

ISO/IEC 24727-3 Application Programming Interface

Session Objectives

Review the API services

- Path
- Connection
- Discovery
- Authentication and Access Control
- Use (Read, Write, Sign, etc.)
- Conclusion (CloseSession, Disconnect)
- Consider the central role of differential-identity

A Client-Application's Token Functions

Find it

- Talk to it
- Discover it
- Trust it
- Use it
- Detach it

The Distributed Application

ISO/IEC 24727-3: Application Interface

Objectives

- Client-application interface for all card-application services.
- Client-application centric language and mechanisms
- Multi-application interoperability
- Long-term evolution of card-based systems

Scope

- Card-application services accessed through requests and responses at the client-application API
- Programming language independent definition

ISO/IEC 24727-3: Design Themes

API presents client-application semantics

Service requests (e.g. Authenticate, Verify, Sign)

Discovery based on semantics

Complete object security model

Consistent treatment of loadable request services

Resultant Characteristics of API (ISO/IEC 24727-3: Application Interface)

Client-application centric

Formal definition (ASN.1)

Provide access to token through full range of methods

Establish a well-defined Model of Computation (MOC)

Allow for token administration

Provide MOC level discoverability mechanisms

Extensible

Find It

The first order of business for a client-application is to locate the desired token.

Path Services

Initialize

- This is an Administrator defined function of the API
- This function binds the client-application to a specific stack configuration
- The specific stack configuration defines the capability of the subsequent "Path" command to locate a token

Card Application Path

- Depending on the stack configuration, this function provides for responses to queries (from the client-application) to locate a specific token (card-application)

And the Path function responds with available paths to that specific point.

Talk to it

Once a client-application knows the path to a specific card-application

It must establish a communication channel (along the known path) between the client-application and the card-application.

Client-application	Connection	Card-application

Connection Services

CardApplicationConnect

 Using the stack configuration resulting from Initialize the client-application can issue a *CardApplicationConnect* to establish a communication channel to the specified card-application

This is a completely unsecured channel.

 This channel (referred to as a "connection") is referenced in subsequent request by an "opaque handle"

Connection Services

CardApplicationStartSession

In order to guarantee privacy for all communication between the client-application and the card-application a secured channel, called a "session" can be established through the existing connection by using the existing "opaque handle" as an input parameter to a CardApplicationStartSession request

Discover it

Must first learn how to Establish trust with the Card-application:

- Find what differential-Identities are present
- Find which can be authenticated, or perhaps
- Which other cardapplications are available

Card Application Services

- CardApplicationList
- CardApplicationServiceLise
- DataSetList
- DSIList
- Differential-IdentityList
- ACLList
- ACLAccessRuleModify

Trust it Client VIA Then the client-application Client VIA Then the client-application Client VIA Then the client-application Card

Differential-identity Services

Authenticate

Get

Update

Cryptographic Services

Cryptographic services from the token card-application are used to establish trust within the client-application using cryptographic mechanisms such as digital signatures and digital certificates

GetChallenge

- Sign
- Encipher
- Decipher
- VerifySignature

Authentication Protocol Standardization

- ISO/IEC 24727-3 Defines a generic method to describe an AP
- ISO/IEC 24727-3 Annex A documents and makes available twenty two (22) common APs (license free)
- ISO/IEC 24727-3 Annex A provides unique OIDs for the 22 APs

Authentication Protocols (APs)

- Existing ISO standards are very general re APs (ISO/IEC 9798, and some in 7816 series)
- Existing industry standards are very explicit re APs (EMV, GlobalPlatform etc)
- Up until the publication of ISO/IEC 24727-3 there was no generic methodology for describing a smartcard (or any other) AP
- MOST interoperability problems related to smartcards are due to subtle discrepancies between APs
- Most people think that APs and cryptographic algorithms/ciphers are the same thing they are not

Authentication Protocol Details

- Short name (part of ASN.1 OID)
- Short description
- General description
- Purpose
- Marker empty or not, ASN.1 representation
- Authentication steps step by step description with ASN.1 representation
- State Machine rules for setting true/false

