
Threshold Raccoon

Rafael del Pino1, Thomas Espitau1, Shuichi Katsumata1,2, Mary Maller1,3, Fabrice
Mouhartem4, Thomas Prest1, Markku-Juhani Saarinen1,5, and Kaoru Takemure2

1 PQShield
2 AIST

3 Ethereum Foundation
4 XWiki

5 Tampere University

Abstract Threshold signatures improve both availability and security of digital signatures by
splitting the signing key into N shares handed out to different parties. Later on, any subset of
at least T parties can cooperate to produce a signature on a given message. While threshold
signatures have been extensively studied in the pre-quantum setting, they remain sparse from
quantum-resilient assumptions.
In this work, we show that the Raccoon signature scheme [dEK+23] can be easily thresholdized.
More precisely, we present Threshold Raccoon, a threshold signature that is very close to Rac-
coon. Our scheme has signature size 13 KiB and communication cost 40 KiB per user, supporting
a threshold size as large as 1024 signers.
All operations used during signing are due to symmetric primitives and simple lattice operations;
in particular our scheme does not need heavy tools such as threshold fully homomorphic encryp-
tion or homomorphic trapdoor commitments as in prior constructions. Our key technical idea is
to use one-time additive masks to mitigate the leakage of the partial signing keys through partial
signatures.

1 Introduction

A threshold signature scheme [Des90, DF90] is a specific type of multiparty computation that
aims at issuing digital signatures, for which any subset of T parties among N signers are able
to sign a message, but (T − 1) cannot. This ability to distribute trust among several parties
has sparked widespread interest from the blockchain ecosystem.

In their September 2022 call for additional post-quantum signatures [NIS22, Section 4.D.1],
NIST listed “additional functionalities” such as threshold threshold signatures to be desirable
features. In January 2023, NIST released a draft call for multi-party threshold schemes [PB23].
Quantum resistance is repeatedly listed as an important criterion [PB23, Sections 3.2 and 3.3],
with a deadline for submissions expected for 2024-2025. These two documents suggest that
signature schemes that are both post-quantum signatures and thresholdizable would be of
great interest for NIST.

While there exist several pre-quantum threshold signatures, building efficient post-quantum
threshold signatures seems to be a much more challenging task. Some solutions have been pro-
posed, but few have been implemented, and those who have suffer from major inefficiencies,
such as large signatures, slow signing times, and sometimes both. In particular, no signature
scheme submitted to the 2017 and 2023 NIST PQC calls for standardization have been shown
to be efficiently thresholdizable until now.

1.1 Our Contributions

We propose Threshold Raccoon: a practical three-round lattice-based threshold signature
assuming the hardness of the MLWE and MSIS problems. As its name indicates, it can be

viewed as a thresholdized version of the masking-friendly signature Raccoon [dPEK+23]. To
distinguish both schemes clearly, we may refer to the scheme from [dPEK+23] as Masked
Raccoon.

We recall in Section 2.1 a blueprint for a (standard) lattice-based signature called Lyubash-
esky’s signature without abort [ASY22]. Since it underlies both Masked Raccoon and Thresh-
old Raccoon, we will also refer to it as Vanilla Raccoon. Masked Raccoon applies several
algorithmic tweaks to Vanilla Raccoon in order to make it masking-friendly. Since Vanilla
Raccoon can be seen as a lattice-based variant of Schnorr signatures, it is a natural idea
to combine one of the many existing constructions of Schnorr-based threshold signature
[Bol03, LJY14, KG20, BCK+22, CKM+23, Lin22, RRJ+22] with Vanilla Raccoon in order to
obtain a lattice-based threshold signature.

Vanilla Raccoon
(Section 2.1)

Masked Raccoon
[dPEK+23]

Threshold Raccoon
(Section 3)

Figure 1: The Raccoon family of signature schemes.

However, as it is well-known in the lattice community, a naive translation does not work
since, unlike in the classical setting, the signing key and signatures must satisfy additional
size constraints. Indeed, the folklore construction ported to the lattice setting would leak too
much information about the (distributed) signing keys and lead to practical attacks. The key
technical ingredient we use to mitigate this leakage is the use of pairwise one-time additive
masks that are non-interactively shared between each pair of users at each signing procedure
and recombined in a way that allows individual users to hide their response while preserving
correctness. More details are provided in Section 2.

2 Our Techniques

Schnorr’s signature scheme has been a successful tool to construct threshold signature schemes
in the classical setting. Our goal is to replicate this in the post-quantum setting building on (a
variant of) Lyubashevsky’s signature scheme [Lyu09, Lyu12], a lattice-based signature scheme
based on the Fiat-Shamir transform.

2.1 Blueprint: Lyubashevsky’s Signature Without Abort

We first recall Lyubashevsky’s signature scheme without abort [ASY22]. For simplicity, this
description purposedly ignores size optimizations such as bit dropping [BG14], which are
mostly orthogonal to our security arguments.

nLet Rq = Zq[x]/(x + 1) be a polynomial ring. Let A ∈ Rk×ℓ and t = A · s + e, whereq

(s, e) ∈ Rℓ × Rk are “short” vectors. The verification key vk = (A, t) is a search-MLWE q q

2

(A.1) Sample ephemeral short randomness (r, e ′) from an appropriate distribution and
′compute a commitment w = A · r + e .

(A.2) Generate a challenge c ∈ Rq using a hash function Hc as c ← Hc(vk, msg, w), where
c has small coefficients.

(A.3) Compute a response (z, y) = (c · s + r, c · e + e ′).
(A.4) To verify, check that (z, y) satisfies some size constraint and that c = Hc(vk, msg, A ·

z + y − c · t).

Figure 2: Lyubashevsky’s signature without abort, alias Vanilla Raccoon

instance, whereas the signing key sk = (s, e) is the solution to this MLWE instance. To sign a
message msg, the signature scheme proceeds as in Fig. 2.

