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Correction 

In “On The Security of Two New OMAC Variants” of September 1, 2003, 
we wrote that Mitchell proposed two new variants of OMAC, OMAC1" 

and OMAC1"" . In this paper, we correct this sentence as follows. 

Mitchell proposed a new variant of OMAC (not two variants). a 

a Mitchell recently informed us that he proposes only OMAC1"" in his paper. 
We now agree this after careful reading of his paper. Earlier, we thought that 
the first paragraph of [12, Sect. 5.4] is OMAC1" and the second paragraph is 
OMAC1"" . 

Abstract. OMAC is a provably secure MAC scheme which NIST cur
rently intends to specify as the modes recommendation. In August 2003, 
Mitchell proposed a variant of OMAC. We call it OMAC1"" . In this pa
per, we prove that OMAC1"" is less secure than original OMAC1. We 
show a security gap between them. As a result, we obtain a negative 
answer to Mitchell’s open question — OMAC1"" is not provably secure 
even if the underlying block cipher is a PRP. 

Keywords: Message authentication 
pseudorandom permutation. 

code, OMAC, provable security, 

1 Introduction 

1.1 Background 

CBC MAC [6, 7] is a well-known and widely used message authentication code 
(MAC) based on a block cipher E. We denote the CBC MAC value of a message 
M by CBCK (M), where K is the key of E. While Bellare, Kilian, and Rogaway 
proved that the CBC MAC is secure for fixed length messages [2], it is not secure 
for variable length messages. 
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Fig. 1. Illustration of XCBC. 

Therefore, several variants of CBC MAC have been proposed which are prov
ably secure for variable length messages: we have EMAC, XCBC, TMAC and 
OMAC. 

EMAC (Encrypted MAC) is obtained by encrypting CBCK1 (M) by  E again 
with a new key K2 [3]. That is, 

EMACK1,K2 (M) =  EK2 (CBCK1 (M)) . 

Petrank and Rackoff proved that EMAC is secure if the message length is a 
multiple of n, where n is the block length of E [13]. 

For arbitrary length messages, we can simply append the minimal 10i to a 
message M so that the length is a multiple of n. In this method, however, we 
must append an entire extra block 10n−1 if the size of the message is already a 
multiple of n. This is a “wasting” of one block cipher invocation. 

Black and Rogaway next proposed XCBC to solve the above problem [4]. 
XCBC takes three keys: one k-bit key K1 for E, two n-bit keys K2 and K3 (k 
denotes the key length of E). In XCBC, we do not append 10n−1 if the size of 
the message is already a multiple of n. Only if this is not the case, we append the 
minimal 10i. In order to distinguish them, K2 or K3 is XORed before encrypting 
the last block. XCBC is now described as follows (see Fig. 1). 

–	 If |M | = mn for some m > 0, then XCBC computes exactly the same as the 
CBC MAC, except for XORing an n-bit key K2 before encrypting the last 
block. 

–	 Otherwise, 10i padding (i = n−|M |−1 mod  n) is appended to M and XCBC 
computes exactly the same as the CBC MAC for the padded message, except 
for XORing another n-bit key K3 before encrypting the last block. 

Kurosawa and Iwata then proposed TMAC which requires two keys, one k-bit 
key K1 and one n-bit key K2 [10]. TMAC is obtained from XCBC by replacing 
(K2, K3) with (K2 · u, K2), where u is some non-zero constant and “·” denotes 
multiplication in GF(2n). Sung, Hong, and Lee showed a key recovery attack 
against TMAC [15]. 

Finally, Iwata and Kurosawa proposed OMAC which requires only one block 
cipher key K [8]. OMAC is a generic name for OMAC1 and OMAC2. Let 
L = EK (0n). Then OMAC1 is obtained from XCBC by replacing (K1, K2, K3) 
with (K, L · u, L · u2). Similarly, OMAC2 is obtained from XCBC by replacing 
(K1, K2, K3) with (K, L · u, L · u−1). 
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1.2 A New Variant of OMAC1: OMAC1�� [12] 

EMAC, XCBC, TMAC and OMAC are all provably secure against chosen mes
sage attack if the underlying block cipher is a PseudoRandom Permutation 
(PRP). Indeed, for all of the above MACs, it has been shown that the forg
ing probability is upper bounded by the birthday bound term plus insecurity 
function of the underlying block cipher as a PRP, which is a standard and ac
ceptable security bound. In fact, many block cipher modes of operations have 
this security bound. For example we have CTR mode [1] and CBC mode [1] for 
symmetric encryption, and PMAC [5] for message authentication. Nevertheless, 
Mitchell proposed a new variant of OMAC1 to improve the security of original 
OMAC1. We call it OMAC1"". OMAC1"" is obtained from XCBC by replacing 
(K1, K2, K3) with (K ⊕ S1, EK (S2), EK (S3)), where S1 is some fixed k-bit con
stant, S2 and S3 are some distinct n-bit constants. 

