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Abstract 

CCM is a conventional authenticated-encryption scheme obtained from a 128-bit block cipher. The 
mechanism has been adopted as the mandatory encryption algorithm in an IEEE 802.11 draft stan­
dard [15], and its use has been proposed more broadly [16, 17]. In this note we point out a number of 
limitations of CCM. A related note provides an alternative to CCM [5]. 

1 Introduction 

History. Authenticated encryption (AE) schemes are symmetric-key mechanisms by which a message M 
is a transformed into a ciphertext C in such a way that C protects both privacy and authenticity. Though 
AE schemes go back more than 20 years, only recently did AE get recognized as a distinct and significant 
cryptographic goal [3, 4, 10, 13]. Two factors seem to have triggered this. First was the realization that 
people had been doing rather poorly when they tried to glue together a traditional (privacy-only) encryption 
scheme and a message authentication code (MAC) [2, 3, 11]; second was the emergence of a class of “melded” 
AE schemes, beginning with [9], that did not work by gluing together an encryption scheme and a MAC. 

One of these new AE schemes, an algorithm called OCB [14], was selected for a draft IEEE 802.11 
standard for Wireless LANs. But there emerged opposition to OCB among some individuals who were 
active in the standards body. The opposition centered around the fact that OCB (and, more broadly, the 
new-generation of AE techniques) would have to be licensed. To avoid the authenticated-encryption IP, 
three of the 802.11 participants—Neils Ferguson, Russ Housley, and Doug Whiting—decided to invent their 
own algorithm for AE [15]. The mode they developed is called CCM. Though CCM makes about twice 
the number of block-cipher calls as OCB, there are many environments where this does not matter, and 
CCM is believed to be patent-free. Thus CCM came to replace OCB as the mandatory mechanism in the 
emerging IEEE 802.11 standard. CCM’s inventors went on to propose their mode for applications beyond 
IEEE 802.11, providing it to the IETF [17] and NIST [16]. NIST has already signaled their inclination to 
move forward with a CCM-based recommendation [7]. 

This document. It is the authors’ suspicion that acceptance of CCM is, in large part, a consequence of the 
fact that it has received little criticism and no counter-proposals. There is a need for a fully-specified AE 
scheme and a desire for cryptographic technology to be patent-unencumbered. CCM is the only mechanism 
having a writeup and satisfying those two constraints. The algorithm thus seems poised to emerge as a 
victor by default. We would find that unfortunate, because there are problems with CCM that ought to be 
addressed. The purpose of this document, then, is to explain what are the problems with CCM. 

2 Definition of CCM Mode 

Preliminaries. All strings in this note are over the binary alphabet, {0, 1}. For L a set of strings and n ≥ 0 
a number, we let Ln and L∗ have their usual meanings. The concatenation of strings X and Y is denoted 
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Algorithm CBCK (M) Algorithm CTRN 
K (M) 

10 Parse M into M1 · · · Mm where |Mi| = n 20 m ← i|M |/nl 
11 C0 ← 0n 

21 S ← EK (N) I EK (N+1) I · · · I EK (N+m−1) 
12 for i ← 1 to m do 22 C ← M ⊕ S [first |M | bits] 
13 Ci ← EK (Mi ⊕Ci−1) 23 return C 
14 return Cm 

Figure 1: Algorithms CBC and CTR, building blocks for this writeup. In both cases E : Key×{0, 1}n → {0, 1}n 

∗ is fixed and K ∈ Key. For CBC we have M ∈ ({0, 1}n)+ and for CTR we have M ∈ {0, 1} and S ∈ {0, 1}n . 

X I Y or simply X Y . The set Byte = {0, 1}8 contains all the strings of length 8, and a string X ∈ Byte ∗ 

is called a byte string or an octet string. The string of length 0, called the empty string, is denoted ε. 
∗If X ∈ {0, 1} we let |X| denote its length in bits, and if X ∈ Byte ∗ we let |X|8 = |X|/8 denote its length 

