

Page 1

A Skein-512 Hardware Implementation

Jesse Walker Farhana Sheikh Sanu K. Mathew Ram Krishnamurthy
Intel Corporation Intel Corporation Intel Corporation Intel Corporation
Security Research Lab Circuits Research Lab Circuits Research Lab Circuits Research Lab
JF2-55 JF2-04 JF2-04 JF2-04
2111 NE 25

th
 Ave 2111 NE 25

th
 Ave 2111 NE 25

th
 Ave 2111 NE 25

th
 Ave

Hillsboro, OR USA 97124 Hillsboro, OR USA 97124 Hillsboro, OR USA 97124 Hillsboro, OR USA 97124
jesse.walker@intel.com farhana.sheikh@intel.com sanu.k.mathew@intel.com ram.krishnamurthy@intel.com

Abstract
This paper describes our Skein-512 hardware implementation. Skein is a semi-finalist in the

NIST hash competition to create SHA-3, with Skein-512 being the primary submission. We

compare our implementation of Skein-512 with other published hardware implementations of

Skein, and with similar implementations for SHA-1 and SHA-2. We discuss four variations of our

critical path to explore the throughput/latency tradeoffs afforded by the Skein algorithm, with

the best tradeoff offering throughput of 58Gbps at a latency of 20 clock cycles.

1. Introduction
In 2005 Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu [23] unexpectedly discovered vulnerabilities in

the widely used SHA-1 hash algorithm [17]. This attack called into question the practical security of SHA-

1 when used in digital signatures and other applications requiring collision resistance. The SHA-2 family,

which was designed to replace SHA-1, enjoys a similar structure, leading to concerns that it might as well

fall to elaborations or variations of Wang’s attack.

To respond to these concerns the United States government agency National Institute of Standards and

Technology (NIST) is sponsoring an international competition to create a replacement algorithm, which

will be called SHA-3 [18]. The competition drew 64 submissions, and to constitute a first round NIST

identified 51 that met its minimum submission criterion. Based on public comments and internal

reviews of the 51 first-round candidates, NIST later narrowed the field to a more manageable

number of 14 semi-finalists, to enable deeper analysis.

The Skein hash algorithm [4] is one of the remaining 14 semi-finalists. This paper describes a new

hardware implementation of Skein and explores implementation tradeoffs the algorithm enables.

Section 2 touches on related work. Section 3 outlines the Skein algorithm. Section 4 describes our

hardware implementation based on Intel’s 32 nanometer process [16]. Section 5 examines performance

issues and discusses tradeoffs to achieve implementations with problem-specific characteristics and

compares our implementation with other known Skein implementations and with published hardware

implementations of SHA-1, SHA-256, and SHA-512. Section 6 summarizes the paper and discusses future

work.

mailto:jesse.walker@intel.com
mailto:farhana.sheikh@intel.com
mailto:sanu.k.mathew@intel.com
mailto:ram.krishnamurthy@intel.com

Page 2

2. Related Work
Numerous software implementations of Skein have been announced ([3], [5], [6], [7], [8], [15], [19], [22],

[24]), but we are aware of few hardware implementations. This is not surprising for any of the SHA-3

candidates, given the newness of the algorithms.

To the best of our knowledge, M. Long developed the first Skein hardware implementation [11], based

on a Xilinx FPGA. Long implemented Skein-256, but he scaled his results to Skein-512. Long implemented

the main Threefish data path as a single 8 round pipeline. His design achieves a throughput of 871 Mbps.

He reports a latency of 34 clocks. His design uses 586 flip flops (FF) the FPGA makes available, along with

7029 lookup tables (LUT) and 7508 LUT-FF pairs. He uses the latter as the metric for area cost.

In a paper that motivated our own work, S. Tillich et. al. from Graz University of Technology produced

hardware implementations of all of the semi-finalist algorithms [21]. Their goal was to provide

implementations using a common set of libraries, optimizations, system interfaces, and the like, to allow

direct comparison of the algorithms. Their hardware implementation of Skein is poorly performing. We

wanted to understand whether this was due to something intrinsic in the algorithm or whether they

failed to capitalize on the opportunities the algorithm presents. Section 5 summarizes the Graz results in

more detail and compares them with our Skein-512 design.

3. Skein Description
Skein is a family of algorithms based on one architecture, with block widths of 256, 512, and 1024 bits.

Skein-512 is the primary submission, with Skein-256 defined for resource limited environments and

Skein-1024 for high security applications. This paper focuses on Skein-512.

The Skein hash algorithm is composed of three components:

 Threefish, a wide-block tweakable block cipher,

 Unique Block Identification (UBI), a novel chaining mode, and

 An argument system to adapt Skein to different applications.

This section describes each of these, as well as how Skein assembles to form a hash algorithm. For a

more complete description see the Skein specification.

