
Efficient Hardware Implementations and Hardware Performance
Evaluation of SHA-3 Finalists

Kashif Latif, M Muzaffar Rao, Arshad Aziz and Athar Mahboob

National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan
 kashif@pnec.edu.pk, mrao@pnec.edu.pk, arshad@nust.edu.pk, athar@pnec.edu.pk

Abstract. Cryptographic hash functions are at the heart of many information security applications like digital
signatures, message authentication codes (MACs), and other forms of authentication. In consequence of recent
innovations in cryptanalysis of commonly used hash algorithms, NIST USA announced a publicly open
competition for selection of new standard Secure Hash Algorithm called SHA-3. An essential part of this contest
is hardware performance evaluation of the candidates. In this work we present efficient hardware
implementations and hardware performance evaluations of SHA-3 finalists. We implemented and investigated the
performance of SHA-3 finalists on latest Xilinx FPGAs. We show our results in the form of chip area
consumption, throughput and throughput per area on most recently released devices from Xilinx on which
implementations have not been reported yet. We have achieved substantial improvements in implementation
results from all of the previously reported work. This work serves as performance investigation of SHA-3 finalists
on most up-to-date FPGAs.

Keywords: SHA-3, Performance Evaluation, Cryptographic Hash Functions, High Speed Encryption Hardware,
FPGA.

1 Introduction

A cryptographic hash function is a deterministic procedure whose input is an arbitrary block of data and output is a
fixed-size bit string, which is known as the (Cryptographic) hash value. Cryptographic hash functions are widely
used in many information security applications like digital signatures, message authentication codes (MACs), and
other forms of authentication. There is a long list of cryptographic hash functions but with recent advances, many
have been found vulnerable and should not be used. Vulnerabilities found in a number of hash functions in August
2004, including SHA-0, RIPEMD, and MD5, led to the rendering of long-term security of SHA-1, RIPEMD-128,
and RIPEMD-160 algorithms suspect.

In 2004, Xiaoyun Wang et al. presented the collisions for MD4, MD5, HAVAL-128 and RIPEMD [1]. There
was a breakthrough in cryptanalysis of SHA-1 Hash Algorithm in August 2005. Professor M. Szydlo found that it is
possible to find a collision in SHA-1 in 263 operations [2]. Previously, it was thought that 280 operations are required
to find a collision in SHA-1 for a 160-bit block length. Furthermore, M. Stevens reported a collision attack on MD5
in 2006 [3].

To ensure the long-term robustness of applications that use hash functions National Institute of Standards and
Technology (NIST) USA has announced a public competition in the Federal Register Notice published on
November 2, 2007 [4] to develop a new cryptographic Hash algorithm called SHA-3. In response to NIST’s
announcement 64 submissions were reported, out of which 51 entries fulfilled the minimum submission
requirements and were selected as the First Round Candidates. These candidates were reduced to 14 in Round 2 of
the competition. After 2nd SHA-3 conference, 5 out of 14 Round 2 candidates have been selected and promoted to
the Final Round on December 9, 2010. Five short listed candidates advancing to the final round are BLAKE, Grøstl,
JH, Keccak and Skein. The tentative time-frame for the end of this competition and selection of finalist for SHA-3 is
in 4th quarter of 2012 [5].

This paper describes: efficient hardware implementations, implementation results on latest FPGA technologies
from Xilinx and hardware performance evaluation of these algorithms. The remainder of this paper is organized as
follows. We briefly give an overview of SHA-3 finalists in section 2. In section 3, we discuss the related work
reported to date. In section 4, we describe the methodology we adopted for efficient implementation and respective

performance evaluation of SHA-3 finalists. In section 5, we present the efficient hardware architectures for SHA-3
finalists. In section 6, we give the results of our work and compare them with previously reported work in section 7.
Section 8 presents performance evaluation of SHA-3 finalists. Finally, we provide conclusion in Section 9.

2 SHA-3 Finalists Overview

We provide here a quick overview of five SHA-3 finalists. Detailed descriptions of these algorithms may be found
in respective submission documents [6-10].

2.1 BLAKE

J. Aumasson et al. designed and proposed the BLAKE Hash family for SHA-3 [6]. BLAKE is based on Bernstein’s
stream cipher ChaCha and uses iteration mode HAIFA [11]. The internal construction of BLAKE is local wide-pipe,
same as of LAKE hash function [12]. BLAKE hash function consists of two basic variants, BLAKE-256 and
BLAKE-512. BLAKE-256 operates on 32-bit words while BLAKE-512 operates on 64-bit words. The other
required hash digest sizes may be derived from these two variants, i.e. 224 and 384. The inner state of the
compression function is represented as a 4×4 matrix of words. The compression function consists of 8 instances of
arithmetic function G. The G function consists of addition, XOR and rotation operations. Each G function operates
on 4 elements of state matrix. BLAKE compression function consists of 14 rounds for BALKE-256 and 16 rounds
for BLAKE-512.

2.2 Grøstl

P. Gauravaram et al. designed and proposed the Grøstl hash function for SHA-3 [7]. Grøstl is an iterated hash
function built from two fixed, large and distinct but similar permutations P and Q. Grøstl is a byte-oriented SP-
network which is based on components of AES [13]. These components are named as AddRoundConstant, SubByte,
ShiftBytes and MixBytes. The Grøstl has two variants Grøstl-512 and Grøstl-1024. The internal state consists of two
8x8-byte matrices for Grøstl-512 and two 8x16-byte matrices for Grøstl-1024. The permutation Q operates on a
message block and permutation P operates on XOR of message and chaining hash value or initial value. Each
permutation P and Q is iterated 10 times for Grøstl-512 and 14 times for Grøstl-1024. The next chaining value of
hash is calculated by XORing the outputs of P, Q and previous chaining hash value. After processing of all message
blocks final hash is transformed applying permutation P on chaining hash and XORing it with permuted value. The
resulting hash digest may be truncated to any desired length.

2.3 JH

Hongjun Wu designed and proposed the JH hash function for SHA-3 [8]. JH algorithm is based on the idea that
large block ciphers can be constructed through small components and a constant key. JH algorithm generalizes the
AES design methodology to high dimensions. JH-512 is the basic variant of JH. JH uses the same design for all
variants, i.e. JH-224, JH-256 and JH-384. These variants only differ in initial values (IV) and output hash length. JH
compression function is constructed from bijective function (a block cipher with constant key) [8]. JH compression
function compresses a previous 1024-bit hash value ܪ௜ିଵ and 512-bit message block ܯ௜ into new 1024-bit hash
value ܪ௜. The bijective function ܧ, consists of 42 rounds. Each round consists of 4-bit S-box substitution, a linear
transformation and a series of three permutations. The 1024-bit state of JH is grouped into 256 4-bit pairs before
start of round operations and de-grouped after it. Grouping and de-grouping of bits is defined in [8]. Two types of S-
boxes are used and selection of S-box for a given 4-bit substitution is controlled by respective bit value of round
constant.

