
pqm4: Benchmarking NIST Additional Post-Quantum Signature 
Schemes on Microcontrollers 

Matthias J. Kannwischer1, Markus Krausz2, Richard Petri3, and Shang-Yi Yang1 

1 Quantum Safe Migration Center, Chelpis Quantum Tech, Taipei, Taiwan 
matthias@kannwischer.eu, nick.yang@chelpis.com

2 Horst Görtz Institute for IT Security, Ruhr University Bochum, Bochum, Germany 
markus.krausz@rub.de 

3 Max Planck Institute for Security and Privacy, Bochum, Germany 
rp@rpls.de 

Abstract. In July 2022, the US National Institute for Standards and Technology (NIST) announced 
the frst set of Post-Quantum Cryptography standards: Kyber, Dilithium, Falcon, and SPHINCS+. 
Shortly after, NIST published a call for proposals for additional post-quantum signature schemes to 
complement their initial portfolio. In 2023, 50 submissions were received, and 40 were accepted as 
round-1 candidates for future standardization. 
In this paper, we study the suitability and performance of said candidates on the popular Arm Cortex-M4 
microcontroller. We integrate the suitable implementations into the benchmarking framework pqm4 and 
provide benchmarking results on the STM32L4R5ZI featuring 640 KB of RAM. pqm4 currently includes 
reference implementations for 15 submissions and M4-optimized implementations for fve submissions. 
For the remaining candidates, we describe the reasons that hinder integration – the predominant reason 
being large key size or excessive memory consumption. 
While the performance of reference implementations is rather meaningless and often does not correlate 
with the performance of well-optimized implementations, this work provides some frst indication of 
which schemes are most promising on microcontrollers. The publicly available implementations in pqm4 
also provide a good starting point for future optimization eforts. 
Initially, we were hoping for a much higher code quality than for initial submissions to NIST’s previous 
PQC project. However, we got grossly disappointed: Half of the submissions make use of dynamic 
memory allocations, often completely without reason; Many implementations have compiler warnings, 
sometimes hinting at more serious issues; Many implementations do not pass simple sanitizer tests such 
as using valgrind; Multiple implementations make use of static memory. 

1 Introduction 

While NIST’s initial portfolio of post-quantum cryptography consisting of Kyber [SAB+19], Dilithium [LDK+19], 
Falcon [PFH+19], and SPHINCS+ [HBD+19] provides reasonable performance characteristics for most 
applications, there are some use-cases that beneft from diferent trade-ofs in terms of key, ciphertext, 
and signature sizes. Therefore, NIST as well as the cryptography community continues to study schemes 
achieving diferent performance characteristics: In Round 4 of the NIST PQC project [NIS23b], there are 
three code-based key-encapsulation mechanisms (KEMs) with the most prominent candidate being Classic 
McEliece [BCC+22] achieving much smaller ciphertexts than Kyber, but requiring very large public keys. 
Additionally, NIST [NIS23a] has issued another call for additional post-quantum digital signatures to comple-
ment their lattice-based and hash-based signature schemes. The call is primarily for schemes not based on 
structured lattices, and achieving short signatures and fast verifcation. By the deadline in June 2023, NIST 
had received 50 submissions of which they accepted 40 submissions as complete-and-proper. These schemes 
are now being studied in the frst round of evaluation. 

The frst round of evaluation in cryptographic competitions is commonly focussing on the security of 
the submitted schemes with numerous schemes being broken within hours of appearing publicly [AAS+19]. 
However, as submission teams were required to submit portable C reference implementations as a part of their 
submission package, we can also evaluate implementation performance and identify any problems with the 

∗ Date of this document: 2024-01-25. pqm4 version: 62244ef. 

https://github.com/mupq/pqm4/tree/62244ef4ba77562576ebd2a575c58f5a1184621a
mailto:rp@rpls.de
mailto:markus.krausz@rub.de
mailto:nick.yang@chelpis.com
mailto:matthias@kannwischer.eu


submitted implementations. This allows cryptographic engineers to identify promising optimization targets 
for a wide variety of platforms and publish numerous papers by comparing performance to the reference 
implementations. The performance of the resulting optimized implementations commonly plays an important 
role in the selection process beyond round 1 [AASA+20]. 

Besides the x64 reference platform, NIST is explicitly interested in additional performance results on 
constrained devices, such as smart cards and microcontrollers. NIST has designated the Arm Cortex-M4 as 
the primary optimization target in the class of microcontrollers [AASA+20]. During the evaluation of the 
candidates for the frst NIST PQC call, the pqm4 framework [KRSS19] emerged as the de facto standard 
evaluation platform for PQC implementations targeting the Arm Cortex-M4 microcontroller. It provides an 
easy-to-use and automated evaluation framework that unifes benchmarking and implementations of underlying 
symmetric cryptography to enable fair and meaningful performance comparisons. The pqm4 repository includes 
the majority of relevant and publicly available implementations optimized for the Cortex-M4 of selected and 
remaining PQC candidates from the frst NIST call. 

In this paper, we extend this repository and evaluate all 40 additional signature candidates in terms of 
their suitability for embedded devices and provide benchmarks for multiple performance characteristics. We 
extended pqm4 with 15 reference implementations and fve optimized implementations. For the remaining 
schemes there are either publicly announced severe vulnerabilities, current implementations require too much 
memory to be functional on any Arm Cortex-M4 platform, or would require major engineering efort to allow 
porting to pqm4 and embedded devices in general. 

In Section 2 we briefy introduce the pqm4 framework and the major changes since the frst report [KRSS19]. 
Following, in Section 3 we list the implementations added to pqm4 or the reasons that prohibit us from doing 
so for each of the 40 schemes. The performance results can be found in Section 4. 

2 pqm4 

The pqm4 project is a reference framework for benchmarking implementations of PQC KEM and signature 
schemes for Arm Cortex-M4 based embedded systems. The goal is not just to provide a common ground 
for comparing the various PQC schemes, but also diferent implementations of a single scheme. To that 
end, a set of tests are used to determine performance criteria important to embedded platforms of the basic 
operations of each scheme: key generation, de- and encapsulation for KEM schemes, or signature generation 
and verifcation for signature schemes. The performance criteria covered here are the speed in terms of 
CPU cycles spent on the operations, as well as static- and dynamic memory usage. Furthermore, a profling 
test is used to determine the cycles spent on symmetric primitives, which many schemes use for hashing 
or as PRNGs for sampling uniformly random bits. The memory usage is analyzed in terms of code size, 
static memory used, for example, as look-up-tables, and stack-usage during execution. Aside from these 
performance tests, the framework also includes functional tests, which check the expected behavior of the 
implementations’ APIs. This covers normal functional tests, tests against invalid inputs (invalid secret key or 
ciphertext during decryption, or invalid public key during verifcation), and a testvector test, which checks 
whether each implementation produces the same outputs as a reference implementation on a host platform. 

History. The initial framework covered 10 KEM and 3 signature schemes (in multiple security levels 
for some schemes) of the frst round of the NIST PQC standardization process. During this frst round, the 
framework was structured as a monolithic framework, targeting only one Arm Cortex-M4 platform. For the 
second round, the framework was split up into pqm4 and mupq. The former included only platform specifc 
implementations for the Cortex-M4, while the latter covered platform independent implementations suitable 
for 32 bit embedded platforms and further integrates implementations from the pqclean project [KSSW22]. 
This split facilitated the creation of pqm34 and pqriscv5, which aim to cover Arm Cortex-M3 and RISC-V 
based embedded platforms. For the third round the build system was overhauled from the ground up to support 
multiple target boards, with a common build system integrated into mupq to be used across pqm4, pqm3, and 
pqriscv. New target boards supported by pqm4 allowed the use of more memory on larger microcontrollers, 
or even the QEMU simulator. The simulated platform enables up to 4 MiB fash- and system memory. Lacking 

4 https://github.com/mupq/pqm3
5 https://github.com/mupq/pqriscv 

https://github.com/mupq/pqm3
https://github.com/mupq/pqriscv


any meaningful time-measurement, the simulator is not useful for performance tests concerning speed, but 
suitable for all memory measurements and functional tests. 

Measurement methodology. The main tool used for measuring the cycle counts of the scheme operations 
is the SYSTICK timer available Arm Cortex-M4 cores. The “Data Watchpoint and Trace Unit” (DWT) 
in the core features 32 bit cycle counter, which is, however, insufcient to measure schemes with runtimes 
exceeding 232 cycles. While the SYSTICK timer itself only uses a 24 bit counter, it can be used for longer 
measurements, as overfows are caught and counted by an interrupt service routine to measure an arbitrary 
number of cycles. For the speed benchmarks, the current cycle count is sampled before and after each scheme 
operation, and the diference taken as the result. Speed tests are repeated, to estimate a minimum-, average-, 
and maximum runtime for schemes that use random sampling methods. During the profling tests, the current 
cycle count is further sampled on entry and exit from symmetric primitives, and the accumulated sum of 
cycles spent is noted. All schemes integrated in pqm4 are adapted to use the same implementation for a set of 
common symmetric primitives (SHA-2, SHA-3/SHAKE, AES), which are regularly updated to the current 
state-of-art in terms of speed. For AES, pqm4 ofers a bitsliced constant-time implementation [AP20], as well 
as a faster variable-time t-table implementation [SS17]. To avoid an impact on the speed measurements by 
the timings of fash-based code memory, which may difer between manufacturers, the target microcontroller 
runs at a reduced clock frequency during cycle counting tests. The reduced frequency allows the execution of 
code without any wait-states, the maximum frequency depends on the microcontroller at hand6. The memory 
benchmarks use the compiler toolchain to determine the static memory usage (code- and static data sizes). 
To determine the dynamic stack usage during runtime, “stack spraying” is used, i.e., the stack is flled with 
a pattern and checked up to which size it is modifed. As no implementations with dynamic heap memory 
allocations are integrated into pqm4, no measurement of heap usage is necessary. 

Target Platform. Previous versions of pqm4 targeted the STM32F4DISCOVERY evaluation board, 
which featured the STM32F407VG microcontroller. The board was chosen for its afordable price and wide 
availability, and with its 1 MiB fash and 192 KiB SRAM ofered a reasonably high amount of memory. For this 
report, however, we opted for the Nucleo-L4R5ZI evaluation board, featuring a STM32L4R5ZI microcontroller. 
With 2 MiB fash and 640 KiB SRAM, this new target platform ofers a signifcant increase in memory 
resources, enabling us to benchmark more of the new signature schemes. The core clock frequency of the 
board is lower with 120 MHz compared to 168 MHz, the benchmarking clock frequency is further reduced 
to 20 MHz from 24 MHz. Both the old and the new platform feature a TRNG which is used as the entropy 
source (randombytes()) for the schemes. Our RNG implementation exhibits identical timing performance on 
both platforms. The memory layout between the platforms difers signifcantly. On the STM32F407VG, the 
192 KiB is made up of three blocks of SRAM: one 112 KiB block, one 16 KiB block, and a 64 KiB core-coupled 
block. The core-coupled memory was unused by pqm4, the second smaller block was only used for schemes 
which required the additional memory. This was a deliberate choice, as the second block exhibits diferent 
memory timings, taking about 1000 cycles more to read a 4 KiB block of memory. For the new platform, we 
chose not to avoid any memory blocks. The memory layout of the STM32L4R5ZI consists of three blocks: one 
192 KiB, one 64 KiB, and one 384 KiB block. Similar to the old platform, only the frst block exhibits the 
fastest timings. Including the slower blocks afects benchmarking results of schemes relying more heavily on 
memory reads. 

