
Stronger Security Bounds for

OMAC, TMAC and XCBC

Tetsu Iwata Kaoru Kurosawa

Department of Computer and Information Sciences,

Ibaraki University

4–12–1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan

{iwata, kurosawa}@cis.ibaraki.ac.jp

April 30, 2003

Abstract. OMAC, TMAC and XCBC are CBC-type MAC schemes which are provably
secure for arbitrary message length. In this paper, we present a more tight upper bound on
Advmac for each scheme, where Advmac denotes the maximum success (forgery) probability
of adversaries. Our bounds are expressed in terms of the total length of all queries of an
adversary to the MAC generation oracle while the previous bounds are expressed in terms
of the maximum length of each query. In particular, a significant improvement occurs if the
lengths of queries are heavily unbalanced.

Key words: OMAC, TMAC, XCBC, modes of operation, block cipher, provable security.

mailto:kurosawa}@cis.ibaraki.ac.jp

Contents

1 Introduction 1

1.1 Background . 1

1.2 Our Contribution . 2

1.3 Our Collision Bound . 3

2 Preliminaries 4

2.1 Notation . 4

2.2 CBC MAC . 4

2.3 XCBC, TMAC and OMAC . 4

2.3.1 XCBC . 5

2.3.2 TMAC-family and TMAC . 5

2.3.3 OMAC-family, OMAC1 and OMAC2 . 5

3 Stronger Security Bounds 7

3.1 Definitions of Security . 7

3.2 Theorem Statements . 8

4 Proof for OMAC-family 9

4.1 Q1, . . . , Q6 and MOMAC [8] . 9

4.2 MOMAC is Pseudorandom . 10

4.3 From MOMAC to OMAC-family . 17

4.4 Proof of Main Lemma for OMAC-family . 18

5 Proof for TMAC-family 19

5.1 Q1, Q2, Q3 [9] and FCBC [3] . 19

5.2 FCBC is Pseudorandom . 19

5.3 From FCBC to TMAC-family . 24

5.4 Proof of Main Lemma for TMAC-family . 25

6 Proof for XCBC 25

6.1 Q1, Q2, Q3 . 25

6.2 From FCBC to XCBC . 26

6.3 Proof of Main Lemma for XCBC . 26

References 26

A The Field with 2n Points 27

1 Introduction

1.1 Background

The CBC MAC [5, 7] is a well-known method to generate a message authentication code (MAC)
based on a block cipher E. We denote the CBC MAC value of a message M by

CBCK (M),

where K is the key of E. While Bellare, Kilian, and Rogaway proved that the CBC MAC is
secure for fixed length messages [1], it is not secure for variable length messages.

Therefore, several variants of CBC MAC have been proposed which are provably secure for
variable length messages. They include EMAC, XCBC, TMAC and then OMAC.

EMAC (Encrypted MAC) is obtained by encrypting CBCK1 (M) by E again with a new key
K2 [2]. That is,

EMACK1,K2 (M) = EK2 (CBCK1 (M)).

Petrank and Rackoff proved that EMAC is secure if the message length is a multiple of n, where
n is the block length of E [12].

For arbitrary length messages, we can simply append the minimal 10i to a message M so
that the length is a multiple of n. In this method, however, we must append an entire extra
block 10n−1 if the size of the message is already a multiple of n. This is a “wasting” of one
block cipher invocation.

Black and Rogaway next proposed XCBC to solve the above problem [3]. XCBC takes three
keys: K1 for E, and K2 and K3. In XCBC, we do not append 10n−1 if the size of the message
is already a multiple of n. Only if this is not the case, we append the minimal 10i . In order to
distinguish them, K2 or K3 is XORed before encrypting the last block. XCBC is now described
as follows (see Fig. 1).

•	 If |M | = mn for some m > 0, then XCBC computes exactly the same as the CBC MAC,
except for XORing an n-bit key K2 before encrypting the last block.

•	 Otherwise, 10i padding (i = n− |M | − 1 mod n) is appended to M and XCBC computes
exactly the same as the CBC MAC for the padded message, except for XORing another
n-bit key K3 before encrypting the last block.

M [1]

E�K1

�

M [2]
 �

E�K1

�

M [3]
 �

E�K1

�K2

M [1]

EK1

�

�

M [2]
 �

EK1
�

�

M [3] 10i � �� �
 �

EK1
�

�K3

T	 T
Fig. 1. Illustration of XCBC.

Kurosawa and Iwata then proposed TMAC which requires two keys, K1 and K2 [9]. TMAC
is obtained from XCBC by replacing (K2,K3) with (K2 · u,K2), where u is some non-zero
constant and “·” denotes multiplication in GF(2n).

Finally, Iwata and Kurosawa proposed OMAC which requires only one key K of the block
cipher E [8]. OMAC is a generic name for OMAC1 and OMAC2. Let L = EK (0n). Then

1

Table 1. Comparison of the key lengths.
XCBC [3] TMAC [9] OMAC [8]

key length (k + 2n) bits (k + n) bits k bits

OMAC1 is obtained by replacing (K2,K3) with (L · u, L · u2) in XCBC. Similarly, OMAC2 is
obtained from XCBC by replacing (K2,K3) with (L · u, L · u−1).

See Table 1 for the comparison of the key lengths, where k denotes the key length of E.

1.2 Our Contribution

XCBC, TMAC and OMAC are all provably secure against chosen message attack. Indeed, the
authors showed an upper bound on Advmac for each scheme, where Advmac denotes the maximum
success (forgery) probability of adversaries.

In this paper, we present a more tight upper bound on Advmac for each scheme by using a
more specific parameter. Consider adversaries who run in time at most t and query at most q
messages to the MAC generation oracle.

1. The previous bounds are expressed in terms of the maximum length of each query.

2. Our bounds are expressed in terms of the total length of all queries.

More precisely,

1. Table 2 shows the previous bounds on Advmac(t, q, m) which is defined as the maximum F
forgery probability of adversaries such that each query is at most m blocks, where 1 block
is n bits, and

2. Table 3 shows our bounds on Advmac(t, q, σ) which is defined as the maximum forgery F
probability of adversaries such that the total length of all queries are at most σ blocks,

where F is XCBC, TMAC or OMAC and n is the block length of the underlying block cipher E.
In these tables, Advprp (t', q') is the the maximum distinguishing probability between the block E
cipher E and a randomly chosen permutation, where the maximum is over all adversaries who
run in time at most t' and make at most q' queries.

Table 2. Previous security bounds of XCBC, TMAC and OMAC.
Name Security Bound

XCBC

[3, Corollary 2]

Advmac
XCBC(t, q, m) ≤

(4m2 + 1)q2 + 1
2n

+ 3 · Advprp
E (t1 , q 1),

where t1 = t + O(mq) and q1 = mq.

TMAC

[9, Theorem 5.1]

Advmac
TMAC(t, q, m) ≤

(3m2 + 1)q2 + 1
2n

+ Advprp
E (t1 , q 1),

where t1 = t + O(mq) and q1 = mq.

OMAC

[8, Theorem 5.1]
Advmac

OMAC(t, q, m) ≤
(5m2 + 1)q2 + 1

2n
+ Advprp

E (t1 , q 1),
where t1 = t + O(mq) and q1 = mq + 1.

In general, σ ≤ mq, where σ is the total block length of all queries, q is the number of
queries, and m is the the maximum block length among all queries.

2

Table 3. Security bounds of XCBC, TMAC and OMAC obtained in this paper.
Name Security Bound

XCBC Advmac
XCBC(t, q, σ) ≤

3σ2 + 1
2n

+ Advprp
E (t1 , q 1),

where t1 = t + O(σ) and q1 = σ.

TMAC Advmac
TMAC(t, q, σ) ≤

3σ2 + 1
2n

+ Advprp
E (t1 , q 1),

where t1 = t + O(σ) and q1 = σ.

OMAC Advmac
OMAC(t, q, σ) ≤

4σ2 + 1
2n

+ Advprp
E (t1 , q 1),

where t1 = t + O(σ) and q1 = σ + 1.

A significant improvement occurs if all queries are very short (say, 1 block) except for one
very long query (m blocks). For example, suppose that n = 64 (for example, Triple DES [4]),
m = 216 and q = 216 + 1. It is easy to see that σ = 216 + 216 = 217 . In this case, our bounds
shown in Table 3 are still meaningful while the previous bounds shown in Table 2 are useless
because they become larger than one.

1.3 Our Collision Bound

To show our security bounds, we derive upper bounds on some collision probabilities. For q
distinct messages M (1), . . . ,M (q) such that each |M (i)| is a multiple of n, let

= |M (1)|+ · · ·+ |M (q)|σ .

For XCBC and TMAC, we consider a collision such that

CBCP (M (i)) = CBCP (M (j))

for some i j, where CBCP = denotes the CBC MAC with a randomly chosen permutation P
as the underlying block cipher E. We then prove that

σ2

Pr(1 ≤ ∃i < ∃j ≤ q,CBCP (M (i)) = CBCP (M (j))) ≤
2n

for any M (1), . . . ,M (q). It is formally stated in Lemma 5.2 and proved in Sec. 5.2.
For OMAC, we consider MOMAC-E, a variant of the CBC MAC, as follows. Let a message

be M = M [1] ◦M [2] ◦ · · · ◦M [m], where |M [1]| = |M [2]| = · · · = |M [m]| = n and m ≥ 2. Let
P1 and P2 be two independent randomly chosen permutations. Then

1. Let Y [1] = P1(M [1])

2. For i = 2, . . . ,m− 1, compute

Y [i] = P2(M [i] ⊕ Y [i− 1])

3. Finally define

MOMAC-EP1,P2 (M) = M [m] ⊕ Y [m− 1].

