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Abstract 

The use of MPC-in-the-Head (MPCitH)-based zero-
knowledge proofs of knowledge (ZKPoK) to prove 
knowledge of a preimage of a one-way function 
(OWF) is a popular approach towards constructing 
efcient post-quantum digital signatures. Starting 
with the Picnic signature scheme, many optimized 
MPCitH signatures using a variety of (candidate) 
OWFs have been proposed. Recently, Baum et al. 
(CRYPTO 2023) showed a fundamental improvement 
to MPCitH, called VOLE-in-the-Head (VOLEitH), 
which can generically reduce the signature size by 
at least a factor of two without decreasing computa-
tional performance or introducing new assumptions. 
Based on this, they designed the FAEST signature 
which uses AES as the underlying OWF. However, 
in comparison to MPCitH, the behavior of VOLEitH 
when using other OWFs is still unexplored. 
In this work, we improve a crucial building block of 
the VOLEitH and MPCitH approaches, the so-called 
all-but-one vector commitment, thus decreasing the 
signature size of VOLEitH and MPCitH signature 
schemes. Moreover, by introducing a small Proof 
of Work into the signing procedure, we can improve 
the parameters of VOLEitH (further decreasing sig-
nature size) without compromising the computational 
performance of the scheme. Based on these optimiza-

tions, we propose three VOLEitH signature schemes 
FAESTER, KuMQuat, and MandaRain based on 
AES, MQ, and Rain, respectively. We carefully ex-
plore the parameter space for these schemes and 
implement each, showcasing their performance with 
benchmarks. Our experiments show that these three 
signature schemes outperform MPCitH-based com-
petitors that use comparable OWFs, in terms of both 
signature size and signing/verifcation time. 

1 Introduction 

The threat of quantum computing has forced cryp-
tographers to develop digital signatures based on 
new, supposedly quantum-resistant, hardness as-
sumptions. In order to standardize these new sig-
nature schemes, NIST started its frst post-quantum 

1(PQ) signature standardization process in 2017, 
where SPHINCS+ [15, 6], Dilithium [31] and FAL-
CON [44] were standardized. With two out of three 
standardizations relying on hard lattice problems for 
their security, NIST deemed it necessary to seek addi-
tional candidates for standardization whose security 
is based on a more diverse set of hardness assump-

1https://csrc.nist.gov/Projects/post-

quantum-cryptography/post-quantum-cryptography-

standardization/Call-for-Proposals. 
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tions2 . 

Signatures from Zero-Knowledge Proofs. A 
well-known technique to build a digital signature 
scheme is to compile a (public-coin, honest-verifer) 
zero-knowledge (ZK) proof of knowledge, used in an 
identifcation protocol, with the Fiat-Shamir trans-
formation (FS). In particular, a zero-knowledge proof 
of knowledge (ZKPoK) for an NP relation R is an 
interactive protocol that allows the prover to prove 
knowledge of a witness w for a statement x such that 
(x, w) ∈ R, without revealing any further informa-
tion. In the context of signature (and identifcation) 
schemes, this is a proof of knowledge of a secret key 
k such that y = Fk(x), for a given one-way function 
(OWF) Fk(·). 
A powerful and efcient technique to build such ZK 
proofs for arbitrary NP relations is the MPC-in-the-
Head (MPCitH) framework due to Ishai et al. [37]. 
However, a signifcant limitation of many MPCitH-
based proofs lies in their proof size which scales lin-
early with the size of the circuit representation of 
the statement being proven. Nevertheless, MPCitH 
is particularly efective with small to medium-sized 
circuits and leads to efcient post-quantum signature 
schemes. These schemes are either based solely on 
symmetric primitives, such as AES [27, 28, 10, 30, 38] 
and other MPC-friendly one-way functions (OWFs) 
like LowMC [4], Rain [30], and AIM [40], or well-
studied computational hardness assumptions, includ-
ing syndrome decoding [35, 3, 5], the multivariate 
quadratic problem (MQ)[14, 43], the permuted kernel 
problem [1], and the Legendre PRF [17]. This second 
approach typically results in a more communication-
efcient scheme. 

VOLE-ZK and FAEST. In 2018, Boyle et al. [22] 
proposed a new class of prover-efcient (linear com-
plexity) and scalable ZK proofs, which use commit-
and-prove protocols instantiated using vector obliv-
ious linear evaluation (VOLE) correlations. Follow-
up works [22, 23, 53, 49, 29, 51, 12, 50, 9] reduced 
the constants of the linear proof size, surpassing 
MPCitH schemes in terms of efciency, in particular 
when dealing with very large circuits. Compared to 
MPCitH schemes, the above VOLE-ZK protocols are 
limited to the designated-verifer setting only. How-
ever, recent work by Baum et al. [8] reconciles the 
advantages of both worlds, resulting in VOLE-ZK 
proofs that are publicly verifable. To achieve this, 
they introduce a technique called VOLE-in-the-Head 
(VOLEitH) which bears a surprising resemblance 
to MPCitH-based protocols. Based on VOLEitH, 

2https://csrc.nist.gov/Projects/pqc-dig-sig/ 
standardization. 

they proposed the FAEST [7] post-quantum signa-
ture scheme. 
Similarly to MPCitH signature schemes like Ban-
quet [10], BBQ [27], and Helium [38], FAEST relies on 
AES [2] as its OWF. However, FAEST outperforms 
MPCitH-based signatures, by having signatures at 
least twice as small and with similar or better sign-
ing and verifcation times. This makes the VOLEitH-
based FAEST as performant as the most optimized 
MPCitH-based schemes [38], while relying on a very 
conservative OWF. At the same time, VOLEitH is a 
relatively new concept, and it remained unexplored 
to what extent VOLEitH-based signatures can ben-
eft from selecting diferent OWFs, such as Rain or 
random multivariate quadratic maps. 

1.1 Our Contributions 

We now give an overview of our contributions. 

Improved Batch Vector Commitments. 
VOLE-in-the-head signatures such as those based on 
MPC-in-the-head, use multiple GGM-based [36] all-
but-one vector commitment schemes to generate cor-
related randomness for the ZK proofs. These vector 
commitments are then opened at random challenge 
points as part of the proof, incurring a decommit-
ment size of log(N) · λ bits per vector commitment 
that must be sent during the opening phase (where 
N is the length of the vector and λ is the security 
parameter). These openings are a substantial part of 
the setup cost of the ZK proof. We provide a new 
abstraction, called batch all-but-one vector commit-
ment (BAVC) schemes, which captures how multi-
ple vector commitments are used in VOLEitH and 
MPCitH. We observe that, to instantiate the BAVC 
abstraction more efciently, one can interleave mul-
tiple vector commitments which drastically reduces 
the opening size. This batching requires the signer to 
perform rejection sampling when selecting the points 
to open, reducing the entropy of the challenge space 
somewhat. While it might seem that this makes the 
scheme less secure, one can prove that security is ac-
tually preserved: since each rejection sampling step 
requires the prover to perform a hash function call, 
we can consider rejection sampling as a proof of work 
done during each signing operation. Any attacker 
must also perform this proof of work to generate a 
valid signature. We believe that this technique is of 
independent interest. 

FAESTER. This rejection sampling / proof of 
work idea can be pushed further, using a technique 
known as “grinding” [18, 48]. Proof systems naturally 
have a tradeof between signature size, computation, 
and security, and reducing the security can lead to 
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(a) Signing time - Signature Size trade-of, L1 security. (b) Verifcation time - Signature Size trade-of, L1 security. 

Figure 1: Signature size and runtime trade-of comparison between the proposed signature schemes with FAEST and 
FAEST-EM. The slow and fast versions are denoted with s and f respectively. 

signifcant improvements in both signature size and 
computational efciency. We do this by further re-
ducing the entropy of the challenge space so that 
some part of the opening process does not even need 
to be considered. This makes the VOLEitH proof 
itself slightly less secure, but the overall signature 
scheme retains the same security level due to the ad-
ditional proof of work caused by increased rejection 
probability. It might seem that this trade-of will nat-
urally lead to longer signing times, but the opposite 
can actually be the case: reducing the challenge en-
tropy signifcantly reduces the other signing costs, so 
the scheme is optimized by fnding a balance between 
the costs of the proof of work and those of the rest of 
the scheme. We applied BAVC and grinding to the 
FAEST signature scheme, leading to a new digital sig-
nature with a signature size of 4KB (an improvement 
over all signature schemes using AES OWF) while 
maintaining or improving upon the signing and veri-
fcation time of FAEST. We name this new improved 
signature scheme FAESTER. 

MandaRain & KuMQuat. AES-based OWFs 
beneft from decades of public scrutiny. However, 
AES was not designed for use-cases such as VOLEitH 
which leaves open the possibility that other OWFs 
may result in faster signing and verifcation times, 
and smaller signature sizes. We survey suitable can-
didate PRFs, ranging from various recent specialized 
designs in symmetric cryptography [40, 4, 30, 34, 32, 
45] to various instances of the MQ problem [14]. We 
select the Rain [30] and MQ [14] PRFs, from which 
we construct the new MandaRain and KuMQuat sig-
nature schemes using our new commitment optimiza-
tion. These signature schemes have a signature size 

as small as 2.6KB, lowest among all VOLEitH and 
MPCitH-based signature schemes. An overview of 
our results can be seen in Figure 1. 

FAEST-d7: Higher-Degree Constraints for 
AES. We also present a new method of proving 
AES in VOLE-ZK proof systems, using degree-7 con-
straints over F2. Compared with the degree-2 con-
straints over F28 used in the original FAEST, we halve 
the witness size in the ZK proof, while also avoid-
ing the need for a reduced key space and rejection 
sampling during key generation. Although proving 
higher-degree constraints does come with some extra 
costs, we show that signature sizes can be up to 5% 
smaller in FAEST-d7. We have not yet implemented 
this variant, but expect signing and verifcation times 
to be similar to FAEST. As a contribution of inde-
pendent interest, we optimize the method for prov-
ing high-degree constraints in the QuickSilver proof 
system [52], greatly improving the efciency of the 
prover. 

VOLEitH Parameter Exploration. We system-
atically investigate the parameter set within the 
VOLEitH paradigm for constructing a signature 
scheme, providing insights into the efects of difer-
ent parameters, including those introduced in this 
work. These insights contribute to further improve-
ments and trade-ofs. 
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2 Preliminaries the linear layer has a much smaller impact on the 

2.1 One-Way Functions 

MPCitH and VOLEitH signatures are based on prov-
ing knowledge of the preimage to a OWF.3 In many 
recent signature schemes like Picnic and FAEST, 
OWFs are built from a block cipher, according to 
the following construction. 

Construction 1. A one-way-function F(k, x) can be 
constructed using a block cipher Ek(x) by setting F(k, 
x) := (x, Ek(x)), where Ek(x) denotes the encryption 
of x under the key k. The OWF relation is defned 
as ((x, y), k) ∈ R ⇔ Ek(x) = y. 

2.1.1 The Rain OWF 

Dobraunig et al. presented a block cipher called 
Rain [30] with a small number of non-linear con-
straints, designed to optimize the signature size and 
time when used as a OWF in MPCitH based sig-
nature schemes.4 The resulting signature scheme, 
Rainier [30], was the frst MPCitH signature scheme 
with less than 5 KB of signature size. 
Below we describe the Rain round function and we 
refer to Figure 2 for a graphical overview of Rain with 
3 rounds. 
The Rain keyed permutation fk(x) : Fλ → Fλ is de-2 2 
fned by the concatenation of a small number r of 
round functions Ri, i ∈ [r], i.e. fk(x) = Rr ◦ · · · ◦ R2 ◦ 
R1(x). Each Ri, i ∈ [r], is in turn defned as ( 

Mi · S(x + k + ci) i ∈ [1..r)
Ri(x) = 

k + S(x + k + cr) i = r. 

Here, S : F2λ → F2λ is the feld inversion function 
over F2λ (mapping 0 to 0), ci ∈ Fλ is a round con-2 

∈ Fλ×λstant, k ∈ Fλ the secret key and Mi an in-2 2 
vertible matrix. 

k ⊕ c1 k ⊕ c2 k ⊕ c3 k 

x−1 M1 x−1 M2 x−1 

Figure 2: The Rain encryption function with r = 3 rounds. 
Mi denotes the multiplication with an unstructured in-
vertible matrix over F2 in the i-th round. 