2.4 Keccak

G. Bertoni et al. designed and proposed the Keccak Hash Function for SHA-3 [9]. Keccak is a family of sponge
functions with members Keccak [r, c] characterized by two parameters, bitrate r and capacity c. The sum r + c
determines the width of the Keccak-f permutation used in the sponge construction and is restricted to values in {25,
50, 100, 200, 400, 800, 1600}. For SHA-3 proposal Keccak team proposed the Keccak [1600] with different r and c
values for each desired length of hash output [9]. For 256-bit hash output r = 1088 and c = 512. For 512-bit hash
output r = 576 and c = 1024. The 1600-bit state of Keccak [1600] consists of 5x5 matrix of 64-bit words. The
compression function of Keccak consists of five steps: theta (ߠ), rho (ߩ), pi (ߨ), chi (߯) and iota (݅). These steps
consists of simple XOR, AND, NOT and permutation operations. Each compression step of Keccak consists of 24
rounds. Keccak hash function operation consists of three phases, initialization, absorbing phase and squeezing
phase. Initialization is simply initializing the state matrix with all zeros. In absorbing phase each ݎ-bit wide block of
message is XORed with current matrix state and 24 rounds of Keccak permutation are performed. After absorbing
all blocks of input message in that fashion there comes the squeezing phase. In squeezing phase the state matrix is
simply truncated to desired length of output hash. If more than ݎ-bit hash value is required then more Keccak
permutations are performed and their results concatenated until hash width reaches the desired length.

2.5 Skein

N. Ferguson et al. designed and proposed the Skein family of cryptographic hash functions for SHA-3 [10]. Skein
has three different internal state sizes: 256, 512, and 1024 bits. Each of these state sizes can support any output size.
Skein-512 is the primary proposal for SHA-3. Skein is built from three components, Threefish tweakable block
cipher, Unique Block Iteration (UBI) and Optional argument system. The tweakable block cipher makes every
instance of compression unique by hashing configuration data along with input message. The compression function
of Skein consists of a layer of non-linear MIX operations and permutation. MIX operation consists of addition
modulo 264, rotation and XOR operation on a pair of 64-bit words. The Threefish compression function is used in
UBI chaining mode to compress arbitrary length of input data to fixed size hash digest.

 3 Related Work

There are two main streams of hardware implementations of algorithms on FPGA and ASIC platforms: high speed
implementations and compact implementations. Various groups around the world are working on hardware
performance evaluation of SHA-3 candidates using these two types of implementations. The SHA-3 Zoo website
[14] reports the comprehensive results of reported work. Most of the reported work is focused on high speed
architectures as it provides a direct snapshot of the basic operations’ cost for a given algorithm. The relevant
category for our work is high speed implementations on FPGAs. In Table 1, we provide a snapshot of high speed
implementations’ results, for FPGAs, from different groups. The comprehensive studies for all 14 round 2
candidates are reported by Baldwin et al. [15], Matsuo et al. [16], Gaj et al. [17] and Homsirikamol et al. [18]. For
round 3, the only comprehensive results for all five finalists are reported by Homsirikamol et al. [19]. Homsirikamol
et al. [19] discussed and reported their results for various architectures using pipelining, folding and loop unrolling
approaches. For performance comparison, we quote here the results of architecture based on basic iterative
approach. The specifications for BLAKE, Grøstl and JH have been tweaked for round 3. Hence, the results listed in
Table 1 have been calculated again for round 3 specifications based on the reported clock frequencies and number of
clock cycles consumed for respective designs [15-17]. Some efficient compact implementations of SHA-3 finalists
are reported in [20-22]. The high speed ASIC implementations are reported in [23-25].

4 Implementation Methodology

We have implemented the 256-bit and 512-bit variants of all five SHA-3 finalists. Our designs are fully autonomus
with complete I/O interfaces. We targeted for efficient implementations but keeping in mind the fair hardware
performance comparison for these candidates. We assure this appraoch by catering for the follwing constraints:

Table 1. SHA-3 Finalists Implementations. ܨ௠௔௫ in MHz, ܽ݁ݎܣ in Slices, ܶܲ in Gbps and ܶܲܣ in Mbps/Slice

