
Authentication Failures in NIST version of GCM

Antoine Joux

DGA

and

Université de Versailles St-Quentin-en-Yvelines

PRISM

45, avenue des Etats-Unis

78035 Versailles Cedex, France

Antoine.Joux@m4x.org

Abstract. In this note, we study the security of the Galois/Counter
mode authenticated encryption recently published by NIST. We show
how an adversary can recover the secret key of the keyed hash function
underlying the authentication, using a chosen IV attack. Once this secret
key is known, the encryption mode is no longer authenticated. As a con­
sequence, all chosen ciphertext attacks against the confidentiality become
feasible. Moreover, since the encryption mode is a counter mode, i.e. a
stream cipher, the XOR malleability of the encrypted plaintext becomes
a major security issue.

1 Introduction

Recently, the National Institute of Standard and Technology has pub­
lished several recommend modes of operation for use with the AES block
cipher. The fourth recommendation in this series [2] describes an authen­
ticated encryption mode based on a proposal of McGrew and Viegra [4].
The goal of this recommendation is to provide a very efficient mode of
operation, that performs a single block cipher invocation per message
block and does not need access to block cipher decryption even when de­
crypting messages. The latter property is very useful, from a performance
point of view, when using a substitution permutation algorithm such as
the AES. Indeed, when using the AES implementing both encryption and
decryption is costly and avoiding decryption altogether is a worthy goal.
This issue has not attracted much attention in the past, since with Feistel
schemes such as DES, decryption is just encryption with the order of the
subkey reversed. Still, when performing encryption without authentica­
tion, a well-known solution exist: the counter mode.

However, the counter mode does not offer the level of security expected
nowaday for encryption mode. Indeed, it is only designed to resist chosen

mailto:Antoine.Joux@m4x.org

plaintext attack. The Galois/Counter mode (GCM) proposed by NIST
in [2] follows the classical encrypt-then-MAC approach in order to turn the
counter mode into a encryption scheme secure against chosen-ciphertext
adversaries.

In order to cover a wide range of application, GCM also allows the
authentication of some associated data send in the clear together with the
encrypted message. The MAC used in GCM loosely follows the Wegman­
Carter paradigm from [5], a keyed hash is computed and an encrypted
copy of the hash value is added to the ciphertext to provide authentica­
tion. Since GCM is based on a counter mode, it requires an initialization
vector denoted by IV. The default length of the IV is 96 bits, however,
for added flexibility GCM allows the use of IVs of different length and
for a given key the length of the IV does not even need to be fixed. It
is widely known that replaying an IV in a counter mode voids the con­
fidentiality of all messages encrypted with this IV. As a consequence, it
is specified in GCM that IVs should never be repeated. Nevertheless, in
order to introduce our attacks againsts NIST version of GCM, we first de­
scribe a“forbidden attack” involving a repeated IV. This forbidden attack
is mainly proposed for illustration purposes.

The paper is organized as follows: in section 2 we recall the description
of the Galois/Counter mode, in section 3 we present the forbidden attack
with repeated IVs, in section 4 we study the security of the mechanism
which allows the use of an IV of length different than the default (96
bits) and present two attacks against this mechanism as described in [2].
Finally, since our attacks allow the adversary to learn the authentication
key, we recall in section 5 the security implications.

2 Description of GCM

The Galois/Counter mode (GCM) authenticated encryption can be used
to encrypt a plaintext and authenticate the resulting ciphertext together
with associated data. It relies on two basic primitives, a counter mode
encryption, where the basic block cipher is used to generated a pseudo­
random keystream, which is xored with the plaintext and a message au­
thentication code which serves to authenticate the resulting ciphertext
together with its associated data. Thus, GCM follows the encrypt-then­
MAC paradigm which, since [1], is usually considered as the “right” way
to compose a secret key encryption and a MAC into an authenticated
encryption. The MAC used in GCM is a variation on the Wegman-Carter
authentication, one first computes the value of a keyed universal hash

2

function on the ciphertext and associated data and then encrypts it. It
differs from standard practice by the fact that this final encryption in the
MAC computation also uses a counter mode encryption instead of sim­
ply applying the block cipher to the result of the hash function. Another
deviation from standard practice is the fact that the plaintext encryption
and the MAC encryption both use the same key, instead of independent
keys as usually assumed in the encrypt-then-MAC paradigm.