As mentioned earlier, Fig. 2 can be seen as a transposition of Schnorr’s signature to
lattices. It is also similar to Masked Raccoon [dPEK+23], this is especially apparent when
setting d = 1 in [dPEK+23] (1 share corresponding to the unmasked case).

Absence of rejection sampling. This description does not involve the so-called rejection
sampling step [Lyu12] step, which would entail enforcing interval constraints on (z, y). Rejec-
tion sampling is difficult to mask, so Masked Raccoon made the design choice to remove it.
This requires increasing parameters in order to preserve security.

Rejection sampling is also very challenging to perform in a distributed manner, i.e. to
thresholdize. This is also listed as a reason by recent lattice-based threshold signatures [ASY22,
GKS23] to remove it.

2.2 Naive Thresholdiszation

Due to the similarity between Schnorr’s signature scheme and the scheme in Section 2.1, we
can try to apply the common approach used in the classical setting [Sho00, KY02, Bol03] to
build threshold signatures starting from Schnorr. We first recall Shamir’s secret sharing.

Shamir secret sharing. Given s ∈ Zq with q prime, we secret-share s by (a) generating
a polynomial P ∈ Zq[x] uniformly at random in the affine space of polynomials in Zq[x] of
degree at most T − 1 such that P (0) = s, (b) for each user i ∈ Z∗ , their share of the secret q

is si = P (i). If s is shared among N users, this is called T -out-of-N (Shamir) secret sharing.
Given any set (si)i∈I of T distinct shares, s can be recovered by Lagrange interpolation: ∑ ∏ −j

s = λi · si, where λi = . (1)
i − j

i∈I j∈I\{i}

Shamir secret-sharing can be extended to Zq for non-prime q by restricting users indices to
exceptional sets [ABCP23], then to rings Rq = Zq[x]/(f(x)) and finally to Rq-modules by
coefficient-wise application.

3

First attempt: direct transposition. We first secret share Raccoon’s signing key (s, e) of
Section 2.1 using Shamir’s secret sharing scheme [Sha79]. Namely, s is encoded as the constant
term of a degree T − 1 polynomial P , and the partial signing key of user i ∈ [N] is defined
as the evaluation si = P (i) ∈ Rℓ along with a freshly sampled short vector ei. Each users’ q

partial signing key (implicitly) defines a partial public key ti = A · si + ei, which is an MLWE
instance. Here, note that given any T partial signing keys (si, ei)i∈act, where act ⊂ [N] and
|act| = T , we can use the Lagrange coefficients (λact,i)i∈act to recompute the signing key as: ∑

s = λact,i · si. (2)
i∈act

For any set act of T signers, the distributed signing protocol proceeds as described in Fig. 3.
a routine calculation using Eq. (2) shows that the signature is valid.

′(B.1) User i ∈ act computes wi = A · ri + ei. To protect against rushing adversaries (see
[BN06]) it initially only outputs a hash commitment Hcom(wi).

(B.2) After obtaining the hash commitment from all users in act, user i reveals wi and
checks the correctness of all other reveals.

(B.3) User i collects all the commitments and locally generates a challenge c ←∑
Hc(vk, msg, w), where w = wj .j∈act

′(B.4) User i computes a response (zi, yi) = (c · λact,i · si + ri, c · ei + ei) and outputs (zi, yi)
as its partial signature. ∑ ∑

(B.5) The final signature is (c, z, y) = (c, j∈act zj , j∈act yj), verified as in Raccoon by
checking the equality c = Hc(vk, msg, A · z + y − c · t).

Figure 3: Naive and insecure threshold signature

Difficulty of Handling Lagrange Coefficients. While correct, the above construction
admits an attack. This stems from the fact that Lagrange coefficients are large and can be
chosen adaptively by the adversary.

In more detail, looking at Item (B.4) carefully, we can alternatively view user i as gener-
ating a signature with a signing key (λact,i · si, ei). Importantly, si is scaled by the Lagrange
coefficient λact,i. Since the user i provides a valid signature — a partial signature of the thresh-
old scheme — this allows the adversary to obtain information on the corresponding scaled
partial public key tact,i = λact,i · A · si + ei.

The adversary can adaptively ask user i to sign on a scaled public key of its choice by
specifying a different signer set act ⊂ [N]. By collecting enough tact,i with specifically crafted
Lagrange coefficients λact,i, the partial signing key si can be recovered via simple linear algebra.
In the classical setting where the noise vector ei does not exist, the above attack does not
apply since all the obtained scaled partial public keys are linearly dependent.

This phenomenon is not new to our work. Lattice-based cryptography has always had a
hard time handling Lagrange coefficients, see for example [ABV+12, BLMR13, BGG+18]. This

4

has led some works to rely on an alternative secret sharing scheme know as the {0, 1}-linear (or
{−1, 0, 1}-linear) secret sharing scheme, see e.g., [LST18, BGG+18, DLN+21, ASY22, CSS+22,
CCK23]. While this gets around the issue with Lagrange coefficients, the downside is that the
reconstruction algorithm becomes much more complex and individual shares grow by at least √
O(N 2) [LST18]. Alternatively, we can blow up the modulus size q to scale with O(N !2)
to argue that large Lagrange coefficients become relatively small to q [ABV+12, BGG+18,
CCK23]. However, it is clear that such an approach leads to impractical parameters.

2.3 Our Solution: Masking the Commitments

We sidestep all these prior hurdles by using a very simple idea, exploiting the fact that
threshold signatures are interactive. In more detail, assume for now that every two pairs of
users i, j ∈ act privately share two one-time random masks (mact,i,j , mact,j,i) ∈ (Rℓ)2. We q

modify the signing protocol of the naive threshold signature scheme as in Fig. 4.

