
Shrinking KE C C A K Hardware Implementations

Bernhard Jungk1, Marc St ̈ottinger2,3 and Matthias Harter4

1 easycore GmbH, Erlangen, Germany

2 PACE Temasek Laboratories

3 Division of Mathematical Sciences, SPMS, Nanyang Technological University, Singapore

4 Hochschule RheinMain, University of Applied Sciences, Wiesbaden R ̈usselsheim, Germany

Abstract. The SHA-3 competition ended in late 2012 by announcing KE CC A K as the winning algorithm.
During the contest, several criteria were evaluated for hardware implementations, foremost the resource
consumption, the throughput and the tradeoff between both criteria. Unfortunately, until recently, there were
very few performance studies for lightweight and midrange implementations. This paper extends the work
on efficient KEC C A K implementations to lightweight applications with KE CC A K versions using a reduced
state size. Furthermore, we present extended and improved versions of previous design space explorations and
implementation results. For instance, the throughput-area ratio has been improved by 10-20 % compared to
earlier investigations.

1 Introduction

In 2012 the National Institute of Technology (NIST) selected the KE C C A K algorithm as the hash function
to be standardized as SHA-3, after a five year long competition cf. [1–3]. During and after the contest,
various implementations of K E C C A K for hardware platforms have been proposed and evaluated. However,
very few results for non-standard implementations were published.

In this contribution, we add a study of more variants of K E C C A K to improve the understanding of
the area and throughput impact of different parameters for the K E C C A K hash function. In particular, the
impact of the state size and the capacity and hence also of the rate is investigated. First, we describe a
improved version of the design strategy proposed in [4]. Second, we extend the evaluation of KE C C A K

implementations to smaller state sizes. This additional analysis consists of a short review of the theoretical
security of the chosen parameter sets and a performance evaluation of each set. Third, we generated a lot
more FPGA results and added a few selected ASIC results for the same architectures.

The remainder of this paper is organised as follows. First, we provide an overview of previous work in
Section. 2. After that, we give a rationale for the parameters for smaller state sizes of Keccak in Section 3.
Then, we describe our implementations in Section 4, and compare them to previous K E C C A K FPGA
(Section 5) and ASIC designs (Section 6) , before we conclude our paper with a summary and future
work in Section 7.

2 Previous Work

Many hardware designs for FPGAs have been published during the SHA-3 competition. To the best
of our knowledge, only three generally different architecture types of the K E C C A K algorithm have
been implemented and published in the literature so far, while the K E C C A K designers proposed more
possibilities to process the state in hardware, cf. [5].

Most designs compute the compression function using a fully parallel data path to reduce the number
of clock cycles to a minimum. These implementations focus on maximising the throughput, reaching up

to 13 GBit/s (cf. [6–8]). Variants of this architecture type are pipelined or process more than one data
stream in parallel.

For lightweight implementations, a lane-oriented architecture is favoured in most of the proposed
designs, cf. [9–11]. The only alternatively implemented design strategy for area-efficient implementations
of KE C C A K is a slice-oriented architecture as proposed in [12], cf. Fig. 1. This implementation strategy
was also followed by the recent and more extensive study in [4]. Table 2 in Sect. 4 provides an overview
of these implementations in terms of resource consumption and throughput.

For ASICs, there are also a lot of reported results. The most relevant results reported in the literature
are [13] and [14]. Kavun et al. investigated lightweight implementations of K E C C A K with the full and
reduced states [13]. In [14], the area of the full K E C C A K-f [1600] was pushed further to consume even
less area.

3 Keccak Parameters

KE C C A K is a sponge function. This means, it can be parameterized by the state size b, the rate r and the
capacity c. The three parameters are interdependend, i.e. b = c + r and thus, changing one parameter
changes at least one other parameter. A forth important parameter is the size n of the message digest.
The parameters b and r determine the performance of KE C C A K, whereas c and n are important security
parameters.

The K E C C A K variant which was proposed as a SHA-3 candidate is the variant with b = 1600 bits
of internal state. As we will see in the evaluation in Section 5, it is already possible to implement this
KE C C A K -f [b = 1600] variant with a reasonable amount of area on modern FPGAs. However, several
applications emphasise lower costs and thus area over throughput and security. Therefore, the security
requirements may be lowered for these applications to achieve less implementation cost. Therefore, we
will also analyse variants of KE C C A K -f [b] with b ∈ {200, 400, 800}. The investigated variants still have
reasonable security for many applications.

