
Combinatorial Testing

Rick Kuhn (NIST)
Raghu Kacker (NIST)

Sreedevi Sampath (UMBC)

Aberdeen Proving Grounds Tutorial May 17, 2010

 What is NIST and why are we doing this?
• A US Government agency

• The nation’s measurement and testing
 laboratory – 3,000 scientists, engineers,
 and support staff including
 3 Nobel laureates

Analysis of engineering failures, including
buildings, materials, and software. This work
applies knowledge gained to improve testing.

Research in physics, chemistry, materials,
manufacturing, computer science

Tutorial Overview

1. What is combinatorial testing?
2. Why are we doing this?
3. How is it used and how long does it take?
4. What tools are available?
5. What's next?

What is combinatorial testing?
THIS PART IS BASED ON PROF ADITYA P. MATHUR’S SLIDES
BASED ON HIS BOOK

Foundations of Software Testing
Chapter 4: Test Generation: Combinatorial Designs

Test configuration

 Software applications are often designed to work in a variety
of environments. Combinations of factors such as the
operating system, network connection, and hardware platform,
lead to a variety of environments.

 Each environment corresponds to a given set of values for
each factor, known as a test configuration.

 An environment is characterized by combination of hardware
and software.

©Aditya P. Mathur 2009

Test configuration: Example

 Windows XP, Dial-up connection, and a PC with 512MB of
main memory, is one possible configuration.

 To ensure high reliability across the intended environments, the
application must be tested under as many test configurations, or
environments, as possible.

 Different versions of operating systems and printer drivers, can
be combined to create several test configurations for a printer.

The number of such test configurations could be exorbitantly large making
it impossible to test the application exhaustively.

©Aditya P. Mathur 2009

Two scopes of combinatorial testing

System
under test

Test
inputs

Test case OS CPU Protocol

1 Windows Intel IPv4

2 Windows AMD IPv6

3 Linux Intel IPv6

4 Linux AMD IPv4

Test Configuration Test Configurations

Modeling: Input and configuration space [1]

 Similarly, the input space of a program P consists of k-tuples of
values that could be input to P during execution.

 Example: Consider program P that takes two integers x>0 and y>0
as inputs. The input space of P is the set of all pairs of positive
non-zero integers.

 The configuration space of P consists of all possible settings of the
environment variables under which P could be used.

©Aditya P. Mathur 2009

Modeling: Input and configuration space [2]

 The configuration space of P consists of triples (X, Y, Z) where
X represents an operating system, Y a browser, and Z a local or
a networked printer.

 Now suppose that this program is intended to be executed under
the Windows and the MacOS operating system, through the
Netscape or Safari browsers, and must be able to print to a local or
a networked printer.

©Aditya P. Mathur 2009

Factors (Parameteres)
Levels (Values)

 Let us assume that each factor may be set at any one from a
total of ci, 1≤ i ≤ v values. Each value assignable to a factor is
known as a level (value).

 |F| refers to the number of levels for factor F.

 Consider a program P that takes k inputs or has k configurations
corresponding to variables X1, X2, ..Xk. We refer to the inputs or
configuration variables as factors or parameters.

©Aditya P. Mathur 2009

Factor (parameter) combinations

 For example, suppose that program P has two input variables X
and Y. Let us say that during an execution of P, X and Y may
each assume a value from the set {a, b, c} and {d, e, f},
respectively.

 A set of values, one for each factor, is known as a factor
combination.

 Thus we have 2 factors and 3 levels for each factor. This leads
to a total of 32 = 9 factor combinations, namely (a, d), (a, e), (a,
f), (b, d), (b, e), (b, f), (c, d), (c, e), and (c, f).

©Aditya P. Mathur 2009

Factor combinations: Too large?

 Suppose now that each factor combination yields one test case.
For many programs, the number of tests generated for
exhaustive testing could be exorbitantly large.

 In general, for k factors with each factor assuming a value from a
set of v values, the total number of factor combinations is vk.

 For example, if a program has 15 factors with 4 levels each, the
total number of tests is 415 ~109. Executing a billion tests might
be impractical for many software applications.

©Aditya P. Mathur 2009

Example: Pizza Delivery Service (PDS) [1]

 A customer is required to specify the following four items as
part of the online order: Pizza size, Toppings list, Delivery
address and a home phone number. Let us denote these four
factors by S, T, A, and P, respectively.

 A PDS takes orders online, checks for their validity, and
schedules Pizza for delivery.

©Aditya P. Mathur 2009

Pizza Delivery Service (PDS): Specs

 There is a list of 6 toppings from which to select. In addition,
the customer can customize the toppings.

 Suppose now that there are three varieties for size: Large,
Medium, and Small.

 The delivery address consists of customer name, one line of
address, city, and the zip code. The phone number is a numeric
string possibly containing the dash (``--") separator.

©Aditya P. Mathur 2009

© Aditya P. Mathur 2009

PDS: Input space model

The total number of
factor combinations
is 31x23=24.

Suppose we consider 6+1 = 7 levels for Toppings. Number of
combinations = 71x31x22 = 84.

Different types of values for Address and Phone number will
further increase the combinations

Two scopes of combinatorial testing

Pizza Delivery

System under test

Test
inputs

Test case OS CPU Protocol

1 Windows Intel IPv4

2 Windows AMD IPv6

3 Linux Intel IPv6

4 Linux AMD IPv4

Test Configuration Test Configurations

Test Inputs
Size Topp Addr Phone

Sm Custom Val Val

Sm Preset Inv Inv

Med Custom Inv Val

Med Preset Val Inv

Lg Custom Val Inv

Lg Preset Inv Val

All 2-way
combinations

All 2-way
combinations

© Aditya P. Mathur 2009

Example: Testing a GUI

The Graphical User Interface of application T consists of three
menus labeled File, Edit, and Format.

We have three factors in T. Each of these three factors can be set
to any of four levels. Thus we have a total 43=64 factor
combinations.

© Aditya P. Mathur 2009

Example: Compatibility testing

There is often a need to test a web application on different
platforms to ensure that any claim such as “Application X can be
used under Windows and Mac OS X” are valid.

Here we consider a combination of hardware, operating system,
and a browser as a platform. Let X denote a Web application to be
tested for compatibility.

Given that we want X to work on a variety of hardware, OS, and
browser combinations, it is easy to obtain three factors, i.e.
hardware, OS, and browser.

© Aditya P. Mathur 2009

Compatibility testing: Factor levels

© Aditya P. Mathur 2009

Compatibility testing: Combinations

There are 75 factor combinations. However, some of these
combinations are infeasible.

For example, Mac OS10.2 is an OS for the Apple computers and not
for the Dell Dimension series PCs. Similarly, the Safari browser is
used on Apple computers and not on the PC in the Dell Series.

While various editions of the Windows OS can be used on an Apple
computer using an OS bridge such as the Virtual PC, we assume that
this is not the case for testing application X.

© Aditya P. Mathur 2009

Compatibility testing: Reduced combinations

The discussion above leads to a total of 40 infeasible factor
combinations corresponding to the hardware-OS combination and
the hardware-browser combination. Thus in all we are left with 35
platforms on which to test X.