∗in bytes. For £ ≥ 1 a number, we write Byte<£ for all byte string having fewer than £ bytes. If X ∈ {0, 1}
and £ ≤ |X| then the first £ bits of X are denoted X [first £ bits], while if X ∈ Byte ∗ and £ ≤ |X|8 then 
the first £ bytes of X are denoted X [first £ bytes]. When £ is a positive integer and i ∈ [0..2£ − 1] we 
let [ i ]£ be the £-bit string that represents i in binary (most significant bit first). When X ∈ {0, 1}£ is a 
nonempty string and i ∈ N is a number we let X + i be the £-bit string which results from regarding X as a 
nonnegative number x (binary notation, most-significant-bit first), adding x to i, taking the result modulo 2n , 
and converting this number back into an £-bit string. String constants can be written in hexadecimal as 
in 0x00 for 08 and 0xFFFE for 1150. A block cipher is a function E : Key × {0, 1}n → {0, 1}n where Key 
is a finite, nonempty set and n ≥ 1 is a number and EK (·) = E(K, ·) is a permutation on {0, 1}n . The 
number n is called the block length. With E a block cipher as above, we describe two algorithms: the 

∗CBC MAC of message M ∈ ({0, 1}n)+ under key K ∈ Key; and CTR encryption of message M ∈ {0, 1}
under key K ∈ Key and with IV N ∈ {0, 1}n . These algorithms are defined in Figure 1. 

We emphasize that CBC is insecure across messages of varying lengths; unless the message length is 
fixed, CBC should be viewed as a building-block for making a MAC and not by itself a MAC. We have also 
specified a raw form of CTR mode for which we are not asserting any particular security property. 

CCM parameters. We are now ready to define the CCM mode of operation. The mode depends on three 
parameters—values that must be specified before the modes is well defined: 

128 128 • E — the block cipher — where E : Key × {0, 1} → {0, 1}
• τ — the tag length1— where τ ∈ {4, 6, 8, 10, 12, 14, 16}
• λ — the length-of-the-message-length-field — where λ ∈ {2, 3, 4, 5, 6, 7, 8}

128 Once parameters (E, τ , λ) have been fixed, where E : Key ×{0, 1} → {0, 1}128 is a block cipher, CCM can 
be regarded as a pair (CCM.Encrypt, CCM.Decrypt) which is an authenticated-encryption with associated-
data (AEAD) scheme, as defined in [13].2 Encryption and decryption have the following signatures: 

CCM.Encrypt : Key × Nonce × Header × Plaintext → Ciphertext 

CCM.Decrypt : Key × Nonce × Header × Ciphertext → Plaintext ∪ {Invalid} 

where 

Nonce = Byte15−λ Header = Byte<264 

Plaintext = Byte<28λ 

Ciphertext = Byte ∗ 

Thus there is a parameterized tradeoff between the length of nonces, η = |N | = 15 − λ bytes, and the length 
of the longest permitted message, 256λ − 1 bytes: a larger nonce space means a smaller message space. 

1 We have changed the name of this and several other variables compared to that which is in the WHF writeup [16]; our 
intent was to choose more conventional and sensible names. For those who have studied the WHF writeup [16], the following 
may be useful: their M (the tag length) is our τ ; their L (the length-of-the-message-length-field) is our λ; their a (the associated 
data, or header) is our H; their m (the message being encrypted) is our M ; their U (the authentication tag) is our T . 

2 We have made a slight change in syntax to that of [13], absorbing the key generation into the finite set Key which is part 
of the signature of the encryption and decryption routines. 
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Algorithm CCM.EncryptN H (M) // N ∈ Byte15−λ and H ∈ Byte<264 
and M ∈ Byte<2λ 

K 

100 B ← 0 I if H = ε then 0 else 1 endif I [ τ /2 − 1 ]3 I [ λ − 1 ]3 I 
101 N I [ |M |8 ]8λ I 
102 if H = ε then ε elseif |H|8 < 62580 then [ |H|8 ]16 

103 elseif |H|8 < 232 then 0xFFFE I [ |H|8 ]32 else 0xFFFF I [ |H|8 ]64 endif I 
104 H I 

< 62580 then (0x00)(14−|H|8) mod 16 
105 if H = ε then ε elseif |H|8 

< 232 then (0x00)(10−|H|8) mod 16 else (0x00)(6−|H|8 ) mod 16 endif106 elseif |H|8 I 
107 M I 

(0x00)(−|M |8 ) mod 16 
108 

109 U ← CBCK (B) 
110 A0 ← [ λ − 1 ]8 I N I (0x00)15−λ 

111 V I C ← CTRA0 (U I M) where |V | = 128 K 
112 T ← V [first τ bytes] 
113 return C ← C I T 

Algorithm CCM.DecryptN H (C) // N ∈ Byte15−λ and H ∈ Byte<264 
and C ∈ Byte ∗ 

K 

200 if |C|8 < τ then return Invalid 
201 Partition C into C I T where |T |8 = τ 
202 if |C|8 > 2λ − 1 then return Invalid 

