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o Advanced 
o High strength t-way testing 
o Support complex constraints 

o Made possible by use of covering arrays  
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National Institute of Standards and Technology 
 http://www.nist.gov 

• US federal research laboratory founded in 1901 
• About 3000 staff including 3 Nobel laureates 
• Laboratory Programs 

– Materials Measurement Laboratory 
– Physical Measurement Laboratory 
– Engineering Laboratory 
– Information Technology Laboratory 
– Center for Nano-scale Science and Technology 
– Center for Neutron Research 

• Innovation & Industry Services 
– Baldrige Performance Excellence Program 
– Hollings Manufacturing Extension Partnership 
– Technology Innovation Program 
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Outline 

• Discuss development of Combinatorial Testing (CT) as 
adaptation of Design of Experiments (DoE) methods 
 

• Special aspects of CT for software and systems 
 

• Limitations of Orthogonal Arrays (OAs), benefits of 
Covering Arrays (CAs) for generating combinatorial test 
suites for testing software and systems 
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Combinatorial testing is a variation of Design of 
Experiments (DoE) adapted for testing software 

• Example of DoE: Five test factors 
– Viscosity {a} with 2 values {0, 1} 
– Feed rate {b} with 2 values {0, 1} 
– Spin Speed {c} with 2 values {0, 1} 
– Pressure {d} with 2 values {0, 1} 
– Materials {e} with 4 types {0, 1, 2, 3} 

• Combinatorial test structure 24x41 

– Number of possible test  cases: 24x41 = 64 
• Object: evaluate only “main effects” of five factors 
• Possible to evaluate main effects from 8 test cases only 

determined using orthogonal array OA(8, 24×41, 2) 
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DoE based on orthogonal array: OA(8, 24×41, 2) 

Strength 2: every two columns contain all pairs exactly 
once or exactly twice 

     a b c d e   data 
 1. 0 0 0 0 0   y1  
 2. 1 1 1 1 0   y2 

 3. 0 0 1 1 1   y3 

 4. 1 1 0 0 1   y4 

 5. 0 1 0 1 2   y5 

 6. 1 0 1 0 2   y6 

 7. 0 1 1 0 3   y7 

 8. 1 0 0 1 3   y8   

 

• Associate factors with columns, test 
values {0, 1}, {0, 1, 2, 3} with entries  

• Rows of OA specify 8 test cases 
• Every test value paired with each 

value of every other factor  
• Main effect of factor a: 

(y2+y4+y6+y8)/4 - (y1+y3+y5+y7)/4 
• All test values of every other factor 

represented in each average of four 
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DoE balanced, software test suite need not be 

• DoE plans can be expressed in matrix form 
– Columns: test factors, Entries: test values, Rows: tests cases 

• In DoE “main effects” and “interaction effects” linear 
contrasts of response data 
– Binary factors: difference of two averages of half data 
– Main effect of factor a: (y2+y4+y6+y8)/4 - (y1+y3+y5+y7)/4 
– For main effects to be meaningful, DoE must be balanced 

• In testing software and systems “interaction” means 
“joint combinatorial effect of two or more factors” 

• CT suite for testing software need not be balanced 
because DoE type “main effects” not relevant, statistical 
models not used in data analysis 
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Example: Font effects on word processing 
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Factors values and test cases  

• Each factors (font effects) can be turned on or off 
– Ten binary test factors with test values {0, 1} 

• Combinatorial test structure 210  
• Possible test cases 210 = 1024 too many to test 
• Suppose no failure involves more than 3 factors jointly 

– Sufficient to test all triplets of factor values 
• Number of triplets =            = 960 
• How many test cases needed to test all 960 triples? 
• How to determine those test cases? 
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All 960 triples can be covered by13 test cases 
determined using covering array CA(13, 210, 3) 
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Factors 
Rows 1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 
2 1 1 1 1 1 1 1 1 1 1 
3 1 1 1 0 1 0 0 0 0 1 
4 1 0 1    1 0 1 0 1 0 0 
5 1 0 0 0 1 1 1 0 0 0 
6 0 1 1 0 0 1 0 0 1 0 
7 0 0 1 0 1 0 1 1 1 0 
8 1 1 0 1 0 0 1 0 1 0 
9 0 0 0 1 1 1 0 0 1 1 

10 0 0 1 1 0 0 1 0 0 1 
11 0 1 0 1 1 0 0 1 0 0 
12 1 0 0 0 0 0 0 1 1 1 
13 0 1 0 0 0 1 1 1 0 1 



Early history of combinatorial testing for software 
and systems 

• Mandl (1985) “Use of orthogonal Latin squares for 
testing Ada compiler” often cited first publication 
– Special case of orthogonal arrays 

• Japan/mid-1980s OAs used for testing hardware-
software systems: Tatsumi (1987), Tatsumi et al (1987) 

• USA/late-1980s descendent orgs of AT&T (Bell Labs, 
Bellcore-Telcordia) exploring use of OAs for 
combinatorial testing;  developing tools based on OAs: 
Brownlie et al (1992), Burroughs et al (1994) 