We show that

(σ − q)2

Pr(1 ≤ ∃i < ∃j ≤ q,MOMAC-EP1,P2 (M
(i)) = MOMAC-EP1,P2 (M

(j))) ≤
2n .

It is formally stated in Lemma 4.2 and proved in Sec. 4.2.

3

2 Preliminaries

2.1 Notation
R ∗For a set A, x ← A means that x is chosen from A uniformly at random. If a, b ∈ {0, 1} are

∗equal-length strings then a⊕b is their bitwise XOR. If a, b ∈ {0, 1} are strings then a◦b denote
their concatenation. For simplicity, we sometimes write ab for a ◦ b if there is no confusion.

For an n-bit string a = an−1 · · · a1a0 ∈ {0, 1}n, let a << 1 = an−2 · · · a1a00 denote the n-bit
string which is a left shift of a by 1 bit, while a >> 1 = 0an−1 · · · a2a1 denote the n-bit string
which is a right shift of a by 1 bit.

∗ ∗If a ∈ {0, 1} is a string then |a| denotes its length in bits. For any bit string a ∈ {0, 1}
such that |a| ≤ n, we let

a10n−|a|−1 if |a| < n,
pad (a) = (1)n a if |a| = n.

Define laln = max{1, l|a|/nl}, where the empty string counts as one block. In pseu
docode, we write “Partition M into M [1] · · ·M [m]” as shorthand for “Let m = lMln, and let
M [1], . . . ,M [m] be bit strings such that M [1] · · ·M [m] = M and |M [i]| = n for 1 ≤ i < m.”

2.2 CBC MAC

A block cipher E is a function

n nE : KE × {0, 1} → {0, 1} ,

nwhere KE is the set of keys and E(K, ·) = EK (·) is a permutation on {0, 1} . n is called the
block length of E.

The CBC MAC [5, 7] is the simplest and most well-known MAC scheme based on block
ciphers E. For a message M = M [1] ◦M [2] ◦ · · · ◦M [m] such that

|M [1]| = |M [2]| = · · · = |M [m]| = n,

let Y [0] = 0n and
Y [i] = EK (M [i] ⊕ Y [i− 1])

for i = 1, . . . ,m. Then the CBC MAC of M under key K is defined as

CBCK (M) = Y [m].

Bellare, Kilian, and Rogaway proved that the CBC MAC is secure for fixed length messages
[1]. However, it is well known that CBC MAC is not secure for variable length messages.

2.3 XCBC, TMAC and OMAC

XCBC, TMAC and OMAC are CBC-type MAC schemes which are provably secure for arbitrary
message length.

∗ n• Each scheme takes a message M ∈ {0, 1} and produces a tag in {0, 1} .

n n• Each scheme is defined by using a block cipher E : KE × {0, 1} → {0, 1} .

4

Algorithm XCBCK1,K2,K3 (M)

Y [0] ← 0n

Partition M into M [1] · · ·M [m]

for i ← 1 to m− 1 do

X[i] ←M [i] ⊕ Y [i− 1]
Y [i] ← EK1 (X[i])

X[m] ← pad (M [m]) ⊕ Y [m− 1]n

if |M [m]| = n then X[m] ← X[m] ⊕K2

else X[m] ← X[m] ⊕K3

T ← EK1 (X[m])
return T

Fig. 2. Definition of XCBC.

2.3.1 XCBC

n nXCBC takes three keys (K1,K2,K3) ∈ KE × {0, 1} × {0, 1} . The algorithm of XCBC is
described in Fig. 2 and illustrated in Fig. 1, where pad (·) is defined in (1). n

2.3.2 TMAC-family and TMAC

nTMAC takes two keys (K1,K2) ∈ KE × {0, 1} . In general, TMAC-family is defined by not
only a block cipher E but also (1) a universal hash function

nH : KH ×X → {0, 1}

where KH is the set of keys and X is the domain and (2) two distinct constants Cst1, Cst2 ∈ X.
They must satisfy the following three conditions for sufficiently small E1, E2, E3. (We write HK (·)
for H(K, ·).)

1. ∀y ∈ {0, 1}n, #{K ∈ KH | HK (Cst1) = y} ≤ E1 ·#KH

2. ∀y ∈ {0, 1}n, #{K ∈ KH | HK (Cst2) = y} ≤ E2 ·#KH

3. ∀y ∈ {0, 1}n, #{K ∈ KH | HK (Cst1) ⊕HK (Cst2) = y} ≤ E3 ·#KH

The algorithm of TMAC-family is described in Fig. 3 and illustrated in Fig. 4.
nTMAC is obtained by letting KH = {0, 1} , HK (x) = K · x, Cst1 = u and Cst2 = 1, where

“·” denotes multiplication over GF(2n) (See Appendix A for details). Equivalently, TMAC is
obtained by letting

HK2 (Cst1) = K2 · u and HK2 (Cst2) = K2.

The above three conditions are satisfied with E1 = E2 = E3 = 2−n .

2.3.3 OMAC-family, OMAC1 and OMAC2

OMAC is a generic name for OMAC1 and OMAC2, where OMAC1 and OMAC2 take just one
key K ∈ KE . In general, OMAC-family is defined by not only a block cipher E but also (1) a
universal hash function

n nH : {0, 1} ×X → {0, 1}

5

�

� �

�

� �

�

�

�

� �

�

�

� �� �
 �

�

�

Algorithm TMAC-familyK1,K2
(M)

Y [0] ← 0n

Partition M into M [1] · · ·M [m]

for i← 1 to m− 1 do

X[i] ←M [i] ⊕ Y [i− 1]
Y [i] ← EK1 (X[i])

X[m] ← pad (M [m]) ⊕ Y [m− 1]n

if |M [m]| = n then X[m] ← X[m] ⊕HK2 (Cst1)
else X[m] ← X[m] ⊕HK2 (Cst2)

T ← EK1 (X[m])
return T

Fig. 3. Definition of TMAC-family.

M [1]

EK1

M [2]

EK1

M [3]

EK1

T

HK2 (Cst1)

M [1]

EK1

M [2]

EK1

M [3] 10i

EK1

T

HK2 (Cst2)

Fig. 4. Illustration of TMAC-family.

where X is the domain, (2) two distinct constants Cst1, Cst2 ∈ X and (3) an arbitrary n-bit
nconstant Cst ∈ {0, 1} . (The set of keys of H is {0, 1}n.) They must satisfy the following six

conditions for sufficiently small E1, E2, . . . , E6.

n1. ∀y ∈ {0, 1}n, #{L ∈ {0, 1} | HL(Cst1) = y} ≤ E1 · 2n

n2. ∀y ∈ {0, 1}n, #{L ∈ {0, 1} | HL(Cst2) = y} ≤ E2 · 2n

n3. ∀y ∈ {0, 1}n, #{L ∈ {0, 1} | HL(Cst1) ⊕HL(Cst2) = y} ≤ E3 · 2n

n4. ∀y ∈ {0, 1}n, #{L ∈ {0, 1} | HL(Cst1) ⊕ L = y} ≤ E4 · 2n

n5. ∀y ∈ {0, 1}n, #{L ∈ {0, 1} | HL(Cst2) ⊕ L = y} ≤ E5 · 2n

n6. ∀y ∈ {0, 1}n, #{L ∈ {0, 1} | HL(Cst1) ⊕HL(Cst2) ⊕ L = y} ≤ E6 · 2n

The algorithm of OMAC-family is described in Fig. 5 and illustrated in Fig. 6.
OMAC1 is obtained by letting Cst = 0n , HL(x) = L · x, Cst1 = u and Cst2 = u2, where “·”

denotes multiplication over GF(2n). Equivalently, OMAC1 is obtained by letting

2L = EK (0n), HL(Cst1) = L · u and HL(Cst2) = L · u .

−1OMAC2 is the same as OMAC1 except for Cst2 = u . Equivalently, OMAC2 is obtained by
letting

−1L = EK (0n), HL(Cst1) = L · u and HL(Cst2) = L · u .

The above six conditions are satisfied with E1 = · · · = E6 = 2−n for both OMAC1 and OMAC2.

6

�

� �

�

� �

�

�

�

� �

�

�

� �� �
 �

�

�

Algorithm OMAC-familyK (M)

L ← EK (Cst)

Y [0] ← 0n

Partition M into M [1] · · ·M [m]

for i ← 1 to m − 1 do

X[i] ←M [i] ⊕ Y [i − 1]
Y [i] ← EK (X[i])

X[m] ← pad (M [m]) ⊕ Y [m − 1]n

if |M [m]| = n then X[m] ← X[m] ⊕HL(Cst1)
else X[m] ← X[m] ⊕HL(Cst2)

T ← EK (X[m])
return T

Fig. 5. Definition of OMAC-family.

