NIST SP 800-90 DRAFT September-December 2005

NIST Special Publication 800-90 Recommendation for Random
| DRAFT (SeptemberDecember 22; Number Generation Using
2005) Deterministic Random Bit
Generators

Ng Elaine Barker and John Kelsey

National Institute of
Standards and Technology

COMPUTER SECURITY




NIST SP 800-90 DRAFT SeptomberDecember 2005

Abstract

This Recommendation specifies mechanisms for the generation of random bits using deterministic
methods. The methods provided are based on either hash functions, block cipher algorithms or
number theoretic problems.
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Random Number Generation Using
Deterministic Random Bit Generators

1 Authority

This document has been developed by the National Institute of Standards and Technology
(NIST) in furtherance of its statutory responsibilities under the Federal Information
Security Management Act (FISMA) of 2002, Public Law 107-347.

NIST is responsible for developing standards and guidelines, including minimum
requirements, for providing adequate information security for all agency operations and
assets, but such standards and guidelines shall not apply to national security systems. This
recommendation is consistent with the requirements of the Office of Management and
Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as
analyzed in A-130, Appendix IV: Analysis of Key Sections. Supplemental information is
provided in A-130, Appendix III.

This recommendation has been prepared for use by Federal agencies. It may be used by
nongovernmental organizations on a voluntary basis and is not subject to copyright.
(Attribution would be appreciated by NIST.)

Nothing in this Recommendation should be taken to contradict standards and guidelines
made mandatory and binding on federal agencies by the Secretary of Commerce under
statutory authority. Nor should this Recommendation be interpreted as altering or
superseding the existing authorities of the Secretary of Commerce, Director of the OMB, or
any other federal official.

Conformance testing for implementations of the deterministic random bit generators
(DRBGsS) that are specified in this Recommendation will be conducted within the
framework of the Cryptographic Module Validation Program (CMVP), a joint effort of
NIST and the Communications Security Establishment of the Government of Canada. An
implementation of a DRBG must adhere to the requirements in this Recommendation in
order to be validated under the CMVP. The requirements of this Recommendation are
indicated by the word “shall.”

2 Introduction

This Recommendation specifies techniques for the generation of random bits that may then be
used directly or converted to random numbers when random values are required by
applications using cryptography.

There are two fundamentally different strategies for generating random bits. One strategy is to
produce bits non-deterministically, where every bit of output is based on a physical process
that is unpredictable: this class of random bit generators Gs) is commonly known as non-

16
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deterministic random bit generators (NRBGs)!. The other strategy is to compute bits
deterministically using an algorithm; this class of RBGs is known as Deterministic Random
Bit Generators (DRBGs)2. This Recommendation will specify Approved DRBG mechanisms.

A DRBG uses an algorithm that produces a sequence of bits from an initial value that is
determined by a seed. Once the seed is provided and the initial value determined, the
DRBG is said to be instantiated. Because of the deterministic nature of the process, a
DRBG is said to produce pseudorandom bits, rather than random bits. The seed used to
instantiate the DRBG must contain sufficient entropy to provide assurance of randomness.
If the seed is kept secret, and the algorithm is well designed, the bits output by the DRBG
will appear-to-be-randombe unpredictable, up to the security strength of the DRBG
algorithm, However, the security provided by an RBG that uses a DRBG is a system
implementation issue; both the DRBG and its source of entropy must be considered when
determining whether the RBG is appropriate for use by consuming applications. Therefore,
in this Recommendation the acronym RBG will be used to mean a DRBGrtegether-with
and its source of entropy.

3 Scope

This Recommendation includes:
1. Requirements for the use of deterministic random bit generator mechanisms,

2. Specifications for deterministic random bit generator mechanisms that use hash
functions, block ciphers and number theoretic problems,

3. Implementation issues, and
4. Assurance considerations.

This Recommendation specifies several diverse DRBG mechanisms, all of which provided
acceptable security when this Recommendation was published. However, in the event that
new attacks are found on a particular class of DRBG mechanisms, a diversity of approved
mechanisms will allow a timely transition to a different class of DRBG mechanism.

Random number generation does not require interoperability between two entities, e.g.,
communicating entities may use different DRBG mechanisms without affecting their ability
to communicate., Therefore, an entity may choose a single appropriate DRBG mechanism
for their consuming applications; see Annex B-G for a discussion of DRBG selection.

The precise structure, design and development of a random bit generator is outside the
scope of this Recommendation.

1 NRBGs have also been called True Random Number (or Bit) Generators or Hardware Random Number
Generators.

2 DRBGS have also been called Pseudorandom Bit GJnZ:rators.
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This Recommendation provides preliminary guidance on the selection of an entropy source
and the construction of an RBG from an entropy source and an Approved DRBG.
Additional guidance is under development in these areas.

4 Terms and Definitions

For the purposes of this part of the Recommendation, the following terms and definitions

apply.

Algorithm A clearly specified mathematical process for computation; a
set of rules that, if followed, will give a prescribed result.

Approved FIPS approved-er-, NIST Recommended and/or validated by

the Cryptographic Module Validation Program (CMVP). An

Backtracking Resistance

The assurance that the output sequence from an RBG remains
indistinguishable from an ideal random sequence even to an
attacker who compromises the RBG in the future, up to the
claimed security strength of the RBG. For example, an RBG
that allowed an attacker to "backtrack” from the current
working state to generate prior outputs would not provide
backtracking resistance. The complementary assurance is
called Prediction Resistance.

Biased A value that is chosen from a sample space is said to be biased
if one value is more likely to be chosen than another value.
Contrast with unbiased.

Bitstring A bitstring is an ordered sequence of 0’s and 1°s. The leftmost

bit is the most significant bit of the string and is the newest bit
generated. The rightmost bit is the least significant bit of the
string.

Bitwise Exclusive-Or

An operation on two bitstrings of equal length that combines
corresponding bits of each bitstring using an exclusive-or
operation.

Block Cipher

A symmetric key cryptographic algorithm that transforms a
block of information at a time using a cryptographic key. For
a block cipher algorithm, the length of the input block is the
same as the length of the output block.

18
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Consuming Application

The application (including middle ware) that uses random
numbers or bits obtained from an Approved random bit
generator.

Cryptographic Key (Key)

A parameter that determines the operation of a cryptographic
function such as:

1. The transformation from plaintexttociphertext and vice
versa,

2. The synchronized generation of keying material,

3. A digital signature computation or verification.

Deterministic Algorithm

An algorithm that, given the same inputs, always produces the
same outpufs.

Deterministic Random
Bit Generator (DRBG)

An RBG that uses a deterministic algorithm to produce a
pseudorandom sequence of bits from a secret initial value
called a seed along with other possible inputs. A DRBG is
often called a Pseudorandom Number (or Bit) Generator.

DRBG Boundary

A conceptual boundary that is used to explain the operations
of a DRBG and its interaction with and relation to other
processes.

Entropy

A measure of the disorder, randomness or variability in a
closed system. The entropy of X is a mathematical measure of
the amount of information provided by an observation of X.
As such, entropy is always relative to an observer and his or
her knowledge prior to an observation. Also, see min-entropy.

Entropy Input

The input to an RBG of a string of bits that contains entropy,
that is, the entropy input is digitized and is assessed. For an
NRBG, this is obtained from an entropy source. For a DRBG,
this is included in the seed material.

Entropy Source

A source of unpredictable data. The entropy source includes a
noise source, such as thermal noise or hard drive seek times; a
digitalization process; an assessment process; an optional
conditioning process and health tests. There is no assumption
that the unpredictable data has a uniform distribution.

Equivalent Process

Two processes are equivalent if, when the same values are
input to each process, the same output is produced.

19
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Exclusive-or

A mathematical operation, symbol @, defined as:

0®0=0
0d1=1
180=1
1®1=0.
Equivalent to binary addition without carry.
Full Entropy Each bit of a bitstring with full entropy is unpredictable (with

a uniform distribution) and independent of every other bit of
that bitstring An-m-bit-string-hes-full-entrepy-ifeverym-bit
T v Jikel '

Hash Function

A (mathematical) function that maps values from a iarge
(possibly very large) domain into a smaller range. The
function satisfies the following properties:

1. (One-way) It is computationally infeasible to find any
input that maps to any pre-specified output;

2. (Collision free) It is computationally infeasible to find
any two distinct inputs that map to the same output.

Health Testin

Testing within an implementation immediately prior to or
during normal operation to determine that the implementation

continues to perform as implemented and as validated (if
implementation validation was performed).

Implementation

An implementation of an RBG is a cryptographic device or
portion of a cryptographic device that is the physical
embodiment of the RBG design, for example, some code
running on a computing platform.

Implementation Testing
for Validation

Testing by an independent and accredited party to ensure that
an implemention of this Recommendation conforms to the
specifications of this Recommendation.

Instantiation of an RBG

An instantiation of an RBG is a specific, logically
independent, initialized RBG. One instantiation is
distinguished from another by a handle (e.g., an identifying
number).

Internal State

The collection of stored information about an RBG
instantiation. This can include both secret and non-secret
information.

Key

See Cryptographic Key.

20
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Min-entropy

The worst-case (i.€., the greatest lower bound) measure of
uncertainty for a random variable.

Non-Deterministic
Random Bit Generator
(Non-deterministic RBG)
(NRBG)

An RBG that produces output that is fully dependent on some
unpredictable physical source that produces entropy. Contrast
with a DRBG. Other names for non-deterministic RBGs are
True Random Number (or Bit) Generators and, simply,
Random Number (or Bit) Generators.

Personalization String

An optional string of bits that is combined with a secret input
and a nonce to produce a seed.

Prediction Resistance

A-Assurance that a compromise of the DRBG internal state
has no effect on the security of future DRBG outputs. H-a
comproraise-of Stateyoeeurs; predictionresistance-provides
assuranee-that the-eutput sequenee-resulting-from-states-afier
the compromiseremainsgeeure—That is, an adversary who is
given access to all of any-subset-of-the output sequence after
the compromise cannot distinguish it from random; if the
adversary knows only part of the future output sequence, an
adversaryhe cannot predict any bit of that future output
sequence that he has not already seen. The complementary
assurance is called Backtracking Resistance.

Pseudorandom

A process (or data produced by a process) is said to be
pseudorandom when the outcome is deterministic, yet also
effectively random as long as the internal action of the process
is hidden from observation. For cryptographic purposes,
“effectively” means “within the limits of the intended
cryptographic strength.”

Pseudorandom Number
Generator

See Deterministic Random Bit Generator.

Public Key

In an asymmetric (public) key cryptosystem, that key of an
entity’s key pair that is publicly known.

Public Key Pair

In an asymmetric (public) key cryposystem, the public key
and associated private key.

Random Number

For the purposes of this Recommendation, a value in a set that
has an equal probability of being selected from the total
population of possibilities and, hence, is unpredictable. A
random number is an instance of an unbiased random variable,
that is, the output produced by a uniformly distributed random
process.
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Random Bit Generator A device or algorithm that outputs a sequence of binary bits

(RBG) that appears to be statistically independent and unbiased.

Random Number A device or algorithm that can produce a sequence of -random

Generator (RNG) numbers that appears to be from an ideal random distribution.

Reseed To aquire additional bits with sufficient entropy for the
desired security strength

Security Strength A number associated with the amount of work (that is, the
number of operations) that is required to break a cryptographic
algorithm or system; a security strength is specified in bits and
is a specific value from the set (112, 128, 192, 256). The
amount of work needed ig 2",

Seed Noun : A string of bits that is used as input to a Deterministic
Random Bit Generator (DRBG). The seed will determine a
portion of the internal state of the DRBG, and its entropy must
be sufficient to support the security strength of the DRBG.
Verb : To aquire bits with sufficient entropy for the desired
security strength. These bits will be used as input to a DRBG
to determine a portion of the initial internal state. Also see
reseed.

Seedlife The length of the seed period.

Seed Period The period of time between initializing a DRBG with one seed
and reseeding that DRBG with another seed.

Sequence An ordered set of quantities.

Shall Used to indicate a requirement of this Recommendation.

Should Used to indicate a highly desirable feature for a DRBG that is
not necessarily required by this Recommendation.

String See Bitstring.

Unbiased A value that is chosen from a sample space is said to be

unbiased if all potential values have the same probability of
being chosen. Contrast with biased.
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Unpredictable In the context of random bit generation, an output bit is
unpredictable if an adversary has only a negligible advantage
(that is, essentially not much better than chance) in predicting
it correctly.

Working State A subset of the internal state that is used by a DRBG to
produce pseudorandom bits at a given point in time. The
working state (and thus, the internal state) is updated to the
next state prior to producing another string of pseudorandom
bits.

23
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5 Symbols and Abbreviated Terms

The following abbreviations are used in this document:

Abbreviation Meaning
AES Advanced Encryption Standard.

DRBG Deterministic Random Bit Generator,
ECDLP Elliptic Curve Discrete Logarithm Problem.
FIPS Federal Information Processing Standard.
HMAC Keyed-Hash Message Authentication Code.
NRBG Non-deterministic Random Bit Generator.
RBG Random Bit Generator.

TDEA Triple Data Encryption Algorithm.

The following symbols are used in this document.

Symbol Meaning

+ Addition

X1 Ceiling: the smallest integer = X. For
example, [5] =5, and [5.3] =6.

Lx] The largest integer less than or equal to X.
For example, ls)= 5, and [53)=5.

XoY Bitwise exclusive-or (also bitwise addition
mod 2) of two bitstrings X and Y of the
same length.

XY Concatenation of two strings X and Y. X and
Y are either both bitstrings, or both octet
strings.

ged (x, ) The greatest common divisor of the integers
xandy.

len (a) The length in bits of string a.

24
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Symbol Meaning
x mod » The unique remainder r (where 0 <r < n-1)
when integer x is divided by n. For example,
23 mod 7=2.
Used in a figure to illustrate a "switch"
@ between sources of input.

! {ay, ..a;} The internal state of the DRBG at a point in
time. The types and number of the a;
depends on the specific DRBG.

0 A string of x zero bits.

25
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6 Document Organization

This Recommendation is organized as follows:

-— Section 7 provides a functional model for a DRBG and discusses the major DRBG
components.

— Section 8 provides BRBG-concepts and general requirements—Fhis-seetion-provides
eeneepts—a-nd—geﬂeml-reqm-tements for the unplementatlon and use of a DRBG Tae

provided:

— Section 9 specifies the DRBG functions introduced in Section 8. These functions
use the DRBG algorithms specified in Section 10.

- Section 10 specifies Approved DRBG algorithms. Algorithms have been specified
that are based on the hash functions specified in FIPS 180-2 (Secure Hash
Standard), block cipher algorithms specified in FIPS 197 and NIST Special
Publication 800-67 (AES and TDEA, respectively), and a number theoretic problem
that is expressed in elliptic curve technology.

— Section 11 addresses assurance issues for DRBGs, including documentation
requirements, implementation validation and health testing,

This Recommendation also includes the following appendices:
— Appendix A specifies additional DRBG-specific information.
— Appendix B provides conversion routines.
— Appendix C provides guidance on entropy and entropy sources,

— Appendix D provides guidance on the construction of a random bit generator from
an entropy source and a DRBG.

— Appendix E discusses security considerations for-implementing DRBGswhen
extracting bits in the Dual EC DRBG.

— Appendix F provides example pseudocode for each DRBG.
— Appendix G provides a discussion on DRBG selection.

— Appendix H provides references.

26
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7 DRBG Functional Model

Figure 1 provides a functional model of DRBGs. The components of this model are
discussed in the following subsections.

Personalization

Uninstantiate
Function

MY

SN

String Nonce  Entropy Input Additional Input
l l b h A
Instantiate Reseed
Function Function
A 4

Generate
Function

l

Pseudorandom Output

Figure 1: DRBG Functional Model

7.21 Entropy Input

The entropy input is provided to a DRBG for the sced (see Section 8.6). The entropy input
and the seed shall be kept secret. The secrecy of this information provides the basis for the
security of the DRBG. At a minimum, the entropy input shall provide the requested amount
of entropy for a DRBG. Appropriate sources for the entropy input are discussed in
Appendix C. :

Ideally, the entropy input will be full entropy: however, the DRBGs have been specified to

allow for som in the entro llowing the le f the entropy input to be
lon an the required amount of entropy (expressed in bits). The en input can be
efine ¢ a variable len wi limits), as well as fixed length. In all cases. the

DRBG expects that when entroy mput is requested the retumed bltstrmg w111 contam at
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the amount requested is not required, but is desirable.
7.32 Other Inputs

Other information may be obtained by a DRBG as input. This information may or may not
be required to be kept secret by a consuming application; however, the security of the
DRBG itself does not rely on the secrecy of this information. The information should be
checked for validity when possible.

During DRBG instantiation, a nonce is-may be required, and if used, it is combined with the
entropy input to create the initial DRBG seed. EriteriafortheThe nonce and its use are
provided-discussed in Sectiong 8.6.1 and -8.6.7.

This Recommendation strongly advigges the insertion of a personalization string during
DRBG instantiation; when used, the personalization string is combined with the entropy
bits and a nonce to create the initial DRBG seed. The personalization string shall be unique
for all instantiations of the same DRBG type (e.g., HMAC_DRBG). See Section 8.7.1 for
additional discussion on personalization strings.

Additional input may also be provided during reseeding and when pseudorandom bits are
requested. See Section 8.7.2 for a discussion of this input.

7.43 The Internal State

The internal state is the memory of the DRBG and consists of all of the parameters,
variables and other stored values that the DRBG uses or acts upon. The internal state
contains both administrative data (e.g., the security level) and data that is acted upon and/or
modified during the generation of pseudorandom bits (i.e., the working state). The contents
of the internal state is dependent on the specific DRBG and includes all information that is
required to produce the pseudorandom bits from one request to the next.

7.864 The DRBG Functions
The DRBG functions handle the DRBG’s internal state. The DRBGs in this
Recommendation have four separate functions (exclusive of health tests):

1. The instantiate function acquires entropy input and may combine it with a nonce
and a personalization string to create a seed from which the initial internal state is
created.

2. The generate function generates pseudorandom bits upon request, using the current
internal state, and generates a new internal state for the next request.

3. The reseed function acquires new entropy input and combines it with the current
internal state and any additional input that is provided to create a new seed and a
new internal state.

4. The uninstantiate function zeroizes (i.e., erases) the internal state.
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7.65 Health Tests

Health testing is used to determine that the DRBG continues to function correctly. The
health tests are discussed in Sections 9.5 and 11.43.
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8. DRBG Concepts and General Requirements
8.1 DRBG Functions

A DRBG requires instantiate, uninstantiate, generate, and testing functions. A DRBG
maymay also include a reseed function. A DRBG shall be instantiated prior to the
generation of output by the DRBG. These functions are specified in Section 9.

8.2 DRBG Instantiations

A DRBG maymay be used to obtain .
pseudorandom bits for different Instantiate: Initislize with seed;
purposes (e.g., DSA private keys
and AES keys) and ma¥ymay be
separately instantiated for each
purpose.

l Seed period 1
A DRBG is instantiated using a seed } Seed period 2

[ (Opt) Reseed with soed ,

and meymay be reseeded; when
reseeded, the seed shall be different
than the seed used for instantiation.
Each seed defines a seed period for
the DRBG instantiation; an
instantiation consists of one or more
seed periods that begin when a new
seed is acquired (see Figure 2).

8.3 Internal States

| (Opt)Reseed with ared,

Seed periods 3ton

Figure 2: DRBG Instantiation

During instantiation, an initial internal state is derived from the seed. The internal state for
an instantiation includes:

1. Working state:

a. One or more values that are derived from the seed and become part of the
internal state; these values must usually remain secret, and

b. A count of the number of requests or blocks produced since the instantiation
was seeded or reseeded.

2. Administrative information (e.g., security strength and prediction resistance flag).

The internal state shall be protected at least as well as the intended use of the
pseudorandom output bits requested by the consuming application. A DRBG
implementation saaymay be designed to handle multiple instantiations. Each DRBG
instantiation shall have its own internal state. The internal state for one DRBG
instantiation shall not be used as the internal state for a different instantiation.

A DRBG transitions between internal states when the generator is requested to provide
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new pseudorandom bits. A DRBG smaymay also be implemented to transition in response
to internal or external events (e.g., system interrupts) or to transition continuously (e.g.,
whenever time is available to run the generator).

