
Side Channel Resistant Sphincs+

Anonymous

January 25, 2024

Abstract

Here is a potential way to create a SLH-DSA-like[Nat23b] key generation/signer that aspires
to be resistant to DPA side channel attacks. We say that it is “SLH-DSA-like”, because it does
not follow the FIPS 205 method of generating signatures (in particular, it does not have the same
mapping from private key, messages, opt rand to signatures), however it does generate public keys
and signatures that are compatible with the standard signature verifcation method, and with the
same security (with a small security loss against side channel attacks). In our tests, this idea
performed 1.7 times slower compared to an unprotected version.

Keywords: Postquantum Signatures, Sphincs+, SLH-DSA, Side Channel

1 Introduction

Typical implementations of Sphincs+ are immune to timing and cache-based side channel attacks.
The obvious implementation makes no conditional jumps or memory references based on secret data1 ,
as long as the hash function implementation do not (and the standard implementations of SHA-2 and
SHAKE do not when hashing messages of fxed length). However, that still leaves the possibilities of
more subtle attacks, such as DPA (Diferential Power Analysis).

1.1 Diferential Power Analysis

In a DPA attack[KJJ99], the attacker listens to the electrical noise from the internal gates of the device
(via current draw or EMF) while processing secret information; the data collected contains information
about the secrets the attacker is interested in, combined with noncorrelated noise. The attacker does
this data collection a large number of times, and then uses statistical methods to reduce the noise and
then is able ti extract the secrets.

In SLH-DSA, the SK.seed is used as a input to the PRF function, with all other inputs being public,
and varying per use. This situation is ideal for an attacker using DPA; he can collect the requisite
large number of uses of SK.seed, and use the known varying inputs to isolate the settings of specifc
secret bits from other secret bits. And, when the attacker learns enough bits, he can recover SK.seed
and can sign any message he wants.

The standard approach to produce a DPA-resistant implementation is to use thresholding[CJRR99];
for any internal value that needs to be secret, we do not represent that value explicitly. Instead, we
split it up into N ‘shares’, so that the logical value of that secret depends on all N shares (so that if
the attacker learns N-1 of the shares, he still has no information about the secret being represented).
One common way is to have the logical value be the xor of all N shares. A specifc logical value can
be represented by a number of bit patterns; we select the one we use uniformly. The combination
method is typically linear, if the operation performed on the logical value is linear, we can perform
that operation on the individual shares. However, if a nonlinear operation is required between two
secret values (such as a AND operation), we end up performing N2 operations between the two sets
of shares, and then stir in randomness (to preserve the uniformity property).

1It isn’t necessarily constant time; a Sphincs+ implementation may have conditionals based on, for example, the part
of the tree we are exposing, or the revealed index within a Winternitz chain. However, that data can also be deduced
by the attacker by examining the signature, message and public key, and hence these conditionals do not leak any secret
information.

1

2 Our Approach

We will not be using the standard approach in this proposal2 Instead, what we will do is use any secret
value in only a handful of contexts. The attacker can see a secret value used many times (by monitoring
multiple signature generation operations), but still he will always be limited to these limited number of
contexts. Because of this, the noise generated during the operation will be consistent between multiple
invocations, and so the attacker will not be able to use statistical methods to reduce it.

For a simple example: suppose that we have two secret values, for example, 0x8D6D53217824C570
and 0x460DEF2D0EB718EB, and xor them together. If the xor is performed in a single cycle by a
64-bit ALU, then the attacker should be able to obtain only partial information about those values
or their xor; he may get an estimate of their hamming weight or the hamming weight of the xor (for
example), but he would be unable to obtain those exact values (or even limit the possible values to a
relatively small set). And, if our implementation were to repeatedly xor those exact same values, and
the attacker would take measurements of them each time, he still would not be able to get more than
partial information.

In a case which is more similar to what we actually propose, consider the case that we generate an
internal secret X = SHAKE(Y), and use it to generate two child secrets Z0 = SHAKE(ADRS0|X)
and Z1 = SHAKE(ADRS1|X), and we never use X in any other context. Then, if the attacker wants
information on X, he can get information from the last rounds of SHAKE(Y), and the initial rounds
of SHAKE(ADRS0|X), SHAKE(ADRS1|X); however that is the only information available to him
about X. If the information he can extract from those samples do not give him sufcient information
about some bits of X to overcome the noise from the other operations that occur that those times (for
example, other bits of X), then he cannot recover X.

This is the property we rely on. We assume that the implementation performs its operations with
a large (32 bit or better yet, 64 bit) CPU, and does not perform operations on a handful of bits, and
the operations involved (which typically are limited to logical xor, and and rotate by fxed amounts for
the hash function in question) do not have large operand-dependent power consumption variations.