M [1]

EK

M [2]

EK

M [3]

EK

HL(Cst1)

M [1]

EK

M [2]

EK

M [3] 10i

EK

HL(Cst2)

T
Fig. 6. Illustration of OMAC-family.

T

3

3.1

Stronger Security Bounds

Definitions of Security

nOur definitions follow from [1, 6, 11]. Let Perm(n) denote the set of all permutations on {0, 1} .
We say that P is a random permutation if P is randomly chosen from Perm(n).

The security of a block cipher E can be quantified as Advprp (t, q), the maximum advantage E
that an adversary A can obtain when trying to distinguish EK (·) (with a randomly chosen key
K) from a random permutation P (·), where the maximum is over all adversaries who run in
time at most t, and make at most q queries to an oracle (which is either EK (·) or P (·)). This
advantage is defined as follows.

P (·) = 1)

 (A) def R R← KE : AEK (·) = 1) − Pr(P ← Perm(n) : AAdvprp Pr(K
=E

Advprp (t, q) def = E

Advprp

E (A) max

A

We say that a block cipher E is secure if Advprp (t, q) is sufficiently small (prp stands for Pseu-E
doRandom Permutation).

∗Similarly, a MAC algorithm is a map F : KF × {0, 1} → {0, 1}n, where KF is a set of
FK (·)keys and we write FK (·) for F (K, ·). We say that an adversary A forges if A outputs

(M, FK (M)) where A never queried M to its oracle FK (·). Then we define the advantage as

(A) def R
Advmac = Pr(K ← KF : AFK (·) forges) F

Advmac(t, q, σ) def = max {Advmac(A)}F FA

where the maximum is over all adversaries who run in time at most t, and make at most q
queries, having aggregate length of at most σ blocks, where the aggregate length of q queries

7

M (1), . . . ,M (q) is σ =
 1≤i≤q lM (i)ln. We say that a MAC algorithm is secure if Advmac(t, q, σ)F
is sufficiently small.

∗ nLet Rand(∗, n) denote the set of all functions from {0, 1} to {0, 1} . This set is given a
probability measure by asserting that a random element R of Rand(∗, n) associates to each

∗string M ∈ {0, 1}

na random string R(M) ∈ {0, 1} . Then we define the advantage as

Advviprf (A) def R R= Pr(K ← KF : AFK(·) = 1) − Pr(R ← Rand(∗, n) : AR(·) = 1) F
Advviprf Advviprf (t, q, σ) def = max (A)F FA

where the maximum is over all adversaries who run in time at most t, make at most q queries,
having aggregate length of at most σ blocks. We say that a MAC algorithm is pseudorandom
if Advviprf (t, q, σ) is sufficiently small (viprf stands for Variable-length Input PseudoRandom F
Function).

Without loss of generality, adversaries are assumed to never ask a query outside the domain
of the oracle, and to never repeat a query.

3.2 Theorem Statements

We first prove that OMAC-family, TMAC-family and XCBC are pseudorandom if the underlying
block cipher is a random permutation P (information-theoretic result).

Lemma 3.1 (Main Lemma for OMAC-family) Suppose that H, Cst1 and Cst2 satisfy the
conditions in Sec. 2.3.3 for some sufficiently small E1, . . . , E6, and let Cst be an arbitrarily n-bit
constant. Suppose that a random permutation P ∈ Perm(n) is used in OMAC-family as the
underlying block cipher. Let A be an adversary which asks at most q queries, having aggregate
length of at most σ blocks. Assume σ ≤ 2n/2. Then

R← Perm(n) : AOMAC-familyP (·) = 1) Pr(P

σ2
5

 (2)

R−Pr(R ← Rand(∗, n) : AR(·) = 1) ≤ ·

2 2n + 3E
 ,

where E = max{E1, . . . , E6}.
Lemma 3.2 (Main Lemma for TMAC-family) Suppose that H, Cst1 and Cst2 satisfy the
conditions in Sec. 2.3.2 for some sufficiently small E1, E2, E3. Suppose that a random permutation
P ∈ Perm(n) is used in TMAC-family as the underlying block cipher. Let A be an adversary
which asks at most q queries, having aggregate length of at most σ blocks. Assume σ ≤ 2n/2.
Then

R R
H : ATMAC-familyP,K2Pr(P ← Perm(n),K2 ← K (·) = 1)

σ2
5

 (3)

R−Pr(R ← Rand(∗, n) : AR(·) = 1) ≤ · + E ,

2 2n

where E = max{E1, E2, E3}.
Lemma 3.3 (Main Lemma for XCBC) Suppose that a random permutation P ∈ Perm(n)
is used in XCBC as the underlying block cipher. Let A be an adversary which asks at most q
queries, having aggregate length of at most σ blocks. Assume σ ≤ 2n/2. Then

R R n XCBCP,K2,K3Pr(P ← Perm(n),K2,K3 ← {0, 1} : A (·) = 1)

3σ2 (4)
R−Pr(R ← Rand(∗, n) : AR(·) = 1) ≤ .

2n

8

Proofs are given in Sec. 4, Sec. 5, and Sec. 6, respectively.
Given the above three lemmas, it is standard to pass to the following complexity-theoretic

result (For example, see [1, Section 3.2]). It shows that OMAC, TMAC and XCBC are pseu
dorandom if the underlying block cipher is secure.

n nCorollary 3.1 Let E : KE × {0, 1} → {0, 1} be the underlying block cipher used in OMAC,
TMAC and XCBC. Then

4σ2

• Advviprf ' ' '(t, q, σ) ≤ + Advprp (t , q '), where t = t + O(σ) and q = σ + 1,OMAC E2n

3σ2

• Advviprf + Advprp ' ' '(t, q, σ) ≤ (t , q '), where t = t + O(σ) and q = σ, and TMAC E2n

3σ2

• Advviprf ' ' '(t, q, σ) ≤ + Advprp (t , q '), where t = t + O(σ) and q = σ.XCBC E2n

Finally, we obtain the following theorem in the usual way (For example, see [1, Proposition
2.7]). It shows that OMAC, TMAC and XCBC are secure as MACs if the underlying block
cipher is secure.

n nTheorem 3.1 Let E : KE × {0, 1} → {0, 1} be the underlying block cipher used in OMAC,
TMAC and XCBC. Then

4σ2 + 1 • Advmac + Advprp ' ' '
OMAC(t, q, σ) ≤

2n E (t , q '), where t = t + O(σ) and q = σ + 1,

3σ2 + 1
+ Advprp ' ' ' • Advmac (t, q, σ) ≤ (t , q '), where t = t + O(σ) and q = σ, and TMAC E2n

3σ2 + 1 ' • Advmac + Advprp ' '(t, q, σ) ≤ (t , q '), where t = t + O(σ) and q = σ.XCBC 2n E

4 Proof for OMAC-family

4.1 Q1, . . . , Q6 and MOMAC [8]

Let H, Cst1 and Cst2 satisfy the conditions in Sec. 2.3.3 for some sufficiently small E1, . . . , E6,
and Cst be an arbitrarily n-bit constant. For a random permutation P ∈ Perm(n) and a random

n-bit string Rnd ∈ {0, 1}n, define

Q1(x) def
Q2(x) def = P (x) ⊕ Rnd, = P (x⊕ Rnd) ⊕ Rnd,

Q3(x) def
P (x⊕ Rnd ⊕HL(Cst1)), Q4(x) def

Q5(x) def
Q6(x) def

= = P (x⊕ Rnd ⊕HL(Cst2)), (5)

= P (x⊕HL(Cst1)) and = P (x⊕HL(Cst2)),

where L = P (Cst).
The following proposition shows that Q1(·), Q2(·), Q3(·), Q4(·), Q5(·), Q6(·) are indistin

guishable from a pair of six independent random permutations P1(·), P2(·), P3(·), P4(·), P5(·),
P6(·).
Proposition 4.1 Let A be an adversary which asks at most q queries in total. Then

R R n Q1(·),...,Q6(·) = 1) Pr(P ← Perm(n); Rnd ← {0, 1} : A
2

R P1(·),...,P6(·) = 1)
3q 1 −Pr(P1, . . . , P6 ← Perm(n) : A ≤ · + E ,
2 2n

where E = max{E1, . . . , E6}.

9

� �

� �

� �

�

� �� �
 �

� �� �

Algorithm MOMACP1,P2,P3,P4,P5,P6 (M)
Partition M into M [1] · · ·M [m]
if m ≥ 2 then

X[1] ←M [1]

Y [1] ← P1(X[1])

for i ← 2 to m− 1 do

X[i] ←M [i] ⊕ Y [i− 1]
Y [i] ← P2(X[i])

X[m] ← pad (M [m]) ⊕ Y [m− 1]n

if |M [m]| = n then T ← P3(X[m])
else T ← P4(X[m])

if m = 1 then
X[m] ← pad (M [m])n

if |M [m]| = n then T ← P5(X[m])
else T ← P6(X[m])

return T

Fig. 7. Definition of MOMAC.

M [1]

P1

M [1]

P1

M [2] M [3] M [2] M [3] 10i

P2 P4P2 P3

T T
Fig. 8. Illustration of MOMAC for |M | > n.

M

P5 P6

T T
Fig. 9. Illustration of MOMAC for |M | ≤ n.

