
1st and 2nd Preimage Attacks on 7, 8 and 
9 Rounds of 

Keccak-224,256,384,512 

Donghoon Chang1, Arnab Kumar2, Pawel Morawiecki3,  

Somitra Kumar Sanadhya1 

1IIIT-Delhi, India  2NSIT, India  

Presented at 2014 SHA3 Workshop, Santa Barbara USA 
August 22 2014 

3Polish Academy of Sciences, Institute of Computer Science, Poland 



Sponge Construction 

bitrate 

capacity 



Domain Extension of Keccak-224 

448 

1152 Last 224-bit 

Z 

10*1 

The size of capacity is double of the hash output size. 



Domain Extension of Keccak-256 

512 

1088 Last 256-bit 

Z 

10*1 

The size of capacity is double of the hash output size. 



Domain Extension of Keccak-384 

768 

832 Last 384-bit 

Z 

10*1 

The size of capacity is double of the hash output size. 



Domain Extension of Keccak-512 
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Domain Extension of SHA3-224 
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Message padding is changed. 

The size of capacity is double of the hash output size. 
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1600-bit Permutation  f 

• A 1600-bit state is described by a[x][y][z] for 
0≤x≤4, 0≤y≤4, 0≤z≤63.  

• f consists of 24 rounds. Each round is defined 
by                                . 

 

degree 1 
(0.5 round) 

degree 2 
(0.5 round) 



Number of Bit-operations of each Round  

For 0≤x≤4, 0≤y≤4, 0≤z≤63.  
1280 bit-operations   1600 bit-operations   

320 bit-operations   

4800 bit-operations   

64 bit-operations   

In total, at least 8064 (=1600+1280+320+4800+64) bit-operations 
are required to compute one round. 



General Preimage Attack Complexity for 
Keccak-n and SHA3-n based on r-round f 

Last o-bit 

Z 

2o 

1600-2o 

• So, given a o-bit hash value Z, we need r8064  2o bit-
operations to find its preimage with high probability. 



Polynomial Enumeration (used by 
Dinur and Shamir [FSE 2011] ) 

• Given a boolean function fi (1≤i≤b) with n-bit 
input and degree d, where fi is the i-th output bit 
of f, 

• polynomial enumeration algorithm is a way of 
constructing the truth table of fi by the following 
two steps.  
– Step 1: Compute coefficients of fi, 

• Time complexity: 0≤j≤d(2jnCj).  

– Step 2: Construct the truth table of fi using the fast 
Moebius transformation.  
• Time complexity: n2n-1. 

 
 



The Fast Moebius Transformation 

• transforms the coefficient array of a boolean 
function to its truth table array. 

For example, f(x1,x2,x3)=x1x1x2x3x1x2x3 
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Truth Table Array 

f(0,0,0) 
f(0,0,1) 
f(0,1,0) 
f(0,1,1) 
f(1,0,0) 
f(1,0,1) 
f(1,1,0) 
f(1,1,1) 

Complexity : for n variables, n2n-1 1-bit XOR operations. 



Preimage Attack on H using Polynomial 
Enumeration (by Dinur and Shamir) 

• Given a o-bit hash output Z, 

– Step 1: By polynomial enumeration algorithm, 
efficiently find messages M’s which partially 
match over b bits of the given o-bit hash value. 

– Step 2: if there is M s.t. H(M)=Z, then return M 
else goes to Step 1.  



Improving Polynomial Enumeration  
(by Bernstein [NIST mailing list 2013] ) 
• Given a boolean function fi (1≤i≤b) with n-bit 

input and degree d, where fi is the i-th output bit 
of f. 

• polynomial enumeration algorithm is a way of 
constructing the truth table of fi by the following 
two steps.  
– Step 1: Compute coefficients of fi, 

• Time complexity: 0≤j≤d(2jnCj)               0≤j≤d(jnCj).  

– Step 2: Construct the truth table of fi using the fast 
Moebius transformation.  
• Time complexity: n2n-1. 



Improving Polynomial Enumeration  
(by Bernstein [NIST mailing list 2013] ) 
• Given a boolean function fi (1≤i≤b) with n-bit 

input and degree d, where fi is the i-th output bit 
of f. 

• polynomial enumeration algorithm is a way of 
constructing the truth table of fi by the following 
two steps.  
– Step 1: Compute coefficients of fi, 

• Time complexity: 0≤j≤d(2jnCj)               0≤j≤d(jnCj).  

– Step 2: Construct the truth table of fi using the fast 
Moebius transformation.  
• Time complexity: n2n-1. But this time complexity 

improvement requires 
big memory cost. 



Application to 6, 7, 8 rounds of Keccak-512  
(by Bernstein) 

• 6 rounds: 2176 bits of memory give a workload 
reduction by a factor 50 (~6 bits) 

• 7 rounds: 2320 bits of memory give a workload 
reduction by a factor 37 (~5 bits) 

• 8 rounds: 2508 bits of memory give a workload 
reduction by a factor 1.4 (half a bit) 

 



Our Results 

• Bernstein only described the idea of improving Step 1 
complexity. However, overall time and memory 
complexity of his attack is not clear. 

