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Abstract. In 2007, the US National Institute for Standards and Technology announced a call for the
design of a new cryptographic hash algorithm in response to vulnerabilities identified in existing hash
functions, such as MD5 and SHA-1. NIST received many submissions, 51 of which got accepted to the
first round. At present, 14 candidates are left in the second round. An important criterion in the selection
process is the SHA-3 hash function security and more concretely, the possible security reductions of
the hash function to the security of its underlying building blocks. While some of the candidates are
supported with firm security reductions, for most of the schemes these results are still incomplete. In
this paper, we compare the state of the art provable security reductions of the second round candidates.
We discuss all SHA-3 candidates at a high functional level, and analyze and summarize the security
reduction results. Surprisingly, we derive some security bounds from the literature, which the hash
function designers seem to be unaware of. Additionally, we generalize the well-known proof of collision
resistance preservation, such that all SHA-3 candidates with a suffix-free padding are covered.

1 Introduction

Hash functions are a building block for numerous cryptographic applications. In 2004 a series of attacks
by Wang et al. [49,50] have exposed security vulnerabilities in the design of the most widely adopted and
deployed SHA-1 hash function. As a result, the US National Institute for Standards and Technology (NIST)
recommended the replacement of SHA-1 by the SHA-2 hash function family and announced a call for the
design of a new SHA-3 hashing algorithm. The SHA-3 hash function must allow for message digests of length
224, 256, 384 and 512 bits, it should be efficient, and most importantly it should provide an adequate level
of security. In the current second round, 14 candidate hash functions are still in the race for the selection
of the SHA-3 hash function. These candidates are under active evaluation by the cryptographic community.
As a result of the performed comparative analysis, several classifications of the SHA-3 candidates, mostly
focussed on hardware performance, appeared in the literature [25,48,24,33]. A classification based on the by
NIST specified security criteria is however still due.

NIST Security Requirements. NIST specifies a number of security requirements [41] to be satisfied by
the future SHA-3 function: (i) at least one variant of the hash function must securely support HMAC and
randomized hashing. Furthermore, for all n-bit digest values, the hash function must provide (ii) preimage
resistance of approximately n bits, (iii) second preimage resistance of approximately n−L bits, where the
first preimage is of length at most 2L blocks, (iv) collision resistance of approximately n/2 bits, and (v)

all variants must be resistant to the length-extension attack. Finally, (vi) for any m ≤ n, the hash function
specified by taking a fixed subset of m bits of the function’s output is required to satisfy properties (ii)-(v)
with n replaced by m.

Our Contribution. In this work we provide a survey of the 14 remaining SHA-3 candidates, in which we
compare their security reductions. More concretely, we consider preimage, second preimage and collision
resistance (security requirements (ii)-(iv)) for the n = 256 and n = 512 variants. Most of our security
analysis is realized in the ideal model, where one or more of the underlying integral building blocks (e.g.,
the underlying block cipher or permutation(s)) are assumed to be ideal, i.e. random primitives. To argue
collision security we extend the standard proof of Merkle-Damg̊ard collision resistance [20,39] to cover all
SHA-3 candidate hash function with a suffix-free padding (App. A). Notice that the basic Merkle-Damg̊ard
proof does not suffice in the presence of a final transformation and/or a chopping.
Additionally, we consider the indifferentiability of the candidates. Informally, indifferentiability guarantees



that a design has no structural design flaws [19], and in particular (as formally proven in App. B) an
indifferentiability result renders upper bounds on the advantage of finding preimages, second preimages and
collisions.
Our main contribution consists in performing a comparative survey of the existing security results on the 14
hash function candidates and results derivable from earlier works on hash functions, and suggesting possible
research directions aimed at resolving some of the identified open problems.
Section 2 briefly covers the notation, and the basic principles of hash function design. In Sect. 3, we consider
all candidates from a provable security point of view. We give a high level algorithmic description of each
hash function, and discuss the existing security results. All results are summarized in Table 1. We conclude
the paper with Sect. 4 and give some final remarks on the security comparison.

2 Preliminaries

For a positive integer value n ∈ N, we denote by Zn2 the set of bit strings of length n, and by (Zn2 )∗ the set
of strings of length a positive multiple of n bits. We denote by Z∗2 the set of bit strings of arbitrary length.
If x, y are two bit strings, their concatenation is denoted by x‖y. By |x| we denote the length of a bit string
x, and for m,n ∈ N we denote by 〈m〉n the encoding of m as an n-bit string. The function chopn(x) chops
off the n rightmost bits of a bit string x.
Throughout, we use a unified notation for all candidates. The value n denotes the output size of the hash
function, l the size of the chaining value, and m the number of message bits compressed in one iteration
of the compression function. A padded message is always parsed as a sequence of k ≥ 1 message blocks of
length m bits: (M1, . . . ,Mk).

2.1 Security Notions

In this section we investigate the security of the hash functions in the ‘ideal model’ and the more classical
‘generic’ security.

Security in the ideal model. In the ideal model, a compressing function F (either on fixed or arbitrary
input lengths) that uses one or more underlying building blocks is viewed insecure if there exists a successful
information-theoretic adversary that has only query access to the idealized underlying primitives of F . The
complexity of the attack is measured by the number of queries q made by the adversary. In this work it is
clear from the context which of the underlying primitives is assumed to be ideal. The three main security
properties required from the SHA-3 hash function are preimage, second preimage and collision resistance.
For each of these three notions, with Advatk

F , where atk ∈ {pre, sec, col}, we denote the maximum advantage
of an adversary to break the function F under the security notion atk. The advantage is the probability
function taken over all random choices of the underlying primitives, and the maximum is taken over all
adversaries that make at most q queries to their oracles.
Additionally, we consider the indifferentiability of the SHA-3 candidates. The indifferentiability framework
introduced by Maurer et al. [38] is an extension of the classical notion of indistinguishability, and ensures
that a hash function has no structural defects. We denote the indifferentiability security of a hash function
H by Advpro

H , maximized over all adversaries making at most q queries of maximal length K ≥ 0 message
blocks to their oracles. We refer to [19] for a formal definition. An indifferentiability bound guarantees secu-
rity of the hash function against specific attacks. In particular, one can obtain a bound on Advatk

H , for any
security notion atk: Advatk

H ≤ Pratk
RO + Advpro

H , where Pratk
RO denotes the success probability of a generic

attack against H under atk. This bound is proven in Thm. 2.

