
A Critique of CCM

P. Rogaway ∗ D. Wagner †

2 February 2003

Abstract

CCM is a conventional authenticated-encryption scheme obtained from a 128-bit block cipher. The
mechanism has been adopted as the mandatory encryption algorithm in an IEEE 802.11 draft stan­
dard [15], and its use has been proposed more broadly [16, 17]. In this note we point out a number of
limitations of CCM. A related note provides an alternative to CCM [5].

1 Introduction

History. Authenticated encryption (AE) schemes are symmetric-key mechanisms by which a message M
is a transformed into a ciphertext C in such a way that C protects both privacy and authenticity. Though
AE schemes go back more than 20 years, only recently did AE get recognized as a distinct and significant
cryptographic goal [3, 4, 10, 13]. Two factors seem to have triggered this. First was the realization that
people had been doing rather poorly when they tried to glue together a traditional (privacy-only) encryption
scheme and a message authentication code (MAC) [2, 3, 11]; second was the emergence of a class of “melded”
AE schemes, beginning with [9], that did not work by gluing together an encryption scheme and a MAC.

One of these new AE schemes, an algorithm called OCB [14], was selected for a draft IEEE 802.11
standard for Wireless LANs. But there emerged opposition to OCB among some individuals who were
active in the standards body. The opposition centered around the fact that OCB (and, more broadly, the
new-generation of AE techniques) would have to be licensed. To avoid the authenticated-encryption IP,
three of the 802.11 participants—Neils Ferguson, Russ Housley, and Doug Whiting—decided to invent their
own algorithm for AE [15]. The mode they developed is called CCM. Though CCM makes about twice
the number of block-cipher calls as OCB, there are many environments where this does not matter, and
CCM is believed to be patent-free. Thus CCM came to replace OCB as the mandatory mechanism in the
emerging IEEE 802.11 standard. CCM’s inventors went on to propose their mode for applications beyond
IEEE 802.11, providing it to the IETF [17] and NIST [16]. NIST has already signaled their inclination to
move forward with a CCM-based recommendation [7].

This document. It is the authors’ suspicion that acceptance of CCM is, in large part, a consequence of the
fact that it has received little criticism and no counter-proposals. There is a need for a fully-specified AE
scheme and a desire for cryptographic technology to be patent-unencumbered. CCM is the only mechanism
having a writeup and satisfying those two constraints. The algorithm thus seems poised to emerge as a
victor by default. We would find that unfortunate, because there are problems with CCM that ought to be
addressed. The purpose of this document, then, is to explain what are the problems with CCM.

2 Definition of CCM Mode

Preliminaries. All strings in this note are over the binary alphabet, {0, 1}. For L a set of strings and n ≥ 0
a number, we let Ln and L∗ have their usual meanings. The concatenation of strings X and Y is denoted

∗ Department of Computer Science, University of California at Davis, Davis, California 95616, USA; and De­
partment of Computer Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. E-mail:
rogaway@cs.ucdavis.edu WWW: www.cs.ucdavis.edu/~rogaway/

† Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, California
94720, USA. E-mail: daw@cs.berkeley.edu WWW: http://www.cs.berkeley.edu/~daw/

http://www.cs.berkeley.edu/~daw
mailto:daw@cs.berkeley.edu
www.cs.ucdavis.edu/~rogaway
mailto:rogaway@cs.ucdavis.edu

Algorithm CBCK (M) Algorithm CTRN
K (M)

10 Parse M into M1 · · · Mm where |Mi| = n 20 m ← i|M |/nl
11 C0 ← 0n

21 S ← EK (N) I EK (N+1) I · · · I EK (N+m−1)
12 for i ← 1 to m do 22 C ← M ⊕ S [first |M | bits]
13 Ci ← EK (Mi ⊕Ci−1) 23 return C
14 return Cm

Figure 1: Algorithms CBC and CTR, building blocks for this writeup. In both cases E : Key×{0, 1}n → {0, 1}n

∗ is fixed and K ∈ Key. For CBC we have M ∈ ({0, 1}n)+ and for CTR we have M ∈ {0, 1} and S ∈ {0, 1}n .