′(C.1) User i ∈ act computes a commitment wi = A · ri + ei, a (public) row mask mact,i = ∑
mact,i,j , and outputs (Hcom(wi), mact,i).5

j∈act
(C.2) After obtaining the hash commitments and row masks from all users in act, user i

reveals wi.
(C.3) User i collects all the commitments and locally generate a challenge c := ∑

Hc(vk, msg, w), where w = wi. ∑i∈act
∗(C.4) User i computes a (private) column mask mact,i = j∈act mact,j,i and response

∗ ′ (zi, yi) = (c · λact,i · si + ri + mact,i, c · ei + ei), and outputs (zi, yi) as its partial
signature. ∑ ∑

(C.5) The final signature is (c, z, y) = (c, j∈act(zj − mact,j), j∈act yj) and is verified as
in Item (A.4).

Figure 4: Construction with masked commitments but non-authenticated views.

∑ ∑ ∗Notice the sum of the row masks and column masks are equal: j∈act mj,act = j∈act mj,act.
When all the users are honest, it can be checked that the aggregated response becomes: ∑

z = (zj − mact,j)
j∈act ∑

∗ = (c · λact,j · sj + rj + (mact,j − mact,j))
j∈act ∑

= c · s + rj
j∈act

This gives a Raccoon signature as desired (see Item (A.3)).
5 See Fig. 5 for why we call it row and column masks.

5

Intuition of the Security Proof. A typical security proof of a Lyubashevsky signature
consists of invoking honest-verifier zero-knowledge of the (implicit) underlying identification
protocol and programming the random oracle. At a high level, the reduction first samples a
challenge c and response (z, y) distributed independently from the signing key, and simulates
the commitment w = A·z+y−c·t (see Item (A.4)). Informally, if the commitment randomness
(r, e ′) are sufficiently larger than the scaled signing key (c · s, c · e), such a reduction remains
indistinguishable from the real world. It is worth highlighting that (r, e ′) cannot be too large
since the response (z, y) must be “short”, unlike in the classical Schnorr signature. Finally, it
programs the random oracle as Hc(vk, msg, w) := c.

Let us consider porting this proof to the threshold setting. To illustrate the effect of our
masking idea, we explain what happens without them. Without the mask, user i outputs a

′partial signature (zi, yi) = (c ·λact,i · si + ri, c · e+ei). To perform the above proof strategy, the
reduction must sample the response (zi, yi) and simulate the commitment as wi = A · zi +
yi − c · tact,i without the partial signing key si, where tact,i = Asi + ei is the (implicit) partial
public key. However, notice the above proof strategy falls apart since the scaled partial signing
key c · λact,i · si is not guaranteed to be small compared to the commitment randomness ri as
the Lagrange coefficients λact,i can become arbitrarily large modulo q. Moreover, we cannot
just sample ri random over Rℓ since this breaks the condition that the response zi is short. q

Recall here that this is not an artifact of the proof strategy since there is a concrete attack,
as we explained above.

m1,1 + m1,2 + m1,3 + m1,4 + m1,5 =

+ + + + +

m2,1 + m2,2 + m2,3 + m2,4 + m2,5 =

+ + + + +

m3,1 + m3,2 + m3,3 + m3,4 + m3,5 =

+ + + + +

m4,1 + m4,2 + m4,3 + m4,4 + m4,5 =

+ + + + +

m5,1 + m5,2 + m5,3 + m5,4 + m5,5 =

= = = = =

∗ ∗ ∗ ∗ ∗ + + + + =m m m m m1 2 3 4 5

∗Figure 5: Relationships between mi,j , mi and mj , where we drop the subscript act =
{1, 2, 3, 4, 5} for readability.

– The row masks mi (blue, dotted pattern) are all public.
– An adversary corrupting the user set {1, 2, 3} learns the set (mi,j)min(i,j)≤3 and can infer

∗the column masks (mj)j≤3 (red).

m1

+

m2

+

m3

+

m4

+

m5

=

m

Additive masks. This brings us to our masking idea. At a high level, the masking allows
the reduction to move around the partial signing keys around in such a way that the response

6

can be simulated using only the full signing key, without the partial signing key. Effectively,
we can remove the Lagrange coefficients in the reduction, and arrive at a reduction similar to
the standard non-thresholdised signature scheme.

Let us explain via an example. Assume the adversary queries a set act = {1, 2, 3, 4, 5}
with two honest users 4 and 5 as in Fig. 5. Let us focus on the four masks (mact,i,j)i,j∈{4,5}
not known to the adversary. From Item (C.1), recall that the first signing round reveals the ∑ ∑
sums j∈{4,5} mact,4,j and j∈{4,5} mact,5,j to the adversary since all (mact,i,j)min(i,j)≤3 (in
red in Fig. 5) are known to the adversary. This leaves us one degree of freedom; the sums∑ ∑∗ ∗

j∈{4,5} mact,j,4 and j∈{4,5} mact,j,5 are distributed uniformly random from the view of the∑
adversary, conditioned on their sum being i,j∈{4,5} mact,i,j . Put differently, the column masks

∗ ∗ m ∑and m are distributed uniformly random, conditioned on their sum being consistent act,4 act,5
with j∈{4,5} mact,j . Using this, in the proof, we can argue that the two responses (z4, z5)
generated as ()∗ ∗ c · λact,4 · s4 + r4 + mact,4, c · λact,5 · s5 + r5 + mact,5 (3)

are distributed identically to responses generated as     ∑
∗ ∗r4 + mact,4, c ·  λact,i · si + r5 + mact,5

 ,
i∈{4,5}

∗ ∗where m is sampled uniformly random and m is set as the unique value that guarantees act,4 act,5
consistency with the verification equations.∑ ∑

Lastly, we use the fact that j∈{4,5} λact,j ·sj = s− λact,j ·sj (see Eq. (2)), where j∈corrupt
the adversary (and the reduction) controls the secrets for all users in corrupt = act\{4, 5}.
Plugging this into the above, the reduction can instead generate the responses as   ∑

∗ ∗r4 + mact,4, c · s − c · λact,j · sj + r5 + mact,5
 .

j∈corrupt

Since the reduction can now simulate the response c · s + r5 of the base signature scheme only
using the full signing key s, we can rely on prior proof techniques at this point to complete
the proof.

