
Correction to “On the Security of Two New

OMAC Variants”

Tetsu Iwata and Kaoru Kurosawa

Department of Computer and Information Sciences,

Ibaraki University

4–12–1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan

{iwata, kurosawa}@cis.ibaraki.ac.jp

September 19, 2003

Correction

In “On The Security of Two New OMAC Variants” of September 1, 2003,
we wrote that Mitchell proposed two new variants of OMAC, OMAC1"

and OMAC1"" . In this paper, we correct this sentence as follows.

Mitchell proposed a new variant of OMAC (not two variants). a

a Mitchell recently informed us that he proposes only OMAC1"" in his paper.
We now agree this after careful reading of his paper. Earlier, we thought that
the first paragraph of [12, Sect. 5.4] is OMAC1" and the second paragraph is
OMAC1"" .

Abstract. OMAC is a provably secure MAC scheme which NIST cur
rently intends to specify as the modes recommendation. In August 2003,
Mitchell proposed a variant of OMAC. We call it OMAC1"" . In this pa
per, we prove that OMAC1"" is less secure than original OMAC1. We
show a security gap between them. As a result, we obtain a negative
answer to Mitchell’s open question — OMAC1"" is not provably secure
even if the underlying block cipher is a PRP.

Keywords: Message authentication
pseudorandom permutation.

code, OMAC, provable security,

1 Introduction

1.1 Background

CBC MAC [6, 7] is a well-known and widely used message authentication code
(MAC) based on a block cipher E. We denote the CBC MAC value of a message
M by CBCK (M), where K is the key of E. While Bellare, Kilian, and Rogaway
proved that the CBC MAC is secure for fixed length messages [2], it is not secure
for variable length messages.

mailto:kurosawa}@cis.ibaraki.ac.jp

�

 �

�

 �

�

 �

� �� �
 �

K1
� E

M [1]

K1
� E

M [1] 10iM [2]

K2

M [3]

�

M [2] M [3]

�K3

� E

�

K1K1
� E

K1
� E K1

� E

T	 T
Fig. 1. Illustration of XCBC.

Therefore, several variants of CBC MAC have been proposed which are prov
ably secure for variable length messages: we have EMAC, XCBC, TMAC and
OMAC.

EMAC (Encrypted MAC) is obtained by encrypting CBCK1 (M) by E again
with a new key K2 [3]. That is,

EMACK1,K2 (M) = EK2 (CBCK1 (M)) .

Petrank and Rackoff proved that EMAC is secure if the message length is a
multiple of n, where n is the block length of E [13].

For arbitrary length messages, we can simply append the minimal 10i to a
message M so that the length is a multiple of n. In this method, however, we
must append an entire extra block 10n−1 if the size of the message is already a
multiple of n. This is a “wasting” of one block cipher invocation.

Black and Rogaway next proposed XCBC to solve the above problem [4].
XCBC takes three keys: one k-bit key K1 for E, two n-bit keys K2 and K3 (k
denotes the key length of E). In XCBC, we do not append 10n−1 if the size of
the message is already a multiple of n. Only if this is not the case, we append the
minimal 10i. In order to distinguish them, K2 or K3 is XORed before encrypting
the last block. XCBC is now described as follows (see Fig. 1).

–	 If |M | = mn for some m > 0, then XCBC computes exactly the same as the
CBC MAC, except for XORing an n-bit key K2 before encrypting the last
block.

–	 Otherwise, 10i padding (i = n−|M |−1 mod n) is appended to M and XCBC
computes exactly the same as the CBC MAC for the padded message, except
for XORing another n-bit key K3 before encrypting the last block.

Kurosawa and Iwata then proposed TMAC which requires two keys, one k-bit
key K1 and one n-bit key K2 [10]. TMAC is obtained from XCBC by replacing
(K2, K3) with (K2 · u, K2), where u is some non-zero constant and “·” denotes
multiplication in GF(2n). Sung, Hong, and Lee showed a key recovery attack
against TMAC [15].

