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sphlib 

sphlib is an open-source implementation of many hash 
functions: 

�	 includes SHA-2 and the 14 SHA-3 second-round 
candidates (and many older hash functions) 

�	 optimized, portable C code for “large systems” 
�	 optimized, portable C code for “small embedded systems” 
�	 optimized Java code 

�	 all functions were implemented by the same developer with 
similar optimization techniques and efforts 
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sphlib: why ? 

sphlib was initiated in 2007 with the following goals: 
to benchmark hash functions on many platforms, with an
 
emphasis on embedded systems;
 
to make a fair comparison between hash functions;
 
to explore performance of Java implementations of hash
 
functions. 

On PC systems, sphlib implementations are not the fastest 
available, but measures on PC can be used to validate 
optimization strategies, and to explore some architecture 
effects. 
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Comparison with eBASH 

eBASH relies on externally provided implementations: 
1.	 eBASH publishes results on some platforms; 
2.	 implementers try to beat current records and submit new 

code; 
3. loop to 1. 

This development process appears to be slow on non-PC 
platforms, and has not yet created enough momentum on 
embedded systems. In the meantime, sphlib provides 
measures.
 
Also, sphlib has Java code.
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Embedded systems
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Embedded systems 

Embedded systems which we consider here have the following 
characteristics: 

32-bit registers 

“raw” RISC with no extra unit (no SSE2, often no FPU 
either): optimal for “portable” C programming 

small L1 cache RAM for instruction (no more than 16 kB) 
low operating frequency (less than 200 MHz) 

Embedded systems are specialized and CPU-starved. 
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Embedded systems constraints 

cannot fully unroll all loops (small L1 cache): implies extra 
indirections 

64-bit operations are slow 

no superscalar execution: parallelism is expensive 

some do not have 32-bit rotations 

However, embedded systems often have plenty of registers. 
Endianness appears to be mostly irrelevant to performance. 
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Java constraints 

Virtual Machines (in particular Java) offer portability, ease of 
development and distribution, and safety against buggy or 
hostile code. 

no special operations, only generic arithmetic code 

code cannot be adjusted for register size 

the JIT compiler produces fat code −→ severe L1 cache 
issues
 

table accesses are more expensive
 

the JIT compiler must work fast
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x86-64: Intel Q6600, 64-bit, 2.4 GHz (MBytes/s)
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i386: Intel Q6600, 32-bit, 2.4 GHz (MBytes/s)
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G3: PowerPC 750, 32-bit, 300 MHz (MBytes/s)
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MIPS: BCM3302, 32-bit, 200 MHz (MBytes/s)
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ARMv4: ARM920T, 32-bit, 75 MHz (MBytes/s)
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Java: Intel Q6600, 64-bit, 2.4 GHz (MBytes/s)
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Java: Intel Q6600, 32-bit, 2.4 GHz (MBytes/s)
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Conclusions 

Hash function performance is important on embedded
 
systems, much less so on large systems.
 
Most SHA-3 second round candidates (and SHA-2) appear
 
to be optimized for large systems and/or 64-bit platforms.
 
CubeHash, JH and Shabal are consistent (performance
 
does not depend on output size). Skein is mostly
 
consistent.
 
Shabal was designed to run well on embedded systems.
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Unexplored questions 

Code footprint: often crucial in embedded systems. sphlib 
limits itself to the L1 cache size (8 kB on MIPS) but does 
not reduce code further. 
Short messages: sphlib optimizes code for long 
messages, with buffers. Meaningful benchmarks are 
harder for short messages. 
Script languages (e.g. Javascript). 

http://www.saphir2.com/sphlib/ 
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