
1st and 2nd Preimage Attacks on 7, 8 and
9 Rounds of

Keccak-224,256,384,512

Donghoon Chang1, Arnab Kumar2, Pawel Morawiecki3,

Somitra Kumar Sanadhya1

1IIIT-Delhi, India 2NSIT, India

Presented at 2014 SHA3 Workshop, Santa Barbara USA
August 22 2014

3Polish Academy of Sciences, Institute of Computer Science, Poland

Sponge Construction

bitrate

capacity

Domain Extension of Keccak-224

448

1152 Last 224-bit

Z

10*1

The size of capacity is double of the hash output size.

Domain Extension of Keccak-256

512

1088 Last 256-bit

Z

10*1

The size of capacity is double of the hash output size.

Domain Extension of Keccak-384

768

832 Last 384-bit

Z

10*1

The size of capacity is double of the hash output size.

Domain Extension of Keccak-512

1024

576 Last 512-bit

Z

10*1

The size of capacity is double of the hash output size.

Domain Extension of SHA3-224

448

1152 Last 224-bit

Z

1110*1

Message padding is changed.

The size of capacity is double of the hash output size.

Domain Extension of SHA3-256

512

1088 Last 256-bit

Z

1110*1

The size of capacity is double of the hash output size.

Domain Extension of SHA3-384

768

832 Last 384-bit

Z

1110*1

The size of capacity is double of the hash output size.

Domain Extension of SHA3-512

1024

576 Last 512-bit

Z

1110*1

The size of capacity is double of the hash output size.

1600-bit Permutation f

• A 1600-bit state is described by a[x][y][z] for
0≤x≤4, 0≤y≤4, 0≤z≤63.

• f consists of 24 rounds. Each round is defined
by .

degree 1
(0.5 round)

degree 2
(0.5 round)

Number of Bit-operations of each Round

For 0≤x≤4, 0≤y≤4, 0≤z≤63.
1280 bit-operations 1600 bit-operations

320 bit-operations

4800 bit-operations

64 bit-operations

In total, at least 8064 (=1600+1280+320+4800+64) bit-operations
are required to compute one round.

General Preimage Attack Complexity for
Keccak-n and SHA3-n based on r-round f

Last o-bit

Z

2o

1600-2o

• So, given a o-bit hash value Z, we need r8064 2o bit-
operations to find its preimage with high probability.

Polynomial Enumeration (used by
Dinur and Shamir [FSE 2011])

• Given a boolean function fi (1≤i≤b) with n-bit
input and degree d, where fi is the i-th output bit
of f,

• polynomial enumeration algorithm is a way of
constructing the truth table of fi by the following
two steps.
– Step 1: Compute coefficients of fi,

• Time complexity: 0≤j≤d(2jnCj).

– Step 2: Construct the truth table of fi using the fast
Moebius transformation.
• Time complexity: n2n-1.

The Fast Moebius Transformation

• transforms the coefficient array of a boolean
function to its truth table array.

For example, f(x1,x2,x3)=x1x1x2x3x1x2x3

Coefficient Array

0
1
0
0
1
0
1
1

coefficient of x3

coefficient of x1

coefficient of x1x2
coefficient of x1x2x3

The Fast Moebius Transformation

• transforms the coefficient array of a boolean
function to its truth table array.

For example, f(x1,x2,x3)=x1x1x2x3x1x2x3

Coefficient Array

0
1
0
0
1
0
1
1

The Fast Moebius Transformation

• transforms the coefficient array of a boolean
function to its truth table array.

For example, f(x1,x2,x3)=x1x1x2x3x1x2x3

Coefficient Array

0
1
0
0
1
0
1
1

0
1
0
0
1
1
1
0

The Fast Moebius Transformation

• transforms the coefficient array of a boolean
function to its truth table array.

For example, f(x1,x2,x3)=x1x1x2x3x1x2x3

Coefficient Array

0
1
0
0
1
0
1
1

0
1
0
0
1
1
1
0

0
1
0
1
1
1
0
1

The Fast Moebius Transformation

• transforms the coefficient array of a boolean
function to its truth table array.

For example, f(x1,x2,x3)=x1x1x2x3x1x2x3

Coefficient Array

0
1
0
0
1
0
1
1

0
1
0
0
1
1
1
0

0
1
0
1
1
1
0
1

0
1
0
1
1
0
0
0

Truth Table Array

f(0,0,0)
f(0,0,1)
f(0,1,0)
f(0,1,1)
f(1,0,0)
f(1,0,1)
f(1,1,0)
f(1,1,1)

Complexity : for n variables, n2n-1 1-bit XOR operations.

Preimage Attack on H using Polynomial
Enumeration (by Dinur and Shamir)

• Given a o-bit hash output Z,

– Step 1: By polynomial enumeration algorithm,
efficiently find messages M’s which partially
match over b bits of the given o-bit hash value.

– Step 2: if there is M s.t. H(M)=Z, then return M
else goes to Step 1.

Improving Polynomial Enumeration
(by Bernstein [NIST mailing list 2013])
• Given a boolean function fi (1≤i≤b) with n-bit

input and degree d, where fi is the i-th output bit
of f.

• polynomial enumeration algorithm is a way of
constructing the truth table of fi by the following
two steps.
– Step 1: Compute coefficients of fi,

• Time complexity: 0≤j≤d(2jnCj) 0≤j≤d(jnCj).

– Step 2: Construct the truth table of fi using the fast
Moebius transformation.
• Time complexity: n2n-1.

Improving Polynomial Enumeration
(by Bernstein [NIST mailing list 2013])
• Given a boolean function fi (1≤i≤b) with n-bit

input and degree d, where fi is the i-th output bit
of f.