In order to describe GCM, we need to introduce a few notations.
First, we let w (an even number ≥ 128) denote the block length in the
available block cipher E, we let K denote the secret key used for encryp­
tion/decryption. GCM is used to encrypt a plaintext P together with its
associated data A into a ciphertext C under an initial value IV . The
plaintext, the ciphertext and the associated data are all seen as sequences
of blocks of length w. For example, P is decomposed as:

∗ P = P1IP2I · · · IP .n

∗Note that the final block P may be an incomplete block. By convention, n

Ĉ and Â respectively denote C and A right padded with enough zeroes
to fit on the smallest possible number of full blocks. Similarly, when using
IVs of varying length, we use the notation IIV to denote IV right padded
with enough zeroes up to the next full block. We also use the notation
[x]c to denote the £-bit encoding of the number x.

Before describing GCM itself, we first need to define the universal hash
function used in the Wegman-Carter MAC. This function called GHASH
receives as input a key H and two strings M and M / constituted of full
blocks. The core of GHASH consist in evaluating a polynomial defined
from M at H, more precisely:

len(M)n
len(M)+len(M ')+1−iGHASHcoreH(M,M /) = MiH

i=1

len(M ')n
M / len(M ')+1−i+	 iH .

i=1

All the computations are performed by embedding H and the blocks of
M and M / into some fixed representation of the Galois field F2w . GHASH
itself is defined from GHASHcore by adding the binary representation of
the lengths of M and M / (denoted by len(M) and len(M /)) in the strings
being processed:

GHASHH(M,M /) = GHASHcoreH(M,M /I[len(M)]w/2I[len(M /)]w/2).

3

Another important auxillary function is counter encryption of a string.
Given as input a counter value J and a string P , this function GCTRK(J, P)
outputs an encrypted string C. Each block of C is computed from the
corresponding block of P by Ci = Pi ⊕EK(inci−1(J)), where inc denotes
counter incrementation1, with the convention that inci−1 represents i− 1
successive incrementations. When encrypting the final block, the output
of EK is truncated to match the length of this final block.

We can now define GCM authenticated encryption with the following
steps:

1. Compute the hash key: H = EK(0w)
2. Compute the basic counter value J from IV :

– If len(IV) = w − 32 then J = IV I0311
– If len(IV) = w − 32 and NIST description then

IJ = GHASHcoreH({}, IV)

– If len(IV) = w − 32 and original description then

IJ = GHASHH({}, IV)

3. Compute the ciphertext C = GCTRK(inc(J), P)
4. Compute the keyed hash: S = GHASHH(A,C)
5. Encrypt the hash value: T = GCTRK(J, S)
6. Return C and T

First, we remark that the original description of GCM [4] and the
NIST version of GCM [2] are subtly different when an IV of length other
than w − 32 is used. The difference occurs when computing the internal
counter initializing value J . In the original version, this is done using
GHASH, which implies that IV is padded with its length. In the NIST
version, the computation of J uses GHASHcore and the length of IV
is not added. We also remark that in the above description, the MAC
length is exactly w, whereas GCM allows MAC truncation to a shorter
length in order to fit various needs. However, our attacks work better with
non truncated MACs so we ignore this possible truncation in the sequel.
Moreover, the NIST description of GCM specifies at page 7, that for IV

of length different from 96 bits (i.e. w − 32 since the NIST specification
assumes that w = 128) the MAC size shall be 128. Since our attacks

1 In the definition of GCM, this only increments the number encoded by the last 32
bits of J modulo 232, however, the precise definition of inc is irrelevant for the attack
presented here.

4

precisely work with this kind of IVs, we do not need to consider the
truncated MAC case.

Since GCM is an authenticated encryption, it is essential when de­
crypting to check the MAC value before decrypting. If the MAC is invalid
no plaintext is computed and a special symbol FAIL should be produced.
Moreover, it is clear when reading the encryption procedure that decryp­
tion can be computed using the block cipher E in the forward direction
only, thus hardware implementations can be made cheaper by omiting
AES decryption.