210 A0 ← [ λ − 1 ]8 I N I (0x00)15−λ 

211 M ← CTRA0+1 (C)K 

220 B ← 0 I if H = ε then 0 else 1 endif I [ τ /2 − 1 ]3 I [ λ − 1 ]3 I 
221 N I [ |M |8 ]8λ I 
222 if H = ε then ε elseif |H|8 < 62580 then [ |H|8 ]16 

223 elseif |H|8 < 232 then 0xFFFE I [ |H|8 ]32 else 0xFFFF I [ |H|8 ]64 endif I 
224 H I 

< 62580 then (0x00)(14−|H|8) mod 16 
225 if H = ε then ε elseif |H|8 

< 232 then (0x00)(10−|H|8) mod 16 else (0x00)(6−|H|8 ) mod 16 endif226 elseif |H|8 I 
227 M I 

(0x00)(−|M |8 ) mod 16 
228 

230 U ← CBCK (B) 
231 V ← EK (A0) ⊕ U 
232 T ' ← V [first τ bytes] 
233 if T = T ' then return Invalid 
234 return M 

128 128 Figure 2: Encryption and decryption under CCM[E, τ , λ]. The block cipher is E : Key × {0, 1} → {0, 1}
and the tag length (in bytes) is τ ∈ {4, 6, 8, 10, 12, 14, 16} and the length-of-the-message-length-field (in bytes) 
is λ ∈ {2, 3, 4, 5, 6, 7, 8} and the nonce length (in bytes) is η = 15 − λ. 
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128 128 
CCM algorithm. Fix parameters τ , λ, and E : Key × {0, 1} → {0, 1} as indicated above. We 
write CCM.EncryptN H (M) instead of CCM.Encrypt(K, N, H, M). Similarly, we write CCM.DecryptN H (C)K K 
instead of CCM.Decrypt(K, N, H, C). Encryption and decryption under CCM works as specified in Figure 2. 
Note that the value returned by CCMN H (M) is a byte string C having |M |8 + τ bytes. K 

3 Criticism of CCM 

We partition our criticism into five categories: efficiency, parameterization, complexity, variable-tag-length 
subtleties, and some wrong security claims. 

3.1 Efficiency Issues 

We discuss three efficiency problems with CCM: (a) CCM is not on-line, (b) CCM disrupts word-alignment, 
and (c) CCM can’t pre-process static associated data. 

Not on-line. Here, an algorithm being on-line refers to its being able to process a stream of data as it 
arrives, with constant memory, not knowing in advance when the stream will end. Observe then that on-line 
methods should not require knowledge of the length of a message until the message is finished. 

CCM fails to be on-line in both the plaintext and the associated data: one needs to know the length of 
both of these before one can proceed with encryption. 

For message authentication codes, the significance of being on-line was brought out by the work of Petrank 
and Rackoff [12], whose work was motivated by the observation that the length-prepend CBC MAC (and 
other suggestions appearing in [1]) were not on-line. Since their paper, a failure to be on-line has been 
regarded as a significant defect for an encryption scheme or a MAC. 

Now it is true that in many contexts where one would be encrypting a string one does know the length 
of the string in advance. For example, many protocols will already have “packaged up” the string length 
at a lower level. In effect, such strings have been represented in the computing system as sequence of bytes 
and a count of those bytes. But there are also contexts where one does not know the length of a message 
in advance of getting an indication that it is over. For examples, a printable string is often represented in 
computer systems as a sequence of non-zero bytes followed by a terminal zero-byte. Certainly one should be 
able to efficiently encrypt a string which has been represented in this way. 

Disrupts word-alignment. Length-prepend annotation causes an additional problem for the associated 
data (also called the header)—namely, CCM disrupts its word-alignment. This is a problem when the 
associated data, H, is long. To understand this issue, remember that most modern machines perform 
operations much more efficiently when pointers into memory fall along word-boundaries (which typically 
occur every 4 or 8 bytes). A typical software implementation of a CBC MAC, for example, will exhibit much 
worse performance if it is called on an argument which is not word-aligned. By prepending length-annotation 
to the associated data H, this length-annotation not being a multiple of 16 or even 4 bytes, one can expect 
that typical implementations will suffer a big performance hit. 