Generic security. The generic collision security in the context of this work deals with analyzing the col-
lision resistance of hash functions in the standard model. A hash function H is called generically (t, ε)
collision resistant if no adversary running in time at most t can find two different messages M,M ′ such that
H(M) = H(M ′) with advantage more than ε. We denote by Advgcol

H the generic collision resistance security
of the function H, maximized over all ‘efficient’ adversaries. We refer the reader to [44,43,2] for a more formal
discussion.



To argue generic collision security of the hash function H (as domain extenders of fixed input length com-
pression functions) we use the composition result of [20,39] and extend it to a wider class of suffix-free hash
functions (App. A). This result concludes the collision security of the hash function H assuming collision se-
curity guarantees from the underlying compression functions. We then translate ideal model collision security
results on the compression functions via the latter composition to ideal model collision results on the hash
function (expressed by Advcol

H ). A generic collision result, however, applies to a wider class of schemes for
which no bounds on the collision security of the underlying compression functions is known, e.g. for BLAKE
and BMW.

If a compressing function F outputs a bit string of length n, one expects to find collisions with high probability
after approximately 2n/2 queries (due to the birthday attack). Similarly, (second) preimages can be found with
high probability after approximately 2n queries1. Moreover, finding second preimages is provably harder than
finding collisions, and similar for preimages (conditionally) [44]. Formally, we have Ω(q2/2n) = Advcol

F =
O(1), Ω(q/2n) = Advsec

F ≤ Advcol
F , and Ω(q/2n) = Advpre

F ≤ Advcol
F + ε, where ε is negligible if F is a

variable input length compressing function. In the remainder, we will consider these bounds for granted, and
only include security results that improve either of these bounds. A bound is called tight if the lower and
upper bound are the same up to a constant factor, and optimal if the bound is tight with respect to the
original lower bound.

2.2 Compression Function Design Strategies

A common way to build compression functions is to base it on a block cipher [42,15,47], or on a (limited
number of) permutation(s) [14,45,46]. Preneel et al. [42] analyzed and categorized 64 block cipher based
compression functions. Twelve of them were formally proven secure by Black et al. [15]. These results have
been recently generalized by Stam [47]. Interestingly, the latter result allows for obtaining security bounds
for some compression functions that do not fit in the PGV-model, like ECHO, Hamsi and SIMD. Throughout,
by ‘PGVx’ we denote the xth type compression function of [42]. We note that PGV1, PGV3 and PGV5
are better known as the Matyas-Meyer-Oseas, the Miyaguchi-Preneel and the Davies-Meyer compression
functions, respectively.
In the context of permutation based compression functions, Black et al. [14] analyzed 2l- to l-bit compression
functions based on one l-bit permutation, and proved them insecure. This result has been generalized by
Rogaway and Steinberger [45] and Stam [46] to compression functions with arbitrary input and output sizes,
and an arbitrary number of underlying permutations. Their bounds indicate the number of queries required
to find collisions or preimages for permutation based compression functions.

2.3 Hash Function Design Strategies

In order to allow the hashing of arbitrarily long strings, all SHA-3 candidates employ a specific mode
of operation. Central to all designs is the iterated hash function principle [35]: on input an initialization
vector IV, the iterated hash function Hf based on the compression function f proceeds a padded message
(M1, . . . ,Mk) as follows:

Hf (IV;M1, . . . ,Mk) = hk, where: h0 = IV,

hi = f(hi−1,Mi) for i = 1, . . . , k.

This principle is also called the plain Merkle-Damg̊ard (MD) design [39,20]. Each of the 14 remaining can-
didates is based on this design, possibly followed by a final transformation (FT), and/or a chop-function2.

1 Kelsey and Schneier [32] describe a second preimage attack on the Merkle-Damg̊ard hash function that requires
at most approximately 2n−L queries, where the first preimage is of length at most 2L blocks. This attack does,
however, not apply to all SHA-3 candidates. In particular, wide-pipe designs remain mostly unaffected due to their
increased internal state [32].

2 A function g is a final transformation if it differs from f , and is applied to the final state, possibly with the injection
of an additional message block. The chop-function is not considered to be (a part of) a final transformation.



The padding function pad : Z∗2 → (Zm2 )
∗

is an injective mapping that transforms a message of arbitrary
length to a message of length a multiple of m bits (the number of message bits compressed in one com-
pression function iteration). Most of the candidates employ a sufficiently strong padding rule (cf. App. C).
Additionally, in some of the designs the message blocks are compressed along with specific counters or tweaks,
which may strengthen the padding rule. We distinguish between ‘prefix-free’ and/or ‘suffix-free’ padding.
A padding rule is called suffix-free, if for any distinct M,M ′, there exists no bit string X such that
pad(M ′) = X‖pad(M). The plain MD design with any suffix-free padding (also called MD-strengthening
[35]) preserves collision resistance [39,20]. We generalize this result in Thm. 1 (App. A): informally, this
preservation result also holds if the iteration is finalized by a distinct compression function and/or the chop-
function. Other security properties, like preimage resistance, are however not preserved in the MD design [2].
It is also proven that the MD design with a suffix-free padding need not necessarily be indifferentiable [19].
However, the MD construction is indifferentiable if it ends with a chopping function or a final transformation
[19]3.
A padding rule is called prefix-free, if for any distinct M,M ′, there exists no bit string X such that
pad(M ′) = pad(M)‖X. It has been proved in [19] that the MD design with prefix-free padding is indifferen-
tiable from a random oracle. Security notions like collision-resistance, are however not preserved in the MD
design with prefix-free only padding.