In the VOLEitH setting, similar to MPCitH schemes, 

3See Appendix A.1 for defnitions. 
4Rain is not a typical block cipher like AES, but rather 

specifcally designed for MPCitH use cases, where it requires 
that an adversary has access to only one plaintext-ciphertext 
(pt-ct) pair per secret key. When constructing signature 
schemes, this condition is easily satisfed as pk contains the 
only pt-ct pair known to an adversary. 

performance in comparison to the non-linear layer. 
Thus to improve difusion, the authors of Rain de-
cided to use diferent rounds constants ci and linear 
matrices Mi for each round. Rain comes in two set-
tings, namely Rain-3 with 3 rounds and Rain-4 with 
(more conservative) 4 rounds. Despite detailed crypt-
analysis carried out by the authors, the best known 
attacks [42, 54] extend only to two rounds. 

2.1.2 Multivariate Quadratic (MQ) OWF 

One can also build a OWF from the well-known Mul-
tivariate Quadratic problem. 

Defnition 1. (Multivariate Quadratic Problem). 
Let Fq be a fnite feld and MQn,m,q be the set of mul-
tivariate maps over Fq with n variables and m com-
ponents of the form {xT · Ai · x + bT · x}i∈[m], wherei 

∈ Fn×n , are randomly sampled upper triangularAi q 
matrices and bi ∈ Fn are uniformly sampled vectors. q 
Given F ∈ MQn,m,q and y = (y1, . . . , ym) ∈ Fm , theq 
MQ problem asks to fnd x such that F (x) = y, i.e.� � 

T · x + bTyi := x · Ai · x .i i∈[m] 

The MQ problem has been extensively used in cryp-
tography and used to build both trapdoor [41, 16] 
and one-way signature schemes [47, 14]. We con-
struct the one-way function Ex(seed) = y from the 
MQ problem, where seed is the input to a pseudo-
random generator G such that A1, . . . , Am, b1, . . . , 
bm ← G(seed). Therefore, when constructing a 
one-way signature scheme from the MQ problem, (x, 
seed) becomes the sk and (y,seed) becomes the pk 
(similar to MQOM [14]). 

2.2 VOLEitH Signatures 

We now give an overview of the VOLEitH framework 
as the ZK-proof system underlying FAEST. 
A vector oblivious linear evaluation (VOLE) correla-
tion of length m is a two-party correlation between a 
y 
prover P and a verifer V defned by a random global 
key ∆ ∈ F2k , a set of random bits ui ∈ F2, a ran-
dom VOLE tag vi ∈ F2k and VOLE keys qi ∈ F2k 

such that qi = ui · ∆ − vi, i = 0, . . . ,m − 1. P ob-
tains ui, vi while V obtains ∆, qi. The correlations 
commit P to the ui’s as linearly homomorphic com-
mitments, allowing efcient proof systems (see [11] 
for an overview). One of the main drawbacks of such 
VOLE-based ZK schemes is that of being inherently 
designated verifer since the verifer V needs to know 
its part of the VOLE correlation to verify the proof, 
which has to remain secret from the prover for the 
proof to be sound. 
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Using VOLEitH, Baum et al. realized a delayed 
VOLE functionality that allows the prover to gener-
ate values ui, vi of VOLE correlations independently 
of ∆, qi and to generate them later instead. This 
delayed VOLE functionality can in turn be realized 
from vector commitments (VCs). The main steps of 
the interactive ZK proof can be computed as before, 
and only after these, in the last stage of the proto-
col, the verifer will choose and send to the prover the 
random value ∆ of the correlation. At this point, P 
will open the homomorphic commitments and send 
to V information which allows it to reconstruct the 
qis in the VOLE correlations, check the openings and 
thus the proof. This guarantees public verifability, 
as the fnal VOLE correlation is defned by the ran-
dom value ∆ chosen as the last step of the proof by 
the verifer, after all other proof messages have been 
fxed. Concretely, to obtain the desired soundness, it 
is necessary to run τ instances of VOLEitH such that 
τ · k = λ. The main steps of the resulting ZK proof 
using the VOLEitH technique are depicted in Figure 
3. 
We give a more detailed introduction to the VOLE-
in-the-Head approach in Appendix A. 

Improving Batch Vector 
Commitments 

In this section, we present our result on batch vec-
tor commitments (VCs) in the random oracle (RO) 
model. We start by providing a formal defnition 
of a batch all-but-one vector commitment scheme 
(BAVC) with abort in the opening phase. This can 
used in FAEST, and more generally in VOLEitH-
based protocols, as well as in most of the known 
MPC-in-the-head schemes. By making the proper-
ties of the used GGM-based instantiation explicit, we 
manage to achieve an optimized construction that re-
sults in shorter signatures. 
Informally, a batch all-but-one vector commitment 
scheme (BAVC) is a two-phase protocol between two 
PPT machines, a sender and a receiver . In the frst 
phase, called the commitment phase, the sender com-
mits to multiple vectors of messages while keeping 
them secret; in the second phase, the decommitment 
phase, all but one of the entries of each vector are 
opened. The vectors may have diferent lengths. We 
require the binding and hiding properties of regular 
commitments, and additionally also that the mes-
sages at the unopened indices remain hidden, even 
after opening all other indices of each committed vec-
tor. In addition, we do not allow the sender to choose 
the messages, which instead are just random elements 

from the message space M. This defnition captures 
how vector commitments are used in MPC-in-the-
head or VOLE-in-the-head constructions. 
Let τ be the number of vectors, and let the α-th vec-
tor have length Nα for α ∈ [τ ]. We will denote by 
iτ the index of vector τ that remains unopened and 
by I the vector (i1, . . . , iτ ) comprising all the indices 
that remain unopened. 

Defnition 2 (BAVC). Let H be a random oracle. 
A (non-interactive) batch all-but-one vector commit-
ment scheme BAVC (with message space M) in the 
RO model is defned by the following PPT algo-
rithms, where all of them have access to a RO, and 
obtain the security parameter 1λ as well as τ, N1, . . . , 
Nτ as input: 

(α) (α)
Commit() → (com, decom, (m , . . . ,m )α∈[τ ]):1 Nα 

output a commitment com with opening infor-
(α) (α)

mation decom for messages (m , . . . ,m )α∈[τ ]1 N 
∈ MN1+···+Nτ . 

Open(decom, I) → decomI ∨ ⊥: On input an opening 
decom and the index vector I ⊂ [N1]×· · ·× [Nτ ], 
output ⊥ or an opening decomI for I. 

(α)
Verify(com, decomI , I) →((m )j∈[Nα]\{iα})α∈[τ ] ∨ ⊥:j 

Given a commitment com, an opening decomI , 
for an index vector I, as well as the index vector 

(α)
I, either output all messages (mj )j∈[Nα]\{iα}
(accept the opening) or ⊥ (reject the opening). 

We now defne correctness for the commitment 
scheme. We allow the sender to potentially abort for 
certain choices of I during Open. Note that this does 
not pose any problem if the abort probability is low, 
as aborts only happen during signature generation. 

Defnition 3 (Correctness with aborts). BAVC is 
correct with aborts if for all I ⊂ [N1] × · · · × [Nτ ], 
the following outputs True 

(com, decom,M) ← Commit() 

∀ decomI ← Open(decom, I) 

output decomI = ⊥ ∨ Verify(com, decomI , I) = M 

with all but a negligible probability, where M = 
(α) (α)

(m , . . . ,m 1 N )α∈[τ ]. 

Informally, we say that a commitment scheme is 
extractable-binding if there exists an extractor Ext 
such that for any commitment opening, the extracted 
message is equal to the opened message. More for-
mally, we have the following defnition. 

Defnition 4 (Extractable-Binding). Let BAVC be 
defned as above in the RO-model with RO H. Let 
Ext be a PPT algorithm such that 
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Prover P (1) Create random VCs; (2) Expand to small Verifer V 
VOLEs; (3) Combine to big VOLE 

Random challenge 

VOLE Consistency proof 

Random challenge 

QuickSilver amortized proof 
Verify: 

∆ 

Open VCs 

• QuickSilver ZK proof 

Figure 3: Main steps of the VOLEitH-based Zero-Knowledge proof in FAEST 

• VC openings 

• VOLE consistency check 

- Ext(Q, com) → ((m(α)
)j∈[Nα])α∈[τ ], i.e., given aj 

set Q of query-response pairs of random ora-
cle queries, and a commitment com, Ext out-
puts the committed messages. (Ext may output 

(α)
m = ⊥, e.g. if committed value at this indexj 
is invalid.) 

For any τ, Nα = poly(λ), defne the straightline 
extractable-binding game for BAVC and stateful ad-
versary AH with oracle access to the random oracle 
H as follows: 

1. com ← AH (1λ) 

(α) (α)
2. ((m , . . . ,m )α∈[τ ]) ← Ext(Q, com), where Q1 N 
is the set {(xi, H(xi))} of query-response pairs 
of queries A made to H. 

(α)
3. (((m )j∈[Nα]\{iα})α∈[τ ], decomI , I) ←AH (com).j 

4. Output 1 (success) if: 
Verify(com, decomI , I) = 

(α)
((mj )j∈[Nα]\{iα})α∈[τ ], 

(α) (α)
but m ̸= m for some α ∈ [τ ], j ∈ [Nα]\{iα}.j j 
Else output 0 (failure). 

We say BAVC is straightline extractable w.r.t. Ext if 
any PPT adversary A has a negligible probability of 
winning the extractable binding game. We denote 
the advantage, i.e. probability to win, by AdvEBBAVC .A 

We defne the n-hiding real-or-random game where 
0 < n ≤ τ . Here, the attacker has to guess if claimed 
committed values for the frst n commitments at the 
hidden index are correct or not. We allow for a pa-
rameter n to permit hybrids in security proofs. 

Defnition 5 (Hiding (real-or-random)). Let BAVC 
be a vector commitment scheme in the RO-model 
with random oracle H. The selective hiding exper-
iment for BAVC with τ, Nα = poly(λ), parameter n 
and stateful A is defned as follows. 

1. b ← {0, 1} 

2. I ← AH (1λ , com), where I ∈ [N1] × · · · × [Nτ ]. 

(α) (α)
3. (com, decom, (m , . . . ,m )α∈[τ ]) ← Commit()1 N 

4. decomI ← Open(decom, I) 

(α) (α)
5. m ← m for j ∈ [Nα] \ {iα}, α ∈ [τ ].j j ( 

random from M if b = 0 ∧ α ≤ n(α)
6. Set m ←iα (α)

m otherwiseiα 

7. b ← A((m(α)
)j∈[Nα ], decomi).j 

8. Output 1 (success) if: b = b, else 0 (failure). 

The advantage AdvSelHideBAVC of an adversary A isA,i 

defned by Pr [A wins and n = i] − 1 in the hiding2 
experiment. We say BAVC is selectively hiding if ev-
ery PPT adversary A has a negligible advantage of 
winning AdvSelHideBAVC 

A,i 

Note that the GGM-based VC scheme of [8] can be 
defned using our defnitions as well. We show this in 
Appendix B. 

3.1 Using BAVC in FAEST 

We now describe how to integrate the previous BAVC 
defnition in FAEST in a black-box way, using rejec-
tion sampling to handle aborts and a proof-of-work 
optimization to reduce the number and length of the 
vectors. 
FAEST, as described in [8], uses a GGM-based VC 
scheme to replace a specifed number τ of oblivious 
transfers (OTs) in OT-based zero-knowledge proofs. 
This is achieved through a compilation step that 
transforms these proofs into publicly verifable ones. 
To be more specifc, the compiler treats all OTs 
as a single functionality, where the sender and the 
receiver simultaneously query all τ OT instances. 
Consequently, by syntactically substituting their VC 
scheme with Defnition 2, the compiled protocol will 
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still correctly sign whenever Open does not output ⊥. 
We will now address this and demonstrate how our 
modifcations to Open, as well as our security defni-
tions, ft into their framework. 

Handling aborts. During the FAEST signing al-
gorithm, the sequence of indices I ∈ [N1] × · · ·× [Nτ ] 
for opening the batch all-but-one vector commitment 
are derived from a λ-bit challenge chal3 using an 
injective decoding function DecodeChallenge, where 
the challenge chal3 is the output of a hash function 
H3

2. To handle aborts in the Open algorithm, we 
add a counter value ctr to the input of H3

2. If the 
challenge chal3 decodes to a sequence of indices I 
for which Open fails, then the signing algorithm 
repeatedly increases ctr and hashes again until it 
reaches a challenge for which Open succeeds. The 
counter ctr is included in the signature to allow for 
efcient verifcation. 