2.1 Known weaknesses

As far as we know, the only published weaknesses of GCM are described
in a paper of Ferguson [3]. The paper described two weaknesses, the first
shows that truncating tags too much is dangerous and leads to a high
probability for collision. The second weakness shows that in this context,
one may learn information about the hash key H. In the rest of this
paper, we consider this risk of learning H when a collision occurs in a
slightly different light and show how NIST modification to GCM largely
compound this risk.

3 A forbidden attack with repeated IV

While both the NIST and the original GCM specification make clear that
an IV should never be repeated, in this section, we consider a forbidden
attack with a repeated IV. This mainly serves illustration purposes. In
fact, this forbidden is used in the sequel as a tool to construct real attacks
in the NIST version of GCM.

In order to describe our attack with the weakest possible adversary, we
assume that it is passive and only sees complete ciphertext data, including
IV, associated data and MAC tag. On the other hand, we are considering
the forbidden case where an IV value is repeated. Thus we assume that the
adversary sees two different messages M (1) and M (2) encrypted with the
same IV. Upon reception of these two messages, he proceeds as follows.

S(1) ⊕From the two MAC tags, T (1) and T (2), he computes T (1) ⊕T (2) =
S(2). As explained in section 2, S(1) is the value of a polynomial at H,
moreover the coefficient of the polynomial are derived from the ciphertext
blocks and known by the adversary. Similarly, S(2) is also the value of a
known polynomial at H. Since S(1) ⊕ S(2) is known, the adversary learns
that H is a root of a polynomial he knows. This is essentially the core of
the second weakness described by Ferguson in [3].

5

http:valuebeforedecrypting.If

One important problem for the adversary is that the degree of this
polynomial can be high, since it is equal to the length in blocks of the
longer of the two messages M (1) and M (2). Since the number of roots can
potentially be as high as the degree, the adversary may hesitate between
a large number of possible H. However, on average, we only expect a
small number of roots. Moreover, if the adversary can obtain a second
pair of messages with common IVs, he gets a second polynomial with
root H. Then by computing the GCD of the two polynomials, he finds
a polynomial of small degree with H as a root. Finally, he is left with
a small number of candidates for H. If there is a single candidate, he is
done and stops there. If there are a few, he can either collect additional
pairs with common IVs or use a chosen ciphertext attack as in section 5
to test each possible value.

3.1 Discussing the IV assumption

Forbidding the repetition of IVs is a standard assumption in stream ci­
phers and counter modes. Indeed, it is well understood that repeating an
IV for two different messages completely voids the confidentiality of these
two messages. This comes from the simple fact that the two plaintexts
are xored with the same pseudo-random string and such a “two-time pad”
is of course insecure. However, if for some reason2 a small number of IVs
are repeated, it is usually expected that beyond this basic attack which
reveal the corresponding messages, nothing too bad should happen. With
an ordinary counter mode, this is indeed the case. However, with both
versions of GCM, allowing a small number of repeated IVs leads to a
serious leak where the authentication key is revealed. As usual, learning
key material gives much more power to the adversary as shown in sec­
tion 5. While the basic fact that information about the authentication
key is leaked is already known from [3], the security risks induced by this
leak have not been seriously considered. In some sense, the unavoidable
assumption that IV are not repeated is even stronger with GCM than
with ordinary counter modes.

4 Non default length in IV

In this section, we present two different attacks which only work with
the NIST version on GCM described in [2] but do not affect the orig­
inal version from [4]. These two attacks rely on a bad property of the

2 Such as a disfunction in a counter or random generator.

6

keyed function GHASHcore used by NIST to compute the internal start­
ing value of the counter J when using IVs of length different from 96 bits.
Both attacks, assume that the adversary is granted the power to choose
both the plaintext and the corresponding IV. However, according to the
specifications, he is not allowed to use the same IV twice.

Varying length IVs In the NIST version of GCM, the key fact for our
first attack is that we can collide the internal initialization value J with
external IVs which are formally different. First, remark that for an initial
value IV not a multiple of w bits, we have the property that:

I iGHASHcoreH({}, IV) = GHASHcoreH({}, IV I0).

This is straightforward, since both I IV I0 denote IV and i IV right padded
with zeroes up to the next full block. As a consequence, the adversary
can easily feed two different initial values into GCM and get an internal
collision on the initial counter values. This allows him to use the forbidden
attack of section 3 in a context where the attack is no longer forbidden.