Note that there is a large number of hardware configurations under
the Dell Dimension Series. These configurations are obtained by
selecting from a variety of processor types, e.g. Pentium versus
Athelon, processor speeds, memory sizes, and several others.

© Aditya P. Mathur 2009

Compatibility testing: Reduced combinations-2

While testing against all configurations will lead to more thorough
testing of application X, it will also increase the number of factor
combinations, and hence the time to test.

© Aditya P. Mathur 2009

Combinatorial test design process

Modeling of input space or the environment is not exclusive and one
might apply either one or both depending on the application under
test.

© Aditya P. Mathur 2009

Combinatorial test design process: steps

Step 1: Model the input space and/or the configuration space. The
model is expressed in terms of factors (parameters) and their
respective levels (values)
Step 2: The model is input to a combinatorial design procedure to
generate a combinatorial object which is simply an array of factors
and levels. Such an object is also known as a factor covering design.

Step 3: The combinatorial object generated is used to design a test set
or a test configuration as the requirement might be.

Steps 2 and 3 can be automated.

© Aditya P. Mathur 2009

Combinatorial test design process: summary

Combination of factor levels is used to generate one or more test
cases. For each test case, the sequence in which inputs are to be
applied to the program under test must be determined by the tester.

Further, the factor combinations do not indicate in any way the
sequence in which the generated tests are to be applied to the
program under test. This sequence too must be determined by the
tester.

The sequencing of tests generated by most test generation techniques
must be determined by the tester and is not a unique characteristic of
test generated in combinatorial testing

© Aditya P. Mathur 2009

Fault model

Faults aimed at by the combinatorial design techniques are known as
interaction faults.

We say that an interaction fault is triggered when a certain
combination of t ≥ 1 input values causes the program containing the
fault to enter an invalid state.

Of course, this invalid state must propagate to a point in the program
execution where it effect is observable and hence is said to reveal the
fault.

© Aditya P. Mathur 2009

t-way interaction faults

Faults triggered by some value of one input variable, i.e. t = 1,
regardless of the values of other input variables, are known as simple
faults.

For t = 2, the faults are known as pairwise interaction faults.

In general, for any arbitrary value of t, the faults are known as t--way
interaction faults.

© Aditya P. Mathur 2009

Goal reviewed

The goal of the test generation techniques discussed here is to
generate a sufficient number of runs such that tests generated
from these runs reveal all t-way faults in the program under test

Rick Kuhn [2001, 2002, 2004, 2006] shows that testing for
pairwise (t = 2) interaction faults may not be sufficient;

However empirical evidence suggests that testing up to t = 6
gives reasonable assurance in most cases

© Aditya P. Mathur 2009

Goal reviewed

The number of such runs increases with the value of t. In many
situations, t is set to 2 and hence the tests generated are expected to
reveal pairwise interaction faults.

Of course, while generating t-way runs, one automatically generates
some t+1, t+2, .., t+k-1, and k-way runs also. Hence, there is always
a chance that runs generated with t = 2 reveal some higher level
interaction faults.

Statistical Approaches

Tests generated from statistical approaches (design
of experiments, fractional factorials, Latin
squares, orthogonal arrays) generally cover
pairwise interaction

Statistical approaches do not give assurance of

higher than pairwise (t = 2) interaction coverage.

Orthogonal arrays

Fractional factorial designs of experiments are special class of
orthogonal arrays

Latin squares, Graeco-Latin squares are special cases of orthogonal
arrays

Results from test suites based on orthogonal arrays require statistical
analysis

© Aditya P. Mathur 2009

Simple orthogonal array

An orthogonal array, such as the one above, is an N x k matrix in
which the entries are from a finite set S of s symbols such that any
N x t subarray contains each t-tuple exactly the same number of
times. Such an orthogonal array is denoted by OA(N, k, s, t).

Examine this matrix and extract as many properties as you can:

© Aditya P. Mathur 2009

Orthogonal arrays: Example

The following orthogonal array has 4 runs and has a strength of 2.
It uses symbols from the set {1, 2}. This array is denoted as OA(4,
3, 2, 2). Note that the value of parameter k is 3 and hence we have
labeled the columns as F1, F2, and F3 to indicate the three factors.

© Aditya P. Mathur 2009

Orthogonal arrays: Index

The index of an orthogonal array is denoted by λ and is equal to
N/st. N is referred to as the number of runs and t as the strength of
the orthogonal array.

λ =4/22=1 implying that each pair (t=2)
appears exactly once (λ =1) in any 4 x 2
sub-array. There is a total of st=22=4
pairs given as (1, 1), (1, 2), (2, 1), and
(2, 2). It is easy to verify that each of the
four pairs appears exactly once in each 4
x 2 sub-array.

© Aditya P. Mathur 2009

Orthogonal arrays: Another example

It has 9 runs and a strength of 2.
Each of the four factors can be at any
one of 3 levels. This array is denoted
as OA(9, 4, 3, 2) and has an index of
1.

What kind of an OA is this?

An orthogonal array of index 1,
when it exists is the most optimal
(smallest size) combinatorial design

© Aditya P. Mathur 2009

Orthogonal arrays: Alternate notations
- due to Genichi Taguchi

Orthogonal array of N runs where k
factors take on any value from a set
of s symbols.

Arrays shown earlier are

LN denotes an orthogonal array of 9 runs. t, k, s are
determined from the context, i.e. by examining the array
itself.

© Aditya P. Mathur 2009

Mixed level Orthogonal arrays

So far we have seen fixed (same) level orthogonal arrays.
This is because the design of such arrays assumes that all
factors assume values from the same set of s values.

In many practical applications, one encounters more than
one factor, each taking on a different set of values. Mixed
orthogonal arrays are useful in designing test
configurations for such applications.

© Aditya P. Mathur 2009

Mixed level Orthogonal arrays: Notation

Strength = t. Runs = N.
k1 factors at s1 levels, k2 at s2 levels, and so
on.

Total factors:

© Aditya P. Mathur 2009

Mixed level Orthogonal arrays:
Index and balance

The balance property of orthogonal arrays remains intact for
mixed level orthogonal arrays in that any N x t sub-array contains
each t-tuple corresponding to the t columns, exactly the same
number of times, which is λ.

The formula used for computing the index λ of an orthogonal
array does not apply to the mixed level orthogonal array as the
count of values for each factor is a variable.

© Aditya P. Mathur 2009

Mixed level Orthogonal arrays: Example

This array can be used to design test
configurations for an application that
contains 4 factors each at 2 levels and
1 factor at 4 levels.

Balance: In any subarray of size 8 x 2, each possible pair occurs
exactly the same number of times. In the two leftmost columns, each
pair occurs exactly twice. In columns 1 and 3, each pair also occurs
exactly twice. In columns 1 and 5, each pair occurs exactly once.

Can you identify some properties?

© Aditya P. Mathur 2009

Mixed level Orthogonal arrays: Example

This array can be used to
generate test
configurations when there
are six binary factors,
labeled F1 through F6
and three factors each
with four possible levels,
labeled F7 through F9.

