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Abstract. Cryptographic hash functions are at the heart of many information security applications like digital 
signatures, message authentication codes (MACs), and other forms of authentication. In consequence of recent 
innovations in cryptanalysis of commonly used hash algorithms, NIST USA announced a publicly open 
competition for selection of new standard Secure Hash Algorithm called SHA-3. An essential part of this contest 
is hardware performance evaluation of the candidates. In this work we present efficient hardware 
implementations and hardware performance evaluations of SHA-3 finalists. We implemented and investigated the 
performance of SHA-3 finalists on latest Xilinx FPGAs. We show our results in the form of chip area 
consumption, throughput and throughput per area on most recently released devices from Xilinx on which 
implementations have not been reported yet. We have achieved substantial improvements in implementation 
results from all of the previously reported work. This work serves as performance investigation of SHA-3 finalists 
on most up-to-date FPGAs. 

Keywords: SHA-3, Performance Evaluation, Cryptographic Hash Functions, High Speed Encryption Hardware, 
FPGA.  

1   Introduction 

A cryptographic hash function is a deterministic procedure whose input is an arbitrary block of data and output is a 
fixed-size bit string, which is known as the (Cryptographic) hash value. Cryptographic hash functions are widely 
used in many information security applications like digital signatures, message authentication codes (MACs), and 
other forms of authentication. There is a long list of cryptographic hash functions but with recent advances, many 
have been found vulnerable and should not be used. Vulnerabilities found in a number of hash functions in August 
2004, including SHA-0, RIPEMD, and MD5, led to the rendering of long-term security of SHA-1, RIPEMD-128, 
and RIPEMD-160 algorithms suspect. 

In 2004, Xiaoyun Wang et al. presented the collisions for MD4, MD5, HAVAL-128 and RIPEMD [1].  There 
was a breakthrough in cryptanalysis of SHA-1 Hash Algorithm in August 2005. Professor M. Szydlo found that it is 
possible to find a collision in SHA-1 in 263 operations [2]. Previously, it was thought that 280 operations are required 
to find a collision in SHA-1 for a 160-bit block length. Furthermore, M. Stevens reported a collision attack on MD5 
in 2006 [3]. 

To ensure the long-term robustness of applications that use hash functions National Institute of Standards and 
Technology (NIST) USA has announced a public competition in the Federal Register Notice published on 
November 2, 2007 [4] to develop a new cryptographic Hash algorithm called SHA-3. In response to NIST’s 
announcement 64 submissions were reported, out of which 51 entries fulfilled the minimum submission 
requirements and were selected as the First Round Candidates. These candidates were reduced to 14 in Round 2 of 
the competition. After 2nd SHA-3 conference, 5 out of 14 Round 2 candidates have been selected and promoted to 
the Final Round on December 9, 2010. Five short listed candidates advancing to the final round are BLAKE, Grøstl, 
JH, Keccak and Skein. The tentative time-frame for the end of this competition and selection of finalist for SHA-3 is 
in 4th quarter of 2012 [5].  

This paper describes: efficient hardware implementations, implementation results on latest FPGA technologies 
from Xilinx and hardware performance evaluation of these algorithms. The remainder of this paper is organized as 
follows. We briefly give an overview of SHA-3 finalists in section 2. In section 3, we discuss the related work 
reported to date. In section 4, we describe the methodology we adopted for efficient implementation and respective 



performance evaluation of SHA-3 finalists. In section 5, we present the efficient hardware architectures for SHA-3 
finalists. In section 6, we give the results of our work and compare them with previously reported work in section 7. 
Section 8 presents performance evaluation of SHA-3 finalists. Finally, we provide conclusion in Section 9. 

2   SHA-3 Finalists Overview 

We provide here a quick overview of five SHA-3 finalists. Detailed descriptions of these algorithms may be found 
in respective submission documents [6-10].  

2.1   BLAKE 

J. Aumasson et al. designed and proposed the BLAKE Hash family for SHA-3 [6]. BLAKE is based on Bernstein’s 
stream cipher ChaCha and uses iteration mode HAIFA [11]. The internal construction of BLAKE is local wide-pipe, 
same as of LAKE hash function [12]. BLAKE hash function consists of two basic variants, BLAKE-256 and 
BLAKE-512. BLAKE-256 operates on 32-bit words while BLAKE-512 operates on 64-bit words. The other 
required hash digest sizes may be derived from these two variants, i.e. 224 and 384. The inner state of the 
compression function is represented as a 4×4 matrix of words. The compression function consists of 8 instances of 
arithmetic function G. The G function consists of addition, XOR and rotation operations. Each G function operates 
on 4 elements of state matrix. BLAKE compression function consists of 14 rounds for BALKE-256 and 16 rounds 
for BLAKE-512.  