8.4 Security Strengths Supported by an Instantiation

The DRBGs specified in this Recommendation support four security strengths: 112, 128,
192 or 256 bits. The actual security strength supported by a given instantiation depends on
the DRBG implementation and on the amount of entropy provided to the instantiate
function. Note that the security strength actually supported by a particular instantiation
maycould be less than the maximum security strength possible for that DRBG
implementation (see Table 1). For example, a DRBG that is designed to support a
maximum security strength of 256 bits could be instantiated to support only a 128-bit
security strength if the additional security provided by the 256-bit security strength is not
required.

Table 1: Possible Instantiated Security Strengths

Maximum Designed 112 128 192 256
Security Strength

Possible Instantiated 112 112,128 112,128,192 | 112,128,192,
Security Strengths 256

A security strength for the instantiation is requested by a consuming application during
instantiation, and the instantiate function obtains the appropriate amount of entropy for the
requested security strength. Any security strength may be requested, but the DRBG will
only be instantiated to one of the four security strengths above, depending on the DRBG
implementation. A requested security strength that is below the 112-bit security strength or
is between two of the four security strengths will be instantiated to the next highest level
(e.g., a requested security strength of 96 bits will result in an instantiation at the 112-bit
security strength).

Following instantiation, requests can be made to the generate function for pseudorandom
bits. For each generate request, a security strength to be provided for the bits is requested.
Any security strength can be requested up to the security strength of the instantiation, e.g.,
an instantiation could be instantiated at the 128-bit security strength, but a request for
pseudorandom bits could indicate that a lesser security strength is actually required for the
bits to be generated. The generate function checks that the requested security strength does
not exceed the security strength for the instantiation. Assuming that the request is valid, the
requested number of bits is returned.

When an instantiation is used for multiple purposes, the minimum entropy requirement for
each purpose must be considered. The DRBG needs to be instantiated for the highest
security strength required. For example, if one purpose requires a security strength of 112
bits, and another purpose requires a security strength of 256 bits, then the DRBG needs to
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be instantiated to support the 256-bit security strength.
8.5 DRBG Boundaries

As a convenience, this Recommendation uses the notion of a “DRBG boundary” to explain
the operations of a DRBG and its interaction with and relation to other processes; a DRBG
boundary contains all DRBG functions and internal states required for 2 DRBG. A DRBG
boundary is entered via the DRBG’s public interfaces, which are made available to
consuming applications.

Within a DRBG boundary,

1. The DRBG internal state and the operation of the DRBG functions shall only be
affected according to the DRBG specification.

2. The DRBG internal state shall exist solely within the DRBG boundary. The
internal state shall be contained within the DRBG boundary and shall not be
accessed by non-DRBG functions or other instantiations of that or other DRBGs.

3. Information about secret parts of the DRBG internal state and intermediate values
in computations involving these secret parts shall not affect any information that
leaves the DRBG boundary, except as specified for the DRBG pseudorandom bit
outputs.

Each DRBG includes one or more cryptographic primitives (e.g., a hash function). Other
applications may use the same cryptographic primitive as long as the DRBG’s internal
state and the DRBG functions are not affected.

A DRBG’s functions may be contained within a single device, or may be distributed across

multiple devices (see Figures 3 and 4). T
Figure 3 depicts a DRBG for which all =
functions are contained within the same Provnrr R | By
device. Figure 4 provides an example of Prostirs F i
DRBG functions that are distributed across Reseed ___f| Rewed |

. . ’ . Instantlation DRBG
multiple devices. In this latter case, each Procedure
device has a DRBG sub-boundary that Fo—
contains the DRBG functions implemented Request Bits L~ | Pseadorandom
on that device, and the boundary around the —
entire DRBG consists of the aggregation of Tost —¥ | Testing =

. A DRBG 4 Procedure

sub-boundaries providing the DRBG
functionality. The use of distributed DRBG Uslasantate ! | it
functions may be convenient for restricted Erestire
environments (e.g., smart card applications)
in which. the primary use of the' DRBQ does Figure 3: DRBG Functions within a
not require repeated use of the instantiate or Single Device

reseed functions.

Although the entropy input is shown in the figures as originating outside the DRBG
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boundary, it may originate from within the boundary.

Entropy Input
e e e T T T T e i
| |
| I
| ]
| b |
| |
: Uninstantiate Instantiate Protected State | | Generate Uninstantiate !
} Function Function »|  Function Function !
|
| I
| |
: Test Test !
: Function Function :
: ]
1
I DRBG Sub-Boundary (Instantiate) DRBG Sub-Boundary (Generate) :
. e i — . |
DRBG Boundary

Figure 4: Distributed DRBG Functions

Each DRBG boundary or sub-boundary shall contain a test function to test the “health” of
other DRBG functions within that boundary. In addition, each boundary or sub-boundary
shall contain an uninstantiate function in order to perform and/or react to health testing.

When DRBG functions are distributed, appropriate mechanisms shall be used to protect
the confidentiality and integrity of the internal state or parts of the internal state that are
transferred between the distributed DRBG sub-boundaries. The confidentiality and
integrity mechanisms and security strength shall be consistent with the data to be protected
by the DRBG’s consuming application (see SP 800-57).

8.6 Seeds

When a DRBG is used to generate pseudorandom bits, a seed shall be acquired prior to the
generation of output bits by the DRBG. The seed is used to instantiate the DRBG and
determine the initial internal state.

Reseeding is a means of reeeveringrestoring the secrecy of the output of the DRBG if a
seed or the internal state becomes known. Periodic reseeding is a good countermeasure to
the potential threat that the seeds and DRBG output become compromised. In some
implementations (e.g., smartcards), an adequate reseeding process may not be possible. In
these cases, the best policy might be to replace the DRBG, obtaining a new seed in the
process (e.g., obtain a new smart card).

The seed and its use by a DRBG shall be generated and handled as specified in the
following subsections.
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8.6.1 Seed Construction for Instantiation

Figure 5 depicts the seed construction

process for instantiation. The seed -
material used to determine a seed for Entropy Nonce P‘:o';:':,':luon
instantiation consists of entropy input, a Toput String

nonce and an optional personalization
string. Entropy input shall always be
used in the construction of a seed,; Opt.
requirements for the entropy input are df,
discussed in Section 8.6.3. Except for the
case noted below, Aa nonce shall alse-be
used; requirements for the nonce are
discussed in Section 8.6.7. This
Recommendation also advises the
inclusion of a personalization string;
requirements for the personalization
string are discussed in Section 8.7.12.

Figure 5: Seed Construction for Instantiation

Depending on the DRBG and the source of the entropy input, a derivation function is
required to derive a seed from the seed material. When full entropy input is readily
available, the DRBG based on block cipher algorithms (see Section 10.2) may be
implemented without a derivation function. When implemented in this manner, a nonce (as
shown in Figure 5) is not used. Note, however, that the personalization string could contain
a nonce, if desired. -

8.6.2 Seed Construction for
Reseeding

Figure 6 depicts the seed construction

) 0 P Internal Optional
process for reseeding an instantiation. State Entropy Additional
The seed material for reseeding Value Input Tnput
consists of a value that is carried in the
internal state3, new entropy input and,
optionally, additional input. The O,
internal state value and the entropy df,
input are required; requirements for
the entropy input are discussed in
Secrtion 8.6.3. Requirements for the Seed
additional input are discussed in
Section 8.7.23. As in Section 8.6.1, a
derivation function may be required
for reseeding. See Section 8.6.1 for
further guidance.

Figure 6: Seed Construction for Reseeding

3 See each DRBG specification for the value that is u?edc'i.
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8.6.3. Entropy Requirements for the Entropy Input

The entropy input shallh e en that is ual too eater than the securi ngth of
the instantiation. Fhe-en o 506 alle = ha

des:red—seeuﬂty-sﬁengﬁa—Addmonal entropy meymay be prov1ded in the nonce or the
optional personalization string during instantiation, or in the additional input during

reseeding it generation, but this is not required. The use of more entropy than the minimum
value will offer a security “cushion”. This may be useful if the assessment of the entropy

vided in the entropy input is incorrect. Having more entropy than amount is
acceptable: having less en the ass ami Id be fatal to security. The
nce of more e than is i ially durin instantiatiation, will provide a
er level of assuran the minimum required entro

8.6.4 Seed Length

The minimum length of the seed depends on the DRBG and the security strength required
by the consuming application. See Section 10.

8.6.5 Entropy Input Source

The source of the entropy input meyshall be either:
1. -aAn Approved NRBG,

2. aAn Approved DRBG, thus forming a chain of at least two DRBGs; the highest-
level DRBG in the chain shall be seeded by an Approved NRBG _or an entropy

source whose entropy characteristics are known, or
3. -erametherAn entropy source whose entropy characteristics are known.

Further discussion about the-entropy_and entropy input-sources is provided in Appendix C;
discussion on RBG construction is provided in Appendix D.

8.6.6 Entropy Input and Seed Privacy

The entropy input and the resulting seed shall be handled in a manner that is consistent
with the security required for the data protected by the consuming application. For
example, if the DRBG is used to generate keys, then the entropy inputs and seeds used to
generate the keys shall (at a minimum) be treated-protected atleast-as well as the key<at-a
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8.6.7 Nonce

A nonce is-may be required in the construction of a seed during instantation. The nonce
shall be either:

a. A random value with at least (security strength/2) bits of entropy,

b. A non-random value that is expected to repeat no more often than a
(security_strength/2)-bit random string would be expected to repeat.

For case a, the nonce smeymay be acquired from the same source and at the same time as
the entropy input. In this case, the seed could be considered to be constructed from an
“extra strong” entropy input and the optional personalization string, where the entropy for
the entropy input is equal to or greater than (3/2 security_strength) bits.

The nonce is required for instantiation to provide security_strength bits of security. When
a DRBG is instantiated many times without a nonce, a compromise may become more
likely. In some consuming applications, a single DRBG compromise may reveal long-term
secrets (e.g., a compromise of the DSA per-message secret reveals the signing key).

8.6.8 Reseeding

Generating too many outputs from a seed (and other input information) may provide
sufficient information for successfully predicting future outputs unless prediction
resistance is provided (see Section 8.8). Periodic reseeding will reduce security risks,
reducing the likelihood of a compromise of the data that is protected by cryptographic
mechanisms that use the DRBG.

Seeds shall have a finite seedlife (i.e., the length of the seed period); the maximum seedlife
is dependent on the DRBG used. Reseeding is accomplished by 1) an explicit reseeding of
the DRBG by the consuming application, or 2) by the generate function when prediction
resistance is requested (see Section 8.8) or the limit of the seedlife is reached. An
alternative to reseeding is to create an entirely new instantjation.

Reseeding of the DRBG shall be performed in accordance with the specification for the
given DRBG. The DRBG reseed specifications within this Recommendation are designed
to produce a new seed that is determined by both the old seed and newly-obtained entropy
input that will support the desired security strength.

8.6.9 Seed Use
A seed that is used to initialize one instantiation of a DRBG shall not be intentionally used
to reseed the same instantiation or used as a seed for another DRBG instantiation. Note

that a DRBG does not provide output until a seed is available, and the internal state has
been initialized (see Section 10).
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8.6.10 Seed Separation

Seeds used by DRBGs and the entropy input used to create those seeds shall not be used
for other purposes (e.g., domain parameter or prime number generation).

8.7  Other Inputs to the DRBG

Other input may be provided during DRBG instantiation, pseudorandom bit generation and
reseeding. This input may contain entropy, but this is not required. During instantiation, a
personalization string may be provided and combined with entropy input and a nonce to
derive a seed (see Section 8.6.1). When pseudorandom bits are requested and when
reseeding is performed, additional input may be provided.

Depending on the method for acquiring the input, the exact value of the input may or may
not be known to the user or consuming application. For example, the input could be
derived directly from values entered by the user or consuming application, or the input
could be derived from information introduced by the user or consuming application (e.g.,
from timing statistics based on key strokes), or the input could be the output of another
DRBG or an NRBG.

8.7.1 Personalization String

During instantiation, a personalization string should be used to derive the seed (see
Section 8.6.1). The intent of a personalization string is to differentiate this DRBG
instantiation from all others that might ever be created. The personalization string should
be set to some bitstring that is as unique as possible, and meymay include secret
information. The value of any secret information contained in the personalization string
should be no greater than the claimed strength of the DRBG, as the DRBG's cryptographic
mechanisms will protect this information from disclosure. Good choices for the
personalization string contents include:

e Device serial numbers, e Network addresses,

e Public keys, e Special secret key values for this specific

e User identification, DRBG instantiation,

e Private keys, e Application identifiers,

e PINs and passwords, e Protocol version identifiers,

. Random numbers, and
e Secret per-module or per-device
values, e Nonces.
e Timestamps,
8.7.2 Additional Input

During each request for bits from a DRBG and during reseeding, the insertion of additional
input is allowed. This input is optional and may be either secret or publicly known; its
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value is arbitrary, although its length may be restricted, depending on the implementation
and the DRBG. The use of additional input may be a means of providing more entropy for
the DRBG internal state that will increase assurance that the entropy requirements are met.
If the additional input is kept secret and has sufficient entropy, the input can provide more
assurance when recovering from the compromise of the seed or one or more DRBG
internal states.

8.8 Prediction Resistance and Backtracking Resistance

Seed — | State, || State, | * = ¢ |State,y||State || Statc_ || State.,|(Statcnl ¢ * °

Figure 7: Sequence of DRBG States

Figure 7 depicts the sequence of DRBG internal states that result from a given seed. Some
subset of bits from each internal state are used to generate pseudorandom bits upon request
by a user. The following discussions will use the figure to explain backtracking and
prediction resistance.

Suppose that a compromise occurs at State,, where State, contains both secret and public
information.

Backtracking Resistance: Backtracking resistance means that a compromise of the DRBG
internal state has no effect on the security of prior outputs. That is, an adversary who is
given access to all of any-subset-ef-that prior output sequence cannot distinguish it from
random; if the adversary knows only part of the prior output, he cannot determine any bit
of that prior output sequence that the-adversaryhe has not already seen. In-otherswords;«
compromise-has-no-effect-on-the-security-of prior-owiputs:

For example, suppose that an adversary knows Statex,-.end-alse-knews-the-output-bits
from-State-te-State, - Backtracking resistance means that:

a. _The output bits from State; to State,.; cannot be distinguished from random.

a—b. The prior internal state values themselves (State; to Statey. ) cannot be
recovered, given knowledge of the secret information in State,-State. -and-its
memmmm&wmwﬁaﬂm
“hacked-up)-In-addition—sinee the-output bitsfrom-State,-to-Srate, , appear-to-be
randemsthe-output-bits-for-State, cannot-be-predicted-from-the-output-bits-of
State-to-State, x

38



NIST SP 800-90 DRAFT DecemberSeptomber 2005

Backtracking resistance can be provided by ensuring that the DRBG algorithm is a one-
way function. All DRBGs in this Recommendation have been designed to provide
backtracking resistance.

Prediction Resistance: Prediction resistance means that a compromise of the DRBG
internal state has no effect on the security of future DRBG outputs. H-a-compremiseof
Smmaeewm—pmmmmneeﬁmsumﬂhmhemmwm
from-states-afier-the compremise remains-seeure-That is, an adversary who is given access
to all of any-subset-efthe output sequence after the compromise cannot distinguish it from
random; if the adversary knows only part of the future output sequence, an-adversaryhe
cannot predict any bit of that future output sequence that he has not already seen.la-other
werds-a-compromise-has-no-gffect-on-the-seeurity-of futire-owipuis:

For example, suppose that an adversary knows State,: -and-slse-knows-the-output-bits-from

State - to-State..—Prediction resistance means that;

a. The output bits from State.,; and forward cannot be distinguished from an ideal
random bitstring by the adversary.

b—b. The future internal state values themselves (Stafey, and forward ) cannot be
predicted, given knowledge of State,-State, -and-its-output-bits-cannot-be
determined-from-knowledge-of State {i-e-Statecannot-be“backed-up-In
addition—sinee-the-output-bits-from-State,-to-Stafe, o appear-to-berandom;-the
wmme”emmme&&mmm%m+m

oo —radditien;

MWM&MMMWMW{
bitsfor-State,. -cannot-be-determined-{rom-the-output-bits-of-State,.o te-State,.y

Prediction resistance can be provided only by ensuring that a DRBG is effectively reseeded
between DRBG requests. That is, an amount of entropy that is sufficient to support the
security strength of the DRBG (i.e., an amount that is at least equal to the security strength)
must be provided to the DRBG in a way that ensures that knowledge of the currentprevieus
DRBG internal state does not allow an adversary any useful knowledge about future
DRBG internal states or outputs. Prediction resistance is provided in this Recommendation
by the use of a prediction resistance flag.

39



NIST SP 800-90 DRAFT DecemberSeptomber 2005

9 DRBG Functions

The DRBG functions in this Recommendation are specified as an algorithm and an
“envelope” of pseudocode around that algorithm. The pseudocode in the envelopes
(provided in this section) checks the input parameters, obtains input not provided by the
input parameters, accesses the appropriate DRBG algorithm and handles the internal state.
A function need not be implemented using such envelopes, but the function shall have
equivalent functionality.

In the specifications of this Recommendation, a Get_entropy_input pseudo-function is
used for convenience. This function is not fully specified in this Recommendation, but has
the following meaning:

BGet_entropy_input: A function that is used to obtain entropy input. The function
call is:

(status, entropy _input) = Get_entropy_input (min_entropy, min_length,
max_ length)

which requests a string of bits (entropy_input) with at least min_entropy bits of
entropy. The length for the string shall be equal to or greater than min_length bits, and
less than or equal to max_length bits. A status code is also returned from the function.

Note that an implementation may choose to define this functionality differently; for
example, for many of the DRBGs, the min_length = min_entropy for the
Get_entropy_input function, in which case, the second parameter could be omitted.

9.1 Instantiating a DRBG

A DRBG shall be instantiated prior to the generation of pseudorandom bits. The instantiate
function: ‘

1. Checks the validity of the input parameters,

Determines the security strength for the DRBG instantiation,

Determines any DRBG specific parameters (e.g., elliptic curve domain parameters),
Obtains entropy input with entropy sufficient to support the security strength,
Obtains the nonce (if required),

Determines the initial internal state using the instantiate algorithm,

RS O

Returns a state_handle for the internal state to the consuming application (see

below).

Let working_state be the working state for the particular DRBG, and let min_length, max_
length, and highest_supported_security_strength be defined for each DRBG (see Section
10).
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The following or an equivalent process shall be used to instantiate a DRBG.
Input from a consuming application_for instantiation:

1. requested_instantiation_security_strength: A requested security strength for the
instantiation. DRBG implementations that support only one security strength do not
require this parameter; however, any consuming application using that DRBG
implementation must be aware of this limitation.

2. prediction_resistance_flag: Indicates whether or not prediction resistance may be
required by the consuming application during one or more requests for
pseudorandom bits. DRBGs that are implemented to always or never support
prediction resistance do not require this parameter. However, the user of a
consuming application must determine whether or not prediction resistance may be
required by the consuming application before electing to use such a DRBG
implementation. If the prediction_resistance_flag is not needed (i.c., because
prediction resistance is always or never performed), then the input parameter may
be omitted, and the prediction_resistance_flag may be omitted from the internal
state in step 11 of the instantiate process.

3. personalization_string: An optional input that provides personalization information
(see Sections 8.6.1 and 8.7.1). The maximum length of the personalization string
(max_personalization_string_length) is implementation dependent, but shall be
less than or equal to the maximum length specified for the given DRBG (see
Section 10). If a personalization string will never be used, then the input parameter
and step 3 of the instantiate process may be omitted, and process step 9 may be
modified to omit the personalization string.

Required information not provided by the consuming application during
instantiation:

Comment: This input shall not be provided
by the consuming application as an input
parameter during the instantiate request.

1. entropy input: Input bits containing entropy. The maximum length of the
entropy_input is implementation dependent, but shall be less than or equal to the
specified maximum length for the selected DRBG (see Section 10).

2. nonce: A nonce as specified in Section 8.6.7. Note that if a random value is used as
the nonce, the entropy_input and nonce could be acquired using a single
| Get_entropy_input call (see step 6 of the instantiate process); in this case, the first
parameter would be adjusted to include the entropy for the nonce (i.c.,
security_strength would be increased by at least security_strength/2), process step
8 would be omitted, and the nonce would be omitted from the parameter list in
process step 9.