© Aditya P. Mathur 2009

Mixed level Orthogonal arrays: Test
generation: Pizza delivery

We have 3 binary factors and one factor at 3 levels. Hence we
can use the following array to generate test configurations:

© Aditya P. Mathur 2009

Test generation: Pizza delivery: Array

Check that all possible
pairs of factor
combinations are covered
in the design above. What
kind of errors will likely
be revealed when testing
using these 12
configurations?

© Aditya P. Mathur 2009

Test generation: Pizza delivery: test
configurations

© Aditya P. Mathur 2009

Arrays of strength >2

Designs with strengths higher than 2 may be needed to achieve
higher confidence in the correctness of software. Consider the
following factors in a pacemaker

© Aditya P. Mathur 2009

Pacemaker example

Due to the high reliability requirement of the pacemaker, we
would like to test it to ensure that there are no pairwise or 3-way
interaction errors.

Thus we need a suitable combinatorial object with strength 3. We
could use an orthogonal array OA(54, 5, 3, 3) that has 54 runs for
5 factors each at 3 levels and is of strength 3. Thus a total of 54
tests will be required to test for all 3-way interactions of the 5
pacemaker parameters

Could a design of strength 2 cover some
triples and higher order tuples?

© Aditya P. Mathur 2009

Covering arrays and mixed-level
covering arrays

Observation [Dalal and Mallows, 1998]: The balance requirement is
often essential in statistical experiments, it is not always so in
software testing.

For example, if a software application has been tested once for a
given pair of factor levels, there is generally no need for testing it
again for the same pair, unless the application is known to
behave non-deterministically.

For deterministic applications, and when repeatability is not the
focus, we can relax the balance requirement and use covering
arrays, or mixed level covering arrays for combinatorial designs.

Statistical approaches versus covering
array approach

Statistical approaches estimate parameters of a statistical model to
search of fault trigging interactions (pairwise)

Statistical approaches useful when system is subject to significant
random error.

Combinatorial test suites based on covering arrays are not balanced
and do not use statistical analysis.

© Aditya P. Mathur 2009

Covering array

A covering array CA(N, k, s, t) is an N x k matrix in which
entries are from a finite set S of s symbols such that each N x t
subarray contains each possible t-tuple at least λ times.

 N denotes the number of runs, k the number factors, s, the
number of levels for each factor, t the strength, and λ the index

While generating test cases or test configurations for a software
application, we use λ=1. Why?

© Aditya P. Mathur 2009

Covering array and orthogonal array

While an orthogonal array OA(N, k, s, t) covers each possible t-
tuple λ times in any N x t subarray, a covering array CA(N, k, s, t)
covers each possible t-tuple at least λ times in any N x t subarray.

Thus covering arrays do not meet the balance requirement that is
met by orthogonal arrays. This difference leads to combinatorial
designs that are often smaller in size than orthogonal arrays.

Covering arrays are also referred to as unbalanced designs. We are
interested in minimal (size, number of test runs) covering arrays.

© Aditya P. Mathur 2009

Covering array: Example

A balanced design of strength 2 for 5 binary factors, requires 8 runs
and is denoted by OA(8, 5, 2, 2). However, a covering design with
the same parameters requires only 6 runs.

© Aditya P. Mathur 2009

Mixed level covering arrays

A mixed-level covering array is denoted as

and refers to an N x Q matrix of entries such that, Q= and
each N x t subarray contains at least one occurrence of each t-tuple
corresponding to the t columns. s1, s2,,… denote the number of
levels of each the corresponding factor.

ki
i=1

p

∑

Mixed-level covering arrays are generally smaller than mixed-
level orthogonal arrays and more appropriate for use in software
testing.

© Aditya P. Mathur 2009

Mixed level covering array: Example

Comparing this with we notice a reduction of 6
configurations.

Is the above array balanced?

© Aditya P. Mathur 2009

Generating mixed level covering arrays

We will now study a procedure due to Lei and Tai (Professor Jeff
Yu Lei is Faculty Researcher in NIST) for the generation of mixed
level covering arrays.

The procedure is known as In-parameter Order (IPO) procedure.

Inputs: (a) n ≥2: Number of parameters (factors). (b) Number of
values (levels) for each parameter.

Output: MCA

© Aditya P. Mathur 2009

IPO procedure

Consists of three steps:

Step 1: Main procedure.

Step 2: Horizontal growth.

Step 3: Vertical growth.

© Aditya P. Mathur 2009

IPO procedure: Example

Consider a program with three factors A, B, and C. A assumes
values from the set {a1, a2, a3}, B from the set {b1, b2}, and C
from the set {c1, c2, c3}. We want to generate a mixed level
covering array for these three factors..

We begin by applying the Main procedure which is the first
step in the generation of an MCA using the IPO procedure.

© Aditya P. Mathur 2009

IPO procedure: main procedure

Main: Step 1: Construct all runs that consist of pairs of values of
the first two parameters. We obtain the following set.

Let us denote the elements of as t1, t2,…t6.

The entire IPO procedure would terminate at this point if the
number of parameters n=2. In our case n=3 hence we continue
with horizontal growth.

IPO Algorithm

Run a b c
t1 1 1
t2 1 2
t3 2 1
t4 2 2
t5 3 1
t6 3 2

© Aditya P. Mathur 2009

IPO procedure: Horizontal growth

HG: Step 1: Compute the set of all pairs AP between parameters A
and C, and parameters B and C. This leads us to the following set
of fifteen pairs.

HG: Step 2: AP is the set of pairs yet to be covered. Let T’ denote
the set of runs obtained by extending the runs in T. At this point T’
is empty as we have not extended any run in T.

© Aditya P. Mathur 2009

Horizontal growth: Extend

HG: Steps 3, 4: Expand t1, t2, t3 by appending c1, c2, c3. This
gives us:

t1’=(a1, b1, c1), t2’=(a1, b2, c2), and t3’=(a2, b1, c3)

Update T’ it becomes {(a1, b1, c1), (a1, b2, c2), (a2, b1, c3)}

Update pairs remaining to be covered AP={(a1, c3), (a2, c1), (a2,
c2), (a3, c1), (a3, c2), (a3, c3), (b1, c2), (b2, c1), (b2, c3)}

IPO Algorithm

Run a b c
t1’ 1 1 1
t2’ 1 2 2
t3’ 2 1 3
t4 2 2
t5 3 1
t6 3 2

© Aditya P. Mathur 2009

Horizontal growth: Optimal extension

HG: Step 6: Expand t4, t5, t6 by suitably selected values of C.

If we extend t4=(a2, b2) by c1 then we cover two of the
uncovered pairs from AP, namely, (a2, c1) and (b2, c1). If we
extend it by c2 then we cover one pair from AP. If we extend it by
c3 then we cover one pairs in AP. Thus we choose to extend t4 by
c1.

HG. Step 5: We have not extended t4, t5, t6. We find the best way
to extend these in the next step.