Subtle Issue with the Proof and a Fix. While the intuition is simple, the concrete proof
requires much care. One important point we glossed over was how we guarantee Eq. (3). Recall
users 4 and 5 only locally generate the challenge c := Hc(vk, msg, w), where w =

∑
wi isi∈act

the aggregated commitment (see Item (C.3)).
In particular, a malicious adversary could send users 4 and 5 inconsistent commitments

′(e.g., malicious user 1 provides distinct w1 and w to users 4 and 5), in which case, the1
′locally derived challenges c and c by users 4 and 5 may differ. Against such an adversary, the

reduction cannot argue Eq. (3), and incidentally, the proof breaks down. In fact, we can turn
this idea into a concrete attack, similarly to those explained prior.

This brings us to our final construction, Threshold Raccoon, where we fix this issue by
modifying the users to authenticate their views in the second round. One way we achieve this
is to let the users add a signature to the hash commitments it received in Item (C.2). Another
way is to let the users add a MAC instead. Our construction is detailed in Section 3.

7

Sharing the Masks. Lastly, we explain how pairs of users (i, j) ∈ act share the masks mact,i,j

and mact,j,i during the signing protocol. We simply generate seeds (seedi,j)i,j∈[N] during the
key generation phase and give (seedi,j , seedj,i)j∈[N] to user i as part of their partial signing
key. Once the set act is defined, user i can locally compute the random masks mact,i,j and
mact,j,i by using a PRF on seedi,j and seedj,i respectively. For the masks to never be repeated,
we assume each signing session has a unique identifier for which the PRF is called upon.

3 Threshold Raccoon: Our Threshold Signature Scheme

Our 3-round threshold signature, named Threshold Raccoon, is given formally in Figs. 6
and 7 and a security reduction is stated in Theorem 4.1. We assume the presence of a trusted
centralised party to run the key generation algorithm KeyGen. This can also be achieved with
a distributed key generation algorithm. The design of a suitable DKG, while important, is
outside of the scope of this work. The key generation runs Shamir’s Secret Sharing algorithm
in order to derive a Raccoon public key along with N secret key shares such that any T are
sufficient to sign.6 It takes as inputs the system parameters pp(κ), a threshold T , and a total
number of parties N .

3.1 Key Generation

Algorithm 1: KeyGen (pp, T,N)

1: A ←Rk
q
×ℓ ▷ Sample matrix

2: (s, e) ← Dt
ℓ ×Dt

k ▷ Small secret and noise
3: t := ⌊A · s + e⌉νt

▷ Part of public key in Rk
qt

4: vk := (A, t)
5: P ←Rℓ

q [X] with deg(P) = T − 1, P(0) = s ▷ Shamir Secret Sharing
6: (si)i∈[N] := (P(i)) ▷ Secret shares i∈[N]
7: for i ∈ [N] do
8: (vksig,i, sksig,i) ← KeyGensig(1κ) ▷ Standard signature keys for each user
9: for j ∈ [N] do

10: seedi,j ← {0, 1}κ ▷ Pairwise-shared seeds

11: for i ∈ [N] do
12: ski := (si, (vksig,i)i∈[N], sksig,i, (seedi,j , seedj,i)j∈[N])

13: return (vk, (ski)i∈[N])

Figure 6: Centralised key generation for Threshold Raccoon. In above, we assume the key
generation algorithm initialises the state of each user j.

The key generation algorithm is defined formally in Fig. 6. As a threshold version of the
plain Raccoon signature, the key generation algorithm generates the public key in the same

6 Strictly speaking, the underlying signature scheme is not Raccoon as we use discrete Gaussians instead of
sum of uniforms. However, we attribute Raccoon as the core features (i.e., removing rejection sampling and
optimisations) are the same.

8

manner. A short secret (s, e) ← Dℓ × Dk is sampled and the public key is (A, ⌊As + e⌉νt
),t t

where ⌊As + e⌉νt
is the modulus rounding operation, which essentially drops the νt least

significant bits on each entry of the input vector. The main changes are the use of secret
sharing and pairwise shared seeds.

Pairwise Shared Seeds. To ensure the unforgeability of the signing procedure, the users’
∗individual responses are additively hidden with private column mask vectors (mi)i∈act. These

are later subtracted from the aggregated response with the publicly computable row mask
vectors

∑
mi, see see Fig. 5 for an illustration. i∈act

These mask vectors can be viewed as a T -out-of-T shared secret that is computed on-
the-fly and non-interactively during the individual ShareSign protocols, and its shared values
are recomputed by the combine algorithm using the communication transcript. These shares
are pairwise shared between users and have to be unique between sessions. To achieve this,
we generate them as the result of a pseudorandom function PRF from a seed and the session
id: PRF(seedi,j , sid) with the seeds (seedi,j)(i,j)∈[N]×[N] that are generated and given to the
corresponding users during the key generation.

Signing Keys. To ensure that users agree on the view of the signing session in Round 2,
they sign their view under a personal signing key. The key generation chooses a personal
verification and signing key for all parties, (vksig,i, sksig,i). Alternatively, key generation can
generate N2 pairwise symmetric keys so that all parties are pairwise linked. Then the view is
authenticated using T MACs per party. This is more efficient when T is small because MACs
are much smaller than post quantum digital signatures. Such symmetric keys may be derived
from the pairwise shared seeds explained above.

3.2 Distributed Signing Procedure

Signing proceeds in 3 rounds. In essence, we use two T -out-of-T secret sharings. The first
one is of the commitment w and the second is a masking term m that is used to mask the
distributions of the partial responses in the Fiat-Shamir transform underlying Raccoon. Over
the first two rounds, this commitment w is exchanged in a commit-reveal manner to prevent
potential attacks from rushing adversaries. We note that some important yet tedious consis-
tency checks (e.g., check whether session for sid exists) in our signing protocol is outsourced
to Section 7, Fig. 8 for better readability.