X I Y or simply X Y . The set Byte = {0, 1}8 contains all the strings of length 8, and a string X ∈ Byte ∗

is called a byte string or an octet string. The string of length 0, called the empty string, is denoted ε.
∗If X ∈ {0, 1} we let |X| denote its length in bits, and if X ∈ Byte ∗ we let |X|8 = |X|/8 denote its length

∗in bytes. For £ ≥ 1 a number, we write Byte<£ for all byte string having fewer than £ bytes. If X ∈ {0, 1}
and £ ≤ |X| then the first £ bits of X are denoted X [first £ bits], while if X ∈ Byte ∗ and £ ≤ |X|8 then
the first £ bytes of X are denoted X [first £ bytes]. When £ is a positive integer and i ∈ [0..2£ − 1] we
let [i]£ be the £-bit string that represents i in binary (most significant bit first). When X ∈ {0, 1}£ is a
nonempty string and i ∈ N is a number we let X + i be the £-bit string which results from regarding X as a
nonnegative number x (binary notation, most-significant-bit first), adding x to i, taking the result modulo 2n ,
and converting this number back into an £-bit string. String constants can be written in hexadecimal as
in 0x00 for 08 and 0xFFFE for 1150. A block cipher is a function E : Key × {0, 1}n → {0, 1}n where Key
is a finite, nonempty set and n ≥ 1 is a number and EK (·) = E(K, ·) is a permutation on {0, 1}n . The
number n is called the block length. With E a block cipher as above, we describe two algorithms: the

∗CBC MAC of message M ∈ ({0, 1}n)+ under key K ∈ Key; and CTR encryption of message M ∈ {0, 1}
under key K ∈ Key and with IV N ∈ {0, 1}n . These algorithms are defined in Figure 1.

We emphasize that CBC is insecure across messages of varying lengths; unless the message length is
fixed, CBC should be viewed as a building-block for making a MAC and not by itself a MAC. We have also
specified a raw form of CTR mode for which we are not asserting any particular security property.

CCM parameters. We are now ready to define the CCM mode of operation. The mode depends on three
parameters—values that must be specified before the modes is well defined:

128 128 • E — the block cipher — where E : Key × {0, 1} → {0, 1}
• τ — the tag length1— where τ ∈ {4, 6, 8, 10, 12, 14, 16}
• λ — the length-of-the-message-length-field — where λ ∈ {2, 3, 4, 5, 6, 7, 8}

128 Once parameters (E, τ , λ) have been fixed, where E : Key ×{0, 1} → {0, 1}128 is a block cipher, CCM can
be regarded as a pair (CCM.Encrypt, CCM.Decrypt) which is an authenticated-encryption with associated-
data (AEAD) scheme, as defined in [13].2 Encryption and decryption have the following signatures:

CCM.Encrypt : Key × Nonce × Header × Plaintext → Ciphertext

CCM.Decrypt : Key × Nonce × Header × Ciphertext → Plaintext ∪ {Invalid}

where

Nonce = Byte15−λ Header = Byte<264

Plaintext = Byte<28λ

Ciphertext = Byte ∗

Thus there is a parameterized tradeoff between the length of nonces, η = |N | = 15 − λ bytes, and the length
of the longest permitted message, 256λ − 1 bytes: a larger nonce space means a smaller message space.

1 We have changed the name of this and several other variables compared to that which is in the WHF writeup [16]; our
intent was to choose more conventional and sensible names. For those who have studied the WHF writeup [16], the following
may be useful: their M (the tag length) is our τ ; their L (the length-of-the-message-length-field) is our λ; their a (the associated
data, or header) is our H; their m (the message being encrypted) is our M ; their U (the authentication tag) is our T .

