
IPOG: A General Strategy for T-Way
Software Testing

Y. Lei (UT Arlington), R. Kacker (NIST), D. R. Kuhn
(NIST), V. Okun (NIST), J. Lawrence (GMU)

ECBS, Tucson, Arizona

3/28/2007

 2

Software Engineering

 Software has become pervasive in modern society
 Directly contributes to quality of life
 Malfunctions cost billions of dollars every year, and could

have severe consequences in a safety-critical
environment

 Build better software in better ways, especially
for large-scale development

 Requirements, design, coding, testing, maintenance,
configuration, documentation, deployment, and etc.

 3

Software Testing

 A dynamic approach to detecting software faults
 Alternatively, static analysis can be performed, which is

however often intractable

 Involves sampling the input space, running the test
object, and observing the runtime behavior

 Intuitive, easy-to-use, scalable, and can be very
effective for fault detection

 Perhaps the most widely used approach to ensuring
software quality in practice

 4

The Challenge

 Testing is labor intensive and can be very costly
 often consumes more than 50% of the development cost

 Exhaustive testing is often impractical, and is not
always necessary

 How to make a good trade-off between test
effort and test coverage?

 5

Outline

 Introduction
 T-way testing
 State-of-the-art

 The IPOG Strategy
 Algorithm IPOG-Test
 Experimental results

 Related Work on T-Way Testing

 Conclusion and Future Work

 6

T-Way Testing

 Given any t input parameters of a test object,
every combination of values of these parameters be
covered by at least one test

 Motivation: Many faults can be exposed by
interactions involving a few parameters

 Each combination of parameter values represents one
possible interaction between these parameters

 Advantages
 Light specification, requires no access to source code,

automated test input generation, excellent trade-off
between test effort and test coverage

 7

Example

P1 P2 P3
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

P1 P2 P3
0 0 0
0 1 1
1 0 1
1 1 0

Three parameters, each with values 0 and 1

pairwise

exhaustive

 8

State-of-the-Art

 Greedy construction
 Involves explicit enumeration of all possible combinations
 tries to cover as many combinations as possible at each

step

 Algebraic Construction
 Test sets are constructed using pre-defined rules

 Most approaches focus on 2-way (or pairwise)
testing

 9

Beyond pairwise

 Many software faults are caused by interactions
involving more than two parameters

 A recent NIST study by R. Kuhn indicates that failures
can be triggered by interactions up to 6 parameters

 Increased coverage leads to a higher level of
confidence

 Safety-critical applications have very strict
requirements on test coverage

 10

Outline

 Introduction
 T-way testing
 State-of-the-art

 The IPOG Strategy
 Algorithm IPOG-Test
 Experimental results

 Related Work on T-Way Testing

 Conclusion and Future Work

 11

The Framework

 Construct a t-way test set for the first t
parameter

 Extend the test set to cover each of the
remaining parameters one by one

 Horizontal growth - extends each existing test by adding
one value for the new parameter

 Vertical growth – adds new tests, if needed, to make the
test set complete

 12

Algorithm IPOG-Test

Algorithm IPOG-Test (int t, ParameterSet ps)
{
1. initialize test set ts to be an empty set
2. denote the parameters in ps, in an arbitrary order, as P1, P2, …, and Pn
3. add into test set ts a test for each combination of values of the first t parameters
4. for (int i = t + 1; i ≤ n; i ++){
5. let π be the set of t-way combinations of values involving parameter Pi
 and t -1 parameters among the first i – 1 parameters
6. // horizontal extension for parameter Pi
7. for (each test τ = (v1, v2, …, vi-1) in test set ts) {
8. choose a value vi of Pi and replace τ with τ’ = (v1, v2, …, vi-1, vi) so that τ’ covers the
 most number of combinations of values in π
9. remove from π the combinations of values covered by τ’
10. }
11. // vertical extension for parameter Pi
12. for (each combination σ in set π){
13. if (there exists a test that already covers σ) {
14. remove σ from π
15. } else {
16. change an existing test, if possible, or otherwise add a new test
 to cover σ and remove it from π
17. }
18. }
19.}
20.return ts;
}

 13

Example

(a)

P1 P2 P3
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

(b)

P1 P2 P3 P4
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 0
1 0 0 1
1 0 1 2
1 1 0 0
1 1 1 1

P1 P2 P3 P4
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 0
1 0 0 1
1 0 1 2
1 1 0 0
1 1 1 1
1 0 1 0
0 1 0 1
0 0 1 2
1 1 0 2
* 0 0 2
* 1 1 2

(c)

Horizontal growth Vertical growth

• Four parameters: P1, P2, P3, and P4
• P1, P2, and P3 have 2 values
• P4 has 3 values

3-way test set

 14

Experimental Results (1)

t-way 2 3 4 5 6
size 48 308 1843 10119 50920
time 0.11 0.56 6.38 63.8 791.35

Results for 10 5-value parameters for 2- and 6-way testing

Question 1: How does the size of a test set
generated by IPOG-Test, as well as the time taken,
grow in terms of t, # of parameters, and # of
values?