Choice of schemes. Not all of the 40 accepted submissions for the frst round of additional post-quantum 
digital signatures are suitable for benchmarking in the context of pqm4. The frst and foremost criteria for 
inclusion is the size of the key pair and signature, as they have to ft within the constrained memory resources 
of the chosen embedded platform. At the time of writing, the benchmarking framework is not setup for partial 
benchmarking of single operations, e.g., benchmarking signature verifcation of a signature/public key pair 
generated on an unconstrained system. Hence, only schemes which ft with an entire key pair and signature 
can be tested. The second criteria is the portability of the available implementations for a scheme. Some of 
the candidates rely heavily on third party libraries such as GMP or FLINT, which cannot be (easily) ported 
to an embedded system. Some of the other third party dependencies can be easily replaced. For example, we 
modifed implementations to use our SHA-3/SHAKE implementations, when the original implementation was 

6 Higher core clock frequencies require the CPU to enter wait states, to wait for the fash memory to respond. In 
our case up to six clock cycles, resulting in 2 − 3× higher cycles counts. The efective execution time is, however, 
amortized by the higher clock speeds. 



making use of the eXtended Keccak Code Package7 or OpenSSL. The last criteria is the absence of dynamic 
memory allocations, e.g., using the malloc function. While heap-based dynamic memory allocation can be 
implemented on embedded systems, their use is generally avoided in favor of static or stack-based allocations. 
As such, the pqm4 framework only includes implementations that use stack-based allocations. 

Porting implementations. Integrating a scheme implementation into pqm4 usually follows similar steps. 
Some scheme authors already provide suitable implementations, which are integrated easily. In all other 
cases, we used the reference or optimized implementations included in the submissions accepted by NIST as 
a startof point. Wherever necessary, the APIs are adapted to use the correct type system. Next, all calls to 
symmetric primitives are replaced to those provided by pqm4. If dynamic memory allocations are present, 
they are replaced by stack allocations. In some cases this is a simple replacement of a pointer with an array 
of appropriate size, e.g., if the allocated memory is not returned from the function. In a few cases, it may 
also involve allocating the memory in the calling function and passing a pointer. Implementations using 
more complex memory allocations were not ported to the framework. Some implementations used lookup 
tables that are computed on-the-fy and cached for future calls. As these caches are allocated statically, they 
break the reentrancy of the implementation, and complicate performance measurement. For that reason, 
implementations were modifed to allocate the the lookup tables on the stack and compute them for every 
invocation of the scheme. Ideally, implementers should only rely on precomputed lookup tables, allocated to 
fash memory.8 

When the implementation can be adapted with the previous steps, it is then integrated and tested using 
the QEMU simulator. Due to the up to 4 MiB of memory available on the simulated mps2-an386 platform, 
all but the largest schemes can be functionally tested and the stack-usage estimated. The result is a list of all 
integrated implementations and their respective memory requirements. Implementations that ft the target 
platform are then tested on real hardware, checked whether they pass the functional- and testvector tests, 
and fnally benchmarked for their execution speed. For code- and stack-size benchmarks, the simulated results 
using QEMU can be considered, as they are identical to those gathered from real hardware. 

3 New signature schemes included in pqm4 

Table 1 gives an overview of all schemes submitted to NIST to the call for additional signature schemes. For 
each scheme, we either list which implementations have been included in pqm4 (and reference the respective pull 
requests), or list the reasons why they cannot be included. We exclude 9 schemes against which (convincing) 
attacks have been publicly announced on the NIST pqcforum. Note that we do not aim to provide a complete 
picture of the state of cryptanalysis, but instead want to focus our engineering eforts on the schemes that 
are most likely going to advance the next round. For some schemes, the submission teams provided updated 
versions addressing vulnerabilities. For four schemes the public keys (for all parameter sets) itself are too large 
to ft into the memory of our target platform (640 KB). For further seven schemes, current implementations 
use too much memory to ft onto the target platform. Five schemes require external libraries that are not 
suitable for the Cortex-M4. One schemes does not have portable C-code. 20 out of 40 schemes have reference 
implementations that make use of dynamic memory allocations. We tried our best to eliminate those dynamic 
memory allocations and in the vast majority of cases they can be easily replaced by statically-sized bufers 
or variable-length arrays. Only for MIRA [ABB+23c], RYDE [ABB+23b], and FAEST [BBdSG+23], the 
dynamic memory allocations were the main reason for exclusion from pqm4 as eliminating those would require 
signifcant rewriting of the implementations. Overall, we currently have reference implementations for 15 
schemes and M4-optimized implementations for fve schemes in pqm4. 

In the following we give the details for each scheme. 

3.1 Code-based Signatures 

– CROSS [BBB+23b]: The CROSS reference implementation from the submission package has been 
merged into pqm4 in #309. For some parameter sets (e.g., cross-sha3-r-sdpg-1-small) test vectors 
are inconsistent between the host and the Cortex-M4 unless the signed message is initialized to 0 at the 

7 https://github.com/XKCP/XKCP
8 Memory marked const is allocated to fash on embedded systems, depending on the linker script. 

https://github.com/mupq/pqm4/pull/309
https://github.com/XKCP/XKCP


pqm4 reason(s) for exclusion 

issue PR ref m4f vuln pk mem not port ext lib dyn mem params 
CROSS [BBB+23b] #265 #309 ✓ 12/24 
Enhanced pqsigRM [CNL+23] #270 ✗ ✗ 0/1 
FuLeeca [RBK+23] #272 ✗ 0/3 
LESS [BBB+23a] #278 ✗ ✗ 0/7 
MEDS [CNP+23] #280 #324 ✓ 2/6 
Wave [BCC+23a] #298 ✗ ✗ 0/3 
SQIsign [CSSF+23] #293 ✗ ✗ 0/3 
EagleSign [SHDS23] #267 ✗ 0/4 
EHTv3 and EHTv4 [SF23] #268 ✗ ✗ 0/5 
HAETAE [CCD+23b] #273 #313 ✓ ✓ 3/3 
HAWK [BBD+23] #274 #305 ✓ 3/3 
HuFu [YJL+23] #276 ✗ ✗ 0/3 
Raccoon [dPEK+23] #288 ✗ 0/18 
SQUIRRELS [ENST23] #294 ✗ ✗ 0/5 
Biscuit [BKPV23] #264 #314 ✓ 3/6 
MIRA [ABB+23c] #281 ✗ 0/6 
MiRitH [ARZV+23] #282 #315 ✓ ✓ 16/32 
MQOM [FR23] #283 #322 ✓ (✗) 2/12 
PERK [ABB+23a] #284 #318 ✓ ✓ 12/12 
RYDE [ABB+23b] #289 ✗ 0/6 
SDitH [MFG+23] #290 ✗ ✗ 0/12 
3WISE [Rod23a] #260 ✗ ✗ 0/3 
DME-Sign [LA23] #266 ✗ 0/3 
HPPC [Rod23b] #275 ✗ 0/3 
MAYO [BCC+23b] #279 #302 ✓ ✓ 3/4 
PROV [GCF+23] #286 ✗ ✗ 0/3 
QR-UOV [FIH+23] #287 ✗ ✗ 0/12 
SNOVA [WCD+23] #291 #311 ✓ 7/18 
TUOV [DGG+23] #295 #327 ✓ ✗ ✗ 0/12 
UOV [BCD+23] #296 #300 ✓ ✓ 3/12 
VOX [PCF+23] #297 ✗ ✗ 0/3 
AIMer [KCC+23] #261 #323 ✓ (✗) 3/12 
Ascon-Sign [SGJ+23] #263 #308 ✓ 8/8 
FAEST [BBdSG+23] #271 ✗ 0/12 
SPHINCS-alpha [YCZ23] #292 #312 ✓ 6/24 
ALTEQ [BDN+23] #262 ✗ ✗ 0/6 
eMLE-Sig 2.0 [LZ23] #269 ✗ ✗ 0/3 
KAZ-SIGN [AAC+23] #277 ✗ ✗ ✗ 0/3 
Preon [CCC+23] #285 ✗ ✗ 0/9 
Xifrat1-Sign.I [NP23] #299 ✗ 0/1 

15 5 9 4 7 1 5 20 83/325 
Table 1. Overview of the 40 candidates submitted to the NIST call for additional signatures and their status of 
inclusion in pqm4. Reasons for exclusion include publicly announced severe vulnerabilities, public key sizes exceeding 
the RAM size of the target device (640 KB), implementations exceeding 640 KB of memory, non-portable code, 
external dependencies incompatible with the Cortex-M4, and dynamic memory allocations. The last column gives the 
number of parameter sets for which reference implementations have been integrated into pqm4 and that are functional 
with 640 KB. 

https://github.com/mupq/pqm4/issues/265
https://github.com/mupq/pqm4/pull/309
https://github.com/mupq/pqm4/issues/270
https://github.com/mupq/pqm4/issues/272
https://github.com/mupq/pqm4/issues/278
https://github.com/mupq/pqm4/issues/280
https://github.com/mupq/pqm4/pull/324
https://github.com/mupq/pqm4/issues/298
https://github.com/mupq/pqm4/issues/293
https://github.com/mupq/pqm4/issues/267
https://github.com/mupq/pqm4/issues/268
https://github.com/mupq/pqm4/issues/273
https://github.com/mupq/pqm4/pull/313
https://github.com/mupq/pqm4/issues/274
https://github.com/mupq/pqm4/pull/305
https://github.com/mupq/pqm4/issues/276
https://github.com/mupq/pqm4/issues/288
https://github.com/mupq/pqm4/issues/294
https://github.com/mupq/pqm4/issues/264
https://github.com/mupq/pqm4/pull/314
https://github.com/mupq/pqm4/issues/281
https://github.com/mupq/pqm4/issues/282
https://github.com/mupq/pqm4/pull/315
https://github.com/mupq/pqm4/issues/283
https://github.com/mupq/pqm4/pull/322
https://github.com/mupq/pqm4/issues/284
https://github.com/mupq/pqm4/pull/318
https://github.com/mupq/pqm4/issues/289
https://github.com/mupq/pqm4/issues/290
https://github.com/mupq/pqm4/issues/260
https://github.com/mupq/pqm4/issues/266
https://github.com/mupq/pqm4/issues/275
https://github.com/mupq/pqm4/issues/279
https://github.com/mupq/pqm4/pull/302
https://github.com/mupq/pqm4/issues/286
https://github.com/mupq/pqm4/issues/287
https://github.com/mupq/pqm4/issues/291
https://github.com/mupq/pqm4/pull/311
https://github.com/mupq/pqm4/issues/295
https://github.com/mupq/pqm4/pull/327
https://github.com/mupq/pqm4/issues/296
https://github.com/mupq/pqm4/pull/300
https://github.com/mupq/pqm4/issues/297
https://github.com/mupq/pqm4/issues/261
https://github.com/mupq/pqm4/pull/323
https://github.com/mupq/pqm4/issues/263
https://github.com/mupq/pqm4/pull/308
https://github.com/mupq/pqm4/issues/271
https://github.com/mupq/pqm4/issues/292
https://github.com/mupq/pqm4/pull/312
https://github.com/mupq/pqm4/issues/262
https://github.com/mupq/pqm4/issues/269
https://github.com/mupq/pqm4/issues/277
https://github.com/mupq/pqm4/issues/285
https://github.com/mupq/pqm4/issues/299


beginning of the signing procedure. We added the initialization, but this hints at missing initialization and 
possibly unused parts of the signature. For both the sha2 and sha3 variants, spdg-1-fast and the two 
respective sets with security level 3 and 5 in addition to spdg-1-small, spd-1-fast and spd-2-fast 
are running on our physical evaluation platform. This makes in total 12 out of the 24 parameter sets. 

– Enhanced pqsigRM [CNL+23]: The single parameter set of Enhanced pqsigRM (Enh-pqsigRM-613) 
has public keys of 2.00 MB and signatures of 1 023 bytes. 2 MB exceeds the available memory on our 
target M4 platform, and we hence do not include Enhanced pqsigRM in pqm4. 

– FuLeeca [RBK+23]: FuLeeca has been shown vulnerable by Hörmann and van Woerden9 and the 
FuLeeca submission team acknowledged the vulnerability. At the time, no updated version of FuLeeca is 
available and we, hence, do not include FuLeeca in pqm4. Additionally, when studying the implementation 
of FuLeeca, we found that it is incorrectly implementing SHAKE (mixing calls to an incremental and 
non-incremental API). We reported this problem to the submission team and they published a patch 
resolving this problem.10 This fx changes KATs. 