• In1990s use of OAs for testing of computer and 
communication hardware-software systems expanded 
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Tools for generating combinatorial test suites 

• Early tools for generating test suites for pairwise testing 
– OATS (Phadke AT&T) 1990s (not public) 
– CATS (Sherwood AT&T) 1990s (not public) 
– AETG (Cohen et al Telcordia) 1997 (commercial) 
– IPO (Yu Lei NCSU) 1998 (not public) 

• Czerwonka (Microsoft) lists 34 tools (www.pairwise.org) 
- Tconfig  - CTS   - Jenny   
- TestCover  - DDA   - AllPairs 
- AllPairs[McDowell] - PICT  - EXACT 
- IPO-s 

• ACTS (NIST/UTA): freely distributed  
– Primary algorithm: IPOG generalization of 1998 IPO (Yu Lei UTA) 
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NIST investigated actual faults to determine what 
kind of testing would have detected them 
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Pairwise testing may not be adequate 

• Kuhn et al (2001, 2002, 2004) 
– 2-way testing could detect 65 % to 97 % faults 
– 3-way testing could detect 89 % to 99 % faults 
– 4-way testing could detect 96 % to 100 % faults 
– 5-way testing could detect 96 % to 100 % faults 
– 6-way testing could detect 100 % faults in all cases investigated 

• Kera Bell (2006, NCSU) arrived similar conclusion 
• Empirical conclusion: pairwise (2-way) testing useful but 

may not be adequate; 6-way testing may be adequate 
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Combinatorial high strength (t-way) testing 

• Dynamic verification of input-output system  
– against its known expected behavior  
– on test suite of test cases selected such that  
– all t-way combinations are exercised with the  
– object of discovering faults in system  

• Earlier combinatorial test suites based on orthogonal 
arrays of strength 2 useful for pairwise (2-way) testing  

• Now tools available for high strength t-way testing 
– ACTS (NIST/UTA) 2009  
– Primary algorithm is IPOG, generalization of IPO for t > 2  
– ACTS has built-in support of constraints  
– http://csrc.nist.gov/groups/SNS/acts/index.html 
– Freely downloaded by over 800 organizations and individuals 
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Special aspects of CT for software and systems-1 

• System Under Test (SUT) must be exercised (dynamic 
verification) 

• CT does not require access to source code 
• Expected behavior (oracle) for each test case be known 

– determined from functionality and/or other information 
• In CT actual behavior is compared against expected for 

each test case with final result of pass or fail 
• Objective of CT to reveal faults; a failure indicates fault, 

a fault always results in failure 
• Repeat of a t-way combination gives same result so no 

need to repeat t-way combinations in test suite 
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Special aspects of CT for software and systems-2 

• Numbers of test values of factors may be different 
• A test case is combination of one value for each factor 
• Certain test cases invalid, incorporate constraints 
• From pass/fail data identify t-way combinations which 

trigger failure among actual test cases (fault localization) 
• No statistical model used in data analysis: test plan need 

not be balanced like classical DoE 
• Choice of factors and test values highly critical for 

effectiveness of combinatorial testing 
– Information about nature of faults to be detected helpful 
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Orthogonal arrays 

• Fixed-value OA(N, vk, t) has four parameters N, k, v, t : It 
is a matrix such that every t-columns contain all t-tuples 
the same number of times 
– For OAs strength t is generally 2 
– Index of OA is number of times  every t-tuple appears 
– Another notation OA(N, k, v, t) 

• Mixed-value orthogonal array OA(N,v1
k1v2

k2…vn
kn, t) is a 

variation of fixed value OA where k1 columns have v1 
distinct values, k2 columns have v2 values, ..., kn 
columns have vn values k = k1 + k2 +… + kn  
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Covering arrays 

• Fixed-value CA(N, vk, t) has four parameters N, k, v, t : It 
is a matrix such that every t-columns contain all t-tuples 
at least once 
– For CAs strength t can be any integer k or less 
– OA(N, vk, t)) of index one is covering array with min test cases 
– However OA of index 1 are rare  
– Most CA are unbalanced 
– Another notation CA(N, k, v, t) 

• Mixed-value covering array CA(N,v1
k1v2

k2…vn
kn, t) is a 

variation of fixed value CA where k1 columns have v1 
distinct values, k2 columns have v2 values, ..., kn 
columns have vn values and k = k1 + k2 +… + kn 
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Combinatorial structure 24 x 31, need strength t = 2 
OA for 24 x 31 dose not exist 
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OA(8, 2441, 2) 
     a b c d e 
1.  0 0 0 0 0  
2.  1 1 1 1 0 
3.  0 0 1 1 1  
4.  1 1 0 0 1 
5.  0 1 0 1 2 
6.  1 0 1 0 2 
7.  0 1 1 0 3 2 
8.  1 0 0 1 3 2 
 

