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Abstract. In this paper, we give some determinstic differential properties for the compression function
of SHA-3 candidate Blue Midnight Wish (tweaked version for round 2). The computational complexity
is about 20 compression function calls. This applies to security parameters 0/16, 1/15, and 2/14. The
efficient differentials can be used to find pseudo-preimages of the compression function with marginal
gain over brute force. However, none of these attacks threaten the security of the BMW hash functions.
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1 Introduction

Blue Midnight Wish [3] (BMW) is one of the 14 second round candidates of NIST’s cryptographic hash
algorithm competition [5]. It was tweaked after being selected for round 2, apparently in order to resist attacks
by Thomsen [7]. Aumasson [1] and Nikolić et al. [6], independently of our work, found some distinguishers
with data complexity 219, and for a modified variant of BMW-512 with probability 2−278.2, respectively. In
this paper, we give explicit constructions of message pairs, by tracing the propagation of the differences, to
show some interesting behaviour on certain bits of the output with probability 1.

The paper is organised as follows. Section 2 gives a brief description of BMW. Then, we introduce some
general observations in Section 3, which are further extended to differentials for BMW variants with security
parameters 0/16, 1/15, 2/14, in Sections 4, 5, 6, respectively. A pseudo-preimage attack on the compression
function using such efficient differentials is discussed in Section 7. Section 8 concludes the paper.

2 Description of BMW

BMW is a family of hash functions, containing four major instances, BMW-n, with n ∈ {224, 256, 384, 512},
where n is the size of the hash output. It follows a tweaked Merkle-Damg̊ard structure with double-pipe
design, i.e., the size of the chaining value is twice the output size. Since our differentials concentrate on the
compression function only, we refer to (tweaked for round 2) submission documents [3] for the descriptions
of padding, finalisation, etc.

The compression function bmwn of BMW-n takes the chaining value H and a message block M as input,
and produces the updated chaining value H∗. All H, M , and H∗ are of 16 words, where the size of a word is
32 bits for BMW-224/256, and 64 bits for BMW-384/512. We use Xi (i = 0, . . . , 15) to denote the i-th word
of X. The compression function comprises three functions, called f0, f1, and f2, in sequence. We introduce
them here.

The f0 function. A temporary W is introduced as

Wi ← ±(Mi+5 ⊕Hi+5)± (Mi+7 ⊕Hi+7)± (Mi+10 ⊕Hi+10)

±(Mi+13 ⊕Hi+13)± (Mi+14 ⊕Hi+14)
(1)

for i = 0, . . . , 15. By ‘±’ we mean ‘+’ or ‘−’; which operator is used varies and does not seem to follow any
simple pattern (see [3, Table 2.2] for details). Unless specified otherwise, all additions (and subtractions) are
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to be taken modulo 2w (where w is the word size) and all indices for H and M are modulo 16 throughout
this paper. The outputs of f0 are Qi, i = 0, . . . , 15, which are computed as

Qi ← si mod 5(Wi) +Hi+1, (2)

where si are predefined bijective functions with i = 0, . . . , 4; see Appendix A for the definitions of these.
Note that without the feed-forward of Hi+1, the output of f0 would be a permutation of H ⊕M , since the
computation of W corresponds to a multiplication by an invertible matrix.

The f1 function. f1 takes H, M , and Q0, . . . , Q15 (the output from f0) as input, and produces 16 new
words Qj , for j = 16, . . . , 31. The output words are computed one at a time through 16 rounds. There are
two types of rounds, expand1 rounds and expand2 rounds. We denote the number of expand1 rounds by
R, where R is a security parameter that can take any value between 0 and 16. There are 16 − R expand2
rounds. For the sake of clarity, we shall denote a specific choice of security parameter by R/(16 − R); the
value of the security parameter suggested by the designers is 2/14 (in other words: 2 expand1 rounds and
14 expand2 rounds).