\ Output to a consuming application_after instantiation:
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status: The status returned from the instantiate function. The starus will indicate
SUCCESS or an ERROR. If an ERROR is indicated, either no state_handle or an
invalid state_handle shall be returned. A consuming application should check the
status to determine that the DRBG has been correctly instantiated.

state_handle: Used to identify the internal state for this instantiation in subsequent
calls to the generate, reseed, uninstantiate and test functions.

Information retained within the DRBG boundary _after instantiation:

The internal state for the DRBG, including the working_state and administrative
information (see Sections 8.3 and 10).

Instantiate Process:

Comment: Check the validity of the input
parameters,

If requested_instantiation_security_strength >
highest supported_security_strength, then returraen an ERROR_FLAG.

If prediction_resistance_flag is set, and prediction resistance is not supported, then
return an ERROR_FLAG.

If the length of the personalization_string > max_personalization_string_length,
return an ERROR_FLAG.

Set security_strength to the nearest security strength greater than or equal to
requested_instantiation_security_strength.

‘Comment: The following step is required by
the Dual EC_DRBG when multiple curves
are available (see Section 10.3.2:21.2).
Otherwise, the step should be omitted.

Using security_strength, select appropriate DRBG parameters.
Comment: Obtain the entropy input.

(status, entropy_input) = Get_entropy_input (security_strength, min_length,
max_length).

If an ERROR is returned in step 6, return an

CATASTROPHIC ERROR_FLAG.

Obtain a nonce. Comment: This step shall include any
appropriate checks on the acceptability of the
nonce. See Section 8.6.7.

Comment: Call the appropriate instantiate
algorithm in Section 10 to obtain values for
the initial working state.
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9. initial working state = Instantiate_algorithm (entropy_input, nonce,
personalization_string). -

10. Get a state_handle for a currently empty internal state. If an unused internal state
cannot be found, return an ERROR_FLAG.,

11. Set the internal state indicated by state_handle to the initial values for the internal
state (i.e., set the working state to the values returned as initial working_state in
step 9 and any other values required for the working_state (see Section 10), and set

the working—state-and-administrative information_to the appropriate values (e.g..
the values of security_strength and the prediction_resistance_flag).--es-eppropriate:

12. Return SUCCESS and state_handle.
9.2 Reseeding a DRBG Instantiation

The reseeding of an instantiation is not required, but is recommended whenever a
comsuming application and implementation are able to perform this process. Reseeding
will insert additional entropy into the generation of pseudorandom bits. Reseeding may be:

e explicitly requested by a consuming application,
e performed when prediction resistance is requested by a consuming application,

o triggered by the generate function when a predetermined number of pseudorandom
outputs have been produced or a predetermined number of generate requests have
been made (i.e., at the end of the seedlife), or

e triggered by external events (e.g., whenever sufficient entropy is available).

If a reseed capability is not available, a new DRBG instantiation may be created (see
Section 9.1).

The reseed function:
1. Checks the validity of the input parameters,
2. Obtains entropy input with sufficient entropy to support the security strength, and

3. Using the reseed algorithm, combines the current working state with the new
entropy input and any additional input to determine the new working state.

Let working_state be the working state for the particular DRBG, and let min_length and
max_ length be defined for each DRBG (see Section 10).

The following or an equivalent process shall be used to reseed the DRBG instantiation.
Input from a consuming application_for reseeding:

1) state_handle: A pointer or index that indicates the internal state to be reseeded.
This value was returned from the instantiate function specified in Section 9.1.
2) additional_input: An optional input. The maximum length of the additional_input
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(max_additional input length) is implementation dependent, but shall be less than
or equal to the maximum value specified for the given DRBG (see Section 10). If
additional _input will never be used, then the input parameter and step 2 of the
reseed process may be omitted, and step 2-5 may be modified to remove the
additional_input from the parameter list.

I Required information not provided by the consuming application_during reseeding:

2.

Comment: This input shall not be provided
by the consuming application in the input
parameters.

entropy_input: Input bits containing entropy. The maximum length of the
entropy_input is implementation dependent, but shall be less than or equal to the
specified maximum length for the selected DRBG (see Section 10).

Internal state values required by the DRBG for reseeding for the working state and
administrative information, as appropriate.

| Output to a consuming application_after reseeding:

1.

status: The status returned from the function. The status will indicate SUCCESS or
an ERROR.

| Information retained within the DRBG boundary after reseeding:

Replaced internal state values (i.e., the working state).

Reseed Process:

Comment: Get the current internal state and
check the input parameters.

Using state_handle, obtain the current internal state. If state_handle indicates an
invalid or unused internal state, return an ERROR_FLAG.

If the length of the additional input > max_additional_input_length, return an
ERROR_FLAG.

Comment: Obtain the entropy input.

(status, entropy_input) = Get_entropy_input (security strength, min_length,
max_length).

If an ERROR is returned in step 3, return a_ CATASTROPHIC »
ERROR_FLAG.

Comment: Get the new working state using
the appropriate reseed algorithm in Section
10.

new_working_state = Reseed_algorithm (working_state, entropy input,
additional_input).
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6.

7.

Replace the working_state in the internal state indicated by state_handle with the
new-values of new_working state obtained in step 5.

Return SUCCESS.

9.3 Generating Pseudorandom Bits Using a DRBG

This functjon is used to generate pseudorandom bits after instantiation or reseeding. The
generate function:

1.
2.

3

4

5.
8.3.1

Checks the validity of the input parameters.

Calls the reseed function to obtain sufficient entropy if the instantiation needs
additional entropy because the end of the seedlife has been reached or prediction
resistance is required; see Sections 9.3.2 and 9.3.3 for more information on
reseeding at the end of the seedlife and on handling prediction resistance requests.

Generates the requested pseudorandom bits using the generate algorithm.
Updates the working state.

Returns the requested pseudorandom bits to the consuming appication.

The Generate Function

Let outlen be the length of the output block of the cryptographic primitive (see Section 10).

The following or an equivalent process shall be used to generate pseudorandom bits.

| Input from a consuming application_for generation:

1.
2.

4.

state_handle: A pointer or index that indicates the internal state to be used.

requested_number of bits: The number of pseudorandom bits to be returned from
the generate function. The max_number_of bits_per_request is implementation
dependent, but shall be less than or equal to the value provided in Section 10 for a
specific DRBG.

requested_security_strength: The security strength to be associated with the
requested pseudorandom bits. DRBG implementations that support only one
security strength do not require this parameter; however, any consuming
application using that DRBG implementation must be aware of this limitation.

prediction_resistance_request: Indicates whether or not prediction resistance is to
be provided. DRBGs that are implemented to always or never support prediction
resistance do not require this parameter. However, the user of a consuming
application must determine whether or not prediction resistance may be required by
the application before electing to use such a DRBG implementation.

If prediction resistance is never provided, then the prediction_resistance_request
input parameter and step 5 of the generate process may be omitted, and step 7 may
be modified to omit the check for the prediction_resistance_request.
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If prediction resistance is always performed, then the prediction_resistance_request
input parameter and step 5 may be omitted, and steps 7 and 8 are replaced by:

status = Reseed (state_handle, additional _input).
If status indicates an ERROR, then return status.
Using state_handle, obtain the new internal state.

(status, pseudorandom_bits, working_state) = Generate_algorithm
(working_state, requested_number_of bits).

Note that if additional_input is never provided, then the additional input parameter
in the Reseed call above may be omitted.

5. additional _input: An optional input. The maximum length of the additional_input
(max_additional input length) is implementation dependent, but shall be less than
or equal to the specified maximum length for the selected DRBG (see Section 10).
If additional _input will never be used, then the input parameter, process step 4,
step 7.4 and the additional_input input parameter in step 8 may be omitted.

| Required information not provided by the consuming application_during generation:

1. Internal state values required for generation for the working_state and
administrative information, as appropriate.

I Output to a consuming application_after generation:

1.  status: The status returned from the function. The status will indicate SUCCESS
or an ERROR.

2. pseudorandom_bits: The pseudorandom bits that were requested.
| Information retained within the DRBG boundary after generation:
Replaced internal state values (i.e., the working_state).
Generate Process:

Comment: Get the internal state and check the
input parameters.

1. Using state_handle, obtain the current internal state for the instantiation. If
state_handle indicates an invalid or unused internal state, then return an
| ERROR_FLAG.

2. Ifrequested number of bits > max_number_of bits_per request, then return an
‘ ERROR_FLAG.

3. If requested security strength > the security_strength indicated in the internal
| state, then return an ERROR_FLAG.

4. If the length of the additional input > max_additional input_length, then return an
| ERROR_FLAG.

46



NIST SP 800-90 DRAFT DecemberSeptember 2005

5. If prediction_resistance_request is set, and prediction_resistance_flag is not set,
then return an ERROR_FLAG.

6. Clear the reseed required flag.

7. Ifreseed required flag is set, or if prediction_resistance_request is set, then

Comment: Reseed the instantiation (see
Section 9.2).

7.1 status = Reseed (state_handle, additional _input).

7.2 If status indicates an ERROR, then return an-ERRORstatus.
7.3 Using state_handle, obtain the new internal state.

7.4 additional input = the Null string.

7.5 Clear the reseed_required flag.

Comment;: Request the generation of
pseudorandom_bits using the appropriate
generate algorithm in Section 10.

8. (status, pseudorandom_bits, new_working state) = Generate_algorithm
(working_state, requested number of bits, additional_input).

9. If status indicates that a reseed is required before the requested bits can be
generated, then

9.1 Set the reseed required flag.
9.2 Gotostep7.
- Hes ERROP-Hsroturnod-fom-stop-S;

+1-Replace the old working _state in the internal state indicated by state_handle with
the new-values of new_working state.

211. Return SUCCESS and pseudorandom_bits.

Implementation notes:

If a reseed capability is not available, then steps 6 and 7 may be removed; and step 9 is
replaced by:

9. If status indicates that a reseed is required before the requested bits can be
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generated, then

9.1 status = Uninstantiate (state_handle).

9.2

93 Return an indication that the DRBG instantiation can no longer be used.
9.3.2 Reseeding at the End of the Seedlife

When pseudorandom bits are requested by a consuming application. the generate function
checks whether or not a reseed is required by comparing the counter within the internal
state (see Section 8.3) against a predetermined reseed interval for the DRBG
implementation. This is specified in the generate function (see Section 9.3.1) as follows:

a. Step 6 clears the reseed_required flag.

b. Step 7 checks the value of the reseed required flag. At this time, it is clear, so step
7 would be skipped unless prediction resistance was requested by the consuming
application. For the purposes of this explanation, assume that prediction resistance
was not requested.

c. St calls the Generate algorithm. which will check whether a reseed is

required. If it is required, an appropriate status will be returned.

d. Step 9 checks the st turned by the Generate rithm. If the sta o
not indicate that a reseed is required, the generate process continues with step 10.

e. If the status indicates that a reseed is required, then the reseed required flag is set,
and processing continues by going back to step 7.

f. The substeps in step 7 are executed. The reseed function will be called; any
additional_input provided by the consuming application in the generate request
will be used during reseeding. Then the new values of the internal state are

acquired, any additional_input provided by the consuming application in the
nerate request is replaced by a Null strin d the reseed required flag is

cleared.

g. The generate algorithm_is call ain) in step 8, the check of the returned starus i
made in step 9, and (presumably) step 10 is then executed.

9.3.3_ Handling Prediction Resistance Requests

When pseudorandom bits are requested by a consuming application with prediction
resistance, the generate function specified in Section 9.3.1 checks that the instantiation
allows prediction resistance requests (see step 5 of the generate process); clears the
reseed_required_flag (even though the flag won’t be used in this case): executes the
substeps of step 7, resulting in a reseed and a new internal state for the instantiation:

obtains pseudorandom bits (see step 8): passes through step 9, since another reseed will not
be required; and continues with step 10.
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9.4 Removing a DRBG Instantiation

The internal state for an instantiation may need to be “released” by erasing the contents of
the internal state. The uninstantiate function:

1. Checks the input parameter for validity.
2. Empties the internal state.

The following or an equivalent process shall be used to remove (i.e., uninstantiate) a
DRBG instantiation:

Input from a consuming application _for uninstantiation:

1. state_handle: A pointer or index that indicates the internal state to be “released™.
Output to a consuming application_after uninstantiation:

1. status: The status returned from the function. The status will indicate SUCCESS or
ERROR _FLAG.

Information retained within the DRBG boundary after uninstantiation:
An empty internal state.
Uninstantiate Process:

1. If state_handle indicates an invalid state, then return an ERROR_FLAG.

2. Erase the contents of the internal state indicated by state_handle.

3. Return SUCCESS.
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9.68 Self-Testing of the DRBG

A DRBG shall perform self testing to obtain assurance that the implementation continues
to operate as designed and implemented (health testing). The testing function(s) within a
DRBG boundary (or sub-boundary) shall test each DRBG function within that boundary.
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Note that this may require the creation and use of an instantiation for testing purposes only.

Errors occurring during testing shall be perceived as complete DRBG failures. The
condition causing the failure shall be corrected and the DRBG re-instantiated before
requesting pseudorandom bits (also, see Section 9.76)

9.85.1 Testing the Instantiate Function

Known-answer tests on the instantiate function shall be performed prior to creating each
operational instantiation. However, if several instantiations are performed in quick
succession using the same input parameters, then the testing seymay be reduced to testing
only prior to creating the first instantiation using that parameter set until such time as the
succession of instantiations is completed. Thereafter, other instantiations shall be tested as
specified above.

The security_strength and prediction_resistance_flag to be used in the operational
invocation shall be used during the test. Representative fixed values and lengths of the
entropy_input, nonce and personalization_string (if allowed) shall be used; the value of
the entropy_input used during testing shall not be intentionally reused during normal
operations (either by the instantiate or the reseed functions). Error handling shall also be
tested, including whether or not the instantiate function handles an error from the entropy
input source correctly.

If the values used during the test produce the expected results, and errors are handled
correctly, then the instantiate function may be used to instantiate using the tested values of
security_strength and prediction_resistance_flag.

An implementation should provide a capability to test the instantiate function on demand.
9.865.2 Testing the Generate Function

Known-answer tests shall be performed on the generate function before the first use of the
function and at reasonable intervals defined by the implementer. The implementer shall
document the intervals and provide a justification for the selected intervals.

The known-answer tests shall be performed for each implemented security_strength.
Representative fixed values and lengths for the requested_number_of bits and
additional_input (if allowed) and the working state of the internal state value (see Sections
8.3 and 10) shall be used. If prediction resistance is available, then each combination of
the security strength, prediction_resistance_request and prediction_resistance_flag shall
be tested. The error handling for each input parameter shall also be tested, and testing shall
include setting the reseed counter to meet or exceed the reseed_interval in order to check
that the implementation is reseeded or that the DRBG is “shut down”, as appropriate.

If the values used during the test produce the expected results, and errors are handled
correctly, then the generate function may be used during normal operations.

Bits generated during health testing shall not be output as pseudorandom bits.
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An implementation should provide a capability to test the generate function on demand.

9.65.3 Testing the Reseed Function

A known-answer test of the reseed function shall use the security strength in the internal
state of the instantiation to be reseeded. Representative values of the entropy input and
additional_input (if allowed) and the working state of the internal state value shall be used
(see Sections 8.3 and 10). Error handling shall also be tested, including an error in
obtaining the entropy_input (e.g., the entropy input source is broken).

If the values used during the test produce the expected results, and errors are handled
correctly, then the reseed function may be used to reseed the instantiation.

The reseed function may be called every time that the generate function is called if
prediction resistance is available, and considerbly less frequently otherwise. Self-testing
shall be performed as follows:

1. When prediction resistance is available in an implementation, the reseed function
shall be tested whenever the generate function is tested (see above).

2. When prediction resistance is not available in an implementation, the reseed
function shall be tested whenever the reseed function is invoked and before the
reseed is performed on the operational instantiation.

An implementation should provide a capability to test the reseed function on demand.
9.85.4 Testing the Uninstantiate Function

The uninstantiate function shall be tested whenever other functions are tested. Testing
shall attempt to demonstrate that error handling is performed correctly, and the internal
state has been zeroized.

9.78 Error Handling

The expected errors are indicated for each DRBG function (see Sections 9.1 - 9.4) and for
the derivation functions in Section 9-510.4. The error handling routines should indicate the
type of etror.

9.6.1 Errors Encountered During Normal Operation

Many errors during normal operation may be caused by a consuming application’s
improper DRBG request; these errors are indicated by “ERROR_FLAG” in the
pseudocode.: In these cases, the consuming application user is responsible for correcting
the request within the limits of the user’s organizational security policy. For example, if a
failure indicating an invalid requested security strength is returned, a security strength
higher than the DRBG or the DRBG instantiation can support has been requested. The user
maymay reduce the requested security strength if the organization’s security policy allows
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the information to be protected using a lower security strength, or the user shall use an
appropriately instantiated DRBG.

For catastrophic errors (e-g+-entropy-input-souree-faihsrei.e., those errors indicated by the
CATASTROPHIC ERROR FLAG in the pseudocode), the DRBG shall not produce
further output until the source of the error is corrected, and the DRBG is re-instantiated.

9.6.2 Errors Encountered During Self-Testing

During self-testing, all unexpected behavior is catastrophic. The DRBG shall be corrected,
and the DRBG shall be re-instantiated before the DRBG can be used to produce
pseudorandom bits. Examples-of unexpected behavior include:

e A test deliberately inserts an error, and the error is not detected, or

e An incorrect result is returned from the instantiate, reseed or generate function than
was expected.
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10 DRBG Algorithm Specifications

Several DRBGs are specified in this Recommendation. The selection of a DRBG depends
on several factors, including the security strength to be supported and what cryptographic
primitives are available. An analysis of the consuming application’s requirements for
random numbers shall be conducted in order to select an appropriate DRBG. A detailed
discussion on DRBG selection is provided in Appendix G. Pseudocode examples for each
DRBG are provided in Appendix F. Conversion specifications required for the DRBG
implementations (e.g., between integers and bitstrings) are provided in Appendix B.

10.1 Deterministic RBGs Based on Hash Functions

A DRBG may be based on a hash function that is non-invertible or one-way. The hash-
based DRBGs specified in this Recommendation have been designed to use any Approved
hash function and may be used by consuming applications requiring various security
strengths, providing that the appropriate hash function is used and sufficient entropy is
obtained for the seed.

The following are provided as DRBGs based on hash functions:
1. The Hash_DRBG specified in Section 10.1.1.
2. The HMAC_DRBG specified in Section 10.1.2,

The maximum security strength that can be supported by each hash function is provided in
SP 800-57. However, this Recommendation supports only four security strengths: 112,
128, 192, and 256. Table 2 specifies the values that shall be used for the function
envelopes and DRBG algorithm for each Approved hash function.

Table 2: Definitions for Hash-Based DRBGs

SHA-1 ‘ SHA-224 [ SHA-256 | SHA-384 \ SHA-512

Suppeorted security strengths See SP 800-57
highest_supported_security_strength See SP 800-57

Output Block Length (outlen) 160 | 224 ‘ 256 \ 384 | 512
Required minimum entropy for security_strength

instantiate and reseed

Minimum entropy input length security_strength
(min_length)

Maximum entropy input length < 2% bits

(max_ length)

Seed length (seedlen) for 440 440 440 888 888
Hash_DRBG
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SHA-1 | SHA-224 | SHA-256 | SHA-384 | SHA-512

Maximum personalization string < 2% bits
length

(max_personalization_string_length)

Maximum additional_input length < 2% bits
(max_additional_input_length)

max_number_of_bits_per _request < 2" bits
Number of requests between <2%

reseeds (reseed_interval)

Note that since SHA-224 is based on SHA-256, there is no efficiency benefit for using the
SHA-224; this is also the case for SHA-384 and SHA-512, i.e., the use of SHA-256 or
SHA-512 instead of SHA-224 or SHA-384, respectively, is preferred.

The value for seedlen for Hash DRBG is determined by subtracting the count field (in the
hash fun-ction specification) and one byte of padding from the hash function input block
length; in the case of SHA-1, SHA-224 and SHA 256, seedlen = 512 - 64 - 8 = 440; for
SHA-384 and SHA-512, seedlen= 1024 - 128 - 8 = 888.

10.1.1 Hash_DRBG
Figure 8 presents the normal operation of the Hash_DRBG generate algorithm. The
Hash_DRBG requires the use of a hash function during the instantiate, reseed and

generate functions; the same hash function shall be used in all functions. The hash function
to be used shall meet or exceed the desired security strength of the consuming application.