There have been SPA attacks (which relies on a single collected sample) which have recovered
secrets; these are against public key implementations that process a limited number of secret bits
(possibly only one) at a time, and also do involve large power consumption variations. We assume
that our hash implementations will process a number of bits at a time (e.g. 32 or 64), and that the
attacker will not be able to isolate the individual bits.

That said, as observed earlier, the attacker will still be able to extract some information about X
(for example, perhaps the hamming weight of a subsequence of bits of X). If X is N bits, then the
attacker would be able to use this partial information to recover X in less than 2N operations. To
maintain full security, we will need to address that as well.

This alternative approach to DPA resistance would appear to have both advantages and disadvan-
tage:

• One advantage may be that this may have the potential3 to give better DPA protection. With
the current practice, the correlations are still there; it just requires the attacker to access a large
number of samples to access them (and ideally, more samples than what is available). With this
system, ideally multiple samples do not give the attacker any more information (and so it sufces
to design the system to be secure against SPA attacks).

• Another advantage is that this approach does not require the implementation to produce a large
number of random values during operation. With the standard approach to DPA protection,
this is required (and often consumes a signifcant amount of time to do so).

• Another potential advantage is that this usage is consistent with a single fxed private key. With
the standard threshold approach, we may need to avoid the possibility of the attacker listening to
early operations of the private key, and hence we may need to keep the private key in threshold
format, and refreshing it each time (so there are no fxed bits for the attacker to learn) – doing

2We will be using something similar to this approach in our protection of the F function, however even there, the
security argument still relies on everything being deterministic.

3We put in the qualifers “may be that this may have the potential” because, while we believe the potential is there,
this idea needs more study.

2

this would require storing the key in nonvolatile RAM. This NVRAM requirement is also a
burden on the implementation; this approach avoids that.

• One disadvantage is that it may be difcult to assess the protection. It would appear likely that
the standard tools for assessing DPA resistance may not work. They essentially check to see if
the internal values have no measurable correlations – with this approach, the internal values will
have correlations between runs (the values will be consistent from run to run); it’s just that there
won’t be exploitable correlations.

• One disadvantage to this strategy for DPA resistance in general is that it may be unclear how
to protect an arbitrary cryptosystem with this approach; we may need to redesign the system to
use this protection. The SLH-DSA architecture happens to be well suited for it; it is unclear how
we would use this to protect (for example) ML-KEM[Nat23a]. Even for SLH-DSA, we needed to
redesign how the PRF works to be able to take advantage of it; it is unclear how we would use
this design to protect the existing SLH-DSA PRF defnition. The modifed PRF would appear
to work well and be secure, however the private key is not compatible with a standard SLH-DSA
implementation.

3 The secrets within Sphincs+

In order to design DPA protection for Sphincs+, we frst need to understand the secrets we need to
protect.

The SLH-DSA signing process4 consists of several steps. We also list the potential secrets that may
be leaked at each step:

• The message is hashed (P RFmsg) with a secret SK.prf value and an optional randomness value.

While the result of this hash is public (the value R is included in the signature), the value
SK.prf needs to remain secret. If that value is known and either the randomness value is
predictable or omitted, then system becomes vulnerable to several chosen message attacks
which are easier than the targeted security level.

• The message is again hashed (Hmsg), along the above hash R, and other public data to select
the FORS leaves, the bottom most Merkle tree, and the bottom most Merkle leaf within that
tree.

No secrets are involved here.

• The PRF function5 is used to convert the SK.seed value into the selected FORS secret values.

The SK.seed value and the FORS secret values are secret.

• The F function is used to convert the FORS leaf secret value into FORS leaf values.

The FORS secret values are secret; the FORS leaf values are not.

• The FORS leaf values are used to generate a Merkle tree using the forsnode function, and then
combined into a single value using the T function.

No secrets are involved here.

• The P RF function is used again to convert the SK.seed value into WOTS initial values.

The SK.seed and the WOTS initial values are secret.

• The F function is used to advance from the WOTS initial value to the fnal chain top.

These values are secret (some are exposed, but we won’t know which ones will be, except that
the fnal value is always exposed).

4The key generation process consists of a subset of these steps, so that is not listed separately.
5The FIPS 205 draft refers to this as the forsSKgen function when used in this context.

3

• These chain top values are combined with the T function into a single value.

No secrets are involved here. Note that, even though the intermediate chain values are marked
as ‘potentially secret’, the top value never is.

• These values are used to generate a Merkle tree with the H function.

No secrets are involved here.

All values listed as ’not secret’ are values that, if the adversary learns them, does not give him an
advantage. These are either values that are also computed by the verifer (and so the adversary has
them), or internal nodes within a Merkle tree.

Summarizing this list, the secrets that we need to protect are:

• The secret input to the P RFmsg function.

• The inputs and outputs to the P RF function.

• The inputs and (sometimes) outputs to the F function.

For everything else, we can use a straight-forward (unprotected) implementation.