We now argue why this change does not afect the 
security of FAEST. The proof of [8, Lemma 4] says 
that for every query to the H2

3 there are at most 2 out 
of 2λ challenge responses that can lead to a forgery, 
because challenges correspond one-to-one with feld 
elements ∆ ∈ F2λ , and to cheat, the adversary needs 
∆ to be a root of a nonzero quadratic polynomial 
in the Quicksilver check. The proof then considers a 
union bound over all Q queries to H3 to obtain the2 
term Q/2λ−1 in the bound on the forgery probability 
of the adversary. The same proof strategy still works 
for the signing algorithm with counter, because for 
every query to H3 there are still at most two chal-2 
lenges that map to the roots of the Quicksilver poly-
nomial. 

Using fewer and shorter vector commitments. 
In the original FAEST scheme we need to have Qτ 

Nα ≥ 2λ , because the λ-bit challenges needα=1 
to map injectively to index sequences I ∈ [N1] ×· · ·× 
[Nτ ]. In the setting with aborts, we only need the 
non-aborting challenges to map injectively to index 
sequences I. Therefore, as an additional optimiza-
tion, we can choose to reduce the number and/or 
the length of some of the vectors (reducing the sig-
nature size or the signing and verifcation time re-
spectively), at the cost of increasing the probability 
of a restart (which slows down signing). Concretely, Pτ 
we set parameters such that log Nα = λ − w,α=1 
and let I ← DecodeChallenge(chal3) injectively de-
code the frst λ − w bits of chal3. If some of the 
remaining w bits of chal3 are nonzero, or if Open(I) 
aborts, then the signing algorithm tries again with 
the next counter. The verifer rejects the signature if 
the last w bits of chal3 are not all zero. Since there 

are still at most two challenges that map to the roots 
of the Quicksilver polynomial, this optimization does 
not afect the security proof. The relevant part of 
the original FAEST and the optimized FAEST sign-
ing algorithm are given in Algorithm 1 and Algorithm 
2 (Figure 4). Another way to look at this optimiza-
tion is that we increase efciency by giving up w bits 
of security and that we regain security by making 
the prover solve a proof of 2w work for each forgery 
attempt. 

New binding and hiding defnitions. The se-
curity proof of the compilation from OTs to GGM-
based VCs is established in [8, Lemma 3]. This 
proof shows a reduction of special honest-verifer 
zero-knowledge (SHVZK) of the compiled protocol to 
SHVZK of the compiled protocol itself and security 
against the selective hiding game. It uses a hybrid 
argument to iteratively replace the unopened index 
value with random values. The same proof technique 
is applicable using our n-hiding real-or-random se-
curity requirement from Defnition 5 and showing a 
hybrid argument progressively selecting 1 ≤ n ≤ τ . 
Note that, in [8] an adaptive version of the hiding 
security game is defned, but only selective hiding is 
employed in the proof. 
Furthermore, [8] reduces knowledge soundness to the 
knowledge soundness of the compiled protocol and 
the extractable binding security defnition. The proof 
again uses a hybrid argument with abort if the ma-
licious prover successfully opens one of the τ VC in-
stances to a vector of messages difering from those 
extracted previously. The proof can be seamlessly 
adapted by replacing the FAEST VC scheme with 
Defnition 2, resulting in essentially the same secu-
rity proof and bounds. 

3.2 Optimizing BAVCs for Signatures 

The GGM-based [36] VC construction has been 
extensively used both in MPCitH based signature 
schemes like Picnic [24], BBQ [27], Banquet [10], He-
lium [38] and also VOLEitH-based FAEST to con-
struct the commitment scheme. It expands a ran-
dom seed into a tree of Pseudorandom values by re-
cursively applying a length-doubling Pseudo Random 
Generator (PRG) to each seed. To obtain a VC, the 
prover commits to the tree leaves to represent one 
vector commitment towards the verifer. Then, at a 
later stage, it can reveal parts of the leaves by open-
ing intermediate seeds (i.e. inner nodes of the tree), 
allowing the verifer to check the opening against the 
VC. MPCitH-based signatures usually generate a for-
est of τ such trees in parallel, whose roots are gen-
erated from a single seed. This approach (which we 
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Algorithm 1 FAEST Signing 

. . . 
chal3 ← H3

2(chal2||ã||b̃ ; λ) 
I ← DecodeChallenge(chal3) 
decomI ← BAVC.Open(I) 
σ ← σ||decomI 

return σ 

Algorithm 2 FAESTER Signing 

. . . 
ctr ← 0 
retry: 
chal3 ← H3

2(chal2||ã||b̃||ctr ; λ) 
I ← DecodeChallenge(chal3[0 : λ − w − 1]) 
decomI ← BAVC.Open(I) 
if decomI = ⊥ or chal3[λ − w : λ] ̸= 0w then 

ctr ← ctr + 1 
go to retry 

end if 
σ ← σ||decomI ||ctr 
return σ 

Figure 4: Signing with FAEST vs signing with FAESTER. 

recap in Appendix B) allows expressing τ VCs as one 
BAVC. 

One big tree instead of τ small ones. We now 
describe an optimization of this construction, where 
instead of generating a forest of τ trees with N1, . . . , 
Nτ leaves each, we generate a single GGM tree withPτ
L = Ni leaves. Opening all but τ leaves of thei=1 
big tree is more efcient than opening all but one leaf 
in each of the τ smaller trees, because with high prob-
ability some of the active paths in the tree will merge 
relatively close to the leaves, which reduces the num-
ber of internal nodes that need to be revealed. Impor-
tantly, we map entries of the individual vector com-
mitments to the leaves of the tree in an interleaved 
fashion. The frst τ leaves of the tree correspond to 
the frst entry of the τ vector commitments, the next 
leaves correspond to the second entries, and so on. 
The other way around would force the τ unopened 
leaves to be spaced far apart, which is detrimental to 
the number of nodes that need to be revealed. The 
number of internal nodes that need to be revealed 
depends on I, which would cause some variability in 
the size of the signature. To prevent this, we fx a 
threshold Topen for the number of internal nodes in 
an opening, and we let the Open algorithm abort if 
the number of nodes exceeds Topen. The value of Topen 

controls a trade-of between the opening size of BAVC 
and the success probability of BAVC.Open. 
Towards formalizing our optimized BAVC scheme 
BAVCopt, let PRG : {0, 1}λ → {0, 1}2λ be a PRG, 
H : {0, 1}∗ → {0, 1}2λ be a collision-resistant hash 
function (CRHF) and G : {0, 1}λ → {0, 1}λ ×{0, 1}2λ 

be a PRG and CRHF. We defne the scheme BAVCopt, 
which is parameterized by the number of vectors τ , 
the lengths of the vectors N1, . . . , Nτ , and the open-
ing size threshold Topen. Let π : [L−1, 2L−2] → {(α, 

i)}1≤i≤Nα be a bijective mapping from roots of the 
GGM tree to positions in the vector commitment. 

Commit(): 

1. Set k ← {0, 1}λ and let k0 ← k. 

2. For i ∈ [0, L − 2], compute (k2i+1, k2i+2) ← 
PRG(ki) to create a tree with L leaves kL−1, . . . , 
k2L−2. 

3. Deinterleave the leaves: 
(α) (α) π{sd , . . . , sd }α∈[τ ] ← {kL−1, · · · , k2L−2}.1 Nα 

(α) (α) (α)
4. Compute (m , com ) ← G(sd ), for α ∈ [τ ]i i i 
and i ∈ [Nα]. 

(α) (α)
5. Compute h(α) ← H(com1 , . . . , comNα 

) for α ∈ 
[τ ] and h ← H(h(1), . . . , h(τ )). 

6. Output the commitment com = h, the open-
(α)

ing decom = k and the messages (m , . . . ,1 

m
(α)
)α∈[τ ].Nα 

= (i(1)Open(decom = k, I , . . . , i(τ ))): 

1. Recompute kj for and j ∈ [0, . . . , 2L − 2] from k 
as in Commit. 

2. Let S = {kL−1, . . . , k2L−2}. 

3. For each α ∈ [τ ], remove kπ−1(α,i(α) ) from S. 

4. For i from i = L − 2 to 0: 

If k2i+1 ∈ S and k2i+2 ∈ S then replace 
both with ki. 

5. If |S| ≤ Topen output the opening information 

decomI = ((com
i 
( 
( 

α 
α 

) 
) )α∈[τ ], S), otherwise output 

⊥. 
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(α)
Verify(com = h, decomI = ({comi(α) } , S), I = α∈[τ ] 

(i(1), . . . , i(τ))): 
(α)

1. Recompute sd from decomI , for each α ∈ [τ ]i 
and i ̸= i(α) using the available keys in S, and 

(α) (α) (α)
compute (m , com ) ← G(sd ).i i i 

(α) (α)
2. Compute h(α) = H(com1 , . . . , comNα 

) for each 
α ∈ [τ ]. 

= H(h(1)3. If h ̸ , . . . , h(τ)) output ⊥. 
(α)

4. Output ((mi )i∈[Nα]\{i(α)})α∈[τ ]. 

Lemma 6 (Extractable Binding). Decompose G : 
{0, 1}λ → {0, 1}2λ into G(x) := (G1(x), G2(x)) and 
suppose G2, H are straight-line extractable. Then 
BAVCGGM is straight-line extractable-binding accord-
ing to Defnition 4: Given any adversary A breaking 
the extractable-binding of BAVCopt with advantage 
AdvEB we can construct a PPT adversary breaking 
extractability on G2, H with advantage 

AdvEB ≤ L · AdvG2 + (τ + 1) · AdvH. 

Proof. The proof is similar to [8, Lemma 1]. We ex-
tract Ext after obtaining com = h using the straight-
line extractability of G2, H. For this, we frst fnd h(1), 
. . . , h(τ ) which hash to h, and then com(α) 

for each i 
i ∈ [Nα], α ∈ [τ ], in both cases using extractability 

(α) (α)
of H. Then, we extract sd from com using thei i 

(α)
extractability of G2, and compute m using G1.i 
Assume A breaks extractable binding, i.e. provides 
values during Open which difer from the extracted 

(α) (α)
h(α), com , sd . Then, our constructed adversary i i 
will simply guess in advance at which index A will 
break extractability of G2, H and play the extractabil-
ity game at that index. This guess leads to the loss 
outlined in the statement. 

Lemma 7 (Selectively Hiding). Given any adversary 
A breaking the selective hiding of BAVCGGM for pa-
rameter n with advantage AdvSelHiden we can con-
struct a PPT adversary breaking the pseudorandom-
ness of G, PRG with advantage 

AdvSelHiden ≤ ⌈log2(L)⌉ · AdvPRG + AdvG. 

Proof. The proof is similar to [8, Lemma 2]. By us-
ing that the GGM construction is a puncturable PRF 
according to [19] and since we know the unopened in-
dex I for each commitment vector, and in particular 
for vector n, in advance, one can iteratively replace 
the unopened PRG seeds ki on the path from the 

(n) (1)
root to sd

i(n) which are not seeds on paths to sd
i(1) , 

(n−1) (n) 
. . . , sd

i(n−1) as well as the output of G(sdi(n) ) with 

uniformly random values. For this to be possible, we 
(1)

fully randomize the seeds on the paths to sd
i(1) , . . . , 

(n−1)
sd

i(n−1) frst, to allow for any hybrids distinguishing 
at indices n to n + 1 to be meaningful. The bound 
then follows from the maximal number of hybrids 
possible. 

3.3 Optimized FAEST and 
FAEST-EM 

This section discusses our optimized FAEST and 
FAEST-EM signature schemes, namely FAESTER 
and FAESTER-EM respectively, which beneft from 
the improved BAVC constructions discussed in Sec-
tion 3.1 and 3.2. When considering the non-
optimized BAVC, the previous VOLEitH signatures 
FAEST and the recently proposed ReSolved [25] are 
limited to the signature size and signing/verifcation 
runtime trade-of only with respect to τ , the num-
ber of “small” VOLEs. Even though fexible, such a 
trade-of provides an exponential correlation between 
the signature size and signing time as shown in Fig-
ure 5. 