10.1.1.1 Hash_DRBG Internal State

The internal_state for Hash_DRBG consists of:
1. The working_state:
a. A value (V) of seedlen bits that is updated during each call to the DRBG.
b. A constant C of seedlen bits that depends on the seed.

d—A counter (reseed_counter) that indicates the number of requests for
pseudorandom bits since new entropy_input was obtained during instantiation
or reseeding.

2. Administrative information:
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a. The security strength of the
DRBG instantiation.

b. A prediction_resistance_flag
that indicates whether or not a
prediction resistance
capability is required for the
DRBG.

The values of ¥ and C are the critical
values of the internal state upon which
the security of this DRBG depends (i.e.,
V and C are the “secret values” of the
internal state).

10.1.1.2 Instantiation of Hash_DRBG

Notes for the instantiate function
specified in Section 9.1:

The instantiation of Hash_DRBG
requires a call to the instantiate
function. Process step 9 of that
function calls the instantiate
algorithm in this section. For this
DRBG, step 5 should be omitted.

The values of

highest supported_security strength
and min_length are provided in Table
2 of Section 10.1. The contents of the
internal state are provided in Section

10.1.1.1.

The instantiate algorithm:

DRAFT DecemberSeptember 2005
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Figure 8: Hash_DRBG

Let Hash_df be the hash derivation function specified in Section 9-510.4.1 using the
selected hash function. The output block length (outlen), seed length (seedlen) and
appropriate security _strengths for the implemented hash function are provided in Table

2 of Section 10.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 9 of the instantiate process in Section 9.1).

Input:

1. entropy_input: The string of bits obtained from the entropy input source.

2. nonce: A string of bits as specified in Section 8.6.7.
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3. personalization_string: The personalization string received from the
consuming application. If a personalization_string will never be used,
then step 1 may be modified to remove the personalization_string.

Output:

| 1. initial_ working state: The inital values for V, C, previcus—output—block-and
reseed_counter (see Section 10.1.1.1).

Hash_DRBG Instantiate Process:

1. seed material = entropy_input || nonce || personalization_string.

2. seed= Hash_df (seed material, seedlen).

3. V=seed.
4. C=Hash_df ((0x00 || V), seedlen). Comment: Preceed ¥ with a byte of
ZEeros.
5. reseed _counter=1.
c G heinitialblock
/ 2
]l} 1 g{ﬁ . g
6. prevews—swipu—bloel—=Tlash-{4:
F— A =Tlash-(0::02-HH5-
8V = (J + H+ C +reseed—eountery mod 24"
Do—ressed—covmicr="1x
10-Return .V, C, previous—output—bloek-and reseed counter as the
initial_working state.

10.1.1.3 Reseeding a Hash_DRBG Instantiation

Notes for the reseed function specified in Section 9.2:

The reseeding of a Hash_ DRBG instantiation requires a call to the reseed function.
Process step 5 of that function calls the reseed algorithm specified in this section. The
values for min_length are provided in Table 2 of Section 10.1.

The reseed algorithm:

| Let Hash_df be the hash derivation function specified in Section 9-510.4.1 using the
selected hash function. The value for seedlen is provided in Table 2 of Section 10.1.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 of the reseed process in Section 9.2):

Input:
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1. working_state: The current values for V, C, previeus—ouipui—bloek-and
reseed_counter (see Section 10.1.1.1).

2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application. If additional _input will never be provided, then step 1 may be
modified to remove the additional _input.

Output:
1. new_working state: The new values for V, C, previous—ewipui—bloekand
reseed counter.

Hash_DRBG Reseed Process:
1. seed material = 0x01 || V || entropy_input || additional_input.

2. seed= Hash_df (seed material, seedlen).

3. V=seed.

4. C=Hash_df ((0x00 || V), seedlen). Comment: Preceed with a byte of all
- ZEeros.

5. reseed_counter = 1.

6. Return V, C, previens—outpui—bloek-and reseed_counter for the new_

working_state.
10.1.1.4 Generating Pseudorandom Bits Using Hash_DRBG

Notes for the generate function specified in Section 9.3:

The generation of pseudorandom bits using a Hash_DRBG instantiation requires a call
to the generate function. Process step 8 of that function calls the generate algorithm
specified in this section. The values for max_number_of bits_per_request and outlen
are provided in Table 2 of Section 10.1.

The generate algorithm:

Let Hash be the selected hash function. The seed length (seedler) and the maximum
interval between reseeding (reseed_interval) are provided inTable 2 of Section 10.1.
Note that for this DRBG, the reseed counter is used to update the value of V as well as
to count the number of generation requests.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step § of the generate process in Section 9.3):

Input:
1. working state: The current values for V, C, previens—ewipui—bloek-and
reseed_counter (see Section 10.1.1.1).

60



NIST SP 800-90 - Hash_DRBG DRAFT DecemberSeptomber 2005

2. requested number of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional_input: The additional input string received from the consuming
application. If additional input will never be provided, then step 3 of the
Hash_DRBG generate process may be omitted.

Output:

1. status: The status returned from the function. The status will indicate
[ SUCCESS, ERROR;-or indicate that a reseed is required before the requested
pseudorandom bits can be generated.

2. returned bits: The pseudorandom bits to be returned to the generate function.

| 3. new_working state: The new values for V, C, previeus—outpui—bloef-and

reseed_counter.
Hash_DRBG Generate Process:

1. Ifreseed counter > reseed_interval, then return an indication that a reseed is
required.

2. If (additional_input # Null), then do
32.1 w = Hash (0x02 || V|| additional_input).
32.2 V= (V +w) mod 254",

43, (statussreturned bitsyprevieus—outpui—bloek) = Hashgen
(requested _number of bits, V) previeus—output—bloek).

54. H-an ERROR-is-returned-in-step-4;-thenreturn-ERROR:
6—H = Hash (0x03 || V).

35. V=(V+ H+ C + reseed_counter) mod 2°¢°%e"

86. reseed _counter = reseed counter + 1.

97. Return SUCCESS, SHCCESS returned bits, and the new values of V, C,
previous—output—bloel-and reseed counter for the mew-new_working_state.
Hashgen (...):
Input:

1. requested no_of bits: The number of bits to be returned.
2. V:The current value of V.

Output:
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2—veturned_bits: The generated bits to be returned to the generate function.

Hashgen Process:

1 m= [requested_no_of _btts-l |

outlen
2. data=V.
3. W=the Null string.
4. Fori=1tom

4.1 w; = Hash (data).
42 = previews—ouipri—blocki-thenretur-an BRROR:

43 previcus—eutpriblock=wr
4.42 W=W| w.
453 data = (data + 1) mod 27°°%",

5. returned bits = Leftmost (requested no_of bits) bits of W.
6. Return SUCCESS;returned bitssprevious—owtpui-bloek.
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10.1.2 HMAC_DRBG (...)

DRAFT DecemberSeptember 2005

HMAC_DRBG uses multiple occurrences of an Approved keyed hash function, which is
based on an Approved hash function. The same hash function shall be used throughout.
The hash function used shall meet or exceed the security requirements of the consuming

application.

Figure 9 depicts the HMAC_DRBG in
three stages. HMAC_DRBG is specified
using an internal function (Update). This
function is called during the
HMAC_DRBG instantiate, generate and
reseed algorithms to adjust the internal
state when new entropy or additional input
is provided, as well as to update the
internal state after pseudorandom bits are
generated. The operations in the top
portion of the figure are only performed if
the additional input is not null. Figure 10
depicts the Update function.

10.1.2.1 HMAC_DRBG Internal State

The internal state for HMAC_DRBG
consists of:

1. The working_state:

a. The value V of outlen bits,
which is updated each time
another outlen bits of output
are produced (where outlen is
specified in Table 2 of Section
10.1).

b. The Key of outlen bits, which
is updated at least once each
time that the DRBG generates
pseudorandom bits.

c. A counter (reseed_counter)
that indicates the number of
requests for pseudorandom bits
since instantiation or
reseeding.

2. Administrative information:

(Opt) additional input

If #Null

UPDATE

State

v reseed
counter

(Opf) adititional nput

Iterate

|
J HMAC

Key| v reseed
counfer H :
] v

[mi-imn] - |

Pscndorandom blis

additional input

reseed
counter

v

[Key

Figure 9: HMAC_DRBG Generate Function
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a. The security_strength of the DRBG instantiation.

b. A prediction resistance flag that indicates whether or not a prediction
resistance capability is required for the DRBG.

The values of ¥ and Key are the critical values of the internal state upon which the security
of this DRBG depends (i.e., ¥ and Key are the “secret values” of the internal state).

10.1.2.2 The Update Function (Update)

The Update function updates the internal
state of HMAC_DRBG using the
provided_data. Note that for this DRBG,
the Update function also serves as a
derivation function for the instantiate and
reseed functions.

Let HMAC be the keyed hash function
specified in FIPS 198 using the hash
function selected for the DRBG from
Table 2 in Section 10.1.

The following or an equivalent process
shall be used as the Update function.

Input:

1. provided data: The data to be
used.

2. K:The current value of Key.

3. V:The current value of V.
Output:

1. K: The new value for Key.

2. V:The new value for V.
HMAC_DRBG Update Process:

V=HMAC (K, V).

V=HMAC (X, V).
Return K and V.

S el

povehind
dufa
Y —
V [] 08 || prowided duis
Key

Figure 10: HMAC_DRBG Update Function

K=HMAC (X, V|| 0x00 || provided_data).

If (provided_data = Null), then return X and V.
K=HMAC (K, V| 0x01 || provided_data).
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10.1.2.3 Instantiation of HMAC_DRBG

Notes for the instantiate function specified in Section 9.1:

The instantiation of HMAC_DRBG requires a call to the instantiate function. Process
step 9 of that function calls the instantiate algorithm specified in this section. For this
DRBG, step 5 should be omitted. The values of highest_supported_security strength
and min _length are provided in Table 2 of Section 10.1. The contents of the internal
state are provided in Section 10.1.2.1.

The instantiate algorithm:

Let Update be the function specified in Section 10.1.2.2. The ouput block length
(outlen) is provided in Table 2 of Section 10.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 98 of the instantiate process in Section 9.1):

Input:
1. entropy_input: The string of bits obtained from the entropy input soutce.
2. nonce: A string of bits as specified in Section 8.6.7.

3. personalization_string: The personalization string received from the consuming
application, If a personalization_string will never be used, then step 1 may be
modified to remove the personalization_string.

Output:

] 1. initial working state: The inital values for V, Key and reseed_counter (see
Section 10.1.2.1).

HMAC_DRBG Instantiate Process:
1. seed material = entropy input || nonce || personalization_string.
2. Key= 0x00 00...00. Comment: outlen bits.
V'=0x01 01...01. Comment: outlen bits.
Comment: Update Key and V.
4. (Key, V)= Update (seed_material, Key, V).

= IR e e

E) H 3

" ¥5. reseed_counter = 1.
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86. Return V, Key and reseed _counter as the initiakinitial working_state.
10.1.2.4 Reseeding an HMAC_DRBG Instantiation

Notes for the reseed function specified in Section 9.2:

The reseeding of an HMAC_DRBG instantiation requires a call to the reseed function.
Process step 5 of that function calls the reseed algorithm specified in this section. The
values for min_length are provided in Table 2 of Section 10.1.

The reseed algorithm:

Let Update be the function specified in Section 10.1.2.2. The following process or its
equivalent shall be used as the reseed algorithmn for this DRBG (see step S of the
reseed process in Section 9.2):

Input:

1. working state: The current values for V, Key and reseed_counter (see Section
10.1.2.1).

2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application. If additional _input will never be used, then process step 1 may be
modified to remove the additional input.

Output:

1. new_working state: The new values for V, Key and reseed_counter.
Process:

1. seed_material = entropy input || additional_input.

2. (Key, V) =Update (seed_material, Key, V).
3. reseed counter=1.
4

. Return ¥V, Key and reseed counter as the newnew_working_state.
10.1.2.5 Generating Pseudorandom Bits Using HMAC_DRBG

Notes for the generate function specified in Section 9.3:

The generation of pseudorandom bits using an HMAC_DRBG instantiation requires a
call to the generate function. Process step 8 of that function calls the generate algorithm
specified in this section. The values for max_number_of bits_per_request and outlen
are provided in Table 2 of Section 10.1.

The generate algorithm :
Let HMAC be the keyed hash function specified in FIPS 198 using the hash function
selected for the DRBG. The value for reseed _interval is defined in Table 2 of Section
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10.1.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of the generate process in Section 9.3):

Input:
1.

working_state: The current values for ¥, Key and reseed counter (see Section
10.1.2.1).

requested_number_of bits: The number of pseudorandom bits to be returned to
the generate function.

additional_input: The additional input string received from the consuming
application. If an implementation will never use additional_input, then step 3 of
the HMAC generate process may be omitted. If an implementation does not
include the additional _input parameter as one of the calling parameters, or if
the implementation allows additional input, but a given request does not
provide any additional input, then a Null string shall be used as the

additional _input in step 6.

Output:

status: The status returned from the function. The status will indicate
SUCCESS, aa ERROR-or indicate that a reseed is required before the
requested pseudorandom bits can be generated.

returned_bits: The pseudorandom bits to be returned to the generate function.

. new_working state: The new values for V, Key and reseed_counter.

HMAC_DRBG Generate Process:

1. Ifreseed counter > reseed interval, then return an indication that a reseed is
required.

2. ¥old=¥

3—If additional_input + Null, then (Key, V) = Update (additional_input, Key, V).

43. temp = Null.

54. While (len (temp) < requested_number_of bits) do:

54.1 V=HMAC (Key, V).
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5442 temp =temp || V.
65. returned_bits = Leftmost requested_number_of bits of temp.
76. (Key, V) = Update (additional_input, Key, V).
87. reseed counter = reseed_counter + 1.

98. Return SUCCESS, returned_bits, and the new values of Key, V and
reseed_counter as the new_working _state).
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10.2 DRBGs Based on Block Ciphers

A block cipher DRBG is based on a block cipher
algorithm, The block cipher DRBG specified in
this Recommendation has been designed to use
any Approved block cipher algorithm and may r_—l_-_ T
be used by consuming applications requiring I 1 :
various levels of security, providing that the v *%' + I
appropriate block cipher algorithm and key ! 1
length are used, and sufficient entropy is | :
obtained for the seed. i Block !
I
! I

10.21 CTR_DRBG

CTR_DRBG uses an Approved block cipher
algorithm in the counter mode as specified in SP
800-38A. The same block cipher algorithm and B, | B, |- |1;i |
key length shall be used for all block cipher

operations. The block cipher algorithm and key I
length shall meet or exceed the security

requirements of the consuming application.

CTR_DRBG is specified using an internal *
function (Update). Figure 11 depicts the
Update function, This function is called by the

instantiate, generate and reseed algorithms to
adjust the internal state when new entropy or

additional input is provided, as well as to update
the internal state after pseudorandom bits are
generated. Figure 12 depicts the CTR_DRBG in
three stages. The operations in the top portion of the figure are only performed if the
additional input is not null.

Table 3 specifies the values that shall be used for the function envelopes and DRBG
algorithms.

Table 3: Definitions for the CTR_DRBG

Figure 11: CTR_DRBG Update Function

3Key | AES-128 | AES-192 | AES-256
TDEA
Supported security strengths See SP 800-57
highest_supported_security_strength See SP 800-57
Output block length (outlen) 64 128 128 128
Key length (keylen) 168 128 192 256
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3 Key
TDEA

AES-128 | AES-192 | AES-256

Required minimum entropy for
instantiate and reseed

security_strength

Seed length (seedlen = outlen + keylen)

232 256 ‘ 320 | 384

If aA derivation function is used:

Minimum entropy input length
(min _length)

security_strength

Maximum entropy input length
(max _length)

< 2% bits

Maximum personalization string
length
(max_personalization_string_length)

< 2% bits

Maximum additional_input length
(max_additional_input_length)

< 2% bits

If aA derivation function is not used
(full entropy is available):

Minimum entropy input length
(min_length 3= outlen + keylen)

seedlen

Maximum entropy input length
(max _length) (outlen + keylen)

seedlen

Maximum personalization string
length
(max_personalization_string length)

seedlen

Maximum additional_input length
(max_additional_input_length)

seedlen

max_number_of bits per request

< 213 S219

Number of requests between reseeds
(reseed_interval)

< 232 < 248

The CTR_ DRBG may be implemented to use the block cipher derivation function
specified in Section 9-510.4.2. However, the DRBG is specified to allow an
implementation tradeoff with respect to the use of this derivation function. If a source for
full entropy input is always available to provide entropy input when requested, the use of
the derivation function is optional; otherwise, the derivation functon shall be used. Table
3 provides lengths required for the entropy_input, personalization_string and
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additional_input for each case.

When full entropy is available, and a
derivation function is not used by an
implementation, the seed

construction (see Section 8.6.1) shall

not use a nonce?,

When using TDEA as the selected
block cipher algorithm, the keys
shall be handled as 64-bit blocks
containing 56 bits of key and 8 bits
of parity as specified for the TDEA
engine specified in SP 800-67.

10.2.1.1 CTR_DRBG Internal State

The internal state for CTR_DRBG
consists of:

1. The working state:

a. The value V of outlen
bits, which is updated
each time another outlen
bits of output are
produced.

b. The Key of keylen bits,
which is updated
whenever a
predetermined number of
output blocks are
generated.

d—A counter
(reseed _counter) that
indicates the number of

DRAFT

DecemberSeptember 2005

(Op) dditionalingut

BLOCK CIPHER
DERIVATION

FUNCTION

UPDATE

Tterate

State

Ky | v reseed

counfter

Block
Encrypt

Byll... | Bua | B |

Pseudorandom bits

couner

|

¥

-1

Figure 12: CTR-DRBG

4 The specifications in this Standard do not accommodate the special treatment required for a nonce in this

case.
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requests for pseudorandom bits since instantiation or reseeding.
2. Administrative information:
a. The security_strength of the DRBG instantiation.

b. A prediction_resistance flag that indicates whether or not a prediction
resistance capability is required for the DRBG.

The values of ¥ and Key are the critical values of the internal state upon which the
security of this DRBG depends (i.e., ¥ and Key are the “secret values” of the internal
state).

10.2.1.2 The Update Function (Update)
The Update function updates the internal state of the CTR_DRBG using the
provided data. The values for outlen, keylen and seedlen are provided in Table 3 of

Section 10.2.1. The block cipher operation in step 2.2 of the CTR_DRBG update process
uses the selected block cipher algorithm (also see Section 10.4).

The following or an equivalent process shall be used as the Update function.
Input:

1. provided data: The data to be used. This must be exactly seedlen bits in-
length; this length is guaranteed by the construction of the provided data in
the instantiate, reseed and generate functions.

2. Key: The current value of Key.
3. V: The current value of V.
Output:
1. K: The new value for Key.
2. V: The new value for V.
CTR_DRBG Update Process:
1. temp = Null.
2. While (len (temp) < seedlen) do
2.1 V=(V+1)mod 27",
2.2 output_block = Block_Encrypt (Key, V).
2.3 temp = temp || ouput_block.
3. temp = Leftmost seedlen bits of temp.
4 temp = temp © provided_data.
5. Key = Leftmost keylen bits of temp.
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6. V=Rightmost outlen bits of temp.

7. Return the new values of Key and V.
10.2.1.3 Instantiation of CTR_DRBG

Notes for the instantiate function specified in Section 9.1:

The instantiation of CTR_DRBG requires a call to the instantiate function. Process
step 9 of that function calls the instantiate algorithm specified in this section. For this
DRBG, step 5 should be omitted. The values of highest_supported_security_strength
and min _length are provided in Table 3 of Section 10.2.1. The contents of the
internal state are provided in Section 10.2.1.1.

The instantiate algorithm:
Let Update be the functlon spemﬁed in Sectlon 10.2.1. ?.,

a%geﬂ%hm-aﬂd—key-s-l-ze The output block length (outlen), key length (keylen) seed
length (seedlen) and security strengths for the block cipher algorithms are provided
in Table 3 of Section 10.2.1.

For this DRBG, there are two cases for the processing. The input to the instantiate
algorithm is the same for each case; likewise for the output from the instantiate
algorithm. However, the grocess steps are sl:ghtlv dlf‘ferent (see Sections 10.2.1.3.1

and1021321 a0 RS % HY A chall-be-used-asthe

Input:

1. entropy_input: The string of bits obtained from the entropy input source.

2. nonce: A string of bits as specified in Section 8.6.7; this string shall not be
present when a derivation function is not used.