– LESS [BBB+23a]: The LESS reference implementation makes use of dynamic memory allocations. 
Additionally, signing and verifcation require a bufer (of type normalized_IS_t) of T · K · (N − K) 
bytes totaling 3.1 MB (LESS-1s) to 102 MB (LESS-5b). This is far beyond the reach of any micro-
controller and, hence, we cannot include LESS into pqm4. We also noticed that compute_digest and 
compute_digest_array do not hash the tree_salt (due to passing a too short length to the hash 
function). This appears to be incompatible with the specifcation and fxing the issue will result in 
diferent KATs. 

– MEDS [CNP+23]: The MEDS reference implementation from the submission package has been merged 
into pqm4 in #324. Two (meds13220 and meds55604) of the six parameter sets are running on the 
Nucleo-L4R5ZI board. 

– Wave [BCC+23a]: Wave uses public keys of 3.7 MB (Wave822) to 13.6 MB (Wave1644) and, hence, can 
not be included in pqm4. 

3.2 Isogeny Signatures 

– SQIsign [CSSF+23]: Currently all available implementations of SQIsign make heavy use of dynamic 
memory allocations. This is, in part, due to variable-sized integer arithmetic. Hence, at the moment, 
we cannot include SQIsign in pqm4. We believe that SQIsign without dynamic memory allocations is 
possible, but requires signifcant engineering eforts. Preliminary experiments (on x86) using the reference 
implementation in the submission package show that the total memory (stack + heap) of signing of 
SQISign-NIST-I is slightly above 300 KB. Verifcation requires only about 12 KB of memory and uses 
signifcantly less dynamic memory. The implementation relies on the GMP library. 

3.3 Lattice-based Signatures 

– EagleSign [SHDS23]: EagleSign in the version submitted to NIST has been shown to be vulnerable 
by Tibouchi.11 Tibouchi published code practically recovering an EagleSign secret key from a sufcient 
number of signatures.12 We do not include EagleSign in pqm4. 

– EHTv3 and EHTv4 [SF23]: Practical attacks against EHT (as submitted to NIST) were presented 
by both Postlethwaite and van Woerden13 as well as Ryan and Suhl.14 We do not include EHTv3 and 
EHTv4 in pqm4. 

– HAETAE [CCD+23b]: HAETAE was merged into pqm4 in #313. We include both the reference 
implementation15(v2.0) and the M4F-optimized version described in [CCD+23a]. However, these im-
plementations are not compatible with the original version submitted to NIST (v1.0). Small increases 

9 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/KvIege2EbuM/m/oPrvAPLaBQAJ 
10 https://gitlab.lrz.de/tueisec/fuleeca-signature/-/commit/3fc5835ea2e833efd01830944137a8dc0f4d0e58 
11 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/zas5PLiBe6A/m/A2KSHtqUAgAJ 
12 https://github.com/mti/attack_eaglesign
13 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/mFl_5Rq6-RU/m/2511f9lLAAAJ 
14 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/bkJKBFq3TDY/m/lTCum6zgBQAJ 
15 https://kpqc.cryptolab.co.kr/haetae 

https://github.com/mupq/pqm4/pull/324
https://github.com/mupq/pqm4/pull/313
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/KvIege2EbuM/m/oPrvAPLaBQAJ
https://gitlab.lrz.de/tueisec/fuleeca-signature/-/commit/3fc5835ea2e833efd01830944137a8dc0f4d0e58
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/zas5PLiBe6A/m/A2KSHtqUAgAJ
https://github.com/mti/attack_eaglesign
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/mFl_5Rq6-RU/m/2511f9lLAAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/bkJKBFq3TDY/m/lTCum6zgBQAJ
https://kpqc.cryptolab.co.kr/haetae


in the signature size, resulting from bug fxes and diferences in the encoding and packing to address 
implementation vulnerabilities demonstrated by Saarinen16 17 make this version incompatible with the 
original one. All three parameter sets are able to run on our evaluation platform. 

– HAWK [BBD+23]: The reference implementations of HAWK from the submission package have been 
merged into pqm4 in #305 and all three parameter sets are running. 

– HuFu [YJL+23]: HuFu uses public keys of 1 059 KB (security level 1) to 3 573 KB (security level 3). 
This exceeds the available memory available on our target platform and we, thus, do not include HuFu in 
pqm4. 

– Raccoon [dPEK+23]: The reference implementation of Raccoon is making use of the __int128 
datatype which is not portable to our platform. The Raccoon reference implementation ofers the option 
(POLYR_Q32) to switch to 32-bit NTTs (mod 16515073 and mod 33292289) rather than 64-bit NTTs 
(mod 16515073 · 33292289) for better support of 32-bit platforms. However, turning on this option does 
not eliminate all instances of __int128. We have contacted the submission team and learned that a fully 
portable implementation is work in progress. We cannot include Raccoon in pqm4 at this moment. 

– SQUIRRELS [ENST23]: SQUIRRELS requires public keys of 666 KB (Squirrels-I) to 2 721 KB 
(Squirrels-V) which is too large for our target platform. Furthermore, the reference implementation of 
SQUIRRELS depends on multiple external libraries. We do not include SQUIRRELS in pqm4. 

3.4 MPC-in-the-Head Signatures 

– Biscuit [BKPV23]: The reference implementation of Biscuit from the submission package has been 
merged into pqm4 in #314. Of the six parameter sets, three (biscuit128f, biscuit192f, biscuit256f) 
meet the constraints of our evaluation board. 

– MIRA [ABB+23c]: The MIRA reference implementation makes heavy use of dynamic memory that 
would have to be eliminated prior to merging it into pqm4. MIRA is re-using the same data structures (e.g., 
gfqm_vec or gf16_mat) for multiple sizes. This requires signifcant refactoring for eliminating dynamic 
memory allocations. We do not include MIRA in pqm4 for now. 

– MiRitH [ARZV+23]: The MiRitH reference implementation from the ofcial repository18 has been 
added to pqm4 in #315. The MiRitH team also provides an implementation optimized for the Cortex-M4 
in the same repository. We have merged the optimized implementation in #325. We have reported 
multiple small issues with those implementations to the submission team which have been fxed in the 
ofcial repository by now. All fast parameter sets of the non-hypercube variant are functional on our 
testing platform. From the hypercube parameter sets, the fast and short sets for security level 1 and 3 
and mirith_hypercube_Va_fast and mirith_hypercube_Vb_fast are running. 

– MQOM [FR23]: The MQOM reference implementation from the submission package has been merged 
into pqm4 in #322. We have eliminated a large number of dynamic memory allocations from the reference 
implementation. Luckily, the vast majority of dynamic memory allocations actually had a static size and 
could easily be replaced. A small number of variable-sized bufers have been replaced by variable-length 
arrays (VLAs). Those could be replaced with static bufers of worst-case length. Only the two parameter 
sets mqom_cat1_gf251_fast and mqom_cat1_gf31_fast of the 12 available sets are suitable for our 
evaluation board. 

– PERK [ABB+23a]: The PERK team has contributed a reference implementation and a M4-optimized 
implementation compatible with the specifcation (v1.1) in #318. The M4 implementation is presented 
in [BBB+24]. This version is, however, incompatible with the one in the NIST submission package. Also 
note that compared to the ofcial reference implementation (v1.1), the PERK team has replaced the 
GMP dependency with standalone arithmetic. All parameter sets are running on our evaluation board. 

– RYDE [ABB+23b]: Similar as MIRA, RYDE uses numerous (>50) dynamic memory allocations re-using 
the same data-structures for diferently sized bufers. Including RYDE into pqm4 would require signifcant 
refactoring efort for removing dynamic memory allocations. We do not include it for now. 

– SDitH [MFG+23]: The SDitH reference implementation makes light use of dynamic memory allocations, 
but those could be eliminated without too much efort. However, the overall memory footprint ranges from 

16 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/ImcSqGLFdoo/m/G86jtgDtBQAJ 
17 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Hq-wRFDbIaU/m/iLZctTiLAgAJ 
18 https://github.com/Crypto-TII/mirith_nist_submission/commit/f27b540b77215dd17b10417726c6c6f7ccd41aa5 

https://github.com/mupq/pqm4/pull/305
https://github.com/mupq/pqm4/pull/314
https://github.com/mupq/pqm4/pull/315
https://github.com/mupq/pqm4/pull/325
https://github.com/mupq/pqm4/pull/322
https://github.com/mupq/pqm4/pull/318
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/ImcSqGLFdoo/m/G86jtgDtBQAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Hq-wRFDbIaU/m/iLZctTiLAgAJ
https://github.com/Crypto-TII/mirith_nist_submission/commit/f27b540b77215dd17b10417726c6c6f7ccd41aa5


800 KB (for SDitH-L1-gf256) to 2.5 MB (for SDitH-L5-gf256) which exceeds the available memory 
of our target platform. Getting SDitH to work on the Cortex-M4 would require a stack-optimized 
implementation. We do not include SDitH in pqm4 for now. 

3.5 Multivariate Signatures 

– 3WISE [Rod23a]: Smith-Tone [ST23] presented a polynomial time attack on 3WISE, therefore, we did 
not include 3WISE in pqm4. Furthermore, the dependency on the FLINT library currently prevents the 
reference code from being included in pqm4. 

– DME-Sign [LA23]: Briaud, Bros, Perlner, and Smith-Tone19 presented a key recovery attack on DME-
Sign, which has been acknowledged by the DME-Sign team. Thus, we currently do no consider adding 
DME-Sign to pqm4. 

– HPPC [Rod23b]: The reference implementation of HPPC unfortunately depends on the external 
libraries FLINT and M4RI. These external dependencies prohibit a straightforward integration into pqm4. 

– MAYO [BCC+23b]: The MAYO reference implementation from the ofcial repository20 as well as 
the M4F-optimized implementation described in [BCC+23c] have been merged into pqm4 in #302. Note 
that [BCC+23c] also proposes a change to the MAYO specifcation by switching to a nibble representation 
rather than the bitsliced representation. We merged the bitsliced version that is compatible with the 
round-1 specifcation. Only the parameter set for the highest security level does not ft on the evaluation 
board. 

– PROV [GCF+23]: Even for the smallest parameter set (PROV-I), PROV requires more than the available 
640 KB for generating a signature. The current implementation requires 428 536 bytes for the expanded 
public key which together with the compressed public key (68 326 bytes) and the secret key (203 688 
bytes) already exceeds the available memory. 

– QR-UOV [FIH+23]: QR-UOV has not been included in pqm4 because the reference implementation 
allocates huge arrays for signature computation that exceed the available memory resources of our target 
platform. 

– SNOVA [WCD+23]: We merged the SNOVA reference implementation from the submission package 
into pqm4 in #311. The current implementation of SNOVA implementation is using a pre-computed 
static table S. In the reference implementation, this table is computed dynamically and cached. The 
computation is done outside of the core function and, thus, not refected in the benchmarks. For a quick 
integration into pqm4, we re-compute this table at the beginning of key generation, signing, and verifcation, 
but maintain the static array. This results in fairer benchmarks while not structurally changing the 
code. A better solution would be to pre-compute the constants and placing them in the code. All three 
parameter sets targeting security level 1 run both in the esk and the ssk variant on the evaluation 
board. snova-37-8-16-4-ssk targeting security level three is also running and leading to seven out 
of 18 variants. [IA24] raised concerns about the current SNOVA parameter sets reaching the claimed 
security levels. The SNOVA team acknowledged these concerns and have proposed updated parameters21. 
However, as of now, no updated implementation is available. 

– TUOV [DGG+23]: The high memory usage of the reference implementation from the submission 
package of TUOV prevents it from running on our evaluation platform. The parameter set with the lowest 
memory consumption (tuov-Ip) requires around 750 KB of RAM. The implementation is making use of 
dynamic memory allocations. However, these can be easily eliminated. We included TUOV in pqm4 in 
#327, but none of the parameter sets are functional on the target board. 