3.1 Threefish
Skein is based on a family of tweakable block ciphers named Threefish. Each member of the Threefish

family takes three parameters:

 An N-bit encryption key, where N is a power of 2 greater than or equal to 256,

 A 128 bit tweak, and

 An N bit block of plaintext to encrypt.

The Skein specification defines Threefish-N for 256, 512, or 1024. If E denotes the Threefish encryption

function, K the key, T the tweak, and P a plaintext block, we write EK,T(P) for E(K, T, P).

Page 3

Threefish partitions its N-bit plaintext input into w = N/64 words, each of which is 64 bits. In each round

the w words are grouped into w/2 pairs (A, B), each of which is input into a MIX function:

MIX: (A, B) (A+B, (B <<< R) (A+B)),

where “+” denotes 64-bit addition with carry, “<<< R” denotes left rotation by R bits, and “” XOR. The

MIXes within a round can execute in parallel.

For Threefish-512, w = 512/64 = 8, meaning each round consists of 8/2 = 4 MIX functions. We name the

MIX functions in a round MIX0, MIX1, MIX2, and MIX3 Threefish defines 8 rounds worth of rotation

constants, repeated as many times as are needed; Threefish-512 uses each of the rotation constants 19

times for a total of 72 rounds. The rotation constants depend on N, and for Threefish-512 are

Round MIX0 MIX1 MIX2 MIX3

0 38 30 50 53

1 48 20 43 31

2 34 14 15 27

3 26 12 58 7

4 33 49 8 42

5 39 27 41 14

6 29 26 11 9

7 33 51 39 35

Threefish-N permutes the words between rounds. The Threefish-N permutation re-pairs the w words, so

that different words will mix in each round. The permutation is taken to have maximum period. The

Threefish-512 permutation is

Input word number 0 1 2 3 4 5 6 7

Output word number 2 1 4 7 6 5 0 3

Threefish-N adds a round key Kr = Kr,0 Kr,1 … Kr,w–1 to the words before the 0th round and then after

every fourth round r, where each Kri is a 64-bit word. The round key is computed from the Threefish key

K = K0 K1 … Kw–1 and the tweak T = T0 T1 as follows: set

Kw = K0 K1 … Kw–1 2
64

/3

T2 = T0 T1

Then

Ks,i = K(s+i) mod (w+1) for i = 0, 1, …, w–4

Ks,i = K(s+i) mod (w+1) + Ts mod 3 for i = w–3

Ks,i = K(s+i) mod (w+1) + T(s+1) mod 3 for i = w–2

Page 4

Ks,i = K(s+i) mod (w+1) + s for i = w–1

where s = r/4 denotes the subkey number and i the word number.

3.2 UBI
Skein replaces the Davies-Meyer, Merkle-Damgård, and Merkle-Damgård strengthening constructions in

classical hash function designs with UBI. The input to UBI consists of three items:

 An initialization vector IV,

 The string M to hash. M can consist of up to 299 – 8 bits in length, and

 An application-specific Type, which separates different uses.

Thus, UBI(IV, M, Type) is the signature for a UBI operation.

The steps to process M under UBI are

 Initialize the initial chaining variable value H0 to the initialization vector value IV.

 Parse M into N-bit blocks M1, …, Mm, where N is the block size of an underlying tweakable block

cipher E. 0-pad the final message block Mm if its length is not already a multiple of N bits.

 For each message block Mi:

o Compute the block cipher tweak Ti for each message block Mi using the block offset and

the Type as described below

o Compute the next chaining variable by applying the block cipher E in Matyas-Meyer-

Oseas mode to the next block Mi, its tweak Ti, and the previous chaining variable value:

Hi = EHi–1,Ti(Mi) Mi.

 Output the final chaining variable value Hm

The tweak is constructed as

 128 120 112 96 0

L F Type P Tree

Level

Reserved Position

where

 L (bit 127) = 1 for last block Mm and 0 otherwise

 F (bit 126) = 1 for first block M1 and 0 otherwise

 Type (bits 120-125) = the application-specific UBI function being performed

 P (bit 119) = 1 if the message block is padded and 0 otherwise

 Tree Level (bits 112-118) = level of the tree when tree hashing is used; 0 for non-tree

computations

 Reserved (bits 96-117) = for future use; must be 0

 Position (bits 0-95) = number of bytes of M processed so far

Page 5

In Skein-N, UBI always uses Threefish-N as its tweakable block cipher

3.3 Skein Argument System
The Skein argument system specifies the UBI Type value. The types are

 Key Value = 0 information hashed is a key (for MACs and KDFs)

 Cfg Value = 4 for computing the configuration block (initialization vector)

