
eTegrity and ePunchScan 

David Chaum, Stefan Popoveniuc, Poorvi Vora∗ 

September 28, 2009 

Abstract 
We examine the problem of an electronic end-to-end voting system that does not require 

paper. As a frst step, we defne two protocols based on the end-to-end protocols of Scantegrity 
and PunchScan respectively. Using either protocol, the voter votes on an electronic voting 
machine in a polling booth. We also assume the voter may bring with him a (personally 
trusted) voter computing device that aids him in ensuring his vote is recorded correctly; this 
device performs checks equivalent to the ballot audits and commitment checks performed in the 
Scantegrity and PunchScan protocols. We assume that the computing device does not collude 
with the voting system to change the tally, but can, on the other hand, be inspected by a coercer 
who wishes to determine if the voter followed instructions. (The voter may, for example, bring 
with him a SmartPhone programmed by a public interest organization trusted by him.) We 
informally examine the security properties of the systems based on these protocols. 

1 Introduction 

Following the recent problems with electronic voting machines, there has been renewed interest in 
cryptographic voting protocols, frst invented by Chaum in 1981 [7]. Recent cryptographic protocols 
are software independent as defned by Rivest and Wack [13, 12]: any errors in the tally-whether 
caused by intentional or unintentional errors in the voting system software-are detectable with 
overwhelming probability through a cryptographic post-election audit, whose results can be verifed 
by anyone. Note that the audit does not verify that the software computing the tally is correct, only 
that the declared outcome of the particular election is correct; this is sufcient for the purposes of 
the election. The newer protocols are practical, have been prototyped and tested in real elections. 
For example, PunchScan [11] has been used in several binding elections, including those of the 
Graduate Student Association of the University of Ottawa; Helios [1], a remote electronic voting 
system, was recently used for the Recteur election at the Universite Catholique de Louvain (UCL), 
Belgium; and Scantegrity [5, 8] will be used for municipal elections in the city of Takoma Park, MD, 
USA. The use of the newer protocols in public elections would lead to a paradigm shift-from the 
expensive and incomplete verifcation of voting system software, to the individual verifcation of 
each election outcome with very high certainty. Thus, voting technology research is poised to make 
one of its most signifcant contributions ever, allowing voters to verify elections without requiring 
them to trust election ofcials or voting system technology. 

Voting protocols should provide end-to-end independent verifability of the tally; that is, the 
tally verifability should be a property linking system input (votes) to system output (tally) without 
requiring (a) the trustworthiness of voting system components, including voting system software (b) 

∗This author supported in part by the National Science Foundation, Grant CNS-0831149 



a secure chain of custody of the votes, or (c) trustworthiness of election ofcials. Protocol should 
simultaneously achieve incoercibility (an adversary cannot determine how a voter voted even if 
the voter colludes with the adversary). Currently, protocols with the strongest verifability and 
incoercibility properties require the use of paper, either for ballots, or voter receipts, or both. 
Paper-based protocols are difcult to administer; this could considerably diminish the impact of 
their benefts to democracies worldwide. In this paper, we examine whether the benefts of two 
specifc paper-based cryptographic protocols-PunchScan [11] and Scantegrity [5, 8]-can be made 
available in electronic protocols that do not require the use of paper. 

In the literature on classical voting protocols, a voter used a trusted computational device 
to encrypt his vote. The collection of all vote encryptions was made public (for example, on a 
website) and voters could check that their encryptions were present in the collection. Thereafter, 
the computation of the election outcome from the collection of encrypted votes could be verifed 
by anyone. The use of the trusted computational device to encrypt the vote led to problems with 
coercibility, as the voter generated a trail that could be used by an adversary to determine how he 
voted. An important contribution of the paper-based protocols is the design of paper ballots that 
enable voters to encrypt their own votes, thus avoiding, to some degree, the risk of coercion. Paper 
ballots may be audited to ensure that votes are being correctly encrypted. Because the problem of 
tally-verifability has been addressed satisfactorily in the literature if votes are correctly encrypted, 
this paper will focus on the problem of incoercible vote encryption without the use of paper ballots. 
It will borrow a notion from the paper-based protocols-that of a trusted computational device 
that does not encrypt votes, but does perform cryptographic checks on behalf of the voter (such as 
those to check that an audited ballot is correctly constructed). This device is not a voting system 
device, but is a voter device. Thus, in this model, the voter casts a vote on a voting machine in the 
polling place; additionally, he has access to a personal computational device while casting his vote. 
(Such a device could be, for example, a smart phone.) The purpose of this device is to audit the 
voting machine, to ensure it encrypts the vote correctly. As the personal device performs the audit, 
it is expected to be independent of the voting system. The protocol should be designed so that a 
coercive adversary, who controls the computational device of a voter, but does not collude with the 
voting system, is not able to determine whether the voter voted in a certain manner. 