– UOV [BCD+23]: The UOV implementation from the ofcial repository as well as the M4F-optimized 
implementation described in [BCH+23] have been merged in #300. Note that only the uov-Ip parameter 
sets ft on our target platform. In the paper, the authors are also able to evaluate the uov-Is parameters 
on the same target by writing public and secret keys to fash memory. Writing to fash memory is not 
supported by the pqm4 framework. The three security level 1 parameter set require less then the 640 KiB 
SRAM and are thus functional on our board, the remaining nine parameter sets require more than this. 

19 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/aoXpl4TlNh4/m/Eal1YHw0BAAJ 
20 https://github.com/PQCMayo/MAYO-C 
21 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/m11kg20sTyU/m/cLkGIDaiBAAJ 

https://github.com/mupq/pqm4/pull/302
https://github.com/mupq/pqm4/pull/311
https://github.com/mupq/pqm4/pull/327
https://github.com/mupq/pqm4/pull/300
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/aoXpl4TlNh4/m/Eal1YHw0BAAJ
https://github.com/PQCMayo/MAYO-C
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/m11kg20sTyU/m/cLkGIDaiBAAJ


– VOX [PCF+23]: Furue and Ikematsu [FI23] raised concerns that the security of the current VOX 
parameters has been severely overestimated.22. The VOX team has acknowledged the attack and proposes 
new parameters in [MRPC+23]. However, at this time no reference implementations of the new parameter 
sets have been published and we, hence, do not include VOX in pqm4. 

3.6 Symmetric-based Signatures 

– AIMer [KCC+23]: The AIMer reference implementation from the submission package contains a large 
number of dynamic memory allocations. All of those can be easily converted into stack allocations. We 
eliminated the dynamic memory allocations and merged AIMer into pqm4 in #323. However, for some of 
the parameter sets, that these bufers exceed the 4 MiB stack memory available on qemu’s mps2-an386 
(or even the 8 MiB default stack size on Linux). We only include parameter sets that we managed to 
successfully test using qemu. aimer-l1-param1, aimer-l1-param2 and aimer-l3-param1 are running 
on our target platform, nine further parameter sets for AIMer are not. 

– Ascon-Sign [SGJ+23]: We have merged the Ascon-Sign reference implementation from the submission 
package into pqm4 in #263. Since pqm4 does not support Ascon, we use the Ascon version shipped in the 
submission package. All parameter sets are running on our evaluation board. 

– FAEST [BBdSG+23]: The FAEST reference implementation in the submission package uses a large 
number of dynamic memory allocations (>150). All of the dynamic memory allocations in faest_aes.c 
and vole.c can easily be converted into VLAs. They could also be converted to fxed-sized bufers if 
defning parameters statically. However, some other dynamic memory allocations are harder to eliminate: 
The structs vec_com_t, vec_com_rec_t, tree_t hold pointers to bufers that have varying size even for 
a single parameter set. Those would have to be duplicated for each size needed, or alternatively, the worst 
case size needs to be used potentially increasing the memory footprint. We do not include FAEST in 
pqm4. 

– SPHINCS-alpha [YCZ23]: The SPHINCS-alpha reference implementation from the submission package 
has been merged into pqm4 in #312. The implementation used static memory that contains a large (280 
KB for sphincs-a-shake-128f) lookup table that is computed during frst use (i.e., key generation) and 
re-used throughout the computation including signing and verifcation. This table computation requires 
signifcant time (around 15 million clock cycles for sphincs-a-shake-128f). As this leads to unfair 
benchmarking results in signing and verifcation, we instead compute the table once in the beginning of 
each of key generation, signing, and verifcation. We also move the table to the stack. We were able to 
make 6 out of 24 variants functional for pqm4: 128f, 128s and 192f each in both the sha2 and the shake 
version. 

3.7 Other Signatures 

– ALTEQ [BDN+23]: The ALTEQ implementation available in the NIST submission package makes 
heavy use of dynamic memory allocations. Additionally, the memory footprint is too large to ft on our 
target platform (alteq-shortsig-I requires around 1 MB, alteq-balanced-I requires around 2 MB). 
We, thus, do not include ALTEQ in pqm4. 

– eMLE-Sig 2.0 [LZ23]: eMLE-Sig 2.0 has been shown vulnerable by Tibouchi.23 An implementation of 
the attack is available.24 We do not include eMLE-Sig 2.0 in pqm4. 

– KAZ-SIGN [AAC+23]: Bernstein demonstrated a signature forgery attack against KAZ-SIGN,25 we 
therefore did not include the scheme in pqm4. The KAZ-SIGN team has published updated versions four 
times (with the latest iteration being KAZ-SIGN 1.426), each time being broken by Bernstein within one 
day. 

– Preon [CCC+23]: The reference implementation of the smallest parameter set of Preon (Preon128A) 
currently requires around 200 MB of memory for signing. Additionally, it has more than 250 dynamic 
memory allocations. We do not include Preon in pqm4. 

22 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/icHfTrzkfw4/m/Zj7GrnjMAQAJ 
23 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/zas5PLiBe6A/m/aOnAlT6cAQAJ 
24 https://github.com/mti/attack_emle
25 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/2ljDcgtawFw/m/61PiLt6WAgAJ 
26 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/jv72ZzYwAZQ/m/ayNzr7U1GQAJ 

https://github.com/mupq/pqm4/pull/323
https://github.com/mupq/pqm4/pull/263
https://github.com/mupq/pqm4/pull/312
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/icHfTrzkfw4/m/Zj7GrnjMAQAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/zas5PLiBe6A/m/aOnAlT6cAQAJ
https://github.com/mti/attack_emle
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/2ljDcgtawFw/m/61PiLt6WAgAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/jv72ZzYwAZQ/m/ayNzr7U1GQAJ


– Xifrat1-Sign.I [NP23]: Xifrat1-Sign.I was practically broken by Panny27. We do not include it. 

4 Results 

In this section we summarize the benchmarking results at the time of writing. As the pqm4 framework is 
under constant development, the numbers may change over time. The largest change for now is the use of a 
new target platform, which produces diferent results, due to its diferent memory timings. This change is 
accompanied by a newer compiler version. At the time of writing, we use the version 13.2 of the GNU C 
Compiler toolchain provided by Arm28. In the future, implementations for the schemes may be replaced by 
faster versions, or implementations with other goals (e.g., lower memory requirements) are added. The pqm4 
GitHub repository contains continually updated listing of the results. 

Table 2 presents the measured execution speed of each implementation in terms of CPU cycles in thousands 
(i.e., kilocycles). We measured ten executions per scheme and list the average value, with the exception of the 
dilithium, haetae, and hawk schemes, which were executed 100 times, due to their signifcant variance in 
execution time. The table lists the average cycle counts of all executions, with the diference to the minimum 
and maximum shown in the super- and subscript. The percentage of cycles spent in symmetric primitives 
is shown in parentheses. As reference, we included numbers for dilithium implementing the third round 
specifcation. 

Table 3 presents the memory requirements of each implementation. Listed are the sizes of the text (i.e., 
compiled code), data, and BSS sections produced by the implementations source, as well as the required 
stacksize (measured in KiB) of each operation, excluding the key, message, and signature. While the code/data 
sizes can be determined statically with the compiler tools, the stack size was determined using the QEMU 
simulator. As the QEMU simulator produces the same results for the memory metrics as real hardware 
platforms and provides more resources, it allows us to test more schemes and security levels. Some of the 
largest schemes, however, are still too big for the simulated platform. 

Table 2: Average execution speed for key generation, signature generation, 
and signature verifcation for each scheme implementation, as measured 
on the Nucleo-L4R5ZI evaluation board. Execution speed is shown in 
thousands of cycles, with the diference to the minimum and maximum 
shown in the super- and subscript respectively. Cycles spent on symmetric 
cryptography shown in parentheses. 

Scheme impl. keygen sign verify 

dilithium2 clean 

m4f 

1874 +41 
−35 

1426 +40 
−47 

(62%) 

(80%) 

7283 +13672 (37%)−3962 

3815 +7908 (67%)−2001 

2062 +0 
−0 

1417 +0 
−0 

(53%) 

(77%) 

dilithium3 clean 

m4f 

3205 +2 
−1 

2516 +1 
−1 

(65%) 

(82%) 

12893 +52247 (40%)−7796 

6374 +11353 (69%)−3439 

3376 +0 
−0 

2411 +0 
−0 

(57%) 

(79%) 

dilithium5 clean 

m4f 

5340 +66 
−53 

4277 +41 
−46 

(67%) 

(84%) 

15533 +35954 (45%)−7581 

8473 +16493 (74%)−3591 

5610 +0 
−0 

4185 +0 
−0 

(61%) 

(82%) 

haetae2 ref 

m4f 

9265 +49825 
−7549 

9184 +34372 
−7629 

(25%) 

(27%) 

32068 +153018 (43%)−25792 

26104 +95950 (57%)−21385 

1154 +450 
−50 

918 +0 
−0 

(45%) 

(54%) 

haetae3 ref 

m4f 

17553 +59078 
−14530 

14630 +63266 
−11877 

(30%) 

(33%) 

44320 +116183 (43%)−34537 

30588 +159334 (57%)−23135 

2097 +890 
−99 

1761 +0 
−0 

(50%) 

(57%) 

27 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/9FXtBZKWueA/m/DojbRt6ZAgAJ 
28 https://developer.arm.com/Tools%20and%20Software/GNU%20Toolchain 

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/9FXtBZKWueA/m/DojbRt6ZAgAJ
https://developer.arm.com/Tools%20and%20Software/GNU%20Toolchain


Table 2: Average execution speed for key generation, signature generation, 
and signature verifcation for each scheme implementation (cont.) 

Scheme impl. keygen sign verify 

haetae5 ref 

m4f 

19940 +84658 (31%)−16076 

19447 +92871 (34%)−15916 

55087 +207542 (44%)−43097 

42365 +162129 (57%)−33103 

2593 +1186 
−132 

2324 +0 
−0 

(54%) 

(58%) 

hawk256 ref 16846 +22553 (51%)−5306 1116 +1848 (62%)−161 628 +0 
−0 (11%) 

hawk512 ref 53382 +48360 (12%)−8110 1972 +0 (49%)−0 1294 +1 
−1 (9%) 

hawk1024 ref 231721 +308765 (5%)−47959 4310 +0 (49%)−0 2782 +2 
−2 (8%) 

biscuit128f ref 1055 +0 (54%)−0 274072 +0 (10%)−0 254371 +0 
−0 (9%) 

biscuit192f ref 1886 +0 (54%)−0 765314 +0 (6%)−0 713413 +0 
−0 (6%) 

biscuit256f ref 3302 +0 (54%)−0 1747188 +0 (4%)−0 1678999 +0 
−0 (4%) 

mayo1 ref 

m4f 

7977 +0 (39%)−0 

5242 +0 (60%)−0 

18005 +0 (18%)−0 

9101 +0 (35%)−0 

6294 +0 
−0 

4953 +0 
−0 

(50%) 

(63%) 

mayo2 ref 

m4f 

18433 +0 (23%)−0 

11918 +0 (35%)−0 

23547 +0 (18%)−0 

11980 +0 (36%)−0 

5494 +0 
−0 

5130 +0 
−0 

(76%) 

(81%) 

mayo3 m4f 18947 +0 (55%)−0 32477 +0 (33%)−0 16853 +0 
−0 (62%) 

ov-Ip ref 

m4f 

350784 +0 (3%)−0 

139186 +0 (8%)−0 

6479 +0 (0%)−0 

2705 +2157 (1%)−240 

1301 +0 
−0 

994 +3 
−15 

(1%) 

(1%) 

ov-Ip-pkc ref 

m4fspeed 

m4fstack 

375130 +0 (3%)−0 

175417 +0 (6%)−0 

175417 +0 (6%)−0 

6924 +0 (0%)−0 

2484 +0 (1%)−0 

2484 +0 (1%)−0 

11430 +0 
−0 

11200 +3 
−16 

12043 +6 
−21 

(80%) 

(82%) 

(81%) 

ov-Ip-pkc-skc ref 

m4fspeed 

m4fstack 

375130 +0 (3%)−0 

175417 +0 (6%)−0 

175417 +0 (6%)−0 

241521 +0 (5%)−0 

89193 +0 (13%)−0 

89193 +0 (13%)−0 

12161 +0 
−0 

11987 +4 
−13 

12037 +12 
−33 

(81%) 