CA(8, 2431, 2) 
      a b c d e 
1.   0 0 0 0 0 
2.   1 1 1 1 0  
3.   0 0 1 1 1  
4.   1 1 0 0 1 
5.   0 1 0 1 2  
6.   1 0 1 0 2  
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OAs useful but have limitations 

• OAs do not exist for many combinatorial test structures 
– Construction requires advanced mathematics  
– http://www2.research.att.com/~njas/oadir/  

• Most OAs of strength t = 2; some t = 3 recent  
• Most fixed-value; some mixed value OAs recent 
• Combinatorial test structure fitted to suitable OA 

– We saw how OA(8, 24×41, 2) can be used for 24×31  
• Constraints destroy balance property of OA 
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Benefits of CAs for generating test suites 

• CAs available for any combinatorial test structure 
• CAs available for any required strength (t-way) testing 
• For a combinatorial test structure if OA exists then CA of 

same or fewer test runs can be obtained 
• When numbers of factors large, CAs of few tests exist 
• Generally CAs not balanced (like OAs) not needed in 

software testing 
• Certain tests invalid, constraints can be incorporated 

– Coverage defined relative to valid test cases 
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Test suite for 2-way testing based on covering array 

9/6/2014 
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An application must run on various 3-OS, 2-Browser, 2-Protocol, 2-
CPU type, and 3-DBMS, combinatorial test structure: 2332 

All pairs of values of five factors covered by 10 test cases 



 
Size of test suites for various values of t based on CA  
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t # Test cases % of Exhaustive 

2 10 14 

3 18 25 

4 36 50 

5 72 100 

Combinatorial test structure: 2332 



Android smart phone configuration options 
Combinatorial test structure: 334452 
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Factors Test Values Number 

HARDKEYBOARDHIDDEN NO, UNDEFINED, YES 3 

KEYBOARDHIDDEN NO, UNDEFINED, YES 3 

KEYBOARD 12KEY, NOKEYS, QWERTY, UNDEFINED 4 

NAVIGATIONHIDDEN NO, UNDEFINED, YES 3 

NAVIGATION DPAD, NONAV, TRACKBALL, UNDEFINED, 
WHEEL 

5 

ORIENTATION LANDSCAPE, PORTRAIT, SQUARE, 
UNDEFINED 

4 

SCREENLAYOUT_LONG MASK, NO, UNDEFINED, YES 4 

SCREENLAYOUT_SIZE LARGE, MASK, NORMAL, SMALL, UNDEFINED 5 

TOUCHSCREEN FINGER, NOTOUCH, STYLUS, UNDEFINED 4 



Size of test suites for various values of t based on CA   

9/6/2014 NIST 25 

Combinatorial test structure: 334452 

t # Test Cases % of Exhaustive 

2 29 0.02 

3 137 0.08 

4 625 0.4 

5 2532 1.5 

6 9168 5.3 



Some comments on Combinatorial t-way testing 

• CT one of many complementary testing methods 
• CT can reveal faults, not guarantee their absence (in this 

sense software testing is about risk management) 
• CT can reveal many types of faults 
• CT can be used in unit, integration, system testing 
• CT better than random (fewer test runs); may be better 

than human generated test suites (better coverage)  
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ACTS  tool 
http://csrc.nist.gov/groups/SNS/acts/index.html 
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12600 1070048 >1 day NA 470 11625 >1 day NA 65.03 10941 6 

1549 313056 >1 day NA 43.54 4580 >1 d NA 18s 4226 5 

127 64696 >21 hour 1476 3.54 1536 5400 1484 3.05 1363 4 

3.07 9158 >12 hour 472 0.71 413 1020 2388 0.36 400 3 

2.75 101 >1 hour 108 0.001 108 0.73 120 0.8 100 2 

Time Size Time Size Time Size Time Size Time Size 

TVG (Open Source)  TConfig (U. of Ottawa)  Jenny (Open Source)  ITCH (IBM)  IPOG 
T-Way 

Comparison for  Traffic Collision Avoidance System (TCAS):  273241102 



Combinatorial testing is a generic methodology 

• Software testing 
– Test input space, test configuration space 

• Computer/network security 
– Network deadlock detection, buffer overflow 
– http://csrc.nist.gov/groups/SNS/acts/index.html 

• Testing Access Control Policy Systems 
– Security, privacy (e.g. health records) 
– http://csrc.nist.gov/groups/SNS/acpt/index.html 

• Explore search space for study of gene regulations 
– http://www.plantphysiol.org/content/127/4/1590.full 

• Optimization of simulation models of manufacturing 
– http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=103117 

9/6/2014 28 NIST 



Summary 
• Combinatorial testing is a variation of DoE adapted for 

testing software and hardware-software systems 
• Early use was limited to pairwise (2-way) testing 
• Investigations of actual faults suggests that up to 6-way 

testing may be needed 
• Combinatorial t-way testing for t up to 6 is possible by 

use of covering arrays  
• ACTS is useful tool for generating t-way test suites 

based on CAs, supports constraints 
• Combinatorial testing useful when testing expressed in 

terms of factors, discrete test values, critical event 
happens when certain t-way combination encounters 
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