© Aditya P. Mathur 2009

Horizontal growth: Update and extend
remaining

HG: Step 6: Similarly we extend t5 and t6 by the best possible
values of parameter C. This leads to:
t5’=(a3, b1, c3) and t6’=(a3, b2, c1)

T’={(a1, b1, c1), (a1, b2, c2), (a2, b1, c3), (a2, b2, c1)}

AP= {(a1, c3), (a2, c2), (a3, c1), (a3, c2), (a3, c3), (b1, c2), (b2,
c3)}

T’={(a1, b1, c1), (a1, b2, c2), (a2, b1, c3), (a2, b2, c1), (a3, b1,
c3), (a3, b2, c1)}
AP= {(a1, c3), (a2, c2), (a3, c2), (b1, c2), (b2, c3)}

IPO Algorithm
Run a b c

t1’ 1 1 1

t2’ 1 2 2

t3’ 2 1 3

t4 2 2 1

t5 3 1 3

t6 3 2 1

© Aditya P. Mathur 2009

Horizontal growth: Done

We now move to the vertical growth step of the main IPO
procedure to cover the remaining pairs.

We have completed the horizontal growth step. However, we have
five pairs remaining to be covered. These are:
AP= {(a1, c3), (a2, c2), (a3, c2), (b1, c2), (b2, c3)}

Also, we have generated six complete runs namely:

T’={(a1, b1, c1), (a1, b2, c2), (a2, b1, c3), (a2, b2, c1), (a3, b1,
c3), (a3, b2, c1)}

© Aditya P. Mathur 2009

Vertical growth

Next , consider p=(a2, c2). This is covered by the run (a2, *, c2)

For each missing pair p from AP, we will add a new run to T’
such that p is covered. Let us begin with the pair p= (a1, c3).

The run t = (a1, *, c3) covers pair p. Note that the value of
parameter Y does not matter and hence is indicated as a *
which denotes a don’t care value.

Next , consider p=(a3, c2). This is covered by the run (a3, *, c2)

© Aditya P. Mathur 2009

Vertical growth (contd.)

Next , consider p=(b2, c3). We already have (a1, *, c3) and hence
we can modify it to get the run (a1, b2, c3). Thus p is covered
without any new run added.

Finally, consider p=(b1, c2). We already have (a3, *, c2) and
hence we can modify it to get the run (a3, b1, c2). Thus p is
covered without any new run added.

© Aditya P. Mathur 2009

Final covering array: MCA (9, 21x32,2)
Run F1(X) F2(Y) F3(Z)

t1 1 1 1

t2 1 2 2

t3 2 1 3

t4 2 2 1

t5 3 1 3

t6 3 2 1

t7 1 2 3

t8 2 * (1) 2

t9 3 1 2

© Aditya P. Mathur 2009

ACTS Tool

ACTS (NIST/UTA) tool freely available from NIST can
generate test suites developed from generalization of IPO
algorithm for generating covering arrays of any desired
strength of t = 6 or more

-Small size test suites and efficient generation

Tutorial Overview

1. What is combinatorial testing?
2. Why are we doing this?

- empirical data
- why it works

3. How is it used and how long does it take?
4. What tools are available?
5. What's next?

• Pairwise testing commonly applied to software
• Intuition: some problems only occur as the result of

an interaction between parameters/components
• Pairwise testing finds about 50% to 90% of flaws

• Cohen, Dalal, Parelius, Patton, 1995 – 90% coverage with pairwise, all errors in small
modules found

• Dalal, et al. 1999 – effectiveness of pairwise testing, no higher degree interactions
• Smith, Feather, Muscetolla, 2000 – 88% and 50% of flaws for 2 subsystems

Pairwise testing is popular,
but is it enough?

90% of flaws.
Sounds pretty good!

 Finding 90% of flaws is pretty good, right?

“Relax, our engineers found
 90 percent of the flaws.”

I don't think I
want to get on
that plane.

Software Failure Analysis
• We studied software failures in a variety of
 fields including 15 years of FDA medical
 device recall data

• What causes software failures?

• logic errors?

• calculation errors?

• interaction faults?

• inadequate input checking? Etc.

• What testing and analysis would have prevented failures?

• Would statement coverage, branch coverage, all-values, all-pairs etc.
 testing find the errors?

Interaction faults: e.g., failure occurs if
 pressure < 10 (1-way interaction <= all-values testing catches)
 pressure < 10 & volume > 300 (2-way interaction <= all-pairs testing catches)

Software Failure Internals
• How does an interaction fault manifest itself in code?

Example: pressure < 10 & volume > 300 (2-way interaction)

if (pressure < 10) {

 // do something

 if (volume > 300) { faulty code! BOOM! }

 else { good code, no problem}

}

else {

 // do something else

}

How about hard-to-find flaws?
•Interactions e.g., failure occurs if

• pressure < 10 (1-way interaction)

• pressure < 10 & volume > 300 (2-way interaction)

• pressure < 10 & volume > 300 & velocity = 5
 (3-way interaction)

• The most complex failure reported required
 4-way interaction to trigger

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

Interaction

%
 d

et
ec

te
d

Interesting, but
that's just one kind
of application.

How about other applications?
 Browser (green)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

These faults more
complex than medical
device software!!

Why?

And other applications?

 Server (magenta)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

Still more?
 NASA distributed database
 (light blue)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

Even more?
Traffic Collision Avoidance System module

(seeded errors) (purple)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

Finally
 Network security (Bell, 2006)
 (orange)

 Curves appear to
be similar across
a variety of
application
domains.

Why this
distribution?

What causes this distribution?

One clue: branches in avionics software.
7,685 expressions from if and while statements

Comparing with Failure Data
Branch
statements

• Maximum interactions for fault triggering
for these applications was 6

• Much more empirical work needed
• Reasonable evidence that maximum interaction strength for

fault triggering is relatively small

So, how many parameters are
involved in really tricky faults?

How does it help
me to know this?

How does this knowledge help?

Still no silver
bullet. Rats!

Biologists have a “Central Dogma”, and so do we:

If all faults are triggered by the interaction of t or fewer variables,
then testing all t-way combinations can provide strong assurance.

(taking into account: value propagation issues, equivalence partitioning,
timing issues, more complex interactions, . . .)

Tutorial Overview

1. What is combinatorial testing?
2. Why are we doing this?
3. How is it used and how long does it take?

- scaling up -> real-world examples
- different application domains

4. What tools are available?
5. What's next?

A simple example

How Many Tests Would It Take?

 There are 10 effects, each can be on or off
 All combinations is 210 = 1,024 tests
 What if our budget is too limited for these tests?
 Instead, let’s look at all 3-way interactions …

 There are = 120 3-way interactions.

 Naively 120 x 23 = 960 tests.
 Since we can pack 3 triples into each test, we need

no more than 320 tests.
 Each test exercises many triples:

Now How Many Would It Take?

We can pack a lot into one test, so what’s the
smallest number of tests we need?

