2 , where d is the distance for the surface 
code used by the computational qubits. 

Results. Table 6 gives parameters and costs for the simple 15-to-1 distillation 
factories. In factories requiring 3 levels of distillation, it may be possible to pipeline 
the process of T-state generation, meaning that each factory can be used to generate 
more than one T-state at a time. This lowers the number of factories required by 
the same factor. 

5.4 Litinski distillation 

Litinski [19] has proposed a more efcient 15-to-1 distillation process that uses an 
alternative to state injection and adjusts the size of the qubits in the confguration 
depending on their use. Figure 2 illustrates the confguration for a (15-to-1)dx,dz,dm 

factory which uses 2(dx + 4dz)3dx + 4dm physical qubits and takes 6dm cycles. 
We used the associated Mathematica notebook to compute the physical resource 

requirements and error rates for one- and two-level factories. Unfortunately, three-
level factories were not considered in [19] which meant that we were unable to apply 

= 296the approach to Dmax . 

Results. Table 7 gives parameters and costs for Litinski’s distillation factories. 
Table 8 gives physical qubit counts and scaled cycle costs for both approaches. 
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k Dmax pphy d 
Factory 
distances 

Factory 
pipeline 

Phys. 
qubits 

Cycle 
depth 

Fact. per 
instance 

240 10−4 

10−6 
13 
7 

[9, 17] 
[9] 

1 
1 

215.5 

211.3 
28.0 

26.5 
211.2 

210.6 

248 10−4 

10−6 
15 
9 

[9, 19] 
[5, 9] 

1 
1 

215.6 

213.8 
28.1 

27.1 
211.1 

210.8 

128 
256 10−4 

10−6 
19 
9 

[9, 21] 
[5, 11] 

1 
1 

215.7 

213.9 
28.2 

27.3 
210.9 

211.0 

264 10−4 

10−6 
21 
11 

[11, 25] 
[5, 13] 

1 
1 

216.2 

214.1 
28.5 

27.5 
211.0 

210.9 

296 10−4 

10−6 
25 
13 

[13, 29] 
[5, 13] 

1 
1 

216.7 

214.1 
28.7 

27.5 
211.0 

210.7 

240 10−4 

10−6 
13 
7 

[9, 17] 
[9] 

1 
1 

215.5 

211.3 
28.0 

26.5 
211.1 

210.5 

248 10−4 

10−6 
17 
9 

[9, 19] 
[5, 9] 

1 
1 

215.6 

213.8 
28.1 

27.1 
210.9 

210.8 

192 
256 10−4 

10−6 
19 
9 

[9, 21] 
[5, 11] 

1 
1 

215.7 

213.9 
28.2 

27.3 
210.8 

211.0 

264 10−4 

10−6 
21 
11 

[11, 25] 
[5, 13] 

1 
1 

216.2 

214.1 
28.5 

27.5 
210.9 

210.8 

296 10−4 

10−6 
31 
15 

[7, 15, 33] 
[7, 17] 

3 
1 

218.9 

215.0 
29.1 

27.9 
29.4 

210.8 

240 10−4 

10−6 
13 
7 

[9, 17] 
[9] 

1 
1 

215.5 

211.3 
28.0 

26.5 
211.2 

210.6 

248 10−4 

10−6 
17 
9 

[9, 19] 
[5, 9] 

1 
1 

215.6 

213.8 
28.1 

27.1 
210.9 

210.9 

256 
256 10−4 

10−6 
19 
9 

[9, 21] 
[5, 11] 

1 
1 

215.7 

213.9 
28.2 

27.3 
210.9 

211.0 

264 10−4 

10−6 
21 
11 

[11, 25] 
[5, 13] 

1 
1 

216.2 

214.1 
28.5 

27.5 
211.0 

210.9 

296 10−4 

10−6 
31 
15 

[7, 15, 33] 
[7, 17] 

3 
1 

218.9 

215.0 
29.1 

27.9 
29.5 

210.9 

Table 6. Physical cost of 15-to-1 state distillation using Bravyi-Kitaev [4]. 
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k Dmax pphy d 
Factory 