3. personalization_string: The personalization string received from the
consuming application.

Output:

| 1. initial working state: The inital values for V, Key, previous—outpui—bloek-and
reseed_counter (see Section 10.2.1.1).

10.2.1.3.1 _The Process Steps for Instantiation When Full Entropy is Available for the
Entropy Input, and a Derivation Function Is Not Used

The following process or its equivalent shall be used as the instantiate algorithm for this
DRBG:

CTR_DRBG Instantiate Process:
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+3-temp = len (personalization_string).

Comment: Ensure that the length of the
personalization_siring is exactly seedlen
bits. The maximum length was checked in
Section 9.1, processing step 3, using Table 3
to define the maximum length.

2. -174-}1’ (temp < seedlen), then personalization_string = personalization_string ||
Osr:n: flen - hrmp‘

3. 1-5seed material = entropy_input ® personalization_string.

24. Key = 0", Comment: keylen bits of zeros.

35. V= Qoen, Comment: outlen bits of zeros.
46. (Key, V)= Update (seed_material, Key, V).

57. reseed_counter = 1.

98. Return V, Key, previous—output—bloel-and reseed counter as the

initial_working state.

Implementation note:

If a personalization_string will never be provided from the instantiate function, then
steps 1-3 are replaced by:

seed_material = entropy_input.

That is. steps 1-3 collapse into the above step.
10.2.1.3.2 The Process Steps for Instantiation When a Derivation Function is Use

Let Block Cipher_df be the derivation function specified in Section 10.4.2 using the
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chosen block cipher algorithm and key size

The following process or its equivalent shall be used as the instantiate algorithm for this
DRBG: ‘

CTR_DRBG Instantiate Process:
1. seed material = entropy_input || nonce || personalization_string.

Comment: Ensure that the length of the
personalization_string is exactly seedlen
bits.

2. seed material = Block Cipher df (seed material, seedlen).

3. Key= (", Comment: keylen bits of zeros.
4. V=0, Comment: outlen bits of zeros.
5. (Key, V)= Update (seed_material, Key, V).

6. reseed _counter=1.

7. Return V, Key, and reseed_counter as the initial working state.

Implementation note:s:

3-If a personalization_string will never be provided from the instantiate function-and-a
derivation-funetion-will be-used, then steps 1-2-1 beeomesare replaced by:

seed_material = Block_Cipher_df (entropy input, seedlen).

10.2.1.4 Reseeding a CTR_DRBG Instantiation

Notes for the reseed function specified in Section 9.2:

The reseeding of a CTR_DRBG instantiation requires a call to the reseed function.
Process step 5 of that function calls the reseed algorithm specified in this section. The
values for min _length are provided in Table 3 of Section 10.2.1.

The reseed algorithm:
Let Update be the functlon spe01ﬁed in Sectlon 10.2.1. 2—and—l-et—Bloek—Glpber—df

a-lge&t-hm—and—key—s*ze The seed length (seedlen) is prov1ded in Table 3 of Sectlon

75



NIST SP 800-90 - CTR_DRBG DRAFT DecemberSeptember 2005

10.2.1.

For this DRBG, there are two cases for the processing. The input to the reseed
algorithm is the same for each case; likewise for the output from the reseed algorithm.
However, the process steps are slightly different (see Sections 10.2.1.4.1 and

10.2.1.4.2).

1. working state: The current values for V, Key and reseed counter (see Section
10.2.1.1).

2. entropy_input: The string of bits obtained from the entropy input source.

3. additional input: The additional input string received from the consuming
application.

Output:

1. new_working_state: The new values for V, Key, previous—euntput—bloel-and
reseed_counter.

10.2.1.4.1 The Process Steps for Reseeding When Full Entropy is Available for the
Entropy Input, and a Derivation Function is Not Used

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 of the reseed process in Section 9.2):

CTR_DRBG Reseed

Process:

oand  aas sty o 2 a0 il o . cand  sasedngd o paal o
Else Comment—The-block-cipher
Else € :
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available:
4=3-temp = len (additional_input).
Comment: Ensure that the length of the
additional_input is exactly seedlen bits. The
maximum length was checked in Section

9.2, processing step 2, using Table 3 to
define the maximum length.

2. 3:4If (femp < seedlen), then additional_input = additional_input || geeedlen - temp,

3. 15-seed material = entropy_input © additional_input.
24. (Key, V) = Update (seed_material, Key, V).
35. reseed_counter = 1.

46. Return V, Keysprevieus—output—bloek and reseed_counter as the

new_working state.

Implementation note:

If additional_input will never be provided from the reseed function, then steps 1-3 are
replaced by:

seed_material = entropy_input.

That is. steps 1-3 collapse into the above step.
10.2.1.4. he Process $ for R ing When a Derivation Function is Us

Let Block Cipher_ df be the derivation function specified in Section 10.4.2 using the
chosen block cipher algorithm and key size.

‘The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 of Section 9.2):

CTR_DRBG Reseed Process:

1. seed material = entropy_input || additional _input.

Comment: Ensure that the length of the
additional_input is exactly seedlen bits.

2. seed material = Block Cipher df (seed material, seedlen).
3. (Key, V) = Update (seced material, Key, V).

4. reseed counter = 1.

5. Return V, Key, and reseed counter as the new_working_state.
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Implementation notes:

: If additional_input will never be provided from the reseed function-ard-a
derivation-funetion-will be-used, then stepg 1-2-+} becomes:

seed_material = Block_Cipher_df (entropy_input, seedlen).

10.2.1.5 Generating Pseudorandom Bits Using CTR_DRBG

Notes for the generate function specified in Section 9.3:

The generation of pseudorandom bits using a CTR_DRBG instantiation requires a
call to the generate function. Process step 8 of that function calls the generate
algorithm specified in this section, The values for max_number_of bits_per_request
and max_additional_input_length, and outlen are provided in Table 3 of Section
10.2.1.

For this DRBG., there are two cases for the processing. The input to the generate
algorithm is the same for each case; likewise for the output from the generate
algorithm. However, the process steps are slightly different (see Sections 10.2.1.5.1
and 10.2.1.5.2).

Let Update be the function specified in Section 10.2.1.2, and let Block Encrypt be
the function specified in Section 10.4.2. The seed length (seedlen) and the value of
reseed _interval are provided in Table 3 of Section 10.2.1.

Input:

1. working state: The current values for V, Key, previows—outpui—block-and
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reseed_counter (see Section 10.2.1.1).

2. requested_number_of bits: The number of pseudorandom bits to be returned
to the generate function.

3. additional_input: The additional input string received from the consuming
application. If additional input will never be provided, then step 3 may be
omitted.

Output:

1. status: The status returned from the function. The szatus will indicate
| SUCCESS, an-ERROR-or indicate that a reseed is required before the
requested pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits returned to the generate function.

3. working state: The new values for V, Key, previous—outpui—bleel-and

reseed_counter.

10.2.1.5.1 _The Process Steps for Generating Pseudorandom BitsWhen a Derivation
Function is Not Used for the DRBG Implementation

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of the generate process in Section 9.3.3):

CTR_DRBG Generate

Process:

1. Ifreseed counter > reseed interval, then return an indication that a reseed is
required.

2. ¥eld=1I~
3—If (additional input # Null), then

Comment: Ensure that the length of the
additional_input is exactly seedlen bits. The
maximum length was checked in Section
9.3.3, processing step 4, using Table 3 to
define the maximum length. If the length of
the additional input is =< seedlen, derive
seedlenpad with zero -bbits.

32.1 temp = len (additional input).
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3232 If (temp < seedlen), then
additional _input = additional _input || (ftedien - eop.

3243 (Key, V) = Update (additional_input, Key, V).
43. temp = Null.
54, While (len (femp) < requested_number_of bits) do:

54.1 V= (V+ 1) mod 27",

54.2 output_block = Block_Encrypt (Key, V).

54.53 temp = temp || ouput_block.

~ 65. returned_bits = Leftmost requested _number_of bits of temp.

greedlen, Comment: Produce a string of

seedlen zeros, and update for
backtracking resistance.

I6. zeros =

87. (Key, V) = Update (zeros, Key, V).

98. reseed_counter = reseed_counter + 1.

109. Return SUCCESS and returned bits; also return Key, V,
previous—oulput—block-and reseed counter as the new-new_working_state.

10.2.1.5.2 The Process Steps for Generating Pseudorandom BitsWhen a Derivation
Function is Used for the DRBG Implementation

The Block Cipher df is specified in Section 10.4.2 and shall be implemented using the
chosen block cipher algorithm and key size.

The following process or its equivalent shall be used as generate algorithm for this
DRBG (see step 8 of the generate process in Section 9.3.3):

CTR_DRBG Generate Process:
1. If reseed counter > reseed_interval, then return an indication that a reseed is
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required.
2. If (additional_input = Null), then
2.1 additional_input = Block Cipher df (additional input, seedlen).
2.2 (Key, V)= Update (additional_input, Key, V).
3. temp= Null.
4. While (len (femp) < requested number_of bits) do:
4.1 V=(V+1)mod 2%,
4.2 ouiput_block = Block Encrypt (Key, V).
43  temp=temp || ouput block.

5. returned bits = Leftmost requested number_of bits of temp.

o.reedfm

6. zeros= Comment: Produce a string of
seedlen zeros, and pdate for

backtracking resistance.

7. (Key, V) = Update (zeros. Key, V).

8. reseed counter =reseed counter + 1.

9. Return SUCCESS and returned_bits: also return Key, V, and reseed counter
as the new _working_state.
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10.3 Deterministic RBGe Based on Number Theoretic Problems

A DRBG can be designed to take advantage of number theoretic problems (e.g., the
discrete logarithm problem). If done correctly, such a generator’s properties of randomness
and/or unpredictability will be assured by the difficulty of finding a solution to that
problem. This section specifies a DRBG based on the elliptic curve discrete logarithm
problem.

10.3.1 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)

Dual EC_DRBG is based on the following hard problem, sometimes known as the
“elliptic curve discrete logarithm problem” (ECDLP): given points P and Q on an elliptic
curve of order n, find a such that Q = aP.

Dual_EC_DRBG uses a seed that is m bits in length (i.e., seedlen = m) to initiate the
generation of outlen-bit pseudorandom strings by performing scalar multiplications on two
points in an elliptic curve group, where the curve is defined over a field approximately 2"
in size. For all the NIST curves given in this Recommendation, m = 256363. Figure 13
depicts the Dual_EC_DRBG.

see
Instant. o
Teseed anly

t s " r | Extract
[Optional] L e ‘; ) e

additional input T !
0 P Q Psewdorandom
Bits

B sddifionalinpui= Null

Figure 13: Dual_EC_DRBG

The instantiation of this DRBG requires the
selection of an appropriate elliptic curve and
curve points specified in Appendix A.1 for the
desired security strength. The seed used to
determine the initial value (s) of the DRBG shall 1 l
have entropy that is at least security strength bits.
Further requirements for the seed are provided in R, R,
Section 8.6.

Backtracking resistance is inherent in the
algorithm, even if the internal state is
compromised. As shown in Figure 14,

Figure 14: Dual_EC_DRBG (...)
Backtracking Resistance
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Dual_EC_DRBG generates a seedlen-bit number for each step i = 1,2,3,..., as follows:

Si= o(x(Si-1 *P))

Ri=op(x(Si *Q)).
Each arrow in the figure represents an Elliptic Curve scalar multiplication operation, -
followed by the extraction of the x coordinate for the resulting point and for the random
output R, followed by truncation to produce the output. Following a line in the direction
of the arrow is the normal operation; inverting the direction implies the ability to solve the
ECDLP for that specific curve. An adversary’s ability to invert an arrow in the figure
implies that the adversary has solved the ECDLP for that specific elliptic curve.
Backtracking resistence is built into the design, as knowledge of S does not allow an
adversary to determine Sp (and so forth) unless the adversary is able to solve the ECDLP
for that specific curve. In addition, knowledge of R, does not allow an adversary to
determine S; (and so forth) unless the adversary is able to solve the ECDLP for that
specific curve.

Table 4 specifies the values that shall be used for the envelope and algorithm for each
curve. Complete specifications for each curve are provided in Appendix A.1. Note that all
curves-exeept-the-P-224-eurve can be instantiated at a security strength lower than its
highest possible security strength. For example, the highest security strength that can be
supported by curve P-384 is 192 bits; however, this curve can alternatively be instantiated
to support only the 112 or 128-bit security strengths).

Table 4: Definitions for the Dual_EC_DRBG

2224 P-384 P-521
P-256
Supported security strengths See SP 800-57
Size of the base field (in bits) 256 384 521
highest_supported See SP 800-57
security_strength
Output block length (max_outlen = 208 368 504
largest multiple of 8 less than (size 240
of the base field) - (13 + log; (the
cofactor))
Required minimum entropy for : security_strength
instantiate and reseed
Minimum entropy input length security_strength
(min_length)
Maximum entropy input length <28 bits
(max _length)
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2224 P-384 P-521
P-256
Maximum personalization string < 2" bits
length
(max_personalization_string_length)
Maximum additional input length <2" bits
(max_additional_input_length)
Seed length (seedlen =2 x 256 384 512
security_strength)
Appropriate hash functions SHA-1, SHA- SHA-224, SHA- SHA-256,
224, SHA-256, | 256, SHA-384, SHA-384,
SHA-384, SHA- | SHA-512 SHA-512
512
max_number_of bits_per_request max_outlen x reseed_interval
Number of blecks between < 2% blocks
reseeding (reseed_interval)

10.3.1.1 Dual_EC_DRBG Internal State

The internal state for Dual_EC_DRBG consists of:
1. The working_state:
a. A value (s) that determines the current position on the curve.

b. The elliptic curve domain parameters (seedlen, p, a, b, n), where seedlen is the
length of the seed ; a and b are two field elements that define the equation of
the curve, and n is the order of the point G. If only one curve will be used by an
implementation, these parameters need not be present in the working_state.

¢. Two points P and Q on the curve; the generating point G specified in FIPS 186-
3 for the chosen curve will be used as P. If only one curve will be used by an
implementation, these points need not be present in the working_state.

d. roldsthe previous-output block:

e—A counter (block_counter) that indicates the number of blocks of random
produced by the Dual_EC_DRBG since the initial seeding or the previous
reseeding.

2. Administrative information:
a. The security_strength provided by the instance of the DRBG,

b. A prediction_resistance_flag that indicates whether prediction resistance is
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required by the DRBG.

The value of s is the critical value of the internal state upon which the security of this
DRBG depends (i.e., s is the “secret value” of the internal state).

10.3.1.2 Instantiation of Dual_EC_DRBG

Notes for the instantiate function specified in Section 9.1:

The instantiation of Dual EC_DRBG requires a call to the instantiate function.
Process step 9 of that function calls the instantiate algorithm in this section.

In process step 5 of the instantiate function, the following step shall be performed to
select an appropriate curve if multiple curves are available.

5. Using the security _strength and Table 4 in Section 10.3.1, select the smallest
available curve that has a security strength > security_strength.

The values for seedlen, p, a, b, n, P, Q are determined by that curve.

It is recommended that the default values be used for P and Q as given in Appendix
A.1. However, an implementation meymay use different pairs of points, provided that
they are verifiably random, as evidenced by the use of the procedure specified in
Appendix A.2.1 and the self-test procedure described in Appendix A.2.2.

The values for highest_supported_security_strength and min_length are determined by
the selected curve (see Table 4 in Section 10.3.1).

The instantiate algorithm :

Let Hash_df be the hash derivation function specified in Section 9:510.4.1 using an
appropriate hash function from Table 4 in Section 10.3.1. Let seedlen be the
appropriate value from Table 4.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 9 of the instantiate process in Section 9.1):

Input:
1. entropy_input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.6.7.

3. personalization_string: The personalization string received from the consuming
application.

Output:
1. s: The initial secret value for the initial working_state.

3—block_counter: The initialized block counter for reseeding.
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Dual_EC_DRBG Instantiate Process:
1. seed material = entropy_input || nonce || personalization_string.

Comment: Use a hash function to ensure that
the entropy is distributed throughout the bits,
and s is m (i.e., seedlen) bits in length.

2. s=Hash_df (seed_material, seedlen).
4—block_counter = 0.

54. Return s, #—sld-and block_counter for the initial_working_state.
10.3.1.3 Reseeding of a Dual_EC_DRBG Instantiation

Notes for the reseed function specified in Section 9.2:

The reseed of Dual_EC_DRBG requires a call to the reseed function. Process step 5 of
that function calls the reseed algorithm in this section. The values for min _length are
provided in Table 4 of Section 10.3. 1.

The reseed algorithm :

l Let Hash_df be the hash derivation function specified in Section 10.49-6.12 using an
appropriate hash function from Table 4 in Section 10.3. 1.

The following process or its equivalent shall be used to reseed the Dual EC_DRBG
\ process after it has been instantiated (see step 54 of the reseed process in Section 9.2):

Input:
1. s: The current value of the secret parameter in the working_state.
2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application.

Output:

1. s: The new value of the secret parameter in the new_working_state.

2. block_counter: The re-initialized block counter for reseeding.
Dual_EC_DRBBG Reseed Process:

Comment: pad8 returns a copy of s padded
on the right with binary 0’s, if necessary, to a
multiple of 8.

1. seed material = pad8 (s) || entropy_input || additional_input_string.
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2. s=Hash_df (seed material, seedlen).
3. block counter=0.
4. Return s and block_counter for the new-_working_state.

Implementation notes:

If an implementation never allows additional _input, then step 1 may be modified as
follows :

seed_material = pad8 (s) || entropy_input.
10.3.1.4 Generating Pseudorandom Bits Using Dual_EC_DRBG

Notes for the generate function specified in Section 9.3:

The generation of pseudorandom bits using a Dual_EC_DRBG instantiation requires a
call to the generate function. Process step 8 of that function calls the generate algorithm
specified in this section. The values for max_number_of bits_per_request and
max_outlen are provided in Table 4 of Section 10.3.1. outlen is the number of
pseudorandom bits taken from each x-coordinate as the Dual_EC_DRBG steps. For
performance reasons, the value of outlen should be set to the maximum value as
provided in Table 4. However, an implementation meymay set outlen to any multiple
of 8 bits less than or equal to max_outlen. The bits that become the Dual EC_DRBG
output are always the rightmost bits, i.e., the least significant bits of the x-coordinates.

The generate algorithm:

Let Hash_df be the hash derivation function specified in Section 9:510.4.1 using an
appropriate hash function from Table 4 in Section 10.3.1. The value of reseed_interval
is also provided in Table 4.

The following are used by the generate algorithm:

a. pad8 (bitstring) returns a copy of the birstring padded on the right with binary
0’s, if necessary, to a multiple of 8.

b. Truncate (bitstring, in_len, out len) inputs a bitstring of in_len bits, returning
a string consisting of the leftmost out len bits of bitstring. If in_len < out_len,
the bitstring is padded on the right with (out len - in_len) zeroes, and the result
is returned.

c. x(A) is the x-coordinate of the point 4 on the curve, given in affine coordinates.
An implementation may choose to represent points internally using other
coordinate systems; for instance, when efficiency is a primary concern. In this
case, a point shall be translated back to affine coordinates before x() is applied.

d. ¢ (x) maps field elements to non-negative integers, taking the bit vector
representation of a field element and interpreting it as the binary expansion of
an integer.
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The precise definition of (x) used in steps 6 and 7 of the generate process
below depends on the field representation of the curve points. In keeping with
the convention of FIPS 186-2, the following elements will be associated with
each other (note that m = seedlen):

B: |Cmi|Cma| . |C1lCo| , abitstring, with ¢, being leftmost
7o o2 4 422 2t € Z;
Fa: cm2™' + ...+ 027 + ¢2'+ ¢ modp € GF(p) ;

Thus, any field element x of the form Fa will be converted to the integer Z or
bitstring B, and vice versa, as appropriate.

e. * isthe symbol representing scalar multiplication of a point on the curve.

The following process or its equivalent shall be used to generate pseudorandom bits
(see step 8 of the generate process in Section 9.3):

Input:

1. working state: The current values for s, seedlen, p, a, b, n, P, O, and —eld-a nd
reseed_counter (see Section 10.3.1.1).

2. requested number of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional_input: The additional input string received from the consuming
application.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, ERROR-or an indication that a reseed is required before the
requested pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits to be returned to the generate function.
3. s: The new value for the secret parameter in the new_working_state.
4. pold-Thelesteutputblesls
5—block_counter: The updated block counter for reseeding.
Dual_EC_DRBG Generate Process:

Comment: Check whether a reseed is
required.

requested _number _of _ bits

1. If [block _counter + [ U >reseed_interval, then

outlen
return an indication that a reseed is required.