The evaluation of these variants is split in two parts. First, we discuss the sponge parameters, which
we chose to evaluate and which determine the security of the resulting hash function. Second, the
performance evaluation will be given in Section 4.

3.1 Security Parameters

There are three major security claims presented by Bertoni et al. for the sponge construction and KE C C A K,
cf. [15, 16], which can be used to derive meaningful parameter sets. The most interesting security
properties of hash functions are the collision, the preimage and the second preimage resistance. The exact
claimed security bounds in terms of hash digest length n and capacity c are:

– Collision resistance: O(min(2n/2 , 2c/2))
– Preimage resistance: O(min(2n , 2c/2))
– Second preimage resistance: O(min(2n , 2c/2))

Note, that the security assumed for the preimage resistance is claimed to be higher by some publications,
because no generic attack is known which is as good as the theoretical bound, cf. [17].

The security parameters used in the present evaluation are partially derived from the Photon specifica
tion adapted to KE C C A K, cf. [17], with the exception of the smallest Photon variant. Additionally, higher

Table 1: K E C C A K parameters.
Message digest State Size Capacity Rate Rounds

128 200 128 72 18
160 200 160 40 18
128 400 128 272 20
128 400 256 144 20
160 400 160 240 20
160 400 320 80 20
224 400 224 176 20
256 400 256 144 20
256 800 256 544 22
256 800 512 288 22
256 1600 512 1088 24

security versions are evaluated for the message digest sizes, where the state size allows a theoretically
optimal preimage resistance. All evaluated parameters are presented in Table 1. Using the same Photon
parameter sets has the main advantage, that it is easy to replace one hash function with the other and it
will be easier to compare the performance of both algorithms. Similar, but slightly different parameters
are used by the Spongent hash function [18]. For the ASIC designs, only a subset of these options is
investigated for now, because of the long time needed to evaluate all possibilities.

4 Generic Implementation

We implemented a generic slice-based architecture, based on the same reasoning as [4]. The general
slice-based architecture is identical to the previously published architecture. For FPGAs, an additional
optimization using manual instantiation of LUT6 2 primitives further reduced the area consumption.
Additionally, the generic VHDL code was synthesized for a few selected parameter sets for ASICs.

4.1 Basic Architecture

The generic architecture can be parametrised to change the data path width, the state size and the size of
the message digest to evaluate all parameter sets depicted in Table 1 for all possible variants of the basic
architecture, beginning with the computation of only one slice per clock cycle up to 2l slices, i.e. the data
path width d ∈ {25 · 2k|1 ≤ k ≤ l} can be selected to trade throughput for area savings.

The proposed architecture stays the same for all of the evaluated versions, as depicted in Fig. 2. It uses
the rescheduled round function proposed in [12] and the hardware interface from [7, 19], which we tailored
to be parametrisable down to win = wout = 16 bit width for the larger state sizes and win = wout = 8 bit
for the smallest state size (b = 200). For a possible version with b = 100, the interface is more difficult to
adapt, because for e.g. n = c = 80, the rate r = 20 is not dividable by 8 and thus, some changes to the
implementation of the interface is needed. The basic data flow in the architecture is as follows:

1. The input message block is absorbed into the state RAM using the input FIFO.
2.	 After the absorption of a message block, the round function is used to compute the KECCA K

permutation on the state RAM. Repeat step (1) and (2) for all message blocks.

3.	 Afterwards, the output of the state is transferred to the user of the hash function using the output
FIFO in the squeezing phase to generate the message digest.

4.2 Absorption

According to the general data flow, the absorption phase is separated from the processing of the round
function. For a compact implementation, this is necessary, because otherwise, a complete message block
would have to be stored before the actual absorption. The reason for this property is, that the input is
usually supplied in a lane-oriented way, which does not work well with the slice-oriented designs and the
input has to be either reordered before the absorption or it has to be separated from the processing. A
third possibility is to reorder the message block before the transfer to the implementation, however, this
puts additional requirements on the user of the hardware implementation.

In our architecture, we focused on a compact design. Thus, each input data of 8, 16 or 32 bits is split
into d/25 bit chunks. Each chunk has to absorbed for the correct lane and thus, appropriate read and write
addresses have to be calculated. For example if d = 25 and the interface is 16 bit wide, then 16 clock
cycles are necessary for the absorption of one data transfer, because every bit is absorbed in a separate
clock cycle. This procedure removes the need for additional memory as it was used in [12]. However, it
adds 25·r/d additional clock cycles.