SHA-3
Finalist

Author(s) Device
256-bit 512-bit

 ࡭ࡼࢀ ࡼࢀ ࢇࢋ࢘࡭ ࢞ࢇ࢓ࡲ ࡭ࡼࢀ ࡼࢀ ࢇࢋ࢘࡭ ࢞ࢇ࢓ࡲ

BLAKE

Aumasson et al. [6] Virtex 5 100.00 1217 1.76 1.45 50.00 2389 1.55 0.65

N. Sklavos [26] Virtex 50.00 3101 0.91 0.29 27.00 11800 0.864 0.07

Baldwin et al. [15] Virtex 5 91.35 1653 0.83 0.50 71.05 2888 1.14 0.39

Matsuo et al. [16] Virtex 5 115.00 1660 0.64 0.38 - - - -

Kris Gaj et al. [17] Virtex 5 117.06 1871 2.07 1.10 106.01 3276 3.29 1.00

E. Hom. et al. [19] Virtex 6 - 1247 1.96 1.57 - 2628 3.19 1.21

E. Hom. et al. [19] Virtex 5 - 1691 2.25 1.33 - 3337 3.16 0.95

Grøstl

Baldwin et al.[15] Virtex 5 78.06 2579 3.24 1.26 113.12 4525 3.62 0.80

Matsuo et al. [16] Virtex 5 154 2616 1.97 0.75 - - - -

Kris Gaj et al. [17] Virtex 5 355.87 1884 8.676 4.61 180.15 3466 6.36 1.84

E. Hom. et al. [19] Virtex 6 - 2630 9.34 3.55 - 5106 11.57 2.27

E. Hom. et al. [19] Virtex 5 - 2591 8.081 3.12 - 5254 10.12 1.93

JH

Baldwin et al.[15] Virtex 5 144.11 1763 1.64 0.93 144.11 1763 1.64 0.93

Matsuo et al. [16] Virtex 5 201.00 2661 0.733 0.27 - - - -

Kris Gaj et al. [17] Virtex 5 278.09 1108 3.39 3.06 275.48 1165 3.36 2.88

E. Hom. et al. [19] Virtex 6 - 847 5.70 6.73 - 896 5.34 5.95

E. Hom. et al. [19] Virtex 5 - 909 4.62 5.09 - 1020 4.73 4.64

Keccak

Keccak Team [9] Virtex 5 122.00 1330 5.20 3.91 - - - -

Strömbergson [27] Spartan3A 85.00 3393 4.80 1.41 - - - -

Strömbergson [27] Virtex 5 118.00 1483 6.70 4.52 - - -

Baldwin et al.[15] Virtex 5 195.73 1971 6.26 3.17 195.73 1971 8.52 4.32

Matsuo et al. [16] Virtex 5 205.00 1433 4.20 2.93 - - - -

Akin et al. [28] Spartan 3 81.40 2024 3.46 1.71 - - - -

Akin et al. [28] Virtex-II 136.60 2024 5.81 2.87 - - - -

Akin et al. [28] Virtex 4 142.90 2024 6.07 3.00 - - -

Kris Gaj et al. [17] Virtex 5 238.38 1229 10.81 8.79 276.86 1236 6.64 5.37

E. Hom. et al. [19] Virtex 6 - 1165 11.84 10.17 - 1231 7.23 5.87

E. Hom. et al. [19] Virtex 5 - 1395 12.77 9.16 - 1220 6.56 5.37

Skein

Baldwin et al. [15] Virtex 5 - - - - 83.58 2756 0.97 0.35

Matsuo et al. [16] Virtex 5 115.00 854 0.283 0.33 - - - -

Kris Gaj et al. [17] Virtex 5 116.35 843 1.568 1.86 104.34 1520 2.812 1.85

M. Long. [29] Virtex 5 114.94 931 0.407 0.44 114.94 1758 0.82 0.46

S. Tillich. [30] Virtex 5 68.40 937 1.751 1.87 69.04 1632 3.535 2.17

S. Tillich. [30] Spartan 3 26.14 2421 0.669 0.28 26.66 4273 1.365 0.32

E. Hom. et al. [19] Virtex 6 - 1510 3.27 2.17 - 1591 3.11 1.96

E. Hom. et al. [19] Virtex 5 - 1728 2.93 1.70 - 1658 2.81 1.7

• Common Environment: It effects the implementations in terms of the level of expertise, language, coding
techniques, design methodoly, and development tools. We assured it by keeping: common implementer for all
candidates, using Verilog as the common language, use of a common design methodology (discussed in next
point) and using Xilinx’s ISE 13.1 as the common development tool.

• Design Methodology: For a fair comparison it is necessary to utilize same set of harware recources for all
candidates. We assured it by forcing our designs to map on LUT based logic and not to use dedicated hardware
resources like BRAMs, Multipliers and DSPSlices. We further assured this approach by using LUT primitives
from Xilinx HDL libraray, wherever possible. We will discuss this approach in detail later in this section.
Memories are also implemented using distributed RAMs/ROMs because they utilize the LUT resources and
memory requirement of a candidate is reflected in terms of utilized area.

• Common I/O Interface: Using common Input/Output interface assures the identical flow of data for all candidates
in investigation. It also assures modular approach by reusing the same module wherever possible.

• Overhead suppression: We did not implement the optional parameters of the candidates like salt input, Hash Tree
functionality and HMAC etc. Furthermore, we assume that input message blocks are already padded outside. The
padding techniques are almost similar for every algorithm and mainly result in same area overhead.

4.1 I/O Interface

The developed input/output interface is shown in Fig. 1(a). All I/O transactions are synchronized. Each I/O is
sampled at the rising edge of clock pulse. The input cycle is initiated by I/O interface by setting load signal to high.
Hash Module acknowledges the request if it is able to receive data by setting ack signal to high. After receiving
acknowledgment, I/O interface make available 64-bit word of data at each rising edge of clock pulse. During the
transaction of data, ack signal remains at logic high. After receiving desired amount of input words Hash Module
sets the ack signal to low. Accordingly, I/O interface pulls the load signal to low if no more transactions are
required. If message blocks are still present, load signal will remain high but Hash Module acknowledges it after
one clock cycle from the previous transaction. In the same way when Hash Module is ready with a valid hash value
it signals the I/O interface by putting hash_valid signal to high. After putting hash_valid signal hash module
outputs 64-bit words on each rising edge of clock cycle until the desired hash length is achieved. I/O interface is
designed in a way that it does not affect the ongoing processing within hash module. That is, we can make I/O
transactions at the same time while hash of a message block is in progress.

4.2 Control and Data Paths

Hash module of each candidate consists of two major parts, the control path and the data path. Block diagram of hash
module separated in control path and data path is depicted in Fig. 1(b). Control path consists of Finite State Machine,
State Register, Clock and Counter. Data path consists of Input registers, Hash Core, Intermediate registers and Output
registers. Input registers of data path consist of a Serial In Parallel Out (SIPO) register and other registers to store
message and other input parameters like key in case of Skein. Hash Core is the main arithmetic logic unit of the hash
algorithm. Intermediate registers are utilized to store intermediate results of the hash algorithm. Output register
contains the resulting hash and it is a Parallel In Serial Out (PISO) register to serially output the result.

4.3 FPGA Specific Issues and Their Implication on SHA-3 Algorithm Architectures

The architectures of latest FPGA families from Xilinx (Virtex 5, Virtex 6, Spartan 6 and Virtex 7) are based on 6-
input LUTs, named LUT6 [31]. A CLB Slice of Xilinx FPGA consists of 4 such LUTs. Each LUT6 has six
independent inputs and two independent outputs. These LUTs may be configured and used in many different ways.
A LUT6 may be used as independent 5-input LUT using LUT5 primitive from Xilinx HDL library, shown in Fig.
2(a). On the other hand, it is possible to implement any two 5-input logic functions with shared inputs using
LUT6_2 primitive, shown in Fig. 2(b). In this case, LUT input ݅5 selects between two 5-input logic functions to
connect at output ܱ6. Same LUT6_2 primitive may be used to draw two independent outputs from a LUT6, with
shared 5-inputs. In this case, input ݅5 should be tied to logic high (i.e. 1). The INIT value in hexadecimal, shown
under attributes in Fig. 2(a) and 2(b) configures the LUT to perform desired operation at its inputs. The INIT value
is derived by laying down the truth table for all possible combinations of LUT inputs and outputs. We have used
these primitives excessively in architectural designs of SHA-3 finalists. We also exploit the techniques presented in
[32] for efficient utilization of modern FPGA resources.

5 Datapath Architectures for SHA-3 Finalists

This section provides architectural details of datapaths designed for SHA-3 finalists.

5.1 BLAKE

The datapath implemented for BLAKE is shown in Fig. 3. The V_Reg represents the ݒ matrix register, on which
processing of BLAKE algorithm takes place. The CV_Reg stores the intermediate chaining hash values.
Initialization module initializes the V_Reg by taking IV (Initial Value) or chaining hash value as input. Core
functionality of BLAKE algorithm is represented by G function module. Four instantiations of G function module
are utilized to compute 4 G operations in parallel. These instantiations are represented as G1, G2, G3 and G4. Each
G function instance computes a different G function on alternate clock cycles. G1 instance computes G0 and G8, G2
computes G2 and G10, G3 computes G4 and G12 and similarly G4 computes G6 and G14, on alternate clock cycles. G
function module is implemented using pure combinational logic. BLAKE is one of the algorithms where use of
specific library resources not turns into advantageous outcomes. The addition operation on Xilinx FPGAs is
efficiently implemented by synthesis tools itself by using dedicated carry logic resources. The XOR and rotation
operation are not expensive operations in terms of resource utilization. Hence, efficient direct coding of the
equations of BLAKE returns good synthesis results. The ADD and XOR operations are implemented using Verilog
operators ‘+’ and ‘^’ respectively. Circular shift operations are performed through rewiring of the nets. Each round
takes 2 clock cycles to complete, therefore 28 clock cycles are required to complete 14 rounds of BLAKE algorithm.