First round. Every party j inside the signing set act generates their (rounded) MLWE
commitment share wj encoding the ephemeral randomness rj . In parallel, they use their
pairwise-shared seeds (seedj,i)i∈act and the session id sid to compute a public row mask mj = ∑

PRF(seedj,i, sid). We recall Fig. 5 for a pictorial explanation of the mask term. Theyi∈act
then publish mj , as well as a hash commitment cmtj of wj .

Second round. Each party j reveals their MLWE commitment share wj . Additionally they
sign their current view of the signing session under their personal signing keys sksig,j (or
alternatively, using MAC keys). The commit-reveal is a standard technique so that the ad-
versary does not generate its commitments in accordance with those of the honest users (see
for instance [BN06]).

9

Algorithm 2: ShareSign1(state, sid, act, msg)
1: assert{ ConsistCheck1(state, sid, act, msg) } ▷ Consistency checks, see Fig. 8

′2: (rj , ej) ← Dℓ ×Dk ▷ Sample small ephemeral randomness and small noise w w
′3: wj := A · rj + ej ▷ MLWE commitment in Rq

k without rounding
4: cmtj := Hcom(sid, act, msg, wj) ▷ Hash commitment
5: Fetch (seedj,i)i∈act from state.sk
6: mj :=

∑
PRF(seedj,i, sid) ▷ Compute row blinder in Rℓ

qi∈act { }
7: state.session[sid] := sid, act, msg, 1, {rj , wj , cmtj , mj }, ∅ ▷ New session state
8: return contrib1[j] := (cmtj , mj)

Algorithm 3: ShareSign2(state, sid, contrib1)
1: assert{ ConsistCheck2(state, sid, contrib1) } ▷ Consistency checks, see Fig. 8
2: Fetch sksig,j from state.sk
3: σj ← Signsig(sksig,j , sid || act || msg || contrib1) ▷ Sign first-round contribution with standard signature
4: Fetch wj from state.sessions[sid].internal ▷ Recall wj from ShareSign1

5: state.session[sid] :=
{
sid, act, msg, 2, {rj , wj , cmtj , mj }, contrib1

}
▷ Update session state

6: return contrib2[j] := (wj , σj)

Algorithm 4: ShareSign3(state, sid, contrib2)
1: assert{ ConsistCheck3(state, sid, contrib2) } ▷ Consistency checks, see Fig. 8
2: Let session = state.sessions[sid]
3: Fetch (sid, act, msg) from session
4: Fetch rj from session.internal and sj , (vksig,i)i∈[N], (seedi,j)i∈act from state.sk
5: Fetch contrib1 = (cmti, mi)i∈act from session.contrib1

6: Parse contrib2 = (wi, σi)i∈act

7: for i ∈ act do
8: assert{ cmti = Hcom(sid, msg, act, wi) } ▷ Check consistency of hash commitments
9: assert{ Verifysig(vksig,i, sid || act || msg || contrib1, σi) = 1 } ▷ Check same first-round contribution

used

10: w :=
⌊∑

wi

▷ Aggregated rounded commitment in Rk
i∈act qwνw

11: c := Hc∑(state.vk, msg, w) ▷ Global challenge
12: m ∗ := PRF(seedi,j , sid) ▷ Compute column blinder in Rℓ

qj i∈act

13: zj := c · λact,j · sj + rj + m ∗
j ▷ Individual response in Rℓ

q

14: return contrib3[j] := zj

Algorithm 5: Combine(vk, sid, msg, contrib1, contrib2, contrib3)
1: Parse contrib1 = (cmti, mi)i∈act, contrib2 = (wi, σi)i∈act, contrib3 = (zi)i∈act

2: Parse vk = (A, t)
3: w :=

⌊∑
wi ▷ Aggregated rounded commitment in Rk

i∈act qwνw∑
4: z := (zi − mi) ▷ Aggregated response shifted by column blinders in Rℓ

qi∈act
5: c := Hc(vk, msg, w) ▷ Global challenge
6: y := ⌊A · z − 2νt · c · t⌉νw

▷ Intermediate value in Rk
qw

7: h := w − y ▷ Hint in Rk
qw

8: return sig := (c, z, h)

Figure 7: Signing procedure for Threshold Raccoon. In above, we omit the subscript and
assume state is the state of party j ∈ act. Consistency checks are described in Fig. 8.

10

https://Hc�(state.vk
https://state.sk
https://state.sk
https://state.sk

Third round. All parties checks that the received commitment share wj is consistent with
the hash commitments in the first round and that all the signatures from the second round
verify. It then computes the resulting global commitment w as

⌊∑
wi

using the mes-i∈act νw

sages they received from the first two rounds. Then, parties compute the signature challenge
c = Hc(vk, msg, w) for themselves. ∑∗The parties further compute a secret column mask mj = i∈act PRF(seedi,j , sid) using
their pairwise-shared seeds (seedi,j)i∈act and the session id sid. They use this to define their

∗response share zj = c · λact,j · sj + rj + mj for sj their secret share and λact,j a Lagrange
coefficient corresponding to the active signing set act. Since

∑
λact,i · si = s sums to the i∈act

full secret s, these shares sum to a valid response shifted by the column masks. Here, the
∗main observation is that

∑
mi =

∑
m (see Fig. 5). Lastly, they return the response i∈act i∈act i

share zj .

Combination. Once all parties have completed all rounds, the coordinator runs a combine
algorithm to compute the signature. This algorithm simply rounds the sum of the MLWE com-
mitments to get the full commitment w =

⌊∑
wi

. The challenge is c = Hc(vk, msg, w).i∈act νw

The response is the sum of the response shares, subtracted with the sum of the public column∑
masks: z = (zi − mi). Finally, the hint is computed as h = w − ⌊A · z − 2νt · c · t⌉νwi∈act
where vk = (A, t). It returns a signature (c, z, h) of Raccoon.

Verification. We do not explicitly define the verification algorithm since it is identical to
those of the plain Raccoon signature scheme.