We describe two protocols, each with similar properties. We see that the protocols are not 
incoercible if the computing device performs a denial of service attack, by either refusing to carry 
out the protocol steps, or carrying them out incorrectly. On the other hand, if the computing device 
can be trusted to carry out the steps of the protocol, it appears that we do have two protocols with 
the properties of verifability and incoercibility. This is work in progress; we do not provide precise 
protocol defnitions or security proofs of any kind, though we do provide some security arguments. 

2 Related Work 

Recent approaches to the voting problem have focused on paper-based protocols, which either 
use paper ballots, or paper receipts, or both. The protocols rely on the write-once property of 
paper, and enable voters to encrypt their votes without access to a trusted computational device 
[4, 9, 6, 3, 10, 14, 2, 5]. Some of these protocols use cleverly-designed paper ballots with the property 
that a voter can encrypt her vote simply by flling the ballot. Other protocols rely on encryption 
machines which print out the encrypted vote on a piece of paper. In either case, voters take the 
encrypted vote home; this forms the voter receipt. To check if the encryption is correct, receipts 
may be audited at random; votes corresponding to such receipts are not cast. Thus, using the 



newer protocols, the voter need not have access to trusted software in the polling booth. She does 
need access to software to check the correctness of audited receipts, however, this software need not 
be provided by the voting system manufacturers or election ofcials; the voter may obtain it from 
any-and, in fact, several-sources. 

While computing the tally, the voting system makes available, to the public, a sequence of 
cryptographic commitments to the computations performed to determine the tally. After the election 
outcome is announced, the tally computation is audited: the voting system is challenged by election 
auditors to open some of the commitments, chosen at random. Anyone can write software to check 
the opening of the commitments. The commitments are designed so that, if even a few votes are 
tallied incorrectly, at least one commitment will not open correctly (with very high probability). 

Helios is a recent example of a voting system that does not use paper and has similar properties 
to the protocols we present in this paper. 

3 eTegrity 

We frst describe an electronic version of the Scantegrity protocol; this version replaces the Scant-
egrity paper-based front-end with an electronic front-end. Note that the electronic front-end is far 
easier to integrate with various user interfaces, and hence results in a voting system that is far more 
accessible to voters who have difculties with marking or seeing/reading ballots. We use the model 
proposed earlier: the voter votes on a voting machine in a polling booth. He also has access to 
a personal computational device that does not collude with the voting system to change the vote; 
however, this device may be examined by a coercer. 

3.1 Simplifed Protocol Sketch 

The participants in the vote encryption protocol consist of (a) a voting computer that we call a 
ORE (b) a personal computational device that communicates with the ORE-we term this device the 
Assistant, and (c) the Voter. 
Electronic Ballot Preparation 

ORE will commit to several standard Scantegrity ballots, consisting of Scantegrity serial number(s) 
and several races; each race consisting of a set of choices, each with a corresponding Scantegrity 
confrmation code. For example, "Alice: X8T; Bob: MWQ; Carol: B7K". Several such committed 
ballots will be displayed on a secure public bulletin board. 
Electronic Ballot Presentation 

Voter enters a polling booth to vote in private. He has with him his computational Assistant. 
Assistant requests and obtains a committed ballot, and checks that it is one of those on the secure 
bulletin board. Assistant generates a pseudo-random bit, and sends to ORE a commitment to it. 
This bit is also communicated to the voter. This bit determines whether Voter will audit or cast 
this ballot; alternately, the choice may be left to Voter. Further still, Voter may not commit to this 
choice. Whether it is a Voter choice, and whether it is committed to, will determine incoercibility 
vs. usability trade-ofs. 
Vote Casting 