The 16 output words Q16, . . . , Q31 are computed as follows. An expand1 round computes

Qj+16 ← AddElement(j) +

15∑
i=0

s(i+1) mod 4(Qi+j−16). (3)

Here, AddElement is defined as:

AddElement(j)← (M
≪(j mod 16)+1
j +M

≪(j+3 mod 16)+1
j+3

−M≪(j+10 mod 16)+1
j+10 +Kj)⊕Hj+7,

(4)

where X≪n denotes a left-rotation of register X by n positions (by left we mean towards the most significant
bit). The words Kj are round constants equal to (j + 16) · 0555555555555555h for BMW-384/512 and
(j + 16) · 05555555h for BMW-224/256. An expand2 round computes

Qj+16 ← Qj + r1(Qj+1) +Qj+2 + r2(Qj+3) +Qj+4 + r3(Qj+5) +Qj+6+

r4(Qj+7) +Qj+8 + r5(Qj+9) +Qj+10 + r6(Qj+11)+

Qj+12 + r7(Qj+13) + s4(Qj+14) + s5(Qj+15) +AddElement(j).

(5)

The functions ri are rotation functions; see Appendix A for details.

The f2 function. We list the description of H∗0 , since our result concerns this word only.

H∗0 ← (XH�5 ⊕Q16
�5 ⊕M0) + (XL⊕Q24 ⊕Q0), (6)

where

XL = Q16 ⊕ · · · ⊕Q23,

XH = Q16 ⊕ · · · ⊕Q31.

Some notations. The attacks described in this paper deal with input pairs for which there is a certain
relation on the output pair. Hence, we shall be interested in how differences propagate through the BMW
compression function. We use the following notation (apparently first introduced by De Cannière and Rech-
berger [2]) for the difference between two bits: ‘-’ means there is no difference with probability 1, ‘x’ means
there is a difference with probability 1, and ‘?’ means there may or may not be a difference (the probability
of a difference is not 0 or 1, but also may be bounded away from 1/2). When we talk about a difference in
a word, e.g., in a 32-bit word, we write (for instance)

[?????????????????x--------------],

which means that the 14 least significant bits contain no difference, the 15th least significant bit contains a
difference, and the 17 most significant bits may or may not contain a difference.

With the above descriptions, we are able to introduce our differentials starting with some important
observations on the least significant bit (LSB) of H∗0 .



3 Observations

Let X[n] denote the nth bit of the word X, where the least significant bit is the 0th bit. Since an addition
takes no carry into the least significant bit, we can state the following expression for the LSB H∗0 [0] of H∗0 :

H∗0 [0] = Q16[5]⊕M0[0]⊕XL[0]⊕Q24[0]⊕Q0[0].

Given the definition of XL, this expression can be restated as

H∗0 [0] = M0[0]⊕Q0[0]⊕Q16[5]⊕
24⊕
i=16

Qi[0]. (7)

Hence, H∗0 [0] does not depend on Q25, . . . , Q31. This means that if we can limit difference propagation
through the first 9 rounds of f1 (where Q16, . . . , Q24 are computed), and if we can still keep the difference
on M0[0] and Q0[0] under our control, then the bit H∗0 [0] may be biased.

In the function f1, differences may propagate only very slowly towards the LSB. Consider an expand2
round:

Qj+16 ← Qj + r1(Qj+1) +Qj+2 + r2(Qj+3) +Qj+4 + r3(Qj+5) +Qj+6+

r4(Qj+7) +Qj+8 + r5(Qj+9) +Qj+10 + r6(Qj+11)+

Qj+12 + r7(Qj+13) + s4(Qj+14) + s5(Qj+15) +AddElement(j).

(8)

The function s5 is defined as

s5(x) = x�2 ⊕ x.

Here x�2 means a right-shift by two bit positions. Hence, if Qj+15 contains a difference in an expand2
round, then the function s5 propagates this difference two positions down towards the LSB. For example,
the difference

[?????????????????x--------------]

would become

[???????????????????x------------].

4 The security parameter 0/16

Consider a variant of BMW with security parameter 0/16, meaning that all 16 rounds in f1 are of the
expand2 type. Consider an input pair to the compression function such that there is a difference in Q0

but in no word among Q1, . . . , Q15, nor in M0, M3, M10, and H7. This difference on Q0 will propagate
to Q16. Due to the additions, the difference may propagate towards the most significant bit (MSB), but
never towards the LSB. Hence, if the t LSBs of Q0 contain no difference, then these bits also contain no
difference in Q16. As an example, the difference [----x----x---------x------------] in Q0 becomes
[???????????????????x------------] in Q16.

