NIST's views on SHA-3's security requirements and Evaluation of attacks

National Institute of Standards and Technology

Presented by Mridul Nandi

Outline of the talk

- Security requirements
- Cost of an attack
- Categorization of attacks
 - Completely broken
 - Wounded
 - Undermining confidence
 - · Little to no concern
- Summary

Quick View on Security Definitions

Collision attack: find $M \neq M' s.t. H(M) = H(M')$

Preimage attack: given h, find M s.t. H(M) = h

2nd Preimage attack: given M, find M' \neq M s.t. H(M) = H(M')

Length-extⁿ: Given H(M) and |M|, find h' and z s.t. H(M || z) = h'

eTCR: Find M and then for a randomly chosen r, find M' and r' s.t. $H_r(M) = H_{r'}(M')$, $(r,M) \neq (r',M')$ where H_r is the randomized hash

PRF-attack: Distinguish $HMAC_K$ based on H from a random function

Some Best Known Generic Attacks

- Collision (parallel collision search): $O(2^{n/2})$ computation, O(1) memory (for each processor), $2^{n/4}$ parallelization
- Preimage (trial and error attack): $O(2^n)$ compⁿ, O(1) memory, $2^{n/2}$ parallelⁿ
 - time-memory trade-off ignores off-line computation
- Distinguishing HMAC based on collision (for MDtype hash algorithms)

Some Best Known Generic Attacks contd.

- eTCR, 2nd preimage, no such generic attack less than 2ⁿ computation
 - some generic attacks on MD or with other similar structures
 - Kelsey-Schneier attack
- MD has length extension attack

Comparing with generic attacks

- Any attack requiring more computations than generic attacks, can be ignored.
- Beating generic attack w.r.t. both time and memory also beats w.r.t. computation, but converse may not be true.
- Is there reason to ignore attack better than generic attack w.r.t. computation?

Security Requirements of SHA-3

An n-bit Hash Algorithm expects roughly

- 1. n/2-bit Collision and PRF-security (HMAC)
- 2. n-bit preimage and length extension security
- 3. (n-k)-bit 2nd preimage (the target message has length 2^k) and enhanced Target Collision security (for randomized hash only)

m-bit truncation expects at least the above securities with m replacing n

Other Security Considerations

- Multi-collision attack (more than two messages with same collision value)
 - narrow-pipe designs are vulnerable
- More than (n-k)-bit security for 2^{nd} preimage with length shorter than 2^k
 - ideally n-bit security
- Resistance against these attacks is viewed positively

Q and A

- 1. measuring n-bit security
- 2. significance of having security beyond n/2-bit security (e.g., preimage)

Evaluation of attacks

Cost of an attack

- · Computational (time) complexity
 - off-line and online computation
 - in sequential attack, computation = time
 - in parallel attack, computation ≤time × # processor
 - success probability of an attack is related to computation
- Memory complexity and Parallelizability
 - parallelizability, memory, etc. are important factors for attack's performance considerations

Cost of an attack

- How do we compare two attacks where one requires more time while the other requires more memory?
 - one-dimensional metric
 - we assume there exists parallel version of attacks (unless strong evidence provided against it)

Broad Categorization Of Attacks

- 1. Completely breaks (practical threat)
- 2. Wounds (fail to satisfy security requirements)
- 3. Undermines confidence (some weakness)
- 4. Little to no concern

Undermines Confidence

- Variants of attacks: near collision, pseudo collision, low margin reduced round attack, etc.
- Reduced round attacks limit performance
- Unexpected properties of hash or its components
 - nonrandom behaviors (failing statistical test).
 - block ciphers: not random permutations
 - weakness in S-box

Undermines Confidence

- Flawed understanding of designers
 - flawed proofs or assumptions, demonstrating a property that was "proved" in submission not to exist
- Many attacks (or maybe observations) will not violate collision or preimage resistance
 - still probably care about these

Undermines Confidence

- Rule of thumb:
 - we never care about attacks at > 2ⁿ work
 - observations are worrying if they get substantially below the theoretical limit
 - no hard and fast rule measuring an observation
- How do we evaluate observations?

Wounded Hash Algorithms

- Any attacks with computation less than its corresponding expected complexity (NIST's requirement)
- Beating 2ⁿ computation bound preimage
 - Ex: n=256, computation = memory = 2^{128}
 - (if sequential) parallel generic attack with same time and memory exists but not w.r.t. computation
- Similarly for other security requirements

If it's broken, we're done with it

- Attack with both compⁿ and memory below the numbers
- Computation is based on collision bound with some buffer.

Hash Size	log2(Comp)	log ₂ (Mem)
224	100	80
256	120	100
384	180	150
512	240	200

If it's broken, we're done with it

- 1 bit memory $\approx 2^{20}$ to 2^{40} hash computations (an estimate based on current technology, should be subject to periodic review)
- Analogy with AES and DSA key sizes

Hash Size	log2(Comp)	log ₂ (Mem)
224	100	80
256	120	100
384	180	150
512	240	200

Summary

- At this point, we evaluate attacks based on how they will affect our choice in the next round
- That means asking, for any given attack:
 - Does it completely break the hash function?
 - Does it violate NIST security requirements?
 - Does it undermine our confidence in the hash function?
 - Does it require the hash to be unacceptably slow to resist the attack?

Feb 26, 2009 20

Q and A

- How do we measure n-bit security?
- Significance for having beyond n/2-bit security? (e.g., preimage)
- How do we compare two attacks?
- How do we evaluate an observation?
- Others?