
On the Indifferentiability of the Grøstl Hash Function

Elena Andreeva, Bart Mennink and Bart Preneel

Dept. Electrical Engineering, ESAT/COSIC and IBBT
Katholieke Universiteit Leuven, Belgium

{elena.andreeva, bart.mennink, bart.preneel}@esat.kuleuven.be

Abstract. The notion of indifferentiability, introduced by Maurer et al., is an important criterion for
the security of hash functions. Concretely, it ensures that a hash function has no structural design
flaws and thus guarantees security against generic attacks up to the proven bounds. In this work we
prove the indifferentiability of Grøstl, a second round SHA-3 hash function candidate. Grøstl combines
characteristics of the wide-pipe and chop-Merkle-Damg̊ard iterations and uses two distinct permutations
P and Q internally. Under the assumption that P and Q are random l-bit permutations, where l is the
iterated state size of Grøstl, we prove that the advantage of a distinguisher to differentiate Grøstl from
a random oracle is upper bounded by O((Kq)4/2l), where the distinguisher makes at most q queries of
length at most K blocks. This result implies that Grøstl behaves like a random oracle up to q = O(2n/2)
queries, where n is the output size. Furthermore, we show that the output transformation of Grøstl, as
well as ‘Grøstail’ (the composition of the final compression function and the output transformation),
are clearly differentiable from a random oracle. This rules out indifferentiability proofs which rely on
the idealness of the final state transformation.

1 Introduction

Hash functions are a basic building block in cryptography. Formally, a hash function maps a bit
string of arbitrary length to an output string of fixed length, H : Z∗2 → Zl

2. An established practice
in the design of hash functions is to first construct a fixed input length compression function, e.g.
f : Zl

2 × Zl
2 → Zl

2, and then iterate it to allow the processing of arbitrarily long strings. The most
popular iteration principle is the strengthened Merkle-Damg̊ard [12,18] design1. Common hash
functions, such as members of the SHA and MD family, incorporate the Merkle-Damg̊ard method
in their design. However, recent attacks on the widely used SHA-1 and MD5 [22,23] have rendered
these designs insecure. This grim situation has triggered the launch of the SHA-3 competition [20]
for the selection of a new secure hash function algorithm by NIST (National Institute of Standards
and Technology). In the current second round of the competition, 14 candidates are under active
evaluation.
These 14 candidates use a wide variety of iterative modes. Some of the designs still follow the
basic Merkle-Damg̊ard iteration. Others either add new features to it, or simply propose different
constructions. Candidates from the latter two classes include iterations based on the chop-Merkle-
Damg̊ard [13], HAIFA [7], wide-pipe [16] and Sponge [5] design strategies. The main advantage of
the basic Merkle-Damg̊ard construction is its collision security guarantee under the assumption that
the underlying compression function is collision resistant [12,18]. Other important hash function se-
curity properties, such as second preimage and preimage security are, however, not preserved by the
Merkle-Damg̊ard iteration [1]. Moreover, the extension attack shows that the Merkle-Damg̊ard hash
function is clearly differentiable from a monolithic random oracle [11].
A natural question that arises with the emerge of new iterative designs is to identify the security
properties achieved by these constructions. Other than the classical collision, second preimage and
preimage security properties, the indifferentiability property has gained more recent attention due

1 Throughout, we will refer to it as the ‘Merkle-Damg̊ard design’.



to the advancements in the theoretical differentiability model of Maurer et al. [17] and their fur-
ther development in the context of hashing [11,2,9,10]. Indifferentiability is an important security
criterion because it ensures that the hash function has no structural design flaws in composition.
Such a result provides a guarantee that no generic attacks (attacks on the iteration which assume
ideal behavior of the underlying primitives) up to the proven bounds are possible.
In this work we analyze the indifferentiability of the Grøstl SHA-3 candidate [15]. Grøstl borrows
characteristics mainly from the wide-pipe and the chop-Merkle-Damg̊ard iterations: the iterated
state is wider than the final hash output, which classifies it as a type of a wide-pipe design.
The iterative message processing together with a final state truncation in Grøstl resemble the
chop-Merkle-Damg̊ard hash function with the added difference of an output transformation before
truncation. More concretely, Grøstl processes its inputs by first calling the compression function
f iteratively, then applying a final output transformation to the state and finally truncating the
result to the desired output length. The compression function f is built out of two permutations P
and Q and the output transformation is designed on top of the permutation P .

1.1 Our Result

Indifferentiability results on hash functions can be obtained following several different approaches.
One way to argue indifferentiability is to assume ideal behavior of the first layer components
(i.e., the underlying compression functions), and prove the result for the concrete composition of
interest [11,10]. Dodis et al. [14] relax the assumption on the internal compression functions from a
random oracle to preimage awareness. If a composition is preimage aware, which they show is true
for the Merkle-Damg̊ard iteration when the compression function is preimage aware itself, then
they prove indifferentiability by assuming idealness only of the final extra transformation. Both
approaches turn out futile for the Grøstl hash function: fixed points for the compression function
can be found easily (as already observed in [15]), and also the final output transformation is clearly
differentiable from a random function. Even stronger, if we consider the composition of the final
compression function f and the output transformation (with and without truncation), which we
refer to as ‘Grøstail’, then we prove that Grøstail is differentiable from a random function. We do
so by demonstrating an attack that tricks any simulator for the indifferentiability of Grøstail in
only three oracle queries. This result indicates that Grøstail is highly non-random and therefore
the results of [14] could not be applied directly.
The next attempt for an indifferentiability proof for the Grøstl hash function is to refine the level
of modularity and to explore the second layer integral components, i.e. the permutations P and
Q. In a similar fashion, Coron et al. [11] prove that the chop-Merkle-Damg̊ard construction with
Davies-Meyer (DM) [21] compression function is indifferentiable from a random oracle assuming
an ideal behavior from the block cipher underlying the DM function. While the Grøstl iteration is
a type of a DM chop-Merkle-Damg̊ard construction, the latter result cannot be applied here due
to clear design differences, such as the presence of an output transformation. Instead, to prove
indifferentiability of the Grøstl hash function we start from scratch by assuming ideal behavior of
the underlying permutations.
The proof is constructed following the indifferentiability theoretical framework by [17]. We build
a simulator for the permutations P and Q that is granted access to a random oracle. The goal
of the simulator is to answer its queries, such that it is hard for a distinguisher to tell apart the
interactions with the Grøstl hash functions and truly random permutations from the ones with a
random oracle and the simulator. The simulator is also consistent with the outputs of the random
oracle. Although our proof is geared towards the concrete design of the Grøstl hash function, we
believe its underlying idea can be applied to similar constructions of independent interest. We prove



that the advantage of a distinguisher to differentiate Grøstl from a random oracle is upper bounded
by O((Kq)4/2l), where the distinguisher makes at most q queries of length at most K blocks to its
oracles. Here, l is the iterated state size which, for Grøstl, is at least twice as large as the output
hash size n. Intuitively, this means that Grøstl behaves like a random oracle up to q = O(2n/2)
queries.
The JH [6], Keccak [4] and Shabal [8] SHA-3 second round candidates have recently been also
proved indifferentiable. All of them claim security beyond the birthday bound (with respect to
the output length n). In particular, JH is proven indifferentiable up to O(q3/2l−m), and Keccak
and Shabal up to O((Kq)2/2l−m) where l is the size of the chaining value and m the number of
message bits compressed in one application of the compression function. We notice, however, that
this is an unfair comparison: JH, Keccak and Shabal have iterated state sizes l of 1024, 1600 and
1408 bits, respectively, which are significantly larger than the state size of Grøstl. For comparison,
Keccak-256 is indifferentiable up to bound O((Kq)2/2512), while our result implies that Grøstl-256
would be indifferentiable up to O((Kq)4/21600), were Grøstl be designed to have the same state
size as Keccak. Such an adjustment would, however, decrease the efficiency.