4 Our proposal

Given this list of secrets we need to protect, here are the details of our proposal.

4.1 Note about parameter sets

For this proposal, we will limit the parameter sets supported to the SHAKE[Nat15] parameter sets.
This is for multiple reasons:

• SHAKE has an impressively large (1600 bit) internal state, and in the middle rounds, the state
is efectively uniformly random. That means that we do not have to worry about leakage in
the intermediate rounds of SHAKE – unless he can recover almost all that state (1344 bits for
n=256), he cannot exploit that.

• SHAKE allows longer inputs and outputs (up to 167 bytes if we use SHAKE-128) without notable
performance impact. We will exploit this to help protect the PRF generation.

• SHAKE is threshold friendly. That is, it is straightforward (and relatively inexpensive) to im-
plement a thresholding implementation, which we will use to protect the F function.

In addition, while it would be straight-forward to support this idea with the robust SHAKE pa-
rameter sets, we don’t bother with explaining the details. This is largely due to the fact that the
SLH-DSA standard does not include them (and those details are fairly obvious).

4.2 Protection for SK.prf

Actually, we propose to not protect that at all. Instead, we remove the need for it to be protected.
The secret input SK.prf is there to address the case that the random input opt rand is predictable,

or omitted; if the attacker learns SK.prf, and the opt rand is predictable (or omitted), then there are
several chosen message attacks the attacker can perform, either a simple collision attack (fnding two
messages whose Hmsg are the same) or looking for (and requesting to be signed) a large number of
messages that P RFmsg specifes the same FORS (exposing all the secrets in that FORS)

We address this by specifying that, for this implementation, this random input opt rand6 must not
be omitted and must not be predictable. In that case, the attacker may be able to recover the SK.prf
value, but that does not give him any advantage; he still cannot conduct either attack (because the R
value is still unpredictable), and the SK.prf value is not used anywhere else. We would also note that
injecting randomness here does not interfere with the ‘make everything deterministic’ strategy used
for the other secrets.

Other approaches that were considered (and rejected) can be found in Appendix B.
6Which is now misnamed - opt rand is no longer ”optional”.

4

4.3 Protection for PRF inputs and outputs

We frst note that the method that we use to generate PRF outputs is completely opaque to the verifer.
These outputs are generated as a function of the private key. Hence, if we don’t mind changing how
the private keys are interpreted, we are free to completely redesign how these values are generated, as
long as we abide with the constraints that the method must be deterministic and meets the security
level.

In SLH-DSA, we use a single function to generate all PRF outputs, with the only distinction
between the diferent contexts is the value of the ADRS structure. In this proposal, we use a diferent
approach. Instead of reusing the same SK.seed value repeatedly with diferent associated inputs, we
will instead design a structure (somewhat analogous to the tree structure of Sphincs+). Specifcally,
we will create a series of 4-way (rather than binary) trees7 , and extract the PRF outputs from various
leaf values of those trees. We will refer to this structure as a PRF tree.

This approach is illustrated in Figure 1. On the left side of the fgure, there is the standard
Sphincs+ structure, with the FORS trees at the bottom, and a series of Merkle trees (and one time
(WOTS) signers) above that, forming the hypertree. In this structure, both the FORS trees and the
WOTS consume PRF values. However, instead of calling a single PRF function with diferent ADRS
values, they obtain these values from the structure on the right.

Figure 1: Overview of Proposed Sphincs+ PRF Architecture

The structures on the right have a key diference from those on the left. In the standard Sphincs+
structure, the data fows upwards - every node has a value, and that value is determined by the child
values below it. In the PRF structure, the data fows downwards - every node still has a value, but
that value is determined by a parent value above it.

Each PRF tree takes one value (either from the PRF tree directly above it, or for the top PRF
tree, the SK.seed value), and expands that a number of derived secrets.

Each ”Merkle Tree PRF” derives (wdigit + 1)2h ′
secrets, where wdigit is the number of chains

within a single WOTS signature8 , and h ′ is the height of a single Merkle tree. wdigit · 2h ′
of these

secrets are used as PRF values for the 2h ′
WOTS signers under the Merkle tree, and the remaining

2h ′
are used as seeds for the 2h ′

PRF trees immediately below.

7We use a four-way tree to increase the efciency (while keeping the number of times any specifc internal secret is
used to a reasonable level).

8This is 35 for Level 1 parameter sets, 51 for Level 3 and 67 for Level 5 parameter sets. In section 5, the FIPS 205
draft refers to this value as len, however we felt that this was too generic a name for wider usage.

5

Each ”FORS PRF” derives k2a secrets, where k is the number of FORS sets (individual trees),
and a is the height of each tree. These values are used as PRF values for the corresponding FORS
structure.