The disruption of word-alignment is not a big concern if the associated data is just a few bytes, as we 
expect that it often will be. But, again, NIST and others are considering CCM for use as a general-purpose 
AEAD algorithm. We have no idea how long will be the associated data. For all we know, the user is 
primarily interested in authenticating traffic, is doing this to a large volume of traffic, and is encrypting 
nothing or almost nothing. We don’t want the authentication side of an AEAD scheme to be significantly 
more costly than using a dedicated CBC MAC. 

Can’t pre-process static AD. In many scenarios the associated data H will be static over the course 
of a communications session. For example, the associated data may including information such as the IP 
address of the sender, the receiver, and fixed cryptographic parameters associated to this session. In such 
a case one would like that the amount of time to compute EncryptN H (M) and DecryptN H (C) should be K K 
independent of |H| (disregarding the work done in a preprocessing step). The significance of this goal was 
already explained in [13], and a simple approach for achieving this goal was given there. Basically, the reason 
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λ 2 3 4 5 6 7 8 

msgs shorter than 64 KBytes 16 MBytes 8 GBytes 240 bytes 248 bytes 256 bytes 264 bytes 
η = 15 − λ 13 12 11 10 9 8 7 

8η (nonce length) 104 bits 96bits 88 bits 80 bits 72 bits 64 bits 56 bits 

Figure 3: CCM-allowed values of the length-of-the-message-length-field, λ, the corresponding bound on message 
lengths, and the resulting length of nonces η = |N |8 that one must use, measured in bytes and then in bits. 

that CCM fails to allow pre-processing of associated data H is that the algorithm encodes the nonce N and 
the message length |M |8 before H rather than after it. 

3.2 Parameterization 

We criticize a few aspects of CCM related to its parameterization: (a) the requirement for the user to specify 
a length-of-the-message-length-field parameter; (b) the fact that this choice involves a trade-off against a 
conceptually unrelated quantity, the nonce length; (c) the marginal utility of the mode for random nonces; 
(d) the mode’s strict byte orientation. 

An inappropriate parameter. The user of CCM is presented with a parameter, the-length-of-the­
message-length-field, that she really has no business seeing. This parameter can be regarded as a surrogate 
for the maximum message length. While it is reasonable to fix a suitably large maximum message length, 
such as 264 − 1 bytes, it seems undesirable to force the user to think about choosing smaller message spaces. 
The vary name of this parameter makes clear that this was always conceived of as an implementation-oriented 
parameter and not a fundamental characteristic of an AEAD scheme. 

Tradeoff between nonce length and maximum message length. Worse than the fact that the user 
must choose a parameter value that she shouldn’t have to think about is that the definition of CCM involves 
a tradeoff between two things that are conceptually unrelated: the maximal message length and the length 
of the scheme’s nonce. The tradeoff is summarized in Figure 3, which shows the seven allowed values of 
the-length-of-the-message-length-field parameter, the message space one gets as a result (restricted to octet 
string), and the corresponding value that is mandated for the the nonce length. 

There seem to us several reasonable choices for what should be the nonce length of an AEAD scheme 
that is based on a 128-bit block cipher. (i) One reasonable choice is 64 bits. This value is large enough to 
handle a counter, as no real application will encrypt as many as 264 messages. (ii) Another reasonable choice 
is 128 bits. This choice is natural for matching the block length and being the right length for handling a 
random value for the nonce. (iii) A third natural choice is any string (or any byte string). This is conceptually 
clean, and it might be convenient, for example, to allow nonces that are initially 1 byte, and then grow to 2 
bytes, and so forth. 

One thing that does not make sense to us is to say that the nonce length is a number of bytes that is 15 
minus the log base two of one more than the size of longest permissible message length. The message space 
and the nonce space have nothing to do with each other. 

Marginal utility with random nonces. The fact that CCM nonce lengths are allowed to exceed 64 
bits suggests that its inventors are thinking of random values as possible choices for the nonce. Though the 
maximal nonce length (104 bits) may be acceptable for a random nonce, the minimal nonce length (56 bits) 
probably is not. In general, the suitability of CCM for random nonces is linked to the length of the longest 
message one wishes to be able to handle, an unnecessary and undesirable connection. 