(82%) 

(82%) 

snova-24-5-16-4-esk ref 24841 +1 (12%)−1 139248 +9 (0%)−13 88454 +1 
−1 (3%) 

snova-24-5-16-4-ssk ref 24772 +1 (12%)−1 174091 +125106 (2%)−13926 88454 +1 
−1 (3%) 

snova-25-8-16-3-esk ref 35281 +0 (10%)−0 65183 +10 (0%)−10 42543 +0 
−0 (8%) 

snova-25-8-16-3-ssk ref 35195 +0 (10%)−0 93185 +13 (4%)−11 42543 +0 
−0 (8%) 

snova-28-17-16-2-esk ref 51178 +0 (11%)−0 21283 +11 (0%)−15 19180 +0 
−0 (28%) 

snova-28-17-16-2-ssk ref 51065 +0 (11%)−0 50759 +9 (11%)−13 19180 +0 
−0 (28%) 

snova-37-8-16-4-ssk ref 122024 +1 (9%)−0 576130 +387579 (2%)−43107 335807 +1 
−0 (3%) 

cross-sha2-r-sdp-1-fast ref 5615 +36 (90%)−25 216566 +830 (86%)−822 142974 +782 
−1350 (91%) 

cross-sha2-r-sdp-3-fast ref 8201 +7 (87%)−53 241882 +166 (80%)−65 123737 +585 
−782 (82%) 

cross-sha2-r-sdpg-1-fast ref 2151 +24 (93%)−35 116163 +20 (91%)−43 87579 +373 
−365 (92%) 

cross-sha2-r-sdpg-1-small ref 2151 +24 (93%)−35 391735 +39 (91%)−69 368474 +379 
−658 (93%) 



Table 2: Average execution speed for key generation, signature generation, 
and signature verifcation for each scheme implementation (cont.) 

Scheme impl. keygen sign verify 

cross-sha2-r-sdpg-3-fast ref 3049 +6 
−52 (90%) 136249 +47 

−13 (87%) 84235 +426 
−266 (87%) 

cross-sha2-r-sdpg-5-fast ref 4302 +6 
−52 (88%) 221766 +56 

−65 (83%) 134737 +422 
−591 (82%) 

cross-sha3-r-sdp-1-fast ref 968 +11 
−4 (67%) 58864 +13 

−11 (61%) 30641 +15 
−11 (72%) 

cross-sha3-r-sdp-3-fast ref 2195 +10 
−4 (68%) 90063 +18 

−32 (58%) 48560 +9 
−24 (62%) 

cross-sha3-r-sdpg-1-fast ref 290 +8 
−2 (72%) 29964 +10 

−4 (75%) 20095 +7 
−8 (77%) 

cross-sha3-r-sdpg-1-small ref 290 +8 
−2 (72%) 102854 +9 

−6 (75%) 75138 +16 
−8 (78%) 

cross-sha3-r-sdpg-3-fast ref 628 +10 
−2 (72%) 43573 +11 

−8 (68%) 27513 +10 
−7 (69%) 

cross-sha3-r-sdpg-5-fast ref 1146 +8 
−4 (71%) 93558 +6 

−9 (66%) 59963 +81 
−85 (67%) 

meds13220 ref 47801 +4 
−4 (2%) 1773022 +26 

−23 (5%) 1766410 +66 
−58 (5%) 

meds55604 ref 253604 +8 
−18 (2%) 8009980 +43 

−115 (3%) 8320807 +52 
−96 (3%) 

aimer-l1-param1 ref 393 +0 
−0 (72%) 32386 +0 

−0 (47%) 31112 +0 
−0 (47%) 

aimer-l1-param2 ref 393 +0 
−0 (72%) 79451 +1 

−0 (49%) 78428 +7 
−6 (49%) 

aimer-l3-param1 ref 981 +0 
−0 (77%) 90954 +0 

−0 (42%) 88351 +0 
−0 (42%) 

mqom_cat1_gf251_fast ref 7790 +6 
−10 (74%) 149074 +10 

−6 (33%) 136748 +44 
−57 (33%) 

mqom_cat1_gf31_fast ref 8473 +1 
−1 (65%) 243805 +31 

−15 (20%) 244375 +71 
−53 (19%) 

mirith_Ia_fast ref 1304 +0 
−0 (61%) 296733 +2 

−2 (10%) 276068 +21 
−22 (10%) 

mirith_Ib_fast ref 2515 +0 
−0 (61%) 565780 +4 

−2 (7%) 528405 +5 
−4 (6%) 

mirith_IIIa_fast ref 3009 +0 
−0 (64%) 891195 +3 

−2 (7%) 831720 +22 
−15 (7%) 

mirith_IIIb_fast ref 4565 +0 
−0 (65%) 1298812 +2 

−3 (5%) 1214256 +14 
−22 (5%) 

mirith_Va_fast ref 6255 +0 
−0 (65%) 2373351 +6 

−6 (4%) 2233948 +47 
−55 (4%) 

mirith_Vb_fast ref 8808 +0 
−0 (65%) 3406389 +4 

−4 (3%) 3205121 +46 
−67 (3%) 

mirith_hypercube_Ia_fast ref 

opt 

1304 +0 
−0 

996 +0 
−0 

(61%) 

(78%) 

116967 +35 
−16 

58998 +25 
−17 

(27%) 

(52%) 

111503 +14 
−30 

53603 +17 
−21 

(24%) 

(49%) 

mirith_hypercube_Ia_short ref 1304 +0 
−0 (61%) 371003 +20 

−3 (67%) 364003 +19 
−5 (67%) 

mirith_hypercube_Ib_fast ref 

opt 

2515 +0 
−0 

1880 +0 
−0 

(61%) 

(79%) 

205513 +25 
−25 

83818 +36 
−19 

(19%) 

(45%) 

199773 +5 
−7 

78142 +9 
−7 

(17%) 

(42%) 

mirith_hypercube_Ib_short ref 2515 +0 
−0 (61%) 447353 +8 

−1 (57%) 440282 +21 
−3 (57%) 

mirith_hypercube_IIIa_fast ref 3009 +0 
−0 (64%) 323231 +58 

−42 (19%) 313484 +16 
−22 (17%) 

mirith_hypercube_IIIa_short ref 3009 +0 
−0 (64%) 718710 +15 

−3 (55%) 730959 +6 
−9 (56%) 

mirith_hypercube_IIIb_fast ref 4565 +0 
−0 (65%) 450968 +24 

−36 (14%) 441592 +14 
−9 (12%) 

mirith_hypercube_IIIb_short ref 4565 +0 
−0 (65%) 845099 +17 

−4 (47%) 860322 +13 
−9 (48%) 

mirith_hypercube_Va_fast ref 6255 +0 
−0 (65%) 808047 +140 

−99 (13%) 792074 +59 
−84 (12%) 



Table 2: Average execution speed for key generation, signature generation, 
and signature verifcation for each scheme implementation (cont.) 

Scheme impl. keygen sign verify 

mirith_hypercube_Vb_fast ref 8808 +0 
−0 (65%) 1134255 +113 (11%)−75 1117091 +19 (10%)−34 

perk-128-fast-3 ref 

m4 

698 +7 
−4 

595 +4 
−7 

(59%) 

(69%) 

217643 +409 (28%)−309 

175927 +4141 (67%)−4014 

96371 +1308 (62%)−400 

81048 +511 (72%)−272 

perk-128-fast-5 ref 

m4 

911 +43 
−2 

733 +28 
−2 

(51%) 

(63%) 

215520 +719 (27%)−481 

169043 +6630 (66%)−4737 

93954 +1388 (60%)−483 

78118 +509 (71%)−438 

perk-128-short-3 m4 595 +4 
−7 (69%) 976147 +41536 (64%)−26439 477798 +18823 

−19046 (65%) 

perk-128-short-5 m4 733 +28 
−2 (63%) 902935 +44104 (63%)−39106 445552 +18846 

−19329 (64%) 

perk-192-fast-3 m4 1422 +43 
−5 (73%) 420038 +7735 (68%)−7607 194755 +1390 (72%)−1202 

perk-192-fast-5 m4 1679 +46 
−14 (68%) 400224 +9757 (67%)−11504 187024 +993 (71%)−768 

perk-192-short-3 m4 1422 +43 
−5 (73%) 2405700 +92909 

−108003 (63%) 1203963 +29542 
−29447 (63%) 

perk-192-short-5 m4 1686 +39 
−22 (68%) 2222672 +90220 (62%)−70349 1120718 +23752 

−24792 (62%) 

perk-256-fast-3 m4 2482 +50 
−9 (74%) 872567 +15040 (70%)−14028 417918 +2037 (75%)−2912 

perk-256-fast-5 m4 2888 +52 
−19 (68%) 834202 +18719 (70%)−15315 398767 +1968 (74%)−1190 

perk-256-short-3 m4 2482 +50 
−9 (74%) 5076941 +110828 (65%)−61663 2650317 +15593 

−20683 (65%) 

perk-256-short-5 m4 2882 +57 
−3 (68%) 4682541 +89928 

−119145 (64%) 2454136 +8774 (64%)−8640 

ascon-sign-128f-robust ref 122506 +0 
−0 (0%) 2855798 +1 (0%)−0 177864 +4568 (0%)−3738 

ascon-sign-128f-simple ref 69377 +0 
−0 (0%) 1629111 +0 (0%)−0 96768 +5151 (0%)−3091 

ascon-sign-128s-robust ref 7842367 +0 
−0 (0%) 59267553 +14 (0%)−16 61063 +2616 (0%)−4028 

ascon-sign-128s-simple ref 4441129 +0 
−0 (0%) 33877716 +16 (0%)−22 34009 +1442 (0%)−1534 

ascon-sign-192f-robust ref 222614 +0 
−0 (0%) 5712961 +3 (0%)−2 320251 +4393 (0%)−4910 

ascon-sign-192f-simple ref 128167 +0 
−0 (0%) 3345488 +7 (0%)−4 178458 +10555 (0%)−5104 

ascon-sign-192s-robust ref 14249839 +1 
−2 (0%) 126646611 +24 (0%)−19 109281 +6202 (0%)−7236 

ascon-sign-192s-simple ref 8204011 +0 
−0 (0%) 74760764 +23 (0%)−38 61709 +2204 (0%)−1276 

sphincs-a-sha2-128f ref 30279 +0 
−0 (43%) 382271 +1 (87%)−1 35696 +2 (48%)−1 

sphincs-a-sha2-128s ref 814837 +1 
−1 (73%) 6981930 +5 (88%)−6 187091 +2 (12%)−3 

sphincs-a-sha2-192f ref 45931 +0 
−0 (58%) 634374 +2 (88%)−1 35146 +1 (46%)−1 

sphincs-a-shake-128f ref 61578 +0 
−0 (72%) 1188147 +1 (96%)−1 76330 +2 (76%)−2 

sphincs-a-shake-128s ref 2342299 +1 
−2 (91%) 22926755 +4 (97%)−3 241835 +2 (32%)−3 

sphincs-a-shake-192f ref 110028 +0 
−0 (83%) 1814954 +1 (97%)−1 64022 +1 (71%)−1 



Table 3: Memory requirements for each scheme implemenation. Code, 
data and BSS size listed are in bytes, stack usage in 210 byte (i.e., KiB). 