4.3 Round Function

The input data for the functional modules implementing ι, χ (cf. Fig. 3b), and θ (cf. Fig. 3a) is read from
the state memory module and also written back to it after only one clock cycle. The round constants for
the ι function are loaded from a ROM with the (sub) round counter as read address. The χ permutation
can be easily computed for each slice in one clock cycle. The θ function is split into two parts. The
first computes for all parallel computed slices the sums necessary to compute the final output of θ. The
second part computes the final outputs. For the slice with the highest z in this clock cycle, the sums are
temporarily stored for the computation in the next clock cycle.

However, the slice with z = 0 depends on the data from the slice with z = 2l − 1. This data
dependency is solved by a special case which stores the intermediate values after χ for the slice with

Fig. 1: Different storage organizations of the K E C C A K state

Fig. 2: Generic architecture of the proposed slice-based implementation.

z = 0. The final results for this slice are computed in the same clock cycle in which the results for
z = 2l − 1 are calculated. Hence, in the last sub-step of θ, d/25 + 1 slices are processed, which hides the
latency from the first round, in which only d/25 − 1 final outputs of θ are calculated.

The other KE C C A K sub-functions π (cf. Fig. 3d) and ρ (cf. Fig. 3c) are realised by using appropriate
read and write addresses. The π transformation only shuffles the bits between lanes and thus, can be
implemented using a fixed reordering of the bits in a slice.

The ρ transformation is implemented by splitting the RAM into a lane-wise organisation, where each
lane is again divided into two RAMs with a total width of d/25 bits. If there are two such RAMs RAM0

2
(a) Dependencies of θ (b) Dependencies of χ (c) Dependencies of ρ

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

0 6 12 18 24

3 9 10 16 22

1 7 13 19 20

4 5 11 17 23

2 8 14 15 21

(d) Dependencies of π

Fig. 3: Visualisation the data dependencies of the different K E C C A K functions

and RAM1 for a lane, and the rotation is by q bits, then for the first round the data for clock cycle i is
read from RAM0(i) and RAM1(i) and afterwards written back to RAM1(i) and RAM0(i + 1). Since
this procedure rotates the data only by q mod d/25 bits, a round counter is used to manipulate the read
addresses for consecutive round(s) to facilitate the rest of the rotation, which is a multiple of d/25 bits and
thus, can be realized by a moving read offset per lane.

The multiplexers before and after the θ function are used to realise the rescheduling of the sub-function
sequence of the original KE C C A K.

4.4 Squeezing

The squeezing alternates between generating output bits and further computations of the KECCA K

permutation. Similar to the message absorption, it is necessary to reorder the bits, which is achieved in a
almost identical way. The only difference is, that instead of reading and writing to the state memory, the
state is only read and the bits necessary for the message digest output are written to the output FIFO, until
wout bits are written to the FIFO and the transfer using the outgoing interface is initiated. This process is
repeated r/wout times.

4.5 Throughput Calculation

The throughput for large messages Tlarge of each design is calculated as follows, where f is the clock
frequency, nr is the number of rounds, b is the state size, r is the rate and d is the data path width:

r · fTlarge = . (1)
b r·25+ 1) · +(nr d d

For shorter messages this approximation is invalid because of the squeezing phase. Therefore the
throughput Tgeneral is approximated by the following formula, where n is the size of the message digest
and m is the number of message blocks:

m · r · f Tgeneral = . (2)
b r·25 b m · (nr + 1) · + + ln H(nr + 1) · + nd d r d

b r·25Since the first term of the denominator m · (nr + 1) · + grows, whereas the other terms are d d
constant, Eq. 1 follows from Eq. 2 for large m.

5 FPGA evaluation

In this section the FPGA evaluation is described. This consists first on a description of the LUT6 2
optimisation, the process of hardware synthesis and finally the discussion of the post place and route
results. The discussion is limited to Virtex-5 FPGAs.

5.1 Optimisation using LUT instances

For Virtex-5 and newer FPGAs, it is possible to optimise the design by manually instantiating LUT
primitives. For the present work, we combined the χ and ι functions together with the multiplexer before
θ. The direct instantiation helps to reduce the slice count compared to the older results by Jungk et al.,

cf. [4]. This idea works nicely, because for each output bit of χ only 3 input bits are necessary, ι only
works on one or zero bits per row and the multiplexer selects only between computation of χ and ι or
route-through. Therefore, we can package the computation of four output bits into two LUT6 2 instances
with four data bit inputs. The multiplexer bit and the bit with x = 0 is assigned to a single LUT6 2
instance, which additionally computes ι. Overall, we need only three LUT6 2 instances per row.