2 Preliminaries

For n ∈ N, where N is the set of natural numbers, let Zn
2 denote the set of bit strings of length n,

(Zn
2 )∗ the set of strings of length a multiple of n and Z∗2 the set of strings of arbitrary length. If

x, y are strings, then x‖y is the concatenation of x and y. If k, l ∈ N then 〈k〉l is the encoding of k

as an l-bit string. If S is a set, then x
$← S denotes the uniformly random selection of an element

from S. We let y ← A(x) and y
$← A(x) be the assignment to y of the output of a deterministic

and randomized algorithm A, respectively, when run on input x. For a function f , by dom(f) and
rng(f) we denote the domain and range of f , respectively. Abusing notation, by (x, y) ∈ f , we
denote that x ∈ dom(f) and y = f(x). A random oracle [3] is a function which provides a random
output for each new query. A random l-bit permutation is a function that is taken uniformly at
random from the set of all l-bit permutations. A random primitive will also be called ‘ideal’.

2.1 Grøstl

On input of a message of arbitrary length, the Grøstl hash function Gr : Z∗2 → Zn
2 outputs a digest of

n bits, with n ∈ {224, 256, 384, 512} [15]. Grøstl is a type of a wide-pipe design where the iterated
state size l is significantly larger than the final hash output. More concretely: for n = 224, 256,
l = 512, and for n = 384, 512, l = 1024. The Grøstl hash function makes use of the Merkle-
Damg̊ard construction to process its inputs, then applies an output transformation on the state
value and finally truncates (chops) the result from l to n bits. The Grøstl compression function
f : Zl

2×Zl
2 → Zl

2 is defined as f(h,m) = P (h⊕m)⊕Q(m)⊕h, where P,Q : Zl
2 → Zl

2 are two l-bit
permutations. Throughout, P and Q are considered to be independent random permutations.

Fig. 1. The Grøstl hash function Gr.



For a fixed initialization vector IVn the hash function Gr (see Fig. 1) processes an arbitrary length
message M as follows:

(M1, . . . ,Mk) = pad(M),

h0 = IVn,

hi = f(hi−1,Mi) for i = 1, . . . , k,

hk+1 = P (hk)⊕ hk,
Gr(M) = chopl−n(hk+1),

where chopl−n(x) chops off the l − n rightmost bits of x, and the padding function pad is defined
as pad(M) = M ′, with M ′ = M‖1‖0−|M |−65 mod l‖〈d(|M |+ 65)/le〉64, parsed as a sequence of l-bit
blocks. On input of a message M ′ ∈

(
Zl

2

)∗
, the function depad(M ′) is defined as follows: if M ′ =

pad(M) for some message M , it outputs this M , otherwise it outputs ⊥. Observe that the output
is unique as the padding function is injective2. For an M ∈

(
Zl

2

)∗
, we denote by Z(M) the set of all

values m ∈ Zl
2 that make (M,m) a valid padding. Formally: Z(M) = {m ∈ Zl

2 | depad(M‖m) 6= ⊥}.
Apart from the indifferentiability of the Grøstl hash function, we also consider the Grøstail function
F : Zl

2 × Zl
2 → Zl

2, a composition of the last compression function f with the final transformation
(i.e., Grøstail is the ‘tail’ of Grøstl):

F(h,m) = P (f(h,m))⊕ f(h,m). (1)

2.2 Indifferentiability

The indifferentiability framework introduced by Maurer et al. [17] is an extension of the classical
notion of indistinguishability. It proves that if a construction CG based on an ideal subcomponent
G is indifferentiable from an ideal primitive R, then CG can replace R in any system.

Definition 1. A Turing machine C with oracle access to an ideal primitive G is said to be (tD, tS , q, ε)
indifferentiable from an ideal primitive R if there exists a simulator S, such that for any distin-
guisher D it holds that:

Advpro
C,S(D) =

∣∣∣Pr
(
DCG ,G = 1

)
− Pr

(
DR,SR = 1

)∣∣∣ < ε.

The simulator has oracle access to R and runs in time at most tS. The distinguisher runs in time
at most tD and makes at most q queries.

In the remainder, we refer to CG ,G as the ‘real world’, and to R,SR as the ‘simulated world’; the
distinguisher D converses either with the real or the simulated world and its goal is to tell both
worlds apart. D can query both its ‘left oracle’ L (either C or R) and its ‘right oracle’ R (either
G or S). In the remainder, R has four interfaces, corresponding to forward and inverse queries to
permutations P and Q. These interfaces are denoted by RP , RP−1 , RQ, RQ−1 .

3 Differentiability of Grøstail

A recent result by Dodis et al. [14] prescribes how to prove indifferentiability of hash functions
by ways of preimage awareness. Loosely speaking, Dodis et al. proved that if H : Z∗2 → Zl

2 is a
preimage aware hash function and RO : Zl

2 → Zl
2 is a random function, then the composition

2 We stress that, for the purpose of the proof, injectivity is the only property required from the padding function.



RO ◦ H is indifferentiable from a random oracle. One might be tempted to consider this approach
for the indifferentiability analysis of Grøstl, i.e., by assuming that the output transformation is a
random oracle and then proving the Grøstl hash function (without the output transformation) to be
preimage aware. However, the behavior of the output transformation P (x)⊕x deviates significantly
from a random function: similarly to the Davies-Meyer construction [19], fixed points P (x)⊕x = x
are easy to compute by making the inverse query P−1(0) = x. A second attempt is to go one
step backwards in the iteration and view the last compression function together with the output
transformation, i.e., Grøstail (1), as a random function. We show that this approach also fails since
Grøstail is easily differentiable from a random function.

Proposition 1. Let P,Q be two random l-bit permutations, let F be the Grøstail compression
function (1), and let RO : Zl

2 × Zl
2 → Zl

2 be a random function. For any simulator S that makes
at most q queries to RO, there exists a distinguisher D that makes at most 3 queries to its oracle,
such that Advpro

F,S(D) ≥ 1− q/2l.

Proof. Let S be any simulator that makes at most q queries to RO. We construct a distinguisher
D that with overwhelming probability distinguishes Grøstail from a random function in 3 oracle
queries. The distinguisher proceeds as follows. First, it makes inverse queries x2 = RQ−1(0) and x1 =
RP−1(x2). Then, it makes a query to the left oracle to obtain y = L(x1⊕x2, x2). If D converses with
(FP,Q, (P,Q)), then y = FP,Q(x1 ⊕ x2, x2) = P (x1)⊕ x1 = x1 ⊕ x2. If D converses with (RO, SRO),
this equation holds only if the simulator can find x1, x2 such that RO(x1 ⊕ x2, x2) = x1 ⊕ x2, i.e.,
only if the simulator can find a fixed point for RO. As the probability for the simulator to find
fixed points for RO is upper bounded by q/2l, the advantage for D to distinguish, Advpro

F,S(D), is

lower bounded by 1− q/2l. ut

If the final truncation is included in Grøstail as well, a lower bound 1 − q/2n can be obtained
similarly.