A proof is given in [8].
Next, we recall MOMAC (Modified OMAC) [8]. It uses six independent random permuta

tions P1, P2, P3, P4, P5, P6 ∈ Perm(n). The algorithm MOMACP1,...,P6 (·) is described in Fig. 7
and illustrated in Fig. 8 and Fig. 9.

4.2 MOMAC is Pseudorandom

We prove that MOMAC is pseudorandom (information-theoretic result).

Lemma 4.1 Let A be an adversary which asks at most q queries, having aggregate length of at
most σ blocks. Assume σ ≤ 2n/2. Then

σ2
R R← Perm(n) : AMOMACP1,...,P6Pr(P1, . . . , P6

(·) = 1) − Pr(R ← Rand(∗, n) : AR(·) = 1) ≤
2n .

To prove Lemma 4.1, we first define MOMAC-E (MOMAC without final encryption). It
takes a message M such that |M | = mn for some m ≥ 2. It is obtained from MOMAC by

M 10i

10

removing the final encryption, that is, it uses two independent random permutations P1, P2 ∈
Perm(n). More precisely, the algorithm MOMAC-EP1,P2 (·) is described in Fig. 10.

Algorithm MOMAC-EP1,P2 (M)
Partition M into M [1] · · ·M [m]
X[1] ←M [1]
Y [1] ← P1(X[1])
for i ← 2 to m− 1 do

X[i] ←M [i] ⊕ Y [i− 1]
Y [i] ← P2(X[i])

X[m] ←M [m] ⊕ Y [m− 1]
return X[m]

Fig. 10. Definition of MOMAC-E. Note that |M | = mn for some m ≥ 2.

We first show the following lemma.

Lemma 4.2 (MOMAC-E Collision Bound) Let q, m1, . . . ,mq and σ be integers such that
mi ≥ 2, σ = m1 + · · · + mq, and σ ≤ 2n/2. Let M (1), . . . ,M (q) be fixed and distinct bit strings
such that |M(i)| = min. Then the probability of collision,

RPr(P1, P2 ← Perm(n) : 1 ≤ ∃i < ∃j ≤ q,MOMAC-EP1,P2 (M
(i)) = MOMAC-EP1,P2 (M

(j)))

is at most (σ−q)2
.2n

Proof . We view the computation of MOMAC-EP1,P2 (M
(i)) as playing the game given in Fig. 11.

In Fig. 11, M(i)[1] · · ·M(i)[mi] is a partition of M(i). We initially set each range point of
P1 and P2 as undefined. The notation Domain(Pi) denotes the set of points x where Pi(x) is
no longer undefined. We use Range(Pi) to denote the set of points Pi(x) which are no longer
undefined. We use Range(Pi) to denote {0, 1}n \Range(Pi).

During the game, the X(i)[j] are those values produced after XORing with the current
message block M(i)[j], Y (i)[1] values are P1(X(i)[1]) and, for j ≥ 2, Y (i)[j] values are P2(X(i)[j]).
The game has two parts: computation of X(1)[2], . . . ,X(q)[2] (line 11–23) and computation of
X(1)[m1], . . . ,X(q)[mq] (line 31–45).

We examine the probability that P1 and P2 cause a collision, which will occur in our game
if and only if X(i)[mi] = X(j)[mj] for some 1 ≤ i < j ≤ q. This condition will set bad1 or bad2

to true. However, we set badi to true in many other cases in order to simplify the analysis.
The idea behind the variable badi is as follows: throughout the game (line 13 and 35), we

randomly choose a range value for P1 and P2 at some undefined domain point. Since P1 and P2

have not yet been determined at this point, the choice of our range value will be an independent
uniform selection: there is no dependence on any prior choice. If the range value for Pi were
already determined by some earlier choice, the analysis would become more involved. We avoid
the latter condition by setting badi to true whenever such interdependencies are detected.

The detection mechanism works as follows: throughout the processing of M(1), . . . ,M (q),
we will require P1 be evaluated at q domain point X(1)[1], . . . ,X(q)[1] and P2 be evaluated at
σ − q domain point X(1)[2], . . . ,X(1)[m1], . . . ,X(q)[2], . . . ,X(q)[mq] (ignoring duplications due
to any common prefix of M (1), . . . ,M (q)), we can rest assured that we are free to assign their

11

Initialization:
1: for i← 1 to q do X(i)[1] ←M (i)[1];

n2: for all x ∈ {0, 1} do P1(x), P2(x) ← undefined;
3: bad1, bad2 ← false; BAD ← ∅;

Computation of X(1)[2], . . . ,X(q)[2]:
11: for i← 1 to q do
12: if X(i)[1] ∈ Domain(P1) then

R13: Y (i)[1] ← Range(P1);
14: P1(X(i)[1]) ← Y (i)[1];
15: X(i)[2] ← Y (i)[1] ⊕M (i)[2];
16: BAD' ← {X(i)[2]};
17: Index ← {k | i + 1 ≤ k ≤ q and X(i)[1] = X(k)[1]};
18: for all k ∈ Index do
19: Y (k)[1] ← Y (i)[1];
20: X(k)[2] ← Y (k)[1] ⊕M (k)[2];
21: BAD' ← BAD' ∪ {X(k)[2]};
22: if BAD' ∩ BAD = ∅ then bad1 ← true;
23: else BAD ← BAD' ∪BAD;
Computation of X(1)[m1], . . . ,X(q)[mq]:
31: for j ← 2 to σ do
32: for i ← 1 to q do
33: if j < mi then
34: if X(i)[j] ∈ Domain(P2) then

R35: Y (i)[j] ← Range(P2);
36: P2(X(i)[j]) ← Y (i)[j];
37: X(i)[j + 1] ← Y (i)[j] ⊕M (i)[j + 1];
38: BAD' ← {X(i)[j + 1]};
39: Index ← {k | i + 1 ≤ k ≤ q, j < mk and X(i)[j] = X(k)[j]};
40: for all k ∈ Index do
41: Y (k)[j] ← Y (i)[j];
42: X(k)[j + 1] ← Y (k)[j] ⊕M (k)[j + 1];
43: BAD' ← BAD' ∪ {X(k)[j + 1]};
44: if BAD' ∩ BAD = ∅ then bad2 ← true;
45: else BAD ← BAD' ∪ BAD;

Fig. 11. Game used in the proof of Lemma 4.2.

12

corresponding range points without constraint. We maintain a set BAD to track which domain
points of P2 have already been determined. Next we begin randomly choosing range points
for X(i)[j]; if any such choice leads to a value already contained in BAD, we set badi to true.
Note that the choice of Y (i)[j] for X(i)[j] may automatically determines some other Y (k)[j] for
X(k)[j] due to common prefix of M (1), . . . ,M (q). We maintain sets Index and BAD' to track
such points.

We now bound the probability of the event that bad1 ← true and bad2 ← true by analyzing
our game.

Bounding the probability of bad1 ← true. In line 22, it is required that some Y (i)[1] was
selected in line 13 such that Y (i)[1] ⊕M (i)[2] ∈ BAD, or Y (i)[1] ⊕ M (k)[2] ∈ BAD for some
k ∈ Index. The set BAD begins with the empty set and then grows by the number of points in
BAD' with each random choice of Y (i)[1]. Now, suppose that for the t-th process of line 13, the
corresponding BAD' after line 21 has lt points, assuming that bad1 is false for the first t− 1
process of line 13. Define

V (t) def= Pr (bad1 ← true at the t-th choice of Y (i)[1] | bad1 is false before choosing Y (i)[1]) ,
line 13

where Pr (·) shows that the probability is taken over the random choice in line 13. Then we
line 13

have
(l1 + · · · + lt−1)lt

V (t) = ,
2n − (t− 1)

since P1 has 2n − (t− 1) undefined domain points, BAD has (l1 + · · ·+ lt−1) points, and BAD'

has lt points.
Also, suppose that line 11–23 terminates after s process of line 13. Then we have

 (l1 + · · ·+ lt−1)ltPr (bad1 ← true) ≤ V (t) = .
line 13 2n − (t− 1)

1≤t≤s 1≤t≤s

Now we can bound the above by

' 2 ' 2 (l1 + · · ·+ lt−1)lt 2 2 l − l1
2 − · · · − l2 l0 s 0≤ (l1 + · · ·+ lt−1)lt = · ≤ ,

2n − (t− 1) 2n 2n 2 2n
1≤t≤s 1≤t≤s

def'where l = l1 + · · ·+ ls. The first inequality follows since s is at most q, which is at most 2n/2.0

Bounding the probability of bad2 ← true. Next, in line 44, it is required that some Y (i)[j]
was selected in line 35 such that Y (i)[j] ⊕M (i)[j + 1] ∈ BAD, or Y (i)[j] ⊕M (k)[j + 1] ∈ BAD

'for some k ∈ Index. The set BAD begins with l points. It grows by the number of points in 0
BAD' with each random choice of Y (i)[j]. Now, suppose that for the t '-th process of line 35,

'the corresponding BAD' after line 43 has l points, assuming that bad2 is false for the first t, ' t − 1 process of line 35. Define