HAIFA design. A concrete design based on the MD principle is the HAIFA construction [12]. In HAIFA
the message is padded in a specific way so as to solve some deficiencies of the original MD construction: in
the iteration, each message block is accompanied with a fixed (optional) salt of s bits and a (mandatory)
counter Ci of t bits. The counter Ci keeps track of the number of message bits hashed so far, and equals 0 by
definition if the ith block does not contain any message bits. Partially due to the properties of this counter,
the HAIFA padding rule is suffix- and prefix-free. As a consequence, the indifferentiability results of [19] carry
over and the construction preserves collision resistance (cf. Thm. 1). Furthermore, the HAIFA construction is
proven secure against second preimage attacks if the underlying compression function is assumed to behave
like an ideal primitive [16].
Wide-pipe design. In the wide-pipe design [37], the iterated state size is significantly larger than the final
hash output: at the end of the iteration, a fraction of the output of a construction is discarded. As proved in
[19], the MD construction with an additional chopping at the end is indifferentiable from a random oracle.
Sponge functions. We do not explicitly consider sponge functions [10] as a specific type of construction:
all SHA-3 candidates known to be sponge(-like) functions, CubeHash, Fugue, JH, Keccak and Luffa, can be
described in terms of the chop-MD construction (possibly with a final transformation before chopping).

3 SHA-3 Hash Function Candidates

In this section, we analyze the security of the 14 remaining SHA-3 candidates in more detail. For simplicity,
we only consider the proposals of the SHA-3 candidates that output digests of 256 or 512 bits. Observe that
in many candidate SHA-3 hash function families, the algorithms that output 224 and 384 bits are the same
as the 256- or 512-bits algorithms, except for an additional chopping at the end. Particularly, the results of
[19] and Thm. 1 carry over in most of the cases. The same remark applies to requirement (vi) of NIST.

Requirement (i). All designers claim that their proposal can safely be used in HMAC mode [4] or for
randomized hashing [31], and we do not discuss it here;

Requirements (ii)-(iv). Preimage, second preimage and collision resistance of each hash function are
discussed in this section. Additionally, we also consider the indifferentiability of the candidates;

Requirement (v). All hash function candidates are secure against the length extension attack, and thus
we do not discuss it further.

Below, we examine the SHA-3 candidate hash functions in more detail. Each paragraph contains an informal
discussion for each of the second round SHA-3 candidates and their security reduction results. The mathe-
matical descriptions of the (abstracted) designs are given in Fig. 1, and the candidates’ padding functions

3 The indifferentiability results of [19] hold if the underlying compression function is ideal, or if the hash function is
based on the PGV5 construction with ideal block cipher.



are summarized in App. C. The concrete security results for all current candidate hash functions are summa-
rized in Table 1. More precisely, for each candidate and each security notion, this table includes the security
bound, as far as it exists, and the underlying assumption.

3.1. The BLAKE hash function [3] is a HAIFA construction. The message blocks are accompanied with a
HAIFA-counter, and more generally, the function employs a suffix- and prefix-free padding rule. The com-
pression function f is block cipher based4. It moreover employs an injective linear function L, and a linear
function L′ that XORs the first and second halves of the input.
Security of BLAKE. The compression function of BLAKE shows similarities with the PGV5 compression
function [15], but no security results are known for this variation. The mode of operation of BLAKE is based
on the HAIFA structure, and as a consequence all security properties regarding this type hold [12]. In partic-
ular, the design preserves collision resistance, and is secure against second preimage attacks. Also, the BLAKE
hash function is indifferentiable from a random oracle if the underlying compression function is assumed to
be ideal, due to the prefix-free padding [19]. Using Thm. 2, this indifferentiability bound additionally renders
an optimal collision resistance bound for BLAKE, Advcol

H = Θ(q2/2n).

3.2. The Blue Midnight Wish (BMW) hash function [29] is a chop-MD construction, with a final transfor-
mation before chopping. The hash function employs a suffix-free padding rule. The compression function f
is block cipher based5, and the final transformation g consists of the same compression function with the
chaining value processed as a message, and with an initial value as chaining input. The compression function
employs a function L which consists of two compression functions with specific properties as specified in [29].
Security of BMW. The compression function of BMW shows similarities with the PGV3 compression func-
tion [15], but no security results are known for this variation. Thm. 1 applies to BMW, where the final
transformation has no message block as input. Furthermore, albeit no indifferentiability proof for the BMW
hash function is known, we note that BMW can be seen as a combination of the HMAC- and the chop-
construction, both proven indifferentiable from a random oracle [19].

3.3. The CubeHash hash function [7] is a chop-MD construction, with a final transformation before chop-
ping. The compression function f is permutation based, and the final transformation g consists of flipping a
certain bit in the state and applying 10 more compression function rounds on zero-messages.
Security of CubeHash. The compression function of CubeHash is based on one permutation, and collisions
and preimages for the compression function can be found in one query to the permutation [14]. The final
transformation of CubeHash consists of ten compression function rounds with zero-messages, preceded by one
bit flip in the chaining. As a consequence, throughout the execution of CubeHash, in total at most m+ 1 out
of l wires of the chaining are affected by message injection. Therefore this construction follows the sponge
design with ‘rate’ m + 1, and ‘capacity’ l − m − 1, and the indifferentiability result of [8] carries over6.
Using Thm. 2, this indifferentiability bound additionally renders an optimal collision resistance bound for

CubeHash, Advcol
H = Θ(q2/2n), as well as an improved upper bound O

(
q

2n + q2

2l−n

)
on the preimage and

second preimage resistance. Note that these bounds are optimal for the n = 256 variant.

3.4. The ECHO hash function [6] is a chop-HAIFA construction. The message blocks are accompanied with
a HAIFA-counter, and more generally, the function employs a suffix- and prefix-free padding rule. The com-
pression function f is block cipher based7. It moreover employs a linear function L that chops the state in
blocks of length l bits, and XORs these.
Security of ECHO. The compression function of ECHO is a ‘chopped single call Type-I’ compression func-
tion in the categorization of [47]. Therefore, the results of [47, Thm. 15] carry over, yielding optimal security

4 As observed in [3, Sect. 5], the core part of the compression function can be seen as a permutation keyed by the
message, which we view here as a block cipher.

5 As observed in [29], the compression function can be seen as a ‘generalized’ PGV3 construction, where the function
f0 of [29] defines the block cipher keyed with the chaining value.