ORE presents the electronic ballot to Voter, who responds with his selections on the races. Voter 
also communicates to Assistant a valid selection, not necessarily the one made by Voter. ORE sends 
the corresponding confrmation numbers to Assistant, which confrms receipt to Voter. Assistant 



then communicates to ORE whether Voter wishes to cast or audit the ballot (this may be a choice 
made by Voter at this instant, or might be a pseudo-random number generated by Assistant 
earlier; further, Assistant might have committed to it). If the vote is cast, Assistant and ORE 
sign the cast confrmation code, and Assistant checks its presence on the secure bulletin board. 
Voter then leaves the booth, and need not perform any further procedural steps with respect to 
ballot casting. 
Ballot Audit 
If the ballot is to be audited, ORE opens the committed ballot to Assistant, who checks that the 
opened ballot is correct (all confrmation numbers are not identical) and that the confrmation 
number obtained earlier from ORE is one of those on the ballot. Finally, Assistant communicates 
to Voter the selection corresponding to his confrmation code if it is not that which the Voter 
provided after making his selection. Voter hence knows if ORE cheated on this ballot. 

Tally verifability may be obtained by using the verifable tally-computation component of Scant-
egrity. 

3.2 Protocol Details 

The above protocol may be extended so that Voter may request many ballots at a time. Assume 
we have a contest with c candidates and the voter can choose one of them. 

The protocol is as follows: 

1. Voter determines a security parameter n, representing the number of ballots in a session. 

2. Voter send the number n to ORE, via Assistant. 

3. For all the n ballots, ORE randomly assigns confrmation codes to candidates on each ballot 
(on ballot 4711, the confrmation code for Alice is B7K, for Bob X8T, for Carol MWQ). On 
diferent ballots, the same candidate may have diferent confrmation codes. 

4. ORE sends to Assistant commitments to all the assignments for all ballots. 

5. Assistant computes n random bits, such that at least one of the bits is a 1. A zero bit 
represents a ballot that is going to be audited and a 1 bit represents a ballot that might be 
cast. 

6. Assistant sends ORE a commitment to the n bits (i.e. a commitment to which ballots are 
going to be audited). 

7. Assistant tells Voter which bits are 1 (which of the n ballots cast be used for casting a vote) 

8. Voter sends ORE (via a channel that is not tappable by Assistant) exactly n votes (in clear 
text, e.g. on the frst ballot a vote for Carol, on the second ballot a vote for Alice, etc), such 
that at least one of the ballots corresponding to a bit with value 1 contains the candidate she 
wants to vote for. This is set1 of votes 

9. Voter sends Assistant n votes. This is set2 of votes. Set1 and set2 may have the same votes 
on none, some, or all positions. 

10. ORE sends Assistant the confrmation codes for all the votes it got from the voter in step 8 



11. Assistant reveals to ORE the ballots that are used for auditing (the n bits generated in step 
5). 

12. ORE verifes the commitment to the n bits. 

13. For each audited ballot (each bit with a value of 1 in the n bits), ORE sends Assistant all the 
confrmation codes corresponding to the votes received from Voter in step 8 and opens the 
commitments to them. 

14. Assistant checks that confrmation codes on all audited ballot match the commitments. 

15. Assistant checks that the confrmation codes received by Assistant in step 10 correspond to 
the votes Assistant got from Voter in step 9. For each vote that does not check, Assistant 
informs Voter 

16. If Assistant did not report any error in the previous step, or if the errors reported are 
consistent with what Voter sent to the ORE in step 8, Voter chooses a ballot to cast (one of 
the ballots that were not audited) and sends Assistant instructions to cast it. Otherwise, 
Voter aborts the protocol and notifes the election authorities. 

17. Assistant signs the confrmation code (received in step 10) on the ballot indicated by Voter 
in the previous step and sends the signed confrmation code to ORE. 

18. ORE signs the confrmation code and publishes it on the bulletin board. 

19. Assistant checks the correct posting on the bulletin board and repeats step 17. 

3.3 Brief security analysis 

1. The public bulletin board contains data that does not allow the public to fnd out how Voter 
voted. Indeed, from the confrmation code and the audited ballot, it is not possible to infer 
the candidate selected. 

2. Assistant does not learn the vote cast by Voter. Indeed, in step 8 Voter sends all the votes 
to ORE using a channel that Assistant cannot read. It follows that, even if a coercer forces a 
voter to use a specifc Assistant, the coercer cannot fnd out how the voter voted. 