In the second round,Q16 will go through the function s5, and the difference will be shifted two positions to-
wards the least significant bit. In the example above, we would get [?????????????????????x----------].
Hence, there will be no difference in the t− 2 least significant bits of s5(Q16). The word Q0 no longer affects
the function f1, and if there is no difference in the t − 2 least significant bits of AddElement(1), then Q17

will contain no difference in the t − 2 LSBs. In the following round (under some conditions on M and H),
the difference again propagates two positions towards the LSB, meaning that the t − 4 LSBs contain no
difference.

The condition that the only difference in the words Q0, . . . , Q15 lies in Q0 can be enforced by having the
same difference in H1 and in M1, and no difference in all other words of H and M . This means that there
is no difference in the permutation inside f0, but the difference in H1 will be fed forward to Q0. Denote by
∆ the difference on H1 and M1. If ∆ has many trailing ‘0’ bits, i.e., there is no difference in many LSBs of
H1 and M1, then the behaviour described above occurs.



The word M1 is involved in rounds 1, 7, and 14 of f1, and H1 is involved in round 10. In rounds 1 and
7, M1 is rotated two positions left, and therefore, in order to keep differences out of the least significant
bit positions, we need ∆ to have ‘0’ bits in the two MSB positions. In rounds 9–15, we do not worry about
difference propagation, since this will affect only the words Q25, . . . , Q31, which are not involved in the
computation of H∗0 [0].

The only remaining potential source of differences in the least significant bit positions are due to the
rotation functions ri. Looking closely at the effects of these functions one sees that they make no difference
in the case of BMW-224/256, but they do have a significant effect in the case of BMW-384/512. On the
other hand, in BMW-384/512, the “distance” to the LSB is greater, and therefore it is still possible to obtain
interesting results as described now.

The difference ∆ with the maximum value of t fulfilling the mentioned requirements is ∆ = 261 for
BMW-384/512 (and ∆ = 229 for BMW-224/256). Hence, we have the difference

[--x-------------------------------------------------------------]

on H1 and M1, which becomes

[??x-------------------------------------------------------------]

in Q0 due to the feed forward of H1. The 16 words computed in f1 will have the following differences:

∆Q16 = [??x-------------------------------------------------------------]

∆Q17 = [????x-----------------------------------------------------------]

∆Q18 = [??????x---------------------------------------------------------]

∆Q19 = [?????????????x--------------------------------------------------]

∆Q20 = [???????????????-------------------------------------------------]

∆Q21 = [???????????????????????x----------------------------------------]

∆Q22 = [?????????????????????????---------------------------------------]

∆Q23 = [?????????????????????????????x----------------------------------]

∆Q24 = [??????????????????????????????????------------------------------]

∆Q25 = [????????????????????????????????????----------------------------]

∆Q26 = [????????????????????????????????????????????x-------------------]

∆Q27 = [??????????????????????????????????????????????x-----------------]

∆Q28 = [??????????????????????????????????????????????????--------------]

∆Q29 = [???????????????????????????????????????????????????????---------]

∆Q30 = [?????????????????????????????????????????????????????????-------]

∆Q31 = [????????????????????????????????????????????????????????????????]

The end result in the output word H∗0 is the difference (one can verify this by substituting all above
differences to Eqn. (6))

[???????????????????????????????????????????????????????????-----].

Hence, there is no difference in the 5 LSBs with probability 1. In fact, there is also a strong bias in H∗5 ,
which has the difference
[??????????????????????????????????????????????????????????------].

For BMW-224/256 one gets a similar behaviour; the difference on H∗0 is

[???????????????????????????-----],

and the difference on H∗5 is [????????????????????????????x---].



5 The security parameter 1/15

When there is a single expand1 round in the beginning of f1, followed by 15 expand2 rounds, we can get a
similar behaviour as described in the previous section if we can find a difference ∆ with many LSBs equal
to 0, and such that s1(∆) also has many LSBs equal to 0. We shall investigate this in a moment.