D
at

a
P

at
h

hash_done

hash_en

select

reset

 clock

Clock

Counter

FSM
Logic

State
Reg

Input Registers

Hash Core

Output Register

Intermediate
Registers

 input

 output

C
on

tro
l P

at
h

(b)

64

hash_valid
data_IN

data_OUT

ack
load
reset
clock

I/O
Interface

Hash
Module

64

(a)

Fig. 1. (a) Common I/O Interface (b) Hash Module separated in Control and Data paths

LUT5

LUT5

݅0

݅1

݅2

݅3

݅4

݅5

Attributes
INIT=0000000000000000

6-Input Look-Up Table

LUT6_2

ܱ5

ܱ6

LUT5

Attributes
INIT= 00000000

5-Input Look-Up Table ݅0
݅1
݅2
݅3
݅4

ܱ

(a) (b)

Fig. 2. LUT5 and LUT6_2 primitives in Xilinx HDL library

After completion of 14 rounds, finalization module computes final or next chaining hash value by taking contents of
V_Reg and CV_Reg as input.

5.2 Grøstl

The datapath implemented for Grøstl is shown in Fig. 4. The compression function of Grøstl consists of two separate
permutations P and Q. These permutations are almost identical and can be implemented in parallel. Two differences
between P and Q are in the step of AddRoundConstant, where different round constants are used, and in ShiftByte
step, where different scheme is used to circular shift the bytes left. AddRoundConstant step is a simple eight byte
XOR operation of input matrix with round constant. SubByte is AES S-box substitution; it is implemented using
combinational logic which utilizes the internal logic structure of inversion in Galois Field GF(28) and affine
transformation, as described in [8]. ShiftByte is circular shift of bytes in matrix; it is implemented through simple re-
labeling of the bytes in matrix. MixByte step multiplies each column of the matrix to a constant 8x8 matrix in Galois
Field GF (28). This step is implemented as combinational logic described in [8]. In the beginning of every hash
process the message block (msg) is directly pass on to Q permutation. The P permutation operates on XOR of msg
and initial value (IV) or chaining hash value. Both permutations P and Q are iterated 10 times for Grøstl-512 and 14
times for Grøstl-1024. After completion of desired number of rounds next chaining hash value is obtained by
XORing outputs of P, Q and previous chaining value. This process continues till the end of all message blocks. At
the end, resulting chaining hash is again permuted through permutation P and XORed with permuted value to obtain
final hash digest.

5.3 JH

The datapath implemented for JH is shown in Fig. 5(a). The state_reg represents the intermediate JH state register, on
which processing of JH algorithm takes place. JH hash function uses the same algorithm for all hash digest sizes.

Fig. 3. Data path of BLAKE

hash

Finalization

G1

G
 F

un
ct

io
ns

G2 G3 G4

V_Reg

Initialization

IV

CV_Reg

msg

cnst.

counter

b
b b

b

w

w

b: 512/1024
w: 32/64

Fig. 4. Data path of Grøstl

b

b b

b

b

b

msg IV
b

b: 512/1024
h: 256/512

AddConstant
SubByte
ShiftByte
MixByte

AddConstant
SubByte
ShiftByte
MixByte

Trunc.

hash

b

b

h

b

b

P_Reg Q_Reg

Hence, same data path is utilized for all hash digest sizes. The only difference between data path for different hash sizes
is of initial values (IV) and hash output registers. In the beginning of every hash process state_reg is initialized with IV
of desired hash digest size. Then a complete JH compression is processed by setting msg and round constant RC to
zero. The higher order 512 bits of resulting state of JH compression is then XORed with first message block and stored
in state_reg. Then contents of state_reg are processed through JH compression function with respective round constant.
JH compression function consists of 42 rounds of its arithmetic logic unit (ALU). A single round is processed in one
clock cycle. Therefore 42 clock cycles are required to complete 42 rounds of JH compression function. After
completion of 42 rounds on a message block, resulting lower order 512 bits of JH compression state is XORed with
msg, to obtain next chaining hash value. The higher order 512 bits of resulting chaining hash value is then XORed with
next message block and stored in state_reg and same compression sequence is repeated again. This process continues
till the end of all message blocks. At the end, resulting lower 512 bits of chaining hash value is truncated to the desired
length of hash output. The Trunc. block in Fig. 5(a) represents the truncation operation. The Concat. block represents
the concatenation operation. The grouping and degrouping blocks are used to perform grouping and de-grouping of JH
state bits into 4-bit pairs as specified in JH specification document [8]. In terms of hardware implementation these steps
are achieved through simple rewiring of interconnects, at no resource cost. The round constants (RC) are stored in
ROM using 43x256 bit single port distributed ROM. Respective round constant is addressed during each round using
round number as ROM address.

JH Arithmetic Logic Unit (ALU): JH ALU consists of S-boxes (S) and linear transformation units (L). JH ALU
works on 4-bit pairs of JH state register contents. For S-box, we used LUT6_2 primitive (Fig. 2(b)) and used both of
its output i.e. ܱ5 and ܱ6. Using this approach 4 S-boxes are adjusted within a single slice. In this approach S-box
logic of JH ALU consists of only 128 slices. Implementation of a single S-box using this approach is depicted in
Fig. 5(b). The INIT values (in hexadecimal) shown in figure, are actual configuration values for each LUT to
perform S-box operation. Linear transformation is also implemented using same optimized approach. LUT6_2
primitive with both outputs ܱ5 and ܱ6 is used. Implementation of a single linear transformation unit (L) is depicted
in Fig. 5(c). The INIT values (in hexadecimal) shown in figure, are actual configuration values for each LUT to
perform L operation. Same variables are shown for inputs and outputs in Fig. 5(c) as denoted in linear
transformation equations in specification document [8].