3. During one execution of the protocol, ORE can cheat one voter with a probability of 1 . Indeed, n 
Voter can choose n-1 ballots to audit and one ballot to cast. ORE does not know which of 
the n ballots is going to be used for casting to the chance of correctly guessing it is one out 
of n. It is important the Voter does the checks in step 16 and aborts the protocol if any 
inconsistencies are detected. 

4. ORE cannot ignore Voter's input. Justifcation: Assistant sends ORE a signed encoded vote 
and all the receipts posted on the public bulletin board must also be signed by Assistant. 

Undesirable properties: 

1. ORE can ignore Voter's input in step 8 and choose the candidate for some or all of Voter's 
votes. Voter will detect this in step 16, and can then abort the protocol, but does not have 
proof of cheating. 



2. Voter has to communicate to ORE her choices on many ballots, not only the candidate she 
wants to vote for. Voter also has to remember all these choices on all the ballots for the 
checking in step 16. Small values of n reduce the probability with which a cheating ORE will 
be detected by Voter. 

3. Assistant needs to be able to digitally sign messages. 

4. If the coercive adversary can program Assistant, this protocol is not incoercible. For example, 
Assistant can refuse to tell Voter which votes will be audited. Hence, either Voter casts 
all his votes for the coercer's candidate, or casts some or all votes for his own candidate, 
risking detection by the coercer, as well as risking, in general, that the correct vote will not 
be communicated to ORE. For another example, Assistant can communicate incorrectly to 
Voter which votes will be audited, thus determining how he intended to vote. On the other 
hand, if Assistant were not allowed to determine which votes would be audited or cast, this 
risk is mitigated. 

4 EPunchScan 

We now present an electronic protocol that combines the front-end of PunchScan with the back-end 
of Scantegrity. A key aspect of this protocol is its use of oblivious transfer. 

4.1 Protocol Sketch 

The participants in the vote encryption protocol consist of ORE, Assistant and Voter. 
Electronic Ballot Preparation 

The ORE will commit to several two-part ballots. The frst part of each ballot will consist of a 
permutation of candidate ordering. This will be presented as a mapping between candidates and a 
number, such as: "for Alice press 2, for Bob press 3, for Carol press 1". The second part will be a 
map between the numbers of the frst ballot part and Scantegrity confrmation numbers, such as: 
"for 1 the confrmation code is B7K, for 2 X8T, for 3 MWQ", and so on. Several such committed 
ballots will be displayed on a secure public bulletin board. 
Electronic Ballot Presentation 

The Voter enters a polling booth to vote in private. He has with him his computational Assistant. 
The Assistant requests and obtains the committed ballot, and checks that it is one of those on the 
secure bulletin board. Assistant and ORE perform an oblivious transfer protocol so that Assistant 
obtains one of the two ballot parts, and ORE does not know which one it is. Assistant checks that 
the ballot part corresponds to its commitment. 
Vote Casting 

The ORE presents the permuted voter list on the frst half of the electronic ballot to Voter, the 
Voter makes a choice and communicates the number corresponding to the choice. ORE sends the 
confrmation number on the second half of the electronic ballot to Assistant. If, in the oblivious 
transfer, Assistant obtained the frst ballot half, it presents this to Voter at the same time as 
does ORE. So, for example, ORE might present the ballot half in one ear and Assistant in the 
other. If these are not identical, Voter will notice it and know that ORE is cheating. If, in the 
oblivious transfer, Assistant obtained the second ballot half, it checks the choice corresponding 



to the confrmation number. It then presents the choice to Voter at the same time as does ORE. If 
these are not identical, Voter will notice it and know that ORE is cheating. 

Tally verifability may be obtained by using the verifable tally-computation component of Scant-
egrity. 

4.2 Protocol Detail 

Assume we have a contest with c candidates and Voter can choose one of them. 
For a specifc ballot, here are the steps of the protocol 

1. ORE randomly assigns the numbers {1,2,3,...,c} to candidates (e.g. for Alice press 2, for Bob 
press 3, for Carol press 1). This is fle1. 

2. ORE assigns random confrmation codes to the numbers (for 1 the confrmation code is B7K, 
for 2 X8T, for 3 MWQ). This is fle2. 

