

Proudly Operated by Battelle Since 1965

Challenges of Cybersecurity Research in a Multi-User Testbed

THOMAS EDGAR, *THOMAS E. CARROLL*, AND DAVID MANZ

Pacific Northwest National Laboratory Richland, WA

Cyber-Physical System are Complex

- CPS are large, complex distributed systems, comprising specialized, utilitarian equipment
- Heterogeneous equipment manufactured by multiple vendors
- Systems are expensive, difficult to configure, deploy, and maintain
- Requires expertise
 - Demand exceeds supply

How to support research in the CPS domain?

Challenges for CPS Research

Proudly Operated by Baffelle Since 1965

- Equipment must available and accessible
- "Real" data needs to be available
- Researchers shouldn't be forced to be operational experts
- Experiment in a "safe environment"
- Support for the scientific method
- Enable open science

Multi-user testbeds enable CPS research

Testbeds Support CPS Research

Proudly Operated by Battelle Since 1965

A testbed is platform for experimentation (NSF 2002)

- *Proof-of-Concept*: Purpose-built for demonstration
- *Multi-User*: Shared resource pool
- CPS multi-user testbeds should:
 - Be dynamic, flexible, and remotely configurable
 - Researcher-friendly configuration
 - Libraries of scenarios, templates
 - Support concurrent experiments
 - Have broad and diverse pool of real world equipment
 - Be modular, extensible, and scalable
 - Support the research community and open science

Put the Researcher in Control

- World-wide accessibility
- Researcher-friendly interfaces to configure and initialize resources
 - GUI are adequate for small scale experiment
 - …inefficient when experiments comprise hundreds of components
- Library of common designs, architecture, and designs
- Activation should be on the order of hours, not days
- Mechanisms to simulate "normal"
 - ... and to orchestrate events, processes, etc.
- Default instrumentation and visualization
- …and other mechanisms to inform and collect system state

- Goal is to make efficient use of testbed resources
 - Concurrently running experiments
- Experiments should be isolated from one another
- Depending on constraints, minimize shared resources
 - Separate management from experiment
 - Support infrastructure, services duplicated per experiment
 - CPS equipment reserved for a single experiment
 - Virtual machine monitors per experiment
- Some resources must be shared
 - E.g., Network infrastructure
 - CPS devices, cannot separate the management from experiment
- Effects of sharing must be documented and quantified
- Method to reserve testbed for single researcher
- Resources returned to initialize state on experiment termination

Sensitive Data Must Be Protected

- Organizations demand we protect sensitive data
 - Architecture and design are often considered proprietary
 - Data often contains system state information
- If data is released, may harm or embarrass organization
- Testbed must enforce access controls on the data
- Obscure experiment designs
- Anonymize data employing a scientifically valid approach
 - Paul Ohm's law: "data can either be useful or perfectly anonymous but never both."
 - Several examples of anonymous data that were re-attributed

Testbeds Facilitate Reproducibility

- Reproducibility is the condition that allows a skeptic to independently verify results
- From a theory/model the researchers define a system under test
- Description of the system is the testbed configuration
 - What resources were used
 - Initial configuration
 - Connectivity between devices, characteristics of links
 - Operating system images, device firmware
 - Logs and serial, network traffic capture
 - Parameters for simulated components
- Unfortunately, uncertain what this means for physical processes...
- Provide mechanisms for researchers to share experimental designs, data, and documentation

Testbeds Can Enhance External Validity

While scenarios/template greatly enhance external validity

- ...fidelity, equipment, and scale are challenges
- Real always best, but not always possible
- Put the researcher in control of fidelity
- Combine the real with emulated and simulated
 - Procure broad and diverse set of equipment
 - Federate with other testbeds to gain access to additional resources
 - Emulate and simulate other components
- Simulation should be scientifically valid and researchers aware of shortcomings
- Some progress on simulated physical processes
- Bring everything together for experimenting on large-scale systems

powerNET Features

Project-/program- based access controls

- Remote configuration/execution of experiments
 - Web application
 - Configure using GUI/declarative language
- Network emulation/simulation
 DS, SONET, dial-up, wireless

Phasors

- 9 PMUs from multi-vendor/
 1 PMU development platform
- 1 Hardware PDC/Many software PDCs possible

powerNET Features (cont)

Proudly Operated by Baffelle Since 1965

- More than 250 virtual nodes possible
- Energy management system (in progress)
- Advanced metering infrastructure (in progress)

Compute Cluster

- 3 nodes with SSDs and Infiniband interconnects
- Scale experiments to thousands of nodes
- 64 TB high-speed shared storage

Use Cases

- Validation and verification
- Technology assessment and prototyping
- Simulation and modeling
- Training and education
- Demonstration

Logical Description

Technical Architecture

PNNL ExchangeCharge Code Server Billing System SQL JDBC/OBDC Device To Simulation Server Be Integrated Device Database CERES OF My\$QL TITT SQL NIDS JDBC/OBDC Management Terminal Network PNNL Intranet HTTP JavaFX/Java Applet Web Service?-Syslog RS23RS232 TITT Server JDBC/ODBC 0 SMTP Experiment SECTOR STATE **UI** Server Network Orchestration NetFlow Server sqL DBC/ODBC SQL JDBC/ODBC JDBC/ODBC Virtual Server User Node Server Node Server Smart Scenario Database Data Repository RTU/Com RTU/Com Meter Server Server MySQL MySQL Legend

PDC PMU [°I Node Server Cellin Node Server PML PMU Node Server DATA Celli PMŬ Simulation PMU

Proudly Operated by Battelle Since 1965

Project A

PDC PMU [°I Node Server Com Node Server PML PMU Node Server DATA PMŬ Simulation PMU

powerNET: Researcher Driven Control

- Researchers remote connect to facility
- Can configure through a GUI or a descriptive language
 - Initial device configuration and impediments
 - Provide templates and scenarios
- A subsystem for event orchestration

powerNET: Isolation

- Program/Project access controls
- Resources are reserved by and dedicated to experiments
 - …including virtual machine monitors
- Resources are wiped and re-initialized to a known good state between uses
- Separate control/management traffic from experiment traffic
 Leverage multiple NICs in devices
- Experiments are isolated from one another using VLANs
- Authentication/authorization resources are duplicated
- Devices cannot communicate directly with one another on the control network
- Data access controls mapped to NFSv4 acls and data confidentiality/integrity provided by NFSv4 and CIFS

Isolation: Reproducibility

Researchers are free to export their data from the facility

- Try hard to store data in standard formats
- Sometimes restrictions on images/firmware
- Community portal/wiki that assists communication between researchers
- Provide archive in support of open science
 - Storage experimental designs, configurations, and data

powerNET: External Validity

- A current focus on PMUs, PDCs
- …in talks with other equipment vendors
- We are federated with other testbeds within PNNL
- …and are in the process of federating with DETER and UIUC

- Cybersecurity research in CPS has high barrier of entry
- Testbeds can ease the burden by providing access and enhancing reproducibility and external validity
- Testbeds create new challenges such as isolation and data protection
- As a community, we need
 - Scientifically valid approaches for simulating devices and physical processes, synthesizing normal activity and data
 - Access to real data
 - Scientifically valid approach, with acceptable risk, for anonymizing data