2 We have made a slight change in syntax to that of [13], absorbing the key generation into the finite set Key which is part
of the signature of the encryption and decryption routines.

2

Algorithm CCM.EncryptN H (M) // N ∈ Byte15−λ and H ∈ Byte<264
and M ∈ Byte<2λ

K

100 B ← 0 I if H = ε then 0 else 1 endif I [τ /2 − 1]3 I [λ − 1]3 I
101 N I [|M |8]8λ I
102 if H = ε then ε elseif |H|8 < 62580 then [|H|8]16

103 elseif |H|8 < 232 then 0xFFFE I [|H|8]32 else 0xFFFF I [|H|8]64 endif I
104 H I

< 62580 then (0x00)(14−|H|8) mod 16
105 if H = ε then ε elseif |H|8

< 232 then (0x00)(10−|H|8) mod 16 else (0x00)(6−|H|8) mod 16 endif106 elseif |H|8 I
107 M I

(0x00)(−|M |8) mod 16
108

109 U ← CBCK (B)
110 A0 ← [λ − 1]8 I N I (0x00)15−λ

111 V I C ← CTRA0 (U I M) where |V | = 128 K
112 T ← V [first τ bytes]
113 return C ← C I T

Algorithm CCM.DecryptN H (C) // N ∈ Byte15−λ and H ∈ Byte<264
and C ∈ Byte ∗

K

200 if |C|8 < τ then return Invalid
201 Partition C into C I T where |T |8 = τ
202 if |C|8 > 2λ − 1 then return Invalid

210 A0 ← [λ − 1]8 I N I (0x00)15−λ

211 M ← CTRA0+1 (C)K

220 B ← 0 I if H = ε then 0 else 1 endif I [τ /2 − 1]3 I [λ − 1]3 I
221 N I [|M |8]8λ I
222 if H = ε then ε elseif |H|8 < 62580 then [|H|8]16

223 elseif |H|8 < 232 then 0xFFFE I [|H|8]32 else 0xFFFF I [|H|8]64 endif I
224 H I

< 62580 then (0x00)(14−|H|8) mod 16
225 if H = ε then ε elseif |H|8

< 232 then (0x00)(10−|H|8) mod 16 else (0x00)(6−|H|8) mod 16 endif226 elseif |H|8 I
227 M I

(0x00)(−|M |8) mod 16
228

230 U ← CBCK (B)
231 V ← EK (A0) ⊕ U
232 T ' ← V [first τ bytes]
233 if T = T ' then return Invalid
234 return M

128 128 Figure 2: Encryption and decryption under CCM[E, τ , λ]. The block cipher is E : Key × {0, 1} → {0, 1}
and the tag length (in bytes) is τ ∈ {4, 6, 8, 10, 12, 14, 16} and the length-of-the-message-length-field (in bytes)
is λ ∈ {2, 3, 4, 5, 6, 7, 8} and the nonce length (in bytes) is η = 15 − λ.

3

128 128
CCM algorithm. Fix parameters τ , λ, and E : Key × {0, 1} → {0, 1} as indicated above. We
write CCM.EncryptN H (M) instead of CCM.Encrypt(K, N, H, M). Similarly, we write CCM.DecryptN H (C)K K
instead of CCM.Decrypt(K, N, H, C). Encryption and decryption under CCM works as specified in Figure 2.
Note that the value returned by CCMN H (M) is a byte string C having |M |8 + τ bytes. K

3 Criticism of CCM

We partition our criticism into five categories: efficiency, parameterization, complexity, variable-tag-length
subtleties, and some wrong security claims.

3.1 Efficiency Issues

We discuss three efficiency problems with CCM: (a) CCM is not on-line, (b) CCM disrupts word-alignment,
and (c) CCM can’t pre-process static associated data.

Not on-line. Here, an algorithm being on-line refers to its being able to process a stream of data as it
arrives, with constant memory, not knowing in advance when the stream will end. Observe then that on-line
methods should not require knowledge of the length of a message until the message is finished.