The value of each internal node will be used in only fve contexts; once when the internal node
is generated, and four times to generate the four child nodes. We will use an unprotected hash
implementation to generate the children. Because of this, DPA attacks will be able to collect only
limited information about any internal node value. If we store the values of internal nodes, the
performance cost of generating all the secrets at a specifc level (say, for all the FORS or WOTS+
secret values), is only a factor of 4 more than the standard PRF method. 3

Now, DPA attacks may be able to collect some partial information (based on the fve usages we
have), and so what we do is make each internal value 3N bytes long (rather than N bytes long). This
implies that, unless the attack can obtain more than 2N bits of partial information on an internal
value, he will not be able to use that partial information to perform an attack with any advantage.
This implies that the top level value (the SK.seed value) is also 3N bits. Because the internal rate of
SHAKE-128 is more than 3N plus the size of the ADRS structure (plus SHAKE-128 padding), this
increase of the internal length does not impact performance.

This increase in the size of SK.seed means that we have private keys that are incompatible with
standard SLH-DSA implementations. However, because we are changing how the SK.seed value is
used, the change in the feld size is relatively minor.

The main reason we specify that the internal values be 3N bits long is that the F function specifed
below works with values that size (as outlined in section 4.4) and it was more straightforward to make
all internal values of the PRF system that same size. And, while it is overkill in preventing any DPA
style attack from learning enough about PRF internals to perform an attack with less efort than the
security level, cheap overkill is not a bad thing.

Further details of the proposal can be found in Appendix A.

4.4 Protection for F inputs and outputs

Unlike the PRF, the F function is visible to the verifer, and hence we must implement the same
functionality. Even though any input to the F function is used only once, using the straightforward
implementation will still leak some information (such as the hamming weights of some sequences of
bits of a secret value), and so we still need to address that.

However, assuming that the measurements of the Hamming weights are sufciently accurate, a
small amount of information is still leaked. This small amount of leakage may lead to a loss of perhaps
2 to 8 bits of security strength; that is, the attacker might be able to get enough information to perform
an attack between 4 to 256 times faster than otherwise. The details of this are further explored in
section 5.1.

The defnition of the F function for SHAKE parameter sets is SHAKE256(P ublic∥M, N), where
P ublic is publicly known data (PK.seed, ADRS), and M is the secret input to the F function, and N
is the size of the internal values of Sphincs+, which is the security level.

To implement this, we start with a 3-way9 threshold implementation of SHAKE, where the logical
state is represented by the xor of the three physical shares. The shares of the Public parts are initially
unblinded (the attacker knows them anyways); for M, we will take a 3N byte input, parse it into three
inputs of N bytes each, and use those as the three shares. That is, the logical input to the F function
will be the xor of three bit strings of length N. When we need to output an F function input as a part
of the signature, we will explicitly compute that xor.

We frst perform two rounds of Keccak on that threshold implementation. After those two threshold
rounds, we have the inputs states array[0], array[1], array[2]. We unblind the arrays array[0] := array[0]
xor array[1] xor array[2]) (but don’t throw away array[1], array[2] quite yet).

If the output of the F function is public (which it is in a FORS tree, or the top level WOTS value),
we perform the fnal 22 SHAKE rounds using a standard Keccak round implementation, and output

9Why 3-way? Well, with a traditional 2-way implementation of SHAKE, the real value is the xor of the two shares.
We don’t place strong constraints on either the compiler or the CPU implementation; hence it is possible that the two
would conspire to send those two shares consecutively over the same internal bus. The bits on that bus will either
transition or not transition based on the xor of the two shares, that is, based on the real value, potentially exposing that
to a side channel attack. By making it a 3-way threshold scheme, we ensure that potentially leaking information about
the xor of two of the values is not catastrophic.

6

the unblinded result.
If the output of the F function is private, then we perform 20 intermediate SHAKE rounds using a

standard Keccak round implementation. Then, we reblind it (using the saved array[1], array[2] values),
that is, array[0] := array[0] xor array[1] xor array[2])10 , and then perform the fnal 2 rounds using a
3-way threshold Keccak implementation again. We then output the length 3N blinded value from the
three shares; that is, we output N bytes from each of the three shares.

If the 3-way threshold implementation of the SHAKE round is fve times as expensive as the
standard round implementation, then the total cost of 4 threshold rounds and 18 standard rounds is
about 1.7 times the cost of 24 standard rounds.

We illustrate this idea in Figure 2. We start out with the blinded state (represented by the top
rectangles, with the black parts of the rectangle representing the attacker does not know, and the
white parts representing the parts he does know). Then, we pass the blocks through two rounds of
a thresholding implementation of Keccak. Then, we convert to a standard representation, and then
perform a series of standard Keccak rounds. If the output is public (left side), the standard resulting
state is the output (as represented by the bottom rectangle on the left - the initial part is the part of
the state we will publish - we have to keep the rest of the state secret). If the output is secret (right
side), then after round 22, we switch back to a thresholding format, and fnish with two thresholding
rounds. The result of that are the three separate shares (all black as all parts of it are secret).