It was claimed that OMAC1"" is more secure than OMAC1 [12]. Mitchell also 
posed an open question of whether OMAC1"" is provably secure [12]. 

1.3 Our Contribution 

In this paper, however, we show that the security is not improved. We prove that 
OMAC1"" is less secure than original OMAC1. We show a security gap between 
them. 

To derive this result we first consider another variant of OMAC1, called 
OMAC1". We then show that OMAC1" is completely insecure. There are forgery 
attacks by using only one oracle query. 

We next construct a PRP G with the following property: For any K ∈ {0, 1}k , 

GK (·) =  GK⊕S1 (·) . 

(A similar PRP is used in [14, 9].) We then show that OMAC1"" is completely 
insecure if G is used as the underlying block cipher. In particular, we show that 
forgery attacks against OMAC1" can also be applied to OMAC1"" if G is used as 
the underlying block cipher. This implies underlying block cipher being a PRP 
is not enough for proving the security of OMAC1"". Equivalently, it is impossible 
for OMAC1"" to prove its security under the assumption of the underlying block 
cipher being a PRP. That is, 

– OMAC1 is a secure MAC if the underlying block cipher is a PRP [8], while 
– it is impossible for OMAC1"" to achieve this security notion. 

Therefore, there is a security gap between OMAC1 and OMAC1"", and OMAC1"" 

is less secure than OMAC1. This gives a negative answer to Mitchell’s open 
question — OMAC1"" is not provably secure even if the underlying block cipher 
is a PRP. 
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2 Preliminaries 

2.1 Block Ciphers and MACs 

nBlock cipher, E. A block cipher E is a function E : {0, 1}k × {0, 1}n → {0, 1} , 
k nwhere, for each K ∈ {0, 1} , E(K, ·) is a permutation over {0, 1} . We write 

EK (·) for E(K, ·). k is called the key length and n is called the block length. For 
TripleDES, k = 112, 168 and n = 64, and for the AES, k = 128, 192, 256 and 
n = 128. 

∗MAC. A MAC is a function MAC : {0, 1}k × {0, 1} → {0, 1}n. It takes a key 
k ∗ nK ∈ {0, 1} and a message M ∈ {0, 1} to return an n-bit tag T ∈ {0, 1} . 

We write MACK (·) for MAC(K, ·). In this paper, we only consider deterministic 
MACs. 

2.2 Security Definitions 

Our definitions follow from those given in [11] for PRP, and [2] for the security 
of MACs. 

Security of block ciphers (PRP) [11]. Let Perm(n) denote the set of all permu
ntations on {0, 1} . We say that P is a random permutation if P is randomly 

chosen from Perm(n). 
n nThe security of a block cipher E : {0, 1}k × {0, 1} → {0, 1} as a pseu

dorandom permutation (PRP) is quantified as Advprp (A), the advantage of an E 
adversary A that tries to distinguish EK (·) (with a randomly chosen key K) 
from a random permutation P (·). Let AEK (·) denote A with an oracle which, in 
response to a query X , returns EK (X), and let AP (·) denote A with an oracle 
which, in response to a query X , returns P (X). After making queries, A outputs 
a bit. Then the advantage is defined as 

Advprp 
E (A) def =

   Pr(K 
R R← {0, 1}k : AEK (·) = 1)  − Pr(P ← Perm(n) :  AP (·) = 1)

   . 