CCM fails to be on-line in both the plaintext and the associated data: one needs to know the length of
both of these before one can proceed with encryption.

For message authentication codes, the significance of being on-line was brought out by the work of Petrank
and Rackoff [12], whose work was motivated by the observation that the length-prepend CBC MAC (and
other suggestions appearing in [1]) were not on-line. Since their paper, a failure to be on-line has been
regarded as a significant defect for an encryption scheme or a MAC.

Now it is true that in many contexts where one would be encrypting a string one does know the length
of the string in advance. For example, many protocols will already have “packaged up” the string length
at a lower level. In effect, such strings have been represented in the computing system as sequence of bytes
and a count of those bytes. But there are also contexts where one does not know the length of a message
in advance of getting an indication that it is over. For examples, a printable string is often represented in
computer systems as a sequence of non-zero bytes followed by a terminal zero-byte. Certainly one should be
able to efficiently encrypt a string which has been represented in this way.

Disrupts word-alignment. Length-prepend annotation causes an additional problem for the associated
data (also called the header)—namely, CCM disrupts its word-alignment. This is a problem when the
associated data, H, is long. To understand this issue, remember that most modern machines perform
operations much more efficiently when pointers into memory fall along word-boundaries (which typically
occur every 4 or 8 bytes). A typical software implementation of a CBC MAC, for example, will exhibit much
worse performance if it is called on an argument which is not word-aligned. By prepending length-annotation
to the associated data H, this length-annotation not being a multiple of 16 or even 4 bytes, one can expect
that typical implementations will suffer a big performance hit.

The disruption of word-alignment is not a big concern if the associated data is just a few bytes, as we
expect that it often will be. But, again, NIST and others are considering CCM for use as a general-purpose
AEAD algorithm. We have no idea how long will be the associated data. For all we know, the user is
primarily interested in authenticating traffic, is doing this to a large volume of traffic, and is encrypting
nothing or almost nothing. We don’t want the authentication side of an AEAD scheme to be significantly
more costly than using a dedicated CBC MAC.

Can’t pre-process static AD. In many scenarios the associated data H will be static over the course
of a communications session. For example, the associated data may including information such as the IP
address of the sender, the receiver, and fixed cryptographic parameters associated to this session. In such
a case one would like that the amount of time to compute EncryptN H (M) and DecryptN H (C) should be K K
independent of |H| (disregarding the work done in a preprocessing step). The significance of this goal was
already explained in [13], and a simple approach for achieving this goal was given there. Basically, the reason

4

λ 2 3 4 5 6 7 8

msgs shorter than 64 KBytes 16 MBytes 8 GBytes 240 bytes 248 bytes 256 bytes 264 bytes
η = 15 − λ 13 12 11 10 9 8 7

8η (nonce length) 104 bits 96bits 88 bits 80 bits 72 bits 64 bits 56 bits

Figure 3: CCM-allowed values of the length-of-the-message-length-field, λ, the corresponding bound on message
lengths, and the resulting length of nonces η = |N |8 that one must use, measured in bytes and then in bits.

that CCM fails to allow pre-processing of associated data H is that the algorithm encodes the nonce N and
the message length |M |8 before H rather than after it.

3.2 Parameterization

We criticize a few aspects of CCM related to its parameterization: (a) the requirement for the user to specify
a length-of-the-message-length-field parameter; (b) the fact that this choice involves a trade-off against a
conceptually unrelated quantity, the nonce length; (c) the marginal utility of the mode for random nonces;
(d) the mode’s strict byte orientation.

An inappropriate parameter. The user of CCM is presented with a parameter, the-length-of-the­
message-length-field, that she really has no business seeing. This parameter can be regarded as a surrogate
for the maximum message length. While it is reasonable to fix a suitably large maximum message length,
such as 264 − 1 bytes, it seems undesirable to force the user to think about choosing smaller message spaces.
The vary name of this parameter makes clear that this was always conceived of as an implementation-oriented
parameter and not a fundamental characteristic of an AEAD scheme.