Comment: If additional input is Null, set to
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seedlen zeroes; otherwise, Hash_df to
seedlen bits.

2. If (additional_input_string = Null), then additional input =0
Else additional input = Hash_df (pad8 (additional input_string), seedlen).

Comment: Produce requested no_of bits,
outlen bits at a time:

3. temp = the Null string.

4 i=0.

5. t=s® additional_input. Comment: ¢ is to be interpreted as a seedlen-
bit unsigned integer. To be precise, ¢ should
be reduced mod #; the operation * will effect
this.

6. s =0o(x(t *P)). Comment: s is a seedlen-bit number.

7. r =¢(x(s *Q)). Comment: # is a seedlen-bit number.

8. H—=r—oid)ythenreturnan FRROR-

O—plel =

10—temp = temp || (rightmost outlen bits of ).

H9. additional_inpur=0 Comment: seedlen zeroes;
additional_input_string is added only on the
first iteration.

1210. block_counter = block_counter + 1.
1311. i=i+1,
1412, If (len (temp) <
requested number_of bits), then go to
step 5.

1513 returned bits = Truncate (femp, i x outlen, requested number of bits).

1614. Return SUCCESS, returned_bits, and s, #—efd-and block_counter for the
new_working state.

10.4 Auxilliary Functions

Derivation functions are internal functions that are used during DRBG instantiation and
reseeding to either derive internal state values or to distribute entropy throughout a
bitstring. Two methods are provided. One method is based on hash functions (see Section
10.4.1), and the other method is based on block cipher algorithms (see 10.4.2). The block
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cipher derivation function uses a Block_Cipher Hash function that is specified in Section
10.4.3.

10.4.1 Derivation Function Using a Hash Function (Hash df)

This derivation function is used by the Hash DRBG and Dual EC_DRBG specified
Section 10.1.1 and 10.3.1, respectively, The hash-based derivation function hashes an input
string and returns the requested number of bits. Let Hash (...) be the hash function used by

the DRBG, and let outlen be its output length.
The following or an equivalent process shall be used to derive the requested number of
Input:

1. input_string: The string to be hashed.

2. no of bits_to_return: The number of bits to be returned by Hash_df. The

maximum length (max_number_of bits) is implementation dependent. but shall be
less than or equal to (255 x outlen). no_of bits_to_return is represented as a 32-bit

integer.
QOutput:

1. status: The status returned from Hash_df. The status will indicate SUCCESS or
ERROR FLAG.

2. requested bits : The result of performing the Hash df.

Hash_df Process:
1. Ifn its_to_return> max_number_of bits, then return an ERROR FLAG.
2. temp = the Null string.

no _of bits to return
3. len= =of bits 1o "
outlen

4. counter = an 8-bit binary value representing the integer "1".
5. Fori=1tolendo

Comment : In step 5.1, no_of bits_to_return
is used as a 32-bit string.

5.1 temp = temp || Hash (counter || no_of bits to_return || input_string).

5.2 counter = counter + -1.

6. requested bits = Leftmost (no_of bits_to_return) of temp.
7. Return SUCCESS and reguested_bits.
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10.4.2 Derivation Function Using a Block Cipher Algorithm (Block Cipher df)

This derivation function is used e CTR DRBG that is specified in Section 10.2. Let
Block Cipher Hash be the function specified in Section 10.4.3. Let outlen be its output
block length, which is a multiple of 8 bits for the Approved block cipher algorithms, and

let keylen be the key length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:

1. _input_string: The string to be operated on. This string shall be a multiple of 8 bits.

2. no_of bits_to_return: The number of bits to be returned by Block_Cipher_df. The
maximum length (max_number_of bits) is 512 bits for the currently approved
block cipher algorithms.

Output:

1. _status: The status returned from Block Cipher_df. The status will indicate
SUCCESS or ERROR FLAG.

2. requested bits : The result of performing the Block_Cipher_df.

Block_Cipher_df Process:

1._If er of bits to return> max_numb its). then retu
ERROR FLAG.
2. L =len (input_string)/8. Comment: L is the bitstring represention of

the integer resulting from len (input_string)/8.
L shall be represented as a 32-bit integer.

3. N=number of bits to return/8.  Comment : N is the bitstring represention of
the integer resulting from
number_of bits_to_return/8. N shall be
represented as a 32-bit integer.

Comment: Pre the string length and the

requested length of the output to the
input_string.

3. S=L || N| input_string || 0x80.

Comment : Pad S with zeros. if necessary,
4. While (len (S) mod outlen) = 0, S= S || 0x00.
Comment : Compute the starting value.

5, temp = the Null string.

6. i=0. Comment : i shall be represented as a 32-bit
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integer, i.e., len (i) = 32.
7. K= Leftmost keylen bits of 0x00010203...1F.

8. While len (temp) < keylen + outlen, do
8.1 [V=i| Qer-lad Comment: The 32-bit integer represenation of
i is padded with zeros to outlen bits.
8.2 temp=temp | Block Cipher Hash (K, (/V .
83 i=i+1.

Comment: Compute the requested number of
bits.

9. K= Leftmost keylen bits of temp.
10. X = Next outlen bits of temp.

11. temp = the Null string.
12. While len (temp) < number_of_bits_to_return, do
12.1 X=Block Encrypt (X, X).
12.2 temp=temp | X.
13. requested_bits = Leftmost number_of bits_to_return of temp.

14. Return SUCCESS and reguested_bits.

10.4.3 Block Cipher Hash Function

The Block_Encrypt pseudo-function is used for convenience in the specification of the
Block_Cipher_Hash function. This function is not specifically defined in this
Recommendation, but has the following meaning:

BBlock_Encrypt: A basic encryption operation that uses the selected block cipher
algorithm. The function call is:

output_block = Block_Encrypt (Key, input_block)

For TDEA, the basic encryption operation is called the forward cipher operation (see
SP 800-67); for AES, the basic encryption operation is called the cipher operation (see
FIPS 197). The basic encryption operation is equivalent to an encryption operation on a
single block of data using the ECB mode.

‘For the Bloeck_Cipher_Hash function, let outlen be the length of the output block of the
block cipher algorithm to be used.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
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1. Key: The key to be used for the block cipher opeation.

2. data_to_hash: The data to be operated upon. Note that the length of data_to_hash
must be a multiple of outlen. This is guaranteed by steps 4 and 8.1 in Section
10.4.2.

Output:
1. output block: The result to be returne m the Block Cipher Hash operation.
Block_Cipher_Hash Proecess:

1. chaining_value = e Comment: Set the first chaining value to outlen zeros.
2. n=len (data to_hash) outlen.

3. Split the data_to_hash into n blocks of outlen bits each forming block; to block,.

4. Fori=1tondo

4.1 input_block= chaining_value @ block; .
4.2 chaining value = Block Encrypt (Key. input_block).

5. output_block = chaining_value.
6. Return output_block.
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11 Assurance

A user of a DRBG for cryptographic purposes requires assurance that the generator
actually produces random and
unpredictable bits. The user needs
assurance that the desig.n of the generator, Design < Evaluation
its implementation and its use to support

cryptographic services are adequate to l l
protect the user's information. In addition,
the user requires assurance that the Standards
generator continues to operate correctly.
The assurance strategy for the DRBGs in

this Recommendaion is depicted in Figure Implementation <> Validation
15.

The design of each DRBG in this .

Recommendation has received an Operational Tests

evaluation of its security properties prior to
its selection for inclusion in this
Recommendation. Figure 15: DRBG Assurance Strategy

An implementation shall be validated for

conformance to this Recommendation by a NVLAP accredited laboratory (see Section
11.2). The consuming application or cryptographic service that uses a DRBG should also
be validated and periodically tested for continued correct operation. However, this level of
testing is outside the scope of this Recommendation. Such validations provide a higher
level of assurance that the DRBG is correctly implemented. Validation testing for DRBG
processes consists of testing whether or not the DRBG process produces the expected
result, given a specific set of input parameters (e.g., entropy input).

Operational-Gre-hHealth) tests on the DRBG shall be implemented within a DRBG
boundary or sub-boundary in order to determine that the process continues to operate as
designed and implemented. See Section 11.3 for further information.

A cryptographic module containing a DRBG shall be validated (see FIPS 140-2). The
consuming application or cryptographic service that uses a DRBG should also be validated
and periodically tested for continued correct operation. However, this level of testing is
outside the scope of this Recommendation.

Note that any entropy input used for testing (either for validation testing or
eperational/health testing) may be publicly known. Therefore, entropy input used for
testing shall not knowingly be used for normal operational use.

11.1 Minimal Documentation Requirements
This Recommendation requires the development of a set of documentation that will

provide assurance to users and (optionally) validators that the DRBGs in this
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Recommendation have been implemented properly. Much of this documentation may be
placed in a user’s manual. This documentation shall consist of the following as a
minimum:

e Document the method for obtaining entropy input.

e Document how the implementation has been designed to permit implementation
validation and eperationel-health testing.

e Document the type of DRBG (e.g., CTR_DRBG, Dual_EC_DRBG), and the
cryptographic primitives used (e.g., AES-128, SHA-256).

¢ Document the security strengths supported by the implementation.

e Document features supported by the implemention (e.g., prediction resistance, the
available elliptic curves, etc.).

In the case of the CTR_DRBG, indicate whether a derivation function is provided.
If a derivation function is not used, documentation shall clearly indicate that the
implementation can only be used when full entropy input is available.

o Document any support functions other than eperatienal-health testing.
11.2 Implementation Validation Testing

A DRBG process shall be tested for conformance to this Recommendation. A DRBG shall
be designed to be tested to ensure that the product is correctly implemented. A testing

interface shall be available for this purpose in order to allow the insertion of input and the

extraction of output for testing.
Implementations to be validated shall include the following:
e Documentation specified in Section 11.1.
e Any documentation or results required in derived test requirements.

11.3 Operational/Health Testing

11.3.1 Overview

A DRBG implementation shall perform self-tests to ensure that the DRBG continues to
function properly. Self-tests of the DRBG processes shall be performed as specified in
Section 9.65. A DRBG implementation may optionally perform other self-tests for DRBG
functionality in addition to the tests specified in this Recommendation.

All data output from the DRBG boundary shall be inhibited while these tests are
performed. The results from known-answer-tests (see Section 11.3.2) shall not be output
as random bits during normal operation.

When a DRBG fails a self-test, the DRBG shall enter an error state and output an error
indicator. The DRBG shall not perform any DRBG operations while in the error state, and
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no pseudorandom bits shall be output when an error state exists. When in an error state,
user intervention (e.g., power cycling, restart of the DRBG) shall be required to exit the
error state (see Section 9.66).

11.3.2 Known Answer Testing

Known-answer testing shall be conducted as specified in Section 9.65. A known-answer
test involves operating the DRBG with data for which the correct output is already known
and determining if the calculated output equals the expected output (the known answer).
The test fails if the calculated output does not equal the known answer. In this case, the
DRBG shall enter an error state and output an error indicator (see Section 9.76).

The generalized known-answer testing is specified in Section 9.65. Testing shall be
performed on all DRBG functions implemented.
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Appendix A: (Normative) Application-Specific Constants
A.1 Constants for the Dual_EC_DRBG

The Dual_EC_DRBG requires the specifications of an elliptic curve and two points on the
elliptic curve. One of the following NIST approved curves and points shall be used in
applications requiring certification under FIPS 140-2. More details about these curves may
be found in FIPS PUB 186-3, the Digital Signature Standard.

Each of following curves is given by the equation:
3% =x3x + b (mod p)
Notation:
p - Order of the field F}, , given in decimal

r - order of the Elliptic Curve Group, in decimal . Note that  is used here for
consistency with FIPS 186-3 but is referred to as » in the description of the
Dual_EC_DRBG (...)

a —(-3) in the above equation
b - coefficient above

The x and y coordinates of the base point, ie generator G, are the same as for the point P.

A41—Curve R-224
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SFeFadea
A1.12 Curve P-256

p = 11579208921035624876269744694940757353008614\
3415290314195533631308867097853951

¥ = 11579208921035624876269744694940757352999695\
5224135760342422259061068512044369

b= 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0fé 3bce3cle
27d2604b

Px = 6bl17d1£f2 el2c4247 f8bce6eb 63a440f2 77037d81 2deb33al
£4a13945 d898c296

Py = 4fe342e2 fela7f9b 8ee7ebda 7c0f9elé 2bce3357 6b3lSece
cbb64068 37bf51f5

Ox = c97445f4 5cdef9f0 d3e05ele 585fc297 235b82b5 be8fflef
ca67¢c598 52018192

Oy = b28ef557 ba3ldfch dd2lac46 e2a9le3c 304f44cb 87058ada
2¢cb81515 1e610046

A.1.23 Curve P-384

P = 39402006196394479212279040100143613805079739\
27046544666794829340424572177149687032904726\
6088258938001861606973112319

¥ = 39402006196394479212279040100143613805079739\
27046544666794690527962765939911326356939895\
6308152294913554433653942643

b=Db3312fa7 e23ee7e4 988e056b e3£82d19 181d9cée fe814112 0314088fF
5013875a ¢656398d 8a2edl9d 2a85c8ed d3ecaef

Px = aa87ca22 be8b0537 8eblc7le £320ad74 6el1d3b62 8ba79b98
59f741e0 82542a38 5502£25d bf55296¢c 3a545e38 72760ab7

FW = 3617deda 96262c6f 5d9e98bf 9292dc29 £f8f41dbd 289%al47c
e9da3113 b5f0b8c0 0ab0blce 1d7e819d 7a431d7¢ 90eale5f

Ox = 8e722de3 125bddb0 5580164b fe20b8b4 32216a62 926c5750
2ceede3l c47816ed dle89769 124179d0 b6951064 28815065
Qy = 023b1660 dd701408 39fd45ee c36f9ee7 b32el3b3 15dc0261

0aalb636 e346dfe67 1£790£84 c5e09b05 674dbb7e 45c803dd
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A.1.34 Curve P-521

p = 68647976601306097149819007990813932172694353\
00143305409394463459185543183397656052122559)\
64066145455497729631139148085803712198799971\
6643812574028291115057151

F = 68647976601306097149819007990813932172694353\
00143305409394463459185543183397655394245057\
74633321719753296399637136332111386476861244\
0380340372808892707005449

b=051953eb 9618elc9 alf92%9a2 1a0b6854 Oeea2da’7 25b99b31 5£3b8h48

9918ef10 9e156193 95lec7e9 37blé52c 0bd3bblb £f073573d £883d2c3
4flef451 £d46b503 £00

Px = c6858e06 b70404e9 cd9e3ecb 662395b4 429c6481 39053fb5
21fg828af 606b4d3d baaldbse 77efe759 28feldcl 27a2ffas
de3348b3 ¢l1856a42 9bfo7e7e 3lc2eShd 66

Py = 11839296 a789%a3bc 0045c8a5 fb42c7dl bd998£54 449579b4
46817afb d17273e6 62c97ee7 2995ef42 640¢550b 9013fads
761353c7 086a272c 24088be9 4769fdl6 650

Ox = 1b9fa3e5 18d683c6 b6576369 4ac8efba ec6fab44 £2276171
a4272650 7ddo8add 4c3b3fic lebe5bl2 22ddba07 7£722943
b24c3edf a0f85fe2 4d0c8c0l 591f0be6 £63

Qy—- 1f3bdbas 85295d9a 1110d1df 1£9430ef 8442c501 8976£f34
37ef91b8 1dc0b813 2¢8d5c39 ¢32d0e00 4a3092b7 d327cle”
a4d26d2c 7b69058f 90666529 11e45777 9de

A.2 Using Alternative Points in the Dual_EC_DRBG()

The security of Dual EC_DRBG( ) requires that the points P and Q be properly
generated. To avoid using potentially weak points, the points specified in Appendix A.1
should be used. However, an implementation may use different pairs of points, provided
that they are verifiably random, as evidenced by the use of the procedure specified in
Appendix A.2.1 below, and the self-test procedure in Appendix A.2.2. An implementation
that uses alternative points generated by this Approved method shall have them “hard-
wired” into its source code, or hardware, as appropriate, and loaded into the working_state
at instantiation. To conform to this Recommendation, alternatively generated points shall

use the procedure given in Appendix A.2.1, and verify their generation using Appendix
A2.2.
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A.2.1 Generating Alternative P,Q

The curve shall be one of the NIST curves from FIPS 186-3 that is specified in Appendix
A.1 of this Recommendation, and shall be appropriate for the desired security_strength, as
specified in Table 4, Section 10.3.1.

The point P shall remain the generator point G given in Appendix A.1 for the selected
curve. (This minor restriction simplifies the test procedure to verify just one point each
time.)

The point Q shall be generated using the procedure specified in ANS X9.62. The
following input is required:

An elliptic curve E = (Fy, a, b), cofactor h, prime #, a bit string SEED, and hash
function Hash(). The curve parameters are given in Appendix A.1 of this
Recommendation. The minimum length m of SEED shall conform to Section 10.3.1,
Table 4, under “Seed length”. The bit length of SEED may be larger than m. The hash
function shall be SHA-512 in all cases.

If the output from the ANS X9.62 generation procedure is “failure”, a different SEED must
be used.

Otherwise, the output point shall be used as the point Q.
A.2.2 Additional Self-testing Required for Alternative P,Q

To insure that the point Q has been generated appropriately, an additional self-test
procedure shall be performed whenever the instantiate function is invoked. Section
9.56.12 specifies that known-answer tests on the instantiate function be performed
prior to creating an operational instantiation. As part of those tests, an implementation
of the generation procedure in ANS X9.62 shall be called with the SEED value used to
generate the alternate Q. The point returned shall be compared with the stored value of
Q used in place of the default value (see Appendix A.1 of this Recommendation). If
the generated value does not match the stored value, the implementation shall halt with
an error condition.
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Appendix B : (Normative) Conversion and Auxilliary Routines

B.1 Bitstring to an Integer

Input:

1. by, by,..., by The bitstring to be converted.
Output:

1. x The requested integer representation of the bitstring.
Process:

1. Let (1, by, ..., ba) be the bits of b from leftmost to rightmost.

2. x= ZZ("")b,. .

i=l
3. Return x.

In this Recommendation, the binary length of an integer x is defined as the smallest integer
n satisfying x < 2".

B.2 Integer to a Bitstring

Input:

1. x The non-negative integer to be converted.
Output:

1. by, ba, ..., by The bitstring representation of the integer x.
Process:

1. Let (b, by, ..., b,) represent the bitstring, where 5, =0 or 1, and &, is the most
significant bit, while b, is the least significant bit.

2. For any integer n that satisfies x < 27, the bits b, shall satisfy:
x= 22(”'i)b, .
i=1

3. Return by, by, ..., by

In this Recommendation, the binary length of the integer x is defined as the smallest
integer n that satisfies x < 2".

B.3 Integer to an Octet String

Input:
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1. A non-negative integer x, and the intended length » of the octet string satisfying
25> x,
Output:
1. An octet string O of length  octets.

Process:
1. Let Oy, O, ..., Oy be the octets of O from leftmost to rightmost.
2. The octets of O shall satisfy:

x =X 2*Mg;
fori=1ton.
3. Return O.

B.4 Octet String to an Integer

Input:
1. An octet string O of length » octets.
Output:
1. A non-negative integer x.
Process:
1. Let Oy, O, ..., O, be the octets of O from lefimost to rightmost.
2. x is defined as follows:
x =3 2500,
fori=1ton.
3. Returnux.
B.5 Converting Random Numbers from/to Random Bits
The random values required for cryptographic applications are generally of two types:
either a random bitstring of a specified length, or a random integer in a specified interval.
In some cases, a DRBG may return a random number in a specified interval that needs to

be converted into random bits; in other cases, a DRBG returns a random bitstring that
needs to be converted to a random number in a specific range.

B.5.1 Converting Random Bits into a Random Number

In some cryptographic applications sequences of random numbers are required (ao, a1,
a@,...) where:

i) Each integer a; satisfies 0 < @; < r-1, for some positive integer 7 (the range of the
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random numbers);

ii) The equation g; = s holds, with probability almost exactly 1/r, for any i > 0 and for
any s (0<s<r-1);

iii) Each value g is statistically independent of any set of values a; ( # i).