With the optimized BAVC, our proposed signature 
schemes, including FAESTER, enjoy both improved 
performance and an improved signature size-runtime 
trade-of. Our experiments show an improvement in 
the signature size of around 10% for FAESTER when 
compared to FAEST, in the L1 setting, while main-
taining a similar runtime, as shown in the trade-of 
plot in Figure 5. As a direct consequence of this im-
provement, FAESTER is the frst signature scheme 
using standard AES with a signature size of 4.5KB. 
Similarly, FAESTER-EM enjoys a signature size of 
less than 4KB, with similar signing times. We refer 
to Appendix D for FAESTER performance for the L3 
and L5 security levels. 

Figure 8 shows the benefts of our new optimized 
BAVC for diferent signature schemes. Table 2 
presents our recommended parameter choices for dif-
ferent signature schemes. In the FAEST NIST sub-
mission [7], the slow and the fast versions represented 
by (s) and (f) respectively were only determined by 
τ as shown in the frst 4 rows. However, for the opti-
mized FAESTER and FAESTER-EM, along with the 
proposed new signature schemes, we also consider the 
optimal w and Topen parameter as described in Sec-
tion 3.1. We refer to Table 5 for the FAESTER opti-
mized implementation benchmarks. 
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(a) FAEST-128. (b) FAEST-EM-128. 

Figure 5: FAEST(-EM) τ -signature size and signing time trade-of. 

Table 1: Non-linear complexity of VOLEitH signature schemes using diferent OWFs. 

Description 
λ AES-128 

FAEST 
AES-192 AES-256 AES-EM-128 

FAEST-EM 
AES-EM-192 AES-EM-256 

No. of S-Boxes in key expansion 40 32 52 0 0 0 
No. of S-Boxes in encryption 160 192 224 160 288 448 
Total no. of F28 constraints 200 416 500 160 288 448 

λ AES-128 
FAESTER 
AES-192 AES-256 AES-EM-128 

FAESTER-EM 
AES-EM-192 AES-EM-256 

No. of S-Boxes in key expansion 40 32 52 0 0 0 
No. of S-Boxes in encryption 160 192 224 160 288 448 
Total no. of F28 constraints 200 416 500 160 288 488 

λ Rain-3-128 
MandaRain-3 
Rain-3-192 Rain-3-256 Rain-4-128 

MandaRain-4 
Rain-4-192 Rain-4-256 

No. of S-Boxes in encryption 3 3 3 4 4 4 
Total no. of F2λ constraints 3 3 3 4 4 4 

λ MQ-F21 -L1 
KuMQuat-21 

MQ-F21 -L3 MQ-F21 -L5 MQ-F28 -L1 
KuMQuat-28 

MQ-F28 -L3 MQ-F28 -L5 
Total no. of F2n constraints 152 224 320 48 72 96 

Table 2: VOLEitH signature schemes and their parameters. We denote the signature schemes as SCHEME-λs/f. l is 
the number of VOLE correlations required for the NIZK proof. w and Topen are the values for the optimized BAVC 
as described in Section 3.1. τ is the number of VOLE repetitions determining the choice between s (slow) and f (fast) 
versions. k0 and k1 are bit lengths of small VOLEs. B is the padding parameter afecting the security of the VOLE 
check. Secret key (sk), public key (pk) and signature sizes are in bytes. 

Signature Scheme OWF Esk(x) l w Topen τ τ0 τ1 k0 k1 sk size pk size sig. size 

FAEST-128s AES128sk(x) 1600 – – 11 7 4 12 11 16 32 5006 
FAEST-128f AES128sk(x) 1600 – – 16 0 16 8 8 16 32 6336 

FAEST-EM-128s AES128x(sk) ⊕ sk 1280 – – 11 7 4 12 11 16 32 4566 
FAEST-EM-128f AES128x(sk) ⊕ sk 1280 – – 16 0 16 8 8 16 32 5696 

FAEST-d7-128s AES128sk(x) 800 – – 11 7 4 12 11 16 32 4790 
FAEST-d7-128f AES128sk(x) 800 – – 16 0 16 8 8 16 32 6020 

FAESTER-128s AES128sk(x) 1600 7 102 11 0 11 11 11 16 32 4594 
FAESTER-128f AES128sk(x) 1600 8 110 16 8 8 8 7 16 32 6052 

FAESTER-EM-128s AES128x(sk) ⊕ sk 1280 7 103 11 0 11 11 11 16 32 4170 
FAESTER-EM-128f AES128x(sk) ⊕ sk 1280 8 112 16 8 8 8 7 16 32 5444 

FAESTER-d7-128s AES128sk(x) 800 5 102 11 0 11 11 11 16 32 4374 
FAESTER-d7-128f AES128sk(x) 800 6 110 16 8 8 8 7 16 32 5732 

MandaRain-3-128s Rain-3-128sk(x) 384 7 100 11 7 4 12 11 16 32 2890 
MandaRain-3-128f Rain-3-128sk(x) 384 8 108 16 0 16 8 8 16 32 3588 
MandaRain-4-128s Rain-4-128sk(x) 512 7 101 11 7 4 12 11 16 32 3082 
MandaRain-4-128f Rain-4-128sk(x) 512 8 110 16 0 16 8 8 16 32 3876 

KuMQuat-21-L1s MQ-21-L1sk(x) 152 7 99 11 7 4 12 11 19 35 2555 
KuMQuat-21-L1f MQ-21-L1sk(x) 152 4 102 16 0 16 8 8 19 35 3028 
KuMQuat-28-L1s MQ-28-L1sk(x) 384 7 100 11 7 4 12 11 48 64 2890 
KuMQuat-28-L1f MQ-28-L1sk(x) 384 4 108 16 0 16 8 8 48 64 3588 
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Table 3: Rain Parameters Table 4: MQ Parameters 

Instance Seclvl State Rounds Instance Seclvl Field m = n 

Rain-3-128 L1 F128 
2 3 

Rain-3-192 L3 F192 
2 3 

Rain-3-256 L5 F256 
2 3 

Rain-4-128 L1 F128 
2 4 

Rain-4-192 L3 F192 
2 4 

Rain-4-256 L5 F256 
2 4 

MQ-21-L1 L1 F21 152 
MQ-28-L1 L1 F28 48 

MQ-21-L3 L3 F21 224 
MQ-28-L3 L3 F28 72 

MQ-21-L5 L5 F21 320 
MQ-28-L5 L5 F28 96 

4 New VOLEitH Signature 
Schemes 

We present three new signature schemes constructed 
following the footsteps of FAESTER using the op-
timized BAVC, however, instantiated with diferent 
OWFs. The frst two variants take advantage of 
the Rain and MQ OWFs, discussed in Section 2.1.1 
and 2.1.2 respectively, to achieve the lowest signa-
ture sizes (less than 3 KB) among all MPCitH and 
VOLEitH signature schemes. The third variant uses 
AES but with a diferent approach to proving the S-
box, which reduces signature sizes by up to around 
5%. 

4.1 MandaRain: VOLEitH + Rain 

The MandaRain signature scheme uses two instanti-
ations of the Rain OWF, namely Rain-3 and Rain-4 
which use 3 and 4 rounds respectively. Rain has the 
same block size as its security parameter λ, thus un-
like FAEST and FAESTER, Rain can circumvent the 
need for multiple evaluations of the OWF. The pa-
rameters of Rain that we use for MandaRain can be 
found in Table 3. 
We prove Rain using the VOLEitH NIZK proof as 
described in Section 2.2, with the optimized BAVC 
(Section 3.2). The prover uses as a witness the se-
cret key k together with the internal state after each 
round, except for the last round which can be derived 
from the public key. This gives a total witness length 
of l = rλ bits for r rounds, and proving consistency 
requires r multiplication checks in F2λ . See Table 1 
for a summary of the non-linear complexity of the 
Rain-3 and Rain-4 OWFs. Compared to the other 
OWFs, Rain has the smallest number of non-linear 
constraints that must be checked in ZK resulting in 
not only a very small signature size but also a compet-
itive signing and verifcation time. Refer to Table 2 
for details on the MandaRain parameters. Similarly 
to FAEST, Figure 6 presents the parameter set ex-
ploration to fnd the most suitable parameter sets for 
signature size/runtime trade-ofs with and without 
the BAVC optimization. We see that the signature 

size can be as small as around 2.8KB for the same or 
better signing runtime. Refer to Table 5 for the Man-
daRain optimized implementation benchmarks at the 
L1 security level. For L3 and L5 benchmarks, refer 
to Appendix D. 

4.2 KuMQuat: VOLEitH + MQ 

Using a OWF relying on the MQ problem (Sec-
tion 2.1.2), we obtain the smallest witness size, and 
hence the smallest signature size among all VOLEitH 
and MPCitH signature schemes. 
Proving an MQ evaluation in VOLEitH is concep-
tually straightforward: the witness is the solution 
x ∈ Fn to the system of equations, and there areq 
m quadratic constraints to verify. One challenge is 
that a naive approach using QuickSilver would re-
quire O(mn2) multiplications in F2λ . In Section 2.1.2, 
we describe some optimizations that reduce this to 
just O(mn2q/λ) multiplications. 
Although the runtime of KuMQuat is not as fast 
as MandaRain, it still has signing and verifcation 
speeds comparable to those of FAEST, for signatures 
of around half the size. Table 4 shows the MQ param-
eter choices for our experiments chosen according to 
the security estimation from [33, 13]. We set m = n 
(as in MQOM) and choose a feld F2k for a power k. 
The feld size of the MQ problem and security level 
determines the choice of n (see Section 2.1.2), which 
in turn infuences the key and signature sizes and the 
runtime as shown in Table 5. We refer to Table 2 
for the recommended parameter choice for the L1 se-
curity level. For L3 and L5, parameter choices, we 
refer to Appendix D. Note that the signature size of 
KuMQuat depends only mildly on the MQ parame-
ters m, n. One could therefore choose to increase n, 
m to massively increase the margin of safety against 
MQ-solving attacks without growing the signature 
size much. 

4.2.1 Optimizations 

One implementation difculty with KuMQuat is the 
computational cost of the OWF. The MQ function 
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(a) MandaRain-3-128. (b) MandaRain-4-128. 

Figure 6: MandaRain τ -signature size and signing runtime trade-of. 

(a) KuMQuat-21-L1. (b) KuMQuat-28-L1. 

Figure 7: KuMQuat τ -signature size and runtime trade-of. 

12 



itself has mn(n + 3)/2 terms5 (see Defnition 1), each 
with coefcients in Fq, and evaluating the constraints 
with QuickSilver requires calculating the same num-
ber of terms over F2λ . While this seems to require 
Θ̃(mn2λ) work, we used an optimization to reduce 
this back to just ˜ 2 log2 q).Θ(mn 
Instead of these m constraints (for i ∈ [m]) over Fq: X X 

0 = Aijk xj xk + bij xj − yi, 
jk j 

λ we require that F2λ is a degree r = feld ex-log2(q) 

tension of Fq , and group the constraints into blocks 
of r:   

ri ′ X+r−1 X X 
αi−ri ′ 0 =  Aijk xj xk + bij xj − yi , 

i=ri′ jk j 

where α is a generator of F2λ over Fq. These 
constraints are equivalent to the original ones, be-
cause α0, α1 , . . . , αr−1 are linearly independent over 
Fq since F2λ is a degree r vector space over Fq. Now, 
we can precompute this linear combination of con-
straints 

r−1X 
A ′ i ′ jk = αiA(ri′ +i)jk 

i=0 

r−1X 
b ′ i ′ j = αib(ri′ +i)j 

i=0 

r−1X 
′ yi ′ = αi yri ′ +i 

i=0 

to get ⌈m/r⌉ constraints over F2λ : X X 
′ A ′ b ′ 0 = i′jk xj xk + i′ j xj − yi′ . 

jk j 

Note that evaluating these constraints for QuickSilver 
now requires only Θ(mn2/r) operations over F2λ . As-
suming F2λ multiplication can be done in Θ̃(λ) time, 
this is ˜ 2 log2 q) time.Θ(mn 
As a fnal optimization, note that if r ≤ m/r then 
there are exactly r Aijk elements that get mapped 
into a single A ′ i ′ jk, and that the transformation be-
tween them is bijective (and similarly for b and y). 
Therefore, sampling all A ′ i ′ uniformly at random from 
the subset of upper triangular matrices in Fn×n is

2λ 

equivalent to sampling the original Ai elements uni-
formly from the upper triangular matrices in Fn×n ,q 
for all except very last i ′ . To save computing this 

25Or mn(n + 1)/2 in F2, since then x = x which makes the 
diagonal of Ai redundant. 

transformation, other than for the last i ′ we sam-
ple the A ′ i′ and b ′ i′ directly, instead of going through 
Ari ′ , . . . , Ari ′ +r−1. Similarly, for i ′ ≤ m/r we also 

′ use yi ′ directly in the public key, rather than con-
verting between them and the yis. 