Tradeoff between nonce length and maximum message length. Worse than the fact that the user
must choose a parameter value that she shouldn’t have to think about is that the definition of CCM involves
a tradeoff between two things that are conceptually unrelated: the maximal message length and the length
of the scheme’s nonce. The tradeoff is summarized in Figure 3, which shows the seven allowed values of
the-length-of-the-message-length-field parameter, the message space one gets as a result (restricted to octet
string), and the corresponding value that is mandated for the the nonce length.

There seem to us several reasonable choices for what should be the nonce length of an AEAD scheme
that is based on a 128-bit block cipher. (i) One reasonable choice is 64 bits. This value is large enough to
handle a counter, as no real application will encrypt as many as 264 messages. (ii) Another reasonable choice
is 128 bits. This choice is natural for matching the block length and being the right length for handling a
random value for the nonce. (iii) A third natural choice is any string (or any byte string). This is conceptually
clean, and it might be convenient, for example, to allow nonces that are initially 1 byte, and then grow to 2
bytes, and so forth.

One thing that does not make sense to us is to say that the nonce length is a number of bytes that is 15
minus the log base two of one more than the size of longest permissible message length. The message space
and the nonce space have nothing to do with each other.

Marginal utility with random nonces. The fact that CCM nonce lengths are allowed to exceed 64
bits suggests that its inventors are thinking of random values as possible choices for the nonce. Though the
maximal nonce length (104 bits) may be acceptable for a random nonce, the minimal nonce length (56 bits)
probably is not. In general, the suitability of CCM for random nonces is linked to the length of the longest
message one wishes to be able to handle, an unnecessary and undesirable connection.

Byte orientation. Though some would view this criticism as strictly a matter of taste, we ourselves
do not like that CCM is only defined on octet strings. It is not that one is all that likely to need to use
an AEAD scheme on strings that are not octet strings. It is more that cryptographic algorithms reach
beyond technological conventions like the prevalence byte-orientation in computing systems. To put things
in perspective: most cryptographers would have viewed it as a poor choice if MD4, MD5, and SHA1 had

5

only been defined on octet strings. It is no less a defect if a general-purpose AEAD scheme is only defined
on octet strings.3

3.3 Complexity

While human-perceived complexity is inherently subjective, we ourselves find CCM to be complex. The
authors of the current document can not even remember the definition of CCM without consulting its
defining document. To us, a mode of operation with so many details that one cannot easily remember it
(even after working with it for a few days) is off to a bad start.

Bit manipulations. We see two underlying causes for this complexity. The first is all the bit twiddling
that CCM does. We believe that it is preferable for a mode of operation to avoid bit manipulations beyond
standard padding or length annotation. The central concern for a mode of operation is the correct and
efficient use of the block cipher. That purpose has never been shown to need tricky ways to package up
arguments or encode string lengths.

Missing abstraction boundary. More fundamentally, we see the complexity of CCM as stemming from
the fact that it is designed directly on top of a block cipher—in particular, it was not designed to use any
particular message authentication code. In our own exposition of CCM we have done our best to “push
upwards” the abstraction boundary to which CCM writes, so that we could “call out” to the raw CBC MAC
and CTR encryption. Doing this is at odds with the defining document [16], but CCM’s authors have
expressed the viewpoint that they are combining such primitives, and so one rather expects a description
of CCM in those terms. But the raw CBC MAC is not a secure MAC and the authentication tag that
CCM computes can only be seen as something computed by a process integral to the entire mode. There’s
no sense in which one can say “do CCM using this other message authentication code.” CCM employs no
autonomous MAC.

It is our view that an AEAD scheme should be designed on top of higher-level primitives than a block
cipher. Even if the higher-level primitives are to be implemented using a block cipher, the abstraction bound­
ary helps the scheme to be conceptually clean and support a convincing security analysis. The complexity
that one is concerned with isn’t the number of lines to implement the mode (which is certainly small) or
write it down in pseudocode. It is the conceptual complexity of an algorithm as induced by the distance
between it and what it sits on top of.