 Prs Value = 8 for personalized hashing

 PK Value = 12 personalization using a public key

 Kdf Value = 16 key identifier

 Non Value = 20 nonce

 Msg Value = 48 message that Skein is hashing

 Out Value = 63 for computing Skein output

3.4 Putting the Pieces Together
The Skein hash of a message M uses three UBI calls. The first constructs the initialization vector for

hashing message M:

IV = UBI(0
N
, Config, Cfg)

where Config is a special 32 byte string to configure the IV. The following table describes each of the

bytes of Config:

Offset
in bytes
from
Config

string
start

Size in
Bytes

Name Description

0 4 Schema 0x53 0x48 0x41 0x33 (the ASCII string “SHA3”)

4 2 Version
number

1, encoded as a 16 bit integer

6 2 Reserved Set to 0

8 8 Outbits Number of output bits, encoded as a 64 bit integer

16 1 Tree leaf
size

Set to 0 if not use

17 1 Tree
fanout

Set to 0 if not used

18 1 Tree
height

Set to 0 if not used

19 13 Reserved Set to 0

The second UBI invocation uses the initialization vector to hash of the input message M.

G = UBI(IV, M, Msg)

Page 6

The final UBI call expands the intermediate value G into the desired number of output bytes o =

Outbits/8. Here

Output = Truncate(UBI(G, 0, Out) || UBI(G, 1, Out) || … || UBI(G, o, Out), o)

where each of the values 0, 1, …, o is encoded as a 64 bit integer, a || b denotes concatenation of strings

a and b, and Truncate(a, b) truncates string a to b bytes. To meet NIST’s requirements the primary

submission restricts Outbits to 128, 160, 224, 256, 384, and 512, so o = 1 and this simplifies to

Output = Truncate(UBI(G, 0, Out), o).

4. Hardware Implementation
We implemented Skein-512 on a 32nm CMOS process, at 0.80V and 110°C [16]. The core data path

consists of eight unrolled rounds of Threefish which are pipelined. This allows parallel computation of

two independent hashes, but requires two tweak generators and two key schedulers to independently

supply two subkeys to keep the hardware pipeline filled with two independent messages during each

cycle. Each pipeline stage encompasses an addition of the 512b subkey with the 512b message and four

512b Threefish Mix and Permute rounds.

This pipelined 8-round Threefish implementation can hash two input messages in parallel at the expense

of increased latency, from 10 cycles to 20 cycles. An eight-round implementation allows for fixed

rotation distances for each Mix block enabling a simplified, compact implementation with a total area of

60.4K gate equivalents. Even greater parallelism is possible by inserting registers into the pipeline at

every one or two rounds, but each such addition doubles the latency and increases area. An overview of

the hardware implementation is given in Figure 1 below.

Page 7

Tweak

Generator

Key

Scheduler
8 Round

Threefish

Cipher

tweak
2

128

512

msg

mclk

mclk

512 skey
1

512

u
b

i_
ty

p
e

1
,2

fi
rs

t1
,2

fi
n

a
l1

,2

b
it

p
a

d
1

,2

p
o

s
it

io
n

1
,2

96

sclkkey
1,2

512

msgdigest

512

Control

Logic

valid
1

sclk

reset

en

sknum
1

64

Mix + Permute

+ mod 2
64

Mix + Permute

Mix + Permute

Mix + Permute

Mix + Permute

+ mod 2
64

Mix + Permute

Mix + Permute

Mix + Permute

msg
 even subkeyj

(j = 0,…,18)

odd subkeyj

(j = 1,…,17)

sclk

sclk

Registers

Registers

512

512

msgout

sclk

R0
1

R0
2128

tweak
1

512

sknum
2

64

valid
2

LR
1

LR
2

R0
1,2

R0
2

R0
1

skey
2 skeven

skodd

count0

count0b

count0

msg1reg

msg2reg msgout

C
ritic

a
l p

a
th

Figure 1: Skein-512 hardware implementation

4.1 Threefish Cipher Implementation
The 8-round Threefish data path depicted in Figure 1 consists of 32 Mix blocks, 8 Permute blocks, and 16

64b modulo-264 adders. Figure 2 below shows the details for four rounds. Each Mix block consists of a

64b modulo-264 adder followed by an XOR of the adder output with a rotated version of second adder

input. Skein-512 requires a total of 32 rotation constants, which we hard-code into each of the 32 Mix

blocks. Each round consists of four parallel 64b x 64b Mix blocks followed by a permutation of the eight

64b words of the Mix block outputs. The permutations are accomplished via signal routing as shown in

Figure 2. After every four rounds, eight parallel 64b modulo-264 adders compute the addition of the

512b input word with a new 512b subkey generated using a 128b tweak and 512b key. Four Threefish

rounds and one addition of the input word with the subkey are computed during each main clock cycle,

which Figure 2 names as sclk.