Now, in order to keep the difference ∆ from being changed by the feed-forward with H in f0, we need a
few more conditions on H and M compared to the security parameter 0/16. What we need is that s0(W0)
contains ‘0’ bits in the positions where ∆ contains ‘1’ bits. An easy way to ensure this is by requiring that Mi

and Hi are equal to zero for i ∈ {5, 7, 10, 13, 14}. Alternatively, without introducing any requirements, the
condition is fulfilled with probability 2−||∆||, where ||∆|| is the Hamming weight of ∆ excluding the MSB.

5.1 Searching for good differences

In order to simplify the discussion we introduce the following function:

P (X) = min{i |∆X[i] 6= ‘-’}.

In words, P (X) is the number of consecutive least significant bits of X, which certainly contain no difference.
It is clear that P (X + Y ) ≥ min(P (X), P (Y )), and P (X�`) = max(P (X) − `, 0). In the case of rotations,
we have that if ` ≤ P (X), then P (X≫`) = P (X)− `. For BMW-384/512, we have the following:

P (s5(X)) = P (X)− 2, since s5(X) = X�2 ⊕X
P (s4(X)) = P (X)− 1, since s4(X) = X�1 ⊕X
P (r7(X)) = P (X)− 11, since r7(X) = X≪53 = X≫11

P (r6(X)) = P (X)− 21, since r6(X) = X≪43 = X≫21

P (r5(X)) = P (X)− 27, since r5(X) = X≪37 = X≫27.

The last three identities are on the condition that ` ≤ P (X), where ` is the (right) rotation value.
As above, we assume that among {Q0, . . . , Q15}, only Q0 contains a difference, and among {Hi}∪ {Mi},

only H1 and M1 contain a difference. This happens if the differences in H1 and M1 are the same. Now we
track the differences going into each of the first nine rounds of f1. Below we have listed the (modified) input
words that contain a difference in each round.

Q16 : s1(Q0)
Q17 : s5(Q16), M≪2

1

Q18 : s5(Q17), s4(Q16)
Q19 : s5(Q18), s4(Q17), r7(Q16)
Q20 : s5(Q19), s4(Q18), r7(Q17), Q16

Q21 : s5(Q20), s4(Q19), r7(Q18), Q17, r6(Q16)
Q22 : s5(Q21), s4(Q20), r7(Q19), Q18, r6(Q17), Q16

Q23 : s5(Q22), s4(Q21), r7(Q20), Q19, r6(Q18), Q17, r5(Q16), M≪2
1

Q24 : s5(Q23), s4(Q22), r7(Q21), Q20, r6(Q19), Q18, r5(Q17), Q16

(9)

The goal is to find differences ∆ in Q0 such that the LSB of Qi, for all i, 16 ≤ i ≤ 24, contains a strong
bias. This bias is preferably in the form of a difference or no difference with probability 1. We now identify
the minimum requirements on ∆ in order for this to happen. We assume the difference on H1 and M1 is also
∆, i.e., that there is no propagation of bit differences in the feed forward of H1 in f0.

We first find the bare requirements on Q16 in order to reach our goal. The round in which the P -value of
Q16 drops the most is round 7 (computing Q23), in which r5 is computed on Q16. This yields the requirement
P (Q16) ≥ 27.

The requirements on Q17 are similarly found to be P (Q17) ≥ 27. This “updates” the requirement on Q16

due to the dependence of Q17 on Q16, which means that we get P (Q16) ≥ 29.
If we continue like this, we find requirements on subsequent words of Q, which may iteratively require

updates to requirements on previous words. The end result is that the requirement on Q16 becomes P (Q16) ≥
32 and the requirement on M1 is P (M1) ≥ 25 combined with the requirement that there is no difference in



the two MSBs of M1. Hence, we search for a difference ∆ which has ‘0’ bits in the two MSB positions, and
such that ∆ ends with 25 ‘0’ bits and s1(∆) ends with 32 ‘0’ bits.

The function s1 can be described as a matrix multiplication over F2. The matrix S1 has 64 rows and
columns, and the input x is viewed as a 64-bit column vector. Then we have s1(x) = S1 · x. Searching for
a good difference ∆ corresponds to finding the kernel of a submatrix Ŝ1 of S1, in which rows 0, . . . , 31 and
columns 0, 1, and 39, . . . , 63 are removed. Hence, we keep the columns corresponding to input bits that may
contain a difference, and we keep the rows corresponding to output bits which must contain no difference.
See Fig. 1.

