

Advanced combinatorial testing

of software and systems using covering arrays

o Advanced
o High strength t-way testing
o Support complex constraints

o Made possible by use of covering arrays

9/6/2014 1 NIST

Raghu Kacker
Applied and Computational Division
Information Technology Laboratory

National Institute of Standards and Technology
Gaithersburg Maryland 20899 USA

Team: Rick Kuhn, Yu Lei, Jim Lawrence, Vincent Hu

National Institute of Standards and Technology
 http://www.nist.gov

• US federal research laboratory founded in 1901
• About 3000 staff including 3 Nobel laureates
• Laboratory Programs

– Materials Measurement Laboratory
– Physical Measurement Laboratory
– Engineering Laboratory
– Information Technology Laboratory
– Center for Nano-scale Science and Technology
– Center for Neutron Research

• Innovation & Industry Services
– Baldrige Performance Excellence Program
– Hollings Manufacturing Extension Partnership
– Technology Innovation Program

9/6/2014 NIST 2

Outline

• Discuss development of Combinatorial Testing (CT) as
adaptation of Design of Experiments (DoE) methods

• Special aspects of CT for software and systems

• Limitations of Orthogonal Arrays (OAs), benefits of
Covering Arrays (CAs) for generating combinatorial test
suites for testing software and systems

9/6/2014 NIST 3

Combinatorial testing is a variation of Design of
Experiments (DoE) adapted for testing software

• Example of DoE: Five test factors
– Viscosity {a} with 2 values {0, 1}
– Feed rate {b} with 2 values {0, 1}
– Spin Speed {c} with 2 values {0, 1}
– Pressure {d} with 2 values {0, 1}
– Materials {e} with 4 types {0, 1, 2, 3}

• Combinatorial test structure 24x41

– Number of possible test cases: 24x41 = 64
• Object: evaluate only “main effects” of five factors
• Possible to evaluate main effects from 8 test cases only

determined using orthogonal array OA(8, 24×41, 2)

9/6/2014 NIST 4

DoE based on orthogonal array: OA(8, 24×41, 2)

Strength 2: every two columns contain all pairs exactly
once or exactly twice

 a b c d e data
 1. 0 0 0 0 0 y1
 2. 1 1 1 1 0 y2

 3. 0 0 1 1 1 y3

 4. 1 1 0 0 1 y4

 5. 0 1 0 1 2 y5

 6. 1 0 1 0 2 y6

 7. 0 1 1 0 3 y7

 8. 1 0 0 1 3 y8

• Associate factors with columns, test
values {0, 1}, {0, 1, 2, 3} with entries

• Rows of OA specify 8 test cases
• Every test value paired with each

value of every other factor
• Main effect of factor a:

(y2+y4+y6+y8)/4 - (y1+y3+y5+y7)/4
• All test values of every other factor

represented in each average of four

9/6/2014 NIST 5

DoE balanced, software test suite need not be

• DoE plans can be expressed in matrix form
– Columns: test factors, Entries: test values, Rows: tests cases

• In DoE “main effects” and “interaction effects” linear
contrasts of response data
– Binary factors: difference of two averages of half data
– Main effect of factor a: (y2+y4+y6+y8)/4 - (y1+y3+y5+y7)/4
– For main effects to be meaningful, DoE must be balanced

• In testing software and systems “interaction” means
“joint combinatorial effect of two or more factors”

• CT suite for testing software need not be balanced
because DoE type “main effects” not relevant, statistical
models not used in data analysis

9/6/2014 NIST 6

Example: Font effects on word processing

9/6/2014 NIST 7

Factors values and test cases

• Each factors (font effects) can be turned on or off
– Ten binary test factors with test values {0, 1}

• Combinatorial test structure 210
• Possible test cases 210 = 1024 too many to test
• Suppose no failure involves more than 3 factors jointly

– Sufficient to test all triplets of factor values
• Number of triplets = = 960
• How many test cases needed to test all 960 triples?
• How to determine those test cases?