Scheme 

dilithium2 

dilithium3 

dilithium5 

haetae2 

haetae3 

haetae5 

hawk256 

hawk512 

hawk1024 

biscuit128f 

biscuit128s 

biscuit192f 

biscuit192s 

biscuit256f 

biscuit256s 

mayo1 

mayo2 

mayo3 

ov-Ip 

ov-Ip-pkc 

library size stack usage 

impl. code data bss keygen sign verify 

clean 7996 0 0 37.4 50.7 35.3 

m4f 18516 0 0 37.4 48.2 35.3 

clean 7496 0 0 59.4 77.7 56.3 

m4f 20004 0 0 59.4 67.2 56.3 

clean 7784 0 0 95.4 119.7 90.6 

m4f 18312 0 0 95.4 113.2 90.6 

ref 25568 0 0 25.5 53.1 29.0 

m4f 35708 0 0 19.3 54.3 22.8 

ref 25980 0 0 42.5 78.5 47.3 

m4f 35936 0 0 28.8 81.4 31.0 

ref 25688 0 0 53.5 97.8 60.6 

m4f 35692 0 0 33.3 101.4 36.3 

ref 102015 0 0 7.7 3.2 3.6 

ref 102027 0 0 14.2 4.7 6.1 

ref 102031 0 0 27.2 7.8 11.2 

ref 7580 0 0 0.6 134.0 14.2 

ref 7696 0 0 0.6 1067.6 81.7 

ref 7780 0 0 0.6 259.6 20.2 

ref 7904 0 0 0.6 2193.0 104.7 

ref 8216 0 0 0.7 466.2 32.2 

ref 8248 0 0 0.7 3889.6 144.7 

ref 26436 8 0 72.7 213.5 390.0 

m4f 19300 8 0 72.7 110.8 430.3 

ref 24404 8 0 108.9 232.7 263.9 

m4f 17292 8 0 108.9 121.7 271.8 

ref 30828 8 0 239.0 699.2 1110.7 

m4f 23612 8 0 239.0 332.7 458.8 

ref 29215 0 0 15.2 12.4 6.0 

m4f 118939 0 0 15.2 5.1 2.5 

ref 29423 0 0 15.2 12.4 277.9 

m4fspeed 119131 0 0 138.8 5.1 274.4 

m4fstack 119059 0 0 138.8 5.1 6.3 



Table 3: Memory requirements for each scheme implemenation. (cont.) 

Scheme impl. code data bss keygen sign verify 

ov-Ip-pkc-skc ref 

m4fspeed 

m4fstack 

29467 

119175 

119103 

0 

0 

0 

0 

0 

0 

247.6 

371.1 

371.1 

247.5 

237.4 

237.4 

277.9 

274.4 

6.3 

tuov_ip ref 92760 0 0 3201.4 3517.0 1764.9 

tuov_ip_pkc ref 88400 0 0 502.6 15.7 401.6 

tuov_ip_pkc_skc ref 88448 0 0 736.4 800.5 401.6 

tuov_is ref 49316 0 0 337.6 10.6 1.6 

tuov_is_pkc ref 49504 0 0 740.1 10.6 595.6 

tuov_is_pkc_skc ref 49548 0 0 1082.1 1179.2 595.6 

tuov_iii ref 92576 0 0 981.0 24.0 5.8 

tuov_iii_pkc ref 92712 0 0 2177.7 24.0 1764.9 

tuov_iii_pkc_skc ref 92760 0 0 3201.4 3517.0 1764.9 

tuov_v_pkc ref 86304 0 0 unable to test 

tuov_v_pkc_skc ref 86352 0 0 unable to test 

snova-24-5-16-4-esk ref 52132 0 336 165.0 87.9 115.4 

snova-24-5-16-4-ssk ref 52132 0 336 165.0 165.1 115.4 

snova-25-8-16-3-esk ref 28240 0 299 186.2 85.4 119.8 

snova-25-8-16-3-ssk ref 28240 0 299 186.2 186.3 119.8 

snova-28-17-16-2-esk ref 16436 0 280 302.0 124.2 195.0 

snova-28-17-16-2-ssk ref 16436 0 280 302.0 302.1 195.0 

snova-37-8-16-4-esk ref 52440 0 336 625.3 289.1 401.8 

snova-37-8-16-4-ssk ref 52440 0 336 625.3 625.4 401.8 

snova-43-25-16-2-esk ref 15060 0 280 1015.1 407.9 650.6 

snova-43-25-16-2-ssk ref 15060 0 280 1015.1 1015.2 650.6 

snova-49-11-16-3-esk ref 26912 0 299 852.6 361.6 528.0 

snova-49-11-16-3-ssk ref 26912 0 299 852.6 852.7 528.0 

snova-60-10-16-4-esk ref 52588 0 336 1897.8 820.3 1179.7 

snova-60-10-16-4-ssk ref 52588 0 336 1897.8 1897.9 1179.7 

snova-61-33-16-2-esk ref 15020 0 280 2581.5 1027.9 1643.0 

snova-61-33-16-2-ssk ref 15020 0 280 2581.5 2581.6 1643.0 

snova-66-15-16-3-esk ref 27624 0 299 2117.3 876.1 1297.9 

snova-66-15-16-3-ssk ref 27624 0 299 2117.3 2117.4 1297.9 



Table 3: Memory requirements for each scheme implemenation. (cont.) 

Scheme impl. code data bss keygen sign verify 

cross-sha2-r-sdp-1-fast ref 14244 0 104 5.1 213.2 103.1 

cross-sha2-r-sdp-1-small ref 15285 0 104 5.1 691.1 314.9 

cross-sha2-r-sdp-3-fast ref 14744 0 128 9.7 317.2 154.4 

cross-sha2-r-sdp-3-small ref 14921 0 128 9.7 1238.9 584.9 

cross-sha2-r-sdp-5-fast ref 14580 0 152 16.4 839.3 401.1 

cross-sha2-r-sdp-5-small ref 14657 0 152 16.4 1661.8 784.1 

cross-sha2-r-sdpg-1-fast ref 18409 0 104 2.7 127.8 67.9 

cross-sha2-r-sdpg-1-small ref 18674 0 104 2.7 455.4 239.7 

cross-sha2-r-sdpg-3-fast ref 19609 0 128 4.4 200.3 105.9 

cross-sha2-r-sdpg-3-small ref 19994 0 128 4.4 737.1 383.9 

cross-sha2-r-sdpg-5-fast ref 18669 0 152 7.2 389.2 208.7 

cross-sha2-r-sdpg-5-small ref 18818 0 152 7.2 1004.5 521.6 

cross-sha3-r-sdp-1-fast ref 14472 0 208 4.6 213.3 103.1 

cross-sha3-r-sdp-1-small ref 15353 0 208 4.6 691.2 314.9 

cross-sha3-r-sdp-3-fast ref 14884 0 208 9.1 317.1 154.1 

cross-sha3-r-sdp-3-small ref 14825 0 208 9.1 1238.9 584.6 

cross-sha3-r-sdp-5-fast ref 14576 0 208 15.8 839.3 400.7 

cross-sha3-r-sdp-5-small ref 14629 0 208 15.8 1661.9 783.7 

cross-sha3-r-sdpg-1-fast ref 18605 0 208 2.3 127.9 67.9 

cross-sha3-r-sdpg-1-small ref 18846 0 208 2.3 455.5 239.8 

cross-sha3-r-sdpg-3-fast ref 19689 0 208 3.9 200.3 105.6 

cross-sha3-r-sdpg-3-small ref 19846 0 208 3.9 737.2 383.6 

cross-sha3-r-sdpg-5-fast ref 18593 0 208 6.7 389.3 208.3 

cross-sha3-r-sdpg-5-small ref 18762 0 208 6.7 1004.5 521.2 

meds9923 ref 16720 0 0 36.8 973.8 98.1 

meds13220 ref 16844 0 0 43.0 176.1 46.6 

meds134180 ref 9180 0 0 392.5 853.4 375.7 

meds167717 ref 9152 0 0 448.7 567.0 420.3 

meds41711 ref 8948 0 0 135.6 1268.2 172.2 

meds55604 ref 9012 0 0 158.3 383.6 156.5 

aimer-l1-param1 ref 19302 468 0 10.7 183.2 192.1 

aimer-l1-param2 ref 19894 468 0 10.7 432.2 441.1 



Table 3: Memory requirements for each scheme implemenation. (cont.) 

Scheme impl. code data bss keygen sign verify 

aimer-l1-param3 ref 19658 468 0 10.7 1390.4 1399.3 

aimer-l3-param1 ref 23398 468 0 23.3 404.1 425.4 

aimer-l3-param2 ref 23570 468 0 23.3 1027.7 1049.0 

aimer-l5-param1 ref 28142 468 0 57.0 821.4 876.1 

aimer-l5-param2 ref 28490 468 0 57.0 2035.7 2090.4 

mqom_cat1_gf251_fast ref 16865 0 0 180.0 390.0 246.7 

mqom_cat1_gf251_short ref 18193 0 0 180.0 649.8 371.0 

mqom_cat1_gf31_fast ref 23718 0 0 256.7 598.5 411.6 

mqom_cat1_gf31_short ref 23510 0 0 256.7 847.8 541.1 

mqom_cat3_gf251_fast ref 17074 0 0 665.0 1254.4 803.1 

mqom_cat3_gf251_short ref 18710 0 0 665.0 1840.4 1116.9 

mqom_cat3_gf31_fast ref 23881 0 0 952.0 2099.4 1500.2 

mqom_cat3_gf31_short ref 24025 0 0 952.0 2606.9 1732.4 

mqom_cat5_gf251_fast ref 20401 0 0 1662.4 3146.7 2115.1 

mqom_cat5_gf251_short ref 20137 0 0 1662.4 4019.1 2477.9 

mirith_Ia_fast ref 7610 256 0 10.0 119.6 22.2 

mirith_Ia_short ref 7635 256 0 10.0 986.7 92.1 

mirith_Ib_fast ref 7602 256 0 18.7 147.5 32.9 

mirith_Ib_short ref 7675 256 0 18.7 1156.7 117.1 

mirith_IIIa_fast ref 7720 256 0 21.4 260.2 45.0 

mirith_IIIa_short ref 7889 256 0 21.4 2130.0 139.8 

mirith_IIIb_fast ref 7760 256 0 32.1 291.2 57.7 

mirith_IIIb_short ref 7901 256 0 32.1 2314.5 162.3 

mirith_Va_fast ref 7890 256 0 44.0 473.1 83.2 

mirith_Va_short ref 7987 256 0 44.0 3701.9 202.5 

mirith_Vb_fast ref 7914 256 0 61.4 522.6 103.5 

mirith_Vb_short ref 7991 256 0 61.4 3994.6 234.9 

mirith_hypercube_Ia_fast ref 

opt 

8844 

10932 

256 

0 

0 

0 

10.0 

10.0 

75.1 

75.1 

20.4 

20.4 

mirith_hypercube_Ia_short ref 8781 256 0 10.0 212.5 30.4 

mirith_hypercube_Ia_shorter ref 8843 256 0 10.0 1728.9 211.2 



Table 3: Memory requirements for each scheme implemenation. (cont.) 

Scheme impl. code data bss keygen sign verify 

mirith_hypercube_Ib_fast ref 

opt 

8820 

10908 

256 

0 

0 

0 

18.7 

18.7 

94.7 

94.7 

30.5 

30.5 

mirith_hypercube_Ib_short ref 8825 256 0 18.7 231.8 40.2 

mirith_hypercube_Ib_shorter ref 8819 256 0 18.7 1748.7 221.0 

mirith_hypercube_IIIa_fast ref 8966 256 0 21.4 163.1 41.6 

mirith_hypercube_IIIa_short ref 9139 256 0 21.4 475.0 55.2 

mirith_hypercube_IIIa_shorter ref 9109 256 0 21.4 3788.1 325.9 

mirith_hypercube_IIIb_fast ref 9002 256 0 32.1 185.1 53.8 

mirith_hypercube_IIIb_short ref 9159 256 0 32.1 497.1 67.0 

mirith_hypercube_IIIb_shorter ref 9093 256 0 32.1 3809.8 337.6 

mirith_hypercube_Va_fast ref 9140 256 0 44.0 301.2 79.2 

mirith_hypercube_Va_short ref 9241 256 0 44.0 832.8 93.8 

mirith_hypercube_Va_shorter ref 9203 256 0 unable to test 

mirith_hypercube_Vb_fast ref 9160 256 0 61.4 336.8 98.8 

mirith_hypercube_Vb_short ref 9245 256 0 61.4 868.6 112.8 

mirith_hypercube_Vb_shorter ref 9247 256 0 unable to test 

perk-128-fast-3 ref 

m4 

11053 

13421 

4 

4 

0 

0 

7.5 

7.5 

306.0 

23.5 

305.8 

20.2 

perk-128-fast-5 ref 

m4 

11129 

13493 

4 

4 

0 

0 

8.8 

8.8 

298.5 

24.6 

298.3 

21.2 

perk-128-short-3 ref 

m4 

31757 

26313 

4 

4 

0 

0 

7.5 

7.5 

1524.5 

27.1 

1524.3 

24.6 

perk-128-short-5 ref 

m4 

31905 

26461 

4 

4 

0 

0 

8.8 

8.8 

1428.5 

27.9 

1428.3 

25.4 

perk-192-fast-3 ref 

m4 

11377 

12253 

4 

4 

0 

0 

14.6 

14.6 

670.5 

46.6 

670.2 

40.4 

perk-192-fast-5 ref 

m4 

11365 

12277 

4 

4 

0 

0 

16.5 

16.5 

646.7 

47.6 

646.4 

41.4 

perk-192-short-3 ref 

m4 

31789 

24189 

4 

4 

0 

0 

14.6 

14.6 

3388.5 

50.1 

3388.2 

45.6 

perk-192-short-5 ref 

m4 

31813 

24913 

4 

4 

0 

0 

16.5 

16.5 

3148.5 

50.7 

3148.2 

46.1 



Table 3: Memory requirements for each scheme implemenation. (cont.) 