All zero IV Our second attack is based on a similar idea, but instead of
having a collision between initialization value, we force a collision between
some internal value and the authentication key. The attack makes use of
an IV string of the form 0c with £ w−32. In the NIST version of GCM, =
the algorithm is initialized with J0 = 0 · H = 0. Moreover, the resulting
tag value T is equal to the encryption of J0 xored with S. Since J0 is
the all zero block, it encrypts to the authentication key H under the key
K. Also, as in section 3, S is the value of a known polynomial at H.
Moreover, since the adversary is allowed to choose the plaintext, he can
use a short plaintext. Since the degree of the polynomial grows with this
length, S is the value of a known low degree polynomial at H. Moreover
T = S ⊕ T also is the value of a low degree polynomial at H. Thus the
value of H is learned.

It is worth noting that when following the original specification and
using GHASH instead of GHASHcore, none of the two above attacks
apply. It is clear from the footnote on page 7 of [2] that this change in
the specification is not a typo but was done on purpose. However, no
rationale is given for this ill advised modification.

5 Further considerations

All the three attacks, including the forbidden attack, described in sec­
tions 3 and 4 let the adversary learn the key H of the universal hash

7

function underlying the MAC scheme. Of course, once this key is known,
the adversary can compute the keyed hash of any ciphertext he wish
to fake. Moreover, since the MACs are encrypted hash values using the
counter mode encryption, it is extremely easy using a pair of XORs to
replace a hash value by another as long as the internal counter J is the
same. Thus, once H is known, any arbitrary string can be substituted
in place of a valid ciphertext with associated data. The only restriction
is that the IV cannot be changed or more precisely that an IV can only
be substituted by an equivalent IV. Since computing equivalent IVs (i.e.
IVs giving the same values of J) is easily done when H is known, at least
for IVs of non default length, the adversary has a wide range of options.
First, he can freely replace any associated data by any string of his choice,
he can truncate or expand ciphertext, he can use the XOR malleability
of stream cipher to produce a valid encryption of any string of his choice
given a known plaintext/ciphertext pair. To sum it up, the only thing
the adversary cannot do is recover the main key K. However, the main
goal of cryptography is to protect the security of data not keys. Thus the
GCM version described in [2] does not fill its security goals.

An important remaining question is how to repair the GCM scheme.
The basic answer is of course to remove the modification introduced be­
tween [4] and [2]. However, taking into account the risk that disfunc­
tions might induce IV collisions, it might be reasonable to perform a few
changes to GCM. In this context, replacing the counter encryption for
MACs by the classical encryption 3 with the block cipher usually used
with Wegman-Carter MACs seems a safe option. Moreover, in order to
further mitigates the security risks, we suggest to use a strong key deriva­
tion at the beginning of the algorithm and computing a different key for
each different purpose (one for encryption, one for intiializing J , one for
the keyed hash and one for the MAC encryption).

6 Conclusion

In this paper, we have shown an important attack of the NIST version
GCM mode. This stems from the fact that GCM excessively relies on
the hypothesis that IVs are never repeating. Moreover, the modification
introduced by NIST turns this fact into a effective attack when variable
length IVs are used.

3 Note that this does not require to add access to E−1, since the MAC equality testing
can be done on encrypted blocks.

8

References

1. M. Bellare and C. Namprempre. Authenticated encryption: relations among no­
tions and analysis of the generic composition paradigm. In Springer-Verlag, editor,
Proceedings of Asiacrypt 2000, 2000.

2. M. Dworkin. Recommendation for block cipher modes of operation: Gcm for confi­
dentiality and authentication. NIST special publication 800-38D, April 2006.

3. N. Ferguson. Authentication weaknesses in gcm. NIST web page
http://csrc.nist.gov/CryptoToolKit/modes/comments, May 2005.

4. D. McGrew and J. Viegra. The security and performance of the Galois/Counter
mode. In Springer-Verlag, editor, Proceedings of INDOCRYPT’04, 2004. Full paper
available on eprint, report 2004/193.

5. M. Wegman and L. Carter. New hash functions and their use in authentication and
set equality. J. of Comp. and System Sciences, 22:265–279, 1981.

9

http://csrc.nist.gov/CryptoToolKit/modes/comments