2.2   Grøstl 

P. Gauravaram et al. designed and proposed the Grøstl hash function for SHA-3 [7]. Grøstl is an iterated hash 
function built from two fixed, large and distinct but similar permutations P and Q. Grøstl is a byte-oriented SP-
network which is based on components of AES [13]. These components are named as AddRoundConstant, SubByte, 
ShiftBytes and MixBytes. The Grøstl has two variants Grøstl-512 and Grøstl-1024. The internal state consists of two 
8x8-byte matrices for Grøstl-512 and two 8x16-byte matrices for Grøstl-1024. The permutation Q operates on a 
message block and permutation P operates on XOR of message and chaining hash value or initial value. Each 
permutation P and Q is iterated 10 times for Grøstl-512 and 14 times for Grøstl-1024. The next chaining value of 
hash is calculated by XORing the outputs of P, Q and previous chaining hash value. After processing of all message 
blocks final hash is transformed applying permutation P on chaining hash and XORing it with permuted value. The 
resulting hash digest may be truncated to any desired length.       

2.3   JH 

Hongjun Wu designed and proposed the JH hash function for SHA-3 [8]. JH algorithm is based on the idea that 
large block ciphers can be constructed through small components and a constant key. JH algorithm generalizes the 
AES design methodology to high dimensions. JH-512 is the basic variant of JH. JH uses the same design for all 
variants, i.e. JH-224, JH-256 and JH-384. These variants only differ in initial values (IV) and output hash length. JH 
compression function is constructed from bijective function (a block cipher with constant key) [8]. JH compression 
function compresses a previous 1024-bit hash value ܪ௜ିଵ and 512-bit message block ܯ௜  into new 1024-bit hash 
value ܪ௜. The bijective function  ܧ, consists of 42 rounds. Each round consists of 4-bit S-box substitution, a linear 
transformation and a series of three permutations. The 1024-bit state of JH is grouped into 256 4-bit pairs before 
start of round operations and de-grouped after it. Grouping and de-grouping of bits is defined in [8]. Two types of S-
boxes are used and selection of S-box for a given 4-bit substitution is controlled by respective bit value of round 
constant. 



2.4   Keccak 

G. Bertoni et al. designed and proposed the Keccak Hash Function for SHA-3 [9]. Keccak is a family of sponge 
functions with members Keccak [r, c] characterized by two parameters, bitrate r and capacity c. The sum r + c 
determines the width of the Keccak-f permutation used in the sponge construction and is restricted to values in {25, 
50, 100, 200, 400, 800, 1600}. For SHA-3 proposal Keccak team proposed the Keccak [1600] with different r and c 
values for each desired length of hash output [9]. For 256-bit hash output r = 1088 and c = 512. For 512-bit hash 
output r = 576 and c = 1024. The 1600-bit state of Keccak [1600] consists of 5x5 matrix of 64-bit words. The 
compression function of Keccak consists of five steps: theta (ߠ), rho (ߩ), pi (ߨ), chi (߯) and iota (݅). These steps 
consists of simple XOR, AND, NOT and permutation operations. Each compression step of Keccak consists of 24 
rounds. Keccak hash function operation consists of three phases, initialization, absorbing phase and squeezing 
phase. Initialization is simply initializing the state matrix with all zeros. In absorbing phase each ݎ-bit wide block of 
message is XORed with current matrix state and 24 rounds of Keccak permutation are performed. After absorbing 
all blocks of input message in that fashion there comes the squeezing phase. In squeezing phase the state matrix is 
simply truncated to desired length of output hash. If more than ݎ-bit hash value is required then more Keccak 
permutations are performed and their results concatenated until hash width reaches the desired length. 

2.5   Skein 

N. Ferguson et al. designed and proposed the Skein family of cryptographic hash functions for SHA-3 [10]. Skein 
has three different internal state sizes: 256, 512, and 1024 bits. Each of these state sizes can support any output size. 
Skein-512 is the primary proposal for SHA-3. Skein is built from three components, Threefish tweakable block 
cipher, Unique Block Iteration (UBI) and Optional argument system. The tweakable block cipher makes every 
instance of compression unique by hashing configuration data along with input message. The compression function 
of Skein consists of a layer of non-linear MIX operations and permutation. MIX operation consists of addition 
modulo 264, rotation and XOR operation on a pair of 64-bit words. The Threefish compression function is used in 
UBI chaining mode to compress arbitrary length of input data to fixed size hash digest.  