Scheme impl. code data bss keygen sign verify 

perk-256-fast-3 ref 11313 4 0 24.9 1163.9 1163.7 

m4 12337 4 0 24.9 78.4 68.3 

perk-256-fast-5 ref 11325 4 0 27.4 1114.5 1114.1 

m4 12337 4 0 27.4 79.0 69.0 

perk-256-short-3 ref 31961 4 0 unable to test 

m4 31905 4 0 24.9 80.3 73.0 

perk-256-short-5 ref 31973 4 0 unable to test 

m4 32989 4 0 27.4 80.1 73.1 

ascon-sign-128f-robust ref 17664 0 0 3.1 2.7 2.9 

ascon-sign-128f-simple ref 17596 0 0 2.6 2.1 2.4 

ascon-sign-128s-robust ref 17972 0 0 3.3 2.7 2.2 

ascon-sign-128s-simple ref 17904 0 0 2.8 2.2 1.7 

ascon-sign-192f-robust ref 17960 0 0 5.9 4.8 4.4 

ascon-sign-192f-simple ref 17912 0 0 4.7 3.6 3.6 

ascon-sign-192s-robust ref 18472 0 0 6.2 4.9 4.2 

ascon-sign-192s-simple ref 18424 0 0 5.0 3.7 3.0 

sphincs-a-sha2-128f ref 6343 0 0 274.6 274.1 274.1 

sphincs-a-sha2-128s ref 6899 0 0 572.2 571.9 571.6 

sphincs-a-sha2-192f ref 6867 0 0 492.3 490.7 490.6 

sphincs-a-sha2-192s ref 7423 0 0 1259.2 1258.4 1258.0 

sphincs-a-sha2-256f ref 7203 0 0 1046.7 1044.6 1044.3 

sphincs-a-sha2-256s ref 7511 0 0 2208.4 2207.1 2206.7 

sphincs-a-shake-128f ref 5552 0 0 274.5 274.0 274.0 

sphincs-a-shake-128s ref 6108 0 0 572.2 571.8 571.5 

sphincs-a-shake-192f ref 5916 0 0 491.7 490.2 490.1 

sphincs-a-shake-192s ref 6428 0 0 1258.6 1257.8 1257.5 

sphincs-a-shake-256f ref 6188 0 0 1046.2 1044.1 1043.8 

sphincs-a-shake-256s ref 6456 0 0 2207.9 2206.5 2206.2 

References 

AAC+23. Muhammad Rezal Kamel Arifn, Nur Azman Abu, Terry Lau Shue Chien, Zahari Mahad, Amir 
Hamzah Abd Ghafar, and Nurul Amiera Sakinah Abdul Jamal. KAZ-SIGN, 2023. Submission to the 
NIST Additional Digital Signature Scheme Project [NIS23a]. 5, 9 



AAS+19. Gorjan Alagic, , Jacob Alperin-Sherif, Daniel Apon, David Cooper, Quynh Dang, Yi-Kai Liu, Carl Miller, 
Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson, and Daniel Smith-Tone. NISTIR8240 – 
status report on the frst round of the nist post-quantum cryptography standardization process. January 
2019. https://doi.org/10.6028/NIST.IR.8240. 1 

AASA+20. Gorjan Alagic, Jacob Alperin-Sherif, Daniel Apon, David Cooper, Quynh Dang, John Kelsey, Yi-Kai 
Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson, and Daniel Smith-Tone. 
NISTIR8309 – status report on the second round of the nist post-quantum cryptography standardization 
process, July 2020. https://doi.org/10.6028/NIST.IR.8309. 2 

ABB+23a. Najwa Aaraj, Slim Bettaieb, Loïc Bidoux, Alessandro Budroni, Victor Dyseryn, Andre Esser, Philippe 
Gaborit, Mukul Kulkarni, Victor Mateu, Marco Palumbi, Lucas Perin, and Jean-Pierre Tillich. PERK, 
2023. Submission to the NIST Additional Digital Signature Scheme Project [NIS23a]. 5, 7 

ABB+23b. Nicolas Aragon, Magali Bardet, Loïc Bidoux, Jesús-Javier Chi-Domínguez, Victor Dyseryn, Thibauld 
Feneuil, Philippe Gaborit, Antoine Joux, Matthieu Rivain, Jean-Pierre Tillich, and Adrien Vinçotte. 
RYDE, 2023. Submission to the NIST Additional Digital Signature Scheme Project [NIS23a]. 4, 5, 7 

ABB+23c. Nicolas Aragon, Magali Bardet, Loïc Bidoux, Jesús-Javier Chi-Domínguez, Victor Dyseryn, Thibauld 
Feneuil, Philippe Gaborit, Romaric Neveu, Matthieu Rivain, and Jean-Pierre Tillich. MIRA, 2023. 
Submission to the NIST Additional Digital Signature Scheme Project [NIS23a]. 4, 5, 7 

AP20. Alexandre Adomnicai and Thomas Peyrin. Fixslicing AES-like ciphers: New bitsliced AES speed records 
on ARM-Cortex M and RISC-V. IACR Transactions on Cryptographic Hardware and Embedded Systems, 
2021(1):402–425, Dec. 2020. https://tches.iacr.org/index.php/TCHES/article/view/8739. 3 

ARZV+23. Gora Adj, Luis Rivera-Zamarripa, Javier Verbel, Emanuele Bellini, Stefano Barbero, Andre Esser, Carlo 
Sanna, and Floyd Zweydinger. MiRitH, 2023. Submission to the NIST Additional Digital Signature 
Scheme Project [NIS23a]. 5, 7 

BBB+23a. Marco Baldi, Alessandro Barenghi, Luke Beckwith, Jean-François Biasse, Andre Esser, Kris Gaj, Kamyar 
Mohajerani, Gerardo Pelosi, Edoardo Persichetti, Markku-Juhani O. Saarinen, Paolo Santini, and Robert 
Wallace. LESS, 2023. Submission to the NIST Additional Digital Signature Scheme Project [NIS23a]. 5, 
6 

BBB+23b. Marco Baldi, Alessandro Barenghi, Sebastian Bitzer, Patrick Karl, Felice Manganiello, Alessio Pavoni, 
Gerardo Pelosi, Paolo Santini, Jonas Schupp, Freeman Slaughter, Antonia Wachter-Zeh, and Violetta 
Weger. CROSS, 2023. Submission to the NIST Additional Digital Signature Scheme Project [NIS23a]. 4, 
5 

BBB+24. Slim Bettaieb, Loïc Bidoux, Alessandro Budroni, Marco Palumbi, and Lucas Pandolfo Perin. Enabling 
perk on resource-constrained devices. Cryptology ePrint Archive, Paper 2024/088, 2024. https: 
//eprint.iacr.org/2024/088. 7 

BBD+23. Joppe W. Bos, Olivier Bronchain, Léo Ducas, Serge Fehr, Yu-Hsuan Huang, Thomas Pornin, Eamonn W. 
Postlethwaite, Thomas Prest, Ludo N. Pulles, and Wessel van Woerden. HAWK, 2023. Submission to 
the NIST Additional Digital Signature Scheme Project [NIS23a]. 5, 7 

BBdSG+23. Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß, Christian Majenz, 
Shibam Mukherjee, Emmanuela Orsini, Sebastian Ramacher, Christian Rechberger, Lawrence Roy, and 
Peter Scholl. FAEST, 2023. Submission to the NIST Additional Digital Signature Scheme Project [NIS23a]. 
4, 5, 9 

BCC+22. Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher, Tanja Lange, Varun Maram, Ingo von Maurich, 
Rafael Misoczki, Ruben Niederhagen, Edoardo Persichetti, Christiane Peters, Nicolas Sendrier, Jakub 
Szefer, Cen Jung Tjhai, Martin Tomlinson, and Wen Wang. Classic McEliece. Technical report, 
National Institute of Standards and Technology, 2022. available at https://csrc.nist.gov/projects/ 
post-quantum-cryptography/round-4-submissions. 1 

BCC+23a. Gustavo Banegas, Kévin Carrier, André Chailloux, Alain Couvreur, Thomas Debris-Alazard, Philippe 
Gaborit, Pierre Karpman, Johanna Loyer, Ruben Niederhagen, Nicolas Sendrier, Benjamin Smith, 
and Jean-Pierre Tillich. Wave, 2023. Submission to the NIST Additional Digital Signature Scheme 
Project [NIS23a]. 5, 6 

BCC+23b. Ward Beullens, Fabio Campos, Sofía Celi, Basil Hess, and Matthias J. Kannwischer. MAYO, 2023. 
Submission to the NIST Additional Digital Signature Scheme Project [NIS23a]. 5, 8 

BCC+23c. Ward Beullens, Fabio Campos, Sofía Celi, Basil Hess, and Matthias J. Kannwischer. Nibbling MAYO: 
Optimized implementations for AVX2 and Cortex-M4. Cryptology ePrint Archive, Paper 2023/1683, 
2023. https://eprint.iacr.org/2023/1683. 8 

BCD+23. Ward Beullens, Ming-Shing Chen, Jintai Ding, Boru Gong, Matthias J. Kannwischer, Jacques Patarin, 
Bo-Yuan Peng, Dieter Schmidt, Cheng-Jhih Shih, Chengdong Tao, and Bo-Yin Yang. UOV, 2023. 
Submission to the NIST Additional Digital Signature Scheme Project [NIS23a]. 5, 8 

https://doi.org/10.6028/NIST.IR.8240
https://doi.org/10.6028/NIST.IR.8309
https://tches.iacr.org/index.php/TCHES/article/view/8739
https://eprint.iacr.org/2024/088
https://eprint.iacr.org/2024/088
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://eprint.iacr.org/2023/1683


BCH+23. Ward Beullens, Ming-Shing Chen, Shih-Hao Hung, Matthias J. Kannwischer, Bo-Yuan Peng, Cheng-Jhih 
Shih, and Bo-Yin Yang. Oil and vinegar: Modern parameters and implementations. IACR Transactions 
on Cryptographic Hardware and Embedded Systems, 2023(3):321–365, Jun. 2023. 8 

BDN+23. Markus Bläser, Dung Hoang Duong, Anand Kumar Narayanan, Thomas Plantard, Youming Qiao, Arnaud 
Sipasseuth, and Gang Tang. ALTEQ, 2023. Submission to the NIST Additional Digital Signature Scheme 
Project [NIS23a]. 5, 9 

BKPV23. Luk Bettale, Delaram Kahrobaei, Ludovic Perret, and Javier Verbel. Biscuit, 2023. Submission to the 
NIST Additional Digital Signature Scheme Project [NIS23a]. 5, 7 