3. ORE sends to Assistant commitments to fle1 and fle2. 

4. ORE generates two keys K1 and K2 and encrypts fle1 with K1 and fle2 with K2. 

5. ORE sends Assistant the encrypted versions of fle1 and fle2 

6. Using an oblivious transfer protocol, Assistant asks ORE to reveal either K1 or K2. ORE does 
not know which key Assistant got. 

7. Assistant checks that the result of the decryption matches one of the corresponding commit-
ment. Otherwise Assistant has proof of malfeasance. 

8. Synchronized, both ORE and Assistant play fle1 to Voter at the same time, using separate 
channels. If Assistant got K1, it plays fle1, otherwise it is silent in this step (e.g. Voter 
hears "for Alice press 2, for Bob press 3, for Carol press 1" in either one or both ears). 

9. Voter checks that both ORE and Assistant played the same content in the previous step. 
Otherwise it aborts the protocol and notices the election ofcials. 

10. Voter communicates to ORE the number assigned to her favorite candidate. 

11. ORE encrypts the number with K2 and sends the encryption to Assistant. 

12. ORE sends to Assistant the confrmation code corresponding to the number (in clear text). 
This is the receipt for the vote. 

13. If Assistant got K2 in the oblivious transfer, Assistant decrypts the number using K2 
and checks that fle2 contains the number attached to the confrmation code. Otherwise, 
Assistant has proof of malfeasance. 

14. Synchronized, both ORE and Assistant play the number to Voter at the same time using 
separate channels. If Assistant got K2, it plays the number, otherwise it is silent in this step 
(e.g. Voter hears "You entered 3" in either one or both ears) 

15. Voter checks that both ORE and Assistant played the same content in the previous step and 
that it is the number that she indeed entered. Otherwise it aborts the protocol and notices 
the election ofcials. 



16. Both ORE and Assistant play the confrmation code (e.g. Voter hears "The confrmation 
code is MWQ" in both ears). 

17. ORE publishes the confrmation code on the public bulletin board. 

The following steps can be added to mitigate improper infuence attacks. 

1. Assistant proves to ORE which key it got during the oblivious transfer protocol 

2. If Assistant got K1, ORE plays to Voter "You can lie about which number you've entered" 
(Assistant is not able to decrypt the number Voter entered) 

3. if Assistant got K2, ORE plays to Voter "You can lie about which candidate is associated 
with number 3" (Assistant is not able to decrypt the association between candidates and 
numbers) 

As a concrete example, ORE is a smart phone programmed by the election authority and Assistant 
is a smart phone that a blind voter has. The two phones communicate via bluetooth. In step 5, 
Voter hears in one ear what ORE is playing and in the other ear what Assistant is playing. Voter 
will notice if she hears diferent things at the same time in the two ears. 

4.3 Brief security analysis 

Desirable security properties: 

1. The public bulletin board contains data that does not allow the public to fnd out how Voter 
voted. Indeed, the bulletin board contains the confrmation code and either fle1 or fle2 (but 
never both), and the vote cannot be inferred from the two. 

2. Assistant does not learn the vote cast by Voter. Indeed, Assistant only knows information 
that is going to be published on the bulletin board. It is important that Assistant does 
not intercept the communication between ORE and Voter in step 5. It follows that, even if a 
coercer forces a voter to use a specifc Assistant, the coercer cannot fnd out how the voter 
voted. 

3. During one execution of the protocol, ORE can cheat one voter with a probability of 50%. 
Justifcation: During the oblivious transfer, ORE does not know which part of the ballot 
Assistant gets; ORE has a 50% chance of correctly guessing the part that Assistant got and, 
in step 5 present the voter a modifed version of the other part. It is important Voter notices 
if ORE and Assistant present her the contradicting information. An immediate consequence 
of this property is that ORE can cheat on b ballots without any of the b Voters noticing with 
a probability of 

2
1 
b . 

4. Voter does not need to follow any indirection for voting (she does not need to remember 
any information). Voter types in the number associated with her favorite candidate and 
remembers it for checking in step 15 

Undesired properties: 



1. Suppose that, in either step 9 or 15, Voter notices that Assistant and ORE present her with 
conficting information. All that Voter can do is to abort the protocol. Even though she 
caught ORE cheating, she does not have any proof that cheating occurred. This is because 
Assistant is not allowed to listen to the communication between ORE and Voter. If Voter 
aborts and restarts the protocol from step 1, now ORE has another chance of cheating in 5. 
This is similar to a vulnerability of eTegrity. 