 3   Related Work 

There are two main streams of hardware implementations of algorithms on FPGA and ASIC platforms: high speed 
implementations and compact implementations. Various groups around the world are working on hardware 
performance evaluation of SHA-3 candidates using these two types of implementations. The SHA-3 Zoo website 
[14] reports the comprehensive results of reported work. Most of the reported work is focused on high speed 
architectures as it provides a direct snapshot of the basic operations’ cost for a given algorithm. The relevant 
category for our work is high speed implementations on FPGAs. In Table 1, we provide a snapshot of high speed 
implementations’ results, for FPGAs, from different groups. The comprehensive studies for all 14 round 2 
candidates are reported by Baldwin et al. [15], Matsuo et al. [16], Gaj et al. [17] and Homsirikamol et al. [18]. For 
round 3, the only comprehensive results for all five finalists are reported by Homsirikamol et al. [19]. Homsirikamol 
et al. [19] discussed and reported their results for various architectures using pipelining, folding and loop unrolling 
approaches. For performance comparison, we quote here the results of architecture based on basic iterative 
approach. The specifications for BLAKE, Grøstl and JH have been tweaked for round 3. Hence, the results listed in 
Table 1 have been calculated again for round 3 specifications based on the reported clock frequencies and number of 
clock cycles consumed for respective designs [15-17]. Some efficient compact implementations of SHA-3 finalists 
are reported in [20-22]. The high speed ASIC implementations are reported in [23-25]. 

4   Implementation Methodology 

We have implemented the 256-bit and 512-bit variants of all five SHA-3 finalists. Our designs are fully autonomus 
with complete I/O interfaces.  We targeted for efficient implementations but keeping in mind the fair hardware 
performance comparison for these candidates. We assure this appraoch by catering for the follwing constraints: 



Table 1. SHA-3 Finalists Implementations. ܨ௠௔௫ in MHz, ܽ݁ݎܣ in Slices, ܶܲ in Gbps and ܶܲܣ in Mbps/Slice 

 