') def
V '(t = Pr (bad2 ← true at the t '-th choice of Y (i)[j] | bad2 is false before choosing Y (i)[j]) ,

line 35

where Pr (·) shows that the probability is taken over the random choice in line 35. Then we
line 35

have ' ' ' '(l0 + l1 + · · ·+ lt,−1)lt,V '(t ') = ,'2n − (t − 1)

13

' ' 'since P2 has 2n − (t ' − 1) undefined domain points, BAD has (l0 + l1 + · · ·+ lt,−1) points, and
'BAD' has l points. t, 'Also, suppose that the game terminates after s process of line 35. Then we have

' ' ' '(l0 + l1 + · · ·+ lt,−1)lt,Pr (bad2 ← true) ≤ V '(t ') = .' line 35 2n − (t − 1)
1≤t,≤s, 1≤t,≤s,

Now we can bound the above by

' ' ' ' ' 2(l0 + l1 + · · ·+ lt,−1)lt, 2 (σ − q)2 − l' ' ' ' 0≤ (l0 + l1 + · · · + l)lt, ≤ ,t−1'2n − (t − 1) 2n 2n
1≤t,≤s, 1≤t,≤s,

'
where the first inequality follows since s is at most σ, which is at most 2n/2, and the second
' ' 'inequality follows since σ − q ≥ l0 + l1 + · · ·+ l s, and

' 2 ' 2 ' 2 ' 2(σ − q)2 − l − l − · · · − l (σ − q)2 − l' ' ' ' 0 1 s, 0(l0 + l1 + · · ·+ lt,−1)lt, ≤ ≤ .
2 2

1≤t,≤s,

Completing the Proof. Finally, we obtain the stated bound since

' 2 ' 2l (σ − q)2 − l (σ − q)2
0 0Pr (bad1 ← true) + Pr (bad2 ← true) ≤ + = .

line 13 line 35 2n 2n 2n

Q.E.D.

We next consider the following four sets.

def ∗D1 = {M | M ∈ {0, 1} , n < |M | and |M | is a multiple of n}
def ∗D2 = {M | M ∈ {0, 1} , n < |M | and |M | is not a multiple of n}
def ∗D3 = {M | M ∈ {0, 1} and |M | = n}
def ∗D4 = {M | M ∈ {0, 1} and |M | < n}

We show the following lemma.

(1) (qi)Lemma 4.3 Let q1, q2, q3, q4 be four non-negative integers. For 1 ≤ i ≤ 4, let M , . . . ,Mi i
(j) (1) (qi)be fixed bit strings such that M ∈ Di for 1 ≤ j ≤ qi and {M , . . . ,M } are distinct. i i i

(1) (qi) (1) (qi)Similarly, for 1 ≤ i ≤ 4, let T , . . . , T be fixed n-bit strings such that {T , . . . , T } are i i i i
distinct. Then the number of P1, . . . , P6 ∈ Perm(n) such that

(i) (i)MOMACP1,...,P6 (M1) = T1 for 1 ≤ ∀i ≤ q1,
(i) (i)MOMACP1,...,P6 (M2) = T2 for 1 ≤ ∀i ≤ q2, (6)(i) (i)MOMACP1,...,P6 (M) = T for 1 ≤ ∀i ≤ q3 and3 3
(i) (i)MOMACP1,...,P6 (M4) = T4 for 1 ≤ ∀i ≤ q4

1 − (σ−q)2 1 (j)is at least {(2n)!}6 2n · 2qn , where q = q1 + · · · + q4, σi = 1≤j≤qi
lMi ln and

σ = σ1 + · · ·+ σ4.

14

(1) (q1)Proof . We first consider M , . . . ,M . The number of (P1, P2) such that 1 1

(i) (j)MOMAC-EP1,P2 (M) = MOMAC-EP1,P2 (M) for 1 ≤ ∃i < ∃j ≤ q11 1

(σ1−q1)2
is at most {(2n)!}2 · from Lemma 4.2. 2n

(1) (q2) (i)We next consider M , . . . ,M . Let M ' (i) denote the padded message of M . Then the 2 2 2 2
number of (P1, P2) such that

MOMAC-EP1,P2 (M ' (i)) = MOMAC-EP1,P2 (M ' (j)) for 1 ≤ ∃i < ∃j ≤ q22 2

(σ2−q2)2
is at most {(2n)!}2 · from Lemma 4.2. 2n

Therefore, we have at least
(σ1 − q1)2 (σ2 − q2)2

{(2n)!}2 1 − −
2n 2n

choice of (P1, P2) such that

(i) (j)MOMAC-EP1,P2 (M) = MOMAC-EP1,P2 (M) for 1 ≤ ∀i < ∀j ≤ q1 and1 1 (7)
MOMAC-EP1,P2 (M ' (i)) = MOMAC-EP1,P2 (M ' (j)) for 1 ≤ ∀i < ∀j ≤ q22 2

We fix any (P1, P2) which satisfies (7).

(1) (q1)
Now P1 and P2 are fixed in such a way that the inputs to P3 are distinct and the in

puts to P4 are distinct. Also, the corresponding outputs {T , . . . , T } are distinct, and 1 1
(1) (q2){T , . . . , T } are distinct. We know that the inputs to P5 are distinct, and the correspond2 2

(1) (q3)ing outputs {T , . . . , T } are distinct. Also, the inputs to P6 are distinct, and and the 3 3
(1) (q4)corresponding outputs {T , . . . , T } are distinct. Therefore, we have at least 4 4

(σ1 − q1)2 (σ2 − q2)2

{(2n)!}2 1 − − · (2n − q1)! · (2n − q2)! · (2n − q3)! · (2n − q4)!2n 2n

1 − (σ−q)2 1choice of P1, . . . , P6 which satisfies (6). This bound is at least {(2n)!}6 · 2qn since2n

(σ − q)2 ≥ (σ1 − q1)2 + (σ2 − q2)2 and (2n − qi)! ≥ (2
n)! .2qin

This concludes the proof of the lemma. Q.E.D.

We now prove Lemma 4.1.

Proof (of Lemma 4.1). Let O be either MOMACP1,...,P6 or R. Since A is computationally
unbounded, there is no loss of generality to assume that A is deterministic.

(i) (i)Now for the query A makes to the oracle O, define the query-answer pair (Mj , Tj) ∈
(i) (i) nDj ×{0, 1}n, where A’s i-th query in Dj was M ∈ Dj and the answer it got was T ∈ {0, 1} .j j

Suppose that we run A with the oracle. For this run, assume that A made qj queries in Dj,
where 1 ≤ j ≤ 4 and q1 + · · ·+ q4 = q. Also, for 1 ≤ i ≤ 4, let σi = lM (j)l (therefore,1≤j≤qi i n

q3 = σ3 and q4 = σ4). For this run, we define view v of A as

def (1) (q1) (1) (q2)
v = ((T , . . . , T), (T , . . . , T),1 1 2 2 (8)

(1) (q3) (1) (q4)(T , . . . , T), (T , . . . , T)) .3 3 4 4

Since A is deterministic, the i-th query A makes is fully determined by the first i − 1 query-
answer pairs. This implies that if we fix some qn-bit string V and return the i-th n-bit block
as the answer for the i-th query A makes (instead of the oracle), then

15

• A’s queries are uniquely determined,

• q1, . . . , q4 are uniquely determined,

• σ1, . . . , σ4 are uniquely determined,

• the parsing of V into the format defined in (8) is uniquely determined, and

• the final output of A (0 or 1) is uniquely determined.

defLet Vone be a set of all qn-bit strings V such that A outputs 1. We let None = #Vone. Also,
let Vgood be a set of all qn-bit strings V such that:

For 1 ≤ ∀i < ∀j ≤ q, the i-th n-bit block of V = the j-th n-bit block of V .

(1) (q1)Note that if V ∈ Vgood, then the corresponding parsing v of V satisfies that: {T , . . . , T }1 1
(1) (q2) (1) (q3) (1) (q4)are distinct, {T , . . . , T } are distinct, {T , . . . , T } are distinct and {T , . . . , T } are2 2 3 3 4 4

qdistinct. Now observe that the number of V which is not in the set Vgood is at most
 2qn

.2n2
Therefore, we have

2qnq
#{V | V ∈ (Vone ∩ Vgood)} ≥ None − . (9)

2 2n

Evaluation of prand. We first evaluate

def R
prand = Pr(R ← Rand(∗, n) : AR(·) = 1) .

Then it is not hard to see
1 None

prand = = .
2qn 2qn

V ∈Vone

Evaluation of preal. We next evaluate

def R MOMACP1,...,P6preal = Pr(P1, . . . , P6 ← Perm(n) : A (·) = 1)
MOMACP1,...,P6#{(P1, . . . , P6) | A (·) = 1}

= .
6{(2n)!}

Then from Lemma 4.3, we have

{(P1, . . . , P6) | (P1, . . . , P6) satisfying (6)}
preal ≥

6{(2n)!}
V ∈(Vone∩Vgood)

(σ − q)2 1 ≥ 1 − · .
2n 2qn

V ∈(Vone∩Vgood)

16

Completing the Proof. From (9) we have

2qnq (σ − q)2 1
preal ≥ None − · 1 − ·

2 2n 2n 2qn

q 1 (σ − q)2

= prand − · 1 −
2 2n 2n

q 1 (σ − q)2

≥ prand − −
2 2n 2n

q2 + (σ − q)2

≥ prand − 2n

σ2

≥ prand − . (10)
2n

Applying the same argument to 1 − preal and 1 − prand yields that

σ2

1 − preal ≥ 1 − prand − . (11)
2n

Finally, (10) and (11) give |preal − prand| ≤ σ2
. Q.E.D.2n

4.3 From MOMAC to OMAC-family

The next lemma shows that OMAC-familyP (·) and MOMACP1,...,P6 (·) are indistinguishable.