4 Indifferentiability of Grøstl

In this section, we present the main result of this paper: we show that the Grøstl hash function is
indifferentiable from a random oracle, under the assumption that the underlying permutations P,Q
are ideal. Intuitively, we demonstrate that there exists a simulator such that no distinguisher can
differentiate the real world GrP,Q, (P,Q) from the simulated world RO,SRO, except with negligible
probability.

Theorem 1. Let P,Q be two random l-bit permutations, let Gr be the Grøstl hash function (Sect. 2.1),
and let RO be a random oracle. Let D be a distinguisher that makes at most qL left queries of max-
imal length (K − 1)l bits, where K ≥ 1, qP right queries to P and qQ right queries to Q, and runs
in time t. Then:

Advpro
Gr,S(D) ≤

58(qP + (K + 1)qL)2(qQ +KqL)2

2l
, (2)

where S makes qS ≤ qP queries to RO and runs in time O(max{qP , qQ}4).

The simulator S used in the proof mimics the behavior of random permutations P and Q such
that queries to S and queries to RO are ‘consistent’, which means that relations among the query
outputs in the real world hold in the simulated world as well. To this end, the construction of the
simulator is based on several designing decisions. In what remains, the simulator used in the proof
(Fig. 2) is introduced and explained in more detail. Then, Thm. 1 is proven in Sect. 4.3.



4.1 Initialization of the Simulator

The simulator maintains two, initially empty, lists LP ,LQ that represent the permutations it simu-
lates. These lists consist of tuples (x, y) ∈ Zl

2×Zl
2, where y denotes the (simulated) image of x under

P or Q. Abusing notation, we denote by dom(LP ) (resp. rng(LP )) the set of first (resp. second) ele-
ments in LP , and similar for LQ. The simulator has four interfaces, denoted by SP , SP−1 ,SQ,SQ−1 ,
and access to RO. Furthermore, the simulator maintains a graph (V,E), initially ({IV }, ∅). The
edges e ∈ E are labeled by messages in Zl

2: any (x1, y1) ∈ LP and (x2, y2) ∈ LQ define an edge

x1 ⊕ x2
x2−→ x1 ⊕ x2 ⊕ y1 ⊕ y2 in (V,E). Intuitively, an edge in (V,E) corresponds to an evaluation

of the Grøstl compression function f , and if there is a path IV
M1−→ s1

M2−→ · · · Mk−→ sk in (V,E),

then f(. . . f(f(IV,M1),M2) . . . ,Mk) = sk. Abusing notation, we denote by s
M−→ t that there is

a path from s to t in (V,E) with the edges labeled by M ∈
(
Zl

2

)∗
. We say that (V,E) contains

colliding paths if there exists an s ∈ V such that IV
M−→ s and IV

M ′−→ s are two paths in (V,E),
for different M,M ′ ∈

(
Zl

2

)∗
.

Furthermore, by Vout, Vin we denote the set of vertices in V with an outgoing or ingoing edge, re-
spectively. Observe that if LP ,LQ are of size qP , qQ, respectively, the sets Vout, Vin are of size at most
qP qQ. By r(V ), we denote the set of all ‘rooted’ nodes in V , i.e.: r(V ) =

{
v ∈ V

∣∣ ∃M ∈ (Zl
2

)∗
such

that IV
M−→ v

}
. By construction, r(V ) ⊆ Vin. Finally, we introduce a specific subset of r(V ):

r̄(V ) =
{
v ∈ V

∣∣ ∃ M ∈ (Zl
2

)∗
such that IV

M−→ v and depad(M) 6= ⊥
}
.

For simplicity, V, r(V ) and r̄(V ) are updated by the simulator implicitly.

4.2 Intuition Behind the Simulator

In this section we take a closer look at the simulator of Fig. 2 by starting with an example. Consider
the case that a node x is a member of both r̄(V ) and dom(LP ). This means that (1) there exists

an M such that IV
M−→ x and depad(M) 6= ⊥, and (2) there exists a y ∈ rng(LP ), such that

y = SP (x). In the real world (where the left oracle is the Grøstl hash function), these values satisfy
Gr(depad(M)) = chopl−n(x ⊕ y) by construction. If the simulator does not answer its queries
wisely, this equality would hold with negligible probability in the simulated world. More generally,
the simulator can guarantee that this equation holds only if x is added to dom(LP ) after it was
added to r̄(V ) (reflected in requirement R3 below)3. Maintaining consistency, however, becomes
harder when |r̄(V )| and |dom(LP )| increase. The idea behind the simulator is to answer its queries
such that it can control the growth of r(V ), and in particular the growth of r̄(V ) as a subset of
r(V ), while still maintaining consistency in its answers. Intuitively, the simulator responds to its
queries, such that the following requirements are satisfied:

R1. There are no colliding paths in (r(V ), E). Observe that two different paths to the same node
may lead to distinguishability for D as the simulator can be consistent with only one of the
paths. This requirement is satisfied if r(V ) is never increased with a node that has two incoming
edges in the updated4 graph;

3 Observe that RO(depad(M)) = chopl−n(LP (x)⊕ x) should hold for IV
M−→ x. If x ∈ dom(LP ) before it is added

to r̄(V ), this means that LP (x)⊕ x is fixed before RO(depad(M)) is known.
4 This requirement should hold for the ‘updated’ graph, which can be seen as follows: suppose the distinguisher

makes a forward query x1 to SP such that x1 ⊕ x2, x1 ⊕ x′2 ∈ r(V ) for different x2, x
′
2 ∈ dom(LQ), and both

x1⊕ x2⊕ y1⊕ y2 and x1⊕ x′2⊕ y1⊕ y′2 are not in V yet. By construction, these nodes have zero incoming edges in
the non-updated (V,E), but it may accidentally be the case that these nodes are equal, in which case they have
two incoming edges in the updated graph.



R2. S increases r(V ) only if it is forced to do. In particular, r(V ) is never increased with a node
that has an outgoing edge in the updated graph. Observe that each path in (r(V ), E) leads to
a potential node in r̄(V );

R3. S never increases r̄(V ) with a node in the updated dom(LP );

R4. S increases dom(LP ) with a node in r̄(V ) only if it is forced to. Observe that in case of inverse
queries to SP−1 , the simulator can avoid outputting elements in r̄(V ). In forward queries to
SP , the simulator may be forced to increase r̄(V )∩dom(LP ). In this case, it consults its oracle
RO to generate the answer.

The first two conditions are regarding the growth of r(V ), and the second two concern the growth
of r̄(V ) ∩ dom(LP ). We show how these conditions occur in the description of the simulator in
Fig. 2. We first consider requirements R1 and R2, then we look at R3 and R4.

Restricting the growth of r(V )
Inverse queries. Consider an inverse query y1 to SP−1 . It is easy to see that both R1 and R2
are satisfied if the simulator outputs its answer x1, such that none of the newly added vertices
{x1⊕x2 | x2 ∈ dom(LQ)} to Vout is already rooted. A similar observation holds for queries to SQ−1 .
These requirements translate to lines 3e and 4c in the description of the simulator in Fig. 2.

Forward queries. In forward queries to SP ,SQ, the simulator may be forced to increase r(V ).
Consider a query x1 to SP , and consider any x2 ∈ dom(LQ) such that x1 ⊕ x2 ∈ r(V ). Then,

the edge x1 ⊕ x2
x2−→ x1 ⊕ x2 ⊕ y1 ⊕ y2 will be added to (V,E) by construction. Denote by V ′

the multiset of updated nodes after the query. Then, we require that x1 ⊕ x2 ⊕ y1 ⊕ y2 does
not occur twice in V ′in (in order to establish R1), and moreover that it does not occur in V ′out

(in order to establish R2). If we define Vnew = {x1 ⊕ x′2, x1 ⊕ x′2 ⊕ y1 ⊕ y′2 | (x′2, y
′
2) ∈ LQ} to

be the multiset of newly added nodes to V in the query to SP , both requirements are satisfied if
x1⊕x2⊕y1⊕y2 6∈ V ∪(Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2}) holds for all (x2, y2) ∈ LQ such that x1⊕x2 ∈ r(V ).
A similar condition can be derived for queries to SQ. These requirements translate to lines 1k and
2e in the description of the simulator in Fig. 2.