SHA-3 
Finalist 

Author(s) Device 
256-bit 512-bit 

 ࡭ࡼࢀ ࡼࢀ ࢇࢋ࢘࡭ ࢞ࢇ࢓ࡲ ࡭ࡼࢀ ࡼࢀ ࢇࢋ࢘࡭ ࢞ࢇ࢓ࡲ

BLAKE 

Aumasson et al. [6] Virtex 5 100.00 1217 1.76 1.45 50.00 2389 1.55 0.65 

N. Sklavos [26] Virtex 50.00 3101 0.91 0.29 27.00 11800 0.864 0.07 

Baldwin et al. [15] Virtex 5 91.35 1653 0.83 0.50 71.05 2888 1.14 0.39 

Matsuo et al. [16] Virtex 5 115.00 1660 0.64 0.38 - - - - 

Kris Gaj et al. [17] Virtex 5 117.06 1871 2.07 1.10 106.01 3276 3.29 1.00 

E. Hom. et al. [19] Virtex 6 - 1247 1.96 1.57 - 2628 3.19 1.21 

E. Hom. et al. [19] Virtex 5 - 1691 2.25 1.33 - 3337 3.16 0.95 

Grøstl 

Baldwin et al.[15] Virtex 5 78.06 2579 3.24 1.26 113.12 4525 3.62 0.80 

Matsuo et al. [16] Virtex 5 154 2616 1.97 0.75 - - - - 

Kris Gaj et al. [17] Virtex 5 355.87 1884 8.676 4.61 180.15 3466 6.36 1.84 

E. Hom. et al. [19] Virtex 6 - 2630 9.34 3.55 - 5106 11.57 2.27 

E. Hom. et al. [19] Virtex 5 - 2591 8.081 3.12 - 5254 10.12 1.93 

JH 

Baldwin et al.[15] Virtex 5 144.11 1763 1.64 0.93 144.11 1763 1.64 0.93 

Matsuo et al. [16] Virtex 5 201.00 2661 0.733 0.27 - - - - 

Kris Gaj et al. [17] Virtex 5 278.09 1108 3.39 3.06 275.48 1165 3.36 2.88 

E. Hom. et al. [19] Virtex 6 - 847 5.70 6.73 - 896 5.34 5.95 

E. Hom. et al. [19] Virtex 5 - 909 4.62 5.09 - 1020 4.73 4.64 

Keccak 

Keccak Team [9] Virtex 5 122.00 1330 5.20 3.91 - - - - 

Strömbergson [27] Spartan3A 85.00 3393 4.80 1.41 - - - - 

Strömbergson [27] Virtex 5 118.00 1483 6.70 4.52 - - -  

Baldwin et al.[15] Virtex 5 195.73 1971 6.26 3.17 195.73 1971 8.52 4.32 

Matsuo et al. [16] Virtex 5 205.00 1433 4.20 2.93 - - - - 

Akin et al. [28] Spartan 3 81.40 2024 3.46 1.71 - - - - 

Akin et al. [28] Virtex-II 136.60 2024 5.81 2.87 - - - - 

Akin et al. [28] Virtex 4 142.90 2024 6.07 3.00  - - - 

Kris Gaj et al. [17] Virtex 5 238.38 1229 10.81 8.79 276.86 1236 6.64 5.37 

E. Hom. et al. [19] Virtex 6 - 1165 11.84 10.17 - 1231 7.23 5.87 

E. Hom. et al. [19] Virtex 5 - 1395 12.77 9.16 - 1220 6.56 5.37 

Skein 

Baldwin et al. [15] Virtex 5 - - - - 83.58 2756 0.97 0.35 

Matsuo et al. [16] Virtex 5 115.00 854 0.283 0.33 - - - - 

Kris Gaj et al. [17] Virtex 5 116.35 843 1.568 1.86 104.34 1520 2.812 1.85 

M. Long. [29] Virtex 5 114.94 931 0.407 0.44 114.94 1758 0.82 0.46 

S. Tillich. [30] Virtex 5 68.40 937 1.751 1.87 69.04 1632 3.535 2.17 

S. Tillich. [30] Spartan 3 26.14 2421 0.669 0.28 26.66 4273 1.365 0.32 

E. Hom. et al. [19] Virtex 6 - 1510 3.27 2.17 - 1591 3.11 1.96 

E. Hom. et al. [19] Virtex 5 - 1728 2.93 1.70 - 1658 2.81 1.7 

• Common Environment: It effects the implementations in terms of the level of expertise, language, coding 
techniques, design methodoly, and development tools. We assured it by keeping: common implementer for all 
candidates, using Verilog as the common language, use of a common design methodology (discussed in next 
point) and using Xilinx’s ISE 13.1 as the common development tool. 



• Design Methodology: For a fair comparison it is necessary to utilize same set of harware recources for all 
candidates. We assured it by forcing our designs to map on LUT based logic and not to use dedicated hardware 
resources like BRAMs, Multipliers and DSPSlices. We further assured this approach by using LUT primitives 
from Xilinx HDL libraray, wherever possible. We will discuss this approach in detail later in this section. 
Memories are also implemented using distributed RAMs/ROMs because they utilize the LUT resources and 
memory requirement of a candidate is reflected in terms of utilized area. 

• Common I/O Interface: Using common Input/Output interface assures the identical flow of data for all candidates 
in investigation. It also assures modular approach by reusing the same module wherever possible. 

• Overhead suppression: We did not implement the optional parameters of the candidates like salt input, Hash Tree 
functionality and HMAC etc. Furthermore, we assume that input message blocks are already padded outside. The 
padding techniques are almost similar for every algorithm and mainly result in same area overhead. 

4.1    I/O Interface 

The developed input/output interface is shown in Fig. 1(a). All I/O transactions are synchronized. Each I/O is 
sampled at the rising edge of clock pulse. The input cycle is initiated by I/O interface by setting load signal to high. 
Hash Module acknowledges the request if it is able to receive data by setting ack signal to high. After receiving 
acknowledgment, I/O interface make available 64-bit word of data at each rising edge of clock pulse. During the 
transaction of data, ack signal remains at logic high. After receiving desired amount of input words Hash Module 
sets the ack signal to low. Accordingly, I/O interface pulls the load signal to low if no more transactions are 
required. If message blocks are still present, load signal will remain high but Hash Module acknowledges it after 
one clock cycle from the previous transaction. In the same way when Hash Module is ready with a valid hash value 
it signals the I/O interface by putting hash_valid signal to high. After putting hash_valid signal hash module 
outputs 64-bit words on each rising edge of clock cycle until the desired hash length is achieved. I/O interface is 
designed in a way that it does not affect the ongoing processing within hash module. That is, we can make I/O 
transactions at the same time while hash of a message block is in progress.      

4.2   Control and Data Paths 

Hash module of each candidate consists of two major parts, the control path and the data path. Block diagram of hash 
module separated in control path and data path is depicted in Fig. 1(b). Control path consists of Finite State Machine, 
State Register, Clock and Counter. Data path consists of Input registers, Hash Core, Intermediate registers and Output 
registers. Input registers of data path consist of a Serial In Parallel Out (SIPO) register and other registers to store 
message and other input parameters like key in case of Skein. Hash Core is the main arithmetic logic unit of the hash 
algorithm. Intermediate registers are utilized to store intermediate results of the hash algorithm. Output register 
contains the resulting hash and it is a Parallel In Serial Out (PISO) register to serially output the result. 