Lemma 4.4 Let A be an adversary which asks at most q queries, having aggregate length of at
most σ blocks. Assume σ ≤ 2n/2. Then

R← Perm(n) : AOMAC-familyP (·) = 1) Pr(P

R 3σ2 1MOMACP1,...,P6−Pr(P1, . . . , P6 ← Perm(n) : A (·) = 1) ≤ · + E .
2 2n

Proof . We prove through a contradiction argument. Suppose that there exists an adversary A
such that

R← Perm(n) : AOMAC-familyP (·) = 1) Pr(P

R 3σ2 1MOMACP1,...,P6−Pr(P1, . . . , P6 ← Perm(n) : A (·) = 1) > · + E .
2 2n

By using A, we show a construction of an adversary BA such that:

• BA asks at most σ queries, and

R Q1(·),...,Q6(·)• Pr(P ← Perm(n) : B = 1) A

R P1(·),...,P6(·) 3σ2 1 −Pr(P1, . . . , P6 ← Perm(n) : B = 1) > · + E ,A 2 2n

which contradicts Proposition 4.1.
Let O1(·), . . . ,O6(·) be BA’s oracles. The construction of BA is given in Fig. 12.
When A asks M (r), then BA computes T (r) = MOMACO1,...,O6 (M

(r)) as if the underlying
random permutations are O1, . . . ,O6, and returns T (r). When A halts and outputs b, then BA

outputs b.
Now we see that:

17

 �

�

�

 ��

 �

�

�

 ��

 �

�

�

 ��

 �

�

�

� �� �
 ��

 ��

� �� �
 ��

O1,...,O6Algorithm BA
1: When A asks its r-th query M (r):
2: T (r) ←MOMACO1,...,O6 (M

(r))
3: return T (r)

4: When A halts and outputs b:
5: output b

Fig. 12. Algorithm BA. Note that for 1 ≤ i ≤ 6, Oi is either Pi or Qi

M [1]

P

Rnd

M [2] M [3]

Rnd
⊕HL(Cst1)

M [1]

P

Rnd

M [2] M [3] 10i

P

Rnd

Rnd

P P

Rnd

P

Rnd
⊕HL(Cst2)

Rnd
T T

Fig. 13. Computation of BA when Oi = Qi for 1 ≤ i ≤ 6, and |M | > n.

M M 10i

HL(Cst1) HL(Cst2)

PP

T T
Fig. 14. Computation of BA when Oi = Qi for 1 ≤ i ≤ 6, and |M | ≤ n.

• BA asks at most σ queries to its oracles, since A asks at most q queries having aggregate
length of at most σ blocks.

R P1(·),...,P6(·)• Pr(P1, . . . , P6 ← Perm(n) : B = 1) A
R MOMACP1,...,P6= Pr(P1, . . . , P6 ← Perm(n) : A (·) = 1),

since BA gives A a perfect simulation of MOMACP1,...,P6 (·) if Oi(·) = Pi(·) for 1 ≤ i ≤ 6.

R Q1(·),...,Q6(·)• Pr(P ← Perm(n) : B = 1) A
R= Pr(P ← Perm(n) : AOMACP (·) = 1),

since BA gives A a perfect simulation of OMACP (·) if Oi(·) = Qi(·) for 1 ≤ i ≤ 6. See
Fig. 13 and Fig. 14. Note that Rnd is canceled in Fig. 13.

This concludes the proof of the lemma. Q.E.D.

4.4 Proof of Main Lemma for OMAC-family

We finally give a proof of Main Lemma for OMAC-family.

Proof (of Lemma 3.1). By the triangle inequality, the left hand side of (2) is at most

R MOMACP1,...,P6Pr(P1, . . . , P6 ← Perm(n) : A (·) = 1)
R (12)

−Pr(R ← Rand(∗, n) : AR(·) = 1)

18

R← Perm(n) : AOMAC-familyP (·) = 1) + Pr(P
(13)R MOMACP1,...,P6−Pr(P1, . . . , P6 ← Perm(n) : A (·) = 1) .

Lemma 4.1 gives us an upper bound on (12) and Lemma 4.4 gives us an upper bound on (13).
Therefore the bound follows since

σ2

2n +
3σ2

2
· 1

2n + E =
σ2

2
· 5

2n + 3E .

This concludes the proof of the lemma. Q.E.D.

5 Proof for TMAC-family

5.1 Q1, Q2, Q3 [9] and FCBC [3]

Let H, Cst1 and Cst2 satisfy the conditions in Sec. 2.3.2 for some sufficiently small E1, E2, E3.
For a random permutation P ∈ Perm(n) and a random string K2 ∈ KH , define

Q1(x) def = P (x),
Q2(x) def = P (x⊕HK2 (Cst1)), (14)

Q3(x) def = P (x⊕HK2 (Cst2)).

The following proposition shows that Q1(·), Q2(·), Q3(·) are indistinguishable from a pair
of three independent random permutations P1(·), P2(·), P3(·).

Proposition 5.1 Let A be an adversary which asks at most q queries in total. Then

R RPr(P ← Perm(n); K2 ← KH : AQ1(·),Q2(·),Q3(·) = 1)
2

R q 1 −Pr(P1, P2, P3 ← Perm(n) : AP1(·),P2(·),P3(·) = 1) ≤ · + E ,
2 2n

where E = max{E1, E2, E3}.

A proof is given in [9].
Next we recall FCBC [3]. It uses three independent random permutations P1, P2, P3 ∈

Perm(n). The algorithm FCBCP1,P2,P3 (·) is described in Fig. 15 and illustrated in Fig. 16.

5.2 FCBC is Pseudorandom

We prove that FCBC is pseudorandom (information-theoretic result).

Lemma 5.1 Let A be an adversary which asks at most q queries, having aggregate length of at
most σ blocks. Assume σ ≤ 2n/2. Then

R FCBCP1,P2,P3
R 2σ2

Pr(P1, P2, P3 ← Perm(n) : A (·) = 1) − Pr(R ← Rand(∗, n) : AR(·) = 1) ≤ .
2n

To prove Lemma 5.1, we define CBC-E (CBC MAC without final encryption). It takes
a message M such that |M | = mn for some m ≥ 1. It is obtained from the CBC MAC by
removing the final encryption. More precisely, the algorithm CBC-EP (·) is described in Fig. 17,
where P ∈ Perm(n) is a random permutation.

We first show the following lemma.

19

� �

� �

� �

�

� �� �
 �

Algorithm FCBCP1,P2,P3 (M)
Y [0] ← 0n

Partition M into M [1] · · ·M [m]
for i ← 1 to m − 1 do

X[i] ←M [i] ⊕ Y [i − 1]

Y [i] ← P1(X[i])

X[m] ← pad (M [m]) ⊕ Y [m − 1]
n

if |M [m]| = n then T ← P2(X[m])
else T ← P3(X[m])

return T

Fig. 15. Definition of FCBC.

M [1]

P1

M [2]

P1

M [3]

P2

T

M [1]

P1

M [2]

P1

M [3] 10i

P3

T
Fig. 16. Illustration of FCBC.

Algorithm CBC-EP (M)
Y [0] ← 0n

Partition M into M [1] · · ·M [m]
for i ← 1 to m − 1 do

X[i] ← M [i] ⊕ Y [i − 1]
Y [i] ← P (X[i])

X[m] ←M [m] ⊕ Y [m − 1]

return X[m]

Fig. 17. Definition of CBC-E.

20

Lemma 5.2 (CBC-E Collision Bound) Let q, m1, . . . ,mq and σ be integers such that mi ≥
1, σ = m1 + · · · + mq, and σ ≤ 2n/2. Let M (1), . . . ,M (q) be fixed and distinct bit strings such
that |M(i)| = min. Then

σ2
RPr(P ← Perm(n) : 1 ≤ ∃i < ∃j ≤ q,CBC-EP (M (i)) = CBC-EP (M (j))) ≤

2n .

Proof . We view the computation of CBC-EP (M (i)) as playing the game given in Fig. 18.

Initialization:
1: for i← 1 to q do X(i)[1] ←M (i)[1];

n2: for all x ∈ {0, 1} do P (x) ← undefined;
3: bad ← false; BAD ← {X (1)[1], . . . ,X(q)[q]};

Computation of X(1)[m1], . . . ,X(q)[mq]:
11: for j ← 1 to σ do
12: for i ← 1 to q do
13: if j < mi then
14: if X(i)[j] ∈ Domain(P) then

R15: Y (i)[j] ← Range(P);
16: P (X(i)[j]) ← Y (i)[j];
17: X(i)[j + 1] ← Y (i)[j] ⊕M (i)[j + 1];
18: BAD' ← {X(i)[j + 1]};
19: Index ← {k | i + 1 ≤ k ≤ q, j < mk and X(i)[j] = X(k)[j]};
20: for all k ∈ Index do
21: Y (k)[j] ← Y (i)[j];
22: X(k)[j + 1] ← Y (k)[j] ⊕M (k)[j + 1];
23: BAD' ← BAD' ∪ {X(k)[j + 1]};
24: if BAD' ∩ BAD = ∅ then bad ← true;
25: else BAD ← BAD' ∪ BAD;

Fig. 18. Game used in the proof of Lemma 5.2.