6 The sponge design requires the last block of a padded message to be non-zero, which is not the case for CubeHash.
However, if the squeezing of the sponge takes only one round, this is not required for the indifferentiability proof.

7 As observed in [6], the core part of the compression function can be seen as a permutation keyed by the salt and
counter, which we view here as a block cipher. This cipher is AES-based.



BLAKE:
(n, l,m, s, t) ∈ {(256, 256, 512, 128, 64),

(512, 512, 1024, 256, 128)}
E : Z2l

2 × Zm2 → Z2l
2 a block cipher

L : Zl+s+t
2 → Z2l

2 , L′ : Z2l
2 → Zl2 linear functions

f(h,M, S, C) = L′(EM (L(h, S, C))) ⊕ h ⊕ (S‖S)

BLAKE(M) = hk, where:
(M1, . . . ,Mk) ← pad1(M); h0 ← IV

S ∈ Zs2; (Ci)ki=1 HAIFA-counter

hi ← f(hi−1,Mi, S, Ci) for i = 1, . . . , k

BMW:
(n, l,m) ∈ {(256, 512, 512), (512, 1024, 1024)}
E : Zm2 × Zl2 → Zm2 a block cipher

L : Zl+m+l
2 → Zl2 a compressing function

f(h,M) = L(h,M,Eh(M))

g(h) = f(IV′, h)

BMW(M) = h, where:
(M1, . . . ,Mk) ← pad2(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k

h ← chopl−n[g(hk)]

CubeHash:
(n, l,m) ∈ {(256, 1024, 256), (512, 1024, 256)}
P : Zl2 → Zl2 a permutation

f(h,M) = P (h ⊕ (M‖0l−m))

g(h) = P10(h ⊕ (0992‖1‖031))

CubeHash(M) = h, where:
(M1, . . . ,Mk) ← pad3(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k

h ← chopl−n[g(hk)]

ECHO:
(n, l,m, s, t) ∈ {(256, 512, 1536, 128, 64/128),

(512, 1024, 1024, 256, 64/128)}
E : Z2048

2 × Zs+t
2 → Z2048

2 a block cipher

L : Z2048
2 → Zl2 a linear function

f(h,M, S, C) = L(ES,C (h‖M) ⊕ (h‖M))

ECHO(M) = h, where:
(M1, . . . ,Mk) ← pad4(M); h0 ← IV

S ∈ Zs2; (Ci)ki=1 HAIFA-counter

hi ← f(hi−1,Mi, S, Ci) for i = 1, . . . , k

h ← chopl−n[hk]

Fugue:
(n, l,m) ∈ {(256, 960, 32), (512, 1152, 32)}
P, P̃ : Zl2 → Zl2 permutations

L : Zl2 × Zm2 → Zl2 a linear function

f(h,M) = P (L(h,M))

Fugue(M) = h, where:
(M1, . . . ,Mk) ← pad5(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k

h ← chopl−n[P̃ (hk)]

Grøstl:
(n, l,m) ∈ {(256, 512, 512), (512, 1024, 1024)}
P,Q : Zl2 → Zl2 permutations

f(h,M) = P (h ⊕M) ⊕ Q(M) ⊕ h
g(h) = P (h) ⊕ h

Grøstl(M) = h, where:
(M1, . . . ,Mk) ← pad6(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k

h ← chopl−n[g(hk)]

Hamsi:
(n, l,m) ∈ {(256, 256, 32), (512, 512, 64)}
P, P̃ : Z2n

2 → Z2n
2 permutations

Exp : Zm2 → Zn2 a linear code

f(h,M) = h ⊕ chopn[P (Exp(M)‖h)]

g(h,M) = h ⊕ chopn[P̃ (Exp(M)‖h)]

Hamsi(M) = h, where:
(M1, . . . ,Mk) ← pad7(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k − 1

h ← g(hk−1,Mk)

JH:
(n, l,m) ∈ {(256, 1024, 512), (512, 1024, 512)}
P : Zl2 → Zl2 a permutation

f(h,M) = P (h ⊕ (0l−m‖M)) ⊕ (M‖0l−m)

JH(M) = h, where:
(M1, . . . ,Mk) ← pad8(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k

h ← chopl−n[hk]

Keccak:
(n, l,m) ∈ {(256, 1600, 1088), (512, 1600, 576)}
P : Zl2 → Zl2 a permutation

f(h,M) = P (h ⊕ (M‖0l−m))

Keccak(M) = h, where:
(M1, . . . ,Mk) ← pad9(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k

h ← chopl−n[hk]

Luffa:
(n, l,m,w) ∈ {(256, 768, 256, 3), (512, 1278, 256, 5)}
Pi : Zm2 → Zm2 (i = 1, . . . , w) permutations

L : Zwm+m
2 → Zwm

2 , L′ : Zwm
2 → Zm2 linear functions

f(h,M) = (P1(h′1)‖ · · · ‖Pw(h′w))

where (h′1, . . . , h′w) = L(h,M)

g(h) = (L′(h)‖L′(f(h, 0m)))

Luffa(M) = h, where:
(M1, . . . ,Mk) ← pad10(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k

h ← chop512−n[g(hk)]

Shabal:
(n, l,m) ∈ {(256, 1408, 512), (512, 1408, 512)}
E : Z896

2 × Z1024
2 → Z896

2 a block cipher

f(h,C,M) = (y1, h3 −M, y3)

where h ∈ Zl2 → h = (h1, h2, h3) ∈ Z384+m+m
2

and (y1, y3) = EM,h3
(h1 ⊕ (0320‖C), h2 + M)

Shabal(M) = h, where:
(M1, . . . ,Mk) ← pad11(M); h0 ← IV
hi ← f(hi−1, 〈i〉64,Mi) for i = 1, . . . , k

hk+i ← f(hk+i−1, 〈k〉64,Mk) for i = 1, . . . , 3

h ← chopl−n[hk+3]