Restricting the growth of r̄(V ) ∩ dom(LP )
Inverse queries. As explained, S never increases r̄(V ) ⊆ r(V ) in inverse queries. Hence, require-
ment R3 is naturally satisfied. Furthermore, R4 is guaranteed if queries to SP−1 are never answered
with a node in r̄(V ). This requirement translates to line 3c from Fig. 2.

Forward queries. First consider requirement R3. Let the distinguisher make a query to SP
or SQ, such that r̄(V ) gets increased. By construction and the fact that requirement R2 is satisfied,

this means that an edge x1⊕x2
x2−→ x1⊕x2⊕y1⊕y2 is added to (V,E), such that IV

M−→ x1⊕x2 for
some M ∈

(
Zl

2

)∗
, and x2 ∈ Z(M). The simulator needs to be designed such that the newly added

value to r̄(V ), x1⊕x2⊕y1⊕y2, is not a member of (the updated) dom(LP ). This requirement trans-
lates to lines 1l and 2f in Fig. 2. Requirement R4 is clearly not applicable to queries to SQ. Consider
a query x1 to SP , where x1 ∈ r̄(V ). Then, the simulator is forced to increase r̄(V ) ∩ dom(LP ). As

x1 ∈ r̄(V ), there exists an M such that IV
M−→ x1 and depad(M) 6= ⊥. The output of the simulator

needs to be consistent with its random oracle, such that RO(depad(M)) = chopl−n(SP (x1)⊕ x1).
This requirement translates to lines 1b-1e in the description of the simulator in Fig. 2.



On query SP (x1):

1a if x1∈dom(LP ) ret y1 = LP (x1)

1b if x1∈ r̄(V ) for IV
M−→ x1 :

1c h← RO(depad(M))

1d w
$← Zl−n

2
1e y1 ← x1⊕(h‖w)

1f if y1∈rng(LP ) :

1g GOTO 1d

1h else y1
$← Zl

2\rng(LP )

1i Vnew ← {x1⊕x′2, x1⊕x′2⊕y1⊕y′2 | (x′2, y
′
2)∈LQ} multiset

1j ∀ (x2, y2)∈LQ s.t. x1⊕x2∈r(V ) for IV
M−→ x1⊕x2 :

1k if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

1l
(
x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP ) ∪ {x1}

)
:

1m GOTO 1b

1n ret LP (x1)← y1

On query SQ(x2):

2a if x2∈dom(LQ) ret y2 = LQ(x2)

2b y2
$← Zl

2\rng(LQ)

2c Vnew ← {x′1⊕x2, x
′
1⊕x2⊕y′1⊕y2 | (x′1, y

′
1)∈LP } multiset

2d ∀ (x1, y1)∈LP s.t. x1⊕x2∈r(V ) for IV
M−→ x1⊕x2 :

2e if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

2f
(
x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP )

)
:

2g GOTO 2b

2h ret LQ(x2)← y2

On query S
P -1 (y1):

3a if y1∈rng(LP ) ret x1 = L-1
P (y1)

3b x1
$← Zl

2\dom(LP )

3c if x1∈ r̄(V ) :

3d GOTO 3b

3e ∀ x2∈dom(LQ) : if x1⊕x2∈r(V ) :

3f GOTO 3b

3g ret L-1
P (y1)← x1

On query S
Q-1 (y2):

4a if y2∈rng(LQ) ret x2 = L-1
Q(y2)

4b x2
$← Zl

2\dom(LQ)

4c ∀ x1∈dom(LP ) : if x1⊕x2∈r(V ) :

4d GOTO 4b

4e ret L-1
Q(y2)← x2

Fig. 2. The simulator S for P and Q used in the proof of Thm. 1.

4.3 Proof of Thm. 1

Thm. 1 will be proven via a game-playing argument, where the games are used to simulate one of
the worlds (left or right). It is inspired by the proofs of [11], but differs in several aspects. Let S
be the simulator of Fig. 2, and let D be any distinguisher that makes at most qL left queries of
maximal length (K−1)l bits, where K ≥ 1, qP right queries to P and qQ right queries to Q. Recall
from Def. 1 that the goal is to bound:

Advpro
Gr,S(D) =

∣∣∣Pr
(
DGrP,Q,(P,Q) = 1

)
− Pr

(
DRO,SRO

= 1
)∣∣∣ . (3)

Game 1 (Fig. 3). The left oracle L1 of game 1 is a lazily-sampled random oracle, and the
four interfaces of the right oracle are the simulator of Fig. 2, except for the inclusion of some
failure conditions badi (i = 0, . . . , 4). In other words, we have G1 = (RO, SRO), and in particular,

Pr
(
DRO,SRO

= 1
)

= Pr
(
DG1 = 1

)
.

Game 2 (Fig. 3). Game 2 only differs from game 1 in the left oracle: L1 is replaced by a relay
oracle L2 that simply passes the queries made by the distinguisher to L1. The right oracle remains
unchanged, and still queries the subroutine L1. The distinguisher has identical views in G1 and G2.
Formally, we obtain Pr

(
DG1 = 1

)
= Pr

(
DG2 = 1

)
.

Game 3 (Fig. 4). Game 3 differs from game 2 in the fact that the left oracle L2 is replaced by
the Grøstl hash function, which makes queries to the right oracle. The right oracle itself remains
unchanged, and still queries subroutine L1. It is proven in Prop. 2 that, until bad :=

∨4
i=0 badi

occurs in any of the two games, both are identical. Formally, we obtain:∣∣Pr
(
DG2 = 1

)
− Pr

(
DG3 = 1

)∣∣ ≤ Pr
(
DG2 sets bad

)
+ Pr

(
DG3 sets bad

)
.

Game 4 (Fig. 5). Game 4 differs from game 3 in the fact that the right oracle does not query
subroutine L1 anymore, but rather, it generates the outcomes itself. Concretely, in line 1c, h is now
randomly sampled from Zn

2 . The distinguisher cannot notice the difference: as the padding rule is



injective, in game 3 the right oracle RP will never query its left oracle twice on the same value, and

hence it will always receive h
$← Zn

2 . Formally, we obtain Pr
(
DG3 = 1

)
= Pr

(
DG4 = 1

)
.

Game 5 (Fig. 5). Game 5 only differs from game 4 in the fact that the GOTO-statements are
removed. In other words, game 5 and game 4 proceed identically until bad occurs. As a consequence:∣∣Pr

(
DG4 = 1

)
− Pr

(
DG5 = 1

)∣∣ ≤ Pr
(
DG4 sets bad

)
.

Game 6 (Fig. 6). The left oracle of game 6 is the Grøstl algorithm, and the four interfaces of
the right oracle perfectly mimic two lazily-sampled random permutations P and Q. In other words,

we have G6 = (GrP,Q, (P,Q)), and thus Pr
(
DG6 = 1

)
= Pr

(
DGrP,Q,(P,Q) = 1

)
. The only difference

between games 6 and 5 is in the forward queries to RP : in game 5, some queries to RP are answered
with uniform random samples from Zl

2. Therefore, distinguishing game 6 from game 5 is at least
as hard as distinguishing a random permutation from a random function. As RP will be queried at
most qP + (K + 1)qL =: rP times, we obtain:

∣∣Pr
(
DG5 = 1

)
− Pr

(
DG6 = 1

)∣∣ ≤ r2
P

2l
.

