
Software Assurance (SwA) in
Education, Training & Certification

Pocket Guide v2.1

Robin A. Gandhi
Nebraska University Center on Information Assurance (NUCIA)

University of Nebraska at Omaha

1

What is a Pocketguide?

• Self-contained

• Concise

• Enumeration of resources

• Theme

• Living document

• Reprints and redistribution possible

• Fits in the coat pocket

2

SwA ETC Pocketguide Theme

• Educating the Educator/Trainer on
available SwA resources

• Purpose:
– Awareness resource for “getting started” in

educating, training and sustaining a workforce
capable of producing secure software

– An “index” in to a vast amount of resources,
tools, curricula, and certification and training
opportunities for software assurance

3

4

Purple, v 2.1, March 2011

Software Assurance?

• The basis for the belief that software will work
as expected
– Claims, arguments, evidences that span the

software lifecycle from cradle to grave

– People, Process, Technology that enable us to
promote assurances in the software that is
mission and business critical

5

6

SwA Knowledge Areas and Efforts

7

Measurement

Acquisition and
Outsourcing

Measurement Frameworks

Technology, Tool and
Product Evaluation

Making Security Measureable

Measuring Functionality
and Capability of SwA Tools
(SAMATE)

Security-Enhanced
Software Acquisition
and Outsourcing

Supply chain
Risk Management

Risk-based approach
to Software Acquisition

Acquisition Measurement

Reference Guide:
SwA in Aquisition

CVE, CCE, CPE, OVAL, CVSS

Functional Specifications

Test suites

Business Case

Making a Business
Case for SwA

Cost/Benefit Models

Measurement

Workforce Education
and Training

Curriculum Guides

Security Principles
and Guidelines

Knowledge necessary to Develop
Sustain, Acquire and Assure

Secure Software (SwABoK)

Logical and In-depth
organization of

Principles and Guidelines

Processes and Practices

Enhancement of
Development Lifecycle

Capability Maturity
Model Integration

Integrating Security into the
Software Development Lifecycle

Harmonizing and Extending
existing Security Capability

Maturity Models

Mapping Assurance
Goals and Practices

to CMMI for Development

Practical Measurement Framework
for Software Assurance and

Information Security

Tool Metrics

CWE, CWSS

Malware

Malware Dictionaries

Novel Approaches to Malware

Malware Attribute Enumeration
and Characterization (MAEC)

Workforce Development
and Improvement

Competency and
Functional Framework for

IT Security Workforce (EBK)

State of the Art Reports (SOAR)

Workforce Credentials

Guidebooks (NASA, DACS)

Key Practices for Mitigating
Software Weaknesses

Secure Coding Standards
(CERT)

Requirements and Analysis

Architecture and
Design Considerations

Risk-Based Security Testing

Maturity Model

Building Security In
Maturity Model (BSIMM)

Software Assurance
Maturity Model (SAMM)

Metamodels for Software
Assets and Operational
Environments

Abstract Syntax Tree
Metamodel (ASTM)

Knowledge Discovery
Metamodel (KDM)

Software Metrics
Metamodel (SMM)

Practices to Enhance
SwA in Purchasing

Due diligence
Questionnaires

Sample Contract
Provisions and Language

Application Security
Procurement Language

Measurements Goals and
Questions Lists

Risk

Prioritization

Process Improvement

Globalization

Case Studies and Examples

Organizational Development

Key Software Assurance
Knowledge Areas and Efforts

Reference Curriculum
(MSwA2010, Undergrad outline)

SwA Knowledge Areas and Efforts

8

Acquisition and
Outsourcing

Technology, Tool and
Product Evaluation

Making Security Measureable

Measuring Functionality
and Capability of SwA Tools
(SAMATE)

Security-Enhanced
Software Acquisition
and Outsourcing

Supply chain
Risk Management

Risk-based approach
to Software Acquisition

Reference Guide:
SwA in Aquisition

CVE, CCE, CPE, OVAL, CVSS

Functional Specifications

Test suites

Workforce Education
and Training

Curriculum Guides

Security Principles
and Guidelines

Knowledge necessary to Develop
Sustain, Acquire and Assure

Secure Software (SwABoK)