We say that E is a PRP if Advprp (A) is sufficiently small for any A.E 

∗ nSecurity of MACs [2]. Let MAC : {0, 1}k × {0, 1} → {0, 1} be a MAC  al
gorithm. Let AMACK (·) denote A with an oracle which, in response to a query 

MACK (·)M ∈ {0, 1}∗, returns MACK (M) ∈ {0, 1}n. We say that an adversary A
forges if A outputs (M, T ), where T = MACK (M) and A never queried M 
to its oracle MACK (·). We call (M, T ) a forgery attempt. Then we define the 
advantage as 

(A) def R
Advmac k : A= Pr(K ← {0, 1} MACK (·) forges) .MAC

We say that a MAC algorithm is secure if Advmac (A) is sufficiently small for MAC

any A. 
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Algorithm OMAC1K (M) 
L← EK (0

n) 
Y [0] ← 0n 

Let M = M [1] · · ·M [m], where |M [i]| = n for i = 1, . . . , m− 1 
for i ← 1 to m− 1 do 

X[i] ←M [i] ⊕ Y [i − 1] 
Y [i] ← EK (X[i]) 

if |M [m]| = n then X[m] ←M [m] ⊕ L · u 
else X[m] ← (M [m]10n−1−|M[m]|) ⊕ L · u 2 

T ← EK (X[m]) 
return T 

Fig. 2. Definition of OMAC1. 
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Fig. 3. Illustration of OMAC1. 

2.3 OMAC1 [8] 

OMAC1 takes just one k-bit key K ∈ {0, 1}k. It takes an arbitrary length mes
∗ nsage M ∈ {0, 1} to return an n-bit tag T ∈ {0, 1} . 

The algorithm of OMAC1 is described in Fig. 2 and illustrated in Fig. 3. 
In Fig. 2 and Fig. 3, 

L << 1 if msb(L) = 0,
L · u = (L << 1) ⊕ Cstn otherwise, 

where: (1) msb(L) denotes the most significant bit of L (meaning the left most 
bit), (2) L << 1 denotes the left shift of L by one bit (the most significant bit 
disappears and a zero comes into the least significant bit), and (3) Cstn is an 
n-bit constant. For example, Cst64 = 05911011 and Cst128 = 012010000111. 

L · u2 is simply (L · u) · u. That is, 

2 (L · u) << 1 if msb(L · u) =  0,
L · u = ((L · u) << 1) ⊕ Cstn otherwise. 

2.4 A New Variant of OMAC1: OMAC1�� [12] 

Mitchell proposed OMAC1"" [12]. Similarly to OMAC1, OMAC1"" takes just one 
k-bit key K ∈ {0, 1}k. It takes an arbitrary length message M ∈ {0, 1}∗ to return 

nan n-bit tag T ∈ {0, 1} . 
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Algorithm OMAC1 "" K (M) 
L1 ← K ⊕ S1 

L2 ← EK (S2) 
L3 ← EK (S3) 
Y [0] ← 0n 

Let M = M [1] · · ·M [m], where |M [i]| = n for i = 1, . . . , m− 1 
for i ← 1 to m− 1 do 

X[i] ←M [i] ⊕ Y [i − 1] 
Y [i] ← EL1 (X[i]) 

if |M [m]| = n then X[m] ←M [m] ⊕ L2 

else X[m] ← (M [m]10n−1−|M[m]|) ⊕ L3 

T ← EL1 (X[m]) 
return T 

Fig. 4. Definition of OMAC1 "" . 
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M [3] 
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M [1] 
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M [2] 
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M [3] 10i 

EL1 
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T T 
Fig. 5. Illustration of OMAC1 "" . Note that L1 = K ⊕ S1, L2 = EK (S2) and L3 = 
EK (S3). 

The algorithm of OMAC1"" is described in Fig. 4 and illustrated in Fig. 5. 
In Fig. 4 and Fig. 5, S1 is some fixed k-bit constant, S2 and S3 are some 

distinct n-bit constants. 

2.5 Another Variant of OMAC1: OMAC1� 

We now consider another variant of OMAC1, called OMAC1". OMAC1" takes 
∗just one k-bit key K ∈ {0, 1}k. It takes an arbitrary length message M ∈ {0, 1}

nto return an n-bit tag T ∈ {0, 1} . 
The algorithm of OMAC1" is described in Fig. 6 and illustrated in Fig. 7. 
In Fig. 6 and Fig. 7, S2 and S3 are some distinct n-bit constants. 

3 OMAC1� Is Completely Insecure 

We show two equally efficient attacks against OMAC1" . 