4.3 FAEST-d7: Proving AES via 
Degree-7 Constraints 

We have also investigated an alternative approach 
to proving knowledge of a preimage for the AES-
based OWFs, using higher degree constraints over 
F2, rather than quadratic constraints over F28 as in 
FAEST. This allows us to reduce the AES witness 
size — in some cases reducing signature size — as 
well as use the full key space of AES, since we do not 
require S-box inputs to be non-zero. 
FAEST-d7 is based on the variant of the QuickSil-
ver proof system [52] that allows for proving arbi-
trary degree-d constraints on the committed witness. 
In particular, we use degree-7 constraints, since the 
AES S-box and its inverse can both be expressed as 

6degree-7 circuits over F2. We combine this with a 
meet-in-the-middle idea: instead of committing to 
the AES state after every round, the prover only com-
mits to the state of every other round. Given com-
mitted states si, si+2, we can now prove consistency 

R−1by verifying that Ri(si) = (si+2), where Ri isi+1 
the i-th round function. Each pair of neighbouring 
AES states can thus be verifed with a single degree-
7 QuickSilver check. The same idea can be applied 
to the S-boxes in the key schedule. 

Computational Efciency. In QuickSilver, prov-
ing a degree-d circuit C(x1, . . . , xn) requires express-Pd
ing C as a sum of polynomials fi(x1, . . . , xn),i=0 
where each fi contains monomials only of degree i. 
While the fi’s need not be computed explicitly, the 
prover is required to evaluate each fi. It’s not clear 
how efciently this can be done for a complex func-
tion like the AES S-box. 
We observe that it’s not necessary to compute the 
fi’s at all. Instead, to prove the degree-d circuit C, 
it sufces for the prover to compute the coefcients 
of a degree-d univariate polynomial, given by g(y) = 
C(a1+b1y, . . . , an+bny), for values ai, bi ∈ F2λ known 
to the prover. Meanwhile, the verifer only needs to 
evaluate C at a single point. When C is the AES S-
box, we estimate the cost for the prover is around 150 
multiplications in F2λ . While this is a lot more than 
the cost of proving 1 multiplication in F28 , it is still 
insignifcant when compared with all of the PRG and 

2546The non-linear part of the S-box maps x 7→ x in F28 . 
Since 254 has Hamming weight 7, and squaring in F28 is F2-
linear, we get degree 7 overall. 
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Table 5: Signing Time (ms), Verifcation Time (ms), and 
Signature Size (bytes) of diferent VOLEitH-based signa-
ture schemes (optimized implementations). Slow and fast 
versions are denoted with s and f respectively. 

Scheme Runtime in ms Size in bytes 
Keygen Sign Verify sk pk Signature 

FAEST-128s 0.0006 4.381 4.102 16 32 5006 
FAEST-128f 0.0005 0.404 0.395 16 32 6336 
FAEST-EM-128s 0.0005 4.151 4.415 16 32 4566 
FAEST-EM-128f 0.0005 0.446 0.474 16 32 5696 

FAESTER-128s 0.0006 3.282 4.467 16 32 4594 
FAESTER-128f 0.0005 0.433 0.610 16 32 6052 
FAESTER-EM-128s 0.0005 3.005 4.386 16 32 4170 
FAESTER-EM-128f 0.0005 0.422 0.609 16 32 5444 

MandaRain-3-128s 0.0018 2.800 5.895 16 32 2890 
MandaRain-3-128f 0.0018 0.346 0.807 16 32 3588 
MandaRain-4-128s 0.0026 2.876 6.298 16 32 3052 
MandaRain-4-128f 0.0026 0.371 0.817 16 32 3876 

KuMQuat-21-L1s 0.173 4.305 4.107 19 35 2555 
KuMQuat-21-L1f 0.172 0.539 0.736 19 35 3028 
KuMQuat-28-L1s 0.174 3.599 4.053 48 64 2890 
KuMQuat-28-L1f 0.172 0.400 0.623 48 64 3588 

hash calls used in the other components of FAEST. 
We will include further details of this method in the 
full version of this paper. 

Signature Size. The main advantage of this ap-
proach (other than allowing arbitrary AES keys) 
is that the total witness size is halved, from e.g. 
l = 1600 to l = 800 at the 128-bit security level. 
However, this does not come for free, since proving 
degree-d relations with QuickSilver incurs a cost of 
dτλ bits in the signature size. Overall, when applied 
to FAEST variants with an l-bit witness, we reduce 
the signature size by τ l/2 − 5τλ bits. For the Even-
Mansour 128-bit variants, we have l/2 = 5λ, so there 
is no change in size. However, for the standard AES 
variants and the higher security Even-Mansour vari-
ants, we see a reduction of up to around 5%. 
We have not yet implemented FAEST-d7, but show 
in Table 2 the signature sizes it obtains, as well as 
those of the FAESTER-d7 variant incorporating our 
GGM tree optimizations. 

5 Broader Discussion 

This section compares the existing VOLEitH and 
MPCitH signature schemes, including the candidates 
of NIST’s call for Additional Signatures, with our 
proposed optimized signature schemes. 

Benchmark platform. To benchmark and com-
pare all the implementations fairly, we run only 
the most optimized implementation of the signature 
schemes that is openly available. For the NIST candi-
dates, we refer to the submitted optimized implemen-
tations. We measure all the run times on a system 
with an AMD Ryzen 9 7900X 12-Core CPU, 128 GB 
memory and running Ubuntu 22.04. 

Security assumption. The choice of diferent 
OWFs allows for a wide variety of security as-
sumptions one can choose from when constructing a 
VOLEitH signature scheme. For example, using an 
AES-based OWF results in a highly conservative se-
curity guarantee at the cost of a performance penalty 
in terms of signature size and runtime. This trade-
of is similar to the previous state-of-the-art MPCitH 
signature schemes like BBQ, Banquet, Helium which 
relied on the standard AES OWF and naturally pos-
sessed larger signature size and runtime than their 
competing schemes which relied on optimized but 
non-standard OWFs like Rainier [30] or Picnic [24]. 
Switching to AES-EM construction for VOLEitH sig-
nature does not give us the most conservative security 
guarantees like standard AES, however, the general 
EM construction is already more than two decades 
old, thus guaranteeing security in a similar ballpark 
as of AES while still improving both the signature 
size and runtime considerably. On the other side, 
optimized OWFs like Rain and AIM [40] are rather 
new and not that well studied. For example, in 2023, 
AIM already witnessed two full round attacks [42, 54] 
which were later fxed in AIM2 [39]. Due to the 
mitigation, as per the authors, the signature scheme 
AIMER using AIM OWF sufers around 10% runtime 
penalty. This work does not consider using the AIM 
OWF for constructing a VOLEitH signature scheme 
as we conjecture that it will lead to worse runtime 
due large number of Mersenne exponentiation while 
still giving a signature size similar to Rain. On the 
other hand, when considering the KuMQuat signa-
ture scheme, we beneft from the MQ problem which 
relies on a diferent hardness problem, giving us more 
choices, when compared to the symmetric primitives 
like AES, Rain, or AIM. Similarly, in the recently pro-
posed VOLitH signature scheme ReSolveD [25], their 
OWF relies on the syndrome decoding problem. 

Symmetric Key Primitives. FAEST’s zero-
knowledge proofs are built out of pseudorandom gen-
erators and hash functions, and their instantiation is 
important for efciency and security. For consistency 
with with the FAEST and FAEST-EM proposal [7], 
we use AES-CTR everywhere a PRG is required, and 
the SHAKE hash function for all random oracle calls, 
including those at the leaves of the GGM tree. 

Parameters. A careful choice of parameters, in-
cluding the choice of OWF, is crucial for achieving the 
best performance of the signature scheme. In the pre-
vious sections, we extensively demonstrated the im-
pact of w, Topen, and τ on the signature size and run-
time. Additionally, when considering the MQ OWF, 
the operational feld (Fn) is also a crucial factor de-

14 



(a) L1 Signing. (b) L1 Verify. 

Figure 8: Signature size and runtime comparison between state-of-the-art MPCitH and VOLEitH signature schemes. 
The slow and fast versions are denoted with s and f respectively. Other special versions are denoted by their short 
names as per their publicly available specifcation. 

termining the performance. For example, KuMQuat-
21-λ operating in F2 leads to the smallest signature 
size, however, has the largest number of non-linear 
constraints among the other proposed VOLEitH sig-
nature schemes leading to a long signing and verif-
cation runtime. Alternatively, KuMQuat-28-λ leads 
to a larger signature size, due to more witness bits, 
however, the number of constraints is roughly 70% 
smaller, leading to a faster runtime than KuMQuat-
21-λ. 

Key Sizes. The key sizes only depend on the un-
derlying OWF and are not afected by the VOLEitH 
parameters. With the MQ OWF, for example, the 
operational feld Fn and λ determine the size of sk2 
and pk. The key sizes of MandaRain are determined 
only by λ. 

Signature Size and Runtime. FAEST-EM com-
pared to FAEST requires 20-30% less non-linear con-
straints, which directly infuences both the signature 
size and the runtime, especially for the slow signa-
ture variant with a smaller signature size as shown in 
Table 5. This holds also true for MandaRain which 
has the smallest number of non-linear constraints 
enabling it to enjoy the smallest signature runtime 
along with the smallest signature size after our pro-
posed KuMQuat signature scheme. Looking at the 
signature size runtime trade-of, in terms of perfor-
mance we conclude that MandaRain provides a better 

signature size runtime trade-of, as it has a slightly 
larger signature size than KuMQuat, however, to the 
best of our knowledge, it has the smallest runtime 
among all VOLEitH and MPCitH based signature 
schemes. We also looked into the possibility of using 
NIST standardised Ascon7 as a OWF for construct-
ing VOLEitH signature scheme. However, due to the 
design structure of Ascon, our estimates showed us 
that the signature size will be much worse than that 
of standard AES even if we can design an Ascon-
style permutation for the OWF.8 One may also ques-
tion the ftness of other symmetric primitives which 
are especially used (friendly optimal design) in MPC, 
Homomorphic Encryption (HE) and ZKP use-cases. 
Even though several of these primitives focus on re-
ducing the number of multiplications and their mul-
tiplicative depth, such primitives are designed while 
considering adversaries with higher adversary data 
complexity. The higher the number of rounds re-
quired to guarantee security from a key recovery at-

7https://csrc.nist.gov/news/2023/lightweight-
cryptography-nist-selects-ascon 

8It might be also interesting to have an analysis on the 
minimum number of rounds required for security guarantees 
with Ascon given only one plaintext-ciphertext pair, similar to 
the security assumptions of Rain or AIM. For AES, this should 
be conservatively at least 6 rounds as the attack [30, 20] costs 
2120 time and 2120 memory for 4.5 AES rounds, which is still 
worse than Rain-4 non-linear complexity. 
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tack increases the number of witness bits that must 
be communicated to the verifer. For MPCitH or 
VOLEitH signature schemes, an adversary knows 
only the public key or one plaintext-ciphertext pair, 
though. Hence, VOLEitH- or MPCitH-friendly sym-
metric primitives like Rain and AIM assume that an 
adversary knows only the public key, requiring them 
to have as low as only 3 rounds to guarantee security 
against key recovery attacks. 
For fairness, we compare only the optimized im-
plementations of the signature schemes and thus 
could not include the recent VOLEitH signature Re-
Solved [25], as to the best of our knowledge, there 
exists no optimized implementation for it at the time 
of writing. However, when comparing the refer-
ence implementations of ReSolved with FAEST and 
FAEST-EM, we conjecture that the optimized imple-
mentation of ReSolved should be slower than Rain 
and FAESTER-EM atleast, if not also FAESTER. 
In Figure 8, we compare our proposed VOLEitH 
signature schemes with other competitive MPCitH 
and VOLEitH (FAEST) signature schemes. Here, 
KuMQuat provides the smallest signature size at a 
high runtime cost. Whereas, MandaRain provides 
the best signature size runtime trade-of, where it en-
joys the best runtime and gives a signature size only 
second to KuMQuat. Notably, both MandaRain and 
KuMQuat are the frst VOLEitH signature schemes 
with signature sizes less than 3 KB. This is also 
the lowest among all the MPCitH signature schemes. 
FAESTER, using the optimized BAVC, for the frst 
time achieves a signature size of 4.5 KB while still 
relying on standard AES. Similarly, FAESTER-EM 
also enjoys a considerably smaller signature size of 
just 4.1 KB while relying on AES combined with the 
EM construction. 
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A A detailed description of 
the VOLE-in-the-Head 
approach 

A.1 Defnitions 

Signature Schemes. We frst recall the standard 
defnition of a signature scheme. 