Logical and In-depth
organization of

Principles and Guidelines

Processes and Practices

Enhancement of
Development Lifecycle

Capability Maturity
Model Integration

Integrating Security into the
Software Development Lifecycle

Harmonizing and Extending
existing Security Capability

Maturity Models

Mapping Assurance
Goals and Practices

to CMMI for Development

Tool Metrics

CWE, CWSS

Workforce Development
and Improvement

Competency and
Functional Framework for

IT Security Workforce (EBK)

State of the Art Reports (SOAR)

Workforce Credentials

Guidebooks (NASA, DACS)

Requirements and Analysis

Architecture and
Design Considerations

Risk-Based Security Testing

Maturity Model

Building Security In
Maturity Model (BSIMM)

Metamodels for Software
Assets and Operational
Environments

Abstract Syntax Tree
Metamodel (ASTM)

Knowledge Discovery
Metamodel (KDM)

Software Metrics
Metamodel (SMM)

Practices to Enhance
SwA in Purchasing

Due diligence
Questionnaires

Sample Contract
Provisions and Language

Application Security
Procurement Language

Key Software Assurance
Knowledge Areas and Efforts

Reference Curriculum
(MSwA2010, Undergrad outline)

The Various WGs and Deliverables

9

Measurement

Acquisition and
Outsourcing

Measurement Frameworks

Measuring Functionality
and Capability of SwA Tools
(SAMATE)

Security-Enhanced
Software Acquisition
and Outsourcing

Supply chain
Risk Management

Risk-based approach
to Software Acquisition

Acquisition Measurement

Reference Guide:
SwA in Aquisition

CVE, CCE, CPE, OVAL, CVSS

Functional Specifications

Test suites

Business Case

Making a Business
Case for SwA

Cost/Benefit Models

Measurement

Security Principles
and Guidelines

Knowledge necessary to Develop
Sustain, Acquire and Assure

Secure Software (SwABoK)

Logical and In-depth
organization of

Principles and Guidelines

Processes and Practices

Enhancement of
Development Lifecycle

Capability Maturity
Model Integration

Integrating Security into the
Software Development Lifecycle

Harmonizing and Extending
existing Security Capability

Maturity Models

Mapping Assurance
Goals and Practices

to CMMI for Development

Practical Measurement Framework
for Software Assurance and

Information Security

Tool Metrics

CWE, CWSS

Malware

Malware Dictionaries

Novel Approaches to Malware

Malware Attribute Enumeration
and Characterization (MAEC)

Workforce Development
and Improvement

Competency and
Functional Framework for

IT Security Workforce (EBK)

State of the Art Reports (SOAR)

Workforce Credentials

Guidebooks (NASA, DACS)

Key Practices for Mitigating
Software Weaknesses

Secure Coding Standards
(CERT)

Requirements and Analysis

Architecture and
Design Considerations

Risk-Based Security Testing

Maturity Model

Building Security In
Maturity Model (BSIMM)

Software Assurance
Maturity Model (SAMM)

Metamodels for Software
Assets and Operational
Environments

Abstract Syntax Tree
Metamodel (ASTM)

Knowledge Discovery
Metamodel (KDM)

Software Metrics
Metamodel (SMM)

Practices to Enhance
SwA in Purchasing

Due diligence
Questionnaires

Sample Contract
Provisions and Language

Application Security
Procurement Language

Measurements Goals and
Questions Lists

Risk

Prioritization

Process Improvement

Globalization

Case Studies and Examples

Organizational Development

Key Software Assurance
Knowledge Areas and Efforts

Reference Curriculum
(MSwA2010, Undergrad outline)

10

11

12

13

14

15

16

17

18

Job Roles

• What kind of jobs can I get ?
– Jobs and career planning

• http://www.sans.org/20coolestcareers

19

http://www.sans.org/20coolestcareers/�

20

21

Got Content?

• The pocket guide is a “work in progress”

• Plenty of opportunity to contribute content

• Join the Effort !
– Your comments, suggestions, criticism/praise

are all very welcome

22

Where to find the PocketGuide?