Remark 3.1 (Statefulness). The signing algorithm requires signers never to respond with re-
spect to the same session ID twice. They must store all session IDs that they have used
previously and abort if they receive a repeated request.

4 Security Reduction

The security of our threshold signature Threshold Raccoon is summarised in Theorem 4.1.

Theorem 4.1. The threshold signature scheme Threshold Raccoon described in Fig. 7 is
unforgeable under the unforgeability of the (non-thresholdised) signature scheme, pseudoran-
domness of PRF, the Hint-MLWEq,ℓ,k,QSign,σt,σw,C and SelfTargetMSISq,ℓ+1,k,C,Bstmsis

assumptions.
Formally, for any adversary A against the unforgeability game making at most QH and

QSign queries to the random oracles Hc, Hcom and the signing oracle, respectively, there ex-
ists adversaries BSign, BPRF, B, and B ′ against the unforgeability of the signature scheme,
pseudorandomness of PRF, and Hint-MLWEq,ℓ,k,QSign,σt,σw,C and SelfTargetMSISq,ℓ+1,k,C,Bstmsis

problems, respectively, such that

sig-uf (QH + 1) · QSign
Gamets-uf (κ) ≤ N · Adv (κ) + AdvPRF (κ) + A BSign BPRF 2n−1

QH + Q2
H + AdvHint-MLWE SelfTargetMSIS

+ (κ) + Adv (κ)
22κ B B ′

where Time(BSign), Time(BPRF), Time(B), Time(B ′) ≈ Time(A).

11

NIST level κ QSign σw T νt νw ℓ k ω |vk| |sig| |trans|/T

I 128 260 242 37 40 4 5 19 3.9 12.7 40.8

III 192 264 242 36 40 6 7 31 5.8 18.9 59.6

V 256 260 242 35 41 7 8 44 7.2 21.6 69.1

Our security reduction relies on the hardness of Hint-MLWEq,ℓ,k,QSign,σt,σw,C . This new as-
sumption was formalized and studied in a recent paper [KLSS23]. A significant advantage
of Hint-MLWE is the existence of a very efficient reduction to the standard MLWE assump-
tion. Moreover, this reduction covers the parameters used in Threshold Raccoon. In our con-
text, it states that the public key (A, t = A · s + e) remains pseudorandom even if QSign

hints7 (ci, ̄zi) are provided to the adversary, where ci ← C corresponds to the challenge and
′ ¯ = ci) is a natural by-product of the signing process. zi · (s, e) + (ri, ei

5 Instantiation and Implementation

5.1 Parameter Sets

Table 1 presents admissible parameter sets for NIST levels I, III and V. We take the noise
distributions Dt and Dw to be Gaussian distributions with parameters σt and σw, respectively.
The challenge c is sampled from the set of polynomials such that ∥c∥∞ = 1 and ∥c∥1 = ω,
which is the same set as in Masked Raccoon or Dilithium. We note |vk|, |sig| and |trans| the
size in bytes of the verification key, the signature and the transcript of the signing procedure
(Fig. 7), respectively.

Table 1: Parameter sets. The sizes |vk| and |sig| are provided in kilobytes. All parameter sets
satisfy (⌊log2 q⌉, n, σt, max T) = (49, 512, 220 , 1024).

√

Comparison with Masked Raccoon. We can see that the parameters of Threshold Rac-
coon and Masked Raccoon [dEK+23] are similar. The modulus q and the degree n are identical
in both cases, and many other parameters are close if not identical.

The main difference is the Masked Raccoon uses sums of uniforms, while Threshold Rac-
coon uses Gaussians. The main motivation in [dEK+23] for using sums of uniforms is that
they are easier to sample securely in the context of side-channels, while still being usable
in Rényi divergence-based arguments in a way that almost guarantees the same tightness as
Gaussians, see [dEK+23, Appendix A] for more details.

In this work we prefer to use Gaussians, as they make our security proofs simpler and we are
not concerned with side-channel attacks. In addition, Hint-MLWE with Gaussians distributions
can be reduced to standard MLWE using a reduction from [KLSS23]. This reduction has better
tightness than what would be provided by a Rényi divergence-based, and allows us to increase√
the maximum number of queries QSign by a factor O(κ · n · (k + ℓ)). This is why Table 1
shows higher values for QSign than [dEK+23], despite the similar parameters.

7 The term “hint” in Hint-MLWE [KLSS23] is not the same as the hint in the signing process of Dilithium
[LDK+22] (h in Threshold Raccoon). This is an unfortunate collision of terminology.

12

5.2 Implementation and Experiments

We have developed a high-performance implementation of Threshold Raccoon which can easily
accomodate T = 1024 simulated signers (with the parameters in Table 1.) If we ignore possible
communication latencies and enable 4.5 gHz turbo on an i7-12700, creating a signature (the
three steps of ShareSign, κ = 128) requires from 11.1 ms (T = 4) to 116 ms (T = 1024)
of single-core computation from each signer. The verification function is independent of T
and N , and requires approximately 0.230 ms. Table 2 contains more detailed benchmarking
results. 8

Table 2: Threshold Raccoon (κ = 128) Cycle counts on a single core of an Intel i7-12700
CPU with “turbo boost” disabled. The units are millions of cycles; divide by 2.1 (fixed clock
frequency in gHz) to obtain millisecond numbers. Measurements for KeyGen, Combine, and
Verify are for the entire process, while ShareSigni is per signer (when signing is a parallel
process, this is equivalent to the elapsed time).