Defnition 8 (Signature Scheme). A signature scheme 
Sig is a tuple of algorithms (Gen, Sign, Verify) such 
that: 

1. The key-generation algorithm Gen(1λ) takes as 
input a security parameter λ in unary represen-
tation and outputs a key pair (sk, pk). 

2. The (randomized) signature algorithm Sign(sk, 
µ) takes as input a secret key sk and a message µ 
and outputs a signature σ. 

3. The (deterministic) verifcation algorithm Verify( 
pk, µ, σ) takes as input a public key pk, a mes-
sage µ and a signature σ and outputs 1 (or accept) 
or 0. 

For correctness, it is required that, for any message 
µ, the following probability is negligible: � � 

(sk, pk) ← Gen 
Pr Verify(pk, µ, σ) = 0 . 

Gen,Sign σ ← Sign(sk, µ) 

The standard security notion for digital signature 
schemes is that of existential unforgeability under 
adaptive chosen-message attacks (EUF-CMA): an 
adversary A given pk and oracle access to Sign(sk, ·) 
should not be able to produce a pair (σ, µ) satisfying 
Verify(pk, µ, σ) = 1 (for a message µ which was not 
queried to the signing oracle). 

One-Way Functions. VOLE-in-the-head signa-
tures are based on proving knowledge of the preimage 
to a OWF. We quickly recap their defnition. 

Defnition 9 (One-way function). A polynomial-
time function F : Kλ → Cλ is called one-way , if for 
every PPT algorithm A the advantage   

k ← Kλ 

AdvOWFF 
A := Pr F(k ∗ ) = y y := Fk(k)  

k ∗ ← A(1λ , y) 

is negligible in λ. 

A.2 VOLE-in-the-Head Proof System 

We now explain the VOLE-in-the-head proof system 
and FAEST signature scheme [8, 7] in more detail. 

Generating GGM-based Vector Commit-
ments. VOLE-in-the-Head, like MPC-in-the-Head, 
uses all-but-one Vector Commitments (VCs) as a 
starting point. Informally, an all-but-one vector com-
mitment scheme is a two-phase protocol between a 
sender and a receiver . In the frst phase, also called 
commitment phase, it enables the sender to generate 
a vector of N random messages r0, . . . , rN−1, while 
keeping them secret; in the second phase, called de-
commitment phase, all but one of the rj vectors are 
opened to the receiver. We require two properties 
of the scheme: the whole vector must be hidden be-
fore the decommitment phase, and the message at the 
unopened index j remains hidden, even after decom-
mitting all other indices of the vector. In addition, 
the scheme must be binding, meaning that after the 
commitment phase none of the rj in the vector can 
be changed anymore. 
The starting point of the GGM-based [36] all-but-one 
VC scheme used in FAEST is a binary tree with 
N = 2k leaves, which is built from a random seed 
r as root node and then recursively applying a 
length-doubling PRG at any node with input the 
corresponding seed to obtain the two children seeds. 
The resulting tree has N leaves, each of which are 
now hashed to obtain 2 values: a message rj as well 
as comj , j ∈ {0, . . . , N − 1}. To generate the VC, 
one hashes all comj using a collision-resistant hash 
function whose output is the commitment h. To 
open all messages except rj , consider the path from r 
to rj through the tree. The sender reveals the seeds 
corresponding to all siblings of nodes that are on 
the path (including comj ). Given all these revealed 
values, the receiver can apply the same PRG and 
reconstruct all rj , comj for j ≠ j. By hashing all 
comj as well as the additional comj and comparing 
the output with h, correctness of the opening can 
be checked. Moreover, since comj is an output of a 
PRG, it reveals no information about the unopened 
rj . The full algorithm is described in Appendix B. 

From GGM-based VC to VOLE correlations. 
To obtain a VOLE correlation u, v, q, ∆ of length m, 
the prover frst generates a VC as described above. 
Then, following [46], the vector commitment is trans-
formed into a length-m, small-feld VOLE correlation 
in F2k in the following way: First, denote the N mes-
sages committed in the VC as r0, . . . , rN −1 2k .∈ Fm 

We can write 
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N−1 N−1X X 
u = ri, v = i · ri. 

i=0 i=0 

Note that when the verifer asks to open the commit-
¯ ments later, it will learn messages rj for all j ̸= j, 

for some index j̄ ∈ {0, . . . , N − 1} viewed as an F2k 

element. In this way, V can compute 

N−1X 
q = (j̄ − j) · rj 

j=0 

N−1 N−1 (1)X X 
= j̄ · rj − j · rj 

j=0 j=0 

= j̄ · u − v 

giving the desired VOLE correlation over F2k . By 
performing this for τ independent VC instances, the 
prover has τ independent VOLE correlation vectors 
for challenges from [0..N −1]. Denote these VOLEs as 

(α)(u , V(α)), where now V(α) is a matrix in {0, 1}m×k 

instead of a vector in Fm 
2k for α ∈ [τ ]. The prover 

commits to its input by forcing all the VOLEs to use 
the same value u. Towards this, the prover sends the 
correction value d(α) = u(α) − u, for each α ∈ [τ ] 
to the verifer, which can then use it later to adjust 
the small VOLEs. By concatenating the τ VOLE 
instances created in this way, P obtains V ∈ Fm×λ ,2 
where each row can be seen as an element of F2λ , 
obtaining the desired VOLE values over F2λ . 
In order to ensure that the prover does not cheat 
during this phase by committing to diferent secrets 
in each VOLE instance, the protocol then runs a 
consistency check. We refer to [7, 8] for further 
details. 

VOLE commitments. As described above, 
VOLE correlations are lists of tuples (ui, vi, qi) such 
that the VOLE relation holds for the global key ∆. 
One such tuple is referred to as an information-
theoretic message authentication code (MAC) on the 
value ui under the global key ∆, since ui cannot be 
modifed (for a fxed qi) without knowledge of ∆, 
and can thus be considered as a designated-verifer 
commitment to ui. Since the VOLE relation is linear 
in ∆, such commitments are trivially additive, and 
any public linear function can be applied by both 
parties on the committed value by performing local 
computation on their respective values. 

QuickSilver proof. We now describe how the input 
of a proof will be committed and how P and V ex-
ecute the information-theoretic VOLE-based Quick-
Silver proof on the secret input, as applied to VOLE-

in-the-head [8]. 
Let C denote an arithmetic circuit over F2, containing 
t multiplication gates, for which the prover knows an 
input (i.e. the witness) w ∈ Fn of length n, such that 2 
C(w) = 1. To prove its knowledge of the witness, 
the prover will interact with the verifer to evaluate 
C. Note that all of this will happen before the verifer 
even learns his outputs of the VOLE correlation. We 
nevertheless additionally mention the steps that the 
verifer later takes to “fnish” his part of the circuit 
evaluation in the following. 

1. The prover requests n + t MACs from the 
VOLE protocol. This provides the prover with 
(ui, vi)i∈[n+t]. The verifer will later compute 
(qi)i∈[n+t] and ∆ when performing this step. 
This has been outlined above. 

2. For every input element wi, for i ∈ [n], the prover 
computes di := wi − ui and sends (di)i∈[n] to the 
verifer. This allows the verifer later to update 
the commitments of ui to wi locally using the 
linearity of the commitment scheme. 

3. For every gate in the circuit C, with input values 
wα, wβ , the prover proceeds as follows: 

• Linear gate: the prover uses the linear prop-
erty of the commitment scheme to com-
pute his shares of the output commitment 
locally. This does not require any com-
munication towards the verifer, which will 
later use the linear property to compute his 
shares of the output commitment. 

• i-th multiplication gate, for i ∈ [t]: the 
prover computes wγ := wα · wβ and sends 
dn+i := wγ − un+1 ∈ F2 to the verifer. The 
verifer can later, when holding his shares of 
the VOLE correlation as well as dn+i, up-
date his shares of the commitment (turning 
it from a commitment of un+i to wγ ). 

4. Finally, the prover opens the commitment to the 
output wire of the evaluated circuit by sending 
vi to the verifer. It can then later check that 
qi = ∆ − vi, i.e. that the opening is correct. 

For each multiplication, the prover has generated 
three valid VOLE MACs (wα, vα, qα), (wβ , vβ , qβ ) 
and (wγ , vγ , qγ ) for the t multiplication gates (α, 
β, γ)i contained in the execution of C(w). But the 
prover may be malicious, meaning that one has to 
check that wα · wβ = wγ . Therefore, the verifer must 
check that the prover did not behave maliciously 
when it sent the t values dn+i. 
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Checking multiplications. The QuickSilver protocol 
performs a check of the multiplication values based 
on the observation that the verifer can compute a 
value bi ∈ F2λ for each multiplication gate (α, β, γ)i, 
for i ∈ [t], as follows: 

bi := qα · qβ − qγ · ∆ 

= vα · vβ + (wα · vβ + wβ · vα − vγ ) · ∆ 

+ (wα · wβ − wγ ) · ∆2 (2) 

If the prover was honest in the computation of di, 
then the ∆2 coefcient wα · wβ − wγ disappears, and 
the verifer needs only to check that 

?
bi = a0,i + a1,i · ∆ (3) 

for a0,i := vα · vβ 

and a1,i := wα · vβ + wβ · vα − vγ . 

To perform this check, the verifer requires the a0,i 
and a1,i values which the prover can compute, since 
they only depend on the w and v values for the multi-
plication gate (α, β, γ)i. The prover sends these val-
ues (appropriately masked) to the verifer as part of 
the proof. 
After receiving the (a0,i, a1,i)-pairs from the prover, 
the verifer evaluates C(w) by frst locally generating 
his VOLE shares and applying d to them to commit 
to the witness and multiplication outputs. It then 
performs the linear operations and checks if (1) 
eq. (3) holds for all i ∈ [t]; and (2) if the opened 
output commitment of C(w) is a commitment to 1 
as outlined above. It rejects if any of the tests fail. 
It is in these checks that the secrecy of the global 
key ∆, or in other words the binding property of 
the VOLE MACs, guarantees the soundness of the 
proof: to cheat in the proof, the prover would need 
to modify values u and tags v such that the test of 
eq. (3) still passes; this requires guessing ∆. 

Batch checking multiplications. Since the rela-
tion tested in eq. (3) is linear, the QuickSilver proto-
col optimises the checking procedure by only reveal-
ing and thus checking a random linear combination of 
all the a0,i, a1,i. It also modifes the check slightly so 
that no information about w is leaked in the process. 
Both of these modifcations are described in [8, 7] in 
detail. 

Checking extension feld multiplications. 
FAEST generates VOLE correlations for values 
u ∈ F2, but correctness of multiplications will be 
checked in F28 since this is the feld over which the 
AES S-box is defned. Since F2 is a subfeld of F28 , 
which is itself a subfeld of F2λ , one can combine 

VOLE MACS for 8 values in F2 into a VOLE MAC 
for a single value in F28 , with the corresponding tag 
and key still satisfying the VOLE relation for the 
original global key ∆. 
The advantage of the QuickSilver protocol is that one 
can still commit to the witness bits using di ∈ F2, 
which costs only 1 bit of proof size (and therefore 
signature size) per bit of the witness, and then prove 
F28 -multiplications at no extra cost, since (a0,i, a1,i) 
are already in F2λ . 

Putting things together. We fnally note that 
the only interactions in the aforementioned proto-
col now happen when V sends uniformly random val-
ues, such as ∆, to P. This can be made fully non-
interactive using the Fiat-Shamir transform. 

A.3 Optimizing QuickSilver for 
Higher Degree Constraints 

We now present an optimized method of proving gen-
eral, degree-d constraints in QuickSilver, which im-
proves upon [52], and which we use for the FAEST-d7 
construction from Section 4.3. We show how to prove 
constraints represented as arithmetic circuits over Fq, 
where in FAEST-d7 we will use q = 2. 
We start with some additional notation that gener-
alizes the MACs used in the standard QuickSilver 
approach defned previously. 