• polynomial enumeration algorithm is a way of
constructing the truth table of fi by the following
two steps.
– Step 1: Compute coefficients of fi,

• Time complexity: 0≤j≤d(2jnCj) 0≤j≤d(jnCj).

– Step 2: Construct the truth table of fi using the fast
Moebius transformation.
• Time complexity: n2n-1. But this time complexity

improvement requires
big memory cost.

Application to 6, 7, 8 rounds of Keccak-512
(by Bernstein)

• 6 rounds: 2176 bits of memory give a workload
reduction by a factor 50 (~6 bits)

• 7 rounds: 2320 bits of memory give a workload
reduction by a factor 37 (~5 bits)

• 8 rounds: 2508 bits of memory give a workload
reduction by a factor 1.4 (half a bit)

Our Results

• Bernstein only described the idea of improving Step 1
complexity. However, overall time and memory
complexity of his attack is not clear.

• Result 1: Based on Bernstein’s idea, we made
Algorithm 1 for generating the coefficient array of a
boolean function with detailed time and memory
complexity.

• Result 2: We provide a general preimage attack
methodology on hash functions using Result 1 and
meet-in-the-middle-matching technique.

• Result 3: Using Result 2, as an example, we further
improve Bernstein’s result upto 9 rounds of Keccak.

Algorithm 1 for Generating the Coefficient
Array of a Boolean Function (Result 1)

Memory Complexity:

Time Complexity:

Algorithm 1 for Generating the Coefficient
Array of a Boolean Function (Result 1)

Memory Complexity:

Time Complexity:

 = {A : |A|≤d and A {1,2,…..,n}}

Algorithm 1 for Generating the Coefficient
Array of a Boolean Function (Result 1)

Memory Complexity:

Time Complexity:

Step 7

The time complexity of f is T.
(in terms of number of bit-operations)

Algorithm 1 for Generating the Coefficient
Array of a Boolean Function (Result 1)

Memory Complexity:

Time Complexity:

Step 10,11,12

2 bit-operations (1 XOR, 1-bit memory access of static array Sum)

2 bit-operations are needed on average

1 bit -operation (1-bit update of static array Sum)

Algorithm 1 for Generating the Coefficient
Array of a Boolean Function (Result 1)

Memory Complexity:

Time Complexity:

Previous Sum Arrays : Each Sum array (which is static) has 2n
elements of size 1-bit. We need at most d previous Sum arrays.

Current Sum Arrays: Each Sum array (which is static) has 2n
elements of size 1-bit. We need at most d+1 current Sum arrays.

Coefficient Array (which is static) has 2n elements of size 1-bit.

Our General Preimage Attack on H=H2◦H1
(Result 2)

Given: o-bit hash value h

q-bit matching (qb)

Message M with n variables

②

④ Matching with
remaining o-b bits

b bits

Polynomial
Enumeration
(Algorithm 1
and the fast

Moebius
Transformation)

Table Look-up
(a large

memory may
be required)

①

H1

H2

③

⑤ Repeat 2o-n times

(with Time Comp. T’)

(with Time Comp. T’’)

Complexity of Our General Preimage Attack
 (Result 2)

Memory Complexity:

Time Complexity:
① Generating lookup Table for H2

② Algorithm 1 (here, w=1)

② the fast Moebius
Transformation ③ Matching over q-bit ④ Matching over remaining

o-q bits (where T=T’+T’’)

Lookup Table for H2 q Coefficient arrays and 2d+1 Sum arrays of size 2n for
Polynomial Enumeration

⑤

Application to Keccak (Result 3)

First r-0.5 rounds
(degree: 2r-1)

Last 0.5 round

Given: o-bit hash value h

q-bit matching (q=b= 5 or 10)

Message M

④ matching with
remaining o-b bits

b bits

Polynomial
Enumeration
(Algorithm 1
and the fast

Moebius
Transformation)

Inverting
(no memory

required)

H1

H2

②

①

③

⑤ Repeat 2o-n times

1st and 2nd Preimage Attacks on 6, 7,
8, 9 rounds of Keccak (Result 3)

Bernstein’s results

Our results

Bernstein’s results

Our results

50 → 85.70

1st and 2nd Preimage Attacks on 6, 7,
8, 9 rounds of Keccak (Result 3)

Bernstein’s results

Our results

37 → 59.34

1st and 2nd Preimage Attacks on 6, 7,
8, 9 rounds of Keccak (Result 3)

Bernstein’s results

Our results

1.44 → 38.36

1st and 2nd Preimage Attacks on 6, 7,
8, 9 rounds of Keccak (Result 3)

Bernstein’s results

Our results

New : 1.23

1st and 2nd Preimage Attacks on 6, 7,
8, 9 rounds of Keccak (Result 3)

Work in Progress

• Message Modification: Good selection of position of
message lanes will not double the degree by bypassing
chi step () of the round function of Keccak.

• Very careful memory and time complexity analysis
required (at the complexities close to exhaustive
search)

• Our preliminary analysis shows
– 1st and 2nd preimage attacks on 9 rounds of Keccak-256

with improvement factor 1.14

– 1st and 2nd preimage attacks on 10 rounds of Keccak-512
with improvement factor 1.05

Conclusion

• None of the attacks threatens the security of
Keccak as the attack complexities are already
close to brute force by the time we cross 9
rounds of Keccak.

• In fact, this work shows the limits of polynomial
enumeration method-based preimage attacks
against Keccak.

• Our Attack on reduced rounds of Keccak can be
applied to reduced rounds of SHA3 with the same
complexity and same number of rounds.