Finally, Iwata and Kurosawa proposed OMAC which requires only one block
cipher key K [8]. OMAC is a generic name for OMAC1 and OMAC2. Let
L = EK (0n). Then OMAC1 is obtained from XCBC by replacing (K1, K2, K3)
with (K, L · u, L · u2). Similarly, OMAC2 is obtained from XCBC by replacing
(K1, K2, K3) with (K, L · u, L · u−1).

2

1.2 A New Variant of OMAC1: OMAC1�� [12]

EMAC, XCBC, TMAC and OMAC are all provably secure against chosen mes
sage attack if the underlying block cipher is a PseudoRandom Permutation
(PRP). Indeed, for all of the above MACs, it has been shown that the forg
ing probability is upper bounded by the birthday bound term plus insecurity
function of the underlying block cipher as a PRP, which is a standard and ac
ceptable security bound. In fact, many block cipher modes of operations have
this security bound. For example we have CTR mode [1] and CBC mode [1] for
symmetric encryption, and PMAC [5] for message authentication. Nevertheless,
Mitchell proposed a new variant of OMAC1 to improve the security of original
OMAC1. We call it OMAC1"". OMAC1"" is obtained from XCBC by replacing
(K1, K2, K3) with (K ⊕ S1, EK (S2), EK (S3)), where S1 is some fixed k-bit con
stant, S2 and S3 are some distinct n-bit constants.

It was claimed that OMAC1"" is more secure than OMAC1 [12]. Mitchell also
posed an open question of whether OMAC1"" is provably secure [12].

1.3 Our Contribution

In this paper, however, we show that the security is not improved. We prove that
OMAC1"" is less secure than original OMAC1. We show a security gap between
them.

To derive this result we first consider another variant of OMAC1, called
OMAC1". We then show that OMAC1" is completely insecure. There are forgery
attacks by using only one oracle query.

We next construct a PRP G with the following property: For any K ∈ {0, 1}k ,

GK (·) = GK⊕S1 (·) .

(A similar PRP is used in [14, 9].) We then show that OMAC1"" is completely
insecure if G is used as the underlying block cipher. In particular, we show that
forgery attacks against OMAC1" can also be applied to OMAC1"" if G is used as
the underlying block cipher. This implies underlying block cipher being a PRP
is not enough for proving the security of OMAC1"". Equivalently, it is impossible
for OMAC1"" to prove its security under the assumption of the underlying block
cipher being a PRP. That is,

– OMAC1 is a secure MAC if the underlying block cipher is a PRP [8], while
– it is impossible for OMAC1"" to achieve this security notion.

Therefore, there is a security gap between OMAC1 and OMAC1"", and OMAC1""

is less secure than OMAC1. This gives a negative answer to Mitchell’s open
question — OMAC1"" is not provably secure even if the underlying block cipher
is a PRP.

3

2 Preliminaries

2.1 Block Ciphers and MACs

nBlock cipher, E. A block cipher E is a function E : {0, 1}k × {0, 1}n → {0, 1} ,
k nwhere, for each K ∈ {0, 1} , E(K, ·) is a permutation over {0, 1} . We write

EK (·) for E(K, ·). k is called the key length and n is called the block length. For
TripleDES, k = 112, 168 and n = 64, and for the AES, k = 128, 192, 256 and
n = 128.

∗MAC. A MAC is a function MAC : {0, 1}k × {0, 1} → {0, 1}n. It takes a key
k ∗ nK ∈ {0, 1} and a message M ∈ {0, 1} to return an n-bit tag T ∈ {0, 1} .

We write MACK (·) for MAC(K, ·). In this paper, we only consider deterministic
MACs.

2.2 Security Definitions

Our definitions follow from those given in [11] for PRP, and [2] for the security
of MACs.

