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Abstract. We propose two incremental hash functions based on SHAKE128 and SHAKE256 
that have the corresponding security levels of 128 and 256 bits. 

1 Introduction 

The idea of incremental hashing was introduced by Bellare, Goldreich and Goldwasser in [2]. 
Later on, they proposed some more efficient designs in [3], compared to the original proposal. 
In a nutshell, the idea is that if we have already computed the hash value for some document, 
and this document is modified in one part, then instead of re-computing the hash value for the 
whole document from scratch, we just need to update the hash value based on the old value, 
the old changed part and the new changed part. 

There have been many proposals for a concrete design of an incremental hash function but 
the concept, up to now, was not accepted by the industry with a more massive acceptance rate. 
The reasons for this are mainly two: 

1. The security level for the incremental hash functions is detached from the size of the pro­
duced hash value, that is usually several thousands of bits long. This is different from the 
ordinary cryptographic hash functions such as SHA-1, SHA-2, SHA-3, where the size of the 
hash value correspond to the claimed bit-security level of the hash function. 

2. In order to	 achieve a certain level of security (for example 2128 or 2256), the proposed 
incremental hash functions need to perform expensive modular operations over large prime 
integers. That makes them one or more orders of magnitude slower than the ordinary 
cryptographic hash functions. 

On the other hand we want to point out to the following: 
It is an indisputable fact that our modern civilization has entered the era where the total 

size of the digital universe (the total size of every digital information that our civilization is 
producing and copying annually) has surpassed the zettabyte size and is entering the zettabyte 
communication era with a fast pace. For example “The EMC Digital Universe study - with 
research and analysis by IDC” [5] reports that in 2013 the size of our digital universe was 
4.4 zettabytes, and it projects that “by 2020 the digital universe - the data we create and copy 
annually - wil l reach 44 zettabytes, or 44 trillion gigabytes.” In another report, the Cisco Visual 
Networking Index [4] predicts that “Annual global IP traffic will pass the zettabyte threshold by 
the end of 2015, and wil l reach 1.4 zettabytes per year by 2017.” 

mailto:simonas}@item.ntnu.no


Alongside these reports are the analyses about the exponential drop (in US$/MB) of the 
cost of computer memory and storage (for example see [1]). 

Observation 1. In the Zettabyte era the trend for reducing the cost of data storage will diminish 
the importance of Reason 1. for not using incremental hash functions. 

Observation 2. In the Zettabyte era there will be an increased need for an efficient and secure 
cryptographic primitive that wil l perform incremental hashing. 

The motivation for this presentation is based on Observation 1 and Observation 2 and 
the recent [6] draft NIST proposal for SHA-3 Extendable-Output Functions SHAKE128 and 
SHAKE256. 

2 Mathematical preliminaries 

We will use the following adapted definition from [3, Sec. 3.1] for an incremental hash function: 

Definition 1. 

k1. Let h : {0, 1}b - {0, 1} be a compression function that maps b bits into k bits. 
2. Let the message	 M be represented as a concatenation of n blocks, where n < N for some 

predefined number N which is larger than the number of blocks in any message we plan to 
hash, i.e., M = M1IIM2II . . . IIMn. 

3. The size of each block Mi is determined by the following relation: IMiI = b - lg(N). 
4. For each block Mi, i = 1, . . . , n, prepend a lg(N)-bit binary encoding (i) of the block index 

i to the block content Mi to get an augmented block Mi = (i)IIMi. 
5. For each i = 1, . . . , n, apply h to Mi to get a hash value yi = h(Mi). 0	 0 

k6. Let (G, ) be a commutative group with operation where G < {0, 1} . 0
7. Combine y1, . . . , yn via a combining group operation to get the final hash value y = 0 0 0

y1 y2 . . . yn. 

Denote the incremental hash function as: 

n 8
y(M) = HASHh

ZG)(M1IIM2II . . . IIMn) = h((i)IIMi)	 (1) 
i=1 

Initially the authors of [3] concluded that in order to have a cryptographically secure hash 0
construction, the balance problem for the group (G, ) should be hard, and they concluded 
that a size of the hash value in the range of 1024 bits would suffice for security levels of 
280 . However, later on, Wagner in [7] showed that using a generalized birthday attack, these 
parameters are breakable, implying that the size of the hash values should be much bigger (for 
standard security levels, even up to tens of thousands of bits). Basically those findings killed 
the attractiveness of the concept of incremental hashing. 

Proposition 1. Let HASHh
ZG) be an incremental hash function defined by Definition 1. For 

kany Y E {0, 1} the complexity of finding a preimage message M = M1IIM2II . . . IIMK of length 
K � N blocks such that Y = HASHh

ZG)(M) is: 

min O(K · 2 1+lg
k 
LKJ )	 (2) 

K�N 

If the length of the messages is not restricted, then the minimum in equation (2) is achieved  

k-1
for messages of K = 2 blocks. 
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Proof. Just adopt the notation from [7, Sec. 2, Summary ] to match the notation of variables 
in Definition 1. 

Observation 3. For the compression functions h : {0, 1}b - {0, 1}k where k is multiple of 64 
bits i.e. k = 64 · L, on modern 64-bit CPUs, instead of modular operations with k bit prime 0 
numbers in the group (G, ), much more efficient operations would be word wise operations of E
addition in the group ((Z64)

L , ).64 

3 Definition of i SHAKE 

Recently, NIST has proposed the DRAFT SHA-3 Standard: Permutation-Based Hash and 
Extendable-Output Functions [6]. In that draft there are definitions for two Extendable-Output 
Functions named SHAKE128 and SHAKE256. We just briefly mention their definition: 

SHAKE128(M , d) = RawSHAKE128(M II11, d), 

where 
RawSHAKE128(M, d) = Keccak[256J(M II11, d), 

and 
SHAKE256(M , d) = RawSHAKE256(M II11, d), 

where 
RawSHAKE256(M, d) = Keccak[512J(M II11, d). 