The modulo-264 adders are the key components of the critical path. They are implemented using Intel’s

standard cell library and sizing is optimized for minimum delay through the critical path. A final addition

of the 512b data input and final subkey follows 72 rounds of Mix and Permute and is output directly as

the Threefish cipher. The output of the second stage of registers is controlled by signals LR1 and LR2

that are asserted after 19 and 20 cycles, respectively. If LR1 (last round for message 1) or LR2 (last

round for message 2) are high, then output of the addition after 72 rounds is fed directly to the

registers, otherwise the output of the Permute block is fed to the second set of the registers.

Page 8

+ mod 2
64

Mix Mix Mix Mix

Mix Mix Mix Mix

Permute

Mix Mix Mix Mix

Permute

Mix Mix Mix Mix

Permute

Plain Text

Subkey0j

(j = 0,…,18)

+ mod 2
64

6464

<<< Rr,i

Round 0

Round 1

Round 2

Round 3

64 6464 6464
64 64

64
512

6

W0 W1 W2 W3 W4 W5 W6 W7

Permute

Figure 2: Four rounds of the pipelined 8-round Threefish cipher datapath

4.2 Key Scheduler Implementation
At the start of each UBI invocation, each Tweak Generator constructs a 128b tweak that is fed into each

Key Scheduler that computes the 512b subkey based on the 512b input key and 128b tweak. The Key

Scheduler operates using the main clock, sclk. During each sclk cycle, each Key Scheduler creates the

next 512b subkey, which it provides to the eight-round Threefish cipher block. Figure 2 shows the Key

Scheduler in detail. In the initial round, the first five 64b subkey words (skey0 – skey4) are equivalent to

the five input 64b key words (k0 – k4). The sixth subkey word, skey5, is the result of adding the first 64b

tweak word, t0, with k5. Subkey word skey6 is the result of the addition of tweak t1 with k6. The last

subkey word, skey7, is the output of the addition of the subkey number with k7. Key word, k8, is the

result of the XOR of all the key words, k0 – k7 and the constant shown in Figure 2. Tweak, t2, is the

result of XORing t0 and t1. In subsequent rounds, the key words are rotated as well as the tweaks as

shown in Figure 2.

The Tweak Generator that feeds the Key Scheduler is a simple block that takes ubi_type, first, final,

bitpad flags, and the 96b position vector to build the 128b tweak as described in [4].

Page 9

k0

+

k1

k2

k3

k4

k5

k6

k7

k8

+

+

t0

t1

t2

skey_num

skey5

skey6

skey7

skey0

skey1

skey2

skey3

skey4

round0

round0
sclksclksclk

s
c

lk
s

c
lk

s
c

lk
s

c
lk

s
c

lk
s

c
lk

s
c

lk
s

c
lk

s
c

lk

 64

64

64

64

64

64

64

k0 k1 k2 k3 k4 k5 k6 k7

l2
64

/3m

k8

64

64

64

64

64

64

64

64 64 64 64 64 64 64 64

64

64

Figure 3: Key Scheduler Implementation

4.3 Control Logic and Timing
Sclk is the main clock in the design. The design uses sclk to clock the pipelined 8-round Threefish cipher

datapath, the Key Scheduling circuit, and the 5b counter, which is the design’s main control mechanism.

The 5b counter tracks the round number and is reset every 20 sclk cycles. Two registers control the

input messages to be hashed. These registers are clocked using a secondary clock, mclk. Mclk is clocked

at the same frequency as sclk for two cycles but then falls silent for the next 18 cycles, as depicted in

Figure 4 below. During the first sclk cycle, cycle 0, m1 is latched into the first register, msg1reg, and fed

to the 8-round Threefish cipher datapath, where it is added to the incoming subkey. In the second sclk

cycle, m1 moves from the first message register into the second one, msg2reg, where it is held for 72

rounds (19 cycles) and so that it can be XORed with output of the Threefish cipher. When the first

message is latched into msg2reg, a second message m2 is latched into msg1reg, so that processing can

start on it in the second sclk cycle, cycle 1. As can be seen from the timing diagram in Figure 4, m1 and

m2 are processed simultaneously, with m1 processing completing one cycle earlier than m2.

A new subkey is delivered to the 8-round Threefish cipher every cycle from both key schedulers. Even

cycle subkeys are fed to the first set of 8 parallel modulo-264 adders and odd cycle subkeys are fed to the

second set of 8 parallel modulo-264 adders (Figure 1). When count[0] is high, the even subkey (skey1) for

m1 is used in the first set of adders and the second set of adders is fed the odd subkey (skey2) for m2.