As we have Pr
(
DG2 sets bad

)
≤ Pr

(
DG3 sets bad

)
= Pr

(
DG4 sets bad

)
, we conclude that (3)

reduces to:

Advpro
Gr,S(D) ≤

r2
P

2l
+ 3 · Pr

(
DG4 sets bad

)
. (4)

Game 7 (Fig. 7). Game 7 is used to simplify the computation of the probability that DG4 sets bad.
In game 7, the failure conditions for bad0, . . . ,bad4 of game 4 are rewritten into sets A0, . . . , A4.
By the straightforward definition of A0, A3 and A4, it is clear that for i = 0, 3, 4, DG4 sets badi if
and only if DG7 sets badi. Now, suppose DG4 sets bad1. This means that for some (x2, y2) ∈ LQ
such that x1 ⊕ x2 ∈ r(V ) either one of the following two cases occurred:

y1 =

{
x1 ⊕ x2 ⊕ y2 ⊕ s, for some s ∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2}) ,
x1 ⊕ x2 ⊕ y2 ⊕ x′1, for some x′1 ∈ dom(LP ) ∪ {x1}.

By definition of A1, this means that y1 ∈ A1. In other words, DG7 sets bad1 if DG4 sets bad1.
A similar observation holds for bad2. As a consequence, Pr

(
DG4 sets bad

)
≤ Pr

(
DG7 sets bad

)
,

and therefore (4) reduces to:

Advpro
Gr,S(D) ≤

r2
P

2l
+ 3 · Pr

(
DG7 sets bad1 | ¬bad0

)
+ 3

4∑
i=0
i 6=1

Pr
(
DG7 sets badi

)
.

In the remainder, we concentrate on the computation of these probabilities. Observe that the
distinguisher makes at most qP + (K+ 1)qL =: rP queries to RP , RP−1 and qQ +KqL =: rQ queries
to RQ, RQ−1 .

Pr
(
DG7 sets bad0

)
. Consider the jth query to RP , 1 ≤ j ≤ rP . The probability that bad0 is

set in this query, badj
0, equals the probability that y1 hits A0. But as y1 is taken uniformly at

random from a set of size 2l, and A0 is of size at most rP , badj
0 occurs with probability at most

rP
2l

. By the union bound, Pr
(
DG7 sets bad0

)
≤ r2

P

2l
;



Pr
(
DG7 sets bad1 | DG7 sets ¬bad0

)
. Consider the jth query to RP , 1 ≤ j ≤ rP . The proba-

bility that bad1 is set in this query, badj
1, equals the probability that y1 hits A1. But as y1 is

taken uniformly at random from a set of size at least 2l − rP (because DG7 sets ¬bad0), and

A1 is of size at most rQ(2rP rQ + rP ), badj
1 occurs with probability at most

rP rQ(2rQ+1)

2l−rP
. By the

union bound, Pr
(
DG7 sets bad1 | DG7 sets ¬bad0

)
≤ r2

P rQ(2rQ+1)

2l−rP
;

Analogously, bad2 is set with probability at most
r2
P rQ(2rQ+1)

2l−rQ
, bad3 with probability at most

r2
P rQ(rQ+1)

2l−rP
, and bad4 with probability at most

r2
P r2

Q

2l−rQ
. Concluding, under the assumption that

rP , rQ < 2l−1, we obtain:

Advpro
Gr,S(D) ≤

58(qP + (K + 1)qL)2(qQ +KqL)2

2l
.

This completes the proof of Thm. 1.

Proposition 2. Until bad occurs in game 2 or 3, both games are identical. Formally:
Pr
(
DG2 = 1

∣∣ DG2 sets ¬bad
)

= Pr
(
DG3 = 1

∣∣ DG3 sets ¬bad
)
.

Proof. We need to prove that the query outcomes in game 2 and 3 are identically distributed, until
the distinguisher sets bad in either one of the games. As the right oracles of the games are the
same, D can differentiate game 2 and 3 only if it discovers any inconsistencies in the answers by
the left oracles (L2 for game 2 and L3 for game 3), given any list of queries made by D to the
right oracle. Recall that LP ,LQ denote the query history to the right oracles RP , RQ, and (V,E)
the graph defined by these queries (cf. Sect. 4.1). Denote any query history to Li (i = 2, 3) by
L. Furthermore, denote by L̃P , L̃Q the set of queries to the right oracles that are observed by the
distinguisher5, and denote by (Ṽ , Ẽ) the subgraph defined by these. We focus on the outcomes
of the left oracle: we need to prove that given the views L̃P , L̃Q, and given query history L, the
outcomes of new queries to the left oracle are identically distributed in game 2 and 3. Concretely,
for α ∈ Zn

2 , we analyze the probability

Pr
(
Li(M) = α in Gi | L̃P , L̃Q,L; M 6∈ dom(L); DGi sets ¬bad

)
. (5)

Define M ′ = (M ′1, . . . ,M
′
k) = pad(M) to be the padding of M . The query Li(M) is called ‘evalu-

atable’ by L̃P , L̃Q if there exists an hk in r̄(Ṽ ) such that IV
M ′−→ hk, and hk ∈ dom(L̃P ). We will

show that for both games the following holds: if Li(M) is evaluatable by L̃P , L̃Q, the query answer
can be obtained deterministically from this history. On the other hand, if it is not evaluatable by
L̃P , L̃Q, (5) holds with probability 1/2n only. In other words, this probability is the same in both
games i = 2, 3, which proves the claim that the answers by L2, L3 are identically distributed.
For the purpose of the proof, we also consider evaluatability by LP ,LQ, which is defined similarly
as before. Observe that Hi(M) is evaluatable by LP ,LQ if it is evaluatable by L̃P , L̃Q. We now
analyze (5). First we consider the case Li(M) is evaluatable by L̃P , L̃Q. Then we consider the case
it is not evaluatable by these views (but it may be evaluatable by LP ,LQ).

(1) Li(M) (i = 2, 3) is evaluatable by L̃P , L̃Q. In both games, this means that there exists an

hk in r̄(Ṽ ) such that IV
M ′−→ hk, and hk ∈ dom(L̃P ). By Claim 2 below, there are no colliding

5 In game 3, the right oracles RP , RQ are also queried in each call to the left oracle, via lines 6d, 6e and 6g, but the
distinguisher does not observe these queries.



paths and in particular the described path M ′ is unique. Furthermore, due to Claim 3 below,
hk had been added to dom(L̃P ) in a forward query, after it was added to r̄(Ṽ ). Therefore, by
line 1c, we have RP (hk) = hk ⊕ (h‖w), where h = L1(M). As a consequence, L1(M), and thus
L2(M) and L3(M), is fully determined by L̃P , L̃Q, which means that the outcomes in game 2
and 3 are identically distributed;

(2) Li(M) (i = 2, 3) is not evaluatable by L̃P , L̃Q, but it is evaluatable by LP ,LQ. This event
is excluded for game 2 as (L̃P , L̃Q) = (LP ,LQ) in this game. In game 3, LP ,LQ also includes
queries made to the right oracle via the left oracle L3. We will show, however, that (5) holds
with probability 1/2n then. Similarly to case (1), there exists an hk in r̄(V ) ∩ dom(LP ) such

that IV
M ′−→ hk and RP (hk) = hk⊕ (h‖w), where h = L1(M). But L3(M) is not evaluatable by

L̃P , L̃Q, which means that hk had been queried to RP independently of L̃P , L̃Q. Furthermore,
L3(M) is also independent of L.6 Concluding, (5) holds with probability 1/2n in this case;

(3) Li(M) (i = 2, 3) is not evaluatable by LP ,LQ. As a consequence, there either exists no

hk ∈ r̄(V ) such that IV
M ′−→ hk, or there exists such hk, but it is no element of dom(LP ). For

game 2, M 6∈ dom(L) implies that M had not been queried to L1 before (L1 is queried in lines
6a and 1c only). Therefore, in this case L2(M) outputs a value h randomly sampled from Zn

2 .