9/6/2014 NIST 8

310
2

3

All 960 triples can be covered by13 test cases
determined using covering array CA(13, 210, 3)

9/6/2014 NIST 9

Factors
Rows 1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 1
3 1 1 1 0 1 0 0 0 0 1
4 1 0 1 1 0 1 0 1 0 0
5 1 0 0 0 1 1 1 0 0 0
6 0 1 1 0 0 1 0 0 1 0
7 0 0 1 0 1 0 1 1 1 0
8 1 1 0 1 0 0 1 0 1 0
9 0 0 0 1 1 1 0 0 1 1

10 0 0 1 1 0 0 1 0 0 1
11 0 1 0 1 1 0 0 1 0 0
12 1 0 0 0 0 0 0 1 1 1
13 0 1 0 0 0 1 1 1 0 1

Early history of combinatorial testing for software
and systems

• Mandl (1985) “Use of orthogonal Latin squares for
testing Ada compiler” often cited first publication
– Special case of orthogonal arrays

• Japan/mid-1980s OAs used for testing hardware-
software systems: Tatsumi (1987), Tatsumi et al (1987)

• USA/late-1980s descendent orgs of AT&T (Bell Labs,
Bellcore-Telcordia) exploring use of OAs for
combinatorial testing; developing tools based on OAs:
Brownlie et al (1992), Burroughs et al (1994)

• In1990s use of OAs for testing of computer and
communication hardware-software systems expanded

9/6/2014 NIST 10

Tools for generating combinatorial test suites

• Early tools for generating test suites for pairwise testing
– OATS (Phadke AT&T) 1990s (not public)
– CATS (Sherwood AT&T) 1990s (not public)
– AETG (Cohen et al Telcordia) 1997 (commercial)
– IPO (Yu Lei NCSU) 1998 (not public)

• Czerwonka (Microsoft) lists 34 tools (www.pairwise.org)
- Tconfig - CTS - Jenny
- TestCover - DDA - AllPairs
- AllPairs[McDowell] - PICT - EXACT
- IPO-s

• ACTS (NIST/UTA): freely distributed
– Primary algorithm: IPOG generalization of 1998 IPO (Yu Lei UTA)

9/6/2014 NIST 11

NIST investigated actual faults to determine what
kind of testing would have detected them

9/6/2014 NIST 12

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

Medical devices recall data, Browser, Server, NASA
distributed database, Network security system

Pairwise testing may not be adequate

• Kuhn et al (2001, 2002, 2004)
– 2-way testing could detect 65 % to 97 % faults
– 3-way testing could detect 89 % to 99 % faults
– 4-way testing could detect 96 % to 100 % faults
– 5-way testing could detect 96 % to 100 % faults
– 6-way testing could detect 100 % faults in all cases investigated

• Kera Bell (2006, NCSU) arrived similar conclusion
• Empirical conclusion: pairwise (2-way) testing useful but

may not be adequate; 6-way testing may be adequate

9/6/2014 NIST 13

Combinatorial high strength (t-way) testing

• Dynamic verification of input-output system
– against its known expected behavior
– on test suite of test cases selected such that
– all t-way combinations are exercised with the
– object of discovering faults in system

• Earlier combinatorial test suites based on orthogonal
arrays of strength 2 useful for pairwise (2-way) testing

• Now tools available for high strength t-way testing
– ACTS (NIST/UTA) 2009
– Primary algorithm is IPOG, generalization of IPO for t > 2
– ACTS has built-in support of constraints
– http://csrc.nist.gov/groups/SNS/acts/index.html
– Freely downloaded by over 800 organizations and individuals

9/6/2014 NIST 14

Special aspects of CT for software and systems-1

• System Under Test (SUT) must be exercised (dynamic
verification)

• CT does not require access to source code
• Expected behavior (oracle) for each test case be known

– determined from functionality and/or other information
• In CT actual behavior is compared against expected for

each test case with final result of pass or fail
• Objective of CT to reveal faults; a failure indicates fault,

a fault always results in failure
• Repeat of a t-way combination gives same result so no

need to repeat t-way combinations in test suite

9/6/2014 NIST 15

Special aspects of CT for software and systems-2

• Numbers of test values of factors may be different
• A test case is combination of one value for each factor
• Certain test cases invalid, incorporate constraints
• From pass/fail data identify t-way combinations which

trigger failure among actual test cases (fault localization)
• No statistical model used in data analysis: test plan need

not be balanced like classical DoE
• Choice of factors and test values highly critical for

effectiveness of combinatorial testing
– Information about nature of faults to be detected helpful