Fig. 5. Architectural detail of JH

LUT5

LUT5

 ݏ

 0ݔ

 1ݔ

 2ݔ

 3ݔ

1

Attributes
INIT=73259EC811F93

6-Input Look-Up

LUT6_2

0ݕ

1ݕ

LUT5

LUT5

 ݏ

 0ݔ

 1ݔ

 2ݔ

 3ݔ

1

Attributes
INIT=F18AC2B9493E

6-Input Look-Up

LUT6_2

2ݕ

3ݕ

(b) 5-to-4 bit S-box

LUT5

LUT5

0

 ଵܤ

 ଴ܣ

 ଶܣ

 ଷܣ

1

Attributes
INIT=69966996969696

6-Input Look-Up

LUT6_2

ଵܦ

ଶܥ

LUT5

LUT5

0

 0

 ଶܤ

 ଵܣ

 ଷܣ

1

Attributes
INIT=969696963C3C3

6-Input Look-Up

LUT6_2

ଶܦ

ଷܥ

LUT5

LUT5

଴ܤ

ଷܤ

ଵܣ

ଶܣ

ଷܣ

1

Attributes
INIT=966969963C3C3

6-Input Look-Up

LUT6_2

 ଴ܦ

 ଵܥ

LUT5

LUT5

0

 0

ଷܤ

଴ܣ

ଶܣ

1

Attributes
INIT=969696963C3C3

6-Input Look-Up

LUT6_2

 ଷܦ

 ଴ܥ

(c) Linear Transformation (a) Data path of JH

1024

hash

counter

Trunc. Concat.

state_reg

msg

grouping

JH
Compression

degrouping

1024

1023…512 511…0

IV

512

256

1024

1024

RC
ROM

5.4 Keccak

The datapath implemented for Keccak is shown in Fig. 6(a). The A_Reg represents the ܣ matrix register, on which
processing of Keccak algorithm takes place. Keccak data path is fully parameterized, such that the design may be
synthesized for any value of r (bitrate) and c (capacity). For that reason, the width of each net is highlighted as r, c
or r + c in Fig. 6(a). The length of A_Reg also varies according to r and c and it is defined as r + c (bits). For
Keccak-256, r is specified as 1088-bits and c as 512-bits. For Keccak-512, r is specified as 576-bits and c as 1024-
bits. Accordingly A_Reg will be of 1600-bits. In beginning of every hash process A_Reg is initialized with all zeros.
First message block is directly copied to A_Reg after concatenating it with c wide stream of 0’s. The Concat block in
Fig. 6(a) represents the concatenation operation. Compression function of Keccak consists of five steps. In Fig. 6(a)
each step is denoted by the symbol as specified in Keccak specifications. These steps are ߠ, ,ߩ ,ߨ ߯ and i. We have
combined these steps during implementation, wherever possible. We have implemented ߩ and ߨ as a single step.
Keccak algorithm’s compression function consists of very simple arithmetic operations. It involves simple XOR,
AND and NOT operations. These operations are implemented using LUT primitives from Xilinx specific libraries.
Following are details of implementation of each step:

Theta (ࣂ) Step: There are three equations in ߠ step. First equation (calculation of C) is implemented using LUT5
primitive for XOR logic as shown in Fig. 6(b). The INIT value in hexadecimal, shown under attributes in figure,
configures the LUT to perform XOR operation at its inputs. The INIT value is derived by laying down the truth table
for all possible combinations of LUT inputs. To XOR 5 64-bit operands of the equation, LUT5 primitive is
instantiated 64 times. For complete implementation of equation, 5x64 LUT5 are required. We can combine
remaining two equations of theta step. For its implementation, LUT3 primitive is used for XOR logic as shown in
Fig. 6(c). The one bit rotation in last operand is implemented through rewiring. To implement the complete logic,
25x64 instantiations of LUT3 primitive are required.

h

c
r

r + c

r + c

r + c

hash

RC
ROM

Trunc. r

Concat.

A_Reg

m 0
’

c r

c

r

θ
ρ || π

χ

i

counter

LUT5

Attributes
INIT= 96696996

5-Input Look-Up Table ݅0
݅1
݅2
݅3
݅4

ܱ

ܱ ൌ ݅0 ْ ݅1 ْ ݅2 ْ ݅3 ْ ݅4

(b) 5-bit XOR used in � step (c) 3-bit XOR used in � step

ܱ ൌ ݅0 ْ ݅1 ْ ݅2

ܱ

LUT3

Attributes
INIT= 96

3-Input Look-Up Table
݅0

݅1

݅2

(d) 3-bit Logic used in � step

ܱ ൌ ݅0 ْ ሺ~݅1 & ݅2ሻ

ܱ

LUT3

Attributes
INIT= D2

3-Input Look-Up Table
݅0

݅1

݅2

(e) 2-bit XOR used in i step

ܱ ൌ ݅0 ْ ݅1

ܱ

LUT2

Attributes
INIT= 6

2-Input Look-Up Table
݅0

݅1

Fig. 6. Architectural detail of Keccak

(a) Data path of Keccak

Rho (࣋) and Pi (࣊) Steps: The ߩ and ߨ are permutations, which may be achieved through simple rewiring in
hardware, at no resource cost. The cyclic shift constant ݎሾݔ, It is .ܣ ሿ is fixed and known for each position of matrixݕ
also implemented by means of fixed rewiring.
Chi (࣑ሻ Step: In ߯ step three logical operations XOR, NOT and AND are used. These are implemented using LUT3
primitive as shown in Fig. 6(d). In order to accomplish the ߯ step, LUT3 with ߯ logic is instantiated 25x64 times.
Iota (࢏): The i step involves simple XOR of round constant with least significant 64 bits of A_Reg, i.e. ܣሾ0,0ሿ. It is
implemented using LUT2 primitive as shown in Fig. 4(d). LUT2 is instantiated 64 times for i step.

The round constants (RC) are stored in ROM using 24x64 bit single port distributed ROM. Respective round
constant is addressed during each round using round number as ROM address. These five steps or a single round of
Keccak algorithm are accomplished in one clock cycle. Therefore 24 clock cycles are required to complete 24
rounds of Keccak algorithm. After completion of 24 rounds on a message block, resulting r-bits of state of A_Reg
are XORed with next message block and same round sequence is repeated again. This process continues till the end
of all message blocks. At the end, state of A_Reg is truncated to the desired length of hash output.

 5.5 Skein

The datapath implemented for Skein is shown in Fig. 7(a). Add_Subkey module consists of 8 64-bit adders,
implemented using fast carry chain logic available in Xilinx FPGAs. The Threefish compression function of Skein is
partially implemented using 4 unrolled rounds. These 4 rounds are then iteratively used to complete 72 rounds of
compression function. The novel idea in implementation of these 4 unrolled rounds is that, we do not need separate
MIX modules and multiplexers to select between different rotation constants in second step of MIX operation. We
have efficiently implemented second step in MIX module using a LUT4 primitive depicted in Fig. 7(c). The select
bit ݏ, selects between two rotated instances of ݔଵ, according to round number, to XOR with ݕ଴. For first four rounds
 is zero and upper half rows of rotation constants’ table are used for respective MIX modules. For next four rounds ݏ
 ,will be 1 and lower half rows of rotation constants’ table are used for respective MIX modules. For example ݏ
ଵݔ ا 46 will be selected and XORed with ݕ଴ in first round and ݔଵ ا 39 will be selected and XORed with ݕ଴ in
fifth round. Hardware architecture of key schedule module is shown in Fig. 7(b). The extended key K8 is obtained by
XORing the input 64-bit key words (K0…..K7) and constant C240. The extended teak t2 is obtained by XORing the two
input 64-bit tweak word (t0 and t1). The extended key and tweak words are then loaded into the circular shift
registers K (576 bit) and t (192 bit). These two registers are clocked and rotated once for each subkey. Key Schedule
module generates subkeys on every falling edge of clock pulse. Add_Subkey module gives output on the rising edge

msg
Add_Subkey

Key_Schedule

MIX
Permute

MIX
Permute

MIX
Permute

MIX
Permute

msg
tweak

IV

 ݏ

Trunc.