Similarly to the proof of Lemma 4.2, it is enough to bound the probability of the event that
bad ← true.

In line 24, it is required that some Y (i)[j] was selected in line 15 such that Y (i)[j] ⊕M (i)[j +
1] ∈ BAD, or Y (i)[j] ⊕M (k)[j +1] ∈ BAD for some k ∈ Index. Suppose that the set BAD begins
with l0 points. Then it grows by the number of points in BAD' with each random choice of
Y (i)[j]. Now, suppose that for the t-th process of line 15, the corresponding BAD' after line 23
has lt points, assuming that bad is false for the first t− 1 process of line 15. Define

V (t) def= Pr (bad ← true at the t-th choice of Y (i)[j] | bad is false before choosing Y (i)[j]) .
line 15

Then we have
(l0 + l1 + · · ·+ lt−1)lt

V (t) = ,
2n − (t− 1)

since P has 2n − (t − 1) undefined domain points, BAD has (l0 + l1 + · · · + lt−1) points, and
BAD' has lt points.

21

Also, suppose that the game terminates after s process of line 15. Then we have

(l0 + l1 + · · ·+ lt−1)lt
Pr (bad ← true) ≤ V (t) = .
line 15 2n − (t− 1)

1≤t≤s 1≤t≤s

Now we can bound the above by

(l0 + l1 + · · ·+ lt−1)lt 2 σ2

≤ (l0 + l1 + · · ·+ lt−1)lt ≤ ,
2n − (t− 1) 2n 2n

1≤t≤s 1≤t≤s

where the first inequality follows since s is at most σ, which is at most 2n/2, and the second
inequality follows since σ ≥ l0 + l1 + · · ·+ ls and

2σ2 − l0
2 − l1

2 − · · · − ls σ2

(l0 + l1 + · · ·+ lt−1)lt ≤ ≤ .
2 2

1≤t≤s

Q.E.D.

We next consider the following two sets.

def ∗D1 = {M | M ∈ {0, 1} and |M | is a positive multiple of n}
def ∗D2 = {M | M ∈ {0, 1} and |M | is not a positive multiple of n}

We show the following lemma.

(1) (qi)Lemma 5.3 Let q1, q2 be two non-negative integers. For 1 ≤ i ≤ 2, let M , . . . ,M be fixed i i
(j) (1) (qi)bit strings such that M ∈ Di for 1 ≤ j ≤ qi and {M , . . . ,M } are distinct. Similarly, for i i i

(1) (qi) (1) (qi)1 ≤ i ≤ 2, let T , . . . , T be fixed n-bit strings such that {T , . . . , T } are distinct. Then i i i i
the number of P1, P2, P3 ∈ Perm(n) such that

(i) (i)FCBCP1,P2,P3 (M) = T for 1 ≤ ∀i ≤ q1 and1 1 (15)(i) (i)FCBCP1,P2,P3 (M) = T for 1 ≤ ∀i ≤ q22 2

1 − σ
2 1 (j)is at least {(2n)!}3 · 2qn , where q = q1 + q2, σi = lM ln and σ = σ1 + σ2.2n 1≤j≤qi i

(1) (q1)Proof . We first consider M , . . . ,M . The number of P1 such that 1 1

(i) (j)CBC-EP1 (M) = CBC-EP1 (M) for 1 ≤ ∃i < ∃j ≤ q11 1

σ2
1is at most {(2n)!} · from Lemma 5.2. 2n

(1) (q2) (i)We next consider M , . . . ,M . Let M ' (i) denote the padded message of M . Then the 2 2 2 2
number of P1 such that

CBC-EP1 (M ' (i)) = CBC-EP1 (M ' (j)) for 1 ≤ ∃i < ∃j ≤ q22 2

σ2
2is at most {(2n)!} · from Lemma 5.2. 2n

Therefore, we have at least
σ2 σ2

1 2{(2n)!} 1 − −
2n 2n

22

choice of P1 such that
(i) (j)CBC-EP1 (M) = CBC-EP1 (M) for 1 ≤ ∀i < ∀j ≤ q1 and1 1 (16)

CBC-EP1 (M ' (i)) = CBC-EP1 (M ' (j)) for 1 ≤ ∀i < ∀j ≤ q22 2

We fix any P1 which satisfies (16).
Now P1 is fixed in such a way that the inputs to P2 are distinct and the inputs to P3 are

(1) (q1) (1) (q2)distinct. Also, the corresponding outputs {T , . . . , T } are distinct, and {T , . . . , T1 1 2 2 }
are distinct. Therefore, we have at least

{(2n)!} 1 −
σ2

1

2n −
σ2

2

2n · (2n − q1)! · (2n − q2)!

choice of P1, P2, P3 which satisfies (15).

σ2 ≥ σ2
1 + σ2

2 and (2n − qi)! ≥ (2n)!
2qin .

This bound is at least {(2n)!}3 1 − σ2

2n · 1
2qn since

This concludes the proof of the lemma. Q.E.D.

We now prove Lemma 5.1

Proof (of Lemma 5.1). We proceed similarly to the proof of Lemma 4.1.
Let O be either FCBCP1,P2,P3 or R. Since A is computationally unbounded, there is no loss

of generality to assume that A is deterministic.
(i) (i)Now for the query A makes to the oracle O, define the query-answer pair (Mj , Tj) ∈

(i) (i) nDj ×{0, 1}n, where A’s i-th query in Dj was M ∈ Dj and the answer it got was T ∈ {0, 1} .j j
Suppose that we run A with the oracle. For this run, assume that A made qj queries in Dj,

where 1 ≤ j ≤ 2 and q1 + q2 = q. Also, for 1 ≤ i ≤ 2, let σi = lM (j)ln. For this run, 1≤j≤qi i
we define view v of A as

def (1) (q1) (1) (q2)
v = ((T , . . . , T), (T , . . . , T)) . (17)

1 1 2 2

Since A is deterministic, the i-th query A makes is fully determined by the first i − 1 query-
answer pairs. This implies that if we fix some qn-bit string V and return the i-th n-bit block
as the answer for the i-th query A makes (instead of the oracle), then

• A’s queries are uniquely determined,

• q1, q2 are uniquely determined,

• σ1, σ2 are uniquely determined,

• the parsing of V into the format defined in (17) is uniquely determined, and

• the final output of A (0 or 1) is uniquely determined.
defLet Vone be a set of all qn-bit strings V such that A outputs 1. We let None = #Vone. Also,

let Vgood be a set of all qn-bit strings V such that:

For 1 ≤ ∀i < ∀j ≤ q, the i-th n-bit block of V = the j-th n-bit block of V .
(1) (q1)Note that if V ∈ Vgood, then the corresponding parsing v of V satisfies that: {T , . . . , T }1 1

(1) (q2)are distinct and {T , . . . , T } are distinct. Now observe that the number of V which is not2 2
qin the set Vgood is at most 2qn

. Therefore, we have 2n2

2qnq
#{V | V ∈ (Vone ∩ Vgood)} ≥ None − . (18)

2 2n

23

Evaluation of prand. We first evaluate

def R
prand = Pr(R ← Rand(∗, n) : AR(·) = 1) .

Then it is not hard to see
1 None

prand = = .
2qn 2qn

V ∈Vone

Evaluation of preal. We next evaluate

def R FCBCP1,P2,P3preal = Pr(P1, P2, P3 ← Perm(n) : A (·) = 1)
FCBCP1,P2,P3#{(P1, P2, P3) | A (·) = 1}

= .
3{(2n)!}

Then from Lemma 5.3, we have

{(P1, P2, P3) | (P1, P2, P3) satisfying (15)}
preal ≥

3{(2n)!}
V ∈(Vone∩Vgood)

σ2 1 ≥ 1 − · .
2n 2qn

V ∈(Vone∩Vgood)

Completing the Proof. From (18) we have

2qnq σ2 1
preal ≥ None − · 1 − ·

2 2n 2n 2qn

q 1 σ2

= prand − · 1 −
2 2n 2n

q 1 σ2

≥ prand − −
2 2n 2n

q2 + σ2

≥ prand − 2n

2σ2

≥ prand − . (19)
2n

Applying the same argument to 1 − preal and 1 − prand yields that

2σ2

1 − preal ≥ 1 − prand − . (20)
2n

Finally, (19) and (20) give |preal − prand| ≤ 2
2
σ
n

2
. Q.E.D.

5.3 From FCBC to TMAC-family

The next lemma shows that TMAC-familyP,K2
(·) and FCBCP1,P2,P3 (·) are indistinguishable.