For game 3, let j ≤ k be the maximal index such that IV = h0
M ′1−→ · · ·

M ′j−→ hj is a path in
(V,E). We consider the following cases:

(i) j = k. Then, there exists an hk ∈ r̄(V ) such that IV
M ′−→ hk, but as L3(M) is not

evaluatable, we have hk 6∈ dom(LP ). In line 6h of the oracle query of L3(M), RP (hk) will

then be computed via lines 1b-1e: RP (hk) = hk⊕ (h‖w) for h
$← Zn

2 . The outcome L3(M)
thus equals L3(M) = chopl−n(RP (hk) ⊕ hk) = h. As a consequence, the outcomes of L2

and L3 are identically distributed in this case;
(ii) j < k. Then, there exists a path IV → hj labeled by (M ′1, . . . ,M

′
j), but (V,E) contains no

edge hj → hj+1 labeled by M ′j+1. By virtue of Claim 2, in the (j + 1)th iteration of lines
6c-6f, a new node hj+1 will be added to r(V ) such that hj+1 was not rooted yet and there
is no outgoing edge from hj+1 in the updated graph. The same holds for all subsequent
iterations, and in particular hk will be newly added to r̄(V ) in the kth iteration. Due to
Claim 3, this newly added note is not an element of dom(LP ) after this last round. Now,
the same analysis as in (3i) applies. ut

Claim 2. Suppose DGi sets ¬bad (for i = 2, 3). Consider a node s ∈ r(V ), and a right oracle
query in which an edge (s, t) will be added to (V,E). Denote by (V ′, E′) the updated graph (after
the query). Then, t has no incoming or outgoing edge in (V ′, E′\{(s, t)}). As a consequence, after
the execution of Gi, the final graph contains no colliding paths.

Proof. In a right query to RP−1 or RQ−1 , none of the newly added edges have a rooted node as
starting point, by ¬(bad3 ∨ bad4) (lines 3f and 4c). Consider a query x1 to RP , and let (V,E) be
the graph before the query. An outgoing edge from s ∈ r(V ) will only be added if s = x1 ⊕ x2 for
some x2 ∈ dom(LQ). By construction, the end node of the edge is x1⊕ x2⊕ y1⊕ y2 =: t. By line 1l
and ¬bad1, we have (a) t 6∈ V , (b) none of the newly added edges will leave from t and (c) apart
from (s, t), none of the newly added edges will arrive at t. As a consequence, t is an isolated node
in (V ′, E′\{(s, t)}). A similar argument holds for queries to RQ, by line 2e and ¬bad2.
We prove that the final graph contains no colliding paths by mathematical induction. Before the

6 Observe that in game 3, L consists of pairs (M̄, h̄) such that h̄ = chopl−n(RP (h̄k) ⊕ h̄k) for some h̄k ∈ r̄(V ) ∩
dom(LP ), where, by Claim 3, RP (h̄k) had been generated via lines 1b-1e. As there are no colliding paths in (V,E)
by Claim 2, hk differs from all such h̄k’s, and in particular L reveals nothing about L3(M).



first query is made, E = ∅ and hence no colliding paths occur. Assume (V,E) contains no colliding
paths and consider a right oracle query. We can sequentially apply the above reasoning and discard
all newly added edges (s, t) for s ∈ r(V ), in order to observe that colliding paths in (V ′, E′) imply
colliding paths in (V,E). By the induction hypothesis, these do not occur. ut

Claim 3. Suppose DGi sets ¬bad (for i = 2, 3). Consider a right oracle query in which a node t will
be added to r̄(V ). Then, t is no element of (the updated) dom(LP ). Furthermore, r̄(V )∩ dom(LP )
will only be increased in forward queries to RP .

Proof. As a direct consequence of Claim 2, r̄(V ) will be increased only if an edge x1 ⊕ x2
x2−→

x1 ⊕ x2 ⊕ y1 ⊕ y2 is added such that IV
M−→ x1 ⊕ x2 is a path in (V,E), and x2 ∈ Z(M). Due to

lines 1m and 2f, and by ¬(bad1∨bad2), this newly added node is not an element of (the updated)
dom(LP ). Furthermore, an inverse query to RP will never be answered with a node already in r̄(V ),
by line 3c and ¬bad3, and therefore r̄(V ) ∩ dom(LP ) will only be increased in forward queries to
RP . ut

Acknowledgments. This work has been funded in part by the IAP Program P6/26 BCRYPT
of the Belgian State (Belgian Science Policy), and in part by the European Commission through
the ICT program under contract ICT-2007-216676 ECRYPT II. The first author is supported by a
Ph.D. Fellowship from the Flemish Research Foundation (FWO-Vlaanderen). The second author
is supported by a Ph.D. Fellowship from the Institute for the Promotion of Innovation through
Science and Technology in Flanders (IWT-Vlaanderen).

On query RP (x1):

1a if x1∈dom(LP ) ret y1 = LP (x1)

1b if x1∈ r̄(V ) for IV
M−→ x1 :

1c h← L1(depad(M))

1d w
$← Zl−n

2
1e y1 ← x1⊕(h‖w)

1f if y1∈rng(LP ) :

1g bad0 ← true

1h GOTO 1d

1i else y1
$← Zl

2\rng(LP )

1j Vnew ← {x1⊕x′2, x1⊕x′2⊕y1⊕y′2 | (x′2, y
′
2)∈LQ} multiset

1k ∀ (x2, y2)∈LQ s.t. x1⊕x2∈r(V ) for IV
M−→ x1⊕x2 :

1l if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

1m
(
x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP ) ∪ {x1}

)
:

1n bad1 ← true

1o GOTO 1b

1p ret LP (x1)← y1

On query RQ(x2):

2a if x2∈dom(LQ) ret y2 = LQ(x2)

2b y2
$← Zl

2\rng(LQ)

2c Vnew ← {x′1⊕x2, x
′
1⊕x2⊕y′1⊕y2 | (x′1, y

′
1)∈LP } multiset

2d ∀ (x1, y1)∈LP s.t. x1⊕x2∈r(V ) for IV
M−→ x1⊕x2 :

2e if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

2f
(
x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP )

)
:

2g bad2 ← true

2h GOTO 2b

2i ret LQ(x2)← y2

On query R
P -1 (y1):

3a if y1∈rng(LP ) ret x1 = L-1
P (y1)

3b x1
$← Zl

2\dom(LP )

3c if x1∈ r̄(V ) :

3d bad3 ← true

3e GOTO 3b

3f ∀ x2∈dom(LQ) : if x1⊕x2∈r(V ) :

3g bad3 ← true

3h GOTO 3b

3i ret L-1
P (y1)← x1

On query R
Q-1 (y2):

4a if y2∈rng(LQ) ret x2 = L-1
Q(y2)

4b x2
$← Zl

2\dom(LQ)

4c ∀ x1∈dom(LP ) : if x1⊕x2∈r(V ) :

4d bad4 ← true

4e GOTO 4b

4f ret L-1
Q(y2)← x2

On query L1(M):

5a if M∈dom(H) ret h = H(M)

5b h
$← Zn

2

5c ret H(M)← h

On query L2(M):

6a ret h← L1(M)

Fig. 3. Game 1 (with the boxed statement removed) and game 2 (including the boxed statement).
In game 1, the distinguisher has access to L1, R

L1 . In game 2, the distinguisher has access to
LL1

2 , RL1 .