3.1 iSHAKE128 

We give the following proposal for an incremental hash function iSHAKE128 with a security 
of 128 bits: 

Definition 2. 

1. Let h : {0, 1}1344 - {0, 1}2688 be defined as the function h(m) = SHAKE128(m, 2688) where 
ImI = 1344. 

2. Let the message M = M1IIM2II . . . IIMn be represented as a concatenation of n blocks, where 
= 225n < N , and N is the largest number of blocks in any message we plan to hash. 

3. The size of each block Mi in bits is determined by the following relation: IMiI = 1344-64 = 
1280. 

4. For each block Mi, i = 1, . . . , n, prepend a 64-bit binary encoding (i) of the block index i to 
the block content Mi to get an augmented block Mi = (i)IIMi. 

5. For each i = 1, . . . , n, apply h to Mi to get a hash value yi = h(Mi) = SHAKE128(Mi, 2688). E E
6. Let ((Z64)

42 , ) be a commutative group with the operation that represents a 64-bit 64 64 
word wise addition of 42 words. E

7. Combine y1, . . . , yn via a combining group operation to get the final hash value 64 

E E E
y = y1 y2 . . . yn.64 64 64 

Denote the incremental hash function i SHAKE128 as: 

N E
iSHAKE128(M) = S H AK E 128(Mi, 2688). (3)

64 
i=1 

3 



�

�

Using appropriate values in expression (2) we have the following: 

Corollary 1. Let b = 1280, k = 2688. and let the maximal allowed number of blocks be N = 
225. Then 

k 
1+lgLKJ ) = 2128.385min O(K · 2 (4) 

K N 

3.2 iSHAKE256 

We give the following proposal for an incremental hash function iSHAKE256 with a security 
of 256 bits: 

Definition 3. 

1. Let h : {0, 1}1088 - {0, 1}6528 be defined as the function h(m) = SHAKE256(m, 6528) where 
ImI = 1088. 

2. Let the message M = M1IIM2II . . . IIMn be represented as a concatenation of n blocks, where 
= 228n < N , and N is the largest number of blocks in any message we plan to hash. 

3. The size of each block Mi in bits is determined by the following relation: IMiI = 1088-64 = 
1024. 

4. For each block Mi, i = 1, . . . , n, prepend a 64-bit binary encoding (i) of the block index i to 
the block content Mi to get an augmented block Mi = (i)IIMi. 

5. For each i = 1, . . . , n, apply h to Mi to get a hash value yi = h(Mi) = SHAKE256(Mi, 6528). E E 
6. Let ((Z64)

102 , ) be a commutative group with the operation that represents a 64-bit 64 64 
word wise addition of 102 words. E 

7. Combine y1, . . . , yn via a combining group operation to get the final hash value 64 

E E E 
y = y1 y2 . . . yn.64 64 64 

Denote the incremental hash function i SHAKE256 as: 

N E 
iSHAKE256(M) = S H AK E 256(Mi, 6528). (5)

64 
i=1 

Using appropriate values in expression (2) we have the following: 

Corollary 2. Let b = 1024, k = 6528. and let the maximal allowed number of blocks be N = 
228. Then 

k 
1+lgLKJ ) = 2253.103min O(K · 2 (6) 

K N 

4 Conclusions 

Based on the observation that in the Zettabyte era the need for incremental hashing will be 
very big, and based on the property that the functions SHAKE128 and SHAKE256 (recently 
proposed by NIST in the SHA-3 Draft FIPS 202 proposal [6]) can output data with arbitrary 
long length, we have proposed two incremental hash functions iSHAKE128 and iSHAKE256 
with corresponding security levels of 128 and 256 bits. 

4 



References
 

1.	 Historical cost of computer memory and storage. hblok.net • Freedom, Electronics and Tech, Febru­
ary 2013. http://hblok.net/blog/storage/. 

2.	 Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography: The case of hashing 
and signing. In Yvo Desmedt, editor, CRYPTO, volume 839 of Lecture Notes in Computer Science, 
pages 216–233. Springer, 1994. 

3.	 Mihir Bellare and Daniele Micciancio. A new paradigm for collision-free hashing: Incrementality at 
reduced cost. In Walter Fumy, editor, EUROCRYPT, volume 1233 of Lecture Notes in Computer 
Science, pages 163–192. Springer, 1997. 

4.	 Cisco. Cisco visual networking index: Forecast and methodology, 2012-2017. White Pa­
per, May 2013. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ 
visual-networking-index-vni/VNI_Hyperconnectivity_WP.pdf. 

5.	 EMC. The emc digital universe study with research and analysis by idc. Open Report, April 2014. 
http://www.emc.com/leadership/digital-universe/index.htm?pid=home-dig-uni-090414. 

6.	 NIST. Draft sha-3 standard: Permutation-based hash and extendable-output functions. FIPS 202, 
April 2014. http://csrc.nist.gov/publications/PubsDrafts.html#FIPS-202. 

7.	 David Wagner. A generalized birthday problem. In Moti Yung, editor, CRYPTO, volume 2442 of 
Lecture Notes in Computer Science, pages 288–303. Springer, 2002. 

5 

http://csrc.nist.gov/publications/PubsDrafts.html#FIPS-202
http://www.emc.com/leadership/digital-universe/index.htm?pid=home-dig-uni-090414
http://www.cisco.com/c/en/us/solutions/collateral/service-provider
http://hblok.net/blog/storage
http:hblok.net