Ŝ1 =



. . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . 1 . . 1 . . . .

. . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . 1 . . 1 . . .

. . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . 1 . . 1 . .

. . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . 1 . . 1 .

. . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . 1 . . 1

. . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . 1 . .

. . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . 1 .

. . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . 1

. . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . .
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . .
. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . .
. . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . .
. . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . .
. . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . .
. . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 .
. . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
. . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . .


Fig. 1. The matrix Ŝ1 over F2 (a dot means ‘0’).

The kernel of Ŝ1 has dimension 5 and hence contains 25 − 1 = 31 non-zero vectors. Five basis vectors of
the kernel correspond to the 64-bit words 0204800008000000h, 0102400004000000h, 1004000040000000h,
0081200002000000h, and 2401000090000000h, and so any linear combination of these (except 0) can be used
as a value for ∆. As an example, if we choose ∆ = 1004000040000000h (and assuming ∆ is not changed by
the feed-forward in f0), we have the following differences with probability 1 (the words Qi for 1 ≤ i < 16



contain no difference):

∆Q0 = [---x---------x-------------------x------------------------------]

∆Q16 = [???????????????????????????????x--------------------------------]

∆Q17 = [?????????????????????????????????x------------------------------]

∆Q18 = [???????????????????????????????????x----------------------------]

∆Q19 = [??????????????????????????????????????????x---------------------]

∆Q20 = [????????????????????????????????????????????--------------------]

∆Q21 = [????????????????????????????????????????????????????x-----------]

∆Q22 = [??????????????????????????????????????????????????????----------]

∆Q23 = [??????????????????????????????????????????????????????????x-----]

∆Q24 = [???????????????????????????????????????????????????????????????-]

Hence, XL will be

[??????????????????????????????????????????????????????????x-----],

and from (7) we see that H∗0 [0] will contain no difference with probability 1.
For BMW-224/256, a similar investigation results in a solution space for ∆ of dimension 2, parametrised

by the vectors 08901000h and 20404000h. As an example, with ∆ = 20404000h we have the following
differences with probability 1:

∆Q0 = [--x------x-------x--------------]

∆Q16 = [???????????????x----------------]

∆Q17 = [?????????????????x--------------]

∆Q18 = [???????????????????x------------]

∆Q19 = [?????????????????????x----------]

∆Q20 = [???????????????????????x--------]

∆Q21 = [?????????????????????????x------]

∆Q22 = [???????????????????????????x----]

∆Q23 = [?????????????????????????????x--]

∆Q24 = [???????????????????????????????x]

Hence, XL will be [?????????????????????????????x--], and H∗0 [0] will contain a difference with prob-
ability 1. If we instead take ∆ to be the xor of the two basis vectors, then H∗0 [0] will contain no difference
with probability 1.

6 The security parameter 2/14

The results described above cannot be directly extended to the security parameter 2/14. The reason is
that the difference in Q16 goes through s0 instead of s5 in round 1. s0 is much more effective in spreading
differences than s5.

However, we observe that it is still possible if we are lucky (as attacker) enough to get the differences
in some LSBs cancelled. Note that when the security parameter is 2/14 instead of 1/15, we have the same
dependencies (see (9)) except that Q17 depends on s0(Q16) instead of on s5(Q16). Hence, we may investigate
whether the requirement P (Q17) ≥ 27 that we found above holds for some ∆ among the 31 candidates
mentioned above. Unfortunately, this is not the case.

Instead, we may allow differences in the 25 LSBs of Q0 and hope that the modular addition cancels the
differences in the 27 LSBs of s0(s1(Q0)) and M≪2

1 , which are the only terms in the computation of Q17 that
contain differences. We still need s1(Q0) to contain no difference in the 32 LSBs, and we also need M1 to
have no difference in the two MSBs. So we search for ∆ so that s0(s1(∆)) and ∆≪2 agree in the 27 LSBs,
and so that s1(∆) has ‘0’ bits in the 32 LSBs and ∆ has ‘0’ bits in the two MSBs.