Security of block ciphers (PRP) [11]. Let Perm(n) denote the set of all permu
ntations on {0, 1} . We say that P is a random permutation if P is randomly

chosen from Perm(n).
n nThe security of a block cipher E : {0, 1}k × {0, 1} → {0, 1} as a pseu

dorandom permutation (PRP) is quantified as Advprp (A), the advantage of an E
adversary A that tries to distinguish EK (·) (with a randomly chosen key K)
from a random permutation P (·). Let AEK (·) denote A with an oracle which, in
response to a query X , returns EK (X), and let AP (·) denote A with an oracle
which, in response to a query X , returns P (X). After making queries, A outputs
a bit. Then the advantage is defined as

Advprp
E (A) def =

 Pr(K
R R← {0, 1}k : AEK (·) = 1) − Pr(P ← Perm(n) : AP (·) = 1)

 .

We say that E is a PRP if Advprp (A) is sufficiently small for any A.E

∗ nSecurity of MACs [2]. Let MAC : {0, 1}k × {0, 1} → {0, 1} be a MAC al
gorithm. Let AMACK (·) denote A with an oracle which, in response to a query

MACK (·)M ∈ {0, 1}∗, returns MACK (M) ∈ {0, 1}n. We say that an adversary A
forges if A outputs (M, T), where T = MACK (M) and A never queried M
to its oracle MACK (·). We call (M, T) a forgery attempt. Then we define the
advantage as

(A) def R
Advmac k : A= Pr(K ← {0, 1} MACK (·) forges) .MAC

We say that a MAC algorithm is secure if Advmac (A) is sufficiently small for MAC

any A.

4

�

� �

�

� �

�

�

�

� �

�

�

� �� �
 �

�

�

�

�

Algorithm OMAC1K (M)
L← EK (0

n)
Y [0] ← 0n

Let M = M [1] · · ·M [m], where |M [i]| = n for i = 1, . . . , m− 1
for i ← 1 to m− 1 do

X[i] ←M [i] ⊕ Y [i − 1]
Y [i] ← EK (X[i])

if |M [m]| = n then X[m] ←M [m] ⊕ L · u
else X[m] ← (M [m]10n−1−|M[m]|) ⊕ L · u 2

T ← EK (X[m])
return T

Fig. 2. Definition of OMAC1.

M [1]

EK

M [2]

EK

M [3]

EK

L · u

M [1]

EK

M [2]

EK

M [3] 10i

EK

L · u 2

T T
Fig. 3. Illustration of OMAC1.

2.3 OMAC1 [8]

OMAC1 takes just one k-bit key K ∈ {0, 1}k. It takes an arbitrary length mes
∗ nsage M ∈ {0, 1} to return an n-bit tag T ∈ {0, 1} .

The algorithm of OMAC1 is described in Fig. 2 and illustrated in Fig. 3.
In Fig. 2 and Fig. 3,

L << 1 if msb(L) = 0,
L · u = (L << 1) ⊕ Cstn otherwise,

where: (1) msb(L) denotes the most significant bit of L (meaning the left most
bit), (2) L << 1 denotes the left shift of L by one bit (the most significant bit
disappears and a zero comes into the least significant bit), and (3) Cstn is an
n-bit constant. For example, Cst64 = 05911011 and Cst128 = 012010000111.

L · u2 is simply (L · u) · u. That is,

2 (L · u) << 1 if msb(L · u) = 0,
L · u = ((L · u) << 1) ⊕ Cstn otherwise.

2.4 A New Variant of OMAC1: OMAC1�� [12]

Mitchell proposed OMAC1"" [12]. Similarly to OMAC1, OMAC1"" takes just one
k-bit key K ∈ {0, 1}k. It takes an arbitrary length message M ∈ {0, 1}∗ to return

nan n-bit tag T ∈ {0, 1} .