9/6/2014 NIST 16

Orthogonal arrays

• Fixed-value OA(N, vk, t) has four parameters N, k, v, t : It
is a matrix such that every t-columns contain all t-tuples
the same number of times
– For OAs strength t is generally 2
– Index of OA is number of times every t-tuple appears
– Another notation OA(N, k, v, t)

• Mixed-value orthogonal array OA(N,v1
k1v2

k2…vn
kn, t) is a

variation of fixed value OA where k1 columns have v1
distinct values, k2 columns have v2 values, ..., kn
columns have vn values k = k1 + k2 +… + kn

9/6/2014 NIST 17

Covering arrays

• Fixed-value CA(N, vk, t) has four parameters N, k, v, t : It
is a matrix such that every t-columns contain all t-tuples
at least once
– For CAs strength t can be any integer k or less
– OA(N, vk, t)) of index one is covering array with min test cases
– However OA of index 1 are rare
– Most CA are unbalanced
– Another notation CA(N, k, v, t)

• Mixed-value covering array CA(N,v1
k1v2

k2…vn
kn, t) is a

variation of fixed value CA where k1 columns have v1
distinct values, k2 columns have v2 values, ..., kn
columns have vn values and k = k1 + k2 +… + kn

9/6/2014 NIST 18

Combinatorial structure 24 x 31, need strength t = 2
OA for 24 x 31 dose not exist

9/6/2014 19

OA(8, 2441, 2)
 a b c d e
1. 0 0 0 0 0
2. 1 1 1 1 0
3. 0 0 1 1 1
4. 1 1 0 0 1
5. 0 1 0 1 2
6. 1 0 1 0 2
7. 0 1 1 0 3 2
8. 1 0 0 1 3 2

CA(8, 2431, 2)
 a b c d e
1. 0 0 0 0 0
2. 1 1 1 1 0
3. 0 0 1 1 1
4. 1 1 0 0 1
5. 0 1 0 1 2
6. 1 0 1 0 2

NIST

OAs useful but have limitations

• OAs do not exist for many combinatorial test structures
– Construction requires advanced mathematics
– http://www2.research.att.com/~njas/oadir/

• Most OAs of strength t = 2; some t = 3 recent
• Most fixed-value; some mixed value OAs recent
• Combinatorial test structure fitted to suitable OA

– We saw how OA(8, 24×41, 2) can be used for 24×31
• Constraints destroy balance property of OA

9/6/2014 NIST 20

Benefits of CAs for generating test suites

• CAs available for any combinatorial test structure
• CAs available for any required strength (t-way) testing
• For a combinatorial test structure if OA exists then CA of

same or fewer test runs can be obtained
• When numbers of factors large, CAs of few tests exist
• Generally CAs not balanced (like OAs) not needed in

software testing
• Certain tests invalid, constraints can be incorporated

– Coverage defined relative to valid test cases

9/6/2014 NIST 21

Test suite for 2-way testing based on covering array

9/6/2014
NIST 22

An application must run on various 3-OS, 2-Browser, 2-Protocol, 2-
CPU type, and 3-DBMS, combinatorial test structure: 2332