Four techniques are specified for generating sequences of random numbers from sequences
of random bits.

If the range of the number required is a < a; < b rather than 0 < g; < r-1, then a random
number in the desired range can be obtained by computing a; + a, where g; is a random
number in the range 0 < @; < b-a (that is, when r = b-a+1).

B.5.1.1 The Simple Discard Method
Let m be the number of bits needed to represent the value (—1). The following method
may be used to generate the random number a:

1. Use the random bit generator to generate a sequence of m random bits, (bo, b1, .
b-1).

ey

2. Let c=mz_12"bi .

=0
3. Ifc <rthen put a=c, else discard ¢ and go to Step 1.

This method produces a random number a with no skew (no bias). A possible
disadvantage of this method, in general, is that the time needed to generate such a random
a is not a fixed length of time because of the conditional loop.

The ratio »/2™ is a measure of the efficiency of the technique, and this ratio will always
satisfy 0.5 <#/2™ < 1. If r/2™ is close to 1, then the above method is simple and efficient.
However, if #/2" is close to 0.5, then the simple discard method is less efficient, and the
more complex method below is recommended.

B.5.1.2 The Complex Discard Method

Choose a small positive integer ¢ (the number of same-size random number outputs
desired), and then let m be the number of bits in (+ —1). This method may be used to
generate a sequence of # random numbers (ao, a1, ... , Gr1):

1. Use the random bit generator to generate a sequence of m random bits, (b, b, .
bp-1)-

“ey

2. Let c=mz-12"bf.

i=0
3. Ifc</,then

let (ao, ai, ..., ar1) be the unique sequence of values satisfying 0 < a; <r -1 such
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-1
that c= Y r'a,

1=0
else discard c and go to Step 1.

This method produces random numbers (ao, a1, ... , d.1) With no skew. A possible
disadvantage of this method, in general, is that the time needed to generate.these numbers
is not a fixed length of time because of the conditional loop. The complex discard method
is guaranteed to produce a sequence of random outputs for each iteration and, therefore,
may have better overall performance than the simple discard method if many random
numbers are needed.

The ratio #/2™ is a measure of the efficiency of the technique, and this ratio will always
satisfy 0.5 <#/2" < 1. Hence, given r, it is recommended to choose ¢ so that # is the
smallest value such that #/2" is close to 1. For example, if ¥ = 3, then choosing =3
means that m =5 (as r' is 27) and #/m = 27/32 ~ 0.84, and choosing ¢ = 5 means that m = 8
(as 7' is 243) and #/m = 243/256 ~ 0.95. The complex discard method coincides with the
simple discard method when ¢ = 1.

B.5.1.3 The Simple Modular Method

Let m be the number of bits needed to represent the value (»—1), and let s be a security
parameter. The following method may be used to generate one random number a:

1. Use the random bit generator to generate a sequence of m-+s random bits, (b, b,,
rany bm +_g.1) .
m+s—1
2. Letc= ».2'b,.

i=0
3. Leta=cmodr.

The simple modular method can be coded to take constant time. This method produces a
random value with a negligible skew, that is, the probability that a;=w for any particular
value of w (0 < w < r-1) is not exactly 1/r. However, for a large enough value of s, the
difference between the probability that @;=w for any particular value of w and 1/r is
negligible. The value of s shall be greater than or equal to 64. PWhy-642-What-is-the
relationship-between-g-and the-seeurity-strength?]

B.5.1.4 The Complex Modular Method

Choose a small positive integer # (the number of same-size random number outputs
desired) and a security parameter s; let m be the number of bits in (+ —1). The following
method may be used to generate a sequence of 7 random numbers (do, a1, -.-, @r1):

1. Use the random bit generator to generate a sequence of m+sf random bits, (bo, b1,

cver besay).
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mes=1
2. Letc= ) 2'b, modr.

=0
3. Let(ao, a1, ..., a1) be the unique sequence of values satisfying 0 < a; < -1 such

-1
that c =Y r'a, .

i=0 -
The complex modular method is guaranteed to produce a sequence of random outputs with
each iteration and, therefore, may have better overall performance than the simple modular
method if many random numbers are needed. This method produces a random value with
a negligible skew; that is, the probability that a=w for any particular value of w (0 <w <7r-
1) is not exactly 1/». However, for a large enough value of s, the difference between the
probability that @=w for any particular value of w and 1/r is negligible. The value of s
shall be greater than or equal to 64. The complex modular method coincides with the
simple modular method when #=1.

B.5.2 Converting a Random Number into Random Bits
B.5.2.1 The No Skew (Variable Length Extraction) Method

This is a method of extracting random unbiased bits from a random number modulo a
number n. First, a toy example is provided in order to explain how the method works, and
then pseudocode is given.

For the toy example, the insight is to look at the modulus » and the random number r as
bits, from left to right, and to partition the possible values of # into disjoint sets based on
the largest size of random bits that might be extracted. As a small example, if » =11, then
the binary representation of » is b>1011°, and the possible values of 7 (in binary) are as
follows:

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010.

Let the leftmost bit be considered as the bit 4, and the rightmost bit be considered as the bit
1.

1. As the 4th bit of nis b*21’, look at the 4th bit of 7.

2. Ifthe 4th bit of r is b°0’, then the remaining 3 bits can be extracted as unbiased
random bits. This forms a class of [0000, 0001, 0010, 0011, 0100, 0101, 0110,
0111] and maps each respective element into the 3-bit sequences [000, 001, 010,
011, 100, 0101, 110, 111], each of which is unbiased, and the process is completed

3. Ifthe 4th bit of » is b*21?, then r falls into the remainder [1000, 1001, 1010], and
the process needs to continue with step 4 in order to extract unbiased bits.

4. As the 3rd bit of » is b¢20°, the 3rd bit of » is always b‘20" in the class determined in
step 3; therefore the 3rd bit of r is already known to be biased, so the analysis
moves to the next bit (step 5).
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5. The 2nd bit of  is b¢21°, so this forms a subclass [1000, 1001], from which one
random unbiased bit can be extracted, namely the 1st bit.

The remaining value of 1010 cannot be used to extract random bits. However,
obtaining this value is not usual. For this tiny example: 8/11 of the time, 3 unbiased
random bits can be extracted; 2/11 of the time, 1 unbiased bit can be extracted; and
1/11, no unbiased bits can be extracted. As can be seen, it is not known ahead of time
how many unbiased bits will be able to be extracted, although the average will be
known.

Let both the modulus # and the random r values have m bits. This means that n(m) = b‘1’,
although r(m) may be either b’21° or b:20’,

1. outlen=0.
2. Doi=mtolby-1

Comment: if n(i) = b‘0, or r(i) = b¢1’, then
this is a skew situation; the routine cannot
exfract i-1 unbiased bits, so the index is
shifted right to check next bit

2.1 If (n(i) = b?20°) or (r({) = b‘21”)), then go to step 2.5.
2.2 outlen=i-1.
2.3 output = r(outlen,l).

24 i=1 Comment: all unbiased bits possible
have been extracted, so exit .

2.5 Continue
The extraction takes a variable amount of time, but this varying amount of time does not
leak any information to a potential adversary that can be used to attack the method.
B.5.2.2 The Negligible Skew (Fixed Length Extraction) Method

A possible disadvantage of the No Skew (Variable Length Extraction) Method of
Appendix B.5.2.1 is that it takes a variable amount of time to extract a variable number of
random bits. To address this concern and to simplify the extraction method, the following
method is specified that extracts a fixed length of random bits with a negligible skew. This
method exploits the fact that the modulus » is known before the extraction occurs.

1. Examine the modulus considered as a binary number from lefi to right, and
determine the index bit such that there are at least 16 b‘1° bits to the left. Call this
bit i.
2. Extract random bits from the random number » by truncating on the left up to bit i.
This is the output = r(3,1).
This method is especially appropriate when the high order bits of the modulus are all set to
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b‘1” for efficiency reasons, as is the case with the NIST elliptic curves over prime fields.

This method is acceptable for elliptic curves, based on the following analysis. When
considering the no skew method, once the random bits are extracted, it is obvious that less
than the full number of random bits can be extracted, and the extraction result will still be
random. The truncation of more bits than necessary is acceptable. What about truncation
of too few bits? For a random number, the no skew extraction process would continue
only if the 16 bits of » corresponding to the b*1” bits in » are all zero. For a random
number, this occurs about once every 2’6 times. As the modulus is at least 160 bits, this
means that 144 bits with a skew are extracted in this case. On average, once every
9,437,184 output bits (or more), there will be a 144-bit substring somewhere in that total
that has a skew, which will have the leftmost bit or bits tending to a binary zero bit or bits.
This skew could be as little as one bit. However, an adversary will not know exactly
where this skewed substring occurs. The 9,437,184 total output bits will still be
overwhelmingly likely to be within the statistical variation of a random bitstring; that is,
the statistical variation almost certainly will be much greater than this negligible skew.
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Appendix C: (Normative) Entropy and Entropy Sources

An examination of the DRBG algorithms in this Recommendation reveals a common
feature: each of them takes a seed and applies an algorithm to produce a potentially large
number of pseudo-random bits. The most important feature of the interaction between the
seed and the algorithm is that if an adversary doesn’t know the seed, then he can’t tell the
difference between the pseudo-random bits and a stream of truly random bits, let alone
redic f the pseudorandom bits. On the other hand, if he knows (or can guess) the
seed. then he will be able to predict or reproduce the pseudorandom bits. tel-the-difference

inistie~Thus, the security of the DRBG output is directly related to
the adversary’s inability to guess the seed.
C.1 Whatis Entropy ?

The word “entropy” is used to describe a measure of randomness, i.e., a description of how
hard a value is to guess. Entropy is a measure of uncertainty or unpredictability and is
dependent on the probabilities associated with the possible results for a given “event” (e.g.,
a throw of a die or flip of a coin).

In this Recommendation, entropy is relative to an adversary and his ability to observefor
predict a value. If the adversary has no uncertainty about the value, then the entropy is zero
(and so is the security of the consuming application that relies on the DRBG). Any
assessment of the entropy of a particular value is actually an assessment of how much of
the value is unknown to the adversary.

C.2 Entropy Source

Entropy is obtained from an entropy source. The entropy input required to seed or reseed a
DRBG shall be obtained either directly or indirectly from an entropy source (see Appendix
D for information on RBG construction). The entropy source is the critical component of
an RBG that provides un-guessable values for the deterministic algorithm to use as seeds
for the random bit generation process.

Every entropy source must include some process that is unpredictable. An intuitive
(although eften-usually impractical) example is tossing a coin and recording the sequence
of heads and tails. More likely, the entropy source will be an electronic process, such as a
noisy diode, which receives a constant input voltage level and outputs a continuous,
normally distributed analog voltage level. Other possibilities include thermal noise or
radioactive decay that are measured by appropriate instruments. The unpredictability could
involve human interaction with an otherwise deterministic system, such as the sampling of
a high-speed counter whenever a human operator presses a key on a keyboard. In any case,
there must be something happening that is unpredictable to an adversary, either
fundamentally unpredictable (e.g., when the next particle is detected by a Geiger counter),
or unpredictable from a practical point of view (e.g., the adversary won’t know the exact
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value of a high-speed counter if he isn’t close enough to the human pressing a key).

Figure C-1 provides a generic model for an entropy source. A noise source (e.g., a noisy
diode or a coin flip) provides the entropy. which is then converted to bits (i.e., digitized).

entropy sources will perform further processing (conditioning) on the resulting bits,
perhaps guaranteeing unbiased output. An entropy source may process the bits to the point
where the output bitstring will have full entropy; i.e. the entropy of the bitstring will be
(nearly) the same as its length. In this case, the entropy source will usually include a
conditioning routine, and the entropy source is often called a conditioned entropy source.

An assessment is made of the amount of
entropy that has been obtained. Typically.
this assessment is performed directly on
the digitized data, although it may be
perfomedsperhapson-the digitalized data
or on the data resulting from the
conditioning process (see Appendix C.23).
Health tests are performed to determine
that the entropy source is performing -
correctly.

Before asourse-efentropyan entropy

ENTROPY
SOURCE

Digitalization

(Optional)
Conditioning

source is selected for seeding a DRBG, a ouipm

thorough evaluation of the amount of

entropy it is capable of providing must be .

determinedp When asuitable Figure C-1: Entropy Source Model
erformed. Figure C-1: Entropy Source Model

erFepy-oeurecisoalectedafurter

Guidance on the selection and use of entropy sources is currently under development and
is expected to be provided as a NIST Recommendation in the future.

C.23 Entropy Assessment

A DRBG requires a predetermined amount of entropy in the entropy input that is used to
seed or reseed an instantiation in order to provide the requested DRBG security strength.
Therefore, the amount of actual entropy obtained from an entropy source shall be assessed
before providing it as entropy input. A+a means of measuring the entropy is required. Note
that the actual entropy provided in a given string of entropy input bits is less than or equal
to the length of that bitstring; i.e., each bit of the entropy input has (at most) one bit of
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entropy; multiple bits of the entropy input may be required to provide one bit of entropy.

There are many entropy, measures defined in information theory; this Recommendation
uses a very conservative measure that is known as min-entropy (Hopin)s-and-is-defined-as,
Suppose that the digitized Noise Source produces one of # possible outputs at each
sampling, with the " possible outcome having a probability of p,. The min-entropy of the
outputs is:

Hmin = 'ng( pmax )

where each possible-valie-is psand-puax is the maximum probability of the pi. Hpmn is
expressed in bits-and-is-the-amount-of entropy-that-is-expested-in-each-event-that-produces

a-value ofp;. Another. more commonly used measure of entropy is H = —Z p;log,p, -

i=1
Notice that Hyy, is a more conservative estimate of the entropy. as Hy is always less than
H.

For example, suppose that a noisy diode is used as a source of entropy, and that the diode
has possible voltages divided into 16 intervals (column 1), with each interval assigned a 4-
bit string value from 0000 to 1111 (column 2). Whenever the diode is sampled, the result is
| digitized and converted to the 4-bit value indicagted in Table C-1. The probability of each
interval has been determined for this diode and is provided in column 3. Note that other
diodes may behave differently.

Collecting entropy from an entropy source requires obtaining numerous samples, where
each sample is the result from a given type of eventj. Once sufficient samples have been
gathered, they generally need to be converted to bits (e.g. an analog voltage will be

mapped to some digital value, or coin tosses could be mapped to ones and zeros).

Table C-1 : Voltages Digitaization Ranges and Probabilities

Sampled Voltage | Digitized Output Probability (p))
~w0<Z<25 0000 0.000233
2.557Z<3 0001 0.001117
3<Z <35 0010 0.004860
35<57Z<4 0011 0.016540
4<7Z<45 0100 0.044057
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Sampled Voltage | Digitized Output Probability ‘(p,-)
45<57Z<5 0101 0.091848
52Z<55 0110 0.149882
55<7Z<6 0111 0.191462
6<7Z<6.5 1000 0.191462
65<7Z<7 1001 0.149882
7<Z<15 1010 0.091848
75<Z<8 1011 0.044057
8<Z <85 1100 0.016540
85<7Z<9 1101 0.004860
9<Z<95 1110 0.001117
95<Z<w 1111 0.000233

For this diode, the most likely digitized outputs are 0111 and 1000, each with a probability
of 0.191462. Therefore, pmax = 0.191462. Using the min-entropy formula above:

Hoin = -1g2( Prmax ) = ~182( 0.19462) = 2.33487.

This means that for each 4-bit sample from this diode, an entropy of 2.38487 bits is
expected.

One useful fact about min-entropy is that if two samples are independent (e.g., samplings
of the same noisy diode), then the entropy of their concatenation is the sum of their
entropy. This makes sense; if the samples are independent, then guessing one sample
provides no information for guessing another one. If various events are concatenated, then
the min-entropy for each event is added to find the min-entropy of the concatenated events.
In the noisy diode example, if thea sample has a min-entropy of 2.38487 bits, then ten
samples taken together have a min-entropy of 23.8487 bits, and one hundred samples have
a min-entropy of 238.487 bits.
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These entropy measures relate directly to the security strengths of the Approved DRBG
algorithms. For example, to provide entropy input for a seed that is appropriate to
instantiate a DRBG with a security strength of 128 bits, at least 54 samplings of the diode
are required (128/2.38487 = 53.67 ~ 54) and would result ina b1tstr1ng of216 b1ts to
prcwlde at least 128 blts of entropy Mote-th an 0 ; :

C.4 Coin Flipping Entropy Source Example

Coin flipping (sometimes called coin tossing) is perhaps the most straightforward example
of an entropy source, although it may be impractical to actually use in many cases.

However. for the occasional seeding of a DRBG, coin flipping may be appropriate. This
Recommendation allows the generation of random bits as the entropy input for a DRBG

using this coin-flipping procedure.

The coin flipping procedure described here may used as a conditioned entropy source. The
procedure is as follows: s

1. Select a single coin to be used for the procedure.

2. Determine the entropy requirement (x) for the DRBG to be instantiated.

3. Flip the coin until at least x heads and x tails have appeared, recording each coin flip
result in order. Note that there will be at least 256 coin flips, and possibly several
more.

4. Converl each head to either a zero or a one; convert each tail to the other value.

5. The entire string of zeroes and ones shall be used as the entropy input.
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Appendix D: (Normative) Constructing a Random Bit Generator (RBG) from
Entropy Sources and DRBG Mechanisms

This Recommendation is primarily concerned with the DRBG algorithms for generating
pseudorandom outputs and how they are to be implemented. Some discussion of entropy
sources that may be used to provide entropy input are provided in Appendix C. This
appendix briefly describes how to combine the entropy source with a DRBG mechanism to
create an Approved RBG.

D.1__Entropy Input for a DRBG

ection 8.6.5 states that the source of a DRBG’s en input ma Approved

on-deterministic Random Bit Generator 2) an Approved DRBG in of
Approved DRBGs) or 3) an Approved entropy source whose entropy characteristics are
known. A clarification of concepts may be helpful at this point.

a. An NRBG contains an entropy source (see Appendix
C.1) and performs algorithmic processing on the ENTROPY SOURCE
entropy source output in order to produce an output (See Figure C-1)
with full entropy (see Figure D-1).

b. A DRBG is defined in the body of this
Recommendation. To form a chain of DRBGs (see
the chain of two DRBGs in Figure D-2), the entropy
input for the instantiation of the first DRBG (the
highest DRBG in the chain) shall be obtained from a
“true” source of entropy (i.e.. an Approved NRBG or
an Approved entropy source whose entropy
characteristics are known). Each subordinate DRBG
is instantiated with entropy input acquired from an
entropy request to a higher DRBG in the chain; the

PROCESS-
ING

entropy input shall contain sufficient entropy to FULL ENTROPY
support the requested security strength for the OUTPUT

subordinate DRBG. The security strength provided by
the higher level DRBG shall be equal to or greater
than the security strength of any subordinate DRBG.

Figure D-1: NRBG

ac. An entropy s e provides entro; urce output (see ndix C.1). Thi
en urce output may be used as the input for a D Li.e. the

entropy input source may be the output of an entropy source (see DRBG A and the
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eAn ved entropy source by itself (i.e.. not part of an a t
rovide full entropy. However, if full entropy is not provided by the entro
source, the amount of entropy provided in a given -sequence-ofoutputs-isknewn
end-is-less than-full entrepy=entropy source output must be known in order to
provide sufficient entropy for the DRBG.

A (complete) RBG that incorporates a DRBG
also includes the source of entropy input. ENTROFPY NRBG

SOURCE o
When designing such an RBG-using-a (see Figure C-1) (see Figure D-1)

DRBG, there are a number of concerns to be

addressed in addition to the DRBG to be OR
selected, including the entropy input source to

be used, how readily the entropy input to the Entropy Input
DRBG can be provided, and how the DRBG

maintains its internal state information from DRBG A
one request to the next. Appendix G provides (see Figure 1)
a discussion on DRBG selection, and Pic S e

Appendix C provides some basic discussion Output
on entropy sources. This appendix includes

0 0 5 a Entropy Input
discussions about using entropy input sources
whose output may or may not be readily DRBG B
available and discusses internal state (see Figure 1)
persistance.
D.42 Availability of Entropy Input for a Figure D-2: Chain of DRBGs
DRBG

&6—5)—The chmce of an erltropy input source m&y-wﬂl determme the spec:f c “features
that an RBG can offer a consuming application (e.g., whether reseeding or prediction
resistance is practical). Whenever entropy inpuyt is requested by a DRBG, the entropy
input source must provide sufficient entropy to support the security strength intended for
the DRBG.: The entropy input source may be able to provide entropy whenever requested
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(i.e.. entropy is readily available on demand). On the other hand, the entropy input source

may provide entropy too slowly to honor “frequent” requests (e.g.. the en input source
may. in practice, be able to provide entropy only during instantiation). In any event, the
entropy input must be provided to the DRBG mechanism via a secure (i.e.. private and
authentic) channel.