• https://buildsecurityin.us-
cert.gov/swa/pocket_guide_series.html

• And many others…

23

https://buildsecurityin.us-cert.gov/swa/pocket_guide_series.html�
https://buildsecurityin.us-cert.gov/swa/pocket_guide_series.html�

24

25

26

Find me

• Robin A. Gandhi, Ph.D.
Assistant Professor of Information Assurance
University of Nebraska at Omaha

rgandhi@unomaha.edu

Voice: (402) 554 3363, Fax: (402) 554-3284

http://faculty.ist.unomaha.edu/rgandhi

27

Acknowledgement

• Joe Jarzombek for giving me the opportunity
to lead this effort

• Members of the SwA WG on Education and
Training for insightful comments, reviews and
content (Dan, Carol, Nancy, Art)

• Susan Morris, Walter Houser, Dominick
Chiriyan

• And many others…

28

Bonus Slides

29

Why Johnny Can’t
write secure code?

• Johnny, avoid these weaknesses…. Period!
– Common Weaknesses Enumeration (CWE)

• Johnny…learn from your mistakes
– Common Vulnerabilities and Exposures (CVE)

• Johnny…these are the ways of the bad guys
– Common Attack Patterns Enumeration and

Classification (CAPEC)

• Johnny…these are ways to develop secure code
– CERT secure coding guidelines

30

Poor Johnny !

31

Using Semantic Templates to Study
Vulnerabilities Recorded in
Large Software Repositories

32
Me Harvey Siy Yan Wu

The Paradox we face !

33

Source Code Differences
after the fix

Log of Changes

Mailing list Discussions

Public Descriptions

Vulnerability
Databases

Weakness
Enumerations

Bug tracking
databases

Concept Extraction

34

CWE- 786 ACCESS OF
MEMORY LOCATION
BEFORE START OF

BUFFER

CWE- 131
INCORRECT

CALCULATION OF
BUFFER SIZE

CWE-787 OUT-
OF-BOUNDS

WRITE

CWE-123 WRITE-
WHAT-WHERE

CONDITION
CWE- 788 ACCESS OF
MEMORY LOCATION

AFTER END OF
BUFFER

CWE- 125 OUT-OF-
BOUNDS READ

CWE- 120 BUFFER COPY
WITHOUT CHECKING SIZE

OF INPUT ('CLASSIC
BUFFER OVERFLOW')

CWE- 682
INCORRECT

CALCULATION

CWE- 128
WRAP-

AROUND
ERROR

CWE- 190
INTEGER

OVERFLOW OR
WRAPAROUND

CWE- 191 INTEGER
UNDERFLOW (WRAP OR

WRAPAROUND)

CWE- 193 OFF-
BY-ONE ERROR

CWE- 127 BUFFER
UNDER-READCWE- 126 BUFFER

OVER-READ

CWE- 124 BUFFER
UNDERWRITE

('BUFFER
UNDERFLOW')

CWE- 122 HEAP-
BASED BUFFER

OVERFLOW

CWE- 121 STACK-
BASED BUFFER

OVERFLOW

CWE- 466 RETURN OF
POINTER VALUE

OUTSIDE OF EXPECTED
RANGE

CWE-119: FAILURE TO
CONSTRAIN OPERATIONS
WITHIN THE BOUNDS OF A

MEMORY BUFFER

CWE-19: DATA
HANDLING

CWE-20 IMPROPER
INPUT VALIDATION

CWE-118 IMPROPER ACCESS
OF INDEXABLE RESOURCE

('RANGE ERROR')

CWE-129 IMPROPER
VALIDATION OF ARRAY

INDEX

LEGEND

CAN PRECEED
(DEVELOPMENT VIEW)

CAN PRECEED
(RESEARCH VIEW)

CHILD OF
(RESEARCH VIEW)

PEER OF
(RESEARCH VIEW)

CATEGORY
(DEVELOPMENT VIEW)

CATEGORY
(RESEARCH VIEW)

CHILD OF
(DEVELOPMENT VIEW)

CWE- 785
USE OF PATH MANIPULATION
FUNCTION WITHOUT MAX-SIZE

BUFFER

CWE- 231 IMPROPER
HANDELING OF EXTRA

VALUES

CWE- 242 USE OF
DANDEROUS FUNCTIONS

CWE- 227
API

ABUSE

CWE- 170 IMPROPER
NULL TERMINATION

CWE- 416
USE AFTER FREE

CWE- 456
MISSING INITIALIZATION

CWE- 196
UNSIGNED TO SIGNED
CONVERSION ERROR

CWE-789
UNCONTROLLED

MEMORY ALLOCATION

CWE- 195
SIGNED TO
UNSIGNED

CONVERSION
ERROR

CWE-680
INTEGER OVERFLOW

TO BUFFER
OVERFLOW

CWE- 251
STRING MGMT.

