
sphlib 
Embedded systems 

Java implementations 
Benchmarks 
Conclusions 

Comparative Performance Review of 
the SHA-3 Second-Round Candidates 

Thomas Pornin 

Cryptolog International 

Second SHA-3 Candidate Conference 

Thomas Pornin Comparative Performance Review of SHA-3 Candidates 



sphlib 
Embedded systems 

Java implementations 
Benchmarks 
Conclusions 

Outline 

sphlib 

Embedded systems 

Java implementations 

Benchmarks 

Conclusions 

Thomas Pornin Comparative Performance Review of SHA-3 Candidates 



sphlib 
Embedded systems 

Java implementations 
Benchmarks 
Conclusions 

sphlib 

sphlib is an open-source implementation of many hash 
functions: 

�	 includes SHA-2 and the 14 SHA-3 second-round 
candidates (and many older hash functions) 

�	 optimized, portable C code for “large systems” 
�	 optimized, portable C code for “small embedded systems” 
�	 optimized Java code 

�	 all functions were implemented by the same developer with 
similar optimization techniques and efforts 

Thomas Pornin Comparative Performance Review of SHA-3 Candidates 



�

�

�

sphlib 
Embedded systems 

Java implementations 
Benchmarks 
Conclusions 

sphlib: why ? 

sphlib was initiated in 2007 with the following goals: 
to benchmark hash functions on many platforms, with an
 
emphasis on embedded systems;
 
to make a fair comparison between hash functions;
 
to explore performance of Java implementations of hash
 
functions. 

On PC systems, sphlib implementations are not the fastest 
available, but measures on PC can be used to validate 
optimization strategies, and to explore some architecture 
effects. 

Thomas Pornin Comparative Performance Review of SHA-3 Candidates 



sphlib 
Embedded systems 

Java implementations 
Benchmarks 
Conclusions 

Comparison with eBASH 

eBASH relies on externally provided implementations: 
1.	 eBASH publishes results on some platforms; 
2.	 implementers try to beat current records and submit new 

code; 
3. loop to 1. 

This development process appears to be slow on non-PC 
platforms, and has not yet created enough momentum on 
embedded systems. In the meantime, sphlib provides 
measures.
 
Also, sphlib has Java code.
 

Thomas Pornin Comparative Performance Review of SHA-3 Candidates 



sphlib 
Embedded systems 

Java implementations 
Benchmarks 
Conclusions 

Embedded systems
 

Thomas Pornin Comparative Performance Review of SHA-3 Candidates 



�

�

�

�

sphlib 
Embedded systems 

Java implementations 
Benchmarks 
Conclusions 

Embedded systems 

Embedded systems which we consider here have the following 
characteristics: 

32-bit registers 

“raw” RISC with no extra unit (no SSE2, often no FPU 
either): optimal for “portable” C programming 

small L1 cache RAM for instruction (no more than 16 kB) 
low operating frequency (less than 200 MHz) 

Embedded systems are specialized and CPU-starved. 

Thomas Pornin Comparative Performance Review of SHA-3 Candidates 



�

�

�

�

sphlib 
Embedded systems 

Java implementations 
Benchmarks 
Conclusions 

Embedded systems constraints 

cannot fully unroll all loops (small L1 cache): implies extra 
indirections 

64-bit operations are slow 

no superscalar execution: parallelism is expensive 

some do not have 32-bit rotations 

However, embedded systems often have plenty of registers. 
Endianness appears to be mostly irrelevant to performance. 

Thomas Pornin Comparative Performance Review of SHA-3 Candidates 



�

�

�

�

�

sphlib 
Embedded systems 

Java implementations 
Benchmarks 
Conclusions 

Java constraints 

Virtual Machines (in particular Java) offer portability, ease of 
development and distribution, and safety against buggy or 
hostile code. 

no special operations, only generic arithmetic code 

code cannot be adjusted for register size 

the JIT compiler produces fat code −→ severe L1 cache 
issues
 

table accesses are more expensive
 

the JIT compiler must work fast
 

Thomas Pornin Comparative Performance Review of SHA-3 Candidates 



sphlib 
Embedded systems 

Java implementations 
Benchmarks 
Conclusions 

x86-64: Intel Q6600, 64-bit, 2.4 GHz (MBytes/s)
 
Sheet1

Page 1

Hamsi

SIMD

CubeHash

JH

ECHO

Fugue

Grøstl

Luffa

SHAvite-3

Keccak

SHA-2

BLAKE

BMW

Skein

Shabal

0 50 100 150 200 250 300 350

Sheet1

Page 1

Hamsi

ECHO

SIMD

Fugue

Grøstl

Luffa

JH

CubeHash

SHAvite-3

Keccak

SHA-2

Shabal

BLAKE

Skein

BMW

0 50 100 150 200 250 300 350 400 450 500

256-bit output 512-bit output
 

Thomas Pornin Comparative Performance Review of SHA-3 Candidates 



sphlib 
Embedded systems 

Java implementations 
Benchmarks 
Conclusions 

i386: Intel Q6600, 32-bit, 2.4 GHz (MBytes/s)
 
Sheet1

Page 1

JH

Grøstl

SIMD

Hamsi

CubeHash

Keccak

ECHO

Fugue

Skein

SHAvite-3

Luffa

SHA-2

BLAKE

BMW

Shabal

0 50 100 150 200 250 300

Sheet1

Page 1

Hamsi

JH

Grøstl

Keccak

SIMD

ECHO

Fugue

CubeHash

BLAKE

SHA-2

Luffa

SHAvite-3

Skein

BMW

Shabal

0 50 100 150 200 250 300

256-bit output 512-bit output
 

Thomas Pornin Comparative Performance Review of SHA-3 Candidates 



sphlib 
Embedded systems 

Java implementations 
Benchmarks 
Conclusions 

G3: PowerPC 750, 32-bit, 300 MHz (MBytes/s)
 