hash

b b

b

b

b
b

128
b

b

1

b: 256/512
h: 256/512

h

(a) Data path of Skein

Circular Shift Circular Shift

K0K1K2K3 K4 K5 K6 K8 K7t0t2 t1

Counter
(Round #)

512-bit Subkey
(b) Key_Schedule Module

Fig. 7. Architectural detail of Skein

(c) Selection between two rotation constants in MIX operation

ଵݕ ൌ ݏ ? ൫ሺݔଵ ا 39ሻْ ଴൯ݕ ׷ ൫ሺݔଵ ا 46ሻْ ଴൯ݕ

LUT4

Attributes
INIT= 5A66

4-Input Look-Up Table

଴ݕ
ଵݔ ا 46
ଵݔ ا 39

ݏ

ଵݕ

of each clock pulse. Next subkey is available on falling edge of the same clock pulse. In this way one clock cycle is
required to complete four rounds, subkey addition and subkey generation. Therefore to complete 72 rounds and 19
subkey addition of Skein, 19 clock cycles will be required. The next chaining hash value will be available after 19
clock cycles.

6 Implementation Results

As mentioned earlier, for implementations and hardware performance evaluation of SHA-3 candidates, we aimed to
target the latest and up-to-date FPGA technology from Xilinx. The latest 7 series release from Xilinx was of main
interest. From this series we chose Virtex 7 for our implementations. We also implemented our designs on Virtex 6,
latest before the release of 7 series in June 2010, and Virtex 5. Detailed device specifications are: Virtex 5 LX30T,
speed grade 3, package FF323 (5vlx30tff323-3), Virtex 6 LX75T, speed grade 3, package FF784 (6vlx75tff784-3)
and Virtex 7 285T, speed grade 3, package FG1157 (7v285tffg1157-3). The resulting clock frequencies and area
utilization after place and route are reported. Table 2 shows achieved area consumption (ܽ݁ݎܣ), clock frequency
 is the block size ݁ݖ݅ܵ ݇ܿ݋݈ܤ for implemented designs. The (ܣܲܶ) throughput (ܶܲ) and throughput per area ,(௠௔௫ܨ)
of message in bits and ௖ܰ௟௞ is the number of clock cycles required for hash of a single message block.

Table 2. Implementation Results for 256-bit and 512-bit variants for SHA-3 Finalists

SHA-3
Finalist

Device

256-bit 512-bit

 ࢑ࢉ࢕࢒࡮
 ࢋࢠ࢏ࡿ
[bits]

 ࢑࢒ࢉࡺ
[cycles]

 ࢞ࢇ࢓ࡲ
[MHz]

 ࢇࢋ࢘࡭
[Slices]

 ࡼࢀ
[Gb/s]

 ࡭ࡼࢀ
[Mbps/slice]

 ࢑ࢉ࢕࢒࡮
 ࢋࢠ࢏ࡿ
[bits]

࢑࢒ࢉࡺ
[cycles]

 ࢞ࢇ࢓ࡲ
[MHz]

 ࢇࢋ࢘࡭
[Slices]

 ࡼࢀ
[Gb/s]

 ࡭ࡼࢀ
[Mbps/slice]

BLAKE

Virtex 5 512 28 125.55 1382 2.29 1.66 1024 32 100.02 2582 3.21 1.24

Virtex 6 512 28 125.82 1104 2.30 2.08 1024 32 104.30 2246 3.34 1.46

Virtex 7 512 28 137.14 1322 2.51 1.90 1024 32 115.01 2441 3.68 1.51

Grøstl
Virtex 5 512 10 121.03 1419 6.20 4.37 1024 14 101.22 2523 7.40 2.94

Virtex 6 512 10 146.87 1467 9.62 5.12 1024 14 125.44 2359 9.17 3.89

Virtex 7 512 10 175.65 1421 8.99 6.33 1024 14 155.02 3524 11.3 3.23

JH

Virtex 5 512 42 287.44 865 3.50 4.05 512 42 292.48 888 3.57 4.02

Virtex 6 512 42 303.65 562 3.70 6.59 512 42 306.37 661 3.74 5.65

Virtex 7 512 42 329.49 587 4.02 6.84 512 42 338.41 679 4.13 6.08

Keccak

Virtex 5 1088 24 275.56 1333 12.49 9.37 576 24 263.16 1197 6.32 5.28

Virtex 6 1088 24 301.57 915 13.67 14.94 576 24 291.21 1015 6.99 6.89

Virtex 7 1088 24 292.74 1161 13.27 11.43 576 24 254.91 1039 6.12 5.88

Skein

Virtex 5 512 19 113.78 1492 3.07 2.05 512 19 113.60 1544 3.06 1.98

Virtex 6 512 19 114.30 1163 3.08 2.65 512 19 112.36 1203 3.03 2.52

Virtex 7 512 19 127.73 1170 3.44 2.94 512 19 128.24 1244 3.46 2.78

One important observation from the results presented in Table 2 is that the achieved clock frequencies (ܨ௠௔௫) on
Virtex 7 for all designs are at higher end as compared with Virtex 5 and Virtex 6 results. However, most of the time
designs on Virtex 7 consume more area which leads to a reduction in the overall TPA. This is somewhat unusual and
unexpected. We can suggest possible reasons for this behavior. Firstly, Xilinx has introduced Virtex 7 for the very
first time in ISE Design Suite 13.1, which we used for our implementations. There is a possibility that ISE 13.1
synthesis and implementation algorithms are not optimized for the Virtex 7 architecture. Secondly, the LUT
primitives we used from Xilinx library are specific to Virtex 5 and Virtex 6 and the tool did not synthesize them
correctly for Virtex 7. Xilinx has just released the documentation for Virtex 7 series FPGAs. A closer look at the
Virtex 7 internal architecture and modification of all designs accordingly may lead to better results. We suggest this
idea as a future work.