SHAvite-3:
(n, l,m, s, t) ∈ {(256, 256, 512, 256, 64),

(512, 512, 1024, 512, 128)}
E : Zl2 × Zm+s+t

2 → Zl2 a block cipher

f(h,M, S, C) = EM,S,C (h) ⊕ h

SHAvite-3(M) = hk, where:
(M1, . . . ,Mk) ← pad12(M); h0 ← IV

S ∈ Zs2; (Ci)ki=1 HAIFA-counter

hi ← f(hi−1,Mi, S, Ci) for i = 1, . . . , k

SIMD:
(n, l,m) ∈ {(256, 512, 512), (512, 1024, 1024)}
E, Ẽ : Zl2 × Zm2 → Zl2 block ciphers

f(h,M) = L(h,EM (h ⊕M))

g(h,M) = L(h, ẼM (h ⊕M))

SIMD(M) = h, where:
(M1, . . . ,Mk) ← pad13(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k − 1

hk ← g(hk−1,Mk)

h ← chopl−n[hk]

Skein:
(n, l,m) ∈ {(256, 256, 256), (512, 512, 512)}
E : Zm2 × Z128

2 × Zl2 → Zm2 a tweakable block cipher

f(h, T,M) = Eh,T (M) ⊕M

Skein(M) = h, where:
(M1, . . . ,Mk) ← pad14(M); h0 ← IV

(Ti)ki=1 round-specific tweaks

hi ← f(hi−1, Ti,Mi) for i = 1, . . . , k

h ← chopl−n[hk]

Fig. 1. The padding rules employed by the functions are summarized in App. C. In all algorithm descriptions,
IV denotes an initialization vector, h denotes state values, M denotes message blocks, S denotes a (fixed)
salt, C denotes a counter and T denotes a tweak. The functions L,L′,Exp underlying BLAKE, BMW, ECHO,
Fugue, Hamsi and Luffa, are explained in the corresponding section.



bounds for the compression function. Observe that these results can easily be adjusted to obtain bound
Advcol

chop◦f = Θ(q2/2n). ECHO is a combination of HAIFA and chop-MD, but it is unclear whether all
HAIFA security properties hold after chopping. However, Thm. 1 applies to ECHO, and as a consequence we
obtain Advcol

H = Θ(q2/2n). Furthermore, the ECHO hash function is indifferentiable from a random oracle
if the underlying compression function is assumed to be ideal, due to the chopping function at the end [19].
However, the compression function of ECHO is easily differentiable from a random oracle [27].

3.5. The Fugue hash function [30] is a chop-MD construction, with a final transformation before chopping.
The hash function employs a suffix-free padding rule. The compression function f is permutation based,
and the final transformation consists of a permutation P̃ which differs from P in the parametrization. The
compression function employs a linear function L for message injection (TIX of [30]).
Security of Fugue. The compression function of Fugue is based on one permutation, and collisions and
preimages for the compression function can be found in one query to the permutation [14]. As a conse-
quence, the result of Thm. 1 is irrelevant, even though the padding rule of Fugue is suffix-free. The Fugue
hash function borrows characteristics from the sponge design, and ideas from the indifferentiability proof
of [8] may carry over. This is, however, not immediately clear due to the final transformation before chopping.

3.6. The Grøstl hash function [28] is a chop-MD construction, with a final transformation before chopping.
The hash function employs a suffix-free padding rule. The compression function f is permutation based, and
the final transformation g is defined as g(h) = P (h)⊕ h.
Security of Grøstl. The compression function of Grøstl is permutation based, and the results of [45,46]
apply. Furthermore, the preimage resistance of the compression function is analyzed in [26], and an upper
bound for collision resistance can be obtained easily. As a consequence, we obtain tight security bounds on
the compression function, Advpre

f = Θ(q2/2l) and Advcol
f = Θ(q4/2l). Thm. 1 applies to Grøstl, where the

final transformation has no message block as input. Observe that we also have Advcol
chop◦g = Θ(q2/2n), and

as a consequence, we obtain Advcol
H = Θ(q2/2n). Furthermore, the Grøstl hash function is proven indifferen-

tiable from a random oracle if the underlying permutations are ideal [1].

3.7. The Hamsi hash function [34] is a MD construction, with a final transformation before chopping. The
hash function employs a suffix-free padding rule. The compression function f is permutation based, but the
last round is executed with a compression function g based on a permutation P̃ which differs from P in the
parametrization. The compression functions employ a linear code Exp for message injection [34].
Security of Hamsi. The compression function of Hamsi is a ‘chopped single call Type-I’ compression func-
tion in the categorization of [47]. Therefore, the results of [47, Thm. 15] carry over, yielding optimal security
bounds for the compression function. Observe that these bounds also apply to the function g. Thm. 1 applies
to Hamsi, and as a consequence we obtain Advcol

H = Θ(q2/2n). Furthermore, albeit no indifferentiability
proof for the Hamsi hash function is known, we note that Hamsi can be seen as a variation of the NMAC-
construction, which is proven indifferentiable from a random oracle [19].

3.8. The JH hash function [51] is a chop-MD construction. The hash function employs a suffix-free padding
rule. The compression function f is permutation based.
Security of JH. The compression function of JH is based on one permutation, and collisions and preimages
for the compression function can be found in one query to the permutation [14]. As a consequence, the
result of Thm. 1 is irrelevant, even though the padding rule of JH is suffix-free. The JH hash function is
proven indifferentiable from a random oracle if the underlying permutation is assumed to be ideal [11]. Using
Thm. 2, this indifferentiability bound additionally renders improved upper bounds on the preimage, second

preimage and collision resistance: we obtain Advcol
H = O

(
q2

2n + q3

2l−m

)
, and both Advpre

H and Advsec
H are of

the order O
(
q

2n + q3

2l−m

)
. Note that the collision resistance bound is optimal for the n = 256 variant.

3.9. The Keccak hash function [9] is a chop-MD construction. The compression function f is permutation
based. The hash function output is obtained by chopping off l− n bits of the state8. Notice that the param-

8 We notice that sponge functions are designed more general [10], but for Keccak this description suffices.



eters of Keccak satisfy l = 2n+m.
Security of Keccak. The compression function of Keccak is based on one permutation, and collisions and
preimages for the compression function can be found in one query to the permutation [14]. The Keccak hash
function is proven indifferentiable from a random oracle if the underlying permutation is assumed to be ideal
[8]. Using Thm. 2, this indifferentiability bound additionally renders an optimal collision resistance bound
for Keccak, Advcol

H = Θ(q2/2n), as well as an optimal preimage second preimage resistance bound Θ(q/2n).