On query RP (x1):

1a if x1∈dom(LP ) ret y1 = LP (x1)

1b if x1∈ r̄(V ) for IV
M−→ x1 :

1c h← L1(depad(M))

1d w
$← Zl−n

2
1e y1 ← x1⊕(h‖w)

1f if y1∈rng(LP ) :

1g bad0 ← true

1h GOTO 1d

1i else y1
$← Zl

2\rng(LP )

1j Vnew ← {x1⊕x′2, x1⊕x′2⊕y1⊕y′2 | (x′2, y
′
2)∈LQ} multiset

1k ∀ (x2, y2)∈LQ s.t. x1⊕x2∈r(V ) for IV
M−→ x1⊕x2 :

1l if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

1m
(
x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP ) ∪ {x1}

)
:

1n bad1 ← true

1o GOTO 1b

1p ret LP (x1)← y1

On query RQ(x2):

2a if x2∈dom(LQ) ret y2 = LQ(x2)

2b y2
$← Zl

2\rng(LQ)

2c Vnew ← {x′1⊕x2, x
′
1⊕x2⊕y′1⊕y2 | (x′1, y

′
1)∈LP } multiset

2d ∀ (x1, y1)∈LP s.t. x1⊕x2∈r(V ) for IV
M−→ x1⊕x2 :

2e if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

2f
(
x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP )

)
:

2g bad2 ← true

2h GOTO 2b

2i ret LQ(x2)← y2

On query R
P -1 (y1):

3a if y1∈rng(LP ) ret x1 = L-1
P (y1)

3b x1
$← Zl

2\dom(LP )

3c if x1∈ r̄(V ) :

3d bad3 ← true

3e GOTO 3b

3f ∀ x2∈dom(LQ) : if x1⊕x2∈r(V ) :

3g bad3 ← true

3h GOTO 3b

3i ret L-1
P (y1)← x1

On query R
Q-1 (y2):

4a if y2∈rng(LQ) ret x2 = L-1
Q(y2)

4b x2
$← Zl

2\dom(LQ)

4c ∀ x1∈dom(LP ) : if x1⊕x2∈r(V ) :

4d bad4 ← true

4e GOTO 4b

4f ret L-1
Q(y2)← x2

On query L1(M):

5a if M∈dom(H) ret h = H(M)

5b h
$← Zn

2

5c ret H(M)← h

On query L3(M):

6a (M′1, . . . ,M
′
k)← pad(M)

6b h0 ← IVn

6c for i = 1, . . . , k :

6d a← RQ(M′i)

6e b← RP (hi−1⊕M′i)

6f hi ← a⊕b⊕hi−1

6g d← RP (hk)

6h h← chopl−n(d⊕hk)

6i ret h

Fig. 4. Game 3. The distinguisher has access to LRL1

3 , RL1 .

References

1. E. Andreeva, G. Neven, B. Preneel, and T. Shrimpton. Seven-property-preserving iterated hashing: ROX. In
ASIACRYPT ’07, volume 4833 of LNCS, pages 130–146, Berlin, 2007. Springer-Verlag.

2. M. Bellare and T. Ristenpart. Multi-property-preserving hash domain extension and the EMD Transform. In
ASIACRYPT ’06, volume 4284 of LNCS, pages 299–314, Berlin, 2006. Springer-Verlag.

3. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In ACM
Conference on Computer and Communications Security, pages 62–73, New York, 1993. ACM.

4. G. Bertoni, J. Daemen, M. Peeters, and G. van Assche. On the indifferentiability of the sponge construction. In
EUROCRYPT ’08, volume 4965 of LNCS, pages 181–197, Berlin, 2008. Springer-Verlag.

5. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions, ECRYPT Hash Workshop 2007.
6. R. Bhattacharyya, A. Mandal, and M. Nandi. Security analysis of the mode of JH hash function. In FSE ’10,

volume 6147 of LNCS, Berlin, 2010. Springer-Verlag.
7. E. Biham and O. Dunkelman. A framework for iterative hash functions – HAIFA. Cryptology ePrint Archive,

Report 2007/278, 2007.
8. E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr, A. Gouget, T. Icart, J.-F. Misarsky, M. Naya-

Plasencia, P. Paillier, T. Pornin, J.-R. Reinhard, C. Thuillet, and M. Videau. Indifferentiability with distinguish-
ers: Why Shabal does not require ideal ciphers. Cryptology ePrint Archive, Report 2009/199, 2009.

9. D. Chang, S. Lee, M. Nandi, and M. Yung. Indifferentiable security analysis of popular hash functions with
prefix-free padding. In ASIACRYPT ’06, volume 4284 of LNCS, pages 283–298, Berlin, 2006. Springer-Verlag.

10. D. Chang and M. Nandi. Improved indifferentiability security analysis of chopMD hash function. In FSE ’08,
volume 5086 of LNCS, pages 429–443, Berlin, 2008. Springer-Verlag.

11. J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revisited: How to construct a hash function.
In CRYPTO ’05, volume 3621 of LNCS, pages 430–448, Berlin, 2005. Springer-Verlag.

12. I. Damg̊ard. A design principle for hash functions. In CRYPTO ’89, volume 435 of LNCS, pages 416–427, Berlin,
1990. Springer-Verlag.



On query RP (x1):

1a if x1∈dom(LP ) ret y1 = LP (x1)

1b if x1∈ r̄(V ) :

1c h
$← Zn

2

1d w
$← Zl−n

2
1e y1 ← x1⊕(h‖w)

1f if y1∈rng(LP ) :

1g bad0 ← true

1h GOTO 1d

1i else y1
$← Zl

2\rng(LP )

1j Vnew ← {x1⊕x′2, x1⊕x′2⊕y1⊕y′2 | (x′2, y
′
2)∈LQ} multiset

1k ∀ (x2, y2)∈LQ s.t. x1⊕x2∈r(V ) for IV
M−→ x1⊕x2 :

1l if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

1m
(
x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP ) ∪ {x1}

)
:

1n bad1 ← true

1o GOTO 1b

1p ret LP (x1)← y1

On query RQ(x2):

2a if x2∈dom(LQ) ret y2 = LQ(x2)

2b y2
$← Zl

2\rng(LQ)

2c Vnew ← {x′1⊕x2, x
′
1⊕x2⊕y′1⊕y2 | (x′1, y

′
1)∈LP } multiset

2d ∀ (x1, y1)∈LP s.t. x1⊕x2∈r(V ) for IV
M−→ x1⊕x2 :

2e if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

2f
(
x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP )

)
:

2g bad2 ← true

2h GOTO 2b

2i ret LQ(x2)← y2

On query R
P -1 (y1):

3a if y1∈rng(LP ) ret x1 = L-1
P (y1)

3b x1
$← Zl

2\dom(LP )

3c if x1∈ r̄(V ) :

3d bad3 ← true

3e GOTO 3b

3f ∀ x2∈dom(LQ) : if x1⊕x2∈r(V ) :

3g bad3 ← true

3h GOTO 3b

3i ret L-1
P (y1)← x1

On query R
Q-1 (y2):

4a if y2∈rng(LQ) ret x2 = L-1
Q(y2)

4b x2
$← Zl

2\dom(LQ)

4c ∀ x1∈dom(LP ) : if x1⊕x2∈r(V ) :

4d bad4 ← true

4e GOTO 4b

4f ret L-1
Q(y2)← x2

On query L3(M):

5a (M′1, . . . ,M
′
k)← pad(M)

5b h0 ← IVn

5c for i = 1, . . . , k :

5d a← RQ(M′i)

5e b← RP (hi−1⊕M′i)

5f hi ← a⊕b⊕hi−1

5g d← RP (hk)

5h h← chopl−n(d⊕hk)

5i ret h

Fig. 5. Game 4 (including the boxed statements) and game 5 (with the boxed statements removed).
In both games, the distinguisher has access to LR

3 , R.