T KeyGen ShareSign1 ShareSign2 ShareSign3 Combine Verify
4 0.592 20.092 0.539 1.588 1.128 1.094

16 0.417 20.076 2.102 5.559 1.209 1.093
64 0.817 21.830 8.216 21.350 1.579 1.100

256 2.838 33.549 32.788 84.333 3.186 1.095
1024 11.491 67.213 131.887 338.614 11.571 1.106

This implementation recycles components such as NTT and signature serialization from
the Raccoon NIST submission [dPEK+23]. It uses κ-bit MACs keyed with pairwise seedi,j
(and sid) to authenticate contributions, as discussed in Section 3.1. The Uniform and Gaussian
random samplers, MACs and PRFs are built from the SHAKE128 [NIS15] extensible output
function. This function (or, more precisely, its Keccak permutation component) dominates
the overall running time, requiring up to 80% of cycles. This is despite the code utilizing an
AVX2 SIMD Keccak that computes four permutations at the same time.

At κ = 128, public key is |vk| = 3856 bytes. Due to non-uniform distributions, the ac-
tual signature encoding size is variable, but can be (with high probability) upper bounded at
|sig| ≤ 12736 bytes. Communicating the secret key shares and PRF/MAC seed pairs to each
of the N potential signers requires 12556 + 32N bytes with this implementation. The signing

1 1bandwidth requirements (in bytes) are |contrib1| = 12576, |contrib2| = 15680 + 16T , andT T
1 |contrib3| = 12544, bringing the total per-signer contribution to 40800 + 16T bytes. If asym-T
metric signatures rather than pairwise MACs were used, each signer contribution would have
a size asymptotically independent of T .

6 Full Version

The full version of this work can be found at:

https://tprest.github.io/pdf/pub/threshold-raccoon-anonymous.pdf
8 The Threshold Raccoon implementation used to generate these benchmarking results is available to review-

ers: https://anonymous.4open.science/r/ec24-thrc-F64C

13

https://tprest.github.io/pdf/pub/threshold-raccoon-anonymous.pdf
https://anonymous.4open.science/r/ec24-thrc-F64C

References

ABCP23. Shahla Atapoor, Karim Baghery, Daniele Cozzo, and Robi Pedersen. Vss from distributed zk proofs
and applications. In Jian Guo and Ron Steinfeld, editors, Advances in Cryptology – ASIACRYPT
2023, pages 405–440, Singapore, 2023. Springer Nature Singapore.

ABV+12. Shweta Agrawal, Xavier Boyen, Vinod Vaikuntanathan, Panagiotis Voulgaris, and Hoeteck Wee.
Functional encryption for threshold functions (or fuzzy ibe) from lattices. In Marc Fischlin, Jo-
hannes Buchmann, and Mark Manulis, editors, PKC 2012, volume 7293 of LNCS, pages 280–297.
Springer, Heidelberg, May 2012.

ASY22. Shweta Agrawal, Damien Stehlé, and Anshu Yadav. Round-optimal lattice-based threshold signa-
tures, revisited. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, ICALP
2022, volume 229 of LIPIcs, pages 8:1–8:20. Schloss Dagstuhl, July 2022.

BCK+22. Mihir Bellare, Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and Chenzhi
Zhu. Better than advertised security for non-interactive threshold signatures. In Yevgeniy Dodis
and Thomas Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 517–550.
Springer, Heidelberg, August 2022.

BG14. Shi Bai and Steven D. Galbraith. An improved compression technique for signatures based on
learning with errors. In Josh Benaloh, editor, CT-RSA 2014, volume 8366 of LNCS, pages 28–47.
Springer, Heidelberg, February 2014.

BGG+18. Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter M. R. Rasmussen,
and Amit Sahai. Threshold cryptosystems from threshold fully homomorphic encryption. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages
565–596. Springer, Heidelberg, August 2018.

BLMR13. Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key homomorphic
PRFs and their applications. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I,
volume 8042 of LNCS, pages 410–428. Springer, Heidelberg, August 2013.

BN06. Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general
forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors,
ACM CCS 2006, pages 390–399. ACM Press, October / November 2006.

Bol03. Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the
gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003, volume 2567 of
LNCS, pages 31–46. Springer, Heidelberg, January 2003.

CCK23. Jung Hee Cheon, Wonhee Cho, and Jiseung Kim. Improved universal thresholdizer from thresh-
old fully homomorphic encryption. Cryptology ePrint Archive, Paper 2023/545, 2023. https:
//eprint.iacr.org/2023/545.

CKM+23. Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and Chenzhi Zhu. Snowblind:
A threshold blind signature in pairing-free groups. In Helena Handschuh and Anna Lysyanskaya,
editors, CRYPTO 2023, Part I, volume 14081 of LNCS, pages 710–742. Springer, Heidelberg,
August 2023.

CSS+22. Siddhartha Chowdhury, Sayani Sinha, Animesh Singh, Shubham Mishra, Chandan Chaudhary,
Sikhar Patranabis, Pratyay Mukherjee, Ayantika Chatterjee, and Debdeep Mukhopadhyay. Effi-
cient threshold FHE with application to real-time systems. Cryptology ePrint Archive, Report
2022/1625, 2022. https://eprint.iacr.org/2022/1625.

dEK+23. Rafael del Pino, Thomas Espitau, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem, Thomas
Prest, Mélissa Rossi, and Markku-Juhani Saarinen. Raccoon. Technical report, National Institute
of Standards and Technology, 2023. available at https://csrc.nist.gov/Projects/pqc-dig-sig/
round-1-additional-signatures.

Des90. Yvo Desmedt. Abuses in cryptography and how to fight them. In Shafi Goldwasser, editor,
CRYPTO’88, volume 403 of LNCS, pages 375–389. Springer, Heidelberg, August 1990.

DF90. Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, editor, CRYPTO’89,
volume 435 of LNCS, pages 307–315. Springer, Heidelberg, August 1990.

DLN+21. Julien Devevey, Benoît Libert, Khoa Nguyen, Thomas Peters, and Moti Yung. Non-interactive
CCA2-secure threshold cryptosystems: Achieving adaptive security in the standard model without
pairings. In Juan Garay, editor, PKC 2021, Part I, volume 12710 of LNCS, pages 659–690. Springer,
Heidelberg, May 2021.

dPEK+23. Rafaël del Pino, Thomas Espitau, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem, Thomas
Prest, Mélissa Rossi, and Markku-Juhani Saarinen. Raccoon. Technical report, National Institute

14

https://eprint.iacr.org/2023/545
https://eprint.iacr.org/2023/545
https://eprint.iacr.org/2022/1625
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

of Standards and Technology, 2023. available at https://csrc.nist.gov/Projects/pqc-dig-sig/
round-1-additional-signatures.