5

�

� �

�

� �

�

�

�

� �

�

�

� �� �
 �

�

�

Algorithm OMAC1 "" K (M)
L1 ← K ⊕ S1

L2 ← EK (S2)
L3 ← EK (S3)
Y [0] ← 0n

Let M = M [1] · · ·M [m], where |M [i]| = n for i = 1, . . . , m− 1
for i ← 1 to m− 1 do

X[i] ←M [i] ⊕ Y [i − 1]
Y [i] ← EL1 (X[i])

if |M [m]| = n then X[m] ←M [m] ⊕ L2

else X[m] ← (M [m]10n−1−|M[m]|) ⊕ L3

T ← EL1 (X[m])
return T

Fig. 4. Definition of OMAC1 "" .

M [1]

EL1

M [2]

EL1

M [3]

EL1

L2

M [1]

EL1

M [2]

EL1

M [3] 10i

EL1

L3

T T
Fig. 5. Illustration of OMAC1 "" . Note that L1 = K ⊕ S1, L2 = EK (S2) and L3 =
EK (S3).

The algorithm of OMAC1"" is described in Fig. 4 and illustrated in Fig. 5.
In Fig. 4 and Fig. 5, S1 is some fixed k-bit constant, S2 and S3 are some

distinct n-bit constants.

2.5 Another Variant of OMAC1: OMAC1�

We now consider another variant of OMAC1, called OMAC1". OMAC1" takes
∗just one k-bit key K ∈ {0, 1}k. It takes an arbitrary length message M ∈ {0, 1}

nto return an n-bit tag T ∈ {0, 1} .
The algorithm of OMAC1" is described in Fig. 6 and illustrated in Fig. 7.
In Fig. 6 and Fig. 7, S2 and S3 are some distinct n-bit constants.

3 OMAC1� Is Completely Insecure

We show two equally efficient attacks against OMAC1" .

3.1 Attack 1
n "The adversary first obtains a tag T ∈ {0, 1} for a two block message M =

(S2, S2) ∈ {0, 1}2n. Then it outputs (M, T), where M = S2 ⊕ T , as a forgery
attempt.

6

�

� �

�

� �

�

�

�

� �

�

�

� �� �
 �

�

�

Algorithm OMAC1 " K (M)

L2 ← EK (S2)

L3 ← EK (S3)

Y [0] ← 0n

Let M = M [1] · · ·M [m], where |M [i]| = n for i = 1, . . . , m− 1

for i ← 1 to m− 1 do

X[i] ←M [i] ⊕ Y [i − 1]
Y [i] ← EK (X[i])

if |M [m]| = n then X[m] ←M [m] ⊕ L2

else X[m] ← (M [m]10n−1−|M[m]|) ⊕ L3

T ← EK (X[m])
return T

Fig. 6. Definition of OMAC1 " .

M [1]

EK

M [2]

EK

M [3]

EK

L2

M [1]

EK

M [2]

EK

M [3] 10i

EK

L3

T T
Fig. 7. Illustration of OMAC1 " . Note that L2 = EK (S2) and L3 = EK (S3).

3.2 Analysis of Attack 1

For a message M " = (S2, S2) ∈ {0, 1}2n, we have

T = OMAC1" (M ") = EK (EK (S2) ⊕ S2 ⊕ L2) .K

Since L2 = EK (S2), we have

EK (EK (S2) ⊕ S2 ⊕ L2) = EK (L2 ⊕ S2 ⊕ L2) = EK (S2) = L2 .

Therefore, T = L2. See Fig. 8.
Now for a message M = S2 ⊕ T in forgery attempt, we have

OMAC1" (M) = OMAC1" (S2 ⊕ T) = EK (S2 ⊕ T ⊕ L2) .K K

Since T = L2, we have

EK (S2 ⊕ T ⊕ L2) = EK (S2 ⊕ L2 ⊕ L2) = EK (S2) = T .

Therefore, our adversary in Sect. 3.1 forges with probability 1. See Fig. 9.