5.2 Synthesis Settings

In order to evaluate our implementations, we used a systematic approach similar to the ATHENa
framework, cf. [20]. We synthesised our design for all d ∈ {25 · 2k|1 ≤ k ≤ l}. For each setting,
we used Xilinx ISE 14.5 to synthesise the designs with various optimisation settings. The settings
with the best post-place and route results were then used in a second optimisation step to increase the
throughput by tightening the timing constraints. In addition to our previous results in [4], we detailed the
analysis of KE C C A K -f [1600] and KE C C A K -f [800] for less constrained platforms. For the analysis of
lightweight variants, we extended the analysis of KE C C A K -f [400] and furthermore add an investigation
of K E C C A K -f [200].

The best post-place and route results of the proposed slice architecture are shown in Fig. 4 and Fig. 5,
visualising the design trade-offs for different parameter sets. The exploration space for all investigated
KE C C A K constructions, KE C C A K -f [1600], KE C C A K -f [800], KE C C A K -f [400] and KE C C A K -f [200] are
plotted on a logarithmic axis, showing the area consumption in slices over the performance denoted in
MBit/s. Each proposed design, as well as the previously introduced FPGA-based designs from the literature,
are individually marked. We also highlight certain bounds of throughput-area ratio, which is a commonly
used metric to compare different designs in terms of their efficiency. We additionally provide the resource
consumption and throughput of the designs in plain numbers in Tab. 2 and Tab. 3, respectively.

5.3 Higher Security Implementations

The implementations of the KE C C A K -f [1600] and KE C C A K -f [800] designs, are addressed in this section.
First, the implementations of our proposed KE C C A K -f [1600] design as well as other design from the

100101102103104105101

102

103

104

Throughput [MBit/s]

Re
so

ur
ce

 C
on

su
m

pt
io

n
[S

lic
es

]

KECCAK1600 c=512 parallel
KECCAK1600 c=512 parallel (ours)
KECCAK1600 c=512 parallel with BRAM
KECCAK1600 c=512 slice
KECCAK1600 c=512 slice (ours)
KECCAK1600 c=512 lane
KECCAK1600 c=512 lane with BRAM
KECCAK800 c=512 parallel (ours)
KECCAK800 c=512 slice (ours)
KECCAK800 c=256 parallel (ours)
KECCAK800 c=256 slice (ours)

8.0 MBit/(Slice*s)
4.0 MBit/(Slice*s)
2.0 MBit/(Slice*s)
1.0 MBit/(Slice*s)
0.5 MBit/(Slice*s)

Better

Be
tte
r

Fig. 4: Throughput-Area tradeoff for various implementations of KE C C A K -f [1600] and KE C C A K -f [800].

Table 2: Implementation results for KE C C A K -f [1600] and K E C C A K -f [800]
Design	 Resource Performance Metric

State Data path Capacity Rate BRAM/ Frequency Throughput [Mbit]

Variant structure (d) [Bit] (c) [Bit] (r) [Bit] Architecture Platform Slices DSP (f) [Mhz] (T) [Mbit/s] [s*slice]

KE C C A K -f [1600] Slice 25 512 1088 This paper Virtex-5 140 0/0 200 81 0.58
50 512 1088 This paper Virtex-5 161 0/0 186 151 0.93

100 512 1088 This paper Virtex-5 195 0/0 177 287 1.47
200 512 1088 This paper Virtex-5 272 0/0 166 539 1.98
200 512 1088 [12]1 Virtex-5 393 0/0 159 864 2.20
200 512 1088 [21] Virtex-5 344 0/0 - 870 2.53
400 512 1088 This paper Virtex-5 455 0/0 158 1024 2.25
800 512 1088 This paper Virtex-5 854 0/0 151 1959 2.29

Lane	 64 512 1088 [9] Virtex-6 144 0/0 250 128 0.89
64 512 1088 [11] Virtex-5 151 3/0 520 501 3.32
64 512 1088 [10] Virtex-5 159 1/0 248 71 0.45
64 512 1088 [10] Virtex-5 275 0/0 260 117 0.43