CCC+23. Ming-Shing Chen, Yu-Shian Chen, Chen-Mou Cheng, Shiuan Fu, Wei-Chih Hong, Jen-Hsuan Hsiang, 
Sheng-Te Hu, Po-Chun Kuo, Wei-Bin Lee, Feng-Hao Liu, and Justin Thaler. Preon, 2023. Submission to 
the NIST Additional Digital Signature Scheme Project [NIS23a]. 5, 9 

CCD+23a. Jung Hee Cheon, Hyeongmin Choe, Julien Devevey, Tim Güneysu, Dongyeon Hong, Markus Krausz, 
Georg Land, Marc Möller, Damien Stehlé, and MinJune Yi. Haetae: Shorter lattice-based fat-shamir 
signatures. Cryptology ePrint Archive, Paper 2023/624, 2023. https://eprint.iacr.org/2023/624. 6 

CCD+23b. Jung Hee Cheon, Hyeongmin Choe, Julien Devevey, Tim Güneysu, Dongyeon Hong, Markus Krausz, 
Georg Land, Junbum Shin, Damien Stehlé, and MinJune Yi. HAETAE, 2023. Submission to the NIST 
Additional Digital Signature Scheme Project [NIS23a]. 5, 6 

CNL+23. Jinkyu Cho, Jong-Seon No, Yongwoo Lee, Young-Sik Kim, and Zahyun Koo. Enhanced pqsigRM, 2023. 
Submission to the NIST Additional Digital Signature Scheme Project [NIS23a]. 5, 6 

CNP+23. Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Lars Ran, Tovohery Hajatiana Randrianarisoa, 
Krijn Reijnders, Simona Samardjiska, and Monika Trimoska. MEDS, 2023. Submission to the NIST 
Additional Digital Signature Scheme Project [NIS23a]. 5, 6 

CSSF+23. Jorge Chavez-Saab, Maria Corte-Real Santos, Luca De Feo, Jonathan Komada Eriksen, Basil Hess, David 
Kohel, Antonin Leroux, Patrick Longa, Michael Meyer, Lorenz Panny, Sikhar Patranabis, Christophe Petit, 
Francisco Rodríguez Henríquez, Sina Schaefer, and Benjamin Wesolowski. SQIsign, 2023. Submission 
to the NIST Additional Digital Signature Scheme Project [NIS23a]. 5, 6 

DGG+23. Jintai Ding, Boru Gong, Hao Guo, Xiaoou He, Yi Jin, Yuansheng Pan, Dieter Schmidt, Chengdong Tao, 
Danli Xie, Bo-Yin Yang, and Ziyu Zhao. TUOV, 2023. Submission to the NIST Additional Digital 
Signature Scheme Project [NIS23a]. 5, 8 

dPEK+23. Rafael del Pino, Thomas Espitau, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem, Thomas Prest, 
Mélissa Rossi, and Markku-Juhani Saarinen. Raccoon, 2023. Submission to the NIST Additional Digital 
Signature Scheme Project [NIS23a]. 5, 7 

ENST23. Thomas Espitau, Guilhem Niot, Chao Sun, and Mehdi Tibouchi. SQUIRRELS, 2023. Submission to the 
NIST Additional Digital Signature Scheme Project [NIS23a]. 5, 7 

FI23. Hiroki Furue and Yasuhiko Ikematsu. A new security analysis against MAYO and QR-UOV using 
rectangular minrank attack. In Junji Shikata and Hiroki Kuzuno, editors, Advances in Information and 
Computer Security - 18th International Workshop on Security, IWSEC 2023, Yokohama, Japan, August 
29-31, 2023, Proceedings, volume 14128 of Lecture Notes in Computer Science, pages 101–116. Springer, 
2023. 9 

FIH+23. Hiroki Furue, Yasuhiko Ikematsu, Fumitaka Hoshino, Tsuyoshi Takagi, Kan Yasuda, Toshiyuki Miyazawa, 
Tsunekazu Saito, and Akira Nagai. QR-UOV, 2023. Submission to the NIST Additional Digital Signature 
Scheme Project [NIS23a]. 5, 8 

FR23. Thibauld Feneuil and Matthieu Rivain. MQOM, 2023. Submission to the NIST Additional Digital 
Signature Scheme Project [NIS23a]. 5, 7 

GCF+23. Louis Goubin, Benoît Cogliati, Jean-Charles Faugère, Pierre-Alain Fouque, Robin Larrieu, Gilles Macario-
Rat, Brice Minaud, and Jacques Patarin. PROV, 2023. Submission to the NIST Additional Digital 
Signature Scheme Project [NIS23a]. 5, 8 

HBD+19. Andreas Hulsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-
Lukas Gazdag, Panos Kampanakis, Stefan Kolbl, Tanja Lange, Martin M Lauridsen, Florian Mendel, 
Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, Peter Schwabe, and Jean-Philippe Aumasson. 
SPHINCS+. Technical report, National Institute of Standards and Technology, 2019. available at 
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions. 1 

IA24. Yasuhiko Ikematsu and Rika Akiyama. Revisiting the security analysis of snova. Cryptology ePrint 
Archive, Paper 2024/096, 2024. https://eprint.iacr.org/2024/096. 8 

KCC+23. Seongkwang Kim, Jihoon Cho, Mingyu Cho, Jincheol Ha, Jihoon Kwon, Byeonghak Lee, Joohee Lee, 
Jooyoung Lee, Sangyub Lee, Dukjae Moon, Mincheol Son, and Hyojin Yoon. AIMer, 2023. Submission 
to the NIST Additional Digital Signature Scheme Project [NIS23a]. 5, 9 

KRSS19. Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stofelen. pqm4: Testing and 
benchmarking nist pqc on arm cortex-m4. Cryptology ePrint Archive, Paper 2019/844, 2019. https: 
//eprint.iacr.org/2019/844. 2 

https://eprint.iacr.org/2023/624
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2024/096
https://eprint.iacr.org/2019/844
https://eprint.iacr.org/2019/844


KSSW22. Matthias J. Kannwischer, Peter Schwabe, Douglas Stebila, and Thom Wiggers. Improving software 
quality in cryptography standardization projects. In IEEE European Symposium on Security and Privacy, 
EuroS&P 2022 - Workshops, Genoa, Italy, June 6-10, 2022, pages 19–30, Los Alamitos, CA, USA, 2022. 
IEEE Computer Society. 2 

LA23. Ignacio Luengo and Martín Avendaño. DME-Sign, 2023. Submission to the NIST Additional Digital 
Signature Scheme Project [NIS23a]. 5, 8 

LDK+19. Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor Seiler, and Damien 
Stehlé. CRYSTALS-DILITHIUM. Technical report, National Institute of Standards and Technology, 2019. 
available at https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions. 
1 

LZ23. Dongxi Liu and Raymond K. Zhao. eMLE-Sig 2.0, 2023. Submission to the NIST Additional Digital 
Signature Scheme Project [NIS23a]. 5, 9 

MFG+23. Carlos Aguilar Melchor, Thibauld Feneuil, Nicolas Gama, Shay Gueron, James Howe, David Joseph, 
Antoine Joux, Edoardo Persichetti, Tovohery H. Randrianarisoa, Matthieu Rivain, and Dongze Yue. 
SDitH, 2023. Submission to the NIST Additional Digital Signature Scheme Project [NIS23a]. 5, 7 

MRPC+23. Gilles Macario-Rat, Jacques Patarin, Benoit Cogliati, Jean-Charles Faugère, Pierre-Alain Fouque, Louis 
Gouin, Robin Larrieu, and Brice Minaud. Rectangular attack on vox. Cryptology ePrint Archive, Paper 
2023/1822, 2023. https://eprint.iacr.org/2023/1822. 9 

NIS23a. Post-quantum cryptography: Digital signature schemes, 2023. Available at https://csrc.nist.gov/ 
Projects/pqc-dig-sig/round-1-additional-signatures. 1, 19, 20, 21, 22 

NIS23b. Post-quantum cryptography: Round 4 submissions, 2023. Available at https://csrc.nist.gov/ 
Projects/post-quantum-cryptography/round-4-submissions. 1 

NP23. Jianfang "Danny" Niu and Daniel Enrique Náger Piazuelo. Xifrat1-Sign.I, 2023. Submission to the NIST 
Additional Digital Signature Scheme Project [NIS23a]. 5, 10 

PCF+23. Jacques Patarin, Benoît Cogliati, Jean-Charles Faugère, Pierre-Alain Fouque, Louis Goubin, Robin 
Larrieu, Gilles Macario-Rat, and Brice Minaud. VOX, 2023. Submission to the NIST Additional Digital 
Signature Scheme Project [NIS23a]. 5, 9 

PFH+19. Thomas Prest, Pierre-Alain Fouque, Jefrey Hofstein, Paul Kirchner, Vadim Lyubashevsky, Thomas 
Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. Falcon. Technical report, 
National Institute of Standards and Technology, 2019. available at https://csrc.nist.gov/projects/ 
post-quantum-cryptography/round-2-submissions. 1 

RBK+23. Stefan Ritterhof, Sebastian Bitzer, Patrick Karl, Georg Maringer, Thomas Schamberger, Jonas Schupp, 
Georg Sigl, Antonia Wachter-Zeh, and Violetta Weger. FuLeeca, 2023. Submission to the NIST Additional 
Digital Signature Scheme Project [NIS23a]. 5, 6 

Rod23a. Borja Gómez Rodríguez. 3WISE, 2023. Submission to the NIST Additional Digital Signature Scheme 
Project [NIS23a]. 5, 8 

Rod23b. Borja Gómez Rodríguez. HPPC, 2023. Submission to the NIST Additional Digital Signature Scheme 
Project [NIS23a]. 5, 8 

SAB+19. Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M. Schanck, Gregor Seiler, and Damien Stehlé. CRYSTALS-KYBER. Technical report, 
National Institute of Standards and Technology, 2019. available at https://csrc.nist.gov/projects/ 
post-quantum-cryptography/round-2-submissions. 1 

SF23. Igor Semaev and Martin Feussner. EHTv3 and EHTv4, 2023. Submission to the NIST Additional Digital 
Signature Scheme Project [NIS23a]. 5, 6 

SGJ+23. Vikas Srivastava, Naina Gupta, Arpan Jati, Anubhab Baksi, Jakub Breier, Anupam Chattopadhyay, 
Sumit Kumar Debnath, and Xiaolu Hou. Ascon-Sign, 2023. Submission to the NIST Additional Digital 
Signature Scheme Project [NIS23a]. 5, 9 

SHDS23. Djiby Sow, Abiodoun Clement Hounkpevi, Sidoine Djimnaibeye, and Michel Seck. EagleSign, 2023. 
Submission to the NIST Additional Digital Signature Scheme Project [NIS23a]. 5, 6 

SS17. Peter Schwabe and Ko Stofelen. All the AES you need on Cortex-M3 and M4. In Selected Areas in 
Cryptology – SAC 2016, pages 180–194, 2017. https://eprint.iacr.org/2016/714. 3 

ST23. Daniel Smith-Tone. A total break of the 3wise digital signature scheme. Cryptology ePrint Archive, 
Paper 2023/1535, 2023. https://eprint.iacr.org/2023/1535. 8 

WCD+23. Lih-Chung Wang, Chun-Yen Chou, Jintai Ding, Yen-Liang Kuan, Ming-Siou Li, Bo-Shu Tseng, Po-En 
Tseng, and Chia-Chun Wang. SNOVA, 2023. Submission to the NIST Additional Digital Signature 
Scheme Project [NIS23a]. 5, 8 

YCZ23. Yu Yu, Hongrui Cui, and Kaiyi Zhang. SPHINCS-alpha, 2023. Submission to the NIST Additional 
Digital Signature Scheme Project [NIS23a]. 5, 9 

YJL+23. Yang Yu, Huiwen Jia, Leibo Li, Delong Ran, Zhiyuan Qiu, Shiduo Zhang, Xiuhan Lin, and Xiaoyun 
Wang. HuFu, 2023. Submission to the NIST Additional Digital Signature Scheme Project [NIS23a]. 5, 7 

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2023/1822
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2016/714
https://eprint.iacr.org/2023/1535

	pqm4: Benchmarking NIST Additional Post-Quantum Signature Schemes on Microcontrollers