3.3 Attack 2
∗The adversary first fix some M " ∈ {0, 1} such that 1 ≤ |M " | < n, and then

nobtains a tag T ∈ {0, 1} for a two block message M "" = (S3, M "). Then it
outputs (M, T), where M = (M "10n−1−|M '|, S3 ⊕ T, M "), as a forgery attempt.

7

�

� �

�

�
 �

�

�

S2 ⊕ T
S2

L2

E

L2

K
K

S2

E K

L2 •

E

T
T

Fig. 9. Illustration of adversary’s
Fig. 8. Illustration of adversary’s

forgery attempt. We see that T =
query. Note that T = L2. OMAC1 " K (S2 ⊕ T).

3.4 Analysis of Attack 2

For a message M "" = (S3, M "), we have

T = OMAC1" (M "") = EK (EK (S3) ⊕ (M "10n−1−|M '|) ⊕ L3) .K

Since L3 = EK (S3), we have

EK (EK (S3) ⊕ (M "10n−1−|M '|) ⊕ L3) = EK (L3 ⊕ (M "10n−1−|M '|) ⊕ L3)

= EK (M "10n−1−|M '|) .

Therefore, T = EK (M "10n−1−|M '|). See Fig. 10.
Now for a message M = (M "10n−1−|M '|, S3 ⊕ T, M ") in forgery attempt, we

have

OMAC1" (M) = EK (EK (EK (M "10n−1−|M '|)⊕S3 ⊕T)⊕(M "10n−1−|M '|)⊕L3) .K

Since T = EK (M "10n−1−|M '|), we have

OMAC1" (M) = EK (EK (T ⊕ S3 ⊕ T) ⊕ (M "10n−1−|M '|) ⊕ L3)K

= EK (EK (S3) ⊕ (M "10n−1−|M '|) ⊕ L3) .

Since L3 = EK (S3), we have

OMAC1" (M) = EK (L3 ⊕ (M "10n−1−|M '|) ⊕ L3)K

= EK (M "10n−1−|M '|)
= T .

Therefore, our adversary in Sect. 3.3 forges with probability 1. See Fig. 11.

3.5 Theorem

We have the following theorem.

Theorem 3.1. OMAC1" is not a secure MAC. There exists an adversary A
that makes 1 query and Advmac

OMAC1' (A) = 1.

Proof. From Sect. 3.1 and 3.3. D

8

�

�

� �� �
 �

�

�

�

� �

�

�

� �� �
 �

�

�

M " 10i
S3 ⊕ T M " 10i

L3

E

L3

K

S3

E K
K

M " 10i

E K K
L3 •

T • L

E

3 •T

E

T
Fig. 10. Illustration of adver-

Fig. 11. Illustration of adversary’s forgery
sary’s query. We have T =

attempt. We see that T = OMAC1 " K (M).
10n−1−|M ' |EK (M ").

4 OMAC1�� Is Less Secure Than OMAC1

In this section, we first construct a PRP G with the following property: For any
K ∈ {0, 1}k ,

GK (·) = GK⊕S1 (·) ,

where S1 is a non-zero k-bit constant. We then show that OMAC1"" is completely
insecure if G is used as the underlying block cipher. This implies underlying block
cipher being a PRP is not enough for proving the security of OMAC1"". Equiv
alently, it is impossible for OMAC1"" to prove its security under the assumption
of the underlying block cipher being a PRP. That is,

– OMAC1 is a secure MAC if the underlying block cipher is a PRP [8], while
– it is impossible for OMAC1"" to achieve this security notion.

Therefore, there is a security gap between OMAC1 and OMAC1"", and OMAC1""

is less secure than OMAC1.