parameters 
Phys. 
qubits 

Cycle 
depth 

Fact. per 
instance 

240 10−4 

10−6 

13 

7 

(15-to-1)6 
5,3,3 × (15-to-1)15,7,7 

(15-to-1)7,3,3 

213.8 

210.7 

26.2 

24.2 

29.4 

28.3 

128 
248 10−4 

10−6 

15 

9 

(15-to-1)6 
7,3,3 × (15-to-1)17,7,7 

(15-to-1)9,3,3 

214.2 

211.2 

26.1 

24.2 

29.1 

27.9 

256 10−4 

10−6 

19 

9 

(15-to-1)6 
7,3,3 × (15-to-1)19,7,7 

(15-to-1)6 
3,3,3 × (15-to-1)9,3,3 

214.3 

212.5 

26.1 

25.8 

28.8 

29.5 

264 10−4 

10−6 

21 

11 

(15-to-1)6 
7,3,3 × (15-to-1)21,9,9 

(15-to-1)6 
5,3,3 × (15-to-1)11,5,5 

214.6 

213.3 

26.6 

25.9 

29.1 

29.3 

240 10−4 

10−6 

13 

7 

(15-to-1)6 
5,3,3 × (15-to-1)15,7,7 

(15-to-1)7,3,3 

213.8 

210.7 

26.2 

24.2 

29.3 

28.2 

192 
248 10−4 

10−6 

17 

9 

(15-to-1)6 
7,3,3 × (15-to-1)17,7,7 

(15-to-1)9,3,3 

214.2 

211.2 

26.1 

24.2 

28.9 

27.8 

256 10−4 

10−6 

19 

9 

(15-to-1)6 
7,3,3 × (15-to-1)19,7,7 

(15-to-1)6 
3,3,3 × (15-to-1)9,3,3 

214.3 

212.5 

26.1 

25.8 

28.7 

29.5 

264 10−4 

10−6 

21 

11 

(15-to-1)6 
7,3,3 × (15-to-1)21,9,9 

(15-to-1)6 
5,3,3 × (15-to-1)11,5,5 

214.6 

213.3 

26.6 

25.9 

29.0 

29.3 

240 10−4 

10−6 

13 

7 

(15-to-1)6 
5,3,3 × (15-to-1)15,7,7 

(15-to-1)7,3,3 

213.8 

210.7 

26.2 

24.2 

29.4 

28.3 

256 
248 10−4 

10−6 

17 

9 

(15-to-1)6 
7,3,3 × (15-to-1)17,7,7 

(15-to-1)9,3,3 

214.2 

211.2 

26.1 

24.2 

28.9 

27.9 

256 10−4 

10−6 

19 

9 

(15-to-1)6 
7,3,3 × (15-to-1)19,7,7 

(15-to-1)6 
3,3,3 × (15-to-1)9,3,3 

214.3 

212.5 

26.1 

25.8 

28.8 

29.5 

264 10−4 

10−6 

21 

11 

(15-to-1)6 
7,3,3 × (15-to-1)21,9,9 

(15-to-1)6 
5,3,3 × (15-to-1)11,5,5 

214.6 

213.3 

26.6 

25.9 

29.1 

29.3 

Table 7. Physical cost of 15-to-1 state distillation using Litinski [19]. 
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Bravyi-Kitaev Litinski 

k Dmax pphy 
Phys. 
qubits 

Scaled 
cost 

Succ. 
prob. 

Phys. 
qubits 

Scaled 
cost 

Succ. 
prob. 