7 Com

We have ta
latest Xilin
work to da
results from
previously
various tec
evident tha
throughput

8 Perfo

In evaluati
area as a m
against eac
variants, re
other four
difference
Keccak. In
variants. T
In terms o
significant
throughput
BLAKE a
throughput
JH and Grø

Fig. 8. Perfo

0

2000

4000

6000

8000

10000

12000

14000

16000

mparison wit

aken this oppo
nx FPGAs. Be
ate utilized the
m all of the pre
 reported work
chnological dif
at our results
t per area.

ormance Co

ion of hardwar
major deciding
ch device, from
espectively, in
 candidates, on
 is large for 25
n terms of are

The area consum
of throughput,
 differences f
t and throughp
and Skein are
t per area as th
østl as second

ormance Compa

Area
[Slices] [M

Vi

th Previous

rtunity to repo
efore this no im
e Virtex 6 fam
eviously report
k in terms of th
fferences betw
for Virtex 6

mparison o

re performance
g factor [33].
m Table 2. Fig
 a graphical vi
n all devices,
56-bit variant;
ea consumption
mption differen
 again Keccak

for 512-bit dig
put per area, BL
e computationa
he major decid
and third, resp

arison of 256-bit

TP
Mbps]

TPA
[Kbps/Slice

irtex 7

 work

ort SHA-3 cand
mplementation

mily at most. W
ted work. Our r
hroughput per a
ween these dev
and Virtex 5

of SHA-3 Fin

e of SHA-3 can
Keeping this

g. 8 and Fig. 9
iew based on o
in terms of th

 however, in c
n JH leads all
nce from JH to
k is far ahead
gest sizes on
LAKE and Ske
ally intensive

ding factor for
ectively.

 Variants of SHA

e]
Area
[Slices] [M

Vi

didates’ hardwa
n results have

We have achiev
results for Virt
area. But comp
vices. Based o
are also excee

nalists

ndidates in sec
criterion in m

9 represent the
our results. It

hroughput per
case of 512-bit
l of the other
o other candida
d for 256-bit
all devices. F
ein are well be
 designs as c
 performance c

A-3 Finalists

TP
Mbps]

TPA
[Kbps/Slice

rtex 6

are implementa
 been reported
ved substantial
tex 5, Virtex 6
parison on diffe
n the compari
eding most of

cond round, NI
mind we consid

 performance c
is clear from g
area for both

t variants JH is
 candidates by
ates is even mo
digest sizes b

For all of the
ehind the perfo
compared to o
comparison, w

e]
Area
[Slices] [M

Vir

ation results, fo
d on Virtex 7
l improvement
 and Virtex 7 a
erent devices i
ison of Table
f the reported

IST has consid
der our results
comparison of
graphs that Ke
 256-bit and 5
s very close to
y consuming l
ore significant
but Grøstl bea
three compari

ormance of Ke
other candidat

we can easily ra

TP
Mbps]

TPA
[Kbps/Slice

rtex 5

or very first tim
family. All rep
ts in implemen
are far ahead fr
is not justified
1 and Table 2
designs in ter

dered throughp
 for each cand

f 256-bit and 5
eccak is far ah
512-bit variant
o the performan
lesser area, for
 for 512-bit va
ats the Keccak
ison units, i.e.
ccak, JH and G
tes. If we co
ank Keccak fir

]

BLAK

Grøst

JH‐25

Kecca

Skein

me, on
ported
ntation
rom all
 due to
2, it is
rms of

put per
didate,
512-bit
ead of
s. The
nce of
r both

ariants.
k with
. area,
Grøstl.
onsider
rst and

E‐256

tl‐256

56

ak‐256

‐256

Fig. 9. Perfo

9 Concl

In this wo
implement
We reporte
and compa
all of the
reported so
Virtex 7. T

Referenc

1. X. L.
Crypto

2. M. Szy
3. M. Stev
4. Federa

http://c
5. Nation

http://w
6. J. Au

(2010)
7. P. Gau

Grøstl
8. Hongju
9. G .Ber

http://k
10. N. Fer

Family
11. Daniel

(2008)
12. J. Aum

(FSE),
13. J. Daem

York U

0

2000

4000

6000

8000

10000

12000

ormance Compa

lusion

ork we have p
tation results o
ed the perform
ared it with ava
 previously rep
o far. We comp
This work serve

ces

Xiaoyun Wang
ology ePrint Arch
ydlo: SHA-1 coll
vens: Fast collis

al Register
csrc.nist.gov/gro
nal Institute
www.nist.gov/itl
umasson, L. H
,.http://131002.n

uravaram, L. R. K
l Version 2.0.1, (
un Wu, The Has
rtoni, J. Daeme

keccak.noekeon.
rguson, S. Luck
y Version 1.3, pp
 J. Bernstein, “C
, http://cr.yp.to/c

masson, L. Henze
 pp36-53 (2008)
men and V. Rij

USA (2002)

Area
[Slices] [M

Vi

arison of 512-bit

presented effic
of 256-bit and 5
mance figures o
ailable results.
ported work.
pared and contr
es as performan

g, D. Feng and
hive, Report 200
lisions can be fo

sion attack on M
/ Vol.

ups/ST/hash/doc
of Standards

l/csd/ct/
Henzen, W.
net/blake/blake.p
Knudsen, K. Mat
(2011), http://ww
h Function JH, p
en, M. Peeters,
org/Keccak-subm
s, B. Schneier,

p. 1-100, (2010),
ChaCha, a varian
chacha.html#cha
en, W. Meier, R
)
men, “The Des

TP
Mbps]

TPA
[Kbps/Slice

rtex 7

 Variants of SHA

cient hardware
512-bit variant
of our impleme
 We have achi
Results achiev
rasted the perfo
nce investigati

d H. Yu: Collis
04/199, pp. 1-4,
ound in 263 opera
D5. ePrint-2006
72, No.

cuments/FR_No
and Techno

Meier, R. W
pdf.
tusiewics, F. Me
ww.groestl..info
pp. 1-54, (2011)
, G. V. Assche
mission-3.pdf
D. Whiting, M

, http://www.ske
nt of salsa20”, W
acha-paper
. W. Phan, The h

ign of Rijndael

e]
Area
[Slices] [M

Vi

A-3 Finalists

e implementati
ts on most up-
entations in ter
ieved substanti
ved in this wo
ormance figure
ion of SHA-3 f

sions for hash
(2004), http://ep

ations. CryptoBy
6-104, pp. 1-13, (

212 / F
otice_Nov07.pdf
ology (NIST):

W. Phan, SHA

endel, C. Rechbe
/
), http://www3.n
e: The Keccak

. Bellare, T. Ko
ein-hash.info/site
Workshop Record

hash function fa

 – AES Advanc

TP
Mbps]

TPA
[Kbps/Slice

rtex 6

ions of all 5 S
-to-date Xilinx
rms of area, th
ial improveme
ork are exceed
es of subject ca
finalists on mo

functions MD4
print.iacr.org/200
ytes Technical N
(2006), http://ep

Friday, Nove
f
 Cryptographi

A-3 Proposal

erger, M. Schlffe

ntu.edu.sg/home/
 SHA-3 Submi

ohno, J. Callas,
es/default/files/sk
d of SASC 2008

amily LAKE, Pro

ced Encryption

e]
Area
[Slices] [M

Vi

SHA-3 finalis
x FPGAs i.e Vi
hroughput and
nts in impleme
ding the vario
andidates on V
st up-to-date F

, MD5, HAVA
04/199,

Newsletter, (2005
print.iacr.org/200
mber 2,

ic Hash Alg

BLAKE vers

er and S. S. Thom

/wuhj/research/j
ission version 3

 J. Walker, The
kein1.3.pdf.

8. The State of th

oceedings of Fas

Standard”. Sprin

TP
Mbps]

TPA
[Kbps/Slice

rtex 5

ts. We reporte
irtex 6 and Vir
 throughput pe
entation results
ous implement

Virtex 5, Virtex
FPGAs.