When count[0] is low, the even skey2 for m2 is used in the first set of adders and the odd skey1 for m1 is

used in the second set of adders. This multiplexing is controlled by the least significant digit of the 5b

 Page
10

counter, count[0] (i.e. count0 is high when count[0] is high and count0b is high when count[0] is low).

The current round number for m1 and m2 processing is fed to the two key schedulers every cycle and

the R01 and R02 signals that control the output of the multiplexer to the 8-round Threefish cipher

datapath are high when the round count is zero. Valid signals (valid1 and valid2) are asserted when the

count reaches 20 for m1 and 21 for m2, signifying that the message digest is valid.

sclk

count[0]

mclk

msg1reg m1 m2

msg2reg

m3 m4

m1 m2 m3

sk10 sk20skeven

skodd

sk12 sk22

sk11 sk21 sk13

sk118 sk218

sk217

md1msgdigest md2

valid1

valid2

sk30 sk40 sk32 sk42

sk31 sk41 sk33

LR1

LR2

0 1 2 3 18 19

Figure 4: Skein SHA-3 hardware accelerator timing

5. Area, Latency and Throughput Tradeoffs
We designed the 8-round Threefish-512 cipher data path in four different ways to better understand the

area, latency, and throughput tradeoffs possible with Skein. The first version, iSkein-512-8R-1M is the 8-

round data path without any pipelining. An implementation based on this design hashes one message

every 10 cycles with a throughput of 32Gbps, at 631MHz clock frequency. Our second implementation,

iSkein-512-4R-2M, is pipelined once so that four rounds execute every sclk cycle as described in the

previous section. With this implementation, the latency is increased to 20 cycles at 1.13GHz clock

frequency but enables parallel processing of two independent messages. The throughput improves by

45% to 58Gbps. Our third implementation, iSkein-512-2R-4M, pipelines the design further so that two

rounds are processed every sclk cycle resulting in total latency of 40 cycles with clock frequency set to

1.74GHz. This allows hashing of four independent messages in parallel, improving throughput to

89Gbps. If the eight rounds are fully pipelined (iSkein-512-1R-8M), then it is possible to hash eight

messages in parallel with 80-cycle latency, resulting in throughput of 122Gbps at 2.38GHz.

Designing in support for hashing simultaneous parallel messages is not unreasonable. [4] reports that

Skein-512 achieves excellent performance in software, so a hardware implementation is most likely to

be used at a system chokepoint such as a router, traffic-shaper, or the like, where message load can

overwhelm a processor due to multiple simultaneous input streams. We believe our choice of two

 Page
11

parallel hashes is the best tradeoff for most hardware implementations. In terms of area, as we continue

to add pipeline stages, the area increases due to the additional registers required. The iSkein-8R-1M

implementation that has 10-cycle latency and runs at the slowest clock frequency, has a total area of

57.9K gate equivalents. The once pipelined version, iSkein-4R-2M, consumes 60.4K gates and has a

latency of 20 cycles at 1.13GHz. The third version, iSkein-2R-4M, that increases the number of pipeline

stages to four, and latency to 40 cycles, is implemented in 63K gates. The version with shortest clock

cycle, 2.38GHz but with 80-cycle latency, consumes the largest area at 70.1K gate equivalents.

Since Skein is a relatively young algorithm, few synthesized hardware implementations appear in the

literature. In this section we compare our Skein-512 implementation with that produced at Graz

University [21]. To get a better context for this comparison, we also compare our implementation with

the best performing SHA-1 and SHA-2 implementations of which we are aware from the literature.

5.1 Comparison with the Graz Skein-512-512 Implementation
In [21] S.Tillich and his Graz University colleagues report a Skein-512 design. They targeted a 180nm

process using a standard cell library produced by Faraday. Their goal was to build implementations of

each of the semi-finalist algorithms, optimized for maximum throughput, to create a fair comparison

among algorithms. Since our design uses a 32nm process and different standard cell libraries, the results

cannot be compared with complete fairness. However, to get an understanding of the differences

between the two designs we have scaled the results reported in [21] to our environment using a direct

scaling methodology. We have allowed a 20% improvement in performance for each technology

generation, as we scale from 180nm to 32nm. This allows us to compare our work with published work

in [21] at the same technology node, thereby giving some insight into the relative performance of our

eight-round iSkein-512-8R-1M design compared to the Skein-512-512 design by Graz University and

their best performing implementation. It also highlights the benefits of pipelining and the relative

area/throughput/latency tradeoffs.

Based on these assumptions, the results discussed above are summarized below in Table 1 which also

includes the results from Graz University [21] scaled to 32nm CMOS process technology. Figure 5 below

shows throughput vs. latency tradeoffs for our design and the expected performance of the Graz design

if implemented in a 32nm CMOS process. Our iSkein-4R-2M design achieves 9% performance

improvement and 20% latency improvement as compared to the best performing scaled design by the

Graz University team, their Keccak implementation.