4.3   FPGA Specific Issues and Their Implication on SHA-3 Algorithm Architectures 

The architectures of latest FPGA families from Xilinx (Virtex 5, Virtex 6, Spartan 6 and Virtex 7) are based on 6-
input LUTs, named LUT6 [31]. A CLB Slice of Xilinx FPGA consists of 4 such LUTs. Each LUT6 has six 
independent inputs and two independent outputs. These LUTs may be configured and used in many different ways. 
A LUT6 may be used as independent 5-input LUT using LUT5 primitive from Xilinx HDL library, shown in Fig. 
2(a). On the other hand, it is possible to implement any two 5-input logic functions with shared inputs using 
LUT6_2 primitive, shown in Fig. 2(b). In this case, LUT input ݅5 selects between two 5-input logic functions to 
connect at output ܱ6. Same LUT6_2 primitive may be used to draw two independent outputs from a LUT6, with 
shared 5-inputs. In this case, input  ݅5 should be tied to logic high (i.e. 1). The INIT value in hexadecimal, shown 
under attributes in Fig. 2(a) and 2(b) configures the LUT to perform desired operation at its inputs. The INIT value 
is derived by laying down the truth table for all possible combinations of LUT inputs and outputs. We have used 
these primitives excessively in architectural designs of SHA-3 finalists. We also exploit the techniques presented in 
[32] for efficient utilization of modern FPGA resources.  



 

 

 

 

 
  

 

 

 

 

5   Datapath Architectures for SHA-3 Finalists 

This section provides architectural details of datapaths designed for SHA-3 finalists.  

5.1   BLAKE 

The datapath implemented for BLAKE is shown in Fig. 3. The V_Reg represents the ݒ matrix register, on which 
processing of BLAKE algorithm takes place. The CV_Reg stores the intermediate chaining hash values. 
Initialization module initializes the V_Reg by taking IV (Initial Value) or chaining hash value as input. Core 
functionality of BLAKE algorithm is represented by G function module. Four instantiations of G function module 
are utilized to compute 4 G operations in parallel. These instantiations are represented as G1, G2, G3 and G4. Each 
G function instance computes a different G function on alternate clock cycles. G1 instance computes G0 and G8, G2 
computes G2 and G10, G3 computes G4 and G12 and similarly G4 computes G6 and G14, on alternate clock cycles. G 
function module is implemented using pure combinational logic. BLAKE is one of the algorithms where use of 
specific library resources not turns into advantageous outcomes. The addition operation on Xilinx FPGAs is 
efficiently implemented by synthesis tools itself by using dedicated carry logic resources. The XOR and rotation 
operation are not expensive operations in terms of resource utilization. Hence, efficient direct coding of the 
equations of BLAKE returns good synthesis results. The ADD and XOR operations are implemented using Verilog 
operators ‘+’ and ‘^’ respectively. Circular shift operations are performed through rewiring of the nets. Each round 
takes 2 clock cycles to complete, therefore 28 clock cycles are required to complete 14 rounds of BLAKE algorithm. 
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Fig. 1. (a) Common I/O Interface (b) Hash Module separated in Control and Data paths 
 

LUT5

LUT5

݅0

݅1

݅2

݅3

݅4

݅5

Attributes 
INIT=0000000000000000 

6-Input Look-Up Table 

LUT6_2

ܱ5

ܱ6

LUT5 

Attributes 
INIT= 00000000 

5-Input Look-Up Table ݅0
݅1
݅2
݅3
݅4

ܱ

(a) (b) 

Fig. 2. LUT5 and LUT6_2 primitives in Xilinx HDL library 



After completion of 14 rounds, finalization module computes final or next chaining hash value by taking contents of 
V_Reg and CV_Reg as input. 

5.2 Grøstl 

The datapath implemented for Grøstl is shown in Fig. 4. The compression function of Grøstl consists of two separate 
permutations P and Q. These permutations are almost identical and can be implemented in parallel. Two differences 
between P and Q are in the step of AddRoundConstant, where different round constants are used, and in ShiftByte 
step, where different scheme is used to circular shift the bytes left. AddRoundConstant step is a simple eight byte 
XOR operation of input matrix with round constant. SubByte is AES S-box substitution; it is implemented using 
combinational logic which utilizes the internal logic structure of inversion in Galois Field GF(28) and affine 
transformation, as described in [8]. ShiftByte is circular shift of bytes in matrix; it is implemented through simple re-
labeling of the bytes in matrix. MixByte step multiplies each column of the matrix to a constant 8x8 matrix in Galois 
Field GF (28). This step is implemented as combinational logic described in [8]. In the beginning of every hash 
process the message block (msg) is directly pass on to Q permutation. The P permutation operates on XOR of msg 
and initial value (IV) or chaining hash value. Both permutations P and Q are iterated 10 times for Grøstl-512 and 14 
times for Grøstl-1024. After completion of desired number of rounds next chaining hash value is obtained by 
XORing outputs of P, Q and previous chaining value. This process continues till the end of all message blocks. At 
the end, resulting chaining hash is again permuted through permutation P and XORed with permuted value to obtain 
final hash digest. 