Notation. We write JxK(d) 
to mean that a value x ∈ 

Fq held by the prover is committed through VOLE, 
as follows: 

• P holds coefcients (a0, . . . , ad−1, x) ∈ Fd
qr × Fq, 

representing the polynomial px(γ) = a0 + a1γ + 
· · · + adγd , where ad equals x lifted into Fqr . 

• V holds qx = px(∆) ∈ F2λ . 

JxK(1)Notice that a degree-1 commitment, , is 
exactly a standard VOLE commitment, which is 
how the prover’s witness is initially committed. The 
prover and verifer can then perform the following 
homomorphic operations on commitments. 

Add: JzK(d) 
= JxK(d1) 

+ JyK(d2) 
, where d = d2 and 

d1 ≤ d2: 

• P: Let pz (γ) = px(γ)γd2−d1 + py(γ) 

∆d2−d1• V: Let qz = qx + qy 

Multiply: JzK(d) 
= JxK(d1 )JyK(d2) 

, where d = d1 + d2 

• P: Output the coefcients of pz (γ) = px(γ)py(γ) 

• V: Output qz = qxqy 
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It’s straightforward to these that these operations 
preserve that invariant that the message is stored 
in the degree-d − 1 coefcient and the verifer holds 
qz = pz(∆). 
Proving a general constraint that is represented by an 
arithmetic circuit C : Fn → Fq can then be done by q 
performing the appropriate additions and multiplica-
tions on the commitments. If the circuit has degree d 
(when viewed as a polynomial) then the fnal commit-
ment to the output wire will be degree d. It remains 
to check that the output is a commitment to zero, 
which can be done as follows. 

CheckZero(JxK(d)): 

1. Let px(γ) = a0 + · · ·+ad−1γ
d−1 , for ai ∈ Fqr (re-

call that the degree-d coefcient should be zero). 
V holds qx = px(∆). 

2. Sample r(d − 1) additional random VOLEs, to 
, . . . , Jsd−2K

(1)
obtain masks Js0K

(1) 
, each repre-

sented by a polynomial psi (γ) = ri + siγ, where 
ri, si are both uniform in Fqr . 

3. P computes the degree-(d − 1) mask polynomial Pd−2 
ps ′ (γ) = γi · psi (γ)i=0 

4. P sends px(γ) + ps ′ (γ) to the verifer 

′ 5. V computes the corresponding MAC q = qx +Pd−2 ′ ∆i · qsi and check that (px + ps ′ )(∆) = qi=0 

Overall, this protocol is essentially the same check as 
in the high-degree variant of QuickSilver [52], except 
with an optimized method of computing the commit-
ment to the circuit output, since we no longer need to 
express the circuit as a multi-variate polynomial. One 
other diference is that the mask in step 2 above only 
needs r(d − 1) additional VOLEs, while the method 
from QuickSilver uses 2r(d − 1) − 1. This is because 
QuickSilver protects against the case where a mali-
cious verifer may choose its own VOLE outputs or ∆, 
but this is not possible in VOLE-in-the-head. Indeed, 
if ri, si are all chosen uniformly and ∆ ̸= 0, then the 
coefcients of the mask ps ′ are uniform, even to a 
verifer who learns ri + si∆. 
As in QuickSilver, note that when checking a large 
batch of t constraints, each of degree up to d, it suf-
fces to check that a random linear combination of 
the t outputs gives a commitment to zero. 

Efciency for AES in FAEST-d7 . Using 
higher-degree constraints saves communication by al-
lowing for a smaller witness, compared with using 
only degree-2 constraints and committing to the out-
put of every multiplication gate. However, it comes 
with some computational overhead due to working 

with polynomials of higher degree, and also more 
communication in the fnal zero check. When adapt-
ing this to VOLE-in-the-head, CheckZero requires 
sending (τ − 1)rd Fq elements to generate the ran-
dom masks, and a further rd elements to perform the 
check. If r log q = λ (as in FAEST), then moving 
from degree-2 to degree-d checks incurs an additional 
τ(d−2)λ bits of communication. It turns out that for 
AES in FAEST-d7, this extra cost is either matched, 
or more than compensated for, by the saving from 
halving the witness size. 
The computational cost of this approach depends on 
the circuit representation of the constraint. For the 
non-linear component of the AES S-box, using the 
degree-7 circuit from [21], the prover would need to do 
the following univariate polynomial multiplications 
over F2λ : 

• 9 of degree-1 × degree-1 

• 3 of degree-2 × degree-2 

• 4 of degree-2 × degree-4 

• 18 of degree-6 × degree-1 

If we ignore the cost of additions in F2λ , and take 
into account the fact that the highest-degree term of 
each polynomial is always 0/1, these multiplications 
can be done with 9 · 12 +3 ·22 +4 ·2 ·4+18 ·6 ·1 = 161 
multiplications in F2λ . This can be reduced slightly 
further, down to 150, using Karatsuba multiplication. 
Although this is still much higher than the cost of ver-
ifying the S-box with one F28 multiplication, the total 
cost for all S-boxes should still be fairly small, com-
pared with the PRGs and hashing in the remainder 
of FAEST. 

B The GGM-based BAVC 
scheme 

In this appendix, we describe the classical GGM-
based VC scheme as an BAVC. Security can be shown 
identically to our proofs for BAVCopt. 
As before, let PRG : {0, 1}λ → {0, 1}2λ be a PRG, 
H : {0, 1}∗ → {0, 1}2λ be a collision-resistant hash 
function (CRHF), G : {0, 1}λ → {0, 1}λ × {0, 1}2λ be 
a PRG and CRHF. There are τ VCs of length N1, . . . ,P 
Nτ which we wish to generate, where L = Nα.α 
Let π : [L − 1, 2L − 2] → {(α, i)}1≤i≤Nα be a bijec-
tive mapping from roots of the GGM tree to positions 
in the vector commitment. We set π so that it mapsPα−1
L−2+i+ j=1 Nj to (α, i) for each α ∈ [τ ], i ∈ [Nα]. 
We defne the scheme BAVCGGM as follows: 
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Commit(): 

1. Set k ← {0, 1}λ and let k0 ← k 

2. For i ∈ [0, L − 2], compute (k2i+1, k2i+2) ← 
PRG(ki) to create a tree with L leaves kL−1, . . . , 
k2L−2. 

3. Assign the leaves: 
(α) (α) π{sd , . . . , sd }α∈[τ ] ← {kL−1, · · · , k2L−2}.1 Nα 

(α) (α) (α)
4. Compute (m , com ) ← G(sd ), for α ∈ [τ ]i i i 
and i ∈ [Nα]. 

(α) (α)
5. Compute h(α) ← H(com1 , . . . , comNα 

) for α ∈ 
[τ ] and h ← H(h(1), . . . , h(τ )). 

6. Output the commitment com = h, the open-
(α)

ing decom = k and the messages (m , . . . ,1 
(α)

mNα 
)α∈[τ ]. 

= (i(1)Open(decom = k, I , . . . , i(τ ))): 

1. Recompute kj for and j ∈ [0, . . . , 2L − 2] from k 
as in Commit. 

2. Let S = {kL−1, . . . , k2L−2}. 

3. For each α ∈ [τ ], remove kπ−1(α,i(α)) from S. 

4. For i from i = L − 2 to 0: 

If k2i+1 ∈ S and k2i+2 ∈ S then replace 
both with ki. 

5. Output the opening information decomI = 
((com

i 
( 
( 

α 
α 

) 
) )α∈[τ ], S). 

Verify(com = h, decomI = ((com( 
i( 

α 
α 

) 
) )α∈[τ ], S), I = 

(i(1), . . . , i(τ)))): 

(α)
1. Recompute sd from decomI , for each α ∈ [τ ]i 
and i ̸= i(α) using the available keys in S, and 
compute 

(α) (α) (α)
(m , com ) ← G(sd ).i i i 

(α) (α)
2. Compute h(α) = H(com1 , . . . , comNα 

) for each 
α ∈ [τ ]. 

= H(h(1)3. If h ̸ , . . . , h(τ)) output ⊥. 

(α)
4. Output ((m ))i∈[Nα]\{i(α)})α∈[τ ].i 

For the given parameters, it is easy to see that 
BAVCGGM has decommitments of size ≈ τ ·(log L+2)·λ 
bits, while a commitment has exactly 2λ bits. 

C Faest design and parameters 

Here we recall the main design choices of [7]. 

VOLEitH Parameters. To efciently construct 
VOLE correlations over F2λ , [7] executes parallel in-
stances of the VOLEitH protocol on smaller felds. 
The resulting tags and keys are then concatenated to 
yield a correlation in a larger feld. Concretely, for 
each repetition parameter τ ∈ N and security param-
eter λ, we can fx integers k0, k1 and τ0, τ1 such that 
λ = k0τ0 + k1τ1, where 

k0 := ⌈λ/τ⌉ k1 := ⌊λ/τ⌋, and 

τ0 := (λ mod τ) τ1 := τ − τ0. 

In this way, the protocol produces τ0 (resp. τ1) 
VOLEs in F2k0 (resp. F2k1 ), that concatenated pro-
duce a correlation in Fλ 

2 . In table 6, we report the set 
of parameters used in [7]. 

OWF. FAEST signature follows the same construc-
tion as described in Section 2.2, where the OWF F is 
the circuit description of AES and AES-EM proved 
with publicly verifable non-interactive honest veri-
fer ZKPoK using FS transformation using VOLEitH 
described in Section 2.2. When constructing OWF 
with AES or AES-EM, it is required that the input 
block size is equal to the security parameter λ. How-
ever, in case of the standard AES, the block size is 
fxed to 128 bits which requires two separate instan-
tiations when λ = 192, 256. More concretely, similar 
to the FAEST NIST submission, we also use sim-
ilar constructions AES192sk(x0)∥AES192sk(x1) and 
AES256sk(x0)∥AES256sk(x1) respectively, where x0 

and x1 are two separate plaintexts. When λ = 192, 
the additional bits are truncated. 
The single key Even-Mansour scheme [34, 32, 45] is 
a way to constructs a block cipher f from a cryp-
tographic permutation π by adding a key sk to the 
plaintext and then adding sk again to the output of 
the permutation function, fsk(x) := sk + π(x + sk). 
Rainier [30] proposed a tweaked version of the stan-
dard AES, namely AES-EM, which uses the single 
key EM construction as a OWF where AES and Ri-
jndael are the permutations. By leveraging this par-
ticular construction, the authors successfully removed 
the AES key schedule and made the round keys pub-
lic to the verifer, reducing the number of constraints 
that needs to be proven in MPCitH NIZK. Such a op-
timization is also applicable to the VOLEitH NIZK. 
In contrast to AES, when using AES-EM as OWF 
for λ = 192, 256, one requires using Rijndael block ci-
pher [26], where the state size is equal to λ bits, thus 
not requiring multiple instantiations. Refer to Ta-
ble 6 for more details on the OWF instantiation and 
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Table 6: AES and AES-EM OWFs and parameters for FAEST and FAEST-EM as described in [7]. We denote the 
signature schemes as FAEST-λs/f or FAEST-EM-λs/f. l is the number of VOLE correlations required for the NIZK 
proof. τ is the number of repetition determining the choice between s and f. k0 and k1 are bit lengths of small 
VOLEs. B is the padding parameter afecting the security of the VOLE check. Secret key, public key and signature 
sizes are in bytes. 

Signature Scheme OWF Esk(x) l τ τ0 τ1 k0 k1 sk size pk size sig. size 

FAEST-128s AES128sk(x) 1600 11 7 4 12 11 16 32 5006 
FAEST-128f AES128sk(x) 1600 16 0 16 8 8 16 32 6336 
FAEST-192s AES192sk(x0)∥AES192sk(x1) 3264 16 0 16 12 12 24 64 12744 
FAEST-192f AES192sk(x0)∥AES192sk(x1) 3264 24 0 24 8 8 24 64 16792 
FAEST-256s AES256sk(x0)∥AES256sk(x1) 4000 22 14 8 12 11 32 64 22100 
FAEST-256f AES256sk(x0)∥AES256sk(x1) 4000 32 0 32 8 8 32 64 28400 

FAEST-EM-128s AES128x(sk) ⊕ sk 1280 11 7 4 12 11 16 32 4566 
FAEST-EM-128f AES128x(sk) ⊕ sk 1280 16 0 16 8 8 16 32 5696 
FAEST-EM-192s Rijndael192x(sk) ⊕ sk 2304 16 0 16 12 12 24 64 10824 
FAEST-EM-192f Rijndael192x(sk) ⊕ sk 2304 24 0 24 8 8 24 64 13912 
FAEST-EM-256s Rijndael256x(sk) ⊕ sk 3584 22 14 8 12 11 32 64 20956 
FAEST-EM-256f Rijndael256x(sk) ⊕ sk 3584 32 0 32 8 8 32 64 26736 

the FAEST parameters. In AES and AES-EM, SBox 
inverse is the only non-linear operation operating in 
F28 . Refer to Table 1 for details on the non-linear 
complexity of AES and AES-EM OWFs. 