Let S0 and S1 denote the bit matrices corresponding to the functions s0 and s1, and let R2 denote the bit
matrix corresponding to the operation x≪2. Let Λ = s1(∆); this means that we are interested in Λ having
32 trailing ‘0’ bits, and such that S0 ·Λ and R2 ·S−11 ·Λ agree in the 27 LSBs (where Λ in this case is viewed
as a 64-bit column vector). Hence, similar to the situation above for the security parameter 1/15, we are in
fact interested in the kernel of a submatrix of S0 −R2 · S−11 . The submatrix is the 27× 32 matrix where the
last 32 columns and the first 37 columns are removed. Moreover, we need Λ to be such that s−11 (Λ) has ‘0’
bits in the two MSBs.

It turns out that the kernel of this submatrix has dimension 5 and is parametrised by the vectors that
can be found in the table below, where also the corresponding ∆s are listed.

Λ ∆ = s−11 (Λ)
80D2227300000000h 2B0D8FF05891139Ah
48002F6000000000h 29A78CAE96017B01h
22C4DC6100000000h 89ABBD3D9226E308h
10D27CB300000000h 784296AD7493E598h
01201CFD00000000h 28E58FDD2900E7E8h

Clearly, there are 7 (non-zero) linear combinations that contain only ‘0’ bits in the two MSB positions and
therefore admit a bias of the type ‘-’ or ‘x’ in H∗0 [0]. One of these (∆ = 28E58FDD2900E7E8h) also admits
this type of bias in H∗0 [1]. Moreover, among the remaining 24 non-zero linear combinations, there are 16
which admit a weaker bias in the sense that H∗0 [0] contains a difference with probability about 3/8 or 5/8
(i.e., a bias 1/8, estimated from many experiments). Note that a difference in the two MSBs of M1 is no
longer a problem in round 1, since we obtain the required difference in round 1 by having the differences
in the 27 LSBs of s0(Q16) and M≪2

1 cancel. This can be ensured through simple message modifications, as
explained in the following.

First, we choose H1 = M1 = 0. Then we choose Hi and Mi at random, i ∈ {0, 2, 3, . . . , 15}. We then
correct M5 such that Q0 = 0. Hence, Q0⊕∆ = ∆, and so all bit differences in Q0 are of the form 0→ 1. We
then correct Q8 (through proper choice of H9 and M9, without affecting other words) such that Q16 = 0.
This ensures that there is no carry propagation after adding the difference Λ on s1(Q0). Hence, the difference
on Q16 will be Λ as required. This, in turn, means that s0(Q16) will result in a difference that is the same as
the difference on M≪2

1 in the 27 LSB positions. All bit differences in s0(Q16) will be of the form 0→ 1. We
can make the difference on M≪2

1 cancel the difference on s0(Q16) (in the 27 LSBs) by making sure that all
bit differences on M≪2

1 are of the form 1→ 0. This is ensured by correcting M11 so that AddElement(1) = 0
and by choosing H8 = FFFFFFFFFFFFFFFFh. Note that this can be done in the very beginning, since these
values do not depend on any values of Q. There are still many degrees of freedom left in the attack.

For BMW-224/256, we get the following three solutions:

Λ ∆ = s−11 (Λ)
99108000h 5CD58223h
54E68000h 6A2F79CCh
245B0000h 872008B6h

Only the xor of the first two basis vectors fulfils the requirement that the two MSBs of ∆ are ‘0’ bits.
Using this value of ∆ (and with a similar message modification as above), one gets that the LSB of H∗[0]
is always ‘-’. Four out of the remaining six non-zero linear combinations yield a difference in the same bit
with probability 3/8 or 5/8 (again an estimate based on experiments).

C program. The differential properties described in this section are demonstrated in a C program available
for download [4].

7 Potential Applications

In this section, we show how to convert the efficient differentials into pseudo-preimages of the compression
function. To describe the attack, we consider a small ideal case: assume we have a set of differences D1, D2,
D3 such that the differentials give [-x], [x-], and [xx] on two output bits, respectively. Given any target
T , we perform the pseudo-preimage attack as follows.