• Result 1: Based on Bernstein’s idea, we made 
Algorithm 1 for generating the coefficient array of a 
boolean function with detailed time and memory 
complexity. 

• Result 2: We provide a general preimage attack 
methodology on hash functions using Result 1 and 
meet-in-the-middle-matching technique. 

• Result 3: Using Result 2, as an example, we further 
improve Bernstein’s result upto 9 rounds of Keccak. 



Algorithm 1 for Generating the Coefficient 
Array of a Boolean Function (Result 1) 

Memory Complexity: 

Time Complexity: 



Algorithm 1 for Generating the Coefficient 
Array of a Boolean Function (Result 1) 

Memory Complexity: 

Time Complexity: 

 = {A : |A|≤d and A {1,2,…..,n}} 



Algorithm 1 for Generating the Coefficient 
Array of a Boolean Function (Result 1) 

Memory Complexity: 

Time Complexity: 

Step 7 

The time complexity of f  is T. 
(in terms of number of bit-operations) 



Algorithm 1 for Generating the Coefficient 
Array of a Boolean Function (Result 1) 

Memory Complexity: 

Time Complexity: 

Step 10,11,12 

2 bit-operations (1 XOR, 1-bit memory access of static array Sum) 

2 bit-operations are needed on average 

1 bit -operation (1-bit update of static array Sum) 



Algorithm 1 for Generating the Coefficient 
Array of a Boolean Function (Result 1) 

Memory Complexity: 

Time Complexity: 

Previous Sum Arrays : Each Sum array  (which is static) has 2n 
elements of size 1-bit. We need at most d previous Sum arrays.  

Current Sum Arrays: Each Sum array  (which is static) has 2n 
elements of size 1-bit. We need at most d+1 current Sum arrays.  

Coefficient Array  (which is static) has 2n elements of size 1-bit. 



Our General Preimage Attack on H=H2◦H1 
(Result 2) 

Given: o-bit hash value h 

q-bit matching (qb) 

Message M with n variables 

② 

④ Matching with 
remaining o-b bits   

b bits 

Polynomial 
Enumeration 
(Algorithm 1 
and the fast 

Moebius 
Transformation) 

Table Look-up 
(a large 

memory may 
be required) 

① 

H1  

H2 

③ 

⑤ Repeat 2o-n times   

(with Time Comp. T’) 

(with Time Comp. T’’) 



Complexity of Our General Preimage Attack 
 (Result 2) 

Memory Complexity: 

Time Complexity: 
① Generating lookup Table for H2 

② Algorithm 1 (here, w=1) 

② the fast Moebius 
Transformation ③ Matching over q-bit ④ Matching over remaining    

o-q bits (where T=T’+T’’) 

Lookup Table for H2 q Coefficient arrays and 2d+1 Sum arrays of size 2n for 
Polynomial Enumeration  

⑤ 



Application to Keccak (Result 3) 

First r-0.5 rounds 
(degree: 2r-1) 

Last 0.5 round 

Given: o-bit hash value h 

q-bit matching  (q=b= 5 or 10) 

Message M 

④ matching with 
remaining o-b bits   

b bits 

Polynomial 
Enumeration 
(Algorithm 1 
and the fast 

Moebius 
Transformation) 

Inverting 
(no memory 

required) 

H1 

H2 

② 

① 

③ 

⑤ Repeat 2o-n times   



1st and 2nd Preimage Attacks on 6, 7, 
8, 9 rounds of Keccak (Result 3) 
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Our results 
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Bernstein’s results 

Our results 

1.44 → 38.36 

1st and 2nd Preimage Attacks on 6, 7, 
8, 9 rounds of Keccak (Result 3) 



Bernstein’s results 

Our results 

New : 1.23 

1st and 2nd Preimage Attacks on 6, 7, 
8, 9 rounds of Keccak (Result 3) 



Work in Progress 

• Message Modification: Good selection of position of 
message lanes will not double the degree by bypassing 
chi step () of the round function of Keccak. 

• Very careful memory and time complexity analysis 
required (at the complexities close to exhaustive 
search) 

• Our preliminary analysis shows 
– 1st and 2nd preimage attacks on 9 rounds of Keccak-256 

with improvement factor 1.14 

– 1st and 2nd preimage attacks on 10 rounds of Keccak-512 
with improvement factor 1.05 

 

 



Conclusion 

• None of the attacks threatens the security of 
Keccak as the attack complexities are already 
close to brute force by the time we cross 9 
rounds of Keccak.  

• In fact, this work shows the limits of polynomial 
enumeration method-based preimage attacks 
against Keccak. 

• Our Attack on reduced rounds of Keccak can be 
applied to reduced rounds of SHA3 with the same 
complexity and same number of rounds. 