MISUSE

CWE- 415 DOUBLE
FREE

CWE- 134
UNCONTROLLED
FORMAT STRING

CWE-467: USE OF
SIZEOF() ON A
POINTER TYPE

CWE-468:
INCORRECT

POINTER SCALING

CWE-130: IMPROPER
HANDLING OF

LENGTH
PARAMETER

INCONSISTENCY

CWE-192
INTEGER

COERCION
ERROR

CWE-194:
UNEXPECTED

SIGN
EXTENSION

CWE-199:
INFORMATION

MGMT. ERRORS

CWE-221:
INFORMATION

LOSS OR
OMMISSION

Tangling of information in the CWE
• CWE-119: Failure to Constrain Operations

within the Bounds of a Memory Buffer
– The software performs operations on a memory

buffer, but it can read from or write to a memory
location that is outside of the intended boundary of
the buffer.

– Certain languages allow direct addressing of
memory locations and do not automatically ensure
that these locations are valid for the memory buffer
that is being referenced. This can cause read or
write operations to be performed on memory
locations that may be associated with other
variables, data structures, or internal program data.
As a result, an attacker may be able to execute
arbitrary code, alter the intended control flow, read
sensitive information, or cause the system to crash.

35

Software Fault

Resource/Location

Consequence

Weakness

LEGEND

Tangling of information in the CWE
• CWE-120: Buffer Copy without Checking Size of

Input ('Classic Buffer Overflow')
– The program copies an input buffer to an output

buffer without verifying that the size of the input
buffer is less than the size of the output buffer,
leading to a buffer overflow.

– A buffer overflow condition exists when a program
attempts to put more data in a buffer than it can
hold, or when a program attempts to put data in a
memory area outside of the boundaries of a buffer.

– Buffer overflows often can be used to execute
arbitrary code…

– Buffer overflows generally lead to crashes

36

Software Fault

Resource/Location

Consequence

Weakness

LEGEND

37

WEAKNESS

ACCESS AND
OUT-OF-BOUNDS
READ #125, #126,

#127, #786

ACCESS AND OUT-
OF-BOUNDS WRITE

#787, #788, #124

FAILURE TO CONSTRAIN
OPERATIONS WITHIN THE
BOUNDS OF A MEMORY

BUFFER
#119

IMPROPER-ACCESS-OF-
INDEXABLE-RESOURCE #118

IS-AIS-A

IS-A

CAN-PRECEDE

OCCURS-IN

WRAP-
AROUND

ERROR #128

CAN-PRECEDE

SOFTWARE-FAULT

INCORRECT-
BUFFER-SIZE-
CALCULATION

#131

INTEGER
OVERFLOW
#190 #680

OFF-BY-
ONE
#193

INCORRECT-
CALCULATION

#682

IS-A

IS-A
IS-A

IS-A
IMPROPER-

INPUT-
VALIDATION

#20

INTEGER
UNDERFLOW

#191
IS-A

RETURN OF POINTER
VALUE OUTSIDE OF
EXPECTED RANGE

#466

IMPROPER
VALIDATION OF
ARRAY INDEX

#129 #789

BUFFER COPY WITHOUT
CHECKING SIZE OF INPUT

('CLASSIC BUFFER OVERFLOW')
#120

WRITE-WHAT-WHERE
CONDITION

#123

CONSEQUENCES

CAN-PRECEDE

RESOURCE/LOCATION

STACK-BASED
#121

STATIC
#129

HEAP-BASED
#122

MEMORY-
BUFFER

#119

BUFFER
#119

INDEXABLE-
RESOURCE

#118

IS-A

PART-OF

IS-AIS-AIS-A
INDEX

(POINTER #466
INTEGER #129)