Illustration 1. A glimpse of CCM’s complexity can be seen from the fact that correctness crucially
depends on the encoding convention: namely, the authors have excluded the possibility of τ = 2 (i.e., two-
byte tags), which means that at least one of bits 3, 4, or 5 of the first block of B, which holds [τ /2 − 1]3

is non-zero, while these bits are always zero in the initial counter value A0. If one allowed a tag of τ = 2
bytes4 or if one had encoded τ as [τ /2 − 2]3 instead of [τ /2 − 1]3 the CCM method would be wrong.5

Illustration 2. A final way to get at the complexity of CCM is to precisely answer the question, how
many block cipher calls does CCM use? The answer is given by the following expression:

|M | |H|
NumCallsCCM(M, H) = 2 + + 2 + δ(|H|)

128 128

3 Nothing in this paragraph should be understood to suggest that an implementation is under any compulsion to implement
an AEAD scheme that operates on arbitrary bit strings (no more than people implement SHA1 to operate on arbitrary bit
strings). We are simply saying that it should be well-defined.

4 We comment that allowing tags of one byte, or even one bit, is a reasonable thing to do, as there are contexts, like
authenticating a video frame, where one has to forge many messages to have a detrimental effect.

5 Criticism that an algorithm “would be wrong if the following change was made” is never-ending and inherently
unconvincing—but the algorithm isn’t that way is a quite sufficient response. Here the criticism is simply being used to
emphasize that CCM’s correctness is integrally wrapped up in its encoding-scheme details.

6

0 if i = 0

16 if i ∈ [8, 8 · 62572]

λ(i) =

where δ(i) ∈ {0, 1} is defined as follows: letting ⎧ ⎪⎪⎨ ⎪⎪⎩
48 if i ∈ [8 · 62580, 235 − 8]
80 if i ∈ [235 , 264 − 8]

we set δ(i) = 0 if (i mod 128) + £(i) ≤ 128, and δ(i) = 1 otherwise. It appears that much of this complexity
is so that δ(|H|) will be more often 0 than 1.

3.4 Subtleties of Variable-Length Authentication Tags

In CCM, the authentication tag τ is of variable length: it is permitted to be 4, 6, 8, 10, 12, 14, or 16 bytes
long. Variable-length tags come with some security risks, if the schemes are not implemented carefully or
what they achieve is not stated clearly.

A scenario and an attack. In the design of Internet protocols, a common slogan is “be conservative in
what you send, and liberal in what you accept.” Imagine a CCM implementation takes this literally: the
sender always creates messages with a 16-byte tag, but the receiver accepts messages if they have a valid tag
of any permitted length.

How secure would such an implementation be? Of course, since the attacker is free to choose a tag of any
length, a smart attacker will choose the tag length that is most convenient for him: presumably, 4-byte tags.
Clearly such an attacker can generate a valid ciphertext within 232 tries. This vulnerability is unavoidable
in any scheme with authentication tags that are only four bytes long. However, this attack might be of
limited value to the attacker, because it is a blind forgery: the attacker cannot control what message will be
accepted by the recipient.

We point out that a worse attack on CCM is possible in the envisaged scenario: a more clever attacker
can fully control what message the recipient will be tricked into accepting. The reason for this is that,
in CCM, the transmitted ciphertext has the form C I T where T is an authentication tag and where the
received message M is computed as a function of C but not τ . The directed forgery attack on CCM is as
follows. Suppose the attacker intercepts a single ciphertext C IT16 that is the encryption of some message M
formed by the legitimate sender. Imagine that the attacker has a difference Δ that it would like to xor
into the message; for instance, the attacker might want to flip certain bit positions in M . Then the attacker
can generate the 232 ciphertexts of the form (C ⊕ Δ) I T4 where T4 varies over all 4-byte values. Most of
these will be rejected by the receiver as having invalid authentication tags, but one will be accepted as a
valid encryption of the modified message M ⊕ Δ. Thus an adversary can forge any message it likes with 232

tries, given a single ciphertext (with known plaintext) that was authenticated with a 128-bit tag. One can
reasonably maintain that authenticating a message with a 128-bit tag should not have had this consequence.