2. If the coercive adversary can program Assistant, this protocol is not incoercible. For example, 
Assistant can be programmed tp refuse to prove to ORE which key it obtained. Hence, either 
Voter casts his vote for the coercer's candidate, or has a probability of 1

2 of being detected by 
the coercer, when queried about his choices. 

5 The Use of Blind Signatures 
Blind signatures may be used to enable the voter to prove that a cheating ORE has cheated with 
ePunchScan. 

5.1 Detailed Protocol 

1. ORE creates a ballot with two parts. Part1 is of the form "For Alice remember 2, for Bob 
remember 3, for Carol remember 1.". Part2 is of the form "to vote for 1 press Y, to vote for 
2 press X, to vote for 3 press Z". 

2. ORE publishes on the public bulletin board signed commitments to part1 and part 2. 

3. Using an oblivious transfer protocol, Assistant gets one of the two parts of the ballot. 

4. For the part received, Assistant checks the signature and the compliance with the commit-
ment. 

5. Synchronized, both ORE and Assistant present the ballot to Voter at the same time. ORE 
presents both parts to Voter and Assistant presents the part it got during the oblivious 
transfer. It is important that ORE presents both parts to Voter such that Assistant is not 
able to listen. 

6. If Voter notices that Assistant presents its part diferently than ORE presents the same part, 
she aborts the protocol. 

7. Voter enters a letter (either X, Y or Z) onto her Assistant. This letter corresponds to her 
vote (e.g. to vote for Bob, Voter enters Z) 

8. Assistant signs the choice of Voter (letter Z) and sends it to ORE 

9. ORE signs the received choice of Voter and posts this signed choice on a public bulletin board 
(this posted choice is signed by both Assistant and ORE). This is the receipt Voter gets. 

If Assistant does not have the capabilities to produce a digital signature, Assistant can send 
the choice using a blind signature protocol instead of step 8: 

1. Assistant blinds the choice of Voter. 



2.	 Assistant sends the blinded choice to ORE. 

3. ORE signs the blinded choice (ORE does not know the clear text vote, so it cannot selectively 
refuse to sign). 

4.	 ORE sends the signed blinded choice to Assistant. 

5.	 Assistant unblinds the choice. 

6.	 Assistant sends choice of Voter signed by ORE to ORE and keeps a copy as a receipt. 

5.2 Brief security analysis 

1. The public bulletin board contains data that does not allow the public to fnd out how Voter 
voted. Indeed, from the encoded vote (Z) and one of the two parts of the ballot, it is not 
possible to infer the candidate selected. 

2. Assistant does not learn the vote cast by Voter. Indeed, Assistant only knows information 
that is going to be published on the bulletin board. It is important that Assistant does 
not intercept the communication between ORE and Voter in step 5. It follows that, even if a 
coercer forces a voter to use a specifc Assistant, the coercer cannot fnd out how the voter 
voted. 

3. During one execution of the protocol, ORE can cheat one voter with a probability of 50%. 
Justifcation: During the oblivious transfer, ORE does not know which part of the ballot 
Assistant gets; ORE has a 50% chance of correctly guessing the part that Assistant got 
and, in step 5 present the voter a modifed version of the other part. It is important the 
Voter notices if ORE and Assistant present her the contradicting information. An immediate 
consequence of this property is that ORE can cheat on b ballots without any of the b voters 
noticing with a probability of 

2
1 
b . 

4. ORE cannot ignore Voter's input. Justifcation: ORE gets from Assistant a receipt that is 
already signed by either Assistant (if capable of signing digitally) or by ORE itself (if the 
blind signature protocol is used). All the receipts posted on the public bulletin board must 
by also signed by. 

Undesired properties: 

1. Assuming that in step 5 Voter notices that Assistant and ORE present her with conficting 
information. All that Voter can do is to abort the protocol. Even though she caught ORE 
cheating, she does not have any proof that cheating occurred. This is because Assistant is 
not allowed to listen to the communication between ORE and Voter. Assuming Voter aborts 
and restarts the protocol from step 1, now ORE has another chance of cheating in 5. 