5.3   JH 

The datapath implemented for JH is shown in Fig. 5(a). The state_reg represents the intermediate JH state register, on 
which processing of JH algorithm takes place. JH hash function uses the same algorithm for all hash digest sizes. 

Fig. 3. Data path of BLAKE 
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Hence, same data path is utilized for all hash digest sizes. The only difference between data path for different hash sizes 
is of initial values (IV) and hash output registers. In the beginning of every hash process state_reg is initialized with IV 
of desired hash digest size. Then a complete JH compression is processed by setting msg and round constant RC to 
zero. The higher order 512 bits of resulting state of JH compression is then XORed with first message block and stored 
in state_reg. Then contents of state_reg are processed through JH compression function with respective round constant. 
JH compression function consists of 42 rounds of its arithmetic logic unit (ALU). A single round is processed in one 
clock cycle. Therefore 42 clock cycles are required to complete 42 rounds of JH compression function. After 
completion of 42 rounds on a message block, resulting lower order 512 bits of JH compression state is XORed with 
msg, to obtain next chaining hash value. The higher order 512 bits of resulting chaining hash value is then XORed with 
next message block and stored in state_reg and same compression sequence is repeated again. This process continues 
till the end of all message blocks. At the end, resulting lower 512 bits of chaining hash value is truncated to the desired 
length of hash output. The Trunc. block in Fig. 5(a) represents the truncation operation. The Concat. block represents 
the concatenation operation. The grouping and degrouping blocks are used to perform grouping and de-grouping of JH 
state bits into 4-bit pairs as specified in JH specification document [8]. In terms of hardware implementation these steps 
are achieved through simple rewiring of interconnects, at no resource cost. The round constants (RC) are stored in 
ROM using 43x256 bit single port distributed ROM. Respective round constant is addressed during each round using 
round number as ROM address.  
 
JH Arithmetic Logic Unit (ALU): JH ALU consists of S-boxes (S) and linear transformation units (L). JH ALU 
works on 4-bit pairs of JH state register contents. For S-box, we used LUT6_2 primitive (Fig. 2(b)) and used both of 
its output i.e. ܱ5 and ܱ6. Using this approach 4 S-boxes are adjusted within a single slice. In this approach S-box 
logic of JH ALU consists of only 128 slices. Implementation of a single S-box using this approach is depicted in 
Fig. 5(b). The INIT values (in hexadecimal) shown in figure, are actual configuration values for each LUT to 
perform S-box operation. Linear transformation is also implemented using same optimized approach. LUT6_2 
primitive with both outputs ܱ5 and ܱ6 is used. Implementation of a single linear transformation unit (L) is depicted 
in Fig. 5(c). The INIT values (in hexadecimal) shown in figure, are actual configuration values for each LUT to 
perform L operation. Same variables are shown for inputs and outputs in Fig. 5(c) as denoted in linear 
transformation equations in specification document [8]. 

Fig. 5. Architectural detail of JH 
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5.4   Keccak 

The datapath implemented for Keccak is shown in Fig. 6(a). The A_Reg represents the ܣ matrix register, on which 
processing of Keccak algorithm takes place. Keccak data path is fully parameterized, such that the design may be 
synthesized for any value of r (bitrate) and c (capacity). For that reason, the width of each net is highlighted as r, c 
or r + c in Fig. 6(a). The length of A_Reg also varies according to r and c and it is defined as r + c (bits). For 
Keccak-256, r is specified as 1088-bits and c as 512-bits. For Keccak-512, r is specified as 576-bits and c as 1024-
bits. Accordingly A_Reg will be of 1600-bits. In beginning of every hash process A_Reg is initialized with all zeros. 
First message block is directly copied to A_Reg after concatenating it with c wide stream of 0’s. The Concat block in 
Fig. 6(a) represents the concatenation operation. Compression function of Keccak consists of five steps. In Fig. 6(a) 
each step is denoted by the symbol as specified in Keccak specifications. These steps are ߠ, ,ߩ ,ߨ ߯ and i. We have 
combined these steps during implementation, wherever possible. We have implemented ߩ and  ߨ as a single step. 
Keccak algorithm’s compression function consists of very simple arithmetic operations. It involves simple XOR, 
AND and NOT operations. These operations are implemented using LUT primitives from Xilinx specific libraries. 
Following are details of implementation of each step: 