Parallel	 1600 512 1088 This paper Virtex-5 1,215 0/0 195 5,054 4.16
1600 512 1088 [7] Virtex-5 1,338 1/0 248 11,252 8.41
1600 512 1088 [7] Virtex-5 1,369 0/0 297 13,452 9.83
1600 512 1088 [8] Virtex-5 1,433 0/0 205 8,747 6.10
1600 512 1088 [6]1 Virtex-5 2,326 0/201 306 3,120 1.34

KE C C A K -f [800] Slice 25 256 544 This paper Virtex-5 120 0/0 227 96 0.80
25 512 288 This paper Virtex-5 112 0/0 220 62 0.55
50 256 544 This paper Virtex-5 146 0/0 186 158 1.08
50 512 288 This paper Virtex-5 138 0/0 168 105 0.76

100 256 544 This paper Virtex-5 186 0/0 163 312 1.68
100 512 288 This paper Virtex-5 168 0/0 162 205 1.22
200 256 544 This paper Virtex-5 267 0/0 155 528 1.98
200 512 288 This paper Virtex-5 249 0/0 158 355 1.43
400 256 544 This paper Virtex-5 428 0/0 165 1,120 2.62
400 512 288 This paper Virtex-5 416 0/0 159 717 1.72

800 256 544 This paper Virtex-5 591 0/0 205 2,785 4.71
Parallel 800 512 288 This paper Virtex-5 524 0/0 209 1,880 3.59

1 With padder unit for performing the padding in the design.

literature are discussed, then we will investigate the implementation results of the KE C C A K -f [800] design
with different capacities.

One can see that the designs with the throughput of the proposed slice-oriented architecture of
KE C C A K -f [1600] scales almost linear by increasing d, cf. Tab. 2. However, the throughput-area ratio
(MBit/Slices·s) does not scale proportionally to d, cf. Fig. 4. This effect is probably caused by a static
resource consumption offset, which is due to the 1600 bit large state memory of K E C C A K and the control
logic, which both have a resource consumption, that is less dependent on the data path width d. Hence,
the designs with d = {200, 400, 800} have a roughly similar throughput-area efficiency, because the
static resource consumption is a less dominant part of these designs. However, for the smaller designs,
the efficiency drops considerably.

The presented slice-oriented architecture outperforms the previously introduced designs of [12, 21] in
terms of resource utilisation at the same data path width of d = 200. Our optimised variant with d = 25

is the smallest design reported so far, even if compared to the designs using BRAM, e.g. [10, 11]. For
example, the result reported in [11] is faster than our smallest design, but uses 3 BRAMs, which adds
a considerable overhead, that is not covered by the slice count. On the left side of Fig. 4 one can find
published parallel KE C C A K implementation results, cf. [6–8]. Our parallel design, based on the proposed
architecture is one of the slowest parallel design, mostly because of the message absorption overhead.
However, it is also the smallest of these designs.

For the KE C C A K -f [800] implementations, we extended the analysis and also include designs with
different capacities. The capacity does not only influence the security of the K E C C A K algorithm, it also
influences the resource consumption and hence, the efficiency of the architecture, cf. Tab. 2. The more
the secure the design gets, the smaller is the implementation on the one hand, but on the other hand the
throughput also gets less. Both effects are caused by the smaller rate. If the capacity increases, the rate
decreases, thus, the performance decreases. On the other hand, the control logic shrinks slightly, if the
rate decreases, because of smaller counters for the message absorption and squeezing phases. Hence, the
resource consumption is less for the variant with the higher capacity.

5.4 Lightweight Implementations

Lightweight hash functions are used in RFID components and embedded devices for authentication
purposes. The large state of KE C C A K -f [1600] is a very high hurdle for its usage in these applications.
Therefore, we also investigated the properties of our proposed architecture for the KE C C A K -f [400]
and KE C C A K -f [200] variants, which are lightweight versions of the SHA-3 winner. The results of the
KE C C A K -f [400] and KE C C A K -f [200] designs are similar to the higher security implementations in
terms of its scalability, but are in general considerably smaller than the heavyweight siblings, see Table 3
and Fig. 5.

The proposed slice-oriented architecture seems to be also quite scalable for lightweight applications
of the K E C C A K algorithm. The overall throughput is determined be the data path width d and the rate r.
The parameter d determines the number of clock cycles and has also an influence on the clock frequency.