4.1 Construction of a PRP, G

n nLet E : {0, 1}k−1 × {0, 1} → {0, 1} be a block cipher. It uses a (k − 1)-bit
"key K to encrypt an n-bit plaintext X into an n-bit ciphertext Y = EK' (X),

"where EK ' (X) def
E(K	 ∈ {0, 1}k−1 , EK ' (·) is a permutation = " , X). For each K

nover {0, 1} .
n nNow we construct a new block cipher G : {0, 1}k × {0, 1} → {0, 1} from

E as in Fig. 12. The inputs to the algorithm are a block cipher E and some
non-zero k-bit constant S1. The output is a new block cipher G.

–	 For a k-bit string S1 = (s0, s1, . . . , sk−1), nzi(S1) denotes the smallest index
of non-zero element. That is, nzi(S1) = j such that s0 = · · · = sj−1 = 0 and
sj = 1. For example, if k = 4 and S1 = 0xA = 1010, then nzi(S1) = 0, and
if S1 = 0x5 = 0101, then nzi(S1) = 1.

–	 num2strk−1(i) is a (k − 1)-bit binary representation of i. For example, if
k = 4 then num2strk−1(0) = (0, 0, 0) and num2strk−1(6) = (1, 1, 0).

9

Construction of G from E and S1

j ← nzi(S1);

for i = 0 to 2k−1 − 1 do {

K " ← num2strk−1(i);

K1 ← first0..j−1(K ")I0Ilastj..k−2(K ");

K2 ← K1 ⊕ S1;

GK1 ← EK ' ;

GK2 ← EK ' ; }

Fig. 12. Construction of G from E and S1.

" " – For a (k − 1)-bit string K " = (K0, . . . , K) and an integer 0 ≤ j ≤ k − 1,k−2

first0..j−1(K ") denotes the first j bits of K ". That is, first0..j−1(K ") =
" "	 "(K0, . . . , Kj−1). For example, if j = 2 and K = (1, 1, 0) then we have

" first0..j−1(K ") = (1, 1), and if j = 1 and K = (0, 1, 0) then we have
first0..j−1(K ") = (0). If j = 0, then first0..j−1(K ") is an empty string.

" " – Similarly, for a (k − 1)-bit string K " = (K0, . . . , K) and an integer k−2 "0 ≤ j ≤ k − 1, lastj..k−2(K ") denotes the last (k − 1) − j bits of K .
" "	 "That is, lastj..k−2(K ") = (Kj , . . . , K). For example, if j = 2 and K = k−2 "(1, 1, 0) then lastj..k−2(K ") = (0), and if j = 1 and K = (0, 1, 0) then

lastj..k−2(K ") = (1, 0). If j = k−1, then lastj..k−2(K ") is an empty string.
–	 alb denotes the concatenation of a and b. For example, if a = 1 and b =

(1, 0, 1) then alb = (1, 1, 0, 1).

Observe that GK is well defined for all K ∈ {0, 1}k. Indeed, “for loop” in the
third line contains 2k−1 iterations, and for each loop, two Gs are assigned. Let

"(i) (i) (i) " K , K and K denote K , K1 and K2 in the i-th iteration. Then we see 1 2 "that for any distinct i and i ,

(i) (i ') (i) (i ') "(i) "(i '

–	 K = K and K (since K = K 	 = K)), and 1 1 2 2
(i) (i ') (i) (i ')–	 K = K and K (since they differ in the j-th bit). 	 = K1 2 2 1

(i) (i)That is, K and K in the i-th iteration will not be assigned in the i "-th1 2
iteration.

Also observe that we have, for any K ∈ {0, 1}k , GK (·) = GK⊕S1 (·).
We show two small examples. First, let k = 4, S1 = 0xA = 1010 and

E = {E000, E001, E010, E011, E100, E101, E110, E111},
nwhere each EK' is a permutation over {0, 1} . In this case, j = 0, and for

" " " " " " "	 " " " K = (K0, K1, K), K1 = (0, K0, K1, K), and K2 = (1, K0, K1 ⊕ 1, K). Then 2 2	 2

we obtain

G = {G0000, G0001, G0010, G0011, G0100, G0101, G0110, G0111,
G1000, G1001, G1010, G1011, G1100, G1101, G1110, G1111}

10

Algorithm AO

when B asks its r-th query Xr :
return O(Xr);

when B halts and output b:
output b;

Fig. 13. Construction of A.

where

G0000 = E000, G0001 = E001, G0010 = E010, G0011 = E011,
G0100 = E100, G0101 = E101, G0110 = E110, G0111 = E111,
G1000 = E010, G1001 = E011, G1010 = E000, G1011 = E001,
G1100 = E110, G1101 = E111, G1110 = E100, G1111 = E101.