10
3

0 1 1 0 0 0 0 1 1 0

A covering array

Each row is a test:
Each column is
a parameter:

Each test covers = 120 3-way combinations

Finding covering arrays is NP hard

All triples in only 13 tests, covering 23 = 960 combinations

10
3

10
3

0 = effect off
1 = effect on

13 tests for all 3-way combinations

210 = 1,024 tests for all combinations

Testing Configurations - Example
• Example: Android smart phone testing using emulator (project for DARPA)

• Apps should work on all combinations of platform options,
 but there are 3 x 3 x 4 x 3 x 5 x 4 x 4 x 5 x 4 = 172,800 configurations

HARDKEYBOARDHIDDEN_NO
HARDKEYBOARDHIDDEN_UNDEFINED
HARDKEYBOARDHIDDEN_YES

KEYBOARDHIDDEN_NO
KEYBOARDHIDDEN_UNDEFINED
KEYBOARDHIDDEN_YES

KEYBOARD_12KEY
KEYBOARD_NOKEYS
KEYBOARD_QWERTY
KEYBOARD_UNDEFINED

NAVIGATIONHIDDEN_NO
NAVIGATIONHIDDEN_UNDEFINED
NAVIGATIONHIDDEN_YES

NAVIGATION_DPAD
NAVIGATION_NONAV
NAVIGATION_TRACKBALL
NAVIGATION_UNDEFINED
NAVIGATION_WHEEL

ORIENTATION_LANDSCAPE
ORIENTATION_PORTRAIT
ORIENTATION_SQUARE
ORIENTATION_UNDEFINED

SCREENLAYOUT_LONG_MASK
SCREENLAYOUT_LONG_NO
SCREENLAYOUT_LONG_UNDEFINED
SCREENLAYOUT_LONG_YES

SCREENLAYOUT_SIZE_LARGE
SCREENLAYOUT_SIZE_MASK
SCREENLAYOUT_SIZE_NORMAL
SCREENLAYOUT_SIZE_SMALL
SCREENLAYOUT_SIZE_UNDEFINED

TOUCHSCREEN_FINGER
TOUCHSCREEN_NOTOUCH
TOUCHSCREEN_STYLUS
TOUCHSCREEN_UNDEFINED

Testing Android Combinatorially
• 3 x 3 x 4 x 3 x 5 x 4 x 4 x 5 x 4 = 172,800 configurations

• Effort substantially reduced with t-way combinations:

t Number tests Pct of all configs

2 34 0.02

3 139 0.08

4 634 0.4

5 2783 1.6

6 10762 6.2

• Suppose we have a system with 34 on-off switches:

A larger example

• 34 switches = 234 = 1.7 x 1010 possible inputs = 1.7 x 1010 tests

How do we test this?

• 34 switches = 234 = 1.7 x 1010 possible inputs = 1.7 x 1010 tests
• If only 3-way interactions, need only 33 tests
• For 4-way interactions, need only 85 tests

What if we knew no failure involves more
than 3 switch settings interacting?

Ordering Pizza

Simplified pizza ordering:

6x4x4x4x4x3x2x2x5x2
 = 184,320 possibilities

6x217x217x217x4x3x2x2x5x2
= WAY TOO MUCH TO TEST

Ordering Pizza Combinatorially
Simplified pizza ordering:

6x4x4x4x4x3x2x2x5x2
 = 184,320 possibilities

2-way tests: 32

3-way tests: 150

4-way tests: 570

5-way tests: 2,413

6-way tests: 8,330

 If all failures involve 5 or fewer parameters,
then we can have confidence after running
all 5-way tests.

So what? Who has time
to check 2,413 test

results?

Another familiar example

Plan: flt, flt+hotel, flt+hotel+car
From: CONUS, HI, Europe, Asia …
To: CONUS, HI, Europe, Asia …
Compare: yes, no
Date-type: exact, 1to3, flex
Depart: today, tomorrow, 1yr, Sun, Mon …
Return: today, tomorrow, 1yr, Sun, Mon …
Adults: 1, 2, 3, 4, 5, 6
Minors: 0, 1, 2, 3, 4, 5
Seniors: 0, 1, 2, 3, 4, 5

• No silver bullet because:
 Many values per variable
 Need to abstract values
 But we can still increase information per test

Two ways of using combinatorial testing:
(1) test inputs (2) configurations

Use combinations here or here

System
under test

Test
data
inputs

Test case OS CPU Protocol

1 Windows Intel IPv4

2 Windows AMD IPv6

3 Linux Intel IPv6

4 Linux AMD IPv4

Configuration

Difference with conventional practice

Conventional
•Use cases

• typical cases

• outliers

•Abstraction and
equivalence classes

Combinatorial
•Use cases

• t-way combinations

•Abstraction and
equivalence classes

Experimental comparison with
conventional practice

• Real-world experiment by Justin Hunter

• 10 projects, 6 companies

• 2-way only, no higher t-way combinations

Testing efficiency Testing quality

Example 1
Traffic Collision Avoidance

System (TCAS) module
• Used in previous testing research
• 41 versions seeded with errors
• 12 variables: 7 boolean, two 3-value, one 4-value, two 10-

value
• All flaws found with 5-way coverage
• Thousands of tests

- test inputs generated by ACTS
- results generated by model checker
- full testing on each version complete in a few minutes

Tests generated
 t
2-way:
3-way:
4-way:
5-way:
6-way:

0

2000

4000

6000

8000

10000

12000

2-way 3-way 4-way 5-way 6-way

T
e

s
ts

Test cases
156
461

1,450
4,309

11,094

Results

Detection Rate for TCAS Seeded
Errors

0%

20%

40%

60%

80%

100%

2 way 3 way 4 way 5 way 6 way

Fault Interaction level

Detection
rate

• Roughly consistent with real-world data on large systems

• But errors harder to detect than real-world examples

Tests per error

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

2 w ay 3 w ay 4 w ay 5 w ay 6 w ay

Fault Interaction level
T

es
ts Tests per error

• Number of tests: proportional to vt log n

for v values, n variables, t-way interactions
• Thus:

•Tests increase exponentially with interaction strength t : BAD, but
unavoidable
•But only logarithmically with the number of parameters : GOOD!

• Example: suppose we want all 4-way combinations of n parameters, 5
values each:

Cost and Volume of Tests

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

10 20 30 40 50

Variables

Tests

Example 2:
Modeling & Simulation Application

• “Simured” network simulator
• Kernel of ~ 5,000 lines of C++ (not including GUI)

• Objective: detect configurations that can produce
deadlock:

• Prevent connectivity loss when changing network
• Attacks that could lock up network

• Compare effectiveness of random vs. combinatorial
inputs

• Deadlock combinations discovered
• Crashes in >6% of tests w/ valid values (Win32

version only)

Simulation System Configurations
Parameter Values

1 DIMENSIONS 1,2,4,6,8
2 NODOSDIM 2,4,6
3 NUMVIRT 1,2,3,8
4 NUMVIRTINJ 1,2,3,8
5 NUMVIRTEJE 1,2,3,8
6 LONBUFFER 1,2,4,6
7 NUMDIR 1,2
8 FORWARDING 0,1
9 PHYSICAL true, false
10 ROUTING 0,1,2,3
11 DELFIFO 1,2,4,6
12 DELCROSS 1,2,4,6
13 DELCHANNEL 1,2,4,6
14 DELSWITCH 1,2,4,6

5x3x4x4x4x4x2x2
x2x4x4x4x4x4
= 31,457,280
configurations

Are any of them
dangerous?

If so, how many?

Which ones?