100101102103104101

102

103

Throughput [MBit/s]

R
es

ou
rc

e
C

on
su

m
pt

io
n

[S
lic

es
]

KECCAK400 c=320 parallel
KECCAK400 c=256 parallel
KECCAK400 c=224 parallel
KECCAK400 c=160 parallel
KECCAK400 c=128 parallel
KECCAK400 c=320 slice
KECCAK400 c=256 slice
KECCAK400 c=224 slice
KECCAK400 c=160 slice
KECCAK400 c=128 slice
KECCAK200 c=160 parallel
KECCAK200 c=128 parallel
KECCAK200 c=160 slice
KECCAK200 c=128 slice

8.0 MBit/(Slice*s)
4.0 MBit/(Slice*s)
2.0 MBit/(Slice*s)
1.0 MBit/(Slice*s)
0.5 MBit/(Slice*s)

Better

Be
tte
r

Fig. 5: Throughput-Area tradeoff for various implementations of KE C C A K -f [400] and KE C C A K -f [200].

Table 3: Implementation results for K E C C A K -f [400] and K E C C A K -f [200] on Virtex-5
Design	 Resource Performance Metric

State Data path Message Digest Capacity Rate BRAM/ Frequency Throughput1 [Mbit]

Variant structure (d) [Bit] (n) [Bit] (c) [Bit] (r) [Bit] Slices DSP (f) [Mhz] (T) [Mbit/s] [s*slice]

KE C C A K -f [400] Slice	 25 128 256 144 106 0/0 191 57 0.54
25 128 128 272 108 0/0 195 87 0.81
25 160 160 240 103 0/0 186 78 0.75
25 160 320 80 106 0/0 204 39 0.37
25 224 224 176 102 0/0 186 64 0.63
25 256 256 144 106 0/0 180 54 0.51

50 128 256 144 111 0/0 188 113 1.02
50 128 128 272 134 0/0 192 172 1.28
50 160 160 240 124 0/0 186 155 1.25
50 160 320 80 106 0/0 211 81 0.76
50 224 224 176 122 0/0 195 134 1.10
50 256 256 144 115 0/0 184 110 0.96

100 128 256 144 165 0/0 167 201 1.22
100 128 128 272 176 0/0 152 273 1.55
100 160 160 240 172 0/0 176 293 1.70
100 160 320 80 148 0/0 175 135 0.91
100 224 224 176 160 0/0 172 237 1.48
100 256 256 144 157 0/0 173 207 1.32

200 128 256 144 261 0/0 171 410 1.57
200 128 128 272 261 0/0 171 610 2.34
200 160 160 240 249 0/0 174 580 2.33
200 160 320 80 208 0/0 168 259 1.24
200 224 224 176 239 0/0 163 450 1.88
200 256 256 144 241 0/0 177 424 1.76

Parallel	 400 128 256 144 289 0/0 236 1135 3.93
400 128 128 272 318 0/0 306 2194 6.90
400 160 160 240 304 0/0 304 2029 6.68
400 160 320 80 240 0/0 283 869 3.62
400 224 224 176 254 0/0 283 1558 6.13
400 256 256 144 262 0/0 277 1330 5.07

KE C C A K -f [200] Slice 25 128 128 72 87 0/0 191 62 0.71
25 160 160 40 80 0/0 191 40 0.50

50 128 128 72 116 0/0 175 113 0.97
50 160 160 40 103 0/0 213 89 0.86

100 128 128 72 144 0/0 191 246 1.71
100 160 160 40 137 0/0 188 157 1.14

Parallel 200 128 128 72 159 0/0 339 872 5.48
200 160 160 40 146 0/0 327 545 3.73

However, variations of the clock frequency for versions with the same value for d seem to be of no
statistical relevance, because the variations due to different settings for the Xilinx tool chain is usually
higher. The rate r determines the number of input bits processed per clock cycle. Please note that for the
evaluation, we focused on hashing long messages, thus for shorter messages additional squeezing steps
are required for the designs with the property r < n, cf. Eq. 2.

6 ASIC evaluation

In addition to the extensive evaluation of FPGA results, we chose to generate ASIC results for three
implementations (cf. Tab. 4). Since we were mainly interested in low area results for ASICs, we chose
the following three variants:

– KE C C A K-[200] with n = 128, c = 128, r = 72, and d = 25.
– KE C C A K-[400] with n = 160, c = 160, r = 240, and d = 25.
– KE C C A K-[400] with n = 256, c = 256, r = 144, and d = 25.