The area and latency tradeoffs are shown in Figure 6 above for all designs scaled to 32nm. As the latency

of the design increases, the area also increases due to the additional registers. However, these

additional pipeline stages enable hashing of multiple independent messages in parallel, thereby

improving throughput. The cost of improved throughput is higher area. The area of iSkein-4R-2M is 6.7%

higher than the scaled SHA-3 Keccak implementation by Graz University (see also Table 1).

 Page
12

Table 1: Results for implementation in 32nm CMOS technology

Implementation Block

(bits)

Clock Frequency

(MHz)

Latency

(cycles)

Area

(Gate

Equivalents)

Throughput

(Gbps)

Intel Technology Implementations

iSkein-512-1R-8M 512 2380.95 80 70,071 121.90

iSkein-512-2R-4M 512 1736.11 40 62,954 88.89

iSkein-512-4R-2M 512 1126.13 20 60,395 57.66

iSkein-512-8R-1M 512 631.31 10 57,931 32.32

Graz University Implementations Scaled to 32nm

BLAKE-32 512 424.61 22 45,640 9.88

BMW-256 512 408.58 53 122,092 3.95

CubeHash16/32-h 256 362.72 8 58,872 11.61

ECHO-256 1536 352.94 97 141,489 5.59

Fugue-256 32 636.39 2 46,257 10.18

Grostl-256 512 672.52 22 58,402 15.65

Hamsi-256 32 432.74 1 58,661 13.85

JH-256 512 946.11 39 58,832 12.42

Keccak (256) 1088 1213.80 25 56,316 52.82

Luffa-224/256 256 1202.08 9 44,972 34.19

Shabal-256 512 797.53 50 54,186 8.17

SHAvite-3_256 512 220.39 19 58,828 5.94

SIMD-256 512 161.57 36 104,166 2.30

Skein-256-256 256 182.94 10 58,611 4.68

Skein-512-512 512 121.60 10 102,039 6.23

iSkein-4R-2M cannot be compared directly with the Graz University design Skein-512-512, because ours

achieves its throughput by hashing two messages in parallel. iSkein-8R-1M is directly comparable. The

iSkein-8R-1M implementation achieves a 5X throughput improvement over the Graz University Skein-

512-512 implementation scaled to 32nm. This difference in performance can be due to many factors,

such as different 64b adder implementations, differently performing standard cell library, the availability

of high performing standard cells, and possibly a different critical path. Figure 1 highlights our critical

path. The critical path travels through a series of five modulo-264 64b adders. Our implementation uses

high-speed adder implementations whose delay is O(log(N)), where N is the number of bits. These

adders are part of our standard cell library. Slower adders, such as ripple-carry style, increase critical

path delays due to the carry propagation at each bit. Another advantage of our design is that our control

mechanism relies solely on some simple logic and a 5b counter. We have also eliminated additional

memory overhead by choosing not to pre-compute and store the output of the first UBI invocation as

has been done in the Graz University implementation. It is our belief, that by optimizing the critical path

and carefully constructing the control, the Skein SHA-3 candidate can operate at high clock frequencies,

above 1GHz, resulting in throughputs comparable to the best performing Graz implementation.

 Page
13

SHA-3 Circuits: Latency vs. Throughput (32nm CMOS)

iSkein-512-2R-4M

iSkein-512-4R-2M

iSkein-512-8R-1M

Keccak (256)

Skein-512-512

iSkein-512-1R-8M

0

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 20 30 40 50 60 70 80 90 100

Latency (cycles)

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

iSkein-512-1R-8M

iSkein-512-2R-4M

iSkein-512-4R-2M

iSkein-512-8R-1M

BLAKE-32

BMW-256

CubeHash16/32-h

ECHO-256

Fugue-256

Grostl-256

Hamsi-256

JH-256

Keccak (256)

Luffa-224/256

Shabal-256

SHAvite-3_256

SIMD-256

Skein-256-256

Skein-512-512

Note: All Graz University numbers are

scaled from 180nm to 32nm

53

25

58

9%

20%

Figure 5: SHA-3 circuits – estimated throughput vs. latency (32nm CMOS)

The red iSkein-512-* points represent performance of the Intel designs. The other points represent the Graz

results reported in [21][20] scaled to 32 nm SHA-3 Circuits: Latency vs. Area (32nm CMOS)

iSkein-512-2R-4M

Keccak (256)

Skein-512-512

iSkein-512-1R-8MiSkein-512-4R-2M

40

50

60

70

80

90

100

110

120

130

140

150

0 10 20 30 40 50 60 70 80 90 100

Latency (cycles)