3.1 Attack 1 
n "The adversary first obtains a tag T ∈ {0, 1} for a two block message M = 

(S2, S2) ∈ {0, 1}2n. Then it outputs (M, T ), where M = S2 ⊕ T , as a forgery 
attempt. 
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Algorithm OMAC1 " K (M)
 
L2 ← EK (S2)
 
L3 ← EK (S3)
 
Y [0] ← 0n
 

Let M = M [1] · · ·M [m], where |M [i]| = n for i = 1, . . . , m− 1
 
for i ← 1 to m− 1 do
 

X[i] ←M [i] ⊕ Y [i − 1] 
Y [i] ← EK (X[i]) 

if |M [m]| = n then X[m] ←M [m] ⊕ L2 

else X[m] ← (M [m]10n−1−|M[m]|) ⊕ L3 

T ← EK (X[m]) 
return T 

Fig. 6. Definition of OMAC1 " . 
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Fig. 7. Illustration of OMAC1 " . Note that L2 = EK (S2) and L3 = EK (S3). 

3.2 Analysis of Attack 1 

For a message M " = (S2, S2) ∈ {0, 1}2n, we have 

T = OMAC1" (M ") =  EK (EK (S2) ⊕ S2 ⊕ L2) .K 

Since L2 = EK (S2), we have 

EK (EK (S2) ⊕ S2 ⊕ L2) =  EK (L2 ⊕ S2 ⊕ L2) =  EK (S2) =  L2 . 

Therefore, T = L2. See Fig. 8. 
Now for a message M = S2 ⊕ T in forgery attempt, we have 

OMAC1" (M) = OMAC1" (S2 ⊕ T ) =  EK (S2 ⊕ T ⊕ L2) .K K 

Since T = L2, we have 

EK (S2 ⊕ T ⊕ L2) =  EK (S2 ⊕ L2 ⊕ L2) =  EK (S2) =  T .  

Therefore, our adversary in Sect. 3.1 forges with probability 1. See Fig. 9. 

3.3 Attack 2 
∗The adversary first fix some M " ∈ {0, 1} such that 1 ≤ |M " | < n, and then 

nobtains a tag T ∈ {0, 1} for a two block message M "" = (S3, M  "). Then it 
outputs (M, T ), where M = (M "10n−1−|M '|, S3 ⊕ T, M  "), as a forgery attempt. 
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Fig. 9. Illustration of adversary’s 
Fig. 8. Illustration of adversary’s 

forgery attempt. We see that T = 
query. Note that T = L2. OMAC1 " K (S2 ⊕ T ). 

3.4 Analysis of Attack 2 

For a message M "" = (S3, M  "), we have 

T = OMAC1" (M "") =  EK (EK (S3) ⊕ (M "10n−1−|M '|) ⊕ L3) .K 

Since L3 = EK (S3), we have 

EK (EK (S3) ⊕ (M "10n−1−|M '|) ⊕ L3) =  EK (L3 ⊕ (M "10n−1−|M '|) ⊕ L3) 

= EK (M "10n−1−|M '|) . 

Therefore, T = EK (M "10n−1−|M '|). See Fig. 10. 
Now for a message M = (M "10n−1−|M '|, S3 ⊕ T, M  ") in forgery attempt, we 

have 

OMAC1" (M) =  EK (EK (EK (M "10n−1−|M '|)⊕S3 ⊕T )⊕(M "10n−1−|M '|)⊕L3) .K 

Since T = EK (M "10n−1−|M '|), we have 

OMAC1" (M) =  EK (EK (T ⊕ S3 ⊕ T ) ⊕ (M "10n−1−|M '|) ⊕ L3)K 

= EK (EK (S3) ⊕ (M "10n−1−|M '|) ⊕ L3) . 

Since L3 = EK (S3), we have 

OMAC1" (M) =  EK (L3 ⊕ (M "10n−1−|M '|) ⊕ L3)K 

= EK (M "10n−1−|M '|) 
= T .  

Therefore, our adversary in Sect. 3.3 forges with probability 1. See Fig. 11. 

3.5 Theorem 

We have the following theorem. 

Theorem 3.1. OMAC1" is not a secure MAC. There exists an adversary A 
that makes 1 query and Advmac 

OMAC1' (A) = 1. 

Proof. From Sect. 3.1 and 3.3. D 
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Fig. 10. Illustration of adver-

Fig. 11. Illustration of adversary’s forgery 
sary’s query. We have T = 

attempt. We see that T = OMAC1 " K (M).
10n−1−|M ' |EK (M " ). 

4 OMAC1�� Is Less Secure Than OMAC1 

In this section, we first construct a PRP G with the following property: For any 
K ∈ {0, 1}k , 

GK (·) =  GK⊕S1 (·) , 

where S1 is a non-zero k-bit constant. We then show that OMAC1"" is completely 
insecure if G is used as the underlying block cipher. This implies underlying block 
cipher being a PRP is not enough for proving the security of OMAC1"". Equiv
alently, it is impossible for OMAC1"" to prove its security under the assumption 
of the underlying block cipher being a PRP. That is, 

– OMAC1 is a secure MAC if the underlying block cipher is a PRP [8], while 
– it is impossible for OMAC1"" to achieve this security notion. 