F Input

Threshold
Keccak
Rounds

Standard
Keccak
Rounds

15 Standard Keccak Rounds Omitted

Finish with
Standard
Keccak
Rounds

Finish with
Threshold

Keccak
Rounds

Threshold F function – public output Threshold F function – secret output

F Output
Threshold Format

F Output
Standard Format

Figure 2: Overview of Proposed F implementation

The idea here is that the execution of an F function at any specifc location within the Sphincs+
structure will be deterministic, that is, always run on the exact same data, and so the statistical
methods used with DPA still leaves a signifcant amount of noise. The three-way thresholding is there
to prevent us leaking information about the data in the initial and fnal rounds (for the middle rounds,
the data is scattered over 1600 bits, and so moderate information leakage is not exploitable). Hence,

10Yes, the ‘unblind’ and ‘reblind’ operations are identical.

7

while this may resemble the standard threshold DPA protection, the reason we believe it gives us
protection is diferent.

One objection of this idea might be that only one of the three shares of the array go through
the full Keccak, while the other two participate in only 4 of the 24 rounds. We believe that is a
mischaracterization of this idea. After two rounds, the two ‘lesser used’ shares contain essentially
random data; after all, given only 2 of the 3 shares, it is impossible to recover the state, and those 2
shares may be any value independent of the logical state. Hence, when we pick them up 20 rounds
latter, we are reblinding the state at that time with essentially random data (and 20 Keccak rounds
efectively disguises any correlations that the third share may share with the other two).

5 Security

Given that this is a novel approach to side channel resistance, we would certainly need to give it some
more analysis.

In the standard analysis of leakage during a DPA attack (as given in [CJRR99]), the instantaneous
power power consumption when a particular value is being manipulated will be:

P = b × s0 + P × s0 + R (1)

where b is the contribution of power consumption by the bit the attacker is interested in, P × s0

is the contribution of events which involve s0 and other state bits, and R is the contribution of events
which are independent of the bit s0. It is noted that R is typically much larger than b, however if we
assume that it is independently distributed from s0, we can statistically eliminate it by performing a
number of measurements, and thus able to measure some correlation with s0.

It would not appear that this analysis would apply to our situation. Whenever we perform an
operation on bit s0, we always have a number of other bits that are in a consistent setting. If these
bits contribute to R, then R would not at all be independently distributed from s0. Hence, a diferent
analysis is required.

One way to approach this is to denote s as the vector of bits which are processed at one time.
Then, we may write the instantaneous power consumption as:

P = b × f(s) + P × g(s) + R (2)

where f(s) is the contribution of the entire bit string, P × g(s) is the contribution of events that
involve s and other state bits (which are also constant) and R is the contribution of events that are
independent of the bit string s. This may appear similar to Equation 1, however f and g are lossy
functions. That is, the power consumption is based on the entire bit string, and two diferent bit
strings may give the same power consumption profle. For this analysis, we will model f and g as
based on the Hamming weight of s; that is, the power consumption of each individual bit is modeled
to be the same, and that the attacker is able to recover only the sum of the power consumption from
each bit. In other words, while the attacker may be able to deduce the hamming weight of a specifc
secret (after statistically removing R, which is the noise generated by other parts of the circuit, and
can be assumed to be independent), however he is unable to recover information beyond that. This
would appear to be independent of how many measurements that the attacker can make on the same
computation.

Whenever we process a secret, we represent it in 3n bytes; the attacker has an advantage if he
has enough information from the measurements to reduce this to 28n possibilities. By measuring the
hamming weight, there is a possibility (if the hamming weight is either extremely low or extremely
large) that the attacker can deduce a signifcant amount of information. In an extreme case, if the
hamming weight is zero, then the attacker can deduce that all those bits are 0. However, if we assume
that the secret values are uniformly distributed, we can explicitly compute the probability distribution
of information available to the attacker. We have done so, and for the case of 64 bit words and N=128,
the probability that the attacker learns enough to gain any advantage (which implies he reduces the
number of possibilities to less than 2128 is approximately 2−238 , which is less than the probability that
the attacker could pick the secret value with a single guess.

We computed the probability distribution for the various possibilities of word size and security size,
and summed the probabilities for all events that would give the attacker some advantage above the

8

designed security level. These probabilities are given in Table 5. Note that, in all cases, the probability
of a leakage is less than required by the security level.