Byte orientation. Though some would view this criticism as strictly a matter of taste, we ourselves 
do not like that CCM is only defined on octet strings. It is not that one is all that likely to need to use 
an AEAD scheme on strings that are not octet strings. It is more that cryptographic algorithms reach 
beyond technological conventions like the prevalence byte-orientation in computing systems. To put things 
in perspective: most cryptographers would have viewed it as a poor choice if MD4, MD5, and SHA1 had 
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only been defined on octet strings. It is no less a defect if a general-purpose AEAD scheme is only defined 
on octet strings.3 

3.3 Complexity 

While human-perceived complexity is inherently subjective, we ourselves find CCM to be complex. The 
authors of the current document can not even remember the definition of CCM without consulting its 
defining document. To us, a mode of operation with so many details that one cannot easily remember it 
(even after working with it for a few days) is off to a bad start. 

Bit manipulations. We see two underlying causes for this complexity. The first is all the bit twiddling 
that CCM does. We believe that it is preferable for a mode of operation to avoid bit manipulations beyond 
standard padding or length annotation. The central concern for a mode of operation is the correct and 
efficient use of the block cipher. That purpose has never been shown to need tricky ways to package up 
arguments or encode string lengths. 

Missing abstraction boundary. More fundamentally, we see the complexity of CCM as stemming from 
the fact that it is designed directly on top of a block cipher—in particular, it was not designed to use any 
particular message authentication code. In our own exposition of CCM we have done our best to “push 
upwards” the abstraction boundary to which CCM writes, so that we could “call out” to the raw CBC MAC 
and CTR encryption. Doing this is at odds with the defining document [16], but CCM’s authors have 
expressed the viewpoint that they are combining such primitives, and so one rather expects a description 
of CCM in those terms. But the raw CBC MAC is not a secure MAC and the authentication tag that 
CCM computes can only be seen as something computed by a process integral to the entire mode. There’s 
no sense in which one can say “do CCM using this other message authentication code.” CCM employs no 
autonomous MAC. 

It is our view that an AEAD scheme should be designed on top of higher-level primitives than a block 
cipher. Even if the higher-level primitives are to be implemented using a block cipher, the abstraction bound­
ary helps the scheme to be conceptually clean and support a convincing security analysis. The complexity 
that one is concerned with isn’t the number of lines to implement the mode (which is certainly small) or 
write it down in pseudocode. It is the conceptual complexity of an algorithm as induced by the distance 
between it and what it sits on top of. 

Illustration 1. A glimpse of CCM’s complexity can be seen from the fact that correctness crucially 
depends on the encoding convention: namely, the authors have excluded the possibility of τ = 2 (i.e., two-
byte tags), which means that at least one of bits 3, 4, or 5 of the first block of B, which holds [ τ /2 − 1 ]3 

is non-zero, while these bits are always zero in the initial counter value A0. If one allowed a tag of τ = 2 
bytes4 or if one had encoded τ as [ τ /2 − 2 ]3 instead of [ τ /2 − 1 ]3 the CCM method would be wrong.5 

Illustration 2. A final way to get at the complexity of CCM is to precisely answer the question, how 
many block cipher calls does CCM use? The answer is given by the following expression:     

|M | |H|
NumCallsCCM(M, H) = 2 + + 2 + δ(|H|)

128 128

3 Nothing in this paragraph should be understood to suggest that an implementation is under any compulsion to implement 
an AEAD scheme that operates on arbitrary bit strings (no more than people implement SHA1 to operate on arbitrary bit 
strings). We are simply saying that it should be well-defined. 

4 We comment that allowing tags of one byte, or even one bit, is a reasonable thing to do, as there are contexts, like 
authenticating a video frame, where one has to forge many messages to have a detrimental effect. 

5 Criticism that an algorithm “would be wrong if the following change was made” is never-ending and inherently 
unconvincing—but the algorithm isn’t that way is a quite sufficient response. Here the criticism is simply being used to 
emphasize that CCM’s correctness is integrally wrapped up in its encoding-scheme details. 
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0 if i = 0
 
16 if i ∈ [8, 8 · 62572]


λ(i) = 

where δ(i) ∈ {0, 1} is defined as follows: letting ⎧ ⎪⎪⎨ ⎪⎪⎩ 
48 if i ∈ [8 · 62580, 235 − 8] 
80 if i ∈ [235 , 264 − 8] 

we set δ(i) = 0 if (i mod 128) + £(i) ≤ 128, and δ(i) = 1 otherwise. It appears that much of this complexity 
is so that δ(|H|) will be more often 0 than 1. 

3.4 Subtleties of Variable-Length Authentication Tags 

In CCM, the authentication tag τ is of variable length: it is permitted to be 4, 6, 8, 10, 12, 14, or 16 bytes 
long. Variable-length tags come with some security risks, if the schemes are not implemented carefully or 
what they achieve is not stated clearly. 