Network Deadlock Detection

 Deadlocks Detected:
combinatorial

t Tests 500 pkts
1000
pkts

2000
pkts

4000
pkts

8000
pkts

2 28 0 0 0 0 0
3 161 2 3 2 3 3
4 752 14 14 14 14 14

Average Deadlocks Detected:
 random

t Tests 500 pkts
1000
pkts

2000
pkts

4000
pkts

8000
pkts

2 28 0.63 0.25 0.75 0. 50 0. 75
3 161 3 3 3 3 3
4 752 10.13 11.75 10.38 13 13.25

Network Deadlock Detection
Detected 14 configurations that can cause deadlock:
 14/ 31,457,280 = 4.4 x 10-7

Combinatorial testing found more deadlocks than random,
including some that might never have been found with
random testing

Why do this testing? Risks:
• accidental deadlock configuration: low
• deadlock config discovered by attacker: much higher
 (because they are looking for it)

Example 3:
Buffer Overflows

• Empirical data from the National Vulnerability Database
• Investigated > 3,000 denial-of-service vulnerabilities reported in the

NIST NVD for period of 10/06 – 3/07
• Vulnerabilities triggered by:

• Single variable – 94.7%
example: Heap-based buffer overflow in the SFTP protocol handler for
Panic Transmit … allows remote attackers to execute arbitrary code via a
long ftps:// URL.

• 2-way interaction – 4.9%
example: single character search string in conjunction with a single
character replacement string, which causes an "off by one overflow"

• 3-way interaction – 0.4%
example: Directory traversal vulnerability when register_globals is
enabled and magic_quotes is disabled
and .. (dot dot) in the page parameter

Finding Buffer Overflows
1. if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) {

2. if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) {

 ……

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

 ……

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

 ……

7. pPostData+=rc;

8. x+=rc;

9. } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0';

11. }

Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes
1. if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) {

2. if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) {

 ……

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

 ……

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

 ……

7. pPostData+=rc;

8. x+=rc;

9. } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0';

11. }

Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes
1. if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) {

2. if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) {

 ……

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

 ……

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

 ……

7. pPostData+=rc;

8. x+=rc;

9. } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0';

11. }

true branch

Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes
1. if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) {

2. if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) {

 ……

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

 ……

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

 ……

7. pPostData+=rc;

8. x+=rc;

9. } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0';

11. }

true branch

Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes
1. if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) {

2. if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) {

 ……

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

 ……

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

 ……

7. pPostData+=rc;

8. x+=rc;

9. } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0';

11. }

true branch

Allocate -1000 + 1024 bytes = 24 bytes

Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes
1. if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) {

2. if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) {

 ……

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

 ……

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

 ……

7. pPostData+=rc;

8. x+=rc;

9. } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0';

11. }

true branch

Allocate -1000 + 1024 bytes = 24 bytes

Boom!

How to automate checking
correctness of output

• Creating test data is the easy part!

• How do we check that the code worked correctly
 on the test input?

• Crash testing server or other code to ensure it does not crash for any
test input (like ‘fuzz testing’) - Easy but limited value

• Embedded assertions – incorporate assertions in code to check critical
states at different points in the code, or print out important values during
execution

• Model-checking using mathematical model of system and model
checker to generate expected results for each input- expensive but
tractable

Crash Testing
• Like “fuzz testing” - send packets or other input
 to application, watch for crashes

• Unlike fuzz testing, input is non-random;
 cover all t-way combinations

• May be more efficient - random input generation
 requires several times as many tests to cover the
 t-way combinations in a covering array

 Limited utility, but can detect
 high-risk problems such as:
 - buffer overflows
 - server crashes

Ratio of Random/Combinatorial Test Set
Required to Provide t-way Coverage

2w ay 3w ay 4w ay
nval=2

nval=6

nval=10

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

5.00

Ratio

Interactions

V alues per
variable

4.50-5.00

4.00-4.50

3.50-4.00

3.00-3.50

2.50-3.00

2.00-2.50

1.50-2.00

1.00-1.50

0.50-1.00

0.00-0.50

Embedded Assertions
Simple example:
assert(x != 0); // ensure divisor is not zero

Or pre and post-conditions:
/requires amount >= 0;

/ensures balance == \old(balance) - amount &&
\result == balance;

Embedded Assertions
Assertions check properties of expected result:
 ensures balance == \old (balance) - amount
 && \result == balance;

•Reasonable assurance that code works correctly across the range
of expected inputs

•May identify problems with handling unanticipated inputs

•Example: Smart card testing

• Used Java Modeling Language (JML) assertions
• Detected 80% to 90% of flaws

Tutorial Overview

1. What is combinatorial testing?
2. Why are we doing this?
3. How is it used and how long does it take?
4. What tools are available?

- tools and capabilities
5. What's next?

New algorithms to make it practical
• Tradeoffs to minimize calendar/staff time:

• FireEye (extended IPO) – Lei – roughly optimal, can be used for most
cases under 40 or 50 parameters

• Produces minimal number of tests at cost of run time

• Currently integrating algebraic methods

• Adaptive distance-based strategies – Bryce – dispensing one test at a time
w/ metrics to increase probability of finding flaws

• Highly optimized covering array algorithm

• Variety of distance metrics for selecting next test

• PRMI – Kuhn –for more variables or larger domains
• Parallel, randomized algorithm, generates tests w/ a few tunable parameters;
computation can be distributed

• Better results than other algorithms for larger problems

• Smaller test sets faster than other algorithms, with a more advanced user interface
• First parallelized covering array algorithm
• More information per test

12600 1070048 >1 day NA 470 11625 >1 day NA 65.03 10941 6

1549 313056 >1 day NA 43.54 4580 >1
day NA 18s 4226 5

127 64696 >21 hour 1476 3.54 1536 5400 1484 3.05 1363 4

3.07 9158 >12 hour 472 0.71 413 1020 2388 0.36 400 3

2.75 101 >1 hour 108 0.001 108 0.73 120 0.8 100 2

Time Size Time Size Time Size Time Size Time Size

TVG (Open Source) TConfig (U. of Ottawa) Jenny (Open Source) ITCH (IBM) IPOG
T-Way

New algorithms

Traffic Collision Avoidance System (TCAS): 273241102

Times in seconds

That's fast!

Unlike diet plans,
results ARE typical.

ACTS Users - 340+ in April 2010

Information
Technology

Defense

Finance

Telecom

ACTS Tool

Defining a new system

Variable interaction strength
• May want stronger interaction tests for some parameters

• Example: 10 parameters,

• Create 2-way covering array for P1 .. P10

• May want 4-way testing for a subset P2, P4, P5, P6, P7

• Makes testing more efficient, saves on total number of tests

Variable interaction strength

Constraints
Constraint 1: (OS = “Windows”) => (Browser = “IE” ||
 Browser = “FireFox” || Browser = “Netscape”)
where OS and Browser are two parameters of type Enum.
(if OS is Windows, then Browser has to be IE, FireFox, or Netscape)

Constraint 2: (P1 > 100) || (P2 > 100)
where P1 and P2 are two parameters of type
Number or Range.
(P1 or P2 must be greater than 100)

Constraint 3: (P1 > P2) => (P3 > P4)
where P1, P2, P3, and P4 are parameters of type Number or Range.
(if P1 is greater than P2, then P3 must be greater than P4)

Constraint 4: (P1 = true || P2 >= 100) => (P3 = “ABC”)
where P1 is a Boolean parameter, P2 is a parameter of type Number or Range, and P3 is of
type Enum.
(if P1 is true and P2 is greater than or equal to 100, then P3 must be “ABC”)

Constraints

Covering array output

Output
 Variety of output formats:

 XML
 Numeric
 CSV
 Excel

 Separate tool to generate .NET configuration
 files from ACTS output

 Post-process output using Perl scripts, etc.