Security Strength Word Size Leakage Probability
128 32 2−223

64 2−238

192 32 2−332

64 2−354

256 32 2−441

64 2−470

Table 1: The probability of vulnerability due to hamming weight

5.1 Information leakage in the processing of the F function

There is one issue that was not addressed in our analysis of the leakage due to the hamming weights:
the protection of the F inputs and outputs. We protect those by having the logical value be the xor
of three physical values. Now, if the attacker is able to precisely measure the hamming weight of the
same segments of bits of the three physical values (and thus obtain their parity), he can then deduce
the parity of the corresponding logical value. If we have a 64 bit implementation (that is, the attacker
is able to measure the hamming weight of the internal 64 bit words), he is able to obtain enough
information to reduce the number of possibilities for a 128 bit secret to 2126 (thus efectively reducing
the security level by 2 bits; a 32 bit implementation would have a 4 bit security loss). Similarly, a 192
bit secret would lose either 3 or 6 bits of security, and a 256 bit secret would lose either 4 or 8 bits.

On the other hand, to exploit this leakage, the attacker has to precisely measure the hamming
weight, that is, be able to determine that (for example) exactly 27 of the bits were set in a 64 bit word
(and not 26 or 28). In this analysis, we assumed that the attacker could, in fact, measure things that
precisely; it is unclear if he could in practice.

6 Performance

We have taken the Sphincs+ reference code11 , and modifed it to incorporate this idea. We then
compared the performance of the modifed code with the original code. We did only the ‘reference’
implementation (and not the AVX2 version), and only the ‘simple’ parameter sets (not the robust).

Here are the measured performance numbers (on an Intel i7-8700 CPU) for the key generation and
signature operations12 for both the original reference code and the side channel protected code.

As you can see, the time taken by the protected code is consistently about a factor of 1.7 times the
time taken by the unprotected code in this test environment.

7 Future Work

Future work would be needed to construct a more formal analysis of the security provided by this
system. One aspect that needs more analysis is the potential information that may be leaked as a
part of the SHAKE processing. Section 5 discusses the leakage due to the processing of the secrets
themselves; before this can be used, we would need to analyze what potential leakages may occur in
the frst and last rounds of SHAKE (both when the internal secret is being generated, and while it is
being hashed).

In addition, section 5.1 discusses one known leakage due to the potential leakage of the parity of
various words; more analysis would be needed to show whether other subtle issues may cause further
leakages.

11https://github.com/sphincs/sphincsplus, the consistent-basew branch as of November 30, 2023. The consistent-
basew branch is the version that complies with the draft FIPS 205.

12We did not measure the verifcation operation as that code has not changed.

9

https://11https://github.com/sphincs/sphincsplus

Parameter Set Operation Reference Code Protected Code Performance Ratio
shake-128f Gen 7,606 13,308 1.75

Sign 180,244 302,753 1.68
shake-192f Gen 11,983 20,465 1.71

Sign 284,826 480,743 1.69
shake-256f Gen 31,959 57,997 1.81

Sign 610,617 1,072,287 1.76
shake-128s Gen 489,606 831,601 1.70

Sign 3,697,068 6,140,307 1.66
shake-192s Gen 706,266 1,214,987 1.72

Sign 6,396,417 10,243,122 1.60
shake-256s Gen 500,929 834,743 1.67

Sign 5,576,062 9,635,712 1.73

Table 2: Cycle counts for both the original and unprotected code, in kilocycles

8 Conclusions

Here, we presented a possible alternative architecture for SLH-DSA that may be resistant to Side
Channel attacks, while sufering from a modest slowdown of a factor of 1.7 and an incompatible
private key.

We also presented a possible design paradigm for other side channel resistant primitives. In most
cases, the primitive may need to be designed with this in mind, however it may give superior side
channel protection.

Future work would include investigating the level of side channel resistance actually achieved with
this approach.

References

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound
approaches to counteract power-analysis attacks. In Michael Wiener, editor, Advances in
Cryptology — CRYPTO’ 99, pages 398–412, Berlin, Heidelberg, 1999. Springer Berlin Hei-
delberg.

[KJJ99] Paul Kocher, Joshua Jafe, and Benjamin Jun. Diferential power analysis. In Michael
Wiener, editor, Advances in Cryptology — CRYPTO’ 99, pages 388–397, Berlin, Heidelberg,
1999. Springer Berlin Heidelberg.

[Nat15] National Institute of Standards and Technology. Sha-3 standard: Permutation-based hash
and extendable-output functions. (U.S. Department of Commerce, Washington, DC), Federal
Information Processing Standards Publication (FIPS) 202, August 2015. https://doi.org/
10.6028/NIST.FIPS.202.

[Nat23a] National Institute of Standards and Technology. Module-lattice-based key-encapsulation
mechanism standard. (U.S. Department of Commerce, Washington, DC), Draft Federal
Information Processing Standards Publication (FIPS) 203, August 2023. https://doi.
org/10.6028/NIST.FIPS.203.ipd.

[Nat23b] National Institute of Standards and Technology. Stateless hash-based digital signature stan-
dard. (U.S. Department of Commerce, Washington, DC), Draft Federal Information Pro-
cessing Standards Publication (FIPS) 205, August 2023. https://doi.org/10.6028/NIST.
FIPS.205.ipd.