Interpretation. Does the attack above mean that the tag length τ should have been used for computing
the ciphertext core C? In our opinion, the answer is: “not necessarily.” Rather, the attack highlights that
the specification [16] has made it unclear what the goal is with respect handling a multiplicity of tag lengths.

We suggest that the tag length parameter τ should be fixed at key-negotiation time, bound securely to
the key, and negotiated authentically between both parties. Once a session has begun, there should be only
a single value τ that will be accepted by the receiver, and this should remain unchanged throughout the
lifetime of the session. The receiver shouldn’t accept a new τ in the middle of a session any more than it
would accept a new block cipher E. All parameters should have the same status. Under this interpretation
the inclusion of τ within the string B in CCM was not necessary to achieve the security goals. This is not
a flaw in CCM, but it underscores the need to think carefully about the desired security goals.

3.5 Meaningless Security Claims

Jonsson has done an admirable job of finding an abstraction of CCM that permits a security proof, and
going ahead and giving such a proof [8]. Though neither of us have studied the proof in detail, it seems
credible and well-conceived. This is fortunate, because many of the security comments in the WHF writeup

7

itself [16] can only be described as uninformed. For example, in Section 1.8 the authors claim that CCM “is
secure against attackers limited to 2128 steps of operation if the key K is 256 bits or longer.” Such a claim
is unsupported by any known results and would seem to be wrong under any reasonable interpretation,
as privacy itself vanishes by the time that 264 blocks have been enciphered. Later, in Section 1.10 [16],
we hear that “[by enciphering the CBC MAC] we avoid CBC-MAC collision attacks. If the block cipher
behaves as a pseudo-random permutation, then the key stream is indistinguishable from a random string.
Thus the attacker gets no information about the CBC-MAC result. The only avenue of attack that is left
is differential-style attack, which has no significant chance of success if the block cipher is a pseudo-random
permutation.” This paragraph is so far from saying something technically accurate that we wouldn’t know
where to begin. Of course wrong or unscientific security claims are not an indictment of the method they
speak about; our only point is that one needs to ignore the security statements of the WHF writeups [15–17],
regard it only as an algorithm specification, and turn to Jonsson [8] for more scientific assertions.

4 Conclusion

We feel that CCM is not the best choice for a general-purpose standard. Although we have identified no
grave or urgent problems with the mode, we think that one can do better. In a companion document [5] we
present an alternative algorithm, called EAX. That mode retains the major attributes of CCM, but without
the disadvantages discussed here.

5 Acknowledgments

Phil Rogaway’s work was funded by NSF CCR-0208842 and a gift from CISCO Systems. David Wagner’s
work on this project is supported by NSF Grant 0113941.

References

[1] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining message authentication
code. J. of Computer and System Science, vol. 61, no. 3, pp. 362–399, December 2000. Earlier version
in Advances in Cryptology—Crypto ’94, Lecture Notes in Computer Science, Vol. 839. Y. Desmedt,
ed., Springer-Verlag, 1994. www.cs.ucdavis.edu/∼rogaway/

[2] M. Bellare, T. Kohno, and C. Namprempre. Authenticated encryption in SSH: provably fixing the SSH
binary packet protocol. Proceedings of the 9th ACM conference on Computer and Communications
Security (CCS-02), ACM Press, 2002.