AL-128 and RIP

5)
06/104.pdf
2007 / N

gorithm Comp

sion 1.3, pp.

msen. SHA-3 Pr

h/jh_round3.pdf
3, pp. 1-14, (

e Skein Hash Fu

he Art Stream C

st Software Encr

nger-Verlag Inc

e]

BLAK

Grøst

JH‐51

Kecca

Skein

ed the
rtex 7.
er area
s from
tations

x 6 and

PEMD.

Notices

etition.

1-79,

roposal

f
(2011),

unction

Ciphers,

ryption

c., New

E‐512

tl‐512

12

ak‐512

‐512

14. The SHA-3 Zoo Hardware Implementations, http://ehash.iaik.tugraz.at/wiki/SHA-3_Hardware_Implementations
15. B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne, M. Neill and W. P. Marnane: FPGA Implementations of the Round

Two SHA-3 Candidates. 2nd SHA-3 Candidate Conference, Santa Barbara, pp. 1-18, August 23-24 (2010)
16. S. Matsuo, M. Knezevic, P. Schaumont, I. Verbauwhede, A. Satoh, K. Sakiyama and K. Ota: How Can We Conduct Fair

and Consistent Hardware Evaluation for SHA-3 Candidate?. 2nd SHA-3 Candidate Conference, Santa Barbara, pp. 1-15,
August 23-24 (2010)

17. K. Gaj, E. Homsirikamol, and M. Rogawski: Comprehensive Comparison of Hardware Performance of Fourteen Round 2
SHA-3 Candidates with 512-bit Outputs Using Field Programmable Gate Arrays. 2nd SHA-3 Candidate Conference, Santa
Barbara, pp. 1-14, August 23-24 (2010)

18. E. Homsirikamol, M. Rogawski, and K. Gaj, "Comparing Hardware Performance of Fourteen Round Two SHA-3
Candidates Using FPGAs," Cryptology ePrint Archive: Report 2010/445, available on line at
http://eprint.iacr.org/2010/445.pdf

19. E. Homsirikamol, M. Rogawski and K. Gaj, “Comparing Hardware Performance of Round 3 SHA-3 Candidates using
Multiple Hardware Architectures in Xilinx and Altera FPGAs”, ECRYPT II Hash Workshop 2011, Tallinn, Estonia, pp. 1-
15, May 19-20 (2011)

20. Jean-Luc Beuchat, Eiji Okamoto and Teppei Yamazaki, “Compact Implementations of BLAKE-32 and BLAKE-64 on
FPGA”, Cryptology ePrint Archive, Report 2010/173, (2010), http://eprint.iacr.org/2010/173.pdf

21. S. Kerckof, F. Durvaux, N. Charvillon, F. Regazzoni, G. Meurice and F. Standaert, “Compact FPGA Implementations of the
Five SHA-3 Finalists”, ECRYPT II Hash Workshop 2011, Tallinn, Estonia, pp. 1-19, May 19-20, (2011)

22. B. Jungk, “Compact Implementations of Grøstl, JH and Skein for FPGAs”, ECRYPT II Hash Workshop 2011, Tallinn,
Estonia, May 19-20, pp. 1-12 , (2011)

23. X. Guo, S. Huang, L. Nazhandali, and P. Schaumont. “On The Impact of Target Technology in SHA-3 Hardware
Benchmark Rankings,” Cryptology ePrint Archive: Report 2010/536, (2010), http://eprint.iacr.org/2010/536.pdf

24. L. Henzen, P. Gendotti, P. Guillet, E. Pargaetzi, M. Zoller and F.K. Gurkaynak, “Developing a hardware evaluation method
for SHA-3 candidates,” Proc. Cryptographic Hardware and Embedded Systems workshop, CHES 2010, Santa Barbara, pp.
248-263, Aug. (2010)

25. S. Tillich, et al. “High-Speed Hardware Implementations of Blake, Blue Midnight Wish, Cubehash, ECHO, Fugue, Grøstl,
Hamsi, JH, Keccak, Luffa, Shabal, Shavite-3, SIMD, and Skein”. Cryptology ePrint Archive, Report 2009/510, (2009).
http://eprint.iacr.org/2009/510.pdf

26. Nicolas Sklavos and Paris Kitsos, BLAKE HASH Function Family on FPGA: From the Fastest to the Smallest, in
Proceedings of IEEE Computer Society Annual Symposium on VLSI (IEEE ISVLSI'10), (Kefalonia, Greece, 2010), pp. 1-4.

27. Joachim Strömbergson, Implementation of the Keccak Hash Function in FPGA Devices, pp. 1-4, (2008)
http://www.strombergson.com/files/Keccak_in_FPGAs.pdf

28. Abdulkadir Akin, Aydin Aysu, Onur Can Ulusel, and Erkay Savas, Efficient Hardware Implementations of High
Throughput SHA-3 Candidates Keccak, Luffa and Blue Midnight Wish for Single- and Multi-Message Hashing, 2nd SHA-3
Candidate Conference, Santa Barbara, pp. 1-12, August 23-24 (2010)

29. M. Long, Implementing Skein Hash function on Xilinx Virtex-5 FPGA platform, pp. 1-15, (2009), http://www.skein-
hash.info/sites/default/files/skein_fpga.pdf

30. S. Tillich, Hardware implementation of the SHA-3 candidate skein, ePrint-2009-159, pp. 1-7, (2009),
http://www.eprint.iacr.org/2009/159.pdf

31. Xilinx Virtex Family Documentation, available online at http://www.xilinx.com/support/documentation/
32. Kashif Latif, Arshad Aziz and Athar Mahboob, “Optimal Utilization of Available Reconfigurable Hardware Resources”,

Elsevier Computer & Electrical Engineering, Volume 37 Issue 6, pp. 1043-1057, doi:10.1016/j.compeleceng.2011.07.010,
(2011)

33. Kris Gaj and Pawel Chodowiec, “Chapter 10: FPGA and ASIC Implementations of AES – Cryptographic Engineering”,
Editor: Cetin Kaya Koc, Springer (2009)

34. NIST Interagency Report 7764, Status Report on the Second Round of the SHA-3 Cryptographic Hash Algorithm
Competition, pp. 1-38, (2011),
http://csrc.nist.gov/groups/ST/hash/sha3/Round2/documents/Round2_Report_NISTIR_7764.pdf