A scenario and an attack. In the design of Internet protocols, a common slogan is “be conservative in 
what you send, and liberal in what you accept.” Imagine a CCM implementation takes this literally: the 
sender always creates messages with a 16-byte tag, but the receiver accepts messages if they have a valid tag 
of any permitted length. 

How secure would such an implementation be? Of course, since the attacker is free to choose a tag of any 
length, a smart attacker will choose the tag length that is most convenient for him: presumably, 4-byte tags. 
Clearly such an attacker can generate a valid ciphertext within 232 tries. This vulnerability is unavoidable 
in any scheme with authentication tags that are only four bytes long. However, this attack might be of 
limited value to the attacker, because it is a blind forgery: the attacker cannot control what message will be 
accepted by the recipient. 

We point out that a worse attack on CCM is possible in the envisaged scenario: a more clever attacker 
can fully control what message the recipient will be tricked into accepting. The reason for this is that, 
in CCM, the transmitted ciphertext has the form C I T where T is an authentication tag and where the 
received message M is computed as a function of C but not τ . The directed forgery attack on CCM is as 
follows. Suppose the attacker intercepts a single ciphertext C IT16 that is the encryption of some message M 
formed by the legitimate sender. Imagine that the attacker has a difference Δ that it would like to xor 
into the message; for instance, the attacker might want to flip certain bit positions in M . Then the attacker 
can generate the 232 ciphertexts of the form (C ⊕ Δ) I T4 where T4 varies over all 4-byte values. Most of 
these will be rejected by the receiver as having invalid authentication tags, but one will be accepted as a 
valid encryption of the modified message M ⊕ Δ. Thus an adversary can forge any message it likes with 232 

tries, given a single ciphertext (with known plaintext) that was authenticated with a 128-bit tag. One can 
reasonably maintain that authenticating a message with a 128-bit tag should not have had this consequence. 

Interpretation. Does the attack above mean that the tag length τ should have been used for computing 
the ciphertext core C? In our opinion, the answer is: “not necessarily.” Rather, the attack highlights that 
the specification [16] has made it unclear what the goal is with respect handling a multiplicity of tag lengths. 

We suggest that the tag length parameter τ should be fixed at key-negotiation time, bound securely to 
the key, and negotiated authentically between both parties. Once a session has begun, there should be only 
a single value τ that will be accepted by the receiver, and this should remain unchanged throughout the 
lifetime of the session. The receiver shouldn’t accept a new τ in the middle of a session any more than it 
would accept a new block cipher E. All parameters should have the same status. Under this interpretation 
the inclusion of τ within the string B in CCM was not necessary to achieve the security goals. This is not 
a flaw in CCM, but it underscores the need to think carefully about the desired security goals. 

3.5 Meaningless Security Claims 

Jonsson has done an admirable job of finding an abstraction of CCM that permits a security proof, and 
going ahead and giving such a proof [8]. Though neither of us have studied the proof in detail, it seems 
credible and well-conceived. This is fortunate, because many of the security comments in the WHF writeup 
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itself [16] can only be described as uninformed. For example, in Section 1.8 the authors claim that CCM “is 
secure against attackers limited to 2128 steps of operation if the key K is 256 bits or longer.” Such a claim 
is unsupported by any known results and would seem to be wrong under any reasonable interpretation, 
as privacy itself vanishes by the time that 264 blocks have been enciphered. Later, in Section 1.10 [16], 
we hear that “[by enciphering the CBC MAC] we avoid CBC-MAC collision attacks. If the block cipher 
behaves as a pseudo-random permutation, then the key stream is indistinguishable from a random string. 
Thus the attacker gets no information about the CBC-MAC result. The only avenue of attack that is left 
is differential-style attack, which has no significant chance of success if the block cipher is a pseudo-random 
permutation.” This paragraph is so far from saying something technically accurate that we wouldn’t know 
where to begin. Of course wrong or unscientific security claims are not an indictment of the method they 
speak about; our only point is that one needs to ignore the security statements of the WHF writeups [15–17], 
regard it only as an algorithm specification, and turn to Jonsson [8] for more scientific assertions. 

4 Conclusion 

We feel that CCM is not the best choice for a general-purpose standard. Although we have identified no 
grave or urgent problems with the mode, we think that one can do better. In a companion document [5] we 
present an alternative algorithm, called EAX. That mode retains the major attributes of CCM, but without 
the disadvantages discussed here. 
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