A
re

a
 (

K
g

a
te

s
)

iSkein-512-1R-8M

iSkein-512-2R-4M

iSkein-512-4R-2M

iSkein-512-8R-1M

BLAKE-32

BMW-256

CubeHash16/32-h

ECHO-256

Fugue-256

Grostl-256

Hamsi-256

JH-256

Keccak (256)

Luffa-224/256

Shabal-256

SHAvite-3_256

SIMD-256

Skein-256-256

Skein-512-512

Note: All Graz University numbers are

scaled from 180nm to 32nm

56
60

6.7%

Figure 6: SHA-3 circuits - estimated area vs. latency (32nm CMOS)

 Page
14

5.2 Comparison with SHA-1 and SHA-2 Implementations
We compare our Skein-512 implementation to those for SHA-1 and SHA-2 scaled to the 32 nm process.

Figures 6 and 7 provide block diagrams depicting the salient features of these designs.

The SHA-1 message digest data path operates on 32b operands, with hash values stored in registers A-E

(Fig. 7). The critical ‘A’-computation involves a 5b left-rotate, an iteration-dependent compression

function ft and five-way 32b addition. These computations iterate for 80 rounds after which A-E values

are concatenated to obtain the 160b hash.

<<30<<5 ft +

+

+

+

DCA B E

Kt

Wt

Σ0 Maj +

+

DCA B HGE F

Σ1 Ch

++++ +

Kt

Wt

 Figure 7: SHA-1 message digest datapath Figure 8: SHA-2 message digest datapath

Message digest computation for the SHA-2 family of hashes uses 32 datapath slices for SHA-224/256

and 64 datapath slices for SHA-384/512 (Figure 8). Hash values are stored in registers A-H with 64 and

80 iterations for SHA-224/256 and SHA-384/512 respectively. SHA-2 hashes use more complex diffused

rotations ∑0 and ∑1 compared to the left rotates used in SHA-1:

The critical ‘A’ computation involves 7-way addition, 3-way rotated diffusion and 3-input compression

functions.

Several hardware techniques have been used to improve SHA performance ([2], [9], [12], [13], [14],

[20]). These include carry save addition of intermediate results with compressors ([2], [12], [20]), loop

unrolling to mitigate the serial dependence of hash computation [9] and pipelining [20] to improve

throughput.

To the best of our knowledge, the fastest reported SHA accelerator measurements, ported to 32nm

technology achieves 6.6 Gbps SHA-1 throughput [1]. Our iSkein-4R-2M implementation achieves a

 Page
15

throughput of 9X over this. Similarly, the best published SHA-2 implementation achieves throughput of

18Gbps with a latency of 84 cycles [10]. Our iSkein-4R-2M exceeds the throughput of this by over 3X

with a quarter of the latency.

6. Summary
This paper describes the design of a hardware implementation of Skein-512, a candidate algorithm being

considered for SHA-3. On a 32nm process, the design achieves a throughput of 58Gpbs with a latency of

20 clock cycles.

Our data suggests that our iSkein-4R-2M hardware implementation is among the best implementation

choices for the SHA-3 candidates. The iSkein-4R-2M design shows a 9% performance improvement and

20% latency improvement over the best performing scaled Graz implementation. We therefore believe

our work shows that Skein can achieve very good performance when implemented in hardware.

Many research topics remain for future work. Our implementation does not support Skein-256 and

Skein-1024, nor does it support any of Skein’s optional arguments such as personalization, KDF, and

MAC. We would like to evolve our design to add this support. Finally, once NIST announces the SHA-3

finalist algorithms, we hope to create hardware designs for each.

References
[1]. D. Carlson, D. Brasili, A. Hughes, A Jain, T. Kiszely, P. Kodandapani, A. Vardharajan, T.

Xanthopoulos, V. Yalala, “A High Performance SSL IPSEC Protocol Aware Security Processor”,

ISSCC Digest of Technical Papers, pp. 142-143, Feb. 2003.

[2]. R. Chaves, G. Kuzmanov, L. Sousa, S. Vassiliadis, "Cost-Efficient SHA Hardware Accelerators",

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 16, NO. 8, pp 999-1008,

August 2008.

[3]. Fajarado, A., “Skeinfish,” http://code.google.com/p/skeinfish/downloads/list/SkeinFish-0.4.1.zip

[4]. Ferguson, N., S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas, J. Walker, “The

Skein Hash Function Family, Version 1.1,” November 15, 2008, http://www.skein-

hash.info/sites/default/files/skein1.1.pdf

[5]. Finne, S., “A Cryptol implementation of Skein,” http://www.galois.com/blog/2009/01/23/a-

cryptol-implementation-of-skein/

[6]. Fürstenau, H, “Skein extension module for Python 3.0,” http://packages.python.org/pyskein/

[7]. Kausche, M., “Skein Implementation in Ada,” http://www.skein-hash.info/node?page=1/

[8]. Krishnan, S., “nskein – a Skein implementation in .NET,” http://github.com/sriramk/nskein

[9]. Y. Lee, H. Chan, I. Verbauwhede, "Throughput Optimized SHA-1 Architecture Using Unfolding

Transformation", Application-specific Systems, Architectures and Processors (ASAP'06), pp. 354

- 359, 2006.