Output options
Mappable values

Degree of interaction
coverage: 2
Number of parameters: 12
Number of tests: 100

0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 1 1 1 1
2 0 1 0 1 0 2 0 2 2 1 0
0 1 0 1 0 1 3 0 3 1 0 1
1 1 0 0 0 1 0 0 4 2 1 0
2 1 0 1 1 0 1 0 5 0 0 1
0 1 1 1 0 1 2 0 6 0 0 0
1 0 1 0 1 0 3 0 7 0 1 1
2 0 1 1 0 1 0 0 8 1 0 0
0 0 0 0 1 0 1 0 9 2 1 1
1 1 0 0 1 0 2 1 0 1 0 1
Etc.

Human readable

Degree of interaction coverage: 2
Number of parameters: 12
Maximum number of values per
parameter: 10
Number of configurations: 100

Configuration #1:

1 = Cur_Vertical_Sep=299
2 = High_Confidence=true
3 = Two_of_Three_Reports=true
4 = Own_Tracked_Alt=1
5 = Other_Tracked_Alt=1
6 = Own_Tracked_Alt_Rate=600
7 = Alt_Layer_Value=0
8 = Up_Separation=0
9 = Down_Separation=0
10 = Other_RAC=NO_INTENT
11 = Other_Capability=TCAS_CA
12 = Climb_Inhibit=true

Eclipse Plugin for ACTS

Work in
progress

Eclipse Plugin for ACTS

Defining
parameters and
values

Tutorial Overview

1. What is combinatorial testing?
2. Why are we doing this?
3. How is it used and how long does it take?
4. What tools are available?
5. What's next?

• Combinatorial coverage measurement
• Combinatorial sequence testing
• Fault location
• Pairwise test prioritization

Combinatorial Coverage Measurement

Tests Variables

a b c d

1 0 0 0 0

2 0 1 1 0

3 1 0 0 1

4 0 1 1 1

5 0 1 0 1

6 1 0 1 1

7 1 0 1 0

8 0 1 0 0

Variable pairs Variable-value
combinations
covered

Coverage

ab 00, 01, 10 .75

ac 00, 01, 10 .75

ad 00, 01, 11 .75

bc 00, 11 .50

bd 00, 01, 10, 11 1.0

cd 00, 01, 10, 11 1.0

Combinatorial Coverage Measurement

2-way

3-way

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.0

5 0.1 0.1
5 0.2 0.2

5 0.3 0.3
5 0.4 0.4

5 0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5 1

Percentage of t-way combinations

P
er

ce
nt

 c
ov

er
ag

e

4-way

 Configuration coverage for 27931416191 inputs.

What this means:

for 70% of 4-way variable
combinations, tests cover at
least 40% of variable-value
configurations

•Measure coverage provided by existing test sets
•Compare across methodologies

Combinatorial Sequence Testing

Event Description
a connect air flow meter
b connect pressure gauge
c connect satellite link
d connect pressure readout
e engage drive motor
f engage steering control

• Suppose we want to see if a system works correctly regardless
of the order of events. How can this be done efficiently?

• Example:

Most failure reports indicate something like:
'failure occurred when <event A> if B is already connected'.

Combinatorial Sequence Testing
 • With 5 events, all sequences = 5! = 120 tests

• Only 9 tests needed for all 3-way sequences,
 results even better for larger numbers of events

• Example:
1 2 3 4 5

1 a b c d e
2 d c b a e
3 e b d a c
4 e c a d b
5 b a e d c
6 d a e c b
7 c e a b d
8 b c e d a
9 d e b c a

Fault location
Given: a set of tests that the SUT fails, which combinations of
variables/values triggered the failure?

variable/value combinations in
passing tests

variable/value combinations in
failing tests

These are the ones we want

Fault location – what's the problem?
If they're in failing set but not in
passing set:
1. which ones triggered the failure?
2. which ones don't matter?

out of vt() combinations
n
t

Example:
30 variables, 5 values each
 = 445,331,250
 5-way combinations

142,506 combinations
in each test – which ones
caused the fault?

Pairwise Test Prioritization
• Study of Mozilla web browser found 70% of defects

with 2-way coverage; ~90% with 3-way; and 95%
with 4-way. [Kuhn et. al., 2002]

• Interaction testing of 109 software-controlled
medical devices recalled by US FDA uncovered 97%
of flaws with 2-way coverage; and only 3 required
higher than 2. [Kuhn et. al., 2004]

• Prior work is on generating pairwise adequate test
suites. We examine pairwise testing in the context
of test prioritization.

Regression Testing
V1 V2

Test the new code:
Regression Testing

Implement changes
(add/delete functionality),

remove bugs

Rerun all existing tests?
Rerun a subset of existing tests?
Rerun tests in a specific order?
 Test Prioritization

1. Rerun existing tests from V1 to
ensure changes did not break
functionality

2. Write new tests as necessary to
test new functionality

Test Prioritization
• Order existing tests based on some criterion to achieve

a performance goal
– Examples of criteria: total statement coverage, total

method coverage
– Performance goal: find faults quickly in test execution cycle

• We use number of pairwise (2-way) interactions a test
covers as the prioritization criterion

• We evaluated the effectiveness of 2-way prioritization
criterion with GUI and web-based systems

• Collaborative work with Renee Bryce at Utah State
University, and Atif Memon at University of Maryland,
College Park

Pairwise Interaction-based
Prioritization: Underlying Idea

• Faults can be exposed by interactions of
parameters set to values on different GUI
windows/Web pages

• Order existing tests based on the number of
pairwise interactions they cover to create test
orders that find faults quickly

Submit

21250

Ship type:

Zip code:

Submit

Catalog View_Cart

air
ground

Add Add

Example Web Application (Version 1)

Thank you for your order.
Cost to ship item shirt is $40

Confirm

Confirm_Cost

Test Case 1:
Catalog, item_name=“shirt”, item_weight=“2”
View_Cart, ship_type=“air”, zip=“21250”

Inter-window Pair-wise interactions:
(1,3) (1,4) (2,3) (2,4)

1

3 4

Example Test Case for V1

2

Version 1

Underlying code after Catalog page is
submitted:
$_SESSION[‘item_name’] = “shirt”;
$_SESSION[‘item_weight’]=“2”;

Display View_Cart page with
ship_type options <air, ground>
and zip textbox

Test Case 1:
Catalog, item_name=“shirt”, item_weight=“2”
View_Cart, ship_type=“air”, zip=“21250”

1 2

3 4

Pairwise interactions:
(1,3) (1,4) (2,3) (2,4)

Underlying code after View_Cart page is
submitted:
Retrieve weight from $_SESSION and
ship_type from second window;

SELECT cost FROM Ship_Table WHERE
ship_type = air AND weight = 2;

Display database query response in
Confirm_Cost page

ship_type weight cost
air 1 to 2 20 to 40
ground 1 to 10 10 to 100

Ship_Table

Confirm_Cost

Thank you for your order.
Cost to ship item shirt is $40

Confirm

Version 1

Submit

21250

Ship type:

Zip code:

Submit

Catalog View_Cart

air
ground

Add Add Add

Update Items in Catalog (Version 2)

Confirm_Cost

MySQL error: could not find matching
row in Ship_Table

Underlying code after Catalog page is
submitted:
$_SESSION[‘item_name’] = “TV”;
$_SESSION[‘item_weight’]=“10”

Display View_Cart page with
ship_type options <air, ground>
and zip textbox

Test Case 2:
Catalog, item_name=“TV”, item_weight=“10”
View_Cart, ship_type=“air”, zip=“21250”

1 2

3 4

ship_type weight cost

Air 1 to 2 20 to 40
Ground 1 to 10 10 to 100

Ship_Table

Pairwise interactions:
(1,3) (1,4) (2,3) (2,4)

Underlying code after View_Cart page is
submitted:
Retrieve weight from $_SESSION and
type from second window;

SELECT cost FROM Ship_Table WHERE
ship_type = air AND weight = 10;

Display database query response in
Confirm_Cost page

Confirm_Cost

MySQL error: could not find matching
row in Ship_Table

Display View_Cart page with
ship_type options <air,
ground> and zip textbox

Version 2

Window1 Window2 Window3
1 4 6
2 5 7
3 8

9

Test Windows visited Parameter-values
T1 W1 -> W2 -> W1 -> W3 1 -> 4 -> 2 -> 8
T2 W2 -> W3 5 -> 6 -> 7
T3 W1 -> W3 -> W2 -> W1 3 -> 6 -> 4 -> 5 -> 1

Test Pairwise interactions
T1 (1, 4) (1, 8) (4, 2) (4, 8) (2, 8)
T2 (5, 6) (5, 7)
T3 (3, 6) (3, 4) (3, 5) (6, 4) (6, 5) (6, 1) (4, 1) (5, 1)

Prioritized test order: T3, T1, T2
Prioritize based on number of pairwise interactions in a test

Parameter-
values

Pairwise Test Prioritization

Experimental Evaluation
• Studied with 4 GUI and 3 web applications

– 1000 to 18000 Lines of code
– 125 to 900 test cases

• Evaluation used seeded faults
• Compared 2-way with 10 other prioritization criteria
• Measured rate of fault detection

– Measures how quickly are faults detected
• Effectiveness of 2-way prioritization

– the best or second-best criterion for 5 applications
– among the top-3 criteria for all 7 applications

R.C.Bryce, S. Sampath, A.M. Memon, “Developing a Single Model and Test Prioritization Strategies for
Event-Driven Software”, IEEE Transactions of Software Engineering, Preprint appeared online Jan 2010

CPUT: Tool to prioritize web test cases

• In collaboration with Renee Bryce at USU and
Rick Kuhn and Raghu Kacker at NIST

• Java-based tool that parses web usage logs
into test cases and prioritizes them

• Implements 4 prioritization criteria including 2-
way

• Given a test suite, creates test orders as
determined by the prioritization criterion

Ongoing work

• Hybrid test prioritization criteria
– Hybrid of 2-way and other criteria for increased

effectiveness in fault detection

• Extend application of 2-way prioritization to
other software domains

• CPUT extensions
– Command-line interface
– Add test suite reduction functionality

Tutorial Overview

1. What is combinatorial testing?
2. Why are we doing this?
3. How is it used and how long does it take?
4. What tools are available?
5. What's next?

Conclusions
 Empirical research suggests that all software failures caused by

interaction of a few parameters
 Combinatorial testing can exercise all t-way combinations of

parameter values in a very tiny fraction of the time needed for
exhaustive testing

• If all faults are triggered by the interaction of t or fewer
variables, then testing all t-way combinations can provide
strong assurance.

 New algorithms and faster processors make large-scale
combinatorial testing possible - tools available, to be open
source

 Project could produce better quality testing at lower cost for US
industry and government

 Rick Kuhn Raghu Kacker Sreedevi Sampath
kuhn@nist.gov raghu.kacker@nist.gov sampath@umbc.edu

 http://csrc.nist.gov/acts
 Or just search “combinatorial testing” - we’re #1!

Please contact us
if you are interested!

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Test configuration
	Test configuration: Example
	Slide Number 7
	Modeling: Input and configuration space [1]
	Modeling: Input and configuration space [2]
	Factors (Parameteres) �Levels (Values)
	Factor (parameter) combinations
	Factor combinations: Too large?
	Example: Pizza Delivery Service (PDS) [1]
	Pizza Delivery Service (PDS): Specs
	PDS: Input space model
	Slide Number 16
	Example: Testing a GUI
	Example: Compatibility testing
	Compatibility testing: Factor levels
	Compatibility testing: Combinations
	Compatibility testing: Reduced combinations
	Compatibility testing: Reduced combinations-2
	Combinatorial test design process
	Combinatorial test design process: steps
	Combinatorial test design process: summary
	Fault model
	t-way interaction faults
	Goal reviewed
	Goal reviewed
	Statistical Approaches
	Orthogonal arrays
	Simple orthogonal array
	Orthogonal arrays: Example
	Orthogonal arrays: Index
	Orthogonal arrays: Another example
	Orthogonal arrays: Alternate notations�- due to Genichi Taguchi
	Mixed level Orthogonal arrays
	Mixed level Orthogonal arrays: Notation
	Mixed level Orthogonal arrays: �Index and balance
	Mixed level Orthogonal arrays: Example
	Mixed level Orthogonal arrays: Example
	Mixed level Orthogonal arrays: Test generation: Pizza delivery
	Test generation: Pizza delivery: Array
	Test generation: Pizza delivery: test configurations
	Arrays of strength >2
	Pacemaker example
	Covering arrays and mixed-level covering arrays
	Statistical approaches versus covering array approach
	Covering array
	Covering array and orthogonal array
	Covering array: Example
	Mixed level covering arrays
	Mixed level covering array: Example
	Generating mixed level covering arrays
	IPO procedure
	IPO procedure: Example
	IPO procedure: main procedure
	IPO Algorithm
	IPO procedure: Horizontal growth
	Horizontal growth: Extend
	IPO Algorithm
	Horizontal growth: Optimal extension
	Horizontal growth: Update and extend remaining
	IPO Algorithm
	Horizontal growth: Done
	Vertical growth
	Vertical growth (contd.)
	Final covering array: MCA (9, 21x32,2)
	ACTS Tool
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Eclipse Plugin for ACTS
	Eclipse Plugin for ACTS
	Slide Number 137
	Combinatorial Coverage Measurement �
	Combinatorial Coverage Measurement �
	Combinatorial Sequence Testing �
	Combinatorial Sequence Testing �
	Fault location
	Fault location – what's the problem?
	Pairwise Test Prioritization
	Regression Testing
	Test Prioritization
	Pairwise Interaction-based Prioritization: Underlying Idea
	Example Web Application (Version 1)
	Example Test Case for V1
	Slide Number 150
	Update Items in Catalog (Version 2)
	Slide Number 152
	Pairwise Test Prioritization
	Experimental Evaluation
	CPUT: Tool to prioritize web test cases
	Ongoing work
	Slide Number 157
	Slide Number 158
	Slide Number 159