DID Commands action for Registration

 DIDCreate – didStructure parameter + ASN.1 representation

 DIDUpdate – markerList parameter + ASN.1 representation, generateFlag, publicKey/privateKey options

 DIDGet - didStructure parameter + ASN.1 representation

Getting to know the other party (using authentication protocols)

Computer authenticates the Token

Token authenticates the Computer

Asymmetric Internal Authenticate

F

Asymmetric External Authenticate

ASN.1 Representation of a Marker

MarkerAP007 ::= SEQUENCE {

encryptionAlgorithm AlgorithmIDParameters, hashAlgorithm AlgorithmIDParameters, keySize INTEGER, secretKey OCTET STRING, nonceSize INTEGER

Figure A.5 - Symmetric External Authenticate

Object Identifiers (OIDs)

- Object identifiers are used in the specification of authentication protocols to distinguish cryptographic algorithms
- Each OID specifies the defining organization, and hence the detailed specification, of that cryptographic algorithm

For example:

id-aes256-ECB ::= { joint-iso-ccitt(2) country(16) us(840)
organization(1) gov(101) csor(3) nistAlgorithm(4) 1 41 }

Card-application Services

- CardApplicationList
- CardApplicationServiceList
- Describe
- ExecuteAction

Named Data Services

DataSetList

- Select
- DSIList
- Read

Administration Operations

- CardApplicationCreate
- CardApplicationDelete
- CardApplicationLoad
- CardApplicationServiceList
- CardApplicationServiceDescribe
- CardApplicationServiceCreate
- CardApplicationServiceDelete
- CardApplicationServiceLoad
- Differential-IdentityList
- Differential-IdentityCreate
- Differential-IdentityGet
- Differential-IdentityUpdate

- Differential-IdentityDelete
- ACLList
- ACLAccessRuleModify
- DataSetList
- DataSetCreate
- DataSetSelect
- DataSetDelete
- DSIList
- DSICreate
- DSIRead
- DSIWrite
- DSIDelete

Creating the Registry

- The ISO/IEC 24727-3 layer is responsible for writing the Registry via the GCI.
- It creates the Registry as either a file or as an ISO/IEC 7816-4 data object.
- The structure of the Registry is defined in ISO/IEC 7816-15
- While the Registry must be created by an ISO/IEC 24727-3 layer, it may then physically reside "off-token"

Creating the CCD

- The ISO/IEC 24727-3 layer is responsible for writing the CCD via the GCI.
- It creates the CCD as either a file or as an ISO/IEC 7816-4 data object.
- The content of the CCD is defined in ISO/IEC 24727-2
- The CCD may physically reside "on-token" or "off-token"

Creating the ACD

- The ISO/IEC 24727-3 layer is responsible for writing the ACD via the GCI.
- It creates the ACD as either a file or as an ISO/IEC 7816-4 data object.
- The content of the ACD is defined in ISO/IEC 24727-2
- The ACD may physically reside "on-token" or "off-token"

How it works: an illustration

Secure Messaging

- APDU based means of achieving data integrity and some level of privacy between the IFD and the token
- ISO/IEC 7816-4 defines the basic mechanics of secure messaging, however not to a level of interoperable specificity
- ISO/IEC 24727 addresses interoperable secure messaging in ISO/IEC 24727-4

Detach it

 In the most general case, there are three levels of connectivity between a clientapplication and a token:

- a session
- a connection
- a stack configuration

A client-application can discontinue each in the inverse order of their establishment

Connection Services

CardApplicationEndSession

- Discontinue the secured "session" but leave the connection in place

CardApplicationDisconnect

- Discontinue the connection from the client-application to the token but leave the stack configuration in place

Terminate

Discontinue the stack configuration

A Note About Differential-Identity

- Differential-identity forms a high-level (i.e. client-application) mechanism that maps the "social" world (names, etc.) to the technical world of the token with its short file names, tags, key references, esoteric authentication protocols.
- Thus, differential-identity is a central feature in the provision of interoperability among diverse identification systems.

QUESTIONS?