[10]. Y. Lee, H. Chan, I. Verbauwhede, "Iteration Bound Analysis and Throughput Optimum

Architecture of SHA-256 (384,512) for Hardware Implementations", 8th Workshop for

Information Security (WISA'07), pp. 102 - 114, 2007.

http://code.google.com/p/skeinfish/downloads/list/SkeinFish-0.4.1.zip
http://www.skein-hash.info/sites/default/files/skein1.1.pdf
http://www.skein-hash.info/sites/default/files/skein1.1.pdf
http://www.galois.com/blog/2009/01/23/a-cryptol-implementation-of-skein/
http://www.galois.com/blog/2009/01/23/a-cryptol-implementation-of-skein/
http://packages.python.org/pyskein/

 Page
16

[11]. Long, M., “Implementing Skein Hash Function on Xilinx Virtex-5 FPGA Platform, February 2,

2009, http://www.skein-hash.info/sites/default/files/skein_fpga.pdf

[12]. M. Macchetti, L. Dadda, "Quasi-Pipelined Hash Circuits", Proceedings of the 17th IEEE

Symposium on Computer Arithmetic (ARITH’05), pp. 222-229, 2005.

[13]. R. McEvoy, F. Crowe, C. Murphy, W. Marnane, "Optimisation of the SHA-2 Family of Hash

Functions on FPGAs", Proceedings of the 2006 Emerging VLSI Tech. and Arch. (ISVLSI’06), pp.

317-322, 2006.

[14]. M. McLoone and J. V. McCanny, “Efficient single-chip implementation of SHA-384&SHA-512”,

IEEE International Conference on Field-Programmable Technology, pp. 311–314, 2002.

[15]. Mueller, T., “Skein Implementation in C#”,

http://www.hotpixel.net/software.html#skein512.net

[16]. Natarajan, S., et. al., “A 32nm Logic Featuring 2nd Generation High-K + Metal Gate Transistors,

Enhanced Channel Strain and 0.171μm2 SRAM Cell Size in a 291Mb Array,” IEDM Tech. Dig.,

paper 27.9, Dec. 20

[17]. NIST, “FIPS PUB 180-3 Secure Hash Standard (SHS),” October 2008,

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

[18]. NIST, “Announcing Request for Candidate Nominations for a new Cryptographic Hash

Algorithm (SHA-3) Family,” Federal Registry Vol 72, No 212, November 2, 2007

[19]. Otte, D., “Skein Implementation for AVR Microcontroller,” http://www.das-

labor.org/wiki/AVR-Crypto-Lib/en

[20]. Satoh, T. Inoue, "ASIC-Hardware-Focused Comparison for Hash Functions MD5, RIPEMD-160,

and SHS", Proceedings of the International Conference on Information Technology: Coding and

Computing (ITCC’05), Vol. 1, pp. 532-537, 2005.

[21]. Tillich, S., M. Feldhofer, M. Kirschbaum, T. Plos, J.M. Schmidt, and A. Szekely, “High-Speed

Hardware Implementations of BLAKE, Blue Midnight Wish, CubeHash, ECHO, Fugue, Grøstl,

Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD, and Skein,” Graz University of Technology,

October 21, 2009

[22]. Walter, J., 8-bit Implementation of Skein, http://www.syntax-

k.de/projekte/fhreefish/fhreefish-1.2.1.zip

[23]. Wang, X., Y. L. Yin, and H. Yu, Collision Search Attacks on SHA1,” February 13, 2005,

http://www.c4i.org/erehwon/shanote.pdf

[24]. Whiting, D., “Skein Source Code and Test Vectors,” http://www.skein-

hash.info/downloads/skein_NIST_CD_121508.zip

http://www.skein-hash.info/sites/default/files/skein_fpga.pdf
http://www.hotpixel.net/software.html#skein512.net
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://www.das-labor.org/wiki/AVR-Crypto-Lib/en
http://www.das-labor.org/wiki/AVR-Crypto-Lib/en
http://www.syntax-k.de/projekte/fhreefish/fhreefish-1.2.1.zip
http://www.syntax-k.de/projekte/fhreefish/fhreefish-1.2.1.zip
http://www.c4i.org/erehwon/shanote.pdf
http://www.skein-hash.info/downloads/skein_NIST_CD_121508.zip
http://www.skein-hash.info/downloads/skein_NIST_CD_121508.zip