Next, let k = 4, and S1 = 0x5 = 0101. In this case, j = 1, and for K " =
" " " " " " " " "(K0, K1, K), K1 = (K0, 0, K1, K), and K2 = (K0, 1, K1, K2 ⊕ 1). Then we 2 2

obtain

G0000 = E000, G0001 = E001, G0010 = E010, G0011 = E011,
G0100 = E001, G0101 = E000, G0110 = E011, G0111 = E010,
G1000 = E100, G1001 = E101, G1010 = E110, G1011 = E111,
G1100 = E101, G1101 = E100, G1110 = E111, G1111 = E110.

We note that G can be computed efficiently if E can be computed efficiently.
Suppose that we are given a k-bit key K and a plaintext X , and we want to
compute GK (X). Now, let j ← nzi(S1), and check if the j-th bit of K is zero. If

"it is, let K ← first0..j−1(K)llastj+1..k−1(K) and return EK' (X). Otherwise
"let K ← first0..j−1(K ⊕ S1)llastj+1..k−1(K ⊕ S1) and return EK' (X).

We now show that if E is a PRP, then G is a PRP. More precisely, we have
the following theorem.

Theorem 4.1. If Advprp (A) ≤ � for any adversary A that makes at most qE
queries, then Advprp (B) ≤ � for any adversary B that makes at most q queries.G

Proof. We prove through a contradiction argument. Suppose that there exists
an adversary B such that Advprp (B) > � where B asks at most q queries. By using G
B, we construct an adversary A such that Advprp (A) > � where A asks at most E
q queries.

The construction is given in Fig. 13. A has an oracle O (either P or EK'),
and A simply uses O to answer B’s queries. Finally A outputs b which is the
output of B.

First, suppose that O = P . Then A gives B a perfect simulation of a random
permutation. Therefore, we have

R RPr(P ← Perm(n) : BP (·) = 1) = Pr(P ← Perm(n) : AP (·) = 1) .

11

Next, suppose that O = EK' . Then A gives B a perfect simulation of G, since
from the B’s point of view, each

E0,...,0, . . . , E1,...,1

is chosen with probability 1/2k−1 = 2/2k, which is a precise simulation of G.
Note that G is

E0,...,0, E0,...,0, . . . , E1,...,1, E1,...,1

and each EK' is chosen with probability 2/2k. Therefore, we have

R	 R"Pr(K ← {0, 1}k : BGK (·) = 1) = Pr(K ← {0, 1}k−1 : AEK ' (·) = 1) .

D

4.2 OMAC1��[G] Is Completely Insecure

Let OMAC1""[G] denote OMAC1"", where G is used as the underlying block
cipher.

We have the following theorem.

Theorem 4.2. OMAC1""[G] is not a secure MAC. There exists an adversary A
that makes 1 query and Advmac (A) = 1.

OMAC1 '' [G]

Proof. Since we have
GK (·) = GK⊕S1 (·)

for any k-bit key K ∈ {0, 1}k, attacks in Sect. 3.1 and 3.3 can be applied to
OMAC1""[G]. D

5 Conclusion

In this paper, we showed that OMAC1"" proposed in [12] are less secure than
OMAC1. More precisely, we showd that it is impossible for OMAC1"" to prove
its security under the assumption of the underlying block cipher being a PRP.