[3] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and analysis of
the generic composition paradigm. Advances in Cryptology – ASIACRYPT ’00. Lecture Notes in Com­
puter Science, vol. 1976, T. Okamoto., ed., Springer-Verlag, 2000. www-cse.ucsd.edu/users/mihir/

[4] M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit nonces or redundancy in
plaintexts for efficient encryption. Advances in Cryptology – ASIACRYPT ’00. Lecture Notes in Com­
puter Science, vol. 1976, T. Okamoto., ed., Springer-Verlag, 2000. www.cs.ucdavis.edu/∼rogaway/

[5] M. Bellare, P. Rogaway, and D. Wagner. A conventional authenticated-encryption mode. Manuscript,
February 2003. www.cs.ucdavis.edu/∼rogaway

[6] J. Black and P. Rogaway. CBC MACs for arbitrary-length messages:	 The three-key constructions.
Advances in Cryptology—Crypto 2000, Lecture Notes in Computer Science, vol. 1880, Springer-
Verlag, Mihir Bellare, editor, pp. 197–215, 2000. www.cs.ucdavis.edu/~rogaway

[7] W. Burr (attributed). Oral presentation at	 an IETF CFRG meeting in Atlanta, Georgia, USA.
19 November 2002. From email with subject heading: “Final minutes for CFRG meeting in At­
lanta,” scribed by B. Weiss and posted to the cfrg@ietf.org mailing list, 4 December 2002. CFRG mail
archive at www.irtf.org/cfrg

8

www.irtf.org/cfrg
mailto:cfrg@ietf.org
www.cs.ucdavis.edu/~rogaway
www.cs.ucdavis.edu/�rogaway
www.cs.ucdavis.edu/�rogaway
www.cs.ucdavis.edu/�rogaway

[8] J.	 Jonsson. On the security of CTR + CBC-MAC. Contribution to NIST. Available from
csrc.nist.gov/encryption/modes/proposedmodes/. Proceedings version to appearing in Proceed­
ings from Selected Areas of Cryptography (SAC) 2002.

[9] C. Jutla. Encryption modes with almost free message integrity. Advances in Cryptology – EURO­
CRYPT 2001. Lecture Notes in Computer Science, vol. 2045, Springer-Verlag, 2001. Earlier version
in Cryptology ePrint archive, reference number 2000/039, August 1, 2000, eprint.iacr.org/

[10] J. Katz and M. Yung. Unforgeable encryption and adaptively secure modes of operation. Fast Software
Encryption ’00. Lecture Notes in Computer Science, B. Schneier, ed., 2000.

[11] H. Krawczyk. The order of encryption and authentication for protecting communications (or: how Se­
cure is SSL?). Advances in Cryptology – CRYPTO ’01, Lecture Notes in Computer Science, vol. 2139,
Springer-Verlag, 2001. See Cryptology ePrint Report 2001/045, eprint.iacr.org

[12] E. Petrank and C. Rackoff. CBC MAC for real-time data sources. Journal of Cryptology, Vol. 13,
No. 3 pp. 315–338, 2000.

[13] P. Rogaway. Authenticated-encryption with associated-data. Ninth ACM Conference on Computer
and Communications Security (CCS-9). ACM Press, 2002. www.cs.ucdavis.edu/∼rogaway

[14] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of operation for effi­
cient authenticated encryption. Eighth ACM Conference on Computer and Communications Security
(CCS-8). ACM Press, 2001. www.cs.ucdavis.edu/∼rogaway

[15] D. Whiting, R. Housley, and N. Ferguson. AES Encryption & Authentication Using CTR Mode &
CBC-MAC. IEEE P802.11 doc 02/001r2, May 2002.

[16] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). June 2002. Available
from csrc.nist.gov/encryption/modes/proposedmodes/

[17] D.	 Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). IETF In­
ternet Draft with file name draft-housley-ccm-mode-01.txt, September 2002. Available from
www.ietf.org/internet-drafts/draft-housley-ccm-mode-01.txt

9

www.ietf.org/internet-drafts/draft-housley-ccm-mode-01.txt
www.cs.ucdavis.edu/�rogaway
www.cs.ucdavis.edu/�rogaway
http:eprint.iacr.org
http:eprint.iacr.org