10

https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.FIPS.205.ipd
https://doi.org/10.6028/NIST.FIPS.205.ipd

A Details about the PRF structure

To defne how this is done more formally, we frst defne the function13:

T ree(root, i, m, adrs) = H(i + ⌊(m + 1)/3⌋, root, adrs) for 0 ≤ i < m

H(0, root, adrs) = root

H(x, root, adrs) = SHAKE128(P K.seed||adrspi=x||H(⌊(x − 1)/4⌋, root, adrs), 3n) for x > 0

Where adrspi=x means “set the pi (PRF index) feld in the adrs structure to the value x”.
With this defnition, H(x, root, adrs) is an ”internal node” for x < ⌊((m + 1)/3⌋, and an ”external

node” for larger x. Every external node depends on an internal node, every internal node has at most
four external nodes as children, and only the values of external nodes are used as generated derived
values.

We note that this Tree function using its input in at most 4 diferent contexts, any intermediate
values (internal nodes) appear in at most 5 diferent contexts, and the output appears (within the
function evaluation as an external node) in 1 context. In addition, we note that even if some of the
outputs are revealed14 , the remaining outputs cannot be recovered with less than 28n operations.

We use SHAKE128 rather than SHAKE256 (which is used everywhere else in SHAKE parameter
sets of SLH-DSA). That is because, with the PK.seed and ADRS added, the length of the preimage is
(for n=32) 160 bytes, which is longer than the rate of SHAKE256 (136 bytes). However, it is shorter
than the rate of SHAKE128 (168 bytes), and hence it requires a single permutation operation to
compute. We also note that, for a single block message (that is, it fts within the SHAKE rate), that
SHAKE128 and SHAKE256 are essentially identical (with only a minor diference in the padding),
hence using SHAKE128 in this case does not afect security. We decided that switching to SHAKE128
was a lesser change than removing the PK.seed (we need to include the Prf index element of the ADRS
input in the hash, and so we include the entire ADRS structure).

With that T ree function defned, then for Merkle tree x (where 0 is the level of the bottom merkle
tree and d − 1 is the level of the top merkle tree, where d is the number of Merkle tree levels), we
defne 15:

Rootd−1,t,adrs = SK.seed

Rootx,t,adrs = T ree(Rootx+1,⌊t/h ′⌋,adrs, (t mod h ′) + 2h ′

· wdigit, 2h ′

· (wdigit + 1)) for x < d − 1

A.1 The ADRS structure

In the H function, each internal node has up to four children, and we need something to diferentiate
which child value we are deriving. In our construction, we have each child assign a diferent value into
the PRF index feld of the ADRS structure, and include that structure in the hash.

That is the only thing (apart from the parent node value) that must be in the hash. Sphincs+ uses
the ADRS structure to prevent multitarget preimage attacks; with this H construction (where each
secret value is 3n bits long, that is not a concern. However, to maintain consistency with the rest of
the Sphincs+ structure, we do include the ADRS structure (and the pk.seed value) in the hash.

We propose to use these for the ADRS structure used within the H function.
The Layer Address, Tree Address and Key Pair values used are the same as what is used when

processing the corresponding Sphincs+ structure.

B Alternative approaches to protect SK.prf

Here are some other approaches we could take to protect the SK.prf secret and the P RFmsg function,
and why we not recommend them.

13Sphincs+ has the PK.seed and the ADRS as inputs to SHAKE256 to address potential multitarget attacks. With
the inputs we have here being long (3n bytes), multitarget attacks are not a concern. However, as this longer input still
fts within the SHAKE128 rate, there is little reason not to make this mostly consistent with the rest of Sphincs+.

14Some of the PRF values will appear within a valid signature.
15And recall that h ′ is the height of a Merkle tree and wdigit is the number of Merkle chains.

11

Layer Address

Tree Address

type = 7 (PRF MERKLE)
padding = 0
Prf Index (pi)
padding = 0

4 Bytes

12 Bytes

4 Bytes
4 Bytes
4 Bytes
4 Bytes

Layer Address = 0

Tree Address

type = 8 (PR FORS)
Key Pair

Prf index (pi)
padding = 0

4 Bytes

12 Bytes

4 Bytes
4 Bytes
4 Bytes
4 Bytes

Figure 3: PRF Merkle Hash Address Figure 4: PRF FORS Hash Address

• One could consider an approach that gives DPA security even if opt rand is omitted or pre-
dictable. However, that turns out to be expensive; to do that (and to follow the same base
design that Sphincs+ uses), we would need to have a fully protected P RFmsg function, including
the part that hashes the message; this is because if the attacker can recover any position in the
state (including while we’re hashing the message), he can apply inverse Keccak permutations to
recover the original state. That would be expensive (especially if we need to sign a long message);
the alternative would be to redesign how P RFmsg is designed (for example, using a threshold
implementation of a Carter-Wegman style MAC), and that would be a larger change than what
we wanted to consider.