D Additional Benchmarks 

Here we put the additional benchmark numbers for 
the signature schemes and the OWFs used for all se-
curity levels. Table 7 describes the benchmark re-
sults of FAEST as in the NIST submission and Ta-
ble 6 describes the parameters used for the same. Ta-
ble 8 and Table 7 describe the parameter set and the 
benchmark results of FAESTER for all security lev-
els. Similarly in Table 10,11,12,13, we describe the 
parameter sets and the performance numbers for our 
new signature schemes MandaRain and KuMQuat. 
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Table 7: Signing Time (ms), Verifcation Time (ms) and Signature Size (bytes) of the FAEST and FAEST-EM 
optimized implementation. 

Scheme Runtime in ms 
Keygen Sign Verify 

Size in Bytes 
sk pk Signature 

FAEST-128s 

FAEST-128f 

0.0006 4.381 4.102 
0.0005 0.404 0.395 

16 32 5006 
16 32 6336 

FAEST-192s 

FAEST-192f 

0.0021 10.855 10.85 
0.0022 1.185 1.177 

24 64 12744 
24 64 16792 

FAEST-256s 

FAEST-256f 

0.003 14.373 14.365 
0.0035 1.639 1.583 

32 64 22100 
32 64 28400 

FAEST-EM-128s 

FAEST-EM-128f 

0.0005 4.151 4.415 
0.0005 0.446 0.474 

16 32 4566 
16 32 5696 

FAEST-EM-192s 

FAEST-EM-192f 

0.0012 10.577 10.882 
0.0012 1.081 1.083 

24 48 10824 
24 48 13912 

FAEST-EM-256s 

FAEST-EM-256f 

0.0024 14.046 14.089 
0.0025 1.568 1.583 

32 64 20956 
32 64 26736 

Table 8: AES and AES-EM OWFs and parameters for FAESTER and FAESTER-EM. We denote the signature 
schemes as FAESTER-λs/f or FAESTER-EM-λs/f. l is the number of VOLE correlations required for the NIZK 
proof. τ is the number of repetition determining the choice between slow (s) and fast (f). k0 and k1 are bit lengths 
of small VOLEs. Secret key, public key and signature sizes are in bytes. 

Signature Scheme OWF Esk(x) l w Topen τ τ0 τ1 k0 k1 sk size pk size sig. size 

FAESTER-128s 

FAESTER-128f 

AES128sk(x) 
AES128sk(x) 

1600 
1600 

7 
8 

102 
110 

11 
16 

0 
8 

11 
8 

11 
8 

11 
7 

16 
16 

32 
32 

4594 
6052 

FAESTER-192s 

FAESTER-192f 

AES192sk(x0)∥AES192sk(x1) 
AES192sk(x0)∥AES192sk(x1) 

3264 
3264 

12 
8 

162 
163 

16 
24 

4 
16 

12 
8 

12 
8 

11 
7 

24 
24 

64 
64 

12028 
16100 

FAESTER-256s 

FAESTER-256f 

AES256sk(x0)∥AES256sk(x1) 
AES256sk(x0)∥AES256sk(x1) 

4000 
4000 

6 
8 

245 
246 

22 
32 

8 
24 

14 
8 

12 
8 

11 
7 

32 
32 

64 
64 

21752 
28084 

FAESTER-EM-128s 

FAESTER-EM-128f 

AES128x(sk) ⊕ sk 
AES128x(sk) ⊕ sk 

1280 
1280 

7 
8 

103 
112 

11 
16 

0 
8 

11 
8 

11 
8 

11 
7 

16 
16 

32 
32 

4170 
5444 

FAESTER-EM-192s 

FAESTER-EM-192f 

Rijndael192x(sk) ⊕ sk 
Rijndael192x(sk) ⊕ sk 

2304 
2304 

8 
8 

162 
176 

16 
24 

8 
16 

8 
8 

12 
8 

11 
7 

24 
24 

48 
48 

10108 
13532 

FAESTER-EM-256s 

FAESTER-EM-256f 

Rijndael256x(sk) ⊕ sk 
Rijndael256x(sk) ⊕ sk 

3584 
3584 

6 
8 

218 
234 

22 
32 

8 
24 

14 
8 

12 
8 

11 
7 

32 
32 

64 
64 

19744 
26036 

Table 9: Signinig Time (ms), Verifcation Time (ms) and Signature Size (bytes) of the FAESTER and FAESTER-EM 
optimized implementation. 

Scheme Runtime in ms 
Keygen Sign Verify 

Size in Bytes 
sk pk Signature 

FAESTER-128s 

FAESTER-128f 

0.0006 3.282 4.467 
0.0005 0.433 0.610 

16 32 4594 
16 32 6052 

FAESTER-192s 

FAESTER-192f 

0.0021 8.930 16.783 
0.0022 1.093 2.177 

24 64 12028 
24 64 16100 

FAESTER-256s 

FAESTER-256f 

0.003 11.708 24.512 
0.0035 1.453 2.801 

32 64 21752 
32 64 27899 

FAESTER-EM-128s 

FAESTER-EM-128f 

0.0005 3.005 4.386 
0.0005 0.422 0.609 

16 32 4170 
16 32 5444 

FAESTER-EM-192s 

FAESTER-EM-192f 

0.0012 7.845 18.509 
0.0012 0.969 2.134 

24 48 10108 
24 48 13532 

FAESTER-EM-256s 

FAESTER-EM-256f 

0.0024 11.676 22.811 
0.0025 1.542 2.946 

32 64 19744 
32 64 26036 
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Table 10: Rain OWF and parameters for MandaRain. We denote the signature scheme as MandaRain-N-λs/f, where 
N is the number of Rain rounds. l is the number of VOLE correlations (length of extended witnesses in bits) required 
for the NIZK proof. τ is the number of repetition determining the choice between slow (s) and fast (f). k0 and k1 

are bit lengths of small VOLEs. Secret key, public key and signature sizes are in bytes. 

Scheme OWF Ek(x) l w Topen τ τ0 τ1 k0 k1 sk size pk size sig. size 

MandaRain-3-128s Rain-3-128sk(x) 384 7 100 11 7 4 12 11 16 32 2890 
MandaRain-3-128f Rain-3-128sk(x) 384 8 108 16 0 16 8 8 16 32 3588 
MandaRain-4-128s Rain-4-128sk(x) 512 7 101 11 7 4 12 11 16 32 3082 
MandaRain-4-128f Rain-4-128sk(x) 512 8 110 16 0 16 8 8 16 32 3876 

MandaRain-3-192s Rain-3-192sk(x) 576 8 183 16 16 0 12 0 24 48 7132 
MandaRain-3-192f Rain-3-192sk(x) 576 8 184 24 24 0 8 0 24 48 8540 
MandaRain-4-192s Rain-4-192sk(x) 768 8 181 16 16 0 12 0 24 48 7492 
MandaRain-4-192f Rain-4-192sk(x) 768 7 184 24 24 0 8 0 24 48 9116 

MandaRain-3-256s Rain-3-256sk(x) 768 6 246 22 14 8 12 11 32 64 12896 
MandaRain-3-256f Rain-3-256sk(x) 768 7 248 32 32 0 8 0 32 64 15220 
MandaRain-4-256s Rain-4-256sk(x) 1024 6 240 22 14 8 12 11 32 64 13408 
MandaRain-4-256f Rain-4-256sk(x) 1024 7 248 32 32 0 8 0 32 64 16244 

Table 11: Signing Time (ms), Verifcation Time (ms) and Signature Size (bytes) of MandaRain-3 and MandaRain-4 
optimized implementation. 

Scheme 
Keygen 

Runtime in ms 
Sign Verify sk 

Size in Bytes 
pk Signature 

MandaRain-3-128s 0.0018 2.800 5.895 16 32 2890 
MandaRain-3-128f 0.0018 0.346 0.807 16 32 3588 
MandaRain-4-128s 0.0026 2.876 6.298 16 32 3052 
MandaRain-4-128f 0.0026 0.371 0.817 16 32 3876 

MandaRain-3-192s 0.0047 7.275 19.043 24 48 7132 
MandaRain-3-192f 0.0047 0.879 1.968 24 48 8540 
MandaRain-4-192s 0.0061 7.025 18.006 24 48 7492 
MandaRain-4-192f 0.0061 1.012 2.142 24 48 9116 

MandaRain-3-256s 0.0064 9.016 21.217 32 64 12896 
MandaRain-3-256f 0.0064 1.357 2.751 32 64 15220 
MandaRain-4-256s 0.0084 9.438 21.412 32 64 13408 
MandaRain-4-256f 0.0084 1.630 3.088 32 64 16244 

Table 12: MQ OWF and parameters for KuMQuat. We denote the signature scheme as KuMQuat-P-λs/f, where 
P defnes the 2 prime power feld (F2n ). l is the number of VOLE correlations required for the ZK proof. τ is the 
number of repetition determining the choice between slow (s) and fast (f). k0 and k1 are bit lengths of small VOLEs. 
Secret key, public key and signature sizes are in bytes. 

Scheme OWF Ek(x) l w Topen τ τ0 τ1 k0 k1 sk size pk size sig. size 

KuMQuat-21-L1s MQ-21-L1sk(x) 152 7 99 11 7 4 12 11 19 35 2555 
KuMQuat-21-L1f MQ-21-L1sk(x) 152 4 102 16 0 16 8 8 19 35 3028 
KuMQuat-28-L1s MQ-28-L1sk(x) 384 7 100 11 7 4 12 11 48 64 2890 
KuMQuat-28-L1f MQ-28-L1sk(x) 384 4 108 16 0 16 8 8 48 64 3588 

KuMQuat-21-L3s MQ-21-L3sk(x) 224 8 181 16 16 0 12 0 28 52 6404 
KuMQuat-21-L3f MQ-21-L3sk(x) 224 8 182 24 0 16 8 8 28 52 7436 
KuMQuat-28-L3s MQ-28-L3sk(x) 576 8 184 16 16 0 12 0 72 96 7180 
KuMQuat-28-L3f MQ-28-L3sk(x) 576 8 164 24 0 16 8 8 72 96 8060 

KuMQuat-21-L5s MQ-21-L5sk(x) 320 6 248 22 14 8 12 11 40 72 11728 
KuMQuat-21-L5f MQ-21-L5sk(x) 320 8 247 32 0 32 8 8 40 72 13396 
KuMQuat-28-L5s MQ-28-L5sk(x) 768 6 244 22 14 8 12 11 96 128 12823 
KuMQuat-28-L5f MQ-28-L5sk(x) 768 8 247 32 0 32 8 8 96 128 15092 

27 



Table 13: Signinig Time (ms), Verifcation Time (ms) and Signature Size (bytes) of the KuMQuat optimized imple-
mentation. 

Scheme 
Keygen 

Runtime in ms 
Sign Verify sk 

Size in Bytes 
pk Signature 

KuMQuat-21-L1s 0.172 4.305 4.107 19 35 2555 
KuMQuat-21-L1f 0.173 0.539 0.736 19 35 3028 
KuMQuat-28-L1s 0.174 3.599 4.053 48 64 2890 
KuMQuat-28-L1f 0.172 0.400 0.623 48 64 3588 

KuMQuat-21-L3s 0.545 15.601 26.076 28 52 6404 
KuMQuat-21-L3f 0.545 2.316 4.724 28 52 7436 
KuMQuat-28-L3s 0.163 14.986 25.366 72 96 7180 
KuMQuat-28-L3f 0.163 1.963 2.801 72 96 8060 

KuMQuat-21-L5s 1.606 24.541 31.564 40 72 11728 
KuMQuat-21-L5f 1.606 4.934 6.336 40 72 13396 
KuMQuat-28-L5s 0.424 21.062 26.440 96 128 12823 
KuMQuat-28-L5f 0.424 2.529 3.443 96 128 15092 
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