 15

Experimental Results (2)

of
params 5 6 7 8 9 10 11 12 13 14 15

Size 784 1064 1290 1491 1677 1843 1990 2132 2254 2378 2497

Time 0.19 0.45 0.92 1.88 3.58 6.38 10.83 17.52 27.3 41.71 61.26

Results for 5 to 15 5-value parameters for 4-way testing

of
values 2 3 4 5 6 7 8 9 10

Size 46 229 649 1843 3808 7061 11993 19098 28985

Time 0.16 0.547 1.8 6.33 16.44 38.61 83.96 168.37 329.36

Results for 10 parameters with 2 to 10 values for 4-way testing

 16

Experimental Results (3)

t-way
FireEye ITCH Jenny TConfig TVG

Size Time Size Time Size Time Size Time Size Time

2 100 0.8 120 0.73 108 0.001 108 >1 hour 101 2.75

3 400 0.36 2388 1020 413 0.71 472 >12 hour 9158 3.07

4 1361 3.05 1484 5400 1536 3.54 1476 >21 hour 64696 127

5 4219 18.41 NA >1 day 4580 43.54 NA >1 day 313056 1549

6 10919 65.03 NA >1 day 11625 470 NA >1 day 1070048 12600

Results of different tools for the TCAS application

Question 2: How does FireEye compare to other
tools, both in terms of # of tests and time to
produce them?

TCAS: Seven 2-value parameters, two 3-value parameters,
one 4-value parameter, two 10-value parameters

 17

Outline

 Introduction
 T-way testing
 State-of-the-art

 The IPOG Strategy
 Algorithm IPOG-Test
 Experimental Results

 Related Work on T-Way Testing

 Conclusion and Future Work

 18

AETG (1)

 Starts with an empty set and adds one (complete)
test at a time

 Each test is locally optimized to cover the most
number of missing pairs:

 Has a higher order of complexity, both in terms of
time and space, than IPOG

 19

AETG (2)

A B C
A1 B1 C1

A B C
A1 B1 C1
A1 B2 C2

A B C
A1 B1 C1
A1 B2 C2
A2 B1 C3
A2 B2 C1
A2 B1 C2
A1 B2 C3

Adds the 1st test Adds the 2nd test Adds the last test

A B C

 20

Orthogonal Arrays (1)

 Given any t columns, every combination of the
possible values is covered in the same number of
times

 Originally used for statistical design, which often
requires a balanced coverage

 Often computed using some pre-defined mathematical
functions

 Each row can be considered as a test, and each
column as a parameter

 Can be constructed extremely fast, and are
optimal by definition, but do not always exist

 21

Orthogonal Arrays (2)

 22

Outline

 Introduction
 T-way testing
 State-of-the-art

 The IPOG Strategy
 Algorithm IPOG-Test
 Experimental Results

 Related Work on T-Way Testing

 Conclusion and Future Work

 23

Conclusion

 T-way testing can substantially reduce the number
of tests, while remaining effective for fault
detection

 IPOG produces a t-way test set incrementally,
covering one parameter at a step

 Comparing to existing tools, IPOG can produce
smaller tests faster.

 24

Future Work

 Explicit enumeration can be very costly
 How to reduce the number of combinations that have to

enumerated?

 Support for parameter relations and constraints
 No need to cover combinations of independent

parameters
 Invalid combinations must be excluded

 Integration of t-way testing with other tools to
increase the degree of automation

	IPOG: A General Strategy for T-Way Software Testing
	Software Engineering
	Software Testing
	The Challenge
	Outline
	T-Way Testing
	Example
	State-of-the-Art
	Beyond pairwise
	Outline
	The Framework
	Algorithm IPOG-Test
	Example
	Experimental Results (1)
	Experimental Results (2)
	Experimental Results (3)
	Outline
	AETG (1)
	AETG (2)
	Orthogonal Arrays (1)
	Orthogonal Arrays (2)
	Outline
	Conclusion
	Future Work