1. Randomly choose (H,M) from the set of inputs that fulfil the requirements for the differentials. Compute
H∗ = bmwn(H,M).

2. Compare H∗ with T for the two bits.
3. If it gives [--], further compare others bits;
4. else if it gives [-x], compare bmwn(H ⊕D1,M ⊕D1) with T ;
5. else if it gives [x-], compare bmwn(H ⊕D2,M ⊕D2) with T ;
6. else if it gives [xx], compare bmwn(H ⊕D3,M ⊕D3) with T .
7. Repeat steps 1-6 until a full match is found.

Note, steps 2-5 each gives a full match with probability 22−n
′

(with n′ the size of the chaining value). Hence,
the expected time complexity is 2n

′−2 × (1 + 3/4) ' 2n
′−1.2, with negligible memory requirements. More

generally, if there are 2k − 1 differences giving all possible 2k − 1 probability 1 differentials on k output bits
of the compression function, then the pseudo-preimage takes time about 2n

′−k · (2− 2−k) ' 2n
′−k+1.

In the case of BMW-512, we only have differences giving differentials on the 2 LSBs of H∗0 with [x-],
[?x], and [x?]. This can be converted into a pseudo-preimage of bmw512 in time 21023.2.

An interesting problem here is to find more such differentials, such that the complexity could be further
reduced. Moreover, if the differentials work on the lower half of the output bits (those to be taken as the
output of the hash function), then the pseudo-preimage on the compression function can be further extended
to a pseudo-preimage attack on the hash function.

8 Conclusion

We have described some determinstic differential properties for the BMW compression function with security
parameters 0/16, 1/15 and 2/14: by choosing a certain xor difference in two input words to the compression
function (and with conditions on absolute values of a few other words), a single (or a few) output bits of the
compression function contain a difference with probability 0 or 1.

The differentials work for the compression function only, and do not affect the security of the hash
function because of the additional blank invocation of the compression function before returning the hash
output. Moreover, H∗0 is discarded in the final hash output, and only the least significant half (or less) bits
of H∗ of the final compression are taken.

Combining with more sophisticated message modification techniques, the differentials might be further
extended to higher security parameters, hence increasing security parameter might not be enough to resist
them. Tweaking the rotation values for the si and ri functions may work, under the condition that the tweak
does not affect other security properties.

Another interesting problem to consider is to devise differentials on other output words than merely H∗0 .
In particular, a bias on one of the output words H∗8 , . . . ,H

∗
15 would be interesting.

We note that tracing the propagation of differences, as done in this paper, might help to explain the
distinguisher found by Aumasson [1].
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A Sub-functions used in f0 and f1

The sub-functions si, 0 ≤ i ≤ 4, and ri, 1 ≤ i ≤ 7, used in f0 and f1 are defined as follows.

BMW-224/256 BMW-384/512

s0(x) = x�1 ⊕ x�3 ⊕ x≪4 ⊕ x≪19 s0(x) = x�1 ⊕ x�3 ⊕ x≪4 ⊕ x≪37

s1(x) = x�1 ⊕ x�2 ⊕ x≪8 ⊕ x≪23 s1(x) = x�1 ⊕ x�2 ⊕ x≪13 ⊕ x≪43

s2(x) = x�2 ⊕ x�1 ⊕ x≪12 ⊕ x≪25 s2(x) = x�2 ⊕ x�1 ⊕ x≪19 ⊕ x≪53

s3(x) = x�2 ⊕ x�2 ⊕ x≪15 ⊕ x≪29 s3(x) = x�2 ⊕ x�2 ⊕ x≪28 ⊕ x≪59

s4(x) = x�1 ⊕ x s4(x) = x�1 ⊕ x

s5(x) = x�2 ⊕ x s5(x) = x�2 ⊕ x

r1(x) = x≪3 r1(x) = x≪5

r2(x) = x≪7 r2(x) = x≪11

r3(x) = x≪13 r3(x) = x≪27

r4(x) = x≪16 r4(x) = x≪32

r5(x) = x≪19 r5(x) = x≪37

r6(x) = x≪23 r6(x) = x≪43

r7(x) = x≪27 r7(x) = x≪53