• One could directly generate R16 from randomness and not use P RFmsg at all. While this is
possible (and certainly cheaper), using P RFmsg does provide some level of protection (even if
not full security) if the entropy is faulty, hence we currently do not recommend it.

C Potential optimizations that do not afect security

• For P RFmsg, one potential optimization would be to use SHAKE-128 or TurboSHAKE rather
than SHAKE-256 for P RFmsg; the reduced security level of either does not practically impact
the security of Sphincs+ (because the security comes from the unpredictability of opt rand),
and the better performance would help in signing long messages. Note that, even if we use this
optimization, the Hmsg function would need to still use SHAKE-256, both for interoperability
reasons (an unmodifed verifer will need to compute that same hash), and because we do need
full second preimage resistance.

• For the WOTS chain that corresponds to the most signifcant digit of the checksum feld, that
value has a reduced range. In particular, for Level 1, that digit will always be in the range 0-1;
for Level 3, that digit will always be in the range 0-2; for Level 5 that digit will always be in
the range 0-3. Hence, all positions in that WOTS chain past that will always be public, and so
we could use our unprotected SHAKE implementation for those. That would give a small (circa
1%) performance increase for a little bit of additional complexity.

The implementation we used for our performance measurements does not use either of these opti-
mizations.

In addition, when this system is used to sign a number of messages, the secrets corresponding to
the top parts of the hypertree are used with high probability, while the secrets corresponding to the
lower parts of the hypertree and the FORS trees are used relatively rarely. Hence, if an implementation
were to precompute the top parts of the hypertree and cache them in the private key, the number of
traces available to an attacker against any one specifc secret may be drastically reduced. For example,
if the implementation of the 128S parameter set were to cache all 512 leaf public keys in the top
Merkle tree (and use those when computing the top Merkle tree authentication path), then any secret
would be used with probability 2−9 when generating a signature. We have argued that the number of
traces available to the attacker does not appear to be signifcant in the difculty of the attack; if this
contention is incorrect, this may also harden the system somewhat; in the example of 128S, this would
mean that the number of signatures the attacker would need to collect would increase by a factor of
512.

16This is the output that P RFmsg generates and is placed directly into the signature.

12

D One alternative to the F threshold idea

If we are on an implementation that supports SIMD (such as AVX), the structure of Sphincs+ allows
us to evaluate several F functions in parallel (and always the same grouping of F computations); the
AVX version of the Sphincs+ reference code does precisely this. If the implementation does that, that
in itself may give some protection for the F functions. After all, if the same four F inputs are always
evaluated at the same time, the attacker would get the noise from all four; it would appear intuitive
that the attacker would not be able to isolate them, and thus not get enough information to attack any
one of them. However, this is speculation (as the attacker would be able to get some; for example, that
the hamming weight of a sequence of bits of one of the secrets is likely to be small/large); in addition,
we expect that the implementations that are most interested in side channel protection (HSMs) would
not have SIMD support available to them.

This protection would not extend to the PRF portion; for that, the tree-based approach would still
be needed. On the other hand, most of the slowdown seen in the current test implementation is due
to the additional complexity of the F computation.

E A more performant, less secure alternative

The above ideas assume the requirement that we need to maintain full security, even under DPA
attacks. As we noted above, if we keep things deterministic, DPA attacks recover only limited amount
of data. If we accepted such a security loss, it appears that we can have a Sphincs+ implementation
with some DPA protection, and actually performs faster than the SLH-DSA standard. Here is how we
would address the three types of secrets:

• P RFmsg - we would the same strategy of requiring unpredictable opt rand values

• F - use an unprotected version of SHAKE (which has some security loss under DPA attack)

• PRF - use a similar tree based approach as above, but change how we use SHAKE. We instead
use mapping between parent and children as: (child0 — child1 — child2 — child3) = SHAKE(
PK.seed — ADRS — parent, 4n).

With this design, computing the PRF iteratively (that is, where we evaluate all the external nodes
of the PRF tree, which is what we do most of the time) requires one Keccak permutation every
three outputs (as opposed to one permutation per output in the standard SLH-DSA design). Since
everything else takes the same amount of time, this design would perform somewhat faster. And,
because everything is deterministic, and all secrets are used only a small number of times, we get some
DPA resistance (albeit not as much as in the main idea).

13

	Introduction
	Differential Power Analysis

	Our Approach
	The secrets within Sphincs+
	Our proposal
	Note about parameter sets
	Protection for SK.prf
	Protection for PRF inputs and outputs
	Protection for F inputs and outputs

	Security
	Information leakage in the processing of the F function

	Performance
	Future Work
	Conclusions
	Details about the PRF structure
	The ADRS structure

	Alternative approaches to protect SK.prf
	Potential optimizations that do not affect security
	One alternative to the F threshold idea
	A more performant, less secure alternative