References

1.	 M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of
symmetric encryption. Proceedings of the 38th Annual Symposium on Foundations
of Computer Science, FOCS ’97, pp. 394–405, IEEE, 1997.

2.	 M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining
message authentication code. JCSS, vol. 61, no. 3, 2000. Earlier version in Ad
vances in Cryptology — CRYPTO ’94, LNCS 839, pp. 341–358, Springer-Verlag,
1994.

3.	 A. Berendschot, B. den Boer, J. P. Boly, A. Bosselaers, J. Brandt, D. Chaum,
I. Damg̊ard, M. Dichtl, W. Fumy, M. van der Ham, C. J. A. Jansen, P. Landrock,
B. Preneel, G. Roelofsen, P. de Rooij, and J. Vandewalle. Final Report of RACE
Integrity Primitives. LNCS 1007, Springer-Verlag, 1995.

12

4.	 J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: The three
key constructions. Advances in Cryptology — CRYPTO 2000, LNCS 1880, pp.
197–215, Springer-Verlag, 2000.

5.	 J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable
message authentication. Advances in Cryptology — EUROCRYPT 2002, LNCS
2332, pp. 384–397, Springer-Verlag, 2002.

6.	 FIPS 113. Computer data authentication. Federal Information Processing Stan
dards Publication 113, U. S. Department of Commerce / National Bureau of
Standards, National Technical Information Service, Springfield, Virginia, 1994.

7.	 ISO/IEC 9797-1. Information technology — security techniques — data integrity
mechanism using a cryptographic check function employing a block cipher algo
rithm. International Organization for Standards, Geneva, Switzerland, 1999. Sec
ond edition.

8.	 T. Iwata and K. Kurosawa. OMAC: One-Key CBC MAC. Pre-proceedings of Fast
Software Encryption, FSE 2003, pp. 137–162, 2003. To appear in LNCS, Springer-
Verlag. See http://crypt.cis.ibaraki.ac.jp/.

9.	 T. Iwata and K. Kurosawa. On the correctness of security proofs for the 3GPP
confidentiality and integrity algorithms. To appear in Ninth IMA International
Conference on Cryptography and Coding, LNCS, Springer-Verlag.

10.	 K. Kurosawa and T. Iwata. TMAC: Two-Key CBC MAC. Topics in Cryptology —
CT-RSA 2003, The Cryptographers’ Track at RSA Conference 2003, LNCS 2612,
pp. 33–49, Springer-Verlag, 2003.

11.	 M. Luby and C. Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM J. Comput., vol. 17, no. 2, pp. 373–386, April
1988.

12.	 C.J. Mitchell. On the security of XCBC, TMAC and OMAC. Technical Report
RHUL-MA-2003-4, 19 August, 2003. Available at
http://www.rhul.ac.uk/mathematics/techreports. Also available from NIST’s
web page at http://csrc.nist.gov/CryptoToolkit/modes/comments/.

13.	 E. Petrank and C. Rackoff. CBC MAC for real-time data sources. J.Cryptology,
vol. 13, no. 3, pp. 315–338, Springer-Verlag, 2000.

14.	 P. Rogaway. Comments on NIST’s RMAC proposal. Comments to NIST. Avail
able at http://www.cs.ucdavis.edu/~rogaway/xcbc/index.html. Also available
at http://csrc.nist.gov/CryptoToolkit/modes/comments/.

15.	 J. Sung, D. Hong, and S. Lee. Key recovery attacks on the RMAC, TMAC, and
IACBC. The Eighth Australasian Conference on Information Security and Privacy,
ACISP 2003, LNCS 2727, pp. 265–273, Springer-Verlag, 2003.

13

http://csrc.nist.gov/CryptoToolkit/modes/comments
http://www.cs.ucdavis.edu/~rogaway/xcbc/index.html
http://csrc.nist.gov/CryptoToolkit/modes/comments
http://www.rhul.ac.uk/mathematics/techreports
http:http://crypt.cis.ibaraki.ac.jp