13. Y. Dodis, R. Gennaro, J. H̊astad, H. Krawczyk, and T. Rabin. Randomness extraction and key derivation using
the CBC, cascade and HMAC modes. In CRYPTO ’04, volume 3152 of LNCS, pages 494–510, Berlin, 2004.
Springer-Verlag.

14. Y. Dodis, T. Ristenpart, and T. Shrimpton. Salvaging Merkle-Damg̊ard for practical applications. In EURO-
CRYPT ’09, volume 5479 of LNCS, pages 371–388, Berlin, 2009. Springer-Verlag.

15. P. Gauravaram, L. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, M. Schläffer, and S. Thomsen. Grøstl
– a SHA-3 candidate, 2009.

16. S. Lucks. A failure-friendly design principle for hash functions. In ASIACRYPT ’05, volume 3788 of LNCS,
pages 474–494, Berlin, 2005. Springer-Verlag.

17. U. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on reductions, and applications
to the random oracle methodology. In TCC ’04, volume 2951 of LNCS, pages 21–39, Berlin, 2004. Springer-Verlag.

18. R. Merkle. One way hash functions and DES. In CRYPTO ’89, volume 435 of LNCS, pages 428–446, Berlin,
1990. Springer-Verlag.

19. S. Miyaguchi, K. Ohta, and M. Iwata. Confirmation that some hash functions are not collision free. In EURO-
CRYPT ’90, volume 473 of LNCS, pages 326–343, Berlin, 1990. Springer-Verlag.

20. National Institute for Standards and Technology. Announcing Request for Candidate Algorithm Nominations for
a New Cryptographic Hash Algorithm (SHA3) Family, November 2007.

21. B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based on block ciphers: A synthetic approach. In
CRYPTO ’93, volume 773 of LNCS, pages 368–378, Berlin, 1993. Springer-Verlag.

22. X. Wang, Y. Yin, and H. Yu. Finding collisions in the full SHA-1. In CRYPTO ’05, volume 3621 of LNCS, pages
17–36, Berlin, 2005. Springer-Verlag.

23. X. Wang and H. Yu. How to break MD5 and other hash functions. In EUROCRYPT ’05, volume 3494 of LNCS,
pages 19–35, Berlin, 2005. Springer-Verlag.



On query RP (x1):

1a if x1∈dom(LP ) ret y1 = LP (x1)

1b y1
$← Zl

2\rng(LP )

1c ret LP (x1)← y1

On query RQ(x2):

2a if x2∈dom(LQ) ret y2 = LQ(x2)

2b y2
$← Zl

2\rng(LQ)

2c ret LQ(x2)← y2

On query R
P -1 (y1):

3a if y1∈rng(LP ) ret x1 = L-1
P (y1)

3b x1
$← Zl

2\dom(LP )

3c ret L-1
P (y1)← x1

On query R
Q-1 (y2):

4a if y2∈rng(LQ) ret x2 = L-1
Q(y2)

4b x2
$← Zl

2\dom(LQ)

4c ret L-1
Q(y2)← x2

On query L3(M):

5a (M′1, . . . ,M
′
k)← pad(M)

5b h0 ← IVn

5c for i = 1, . . . , k :

5d a← RQ(M′i)

5e b← RP (hi−1⊕M′i)

5f hi ← a⊕b⊕hi−1

5g d← RP (hk)

5h h← chopl−n(d⊕hk)

5i ret h

Fig. 6. Game 6. The distinguisher has access to LR
3 , R.

On query RP (x1):

1a if x1∈dom(LP ) ret y1 = LP (x1)

1b if x1∈ r̄(V ) :

1c h
$← Zn

2

1d w
$← Zl−n

2
1e y1 ← x1⊕(h‖w)

1f if y1∈A0 :

1g bad0 ← true

1h GOTO 1d

1i else y1
$← Zl

2\rng(LP )

1j if y1∈A1 :

1k bad1 ← true

1l GOTO 1b

1m ret LP (x1)← y1

On query RQ(x2):

2a if x2∈dom(LQ) ret y2 = LQ(x2)

2b y2
$← Zl

2\rng(LQ)

2c if y2∈A2 :

2d bad2 ← true

2e GOTO 2b

2f ret LQ(x2)← y2

On query R
P -1 (y1):

3a if y1∈rng(LP ) ret x1 = L-1
P (y1)

3b x1
$← Zl

2\dom(LP )

3c if x1∈A3 :

3d bad3 ← true

3e GOTO 3b

3f ret L-1
P (y1)← x1

On query R
Q-1 (y2):

4a if y2∈rng(LQ) ret x2 = L-1
Q(y2)

4b x2
$← Zl

2\dom(LQ)

4c if x2∈A4 :

4d bad4 ← true

4e GOTO 4b

4f ret L-1
Q(y2)← x2

On query L3(M):

5a (M′1, . . . ,M
′
k)← pad(M)

5b h0 ← IVn

5c for i = 1, . . . , k :

5d a← RQ(M′i)

5e b← RP (hi−1⊕M′i)

5f hi ← a⊕b⊕hi−1

5g d← RP (hk)

5h h← chopl−n(d⊕hk)

5i ret h

A0 = rng(LP );

A1 =
⋃

(x2,y2)∈LQ

( {
x1 ⊕ x2 ⊕ y2 ⊕ s | s ∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2})

}
∪{

x1 ⊕ x2 ⊕ y2 ⊕ x′1| x′1 ∈ dom(LP ) ∪ {x1}
})

,

where Vnew = {x1 ⊕ x′2, x1 ⊕ x′2 ⊕ y1 ⊕ y′2 | (x′2, y
′
2) ∈ LQ} is a multiset;

A2 =
⋃

(x1,y1)∈LP

( {
x1 ⊕ x2 ⊕ y1 ⊕ s | s ∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2})

}
∪{

x1 ⊕ x2 ⊕ y1 ⊕ x′1| x′1 ∈ dom(LP )
})

,

where Vnew = {x′1 ⊕ x2, x′1 ⊕ x2 ⊕ y′1 ⊕ y2 | (x′1, y
′
1) ∈ LP } is a multiset;

A3 = r̄(V ) ∪
{
x2 ⊕ s | x2 ∈ dom(LQ), s ∈ r(V )

}
;

A4 = {x1 ⊕ s | x1 ∈ dom(LP ), s ∈ r(V )} .

Fig. 7. Game 7. The distinguisher has access to LR
3 , R.


	On the Indifferentiability of the Grøstl Hash Function
	Elena Andreeva, Bart Mennink and Bart Preneel