3.10. The Luffa hash function [18] is a chop-MD construction, with a final transformation before chopping.
The compression function f is permutation based, and the final transformation g is built on this compres-
sion function and a linear function L′ that chops the state in blocks of length m bits, and XORs these. The
compression function employs a linear function L for message injection (MI of [18])9. Notice that the state
size of Luffa satisfies l = w ·m.
Security of Luffa. The compression function of Luffa is based on w permutations executed independently.
As a consequence, collisions and preimages for the compression function can be found in at most 5 queries
to the permutations [14]. The Luffa hash function borrows characteristics from the sponge design, if the
permutation P consisting of the w permutations Pi is considered ideal, and ideas from the indifferentiability
proof of [8] may carry over. However, for the case of w different permutations Pi this is not immediately clear.

3.11. The Shabal hash function [17] is a chop-MD construction. The message blocks are accompanied with
a counter, and the last block is iterated three times. In particular, the function employs a suffix- and prefix-
free padding rule. The compression function f is block cipher based10. Notice that the parameters of Shabal
satisfy l = 384 + 2m.
Security of Shabal. A bound on the collision resistance of the compression function of Shabal is derived in
[17]. Concretely, it is proven that the Shabal compression function is collision resistant up to q = 2(l−m)/2

queries. Thm. 1 applies to Shabal. Collision and preimage resistance of Shabal are studied in [17], yielding
optimal bounds Advpre

H = Θ(q/2n) and Advcol
H = Θ(q2/2n). Furthermore, the same authors prove the

Shabal hash function to be indifferentiable from a random oracle if the underlying block cipher is assumed
to be ideal [17]. Using Thm. 2, this indifferentiability bound additionally renders an improved upper bound

O
(
q

2n + q2

2l−m

)
on the second preimage resistance. Note that this bound is optimal for the n = 256 variant.

3.12. The SHAvite-3 hash function [13] is a HAIFA construction. The message blocks are accompanied
with a HAIFA-counter, and more generally, the function employs a suffix- and prefix-free padding rule. The
compression function f is block cipher based.
Security of SHAvite-3. The compression function of SHAvite-3 is the PGV5 compression function, and the
security results of [15] carry over. As a consequence, we obtain optimal security bounds on the compression
function. The mode of operation of SHAvite-3 is based on the HAIFA structure, and as a consequence all
security properties regarding this type hold [12]. In particular, the design preserves collision resistance, and
as a consequence, we obtain Advcol

H = Θ(q2/2n). Also, the design is secure against second preimage attacks.
Finally, the SHAvite-3 hash function is indifferentiable from a random oracle if the underlying block cipher
is assumed to be ideal, due to the prefix-free padding [19].

3.13. The SIMD hash function [36] is a chop-MD construction, with a final transformation before chopping.
The hash function employs a suffix-free padding rule. The compression function f is block cipher based, but
the last round is executed with a compression function g based on a block cipher Ẽ which differs from E in
the parametrization. These function employ a quasi-group operation11 L [36].
Security of SIMD. The compression function of SIMD is a ‘rate-1 Type-I’ compression function in the
categorization of [47]. Therefore, the results of [47, Thm. 6] carry over, yielding optimal security bounds for
the compression function. Observe that these bounds also apply to the function g. Observe moreover that
these results can easily be adjusted to obtain bound Advcol

chop◦g = Θ(q2/2n). Thm. 1 applies to SIMD, and as

9 We defined the output transformation in a slightly more complicated but unified way. Essentially, Luffa256 simply
outputs L′(h). Observe that we implicitly captured the extra compression function call in the adjusted padding.

10 Essentially, it is a permutation tweaked by a 1024-bit key, which we view here as a block cipher.
11 For any of the variables fixed, the function L is a permutation.



a consequence we obtain Advcol
H = Θ(q2/2n). Furthermore, albeit no indifferentiability proof for the SIMD

hash function is known, we note that SIMD can be seen as a variation of the NMAC-construction, which is
proven indifferentiable from a random oracle [19].

3.14. The Skein hash function [23] is an MD construction. The message blocks are accompanied with a
round-specific tweak12, and more generally, the function employs a suffix- and prefix-free padding rule. The
compression function f is based on a tweakable block cipher.
Security of Skein. The compression function of Skein is the PGV1 compression function, with a difference
that a tweak is involved. As claimed in [5], the results of [15] carry over, which in turn results in an
security bounds on the compression function. Thm. 1 applies to Skein, and as a consequence we obtain
Advcol

H = Θ(q2/2n). Furthermore, the Skein hash function is proven indifferentiable from a random oracle
if the underlying tweakable block cipher is assumed to be ideal [5]. This proof is based on the preimage-
awareness approach [22].

4 Summary and Conclusions

In this survey, we compared the security achieved by the remaining round 2 SHA-3 hash function candidates,
when their underlying primitives are assumed to be ideal. The main contribution of this paper is the summary
of the security reductions for the hash function candidates in Table 1. Before giving an interpretation of these
results, we first make some remarks on the provided classification.

– Assuming ideality of the underlying primitives (permutations or block ciphers) is not realistic. In par-
ticular, none of the candidates’ primitives is ideal, and some even have identified weaknesses. However,
assuming ideality of these primitives gives significantly more confidence in the security of the higher level
structure and is the only way to get useful (and comparable) security bounds on the candidate hash
functions;

– The fact that different hash functions have different bounds, does not directly imply that one of the
functions offers a higher level of security: albeit the underlying structure of the basic primitives is
abstracted away (see the previous item), still many differences among the schemes remain (chaining size,
message input size, etc.). Moreover, not all bounds are tight.