GKS23. Kamil Doruk Gur, Jonathan Katz, and Tjerand Silde. Two-round threshold lattice signatures
from threshold homomorphic encryption. Cryptology ePrint Archive, Paper 2023/1318, 2023.
https://eprint.iacr.org/2023/1318.

KG20. Chelsea Komlo and Ian Goldberg. FROST: Flexible round-optimized Schnorr threshold signatures.
In Orr Dunkelman, Michael J. Jacobson Jr., and Colin O’Flynn, editors, SAC 2020, volume 12804
of LNCS, pages 34–65. Springer, Heidelberg, October 2020.

KLSS23. Duhyeong Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song. Toward practical lattice-based
proof of knowledge from hint-MLWE. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part V, volume 14085 of LNCS, pages 549–580. Springer, Heidelberg, August
2023.

KY02. Jonathan Katz and Moti Yung. Threshold cryptosystems based on factoring. In Yuliang Zheng,
editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 192–205. Springer, Heidelberg, December
2002.

LDK+22. Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor Seiler,
Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM. Technical report, National Insti-
tute of Standards and Technology, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022.

Lin22. Yehuda Lindell. Simple three-round multiparty schnorr signing with full simulatability. Cryptology
ePrint Archive, Report 2022/374, 2022. https://eprint.iacr.org/2022/374.

LJY14. Benoît Libert, Marc Joye, and Moti Yung. Born and raised distributively: fully distributed non-
interactive adaptively-secure threshold signatures with short shares. In Magnús M. Halldórsson
and Shlomi Dolev, editors, 33rd ACM PODC, pages 303–312. ACM, July 2014.

LST18. Benoît Libert, Damien Stehlé, and Radu Titiu. Adaptively secure distributed PRFs from LWE. In
Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS, pages
391–421. Springer, Heidelberg, November 2018.

Lyu09. Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based sig-
natures. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 598–616.
Springer, Heidelberg, December 2009.

Lyu12. Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval and Thomas Jo-
hansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 738–755. Springer, Heidelberg,
April 2012.

NIS15. NIST. SHA-3 standard: Permutation-based hash and extendable-output functions. Federal Infor-
mation Processing Standards Publication FIPS 202, August 2015.

NIS22. NIST. Call for additional digital signature schemes for the post-quantum cryptography stan-
dardization process. https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/
call-for-proposals-dig-sig-sept-2022.pdf, 2022.

PB23. René Peralta and Luís T.A.N. Brandão. Nist first call for multi-party threshold schemes. National
Institute of Standards and Technology, 2023. https://doi.org/10.6028/NIST.IR.8214C.ipd.

RRJ+22. Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, and Dominique Schröder.
ROAST: Robust asynchronous schnorr threshold signatures. In Heng Yin, Angelos Stavrou, Cas
Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 2551–2564. ACM Press, November 2022.

Sha79. Adi Shamir. How to share a secret. Communications of the Association for Computing Machinery,
22(11):612–613, November 1979.

Sho00. Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, EUROCRYPT 2000, volume
1807 of LNCS, pages 207–220. Springer, Heidelberg, May 2000.

15

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://eprint.iacr.org/2023/1318
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2022/374
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://doi.org/10.6028/NIST.IR.8214C.ipd

7 Omitted Consistency Check Algorithms in Threshold Raccoon

Here we include the deferred consistency checks from the signing protocol in Threshold Rac-
coon (see Fig. 7). Note that by ConsistCheck1, we always have j ∈ act and act ⊆ [N] for any
user index j in state and act in state.session[sid], if a session for sid exists. In particular, this
check will be omitted from ConsistCheck2 and ConsistCheck3.

Algorithm 6: ConsistCheck1(state, sid, act, msg)
1: assert{ sid contains (act, msg) } ▷ Check that session id sid is in correct form
2: assert{ state.session[sid] = ⊥ } ▷ Check that user never signed using sid
3: Fetch user index j from state
4: assert{ j ∈ act ∧ act ⊆ [N] }

Algorithm 7: ConsistCheck2(state, sid, contrib1)
1: assert{ state.session[sid] ̸= ⊥ } ▷ The user already created a session with sid
2: Let session = state.session[sid]
3: Fetch user index j from state
4: Fetch (sid ′ , act, cmtj , mj) from session
5: assert{ The set of keys (i.e. indices) in contrib1 is exactly act }

▷ Check contrib1 includes |act| number of first round messages
6: for i ∈ act do
7: assert{ contrib1[i] is of the form contrib1[i] = (cmti, mi) }

▷ Check contrib1 is defined over the indices in act and of a valid form

8: assert{ session is of the form session = {sid ′ , act, msg, 1, {rj , wj , contrib1[j]}, ∅} }
▷ Check sid and contrib1[j] is consistent with internal state

Algorithm 8: ConsistCheck3(state, sid, contrib2)
1: assert{ state.session[sid] ̸= ⊥ } ▷ The user already opened a session with sid
2: Let session = state.session[sid]
3: Fetch user index j from state
4: Fetch (sid ′ , act) from session
5: assert{ The set of keys in contrib2 is exactly act }

▷ Check contrib2 includes |act| number of second round messages
6: for i ∈ act do
7: assert{ contrib2[i] is of the form contrib2[i] = (wi, σi) }

▷ Check contrib2 is defined over the indices in act and of a valid form

8: assert{ session is of the form session = {sid ′ , act, msg, 2, {rj , wj , contrib1[j]}, contrib1} }
▷ Check sid is consistent with internal state

Figure 8: Consistency checks for Threshold Raccoon

16

	Threshold Raccoon