240 10−4 

10−6 
2100.5 

294.0 
2132.1 

2127.4 
0.74 
0.99 

297.1 

291.6 
2128.7 

2125.0 
0.71 
0.99 

248 10−4 

10−6 
284.9 

281.4 
2124.1 

2122.0 
0.50 
0.97 

281.7 

276.7 
2120.9 

2117.4 
0.51 
0.96 

128 
256 10−4 

10−6 
269.4 

265.7 
2115.9 

2114.3 
0.90 
0.97 

266.3 

262.9 
2112.8 

2111.5 
0.87 
0.86 

264 10−4 

10−6 
254.4 

250.3 
2108.6 

2106.3 
0.97 
1.00 

251.1 

248.1 
2105.3 

2104.2 
0.58 
1.00 

227.7 295.210−4 0.96 – – – 
296 

224.8 293.310−6 0.85 – – – 

240 10−4 

10−6 
2164.9 

2158.4 
2196.5 

2191.8 
0.72 
0.99 

2161.6 

2156.1 
2193.2 

2189.5 
0.69 
0.99 

248 10−4 

10−6 
2149.5 

2145.8 
2188.3 

2186.4 
0.96 
0.97 

2146.4 

2141.3 
2185.2 

2181.9 
0.97 
0.96 

192 
256 10−4 

10−6 
2133.9 

2130.1 
2180.4 

2178.8 
0.90 
0.97 

2130.7 

2127.3 
2177.3 

2176.0 
0.87 
0.86 

264 10−4 

10−6 
2118.8 

2114.7 
2173.0 

2170.8 
0.97 
1.00 

2115.5 

2112.6 
2169.7 

2168.6 
0.60 
1.00 

257.1 2143.710−4 0.90 – – – 
296 

252.5 2139.710−6 0.98 – – – 

240 10−4 

10−6 
2229.5 

2223.0 
2261.1 

2256.4 
0.70 
0.99 

2226.1 

2220.7 
2257.7 

2254.1 
0.67 
0.99 

248 10−4 

10−6 
2214.1 

2210.3 
2252.9 

2251.0 
0.96 
0.97 

2211.0 

2205.8 
2249.8 

2246.5 
0.97 
0.96 

256 
256 10−4 

10−6 
2198.4 

2194.7 
2244.9 

2243.3 
0.90 
0.97 

2195.3 

2191.9 
2241.8 

2240.5 
0.87 
0.85 

264 10−4 

10−6 
2183.4 

2179.3 
2237.6 

2235.3 
0.97 
1.00 

2180.1 

2177.1 
2234.3 

2233.2 
0.58 
1.00 

2121.6 2208.310−4 0.90 – – – 
296 

2117.0 2204.210−6 0.98 – – – 

Table 8. Total physical qubit and scaled cycle costs. 
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5.5 Discussion 

Although it is not possible to give an explicit formula for the scaled cycle cost of 
Grover when state distillation is included, it is clear from the estimates provided 
in Table 8 that with Litinski’s state distillation techniques, the error correction 
overhead is between 6 – 10 bits depending on whether one- or two-level distillation 
is needed. This seems largely independent of the key size and maximum circuit 
depth. Moreover, state distillation only accounts for 2 – 3 bits of the overhead 
with two-level distillation and is comparable to the rest of the error corrected cost 
(Table 5) for one-level distillation. 

Dmax pphy AES-128 AES-192 AES-256 

240 2128.7 2193.2 2257.710−4 

248 2120.9 2185.2 2249.810−4 

Table 9. Summary of near-term scaled cycle costs. 

We have not attempted to optimise over all possible quantum AES circuits, 
parallelisation options, surface code choices, and state distillation parameters so 
it is conceivable that our estimates can be improved. Nevertheless, for near-term 
assumptions on maximum circuit depth and physical error rates, the error corrected 
costs of Grover appear close to the classical security levels. 

There are several other factors that could also reduce the costs presented here, 
which we will briefy discuss. 

Reduced cycle times. As discussed in section 2.6, the underlying physical qubit 
technology has a signifcant impact on the currently achievable cycle time. We chose 
200ns as a plausible estimate for the cycle time on near-term hardware, but current 
error correction experiments are at least an order of magnitude slower than this. 

Lowering the cycle time further would increase the maximum circuit depth pos-
sible in a fxed length of time which reduces the overhead from parallelisation. How-
ever, even reaching a maximum circuit depth of 264 seems difcult. As discussed in 
section 2.6, each round of error correction requires a cheap but non-trivial classical 
calculation. 

Improved physical error rates. We have presented values for physical error rates 
of 10−4 and 10−6 . The former of these is sometimes achieved by current systems, 
whereas the latter is as yet out of reach. 

Lowering this further would provide a modest reduction in the quantum error 
correction overheads, but will need to be done in tandem with reducing the cycle 
time for the full beneft to be realised. This may be difcult to achieve depend-
ing on the underlying physics: for example, reducing the measurement time of a 
superconducting qubit can lead to reduced precision in the output. 
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Lower density codes. Quantum error correction is an active area of research and 
there are already quantum error correction codes that allow higher throughput rates; 
i.e., use fewer physical qubits for the equivalent error correction properties. These 
codes often come with implementation considerations that we have not discussed or 
costed here, such as non-local connectivity between physical qubits. 

Gidney et al. [12] have recently reported an improvement to the surface code 
using ‘yokes’. These yoked surface codes have the same requirements on the under-
lying physical qubits and lead to lower physical qubit costs by a factor of 2–3 when 
targeting ∼ 108 logical qubit operations. The results are not easily extended to the 
much larger operation counts studied in this work, but the benefts of yoking appear 
to increase as the targeted logical error rate decreases. 

Conclusions 

This paper explores the impact of the overheads of implementing Grover under 
a realistic costing framework for near term quantum processors. While there are 
several promising avenues for improvements to the fnal costs presented, the path 
to achieving these improvements is by no means straightforward. 

The potential arrival of cryptographically relevant quantum computers will pre-
sent a realistic threat to traditional public-key algorithms, and the early steps of the 
necessary post-quantum migration eforts are under way. There is a commonly cited 
rule of thumb that ‘the existence of Grover implies symmetric key lengths should be 
doubled’. While individual use cases will need to carry out their own cost-beneft 
analysis to the threat of key compromise, the estimates presented here suggest that, 
even for AES-128, the practical security impact of Grover with existing techniques 
on plausible near-term quantum hardware is limited. 
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