PART-OF

IMPROPER
HANDELING OF
EXTRA VALUES

#231
USE OF DANDEROUS

FUNCTIONS
#242

API ABUSE
#227

IMPROPER NULL
TERMINATION

#170

IMPROPER USE OF
FREED MEMORY

#415 #416

MISSING
INITIALIZATION

#456SIGN
ERRORS
#194 #195

#196

STRING
MANAGEMENT

API ABUSE
785 #134 #251

UNCONTROLLED
MEMORY

ALLOCATION
#789

IS-A

INFORMATION
LOSS OR

OMMISSION
#199 #221

IS-A

POINTER
ERRORS
#467 #468

IS-A

INTEGER
COERCION

ERROR
#192

IS-A

IMPROPER HANDLING OF
LENGTH PARAMETER

INCONSISTENCY
130

Buffer Overflow

38

WEAKNESS

ACCESS AND
OUT-OF-BOUNDS
READ #125, #126,

#127, #786

ACCESS AND OUT-
OF-BOUNDS WRITE

#787, #788, #124

FAILURE TO CONSTRAIN
OPERATIONS WITHIN THE
BOUNDS OF A MEMORY

BUFFER
#119

IMPROPER-ACCESS-OF-
INDEXABLE-RESOURCE #118

CAN-PRECEDE

OCCURS-IN

WRAP-
AROUND

ERROR #128

CAN-PRECEDE

SOFTWARE-FAULT

INCORRECT-
BUFFER-SIZE-
CALCULATION

#131

INTEGER
OVERFLOW
#190 #680

OFF-BY-
ONE
#193

INCORRECT-
CALCULATION

#682

IMPROPER-
INPUT-

VALIDATION
#20

INTEGER
UNDERFLOW

#191 RETURN OF POINTER
VALUE OUTSIDE OF
EXPECTED RANGE

#466

IMPROPER
VALIDATION OF
ARRAY INDEX

#129 #789

BUFFER COPY WITHOUT
CHECKING SIZE OF INPUT

('CLASSIC BUFFER OVERFLOW')
#120

WRITE-WHAT-WHERE
CONDITION

#123

CONSEQUENCES

CAN-PRECEDE

RESOURCE/LOCATION

STACK-BASED
#121

ARRAY
#129

HEAP-BASED
#122

MEMORY-
BUFFER

#119

BUFFER
#119

INDEXABLE-
RESOURCE

#118PART-OF

INDEX
(POINTER #466
INTEGER #129)

PART-OF

IMPROPER
HANDELING OF
EXTRA VALUES

#231
USE OF DANDEROUS

FUNCTIONS
#242

API ABUSE
#227

IMPROPER NULL
TERMINATION

#170

IMPROPER USE OF
FREED MEMORY

#415 #416

MISSING
INITIALIZATION

#456SIGN
ERRORS
#194 #195

#196

STRING
MANAGEMENT

API ABUSE
785 #134 #251

UNCONTROLLED
MEMORY

ALLOCATION
#789

INFORMATION
LOSS OR

OMMISSION
#199 #221

POINTER
ERRORS
#467 #468

INTEGER
COERCION

ERROR
#192

IMPROPER HANDLING OF
LENGTH PARAMETER

INCONSISTENCY
130

[CVE Description]: Off-by-one error in the toAlphabetic function in
rendering/RenderListMarker.cpp

[Change Log Issue Description]: The math was slightly off here, and we wound up
trying to access an array at index -1 in some cases

[Change Log Fix Description]: We need to decrement numberShadow rather than
subtracting one from the result of the modulo operation

[Code Change for Fix] : Line 105 decrement (--numberShadow;) and remove the
subtraction of one in Line 106 (sequence[numberShadow % sequenceSize];)

1

[Change Log Issue Description]: ….trying
to access an array at index -1 ….

[Code] : Missing validation of array size
in Line 106 (sequence[numberShadow
% sequenceSize];)

2

[Change Log Issue
Description]: ….….trying
to access an array at
index -1 in some cases

3
[Change Log Issue Description]:
….….trying to access an array at
index -1 …..