Therefore, there is a security gap between OMAC1 and OMAC1"", and OMAC1"" 

is less secure than OMAC1. 

4.1 Construction of a PRP, G 

n nLet E : {0, 1}k−1 × {0, 1} → {0, 1} be a block cipher. It uses a (k − 1)-bit 
"key K to encrypt an n-bit plaintext X into an n-bit ciphertext Y = EK' (X), 

"where EK ' (X) def 
E(K	 ∈ {0, 1}k−1 , EK ' (·) is a permutation = " , X). For each K 

nover {0, 1} . 
n nNow we construct a new block cipher G : {0, 1}k × {0, 1} → {0, 1} from 

E as in Fig. 12. The inputs to the algorithm are a block cipher E and some 
non-zero k-bit constant S1. The output is a new block cipher G. 

–	 For a k-bit string S1 = (s0, s1, . . . , sk−1), nzi(S1) denotes the smallest index 
of non-zero element. That is, nzi(S1) =  j such that s0 = · · · = sj−1 = 0 and 
sj = 1. For example, if k = 4 and S1 = 0xA = 1010, then nzi(S1) = 0,  and  
if S1 = 0x5 = 0101, then nzi(S1) = 1.  

–	 num2strk−1(i) is a (k − 1)-bit binary representation of i. For example, if 
k = 4 then num2strk−1(0) = (0, 0, 0) and num2strk−1(6) = (1, 1, 0). 

9 



Construction of G from E and S1
 

j ← nzi(S1);
 
for i = 0  to 2k−1 − 1 do {
 

K " ← num2strk−1(i);
 
K1 ← first0..j−1(K " )I0Ilastj..k−2(K " );
 
K2 ← K1 ⊕ S1;
 
GK1 ← EK ' ;
 
GK2 ← EK ' ; }
 

Fig. 12. Construction of G from E and S1. 

" " – For a (k − 1)-bit string K " = (K0, . . . , K  ) and an integer 0 ≤ j ≤ k − 1,k−2

first0..j−1(K ") denotes the first j bits of K ". That is, first0..j−1(K ") =  
" "	 "(K0, . . . , Kj−1). For example, if j = 2 and K = (1, 1, 0) then we have 

" first0..j−1(K ") = (1, 1), and if j = 1 and K = (0, 1, 0) then we have 
first0..j−1(K ") = (0). If j = 0, then first0..j−1(K ") is an empty string. 

" " – Similarly, for a (k − 1)-bit string K " = (K0, . . . , K  ) and an integer k−2 "0 ≤ j ≤ k − 1, lastj..k−2(K ") denotes the last (k − 1) − j bits of K . 
" "	 "That is, lastj..k−2(K ") = (Kj , . . . , K  ). For example, if j = 2 and K = k−2 "(1, 1, 0) then lastj..k−2(K ") = (0), and if j = 1 and K = (0, 1, 0) then 

lastj..k−2(K ") = (1, 0). If j = k−1, then lastj..k−2(K ") is an empty string. 
–	 alb denotes the concatenation of a and b. For example, if a = 1 and b = 

(1, 0, 1) then alb = (1, 1, 0, 1). 

Observe that GK is well defined for all K ∈ {0, 1}k. Indeed, “for loop” in the 
third line contains 2k−1 iterations, and for each loop, two Gs are assigned. Let 

"(i) (i) (i) " K , K and K denote K , K1 and K2 in the i-th iteration. Then we see 1 2 "that for any distinct i and i , 

(i) (i ' ) (i) (i ' ) "(i) "(i ' 

–	 K = K and K  (since K = K 	 = K  )), and 1 1 2 2 
(i) (i ' ) (i) (i ' )–	 K = K and K  (since they differ in the j-th bit).  	 = K1 2 2 1 

(i) (i)That is, K and K in the i-th iteration will not be assigned in the i "-th1 2 
iteration. 