24

Lemma 5.4 Let A be an adversary which asks at most q queries, having aggregate length of at
most σ blocks. Assume σ ≤ 2n/2. Then

R R
H : ATMAC-familyP,K2Pr(P ← Perm(n),K2 ← K (·) = 1)

R σ2 1FCBCP1,P2,P3−Pr(P1, P2, P3 ← Perm(n) : A (·) = 1) ≤ · + E .
2 2n

By using Proposition 5.1, it can be proved similarly to the proof of Lemma 4.4.

5.4 Proof of Main Lemma for TMAC-family

We finally give a proof of Main Lemma for TMAC-family.

Proof (of Lemma 3.2). By the triangle inequality, the left hand side of (3) is at most

R FCBCP1,P2,P3Pr(P1, P2, P3 ← Perm(n) : A (·) = 1)
(21)R−Pr(R ← Rand(∗, n) : AR(·) = 1)

R R
H : ATMAC-familyP,K2+ Pr(P ← Perm(n),K2 ← K (·) = 1)

(22)R FCBCP1,P2,P3−Pr(P1, P2, P3 ← Perm(n) : A (·) = 1) .

Lemma 5.1 gives us an upper bound on (21) and Lemma 5.4 gives us an upper bound on (22).
Therefore the bound follows since

2σ2 σ2 1 σ2 5
+ · + E = · + E .

2n 2 2n 2 2n

This concludes the proof of the lemma. Q.E.D.

6 Proof for XCBC

6.1 Q1, Q2, Q3

For a random permutation P ∈ Perm(n) and two random n-bit strings K2,K3 ∈ {0, 1}n, define

Q1(x) def = P (x),

Q2(x) def
 = P (x⊕K2), (23)

Q3(x) def = P (x⊕K3).

The following proposition shows that Q1(·), Q2(·), Q3(·) are indistinguishable from a pair
of three independent random permutations P1(·), P2(·), P3(·).
Proposition 6.1 Let A be an adversary which asks at most q queries in total. Then

R R nPr(P ← Perm(n); K2,K3 ← {0, 1} : AQ1(·),Q2(·),Q3(·) = 1)
2

R q−Pr(P1, P2, P3 ← Perm(n) : AP1(·),P2(·),P3(·) = 1) ≤ ,
2n

where E = max{E1, E2, E3}.
It can be proved by extending the proof of [3, Lemma 4]. Also, it can be proved similar to

Proposition 5.1.

25

6.2 From FCBC to XCBC

The next lemma shows that XCBCP,K2,K3 (·) and FCBCP1,P2,P3 (·) are indistinguishable.

Lemma 6.1 Let A be an adversary which asks at most q queries, having aggregate length of at
most σ blocks. Assume σ ≤ 2n/2. Then

R	 R n XCBCP,K2,K3Pr(P ← Perm(n),K2,K3 ← {0, 1} : A (·) = 1)

R FCBCP1,P2,P3
σ2

−Pr(P1, P2, P3 ← Perm(n) : A (·) = 1) ≤ .
2n

By using Proposition 6.1, it can be proved similarly to the proof of Lemma 4.4.

6.3 Proof of Main Lemma for XCBC

We finally give a proof of Main Lemma for XCBC.

Proof (of Lemma 3.3). By the triangle inequality, the left hand side of (4) is at most

R FCBCP1,P2,P3Pr(P1, P2, P3 ← Perm(n) : A (·) = 1)
(24)R−Pr(R ← Rand(∗, n) : AR(·) = 1)

R	 R n XCBCP,K2,K3+ Pr(P ← Perm(n),K2,K3 ← {0, 1} : A (·) = 1)
(25)R FCBCP1,P2,P3−Pr(P1, P2, P3 ← Perm(n) : A (·) = 1) .

Lemma 5.1 gives us an upper bound on (24) and Lemma 6.1 gives us an upper bound on (25).
Therefore the bound follows since

2σ2 σ2 3σ2

+ = .
2n 2n 2n

This concludes the proof of the lemma.	 Q.E.D.

References

[1] M. Bellare, J. Kilian, and P. Rogaway.	 The security of the cipher block chaining message
authentication code. JCSS, vol. 61, no. 3, pp. 362–399, 2000. Earlier version in Advances
in Cryptology — CRYPTO ’94, LNCS 839, pp. 341–358, Springer-Verlag, 1994.

[2] A. Berendschot, B. den Boer, J. P. Boly, A. Bosselaers, J. Brandt, D. Chaum, I. Damg̊ard,
M. Dichtl, W. Fumy, M. van der Ham, C. J. A. Jansen, P. Landrock, B. Preneel, G. Roelof
sen, P. de Rooij, and J. Vandewalle. Final Report of RACE Integrity Primitives. LNCS
1007, Springer-Verlag, 1995.

[3] J. Black and P. Rogaway.	 CBC MACs for arbitrary-length messages: The three key con
structions. Advances in Cryptology — CRYPTO 2000, LNCS 1880, pp. 197–215, Springer-
Verlag, 2000.

[4] FIPS Publication 46-3. Data Encryption Standard (DES). U. S. Department of Commerce
/ National Institute of Standards and Technology, October 25, 1999.

26

[5] FIPS 113. Computer data authentication. Federal Information Processing Standards Pub
lication 113, U. S. Department of Commerce / National Bureau of Standards, National
Technical Information Service, Springfield, Virginia, 1994.

[6] O. Goldreigh, S. Goldwasser and S. Micali. How to construct random functions. J. ACM,
vol. 33, no. 4, pp. 792–807, October 1986.

[7] ISO/IEC 9797-1. Information technology — security techniques — data integrity mecha
nism using a cryptographic check function employing a block cipher algorithm. Interna
tional Organization for Standards, Geneva, Switzerland, 1999. Second edition.

[8] T. Iwata and K. Kurosawa. OMAC: One-Key CBC MAC. Pre-proceedings of Fast Software
Encryption, FSE 2003, pp. 137–161, 2003. To appear in LNCS, Springer-Verlag.

[9] K. Kurosawa and T. Iwata. TMAC: Two-Key CBC MAC. Topics in Cryptology — CT-RSA
2003, LNCS 2612, pp. 33–49, Springer-Verlag, 2003.

[10] R. Lidl and H. Niederreiter.	 Introduction to finite fields and their applications, revised
edition. Cambridge University Press, 1994.

[11] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudoran
dom functions. SIAM J. Comput., vol. 17, no. 2, pp. 373–386, April 1988.

[12] E. Petrank and C. Rackoff. CBC MAC for real-time data sources.	 J.Cryptology, vol. 13,
no. 3, pp. 315–338, Springer-Verlag, 2000.

A The Field with 2n Points

We interchangeably think of a point a in GF(2n) in any of the following ways:

1. as an abstract point in a field;

n;2. as an n-bit string an−1 · · · a1a0 ∈ {0, 1}
3. as a formal polynomial a(u) = an−1un−1 + · · ·+ a1u + a0 with binary coefficients.

To add two points in GF(2n), take their bitwise XOR. We denote this operation by a ⊕ b.
To multiply two points, fix some irreducible polynomial f(u) having binary coefficients and

degree n. To be concrete, choose the lexicographically first polynomial among the irreducible
degree n polynomials having a minimum number of coefficients. We list some indicated poly
nomials (See [10, Chapter 10] for other polynomials).

64 + uf(u) = u 4 + u3 + u + 1 for n = 64,

128 + u
f(u) = u 7 + u2 + u + 1 for n = 128, and
256 + u10 + uf(u) = u 5 + u2 + 1 for n = 256.

To multiply two points a ∈ GF(2n) and b ∈ GF(2n), regard a and b as polynomials a(u) =
an−1un−1 + · · ·+ a1u + a0 and b(u) = bn−1un−1 + · · ·+ b1u + b0, form their product c(u) where
one adds and multiplies coefficients in GF(2), and take the remainder when dividing c(u) by
f(u).

nNote that it is particularly easy to multiply a point a ∈ {0, 1} by u. We show a method for
128 + un = 128, where f(u) = u 7 + u2 + u + 1. Then multiplying a = a127 · · · a1a0 by u yields a

27

128 + a 127 +product a127u 126u · · ·+ a1u2 + a0u. Thus, if a127 = 0, then a ·u = a << 1. If a127 = 1,
128 to a < 128 + u 128then we must add u < 1. Since u 7 + u2 + u +1 = 0 we have u = u7 + u2 + u +1,

so adding u128 means to xor by 012010000111. In summary, when n = 128,

a << 1 if a127 = 0,
a · u = (26)

(a << 1) ⊕ 012010000111 otherwise.

nAlso, note that it is easy to divide a point a ∈ {0, 1} by u, meaning that one multiplies a
−1by the multiplicative inverse of u in the field: a · u . We show a method for n = 128. Then

126 +a 125 + −1multiplying a = a127 · · · a1a0 by u−1 yields a product a127u 126u · · ·+a2u+a1 +a0u .
−1 −1Thus, if a0 = 0, then a · u = a >> 1. If a0 = 1, then we must add u to a >> 1. Since

128 + u 127 −1 127 + uu 7 + u2 + u + 1 = 0 we have u = u6 + u + 1 + u−1, so adding u = u 6 + u + 1
means to xor by 101201000011. In summary, when n = 128,

a >> 1 if a0 = 0, −1 a · u = (27)
(a >> 1) ⊕ 101201000011 otherwise.

28