The optimization phase for these implementations was first conducted to optimize for throughput.
Therefore, the gate count is not comparable to earlier implementations, because of the large clock tree.
However, it is still interesting to note that the area reduction from b = 400 to b = 200 is considerable
(around 38-41%). A second optimization round for area optimization was also performed, which resulted
in the second set of results for each technology in Tab. 4.

The results show, that the implementation of the architecture is less efficient for ASICs, despite being
very suitable for FPGAs. However, comparing our FPGA results to earlier ASIC performance reports
for K E C C A K it can be assumed, that it is possible to build an implementation that is a lot smaller for
both choices of b, because the smallest reported ASIC implementation for the full KE C C A K requires only
about 5.54 kGE. Thus, it seems likely, that such area reduced versions of KE C C A K with a smaller state
size have the potential to rival hash functions like Photon, which were specially designed for lightweight
applications. For reference, we included several Photon results in Tab. 4.

Table 4: ASIC implementation results for K E C C A K -f [400] and KE C C A K -f [200].

Capacity Rate Area Frequency Throughput Throughput @
Variant (c) [Bit] (r) [Bit] Architecture Process kGE [Mhz] [MBit/s] 100 kHz [MBit/s]

Photon-256/32/32 256 32 [17] UMC 65nm 2.17 N/A N/A 0.003
Photon-160/36/36 160 36 [17] UMC 65nm 1.39 N/A N/A 0.0027
Photon-128/16/16 128 16 [17] UMC 65nm 1.12 N/A N/A 0.0016

KE C C A K -f [1600] 512 1088 [14] UMC 130nm 5.52 N/A N/A 0.0044

KE C C A K -f [400] 256 144	 This paper UMC 65nm 13.84 860 258 0.03
This paper UMC 65nm 8.69 477 143 0.03
This paper AMS 350nm 7.51 178 53.4 0.03
This paper AMS 350nm 6.64 104 31.2 0.03

[13] 130nm	 5.09 N/A N/A 0.0144
160	 240 This paper UMC 65nm 13.93 842 350 0.04

This paper UMC 65nm 8.80 457 190 0.04
This paper AMS 350nm 7.60 176 73.3 0.04
This paper AMS 350nm 6.68 109 45.4 0.04

KE C C A K -f [200] 128 72	 This paper UMC 65nm 8.63 908 291 0.032
This paper UMC 65nm 5.09 482 154 0.032
This paper AMS 350nm 4.50 178 57.2 0.032
This paper AMS 350nm 3.87 113 36.3 0.032

[13] 130nm	 2.52 N/A N/A 0.008

7	 Conclusion

In this contribution, we extended our previous analysis of the SHA-3 contest winner KE C C A K in [4]. We
re-used the previously developed K E C C A K architecture to extend the study of implementations for other
KE C C A K -f [b] versions, with b ∈ {800, 400, 200}, and consequently also to different security parameters
and interesting usage scenarios.

In this extended design space exploration, it turns out that the slice-organised storage representation
also seems to be a very efficient one for lightweight versions of KE C C A K, i.e. KE C C A K -f [200], as well as
midrange versions and implementations. This slice-oriented architecture of the proposed implementation
scales almost linearly in terms of the design’s throughput by varying the data path width, while keeping
all other parameters the same. Thus, scaling KE C C A K is almost straightforward, depending on the security
and performance requirements. However, the reported ASIC results are worse, which shows, that the
architecture or at least the implementation previously optimized for FPGAs is probably less suitable for
ASICs.

Overall, for FPGAs, the proposed architecture is able to close the gap between the previously
published high-throughput designs and the lightweight implementations by adjusting the parameter d of
the generic data path, the capacity c and the state size b. Furthermore, we presented the so far smallest
implementation of KE C C A K -f [1600], KE C C A K -f [800], KE C C A K -f [400], and KE C C A K -f [200] in terms
of slices using a Virtex-5 FPGA without using BRAM primitives.