Also observe that we have, for any K ∈ {0, 1}k , GK (·) =  GK⊕S1 (·). 
We show two small examples. First, let k = 4,  S1 = 0xA = 1010 and 

E = {E000, E001, E010, E011, E100, E101, E110, E111}, 
nwhere each EK' is a permutation over {0, 1} . In this case, j = 0, and for 

" " " " " " "	 " " " K = (K0, K1, K  ), K1 = (0, K0, K1, K  ), and K2 = (1, K0, K1 ⊕ 1, K  ). Then 2 2	 2

we obtain 

G = {G0000, G0001, G0010, G0011, G0100, G0101, G0110, G0111, 
G1000, G1001, G1010, G1011, G1100, G1101, G1110, G1111} 
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Algorithm AO 

when B asks its r-th query Xr : 
return O(Xr ); 

when B halts and output b: 
output b; 

Fig. 13. Construction of A. 

where   

 

G0000 = E000, G0001 = E001, G0010 = E010, G0011 = E011, 
G0100 = E100, G0101 = E101, G0110 = E110, G0111 = E111, 
G1000 = E010, G1001 = E011, G1010 = E000, G1011 = E001, 
G1100 = E110, G1101 = E111, G1110 = E100, G1111 = E101. 

Next, let k = 4, and  S1 = 0x5 = 0101. In this case, j = 1, and for K " = 
" " " " " " " " "(K0, K1, K  ), K1 = (K0, 0, K1, K  ), and K2 = (K0, 1, K1, K2 ⊕ 1). Then we 2 2

obtain   

 

G0000 = E000, G0001 = E001, G0010 = E010, G0011 = E011, 
G0100 = E001, G0101 = E000, G0110 = E011, G0111 = E010, 
G1000 = E100, G1001 = E101, G1010 = E110, G1011 = E111, 
G1100 = E101, G1101 = E100, G1110 = E111, G1111 = E110. 

We note that G can be computed efficiently if E can be computed efficiently. 
Suppose that we are given a k-bit key K and a plaintext X , and we want to 
compute GK (X). Now, let j ← nzi(S1), and check if the j-th bit of K is zero. If 

"it is, let K ← first0..j−1(K)llastj+1..k−1(K) and return EK' (X). Otherwise 
"let K ← first0..j−1(K ⊕ S1)llastj+1..k−1(K ⊕ S1) and return EK' (X). 

We now show that if E is a PRP, then G is a PRP. More precisely, we have 
the following theorem. 

Theorem 4.1. If Advprp (A) ≤ � for any adversary A that makes at most qE 
queries, then Advprp (B) ≤ � for any adversary B that makes at most q queries.G 

Proof. We prove through a contradiction argument. Suppose that there exists 
an adversary B such that Advprp (B) > � where B asks at most q queries. By using G 
B, we construct an adversary A such that Advprp (A) > �  where A asks at most E 
q queries. 

The construction is given in Fig. 13. A has an oracle O (either P or EK' ), 
and A simply uses O to answer B’s queries. Finally A outputs b which is the 
output of B. 

First, suppose that O = P . Then A gives B a perfect simulation of a random 
permutation. Therefore, we have 

R RPr(P ← Perm(n) :  BP (·) = 1) =  Pr(P ← Perm(n) :  AP (·) = 1)  . 
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Next, suppose that O = EK' . Then A gives B a perfect simulation of G, since 
from the B’s point of view, each 

E0,...,0, . . . , E1,...,1 

is chosen with probability 1/2k−1 = 2/2k, which is a precise simulation of G. 
Note that G is 

E0,...,0, E0,...,0, . . . , E1,...,1, E1,...,1 

and each EK' is chosen with probability 2/2k. Therefore, we have 

R	 R"Pr(K ← {0, 1}k : BGK (·) = 1) = Pr(K ← {0, 1}k−1 : AEK ' (·) = 1)  . 

D 

4.2 OMAC1��[G] Is Completely Insecure 

Let OMAC1""[G] denote OMAC1"", where G is used as the underlying block 
cipher. 

We have the following theorem. 

Theorem 4.2. OMAC1""[G] is not a secure MAC. There exists an adversary A 
that makes 1 query and Advmac (A) = 1.

OMAC1 '' [G]

Proof. Since we have 
GK (·) =  GK⊕S1 (·) 

for any k-bit key K ∈ {0, 1}k, attacks in Sect. 3.1 and 3.3 can be applied to 
OMAC1""[G]. D 

5 Conclusion 

In this paper, we showed that OMAC1"" proposed in [12] are less secure than 
OMAC1. More precisely, we showd that it is impossible for OMAC1"" to prove 
its security under the assumption of the underlying block cipher being a PRP. 
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