5

[Chrome Release
Announcement]:
….Memory corruption in
rendering….

4

[CVE Description]: ….cause a
denial of service …..or possibly
execute arbitrary code

7

[CVE Description]: ….allows
remote attackers to obtain
sensitive information…

6

CVE-2010-1773

IS-A

Buffer Overflow Semantic template

Experiment

• The scenario…
– A newbie programmer or occasional contributor to

open source project
• How much effort does it take to study a vulnerability and

summarize lessons learned?

• 30 Computer Science students from a senior-level
undergraduate Software Engineering course.
– None to more than 5 years

– No prior knowledge of semantic templates

39

Experiment

• H10:
– There is no reduction in completion time for

subjects who use semantic templates compared
to those who do not.

• H20:
– There is no improvement in accuracy of

understanding of vulnerabilities for subjects who
use semantic templates compared to those who
do not.

40

Variables

• The experiment manipulated these independent
variables:
– Group - refers to the group assigned (1 or 2).

– Round - refers to the experiment round (1 or 2).

• Vulnerability ID - the vulnerability under study
(1-1, 1-2, 1-3, 2-1, 2-2, 2-3).
– These self-reported subject variables were collected:

• Programming skill level

• Reading comprehension and writing skill levels - ability to
read and write technical English documents.

41

Variables
• Dependent variables :

– Time to complete assignment

– CWE identification accuracy

– Fault identification accuracy
• a score (scale of 1-5) on the accuracy of the identification of

the software fault that led to the vulnerability

– Failure identification accuracy
• a score (scale of 1-5) on the accuracy of the description of

the nature of the vulnerability (the manifested problem, the
resources impacted and the consequences)

42

Initial Results and Findings

43

Table 1: p-values of one-tailed t-tests for Time data
Round 1 (1-1) 0.3627 (1-2) 0.5855 (1-3) 0.1516
Round 2 (2-1) 0.0001 (2-2) 0.0030 (2-3) 0.0015

p-values of one-tailed t-tests for CWE precision

Round 1 (1-1) 0.9281 (1-2) 0.9957 (1-3) 0.5344

Round 2 (2-1) 0.1840 (2-2) 0.6023 (2-3) 0.0891

Table 1: p-values of one-tailed t-tests for CWE recall

Round 1 (1-1) 0.0683 (1-2) 0.9481 (1-3) 0.2286

Round 2 (2-1) 0.0141 (2-2) 0.0093 (2-3) 0.0021

Future Work
• Integrate with existing static and dynamic analysis

tools to enhance reporting capabilities
– Provide layers of guidance to a developer upon

detection of a software flaw

– Organize and retrieve knowledge of past
vulnerabilities

– Verify patch submissions

• Investigate project/developer specific coding
errors and vulnerability fix patterns

• Other usage scenarios in the SDLC

44

Acknowledgement

• This research is funded in part by Department
of Defense (DoD)/Air Force Office of Scientific
Research (AFOSR), NSF Award Number
FA9550-07-1-0499, under the title
“High Assurance Software”

45

Thank you for your Attention

46

	Software Assurance (SwA) in �Education, Training & Certification��Pocket Guide v2.1
	What is a Pocketguide?
	SwA ETC Pocketguide Theme
	Purple, v 2.1, March 2011
	Software Assurance?
	Slide Number 6
	SwA Knowledge Areas and Efforts
	SwA Knowledge Areas and Efforts
	The Various WGs and Deliverables
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Job Roles
	Slide Number 20
	Slide Number 21
	Got Content?
	Where to find the PocketGuide?
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Find me
	Acknowledgement
	Bonus Slides
	Why Johnny Can’t �write secure code?
	Poor Johnny !
	Using Semantic Templates to Study Vulnerabilities Recorded in �Large Software Repositories
	The Paradox we face !
	Concept Extraction
	Tangling of information in the CWE
	Tangling of information in the CWE
	Buffer Overflow
	Slide Number 38
	Experiment
	Experiment
	Variables
	Variables
	Initial Results and Findings
	Future Work
	Acknowledgement
	Thank you for your Attention