 
Theta (ࣂ) Step: There are three equations in ߠ step. First equation (calculation of C) is implemented using LUT5 
primitive for XOR logic as shown in Fig. 6(b). The INIT value in hexadecimal, shown under attributes in figure, 
configures the LUT to perform XOR operation at its inputs. The INIT value is derived by laying down the truth table 
for all possible combinations of LUT inputs. To XOR 5 64-bit operands of the equation, LUT5 primitive is 
instantiated 64 times. For complete implementation of equation, 5x64 LUT5 are required. We can combine 
remaining two equations of theta step. For its implementation, LUT3 primitive is used for XOR logic as shown in 
Fig. 6(c). The one bit rotation in last operand is implemented through rewiring. To implement the complete logic, 
25x64 instantiations of LUT3 primitive are required. 
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(a) Data path of Keccak 
 



Rho (࣋) and Pi (࣊) Steps: The ߩ and  ߨ are permutations, which may be achieved through simple rewiring in 
hardware, at no resource cost. The cyclic shift constant ݎሾݔ,  It is .ܣ ሿ is fixed and known for each position of matrixݕ
also implemented by means of fixed rewiring. 
Chi (࣑ሻ Step: In ߯ step three logical operations XOR, NOT and AND are used. These are implemented using LUT3 
primitive as shown in Fig. 6(d). In order to accomplish the ߯ step, LUT3 with ߯ logic is instantiated 25x64 times. 
Iota (࢏): The i step involves simple XOR of round constant with least significant 64 bits of A_Reg, i.e. ܣሾ0,0ሿ. It is 
implemented using LUT2 primitive as shown in Fig. 4(d). LUT2 is instantiated 64 times for i step. 
 

The round constants (RC) are stored in ROM using 24x64 bit single port distributed ROM. Respective round 
constant is addressed during each round using round number as ROM address. These five steps or a single round of 
Keccak algorithm are accomplished in one clock cycle. Therefore 24 clock cycles are required to complete 24 
rounds of Keccak algorithm. After completion of 24 rounds on a message block, resulting r-bits of state of A_Reg 
are XORed with next message block and same round sequence is repeated again. This process continues till the end 
of all message blocks. At the end, state of A_Reg is truncated to the desired length of hash output. 

 5.5   Skein 

The datapath implemented for Skein is shown in Fig. 7(a). Add_Subkey module consists of 8 64-bit adders, 
implemented using fast carry chain logic available in Xilinx FPGAs. The Threefish compression function of Skein is 
partially implemented using 4 unrolled rounds. These 4 rounds are then iteratively used to complete 72 rounds of 
compression function. The novel idea in implementation of these 4 unrolled rounds is that, we do not need separate 
MIX modules and multiplexers to select between different rotation constants in second step of MIX operation. We 
have efficiently implemented second step in MIX module using a LUT4 primitive depicted in Fig. 7(c). The select 
bit ݏ, selects between two rotated instances of ݔଵ, according to round number, to XOR with ݕ଴. For first four rounds 
 is zero and upper half rows of rotation constants’ table are used for respective MIX modules. For next four rounds ݏ
 ,will be 1 and lower half rows of rotation constants’ table are used for respective MIX modules. For example ݏ
ଵݔ ا 46 will be selected and XORed with ݕ଴ in first round and  ݔଵ ا 39 will be selected and XORed with ݕ଴ in 
fifth round. Hardware architecture of key schedule module is shown in Fig. 7(b). The extended key K8 is obtained by 
XORing the input 64-bit key words (K0…..K7) and constant C240. The extended teak t2 is obtained by XORing the two 
input 64-bit tweak word (t0 and t1). The extended key and tweak words are then loaded into the circular shift 
registers K (576 bit) and t (192 bit). These two registers are clocked and rotated once for each subkey. Key Schedule 
module generates subkeys on every falling edge of clock pulse. Add_Subkey module gives output on the rising edge 
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of each clock pulse. Next subkey is available on falling edge of the same clock pulse. In this way one clock cycle is 
required to complete four rounds, subkey addition and subkey generation. Therefore to complete 72 rounds and 19 
subkey addition of Skein, 19 clock cycles will be required. The next chaining hash value will be available after 19 
clock cycles. 