Security of the compression function. For the sponge(-like) hash functions, CubeHash, Fugue, JH, Keccak
and Luffa, collisions and preimages for the compression function can be found in a constant number of
queries. This fact does not have direct implications for the security of the hash function. In fact, the only
consequence is that it becomes unreasonable to assume ideality of the compression function in order to
prove security at a higher level. Most of the remaining nine candidates are provided with a tight bound
for collision and/or preimage resistance of the compression function, merely due to the results of [15,47].
Single exceptions are BLAKE and BMW, for which the results of [47] are not directly applicable. No
security results are known for the second preimage resistance of the nine remaining candidates: albeit
collision resistance implies second preimage resistance [44], the obtained security bounds would be below
the requirements of NIST [41];

Indifferentiability of the hash function. Nine of the candidates are proven indifferentiable from a ran-
dom oracle, and five of the candidates have a similar constructions to ones proven indifferentiable.
We also note that there exist some differences among the bounds. For instance, for the hash function
variant outputting n = 512 bits, the indifferentiability bounds are varying between O(Kq3/2512) and
O((Kq)2/21024). These differences are mainly caused by the fact that the bounds are parameterized by
the internal chaining value size l, rather than the output size n (as is the case for bounds on the collision
resistance). As a consequence, a higher state size often results in a better indifferentiability bound. The
indifferentiability results are powerful, as render bounds on the (second) preimage and collision resistance
of the design (Thm. 2);

12 More formally, the design is based on the UBI (unique block identifier) chaining mode which queries its underlying
tweakable block cipher on additional tweaks, that differ in each iteration. The general description of Skein involves
a specific final transformation. In the primary proposal of the hash function, however, this final transformation
consists of another execution of the compression function, with an output-specific tweak and with message 0m. As
we included this final message block in the padding, the given description of Skein suffices.



(Second) preimage resistance of the hash function. Most of the hash functions are not provided with
an optimal security bound on the preimage and second preimage resistance. Main cause for this is that the
MD design does not preserve (second) preimage resistance [2]. Additionally, the (second) preimage bound
that can be derived via the indifferentiability (Thm. 2) is not always sufficiently tight. Proving security
against these attacks could be attempted either by making a different (possibly weaker) assumption
on the compression function or by basing it directly on the ideality of the underlying block cipher or
permutation(s). We notice that a fruitful direction might be the graph based approach followed by the
designers of Shabal [17];

Collision resistance of the hash function. Except for the sponge(-like) functions, the collision resis-
tance preservation result of Thm. 1 (App. A) applies to all candidates. This theorem results in a bound
on the generic collision resistance of the hash function, which, intuitively, means that ‘finding collisions
for the hash function is at least as hard as finding collisions for (one of) the underlying function(s)’.
Together with the collision resistance bounds on the compression functions in the ideal model, the
preservation result allows for obtaining a collision resistance bound on the entire hash function. This
leads to optimal bounds on the collision resistance for ECHO, Grøstl, Hamsi, SHAvite-3, SIMD and Skein.
For BLAKE, CubeHash, JH (for n = 256), Keccak and Shabal, the same optimal bound is obtained differ-
ently (e.g. based on the indifferentiability of the hash function). Again, the graph based approach may
be suitable to prove collision resistance of the candidates for which no collision resistance bound is yet
obtained.

A hash function that is provided with a sound security analysis, is not necessarily a ‘good’ function, nor is
it a ‘bad’ function if only little security results are known. The quality of the hash function depends further
on other criteria not covered in this classification, such as the strength of the basic underlying primitives
and software/hardware performance. Yet, security reductions guarantee that the hash function has no severe
structural weaknesses, and in particular that the design does not suffer weaknesses that can be trivially ex-
ploited by cryptanalysts. Therefore, we see the provided security analysis as a fair comparison of the SHA-3
candidates and an important contribution to the selection of the finalists.

To the best of our knowledge, we included all security results to date. However, we welcome suggestions,
remarks or information about provable security results that could improve the quality of this work.
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A Preservation of Collision Resistance

For the purpose of the analysis of the SHA-3 candidates, we generalize the well-known result by Merkle and
Damg̊ard. The result of Thm. 1 differs in three cases: we consider any suffix-free padding, the proof allows
for different compression functions in one hash function evaluation, and it includes an optional chopping at
the end. Related work can, a.o., be found in [39,20,21,40].

Theorem 1. Let l,m, n ∈ N such that l ≥ n. Let pad : Z∗2 → (Zm2 )
∗

be a suffix-free padding and let
f, g : Zl2 × Zm2 → Zl2 be two compression functions. Consider the hash function H : Z∗2 → Zn2 defined as
follows (cf. Fig. 2), where h0 = IV is the initialization vector:

H(M) = h, where: (M1, . . . ,Mk) = pad(M),

hi = f(hi−1,Mi) for i = 1, . . . , k − 1,

hk = g(hk−1,Mk),

h = chopl−n(hk).

Define the function g′ : Zl2×Zm2 → Zn2 by g′ = chopl−n ◦g. Then, the advantage of finding collisions for H is
upper bounded by the advantage of finding collisions for f or g′. Formally, if f is (t1, ε1) collision secure, and
g′ is (t2, ε2) collision secure, then H is (t, ε) collision secure for ε = ε1 +ε2, and t = min{t1, t2}−2(K−1)τf ,
where τf is the time to evaluate f and K is the maximum length of the messages, in blocks.

Proof. Suppose A is a (t, ε) collision finding attacker for H. We construct collision finding adversaries B1

and B2 for f and g, respectively, using the following observation.
Let M,M ′ be two distinct messages such that H(M) = H(M ′). Let (M1, . . . ,Mk) be the padded message of
M , and (M ′1, . . . ,M

′
k′) be the padded message of M ′. Define the intermediate state values hi, h

′
i similarly.

A collision on M,M ′ means that chopl−n
(
g(hk−1,Mk)

)
= chopl−n

(
g(h′k′−1,M

′
k′)
)
. Now, if (hk−1,Mk) 6=

(h′k′−1,M
′
k′) this results in a collision for g′. Assume the contrary, and let j ∈ {1, . . . ,min{k, k′} − 1} be

the minimal index such that (hk−j−1,Mk−j) 6= (h′k′−j−1,M
′
k′−j). We notice that such index j exists: in case

k = k′ it exists as M 6= M ′, and in case k 6= k′ it exists as the padding rule is suffix-free. By definition of
the index j, we have hk−j = h′k′−j , and in particular we obtain a collision for f :

f(hk−j−1,Mk−j) = hk−j = h′k′−j = f(h′k′−j−1,M
′
k′−j).