All pairs of values of five factors covered by 10 test cases

Size of test suites for various values of t based on CA

9/6/2014 NIST 23

t # Test cases % of Exhaustive

2 10 14

3 18 25

4 36 50

5 72 100

Combinatorial test structure: 2332

Android smart phone configuration options
Combinatorial test structure: 334452

9/6/2014 NIST 24

Factors Test Values Number

HARDKEYBOARDHIDDEN NO, UNDEFINED, YES 3

KEYBOARDHIDDEN NO, UNDEFINED, YES 3

KEYBOARD 12KEY, NOKEYS, QWERTY, UNDEFINED 4

NAVIGATIONHIDDEN NO, UNDEFINED, YES 3

NAVIGATION DPAD, NONAV, TRACKBALL, UNDEFINED,
WHEEL

5

ORIENTATION LANDSCAPE, PORTRAIT, SQUARE,
UNDEFINED

4

SCREENLAYOUT_LONG MASK, NO, UNDEFINED, YES 4

SCREENLAYOUT_SIZE LARGE, MASK, NORMAL, SMALL, UNDEFINED 5

TOUCHSCREEN FINGER, NOTOUCH, STYLUS, UNDEFINED 4

Size of test suites for various values of t based on CA

9/6/2014 NIST 25

Combinatorial test structure: 334452

t # Test Cases % of Exhaustive

2 29 0.02

3 137 0.08

4 625 0.4

5 2532 1.5

6 9168 5.3

Some comments on Combinatorial t-way testing

• CT one of many complementary testing methods
• CT can reveal faults, not guarantee their absence (in this

sense software testing is about risk management)
• CT can reveal many types of faults
• CT can be used in unit, integration, system testing
• CT better than random (fewer test runs); may be better

than human generated test suites (better coverage)

9/6/2014 NIST 26

ACTS tool
http://csrc.nist.gov/groups/SNS/acts/index.html

9/6/2014 NIST 27

12600 1070048 >1 day NA 470 11625 >1 day NA 65.03 10941 6

1549 313056 >1 day NA 43.54 4580 >1 d NA 18s 4226 5

127 64696 >21 hour 1476 3.54 1536 5400 1484 3.05 1363 4

3.07 9158 >12 hour 472 0.71 413 1020 2388 0.36 400 3

2.75 101 >1 hour 108 0.001 108 0.73 120 0.8 100 2

Time Size Time Size Time Size Time Size Time Size

TVG (Open Source) TConfig (U. of Ottawa) Jenny (Open Source) ITCH (IBM) IPOG
T-Way

Comparison for Traffic Collision Avoidance System (TCAS): 273241102

Combinatorial testing is a generic methodology

• Software testing
– Test input space, test configuration space

• Computer/network security
– Network deadlock detection, buffer overflow
– http://csrc.nist.gov/groups/SNS/acts/index.html

• Testing Access Control Policy Systems
– Security, privacy (e.g. health records)
– http://csrc.nist.gov/groups/SNS/acpt/index.html

• Explore search space for study of gene regulations
– http://www.plantphysiol.org/content/127/4/1590.full

• Optimization of simulation models of manufacturing
– http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=103117

9/6/2014 28 NIST

Summary
• Combinatorial testing is a variation of DoE adapted for

testing software and hardware-software systems
• Early use was limited to pairwise (2-way) testing
• Investigations of actual faults suggests that up to 6-way

testing may be needed
• Combinatorial t-way testing for t up to 6 is possible by

use of covering arrays
• ACTS is useful tool for generating t-way test suites

based on CAs, supports constraints
• Combinatorial testing useful when testing expressed in

terms of factors, discrete test values, critical event
happens when certain t-way combination encounters

9/6/2014 29 NIST

	�Advanced combinatorial testing�of software and systems using covering arrays�
	National Institute of Standards and Technology� http://www.nist.gov
	Outline
	Combinatorial testing is a variation of Design of Experiments (DoE) adapted for testing software
	DoE based on orthogonal array: OA(8, 24×41, 2)
	DoE balanced, software test suite need not be
	Example: Font effects on word processing
	Factors values and test cases
	All 960 triples can be covered by13 test cases determined using covering array CA(13, 210, 3)
	Early history of combinatorial testing for software and systems
	Tools for generating combinatorial test suites
	NIST investigated actual faults to determine what kind of testing would have detected them
	Pairwise testing may not be adequate
	Combinatorial high strength (t-way) testing
	Special aspects of CT for software and systems-1
	Special aspects of CT for software and systems-2
	Orthogonal arrays
	Covering arrays
	Combinatorial structure 24 x 31, need strength t = 2�OA for 24 x 31 dose not exist
	OAs useful but have limitations
	Benefits of CAs for generating test suites
	Test suite for 2-way testing based on covering array
	�Size of test suites for various values of t based on CA �
	Android smart phone configuration options�Combinatorial test structure: 334452
	Size of test suites for various values of t based on CA
	Some comments on Combinatorial t-way testing
	ACTS tool http://csrc.nist.gov/groups/SNS/acts/index.html
	Combinatorial testing is a generic methodology
	Summary