2. The ballot uses a double indirection.	 Voter needs to remember the number associated with 
her favorite candidate and then type in the letter associated with that number (same as in 
PunchScan). This requires voter efort. 



6	 Conclusions 
We have presented electronic versions of the Scantegritya nd PunchScan protocols, based on a new
model of the voting process. In our model, the voter votes in a polling booth, and has access to a
computational Assistant which can be examined by the coercer after the voter casts his vote. It
appears that the protocols might be incoercible and tally-verifable if the adversary cannot program
the Assistant and does not collude with the voting system. This is work in progress, and we do
not present rigorous defnitions, descriptions, or proofs. 

References 
[1] Ben Adida. Helios: Web-based Open-Audit Voting. In Proceedings of the Seventeenth Usenix Security 

Symposium (USENIX Security 2008), June 2008. 
[2] Ben Adida and Ronald 1. Rivest. Scratch & Vote: self-contained paper-based cryptographic voting. In

WPES '06: Proceedings of the 5th ACM Workshop on Privacy in the Electronic Society, pages 29-40, 
New York, NY, USA, 2006. ACM Press. 

[3] Josh Benaloh. Simple verifable elections. In EVT'06: Proceedings of the USENIX/Accurate Electronic 
Voting Technology Workshop 2006 on Electronic Voting Technology Workshop, Berkeley, CA, USA, 2006. 
USENIX Association. 

[4] David Chaum. Secret-ballot receipts: True voter-verifable elections. IEEE Security and Privacy, pages 
38-47, January/February 2004. 

[5] David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex, Stefan Popoveniuc, Ronald 1. Rivest,
Peter Y. A. Ryan, Emily Shen, and Alan T. Sherman. Scantegrity II: End-to-end verifability for
optical scan election systems using invisible ink confrmation codes. In EVT'07: Proceedings of the 
USENIX/Accurate Electronic Voting Technology on USENIX/Accurate Electronic Voting Technology 
Workshop. USENIX Association, 2008. 

[6] David Chaum, Peter Y. A. Ryan, and Steve Schneider. A practical voter-verifable election scheme.
In In Sabrina De Capitani di Vimercati, Paul F. Syverson, and Dieter Gollmann, editors, ESORICS, 
volume 3679 of Lecture Notes in Computer Science, pages 118-139. Springer, 2005. 

[7] David 1. Chaum. Untraceable electronic mail, return address, and digital pseudonym. Communication 
of ACM, February 1981. 

[8] Jeremy Clark Aleksander Essex Stefan Popoveniuc Ronald 1. Rivest Peter Y. A. Ryan Emily Shen Alan
T. Sherman David Chaum, Richard Carback and Poorvi 1. Vora. Scantegrity: End-to-end verifability
for optical scan elections. IEEE Transactions On Information Forensics And Security: Special Issue 
On Electronic Voting. In Review. 

[9] C. Andrew Nef. A verifable secret shufe and its application to e-voting. In 8th ACM Conference on 
Computer and Communications Security, pages 116-125, 2001. 

[10] Stefan Popoveniuc and Ben Hosp. An introduction to PunchScan. In IAVoSS Workshop On Trustworthy 
Elections (WOTE 2006), Robinson College, Cambridge UK, June 2006. 

[11] Punchscan. http://www.punchscan.org. 
[12] Ronald 1. Rivest. On the Notion of �Software Independence" in Voting Systems.	 Phil. Trans. Royal 

Society A, 366:3759-3767, October 2008. 
[13] Ronald 1. Rivest and John P. Wack. On the Notion of �Software Independence" in Voting Systems. 

http://vote.nist.gov/81-in-voting.pdf, July 2006. 
[14] P. Y. A. Ryan and S. A. Schneider. Pret a voter with re-encryption mixes. In In D. Gollmann, D., J. 

Meier, and A. Sabelfeld, editors, ESORICS, volume 4189 of Lecture Notes in Computer Science, pages 
313-326. Springer-Verlag, 2006. 

http://vote.nist.gov/81-in-voting.pdf
http:http://www.punchscan.org
http:StefanPopoveniucandBenHosp.AnintroductiontoPunchScan.In
http:BenAdidaandRonald1.Rivest.Scratch&Vote:self-containedpaper-basedcryptographicvoting.In