Both B1,B2 follow this procedure. If M,M ′ define a collision for f , B1 outputs this collision. Similarly for
B2 and g′. Both adversaries work in time at most t + 2(K − 1)τf , from which we deduce t ≥ min{t1, t2} −
2(K − 1)τf . The messages M,M ′ define a collision for f or g′. Thus, we obtain ε ≤ ε1 + ε2. ut



In case the design is based on the compression function f only (but it may still include the chopping), the

above result can easily be simplified to Advgcol
H (A) ≤ Advgcol

f ′ (B1), where f ′ is defined by f ′ = chopl−n ◦ f .
Observe that this result also holds if l = n, and in particular, the basic theorems of Merkle and Damg̊ard
are covered as well. Observe that Thm. 1 can be generalized arbitrarily, e.g. to more different compression
functions, but for the purpose of this paper, the mentioned generalization of the Merkle-Damg̊ard structure
suffices.

Fig. 2. A generalized Merkle-Damg̊ard structure. f, g are two compression functions, and chopl−n chops off
l − n bits of the state.

B Security Implications of Indifferentiability

Indifferentiability assures that a design is structurally correct, and that it can replace a random oracle
without security loss. In particular, it guarantees that, up to a certain degree, the design is secured against
generic attack, like finding preimages, collisions, multicollisions, etc. In Thm. 2, we formally prove a security
reduction to derive security against specific attacks from the indifferentiability of a hash function. This proof
is based on a personal communication with Joan Daemen.

Theorem 2. Let H be a hash function, built on underlying primitive π, and RO be a random oracle, where
H and RO have the same domain and range space. Denote by Advpro

H (q) the advantage of distinguishing
(H, π) from (RO,S), for some simulator S, maximized over all distinguishers D making at most q queries.
Let atk be a security property of H. Denote by Advatk

H (q) the advantage of breaking H under atk, maximized
over all adversaries A making at most q queries. Then:

Advatk
H (q) ≤ Pratk

RO(q) + Advpro
H (q), (1)

where Pratk
RO(q) denotes the success probability of a generic attack against H under atk, after at most q

queries.

Proof. Let A be any (q, ε) attacker for H under security notion atk, and assume ε > Pratk
RO(q). We define

a distinguisher D for the indifferentiability of H as follows: D makes the same queries as A, and obtains a
query history Q (with query answers coming from either H or RO). Next, D outputs 1 if Q violates security
notion atk, and 0 otherwise. Denote by Advpro

H (D) the success probability of D. By definition, we have∣∣Pr
(
DH,π = 1

)
−Pr

(
DRO,S = 1

)∣∣ = Advpro
H (D) ≤ Advpro

H (q).
By EH (resp. ERO), we denote the event that Q defines a set of query pairs that break H (resp. RO) under
security notion atk. The distinguisher outputs 1 if and only if Q violates security notion atk, and hence we
obtain:

Pr
(
DH,π = 1

)
= Pr

(
DH,π = 1 | EH

)
Pr (EH) + Pr

(
DH,π = 1 | ¬ EH

)
Pr (¬ EH)

= 1 ·Pr (EH) + 0 = ε.

Similarly, we get Pr
(
DRO,S = 1

)
= Pr (ERO) = Pratk

RO(q). As ε > Pratk
RO(q), we consequently derive ε ≤

Pratk
RO(q) + Advpro

H (q). This holds for any (q, ε) adversary for H under security notion atk, which completes
the proof. ut



C Padding Rules

The padding rules of all SHA-3 hash function candidates are summarized. All padding functions output
bit strings parsed as sequences of m-bit blocks, where m is the message block length of the corresponding
function. Formally, for each candidate, for n ∈ {256, 512} the padding function pad : Z∗2 → (Zm2 )

∗
is defined

as follows. For the hash functions BLAKE, ECHO, Shabal, SHAvite-3 and Skein, the complete padding rule
of the corresponding hash function is additionally defined by a counter or tweak (as explained in Sect. 3).
Particularly, all hash functions employ an injective padding rule.

BLAKE : pad1(M) = M‖1‖0−|M |−t−2 mod m‖1‖〈|M |〉t,
BMW : pad2(M) = M‖1‖0−|M |−65 mod m‖〈|M |〉64,
CubeHash : pad3(M) = M‖1‖0−|M |−1 mod m,
ECHO : pad4(M) = M‖1‖0m−1−(|M |+144 mod m)‖〈n〉16‖〈|M |〉128,
Fugue : pad5(M) = M‖0−|M | mod m‖〈|M |〉64,
Grøstl : pad6(M) = M‖1‖0−|M |−65 mod l‖〈d(|M |+ 65)/le〉64,
Hamsi : pad7(M) = M‖1‖0−|M |−1 mod m‖〈|M |〉64,
JH : pad8(M) = M‖1‖0383+(−|M | mod m)‖〈|M |〉128,
Keccak : pad9(M) = M‖1‖0−|M |−1 mod 8‖〈n/8〉8‖〈m/8〉8‖1‖0−(|M |−(|M | mod 8))−25 mod m,
Luffa : pad10(M) = M‖1‖0(−|M |−1 mod m)+256,
Shabal : pad11(M) = M‖1‖0−|M |−1 mod m,
SHAvite-3 : pad12(M) = M‖1‖0−|M |−t−17 mod m‖〈|M |〉t‖〈n〉16,
SIMD : pad13(M) = M‖0−|M | mod m‖〈|M |〉m,

Skein13 : pad14(M) = M ′‖0(−|M ′| mod m)+m,where M ′ =

{
M if |M | ≡ 0 mod 8,

M‖1‖0−|M |−1 mod 8 otherwise.

13 For Skein, the null string λ is padded to pad(λ) = 02m.
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