References

1.	 Kayser, R.F.: Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm
(SHA-3) Family. In: Federal Register. Volume 72. National Institute of Standards and Technology (November 2007)
62212–62220

2.	 Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak SHA-3 Submission. Submission to NIST (Round 3) (2011)
3.	 Chang, S., Perlner, R., Burr, W.E., Turan, M.S., Kelsey, J.M., Paul, S., Bassham, L.E.: Third-Round Report of the SHA-3

Cryptographic Hash Algorithm Competition (2012)
4.	 Jungk, B., St ̈ottinger, M.: Among Slow Dwarfs and Fast Giants: A Systematic Design Space Exploration of KECCAK. In:

8th International Workshop on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), IEEE (2013) 1–8
5.	 Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V.: 1001 Ways to Implement Keccak. Third SHA-3 candidate

conference (2012)
6.	 Provelengios, G., Kitsos, P., Sklavos, N., Koulamas, C.: FPGA-based Design Approaches of Keccak Hash Function. In:

15th Euromicro Conference on Digital System Design, IEEE (2012) 648–653
7.	 Shahid, R., Sharif, M.U., Rogawski, M., Gaj, K.: Use of Embedded FPGA Resources in Implementations of 14 Round 2

SHA-3 Candidates. In Tessier, R., ed.: International Conference on Field-Programmable Technology, IEEE (2011) 1–9
¨

K., Verbauwhede, I., Ohta, K., Homma, N., Aoki, T.: Fair and Consistent Hardware Evaluation of Fourteen Round Two
SHA-3 Candidates. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 20(5) (2012) 827–840

8.	 Knezevic, M., Kobayashi, K., Ikegami, J., Matsuo, S., Satoh, A., Koçabas, U., Fan, J., Katashita, T., Sugawara, T., Sakiyama,

9.	 Kerckhof, S., Durvaux, F., Veyrat-Charvillon, N., Regazzoni, F., de Dormale, G.M., Standaert, F.X.: Compact FPGA
Implementations of the Five SHA-3 Finalists. In: 10th Smart Card Research and Advanced Application Conference. Volume
7079 of Lecture Notes in Computer Science., Springer Berlin Heidelberg (2011) 217–233

10.	 Kaps, J.P., Yalla, P., Surapathi, K.K., Habib, B., Vadlamudi, S., Gurung, S., Pham, J.: Lightweight Implementations of
SHA-3 Finalists on FPGAs. Submission to NIST (Round 3) (2011)

11.	 San, I., At, N.: Compact Keccak Hardware Architecture for Data Integrity and Authentication on FPGAs. Information
Security Journal: A Global Perspective 21(5) (2012) 231–242

12.	 Jungk, B.: Evaluation of Compact FPGA Implementations for All SHA-3 Finalists. Third SHA-3 Candidate Conference
(2012)

13.	 Kavun, E.B., Yalcin, T.: A Lightweight Implementation of Keccak Hash Function for Radio-Frequency Identification
Applications. In: Radio frequency identification: security and privacy issues. Springer (2010) 258–269

14.	 Pessl, P., Hutter, M.: Pushing the Limits of SHA-3 Hardware Implementations to Fit on RFID. In: Cryptographic Hardware
and Embedded Systems - CHES ’13. Springer (2013) 126–141

15. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak Reference. Online publication (2011)
16. Bertoni, G., Daemen, J., Peeters, M., van Assche, G.: Cryptographic sponge functions (2011)
17.	 Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash Functions. In: Advances in Cryptology

CRYPTO 2011. Volume 6841 of Lecture Notes in Computer Science. Springer-Verlag (2011) 222–239
18.	 Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.: SPONGENT: The Design Space of

Lightweight Cryptographic Hashing. IEEE Transactions on Computers 62(10) (2013) 2041–2053
19.	 Gaj, K., Homsirikamol, E., Rogawski, M.: Fair and comprehensive methodology for comparing hardware performance of

fourteen round two sha-3 candidates using fpgas. In Mangard, S., Standaert, F.X., eds.: CHES. Volume 6225 of Lecture
Notes in Computer Science., Springer (2010) 264–278

20.	 Gaj, K., Kaps, J.P., Amirineni, V., Rogawski, M., Homsirikamol, E., Brewster, B.Y.: ATHENa - Automated Tool for
Hardware EvaluatioN: Toward Fair and Comprehensive Benchmarking of Cryptographic Hardware Using FPGAs. In: 20th
International Conference on Field Programmable Logic and Applications, IEEE (2010) 414–421

21.	 Gaj, K., Homsirikamol, E., Rogawski, M., Shahid, R., Sharif, M.U.: Comprehensive Evaluation of High-Speed and
Medium-Speed Implementations of Five SHA-3 Finalists Using Xilinx and Altera FPGAs. Cryptology ePrint Archive,
Report 2012/368 (2012)