6   Implementation Results 

As mentioned earlier, for implementations and hardware performance evaluation of SHA-3 candidates, we aimed to 
target the latest and up-to-date FPGA technology from Xilinx. The latest 7 series release from Xilinx was of main 
interest. From this series we chose Virtex 7 for our implementations.  We also implemented our designs on Virtex 6, 
latest before the release of 7 series in June 2010, and Virtex 5. Detailed device specifications are: Virtex 5 LX30T, 
speed grade 3, package FF323 (5vlx30tff323-3), Virtex 6 LX75T, speed grade 3, package FF784 (6vlx75tff784-3) 
and Virtex 7 285T, speed grade 3, package FG1157 (7v285tffg1157-3). The resulting clock frequencies and area 
utilization after place and route are reported. Table 2 shows achieved area consumption (ܽ݁ݎܣ), clock frequency 
 is the block size ݁ݖ݅ܵ ݇ܿ݋݈ܤ for implemented designs. The (ܣܲܶ) throughput (ܶܲ) and throughput per area ,(௠௔௫ܨ )
of message in bits and ௖ܰ௟௞ is the number of clock cycles required for hash of a single message block.  

Table 2. Implementation Results for 256-bit and 512-bit variants for SHA-3 Finalists 

SHA-3 
Finalist 

Device 

256-bit 512-bit 

 ࢑ࢉ࢕࢒࡮
 ࢋࢠ࢏ࡿ
[bits] 

 ࢑࢒ࢉࡺ
[cycles] 

 ࢞ࢇ࢓ࡲ
[MHz] 

 ࢇࢋ࢘࡭
[Slices] 

 ࡼࢀ
[Gb/s] 

 ࡭ࡼࢀ
[Mbps/slice] 

 ࢑ࢉ࢕࢒࡮
 ࢋࢠ࢏ࡿ
[bits] 

࢑࢒ࢉࡺ
[cycles] 

 ࢞ࢇ࢓ࡲ
[MHz] 

 ࢇࢋ࢘࡭
[Slices] 

 ࡼࢀ
[Gb/s] 

 ࡭ࡼࢀ
[Mbps/slice] 

BLAKE 

Virtex 5 512 28 125.55 1382 2.29 1.66 1024 32 100.02 2582 3.21 1.24 

Virtex 6 512 28 125.82 1104 2.30 2.08 1024 32 104.30 2246 3.34 1.46 

Virtex 7 512 28 137.14 1322 2.51 1.90 1024 32 115.01 2441 3.68 1.51 

Grøstl 
Virtex 5 512 10 121.03 1419 6.20 4.37 1024 14 101.22 2523 7.40 2.94 

Virtex 6 512 10 146.87 1467 9.62 5.12 1024 14 125.44 2359 9.17 3.89 

Virtex 7 512 10 175.65 1421 8.99 6.33 1024 14 155.02 3524 11.3 3.23 

JH 

Virtex 5 512 42 287.44 865 3.50 4.05 512 42 292.48 888 3.57 4.02 

Virtex 6 512 42 303.65 562 3.70 6.59 512 42 306.37 661 3.74 5.65 

Virtex 7 512 42 329.49 587 4.02 6.84 512 42 338.41 679 4.13 6.08 

Keccak 

Virtex 5 1088 24 275.56 1333 12.49 9.37 576 24 263.16 1197 6.32 5.28 

Virtex 6 1088 24 301.57 915 13.67 14.94 576 24 291.21 1015 6.99 6.89 

Virtex 7 1088 24 292.74 1161 13.27 11.43 576 24 254.91 1039 6.12 5.88 

Skein 

Virtex 5 512 19 113.78 1492 3.07 2.05 512 19 113.60 1544 3.06 1.98 

Virtex 6 512 19 114.30 1163 3.08 2.65 512 19 112.36 1203 3.03 2.52 

Virtex 7 512 19 127.73 1170 3.44 2.94 512 19 128.24 1244 3.46 2.78 

 
One important observation from the results presented in Table 2 is that the achieved clock frequencies (ܨ௠௔௫) on 
Virtex 7 for all designs are at higher end as compared with Virtex 5 and Virtex 6 results. However, most of the time 
designs on Virtex 7 consume more area which leads to a reduction in the overall TPA. This is somewhat unusual and 
unexpected. We can suggest possible reasons for this behavior. Firstly, Xilinx has introduced Virtex 7 for the very 
first time in ISE Design Suite 13.1, which we used for our implementations. There is a possibility that ISE 13.1 
synthesis and implementation algorithms are not optimized for the Virtex 7 architecture. Secondly, the LUT 
primitives we used from Xilinx library are specific to Virtex 5 and Virtex 6 and the tool did not synthesize them 
correctly for Virtex 7. Xilinx has just released the documentation for Virtex 7 series FPGAs. A closer look at the 
Virtex 7 internal architecture and modification of all designs accordingly may lead to better results. We suggest this 
idea as a future work. 
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