Sheet1

Page 1

JH

Grøstl

Keccak

SIMD

Hamsi

ECHO

Skein

CubeHash

Fugue

SHAvite-3

Luffa

SHA-2

BMW

BLAKE

Shabal

0 5 10 15 20 25 30

Sheet1

Page 1

Hamsi

Keccak

Grøstl

JH

ECHO

SIMD

Fugue

Luffa

SHA-2

BLAKE

SHAvite-3

Skein

CubeHash

BMW

Shabal

0 5 10 15 20 25 30

256-bit output 512-bit output
 

Thomas Pornin Comparative Performance Review of SHA-3 Candidates 



sphlib 
Embedded systems 

Java implementations 
Benchmarks 
Conclusions 

MIPS: BCM3302, 32-bit, 200 MHz (MBytes/s)
 
Sheet1

Page 1

Grøstl

JH

Keccak

SIMD

Hamsi

ECHO

CubeHash

SHAvite-3

Luffa

Fugue

Skein

SHA-2

BLAKE

BMW

Shabal

0 1 2 3 4 5 6 7 8

Sheet1

Page 1

Hamsi

Grøstl

Keccak

SIMD

ECHO

JH

SHAvite-3

Fugue

Luffa

CubeHash

SHA-2

Skein

BLAKE

BMW

Shabal

0 1 2 3 4 5 6 7 8

256-bit output 512-bit output
 

Thomas Pornin Comparative Performance Review of SHA-3 Candidates 



sphlib 
Embedded systems 

Java implementations 
Benchmarks 
Conclusions 

ARMv4: ARM920T, 32-bit, 75 MHz (MBytes/s)
 
Sheet1

Page 1

JH

Keccak

Grøstl

Hamsi

SIMD

ECHO

CubeHash

SHAvite-3

Fugue

Skein

Luffa

BLAKE

SHA-2

BMW

Shabal

0 0.5 1 1.5 2 2.5 3 3.5

Sheet1

Page 1

Hamsi

Grøstl

Keccak

JH

ECHO

SIMD

Fugue

SHAvite-3

SHA-2

Luffa

Skein

CubeHash

BLAKE

BMW

Shabal

0 0.5 1 1.5 2 2.5 3 3.5

256-bit output 512-bit output
 

Thomas Pornin Comparative Performance Review of SHA-3 Candidates 



sphlib 
Embedded systems 

Java implementations 
Benchmarks 
Conclusions 

Java: Intel Q6600, 64-bit, 2.4 GHz (MBytes/s)
 
Sheet1

Page 1

SIMD

ECHO

Hamsi

JH

Grøstl

Fugue

CubeHash

SHAvite-3

Keccak

Luffa

BLAKE

BMW

SHA-2

Skein

Shabal

0 20 40 60 80 100 120 140 160 180

Sheet1

Page 1

SIMD

Hamsi

ECHO

Fugue

Grøstl

SHAvite-3

Keccak

JH

Luffa

CubeHash

SHA-2

BLAKE

Skein

Shabal

BMW

0 20 40 60 80 100 120 140 160 180 200

256-bit output 512-bit output
 

Thomas Pornin Comparative Performance Review of SHA-3 Candidates 



sphlib 
Embedded systems 

Java implementations 
Benchmarks 
Conclusions 

Java: Intel Q6600, 32-bit, 2.4 GHz (MBytes/s)
 
Sheet1

Page 1

JH

Keccak

SIMD

ECHO

Grøstl

Hamsi

CubeHash

Fugue

SHAvite-3

Luffa

Skein

BLAKE

SHA-2

BMW

Shabal

0 20 40 60 80 100 120 140 160

Sheet1

Page 1

SIMD

Hamsi

Keccak

ECHO

JH

Grøstl

Fugue

SHAvite-3

Luffa

SHA-2

CubeHash

Skein

BLAKE

BMW

Shabal

0 20 40 60 80 100 120 140 160

256-bit output 512-bit output
 

Thomas Pornin Comparative Performance Review of SHA-3 Candidates 



�

�

�

�

sphlib 
Embedded systems 

Java implementations 
Benchmarks 
Conclusions 

Conclusions 

Hash function performance is important on embedded
 
systems, much less so on large systems.
 
Most SHA-3 second round candidates (and SHA-2) appear
 
to be optimized for large systems and/or 64-bit platforms.
 
CubeHash, JH and Shabal are consistent (performance
 
does not depend on output size). Skein is mostly
 
consistent.
 
Shabal was designed to run well on embedded systems.
 

Thomas Pornin Comparative Performance Review of SHA-3 Candidates 



�

�

�

sphlib 
Embedded systems 

Java implementations 
Benchmarks 
Conclusions 

Unexplored questions 

Code footprint: often crucial in embedded systems. sphlib 
limits itself to the L1 cache size (8 kB on MIPS) but does 
not reduce code further. 
Short messages: sphlib optimizes code for long 
messages, with buffers. Meaningful benchmarks are 
harder for short messages. 
Script languages (e.g. Javascript). 

http://www.saphir2.com/sphlib/ 

Thomas Pornin Comparative Performance Review of SHA-3 Candidates 

http://www.saphir2.com/sphlib

	sphlib
	Embedded systems
	Java implementations
	Benchmarks
	Conclusions