D.2.14 Using a Readily Available Entropy Input Source

The ideal situation for a DRBG is to have ready access to some entropy input source that
provides entropy input (immediately) upon request. The entropy input source provides
bitstrings, along with a promise about how much entropy is available.

When the DRBG has a readily available source of entropy_input, reseeding and
instantiation can be dere-performed on demand, requests for prediction resistance can be
honored, and a DRBG can be reseeded when it has produced the maximum number of
outputs (i.e., the reseed interval is reached).

Upon each request for entropy input, the status of the request is returned to the calling
function (i.e., the instantiate or reseed function). A failure of the entropy input source has
the following consequences:

o Ifthe failure of the entropy source is detected, the DRBG functions are designed to
indicate-the-errerreturn an error status and enter the etror state (see Section 9.76).
No further output is produced until the failure is corrected.

e __[f'the failure is not immediately detected, the DRBG will continue to provide
output, based on the entropy currently available in the internal state.

If the failure occurs prior to or during instantiation, an undetected failure would be
catastrophic, as the DRBG would totally fail to provide the promised security
strength. Therefore, extreme care must be taken to ensure that a DRBG is
instantiated with sufficient entropy.

If the failure occurred subsequent to instantiation, a request for prediction
resistance would not result in prediction resistance being provided; however, the
security strength of the output would be based on whatever entropy had previously
been obtained.

If the failure occurs prior to or during a normal reseed (at the end of the
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reseed_interval), the security strength of the output would be based on whatever
entropy had previously been obtained. If the implemented reseed_interval is the
maximum that can be supported by the DRBG (see the tables in Section 10), then
the security provided by the DRBG algorithm is no longer assured. Therefore, the
use of a reseed_interval that is significantly less than the maximum interval is
recommended. This would provide additional time for the entropy source failure to
be detected.

D.2.2 No Readily Available Entropy Input Source

Many implementations of DRBGs will not have ready access to an entropy input source;
however. a- I P P L to tuna hac tha falladin ornaniag

POITICIn PO S = ESate-1oo % ey - BRtS

The DRBG must be instantiated at a time when the DRBG actually kas-does have access to
some reliable entropy input source. In some applications, the entropy input source is only
available during manufacture or device setup; in others, it is occasionally available (e.g.,
when a user is moving the mouse around on a laptop).

Over time, a DRBG may be able to accumulate additional entropy from inputs provided by

the user or consuming application as additional_input. For this reason. the DRBG
implementation should accept additional input whenever possible. Implementations that

have values that may have some entropy. such as timestamps or nonces from protocol runs.
should provide these values to the DRBG as additional inputs.

D.33 Persistance ConsiderationsSaving-the-Internal-State

A DRBG is provided with entropy input during instantiation, and the instantiation exists

for as long as the internal state is maintained. In many environments, the internal state can
be maintained for a very long time because power is continually available during that time

or the internal state is stored in persistent memory (e.g.. flash memory) that is not affected
by power fluctuations.

However, there are environments in which a DRBG does not have continual power or

persistant memory for maintaining the internal state. In this case. a DRBG can only be
instantiated when power is provided, and the DRBG instantiation only exists for as long as
the power is available, Whenever power is available, entropy input must be provided if the
DRBG is to be instantiated.

An example of this might be a smart card that contains a DRBG that is only powered up
when it is inserted into a reader. The reader provides not only the power, but must provide

entropy input for the DRBG in the smart card (i.e.. the smart card is provided with entropy

input that is passed along to the smart card’s DRB( i—or-the readerprodueces-the-entropy

input). This example will be used to explain possible methods for addressing the case in
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hich a DRBG instantiation is short-lived. The method is an adaptation of a concept that
uses seed files in currently implemented RBGs.

For simplicity. assume that the reader produces the entropy input for the smart card’s

DRBG (DRBGport-lived)- The reader could contain an Approved NRBG or Approved
entropy source (see A D.1). Alternatively, the reader could contain a DRB

(DRBGisource) whose output would be used to provide entropy input for DRBGhorlived (this
case is depicted in Figure D-2 by considering DRBG A to be DRBGiayrce, and considering
DRBG B to be DRBGyonived): Also for simplicity, assume that the reader has continual
power or persistant memory that can be used to maintain the internal state of its DRBG
(DRBG e). In this case, DRBGigqr. must be instantiated as discussed in Appendix D.1
with sufficient entropy to support any DRBGgon.jived that “connects” to it (i.e.. a chain of

DRBGs is formed, with DRBGgno.lived 2t the end of the chain, and DRBGiguree immediately
above it). The following is a common method for interacting between the two DRBGs.

. Whenever DRBGionived iS “connected” to DRB a gene uest is sent
DRBG.yyce. DRBG enerates the ested outpul rovides it
DRBG host.ii entropy inpu instantiation. The consuming application using
D fived I vide additional input to the

personalization_string during the instantiation process.

2. Ifthe consuming application has data containing entropy. the data is saved and
i DRBG in a request ft utput. using the da

additional_input. The request will result in changes to the internal state of
DRB ; the requested output from D is igno

3. After DRB_Mm_Drowdeg output as rgguested by its consuming application, k-
bits of additional output are gene i here k > 3/2

security strength, Eaaz_ﬂ'he k-bit oulDuL 153&6 Drowded as additional _input to
DRBG;ouce in 2 generate request, along with any other application data that might
contain . This will result in another update of the i al stal

DRBG . Any resulting output from this request is ignor

—4, If DRBG 001.1ive g€nerates a large number of outputs or persists for a long
period of time, it should periodically generate an output that is then provided to
DRBGgource as additional input in a generate request. The resulting output from

DRBGjource. is ignored.
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Appendix E: (Informative) Security Considerations when

E.4-Extracting Bits in the Dual_EC_DRBG {(...)

E.1.4 Potential Bias Due to Modular Arithmetic for Curves Over F,

Given an integer x in the range 0 to 281, the " bit of x depends solely upon whether

[%J is odd or even. If all of the values in this range are sampled uniformly, the " bit will

be 0 exactly % of the time. But if x is restricted to Fp, i.e., to the range 0 to p-1, this
statement is no longer true.

By excluding the k= 2V p values p, p+1, .., 2V —1 from the set of all integers in Zy, the
ratio of ones and zeroes in the " bit is altered from 2¥' /2% to a value that can be no

smaller than (2" — k)/ 2"'. For all the primes p used in this Recommendation, 2V is
smaller than 2%, Thus, the ratio of ones and zeroes in any bit is within at least 2°°' of 1.0.

To detect this small difference from random, a sample of 2% outputs is required before the
observed distribution of 1’s and 0°s is more than one standard deviation away from flat
random. This effect is dominated by the bias addressed below in Appendix E.2.

E4.2 Adjusting for the missing bit(s) of entropy in the x coordinates.

In a truly random sequence, it should not be possible to predict any bits from previously
observed bits. With the Dual EC_DRBG (...), the full output block of bits produced by
the algorithm is “missing” some entropy. Fortunately, by discarding some of the bits,
those bits remaining can be made to have nearly “full strength”, in the sense that the
entropy that they are missing is negligibly small.

To illustrate what can happen, suppose that a mod p curve with m = 256 is selected, and
that all 256 bits produced were output by the generator, i.e. that outlen =256 also. Suppose
also that 255 of these bits are published, and the 256-th bit is kept “secret”. About 2 the
time, the unpublished bit could easily be determined from the other 255 bits. Similarly, if
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254 of the bits are published, about % of the time the other two bits could be predicted.
This is a simple consequence of the fact that only about 1/2 of all 2" bitstrings of length m
occur in the list of all x coordinates of curve points.

The "abouts" in the preceding example can be made more precise, taking into account the
difference between 2™ and p, and the actual number of points on the curve (which is
always within 2 * p” of p). For the NIST curves, these differences won't matter at the scale
of the results, so they will be ignored. This allows the heuristics given here to work for any
curve with "about" (2")/f points, where f= 1 is the curve's cofactor.

The basic assumption needed is that the approximately (2")/(2f) x coordinates that do occur
are "uniformly distributed": a randomly selected m-bit pattern has a probability 1/2f of
being an x coordinate. The assumption allows a straightforward calculation,--albeit
approximate--for the entropy in the rightmost (least significant) m-d bits of

Dual EC_DRBG output, with d <<m.

2d
The formulais E=-) [2”"” binomprob(Z”,z,2" - J)lv ,log, p,, where E is the entropy.
=

The term in braces represents the approximate number of (m-d)-bitstrings that fall into one
of 1429 categories as determined by the number of times j it occurs in an x coordinate; z =
(2-1)/2f is the probability that any particular string occurs in an x coordinate; p; = G*2n/2"
is the probability that a member of the j-th category occurs. Note that the /=0 category
contributes nothing to the entropy (randomness).

The values of E for d up to 16 are:

log2(f): 0 d: 0 entropy: 255.00000000 m-d: 256
log2(f): 0 d: 1 entropy: 254.50000000 m-d: 255
log2(f): 0 d: 2 entropy: 253.78063906 m-d: 254
log2(f): 0 d: 3 entropy: 252.90244224 m-d: 253
log2(f): 0 d: 4 entropy: 251.95336161 m-d: 252
log2(f): 0 d: 5 entropy: 250.97708960 m-d: 251
log2(f): 0 d: 6 entropy: 249.98863897 m-d. 250
log2(f: 0 d: 7 entropy: 248.99434222 m-d. 249
log2(H): 0 d: 8 entropy: 247.99717670 m-d. 2438
log2(): 0 d: 9 entropy: 246.99858974 m-d. 247
log2(): 0 d: 10 entropy: 245.99929521 m-d: 246
log2(f): 0 d: 11 entropy: 244.99964769 m-d. 245
log2(f): 0 d: 12 entropy: 243.99982387 m-d: 244
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log2(f): 0 d: 13 entropy: 242.99991194 m-d: 243
log2(f): 0 4: 14 entropy: 241.99995597 m-d: 242
log2(H): 0 d: 15 entropy: 240.99997800 m-d: 241
log2(f): 0 d: 16 entropy: 239.99998900 m-d: 240

Observations:
a) The table starts where it should, at 1 missing bit;

b) The missing entropy rapidly decreases;

¢) For log2(f) = 0, i.e, the mod p curves, @=13 leaves 1 bit of information in every

10,000 (m-13)-bit outputs (i.e., one bit of entropy is missing in a collection of
10,000 outputs).

Based on these calculations, for the mod p curves, it is recommended that an
implementation shall remove at least the leftmost (most significant) 13 bits of every m-bit
output.

For ease of implementation, the value of d should be adjusted upward, if necessary, until
the number of bits remaining , m-d= outlen, is a multiple of 8. By this rule, the
recommended number of bits discarded from each x-coordinate will be either 16 or 17. As
noted in Section 10.3.1.4, an implementation may decide to truncate additional bits from
each x-coordinate, provided that the number retained is a multiple of 8.

Because only half of all values in [0, 1, ..., p-1] are valid x-coordinates on an elliptic curve
defined over F,, it is clear that full x-coordinates should not be used as pseudorandom bits.
The solution to this problem is to truncate these x-coordinates by removing the high order
16 or 17 bits. The entropy loss associated with such truncation amounts has been
demonstrated to be minimal (see the above chart).

One might wonder if it would be desirable to truncate more than this amount. The obvious
drawback to such an approach is that increasing the truncation amount hinders the already
sluggish performance. However, there is an additional reason that argues against
increasing the truncation. Consider the case where the low s bits of each x-coordinate are
kept. Given some subinterval / of length 2° contained in [0, p), and letting N(/) denote the
number of x-coordinates in I, recent results on the distribution of x-coordinates in [0, p)
provide the following bound:

INU)/ (p/2) -2 1 p| <k*log’ p/ sqrtp,

where k is some constant derived from the asymptotic estimates given in [Shparlinski].
For the case of P-521, this is roughly equivalent to:

INQ@D)- 257 | < k%277,
where the constant k is independent of the value of s. For s <
121
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and provides very little support for the notion that these truncated x-coordinates are
uniformly distributed. On the other hand, the larger the value of s, the sharper this
inequality becomes, providing stronger evidence that the associated truncated x-
coordinates are uniformly distributed. Therefore, by keeping truncation to an acceptable
minimum, the performance is increased, and certain guarantees can be made about the
uniform distribution of the resulting truncated quantities.
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Appendix F: (Informative) Example Pseudocode for Eaéh DRBG

The internal states in these examples are considered to be an array of states, identified by
state_handle. A particular state is addressed as internal_state (state_handle), where the
value of state_handle begins at 0 and ends at »-1, and » is the number of internal states
provided by an implementation. A particular element in the internal state is addressed by-

internal_state (state_handle).element. For each example, arbitary values have been
selected that are consistent with the allowed values for each DRBG.

The pseudocode in this anrex-appendix does not include the necessary conversions (e.g.,
integer to bitstring) for an implementation. When conversions are required, they must be
accomplished as specified in Appendix B.

The following routine is defined for these pseudocode examples:

Find_state_space (): A function that finds an unused internal state. The function
returns a status (either “Success” or a message indicating that an unused internal state
is not available) and, if status = “Success”, a state_handle that points to an available
internal_state in the array of internal states. If status # “Success”, an invalid
state_handle is returned.

When the uninstantantiate function is invoked in the following examples, the function
specified in Section 9.4 is called. '

F.1 Hash_DRBG Example

This example of Hash_DRBG uses the SHA-1 hash function, and prediction resistance is
supported in the example. Both a personalization string and additional input are allowed. A
32-bit incrementing counter is used as the nonce for instantiation (instantiation_nonce); the
nonce is initialized when the DRBG is installed (e.g., by a call to the clock or by setting it
to a fixed value) and is incremented for each instantiation.

A total of 10 internal states are provided (i.e., 10 instantiations may be handled
simultaneously).

For this implementation, the functions and algorithms are “inline”, i.e., the algorithms are ‘
not called as separate routines from the function envelopes. Also, the Get_entropy_input
function uses only two input parameters, since the first two parameters (as specified in
Section 9) have the same value.

The internal state contains values for V, C, previews—eutpui—bloek-reseed_counter,
security_strength and prediction_resistance_flag, where V and C are bitstrings, and
reseed_counter, security_strength and the prediction_resistance_flag are integers. A
requested prediction resistance capability is indicated when prediction_resistance_flag=1.
Note: an empty internal state is represented as {Null, Null, 0, 0, 0}.

In accordance with Table 2 in Section 10.1, the 112 and 128 bit security strengths may be
supported. Using SHA-1, the following definitions are applicable for the instantiate,
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generate and reseed functions and algorithms:

1. highest supported security strength= 128.

2. Output block length (outlen) = 160 bits.

3. Required minimum entropy for instantiation and reseed = security_strength.
4. Seed length (seedlen) = 440 bits.
5

. Maximum number of bits per request (max_number_of_ bits_per_request) = 5000

bits.

6. Reseed interval (reseed_interval) = 100,000 requests.

7. Maximum length of the personalization string (max_personalization_string_length)
=512 bits.

8. Maximum length of additional_input (max_additional input string_length) = 512
bits.

9. Maximum length of entropy input (max _length) = 1000 bits.
F.1.1 Instantiation of Hash_DRBG
This implementation will return a text message and an invalid state handle (-1) when an

error is encountered. Note that the value of instantiation _nonce is an internal value that is
always available to the instantiate function.

Note that this implementation does not check the prediction_resistance_flag, since the
implementation can handle prediction resistance. However, if a consuming application
actually wants prediction resistance, the implementation expects that
prediction_resistance_flag = 1 during instantiation; this will be used in the generate
function in Appendixx F.1.3.

Instantiate_Hash DRBG (...):

Input: integer (requested instantiation_security strength, prediction_resistance_flag),
bitstring personalization_string.

Output: string status, integer state_handle.
Process:
Comment: Check the input parameters.

1. If (requested_instantiation security strength > 128), then Return (“Invalid
requested_instantiation_security_strength”, -1).

2. If (len (personalization_string) > 512), then Return (“Personalization_string
too long”, -1).

Comment: Set the security strength to one of
the valid security strengths.
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3. If (requested instantiation_security_. strength < 112), then security_strength =
112

Else security_strength = 128.
Comment: Get the entropy input.
4. (status, entropy_input) = Get_entropy_input (secun'!y strength, 1000).

5. If (status # “Success”), then Return (“Faﬂafe—mdwaﬂen—fetumed
byCatastrophic failure of the entropy_input source:” || status, -1).

Comment; Increment the nonce; actual coding
must ensure that it wraps when it’s storage
limit is reached.

6. instantiation_nonce = instantiation_nonce + 1.

Comment: The instantiate algorithm is
provided in steps 7-3411.

7. seed material = entropy_input || instantiation_nonce || personalization_string.
8. seed = Hash_df (seed_material, 440).

9, V=yseed.
10. C = Hash_df ((0x00 || V), 440).

: :
for ?f‘li 1 g{g ith ® firs E. ; X

12 =Hash-(0xb3H-H5-

-1-3.—&(—%-!-#—!-—@-#—1—)—&&94—2”“”‘-‘".

141, reseed_counter =21.

Comment: Find an unused internal
state and save the initial values.

1512. (status, state_handle) = Find_state_space ().

1613. If (status # “Success”), then Return (status, -1).

1714. internal_state (state_handle) = {V, C, previeus—output—block

reseed _counter, security_strength, prediction_resistance_flag}.
1815. Return (“Success”, state_handle).
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F.1.2 Reseeding a Hash_DRBG Instantiation

The implementation is designed to return a text message as the status when an error is
encountered.

Reseed_Hash_DRBG_Instantiation (...):
Input: integer state_handle, bitstring additional_input.

Output: string status.

Process:
Comment: Check the validity of the
state_handle.
1. If ((state_handle < 0) or (state_handle > 9) or (internal_state (state_handle) =

{Null, Null, M0, 0, 0})), then Return (“State not available for the
state_handle™).

Comment: Get the internal state values
needed to determine the new internal state.

Get the appropriate internal_state values, e.g., V=
internal_state(state_handle).V, security strength =
internal_state(state_handle).security_strength.

Check the length of the additional _input.
If (len (additional_input) > 512), then Return (“Additional_input too long”).
Comment: Get the entropy_input.
(status, entropy_input) = Get_entropy_input (security_strength, 1000).

If (status # “Success”), then Return (“Failure-indieation-returned
byCatastrophic failure of the entropy_input source:” || status).

Comment: The reseed algorithm is provided
in steps 6-1010.

6. seed_material = 0x01 || V|| entropy_input || additional_input.
7.
8
9

seed = Hash_df (seed material, 440).
V= seed.

. C=Hash_df ((0x00 || 7), 440).

10. reseed_counter = 1.

Comment: Update the working state portion
of the internal state.

11. Update the appropriate state values.
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11.1 internal state (state_handle).V="V.
11.2 internal _state (state_handle).C = C.
11.3 internal_state (state_handle).reseed_counter = reseed_counter.
12. Return (“Success”).
F.1.3 Generating Pseudorandom Bits Using Hash_DRBG
The implementation returns a Null string as the pseudorandom bits if an error has been
detected. Prediction resistance is requested when prediction_resistance_request = 1.

In this implementation, prediction resistance is requested by supplying
prediction_resistance request = 1 when the Hash DRBG function is invoked.

Hash_DRBG (...):

Input: integer (state_handle, requested_no_of bits, requested_security_strength,
prediction_resistance_request), bitstring additional _input.

Output: string status, bitstring pseudorandom_bits.
Process:

Comment: Check the validity of the
state_handle.

1. If ((state_handle < 0) or (state_handle > 9) or (state (state_handle) = {Null,
Null, M0, 0, 0})), then Return (“State not available for the state_handle”,
Null).

Comment: Get the internal state values.

2. V=internal_state (state_handle).V, C = internal_state (state_handle).C,

reseed_c?)unter = internal_state (;tate_handle_). reseed_counter. -
security strength = internal_state (state_handle).security_strength,
prediction_resistance_flag = internal_state

(state_handle).prediction_resistance_flag.

Comment: Check the validity of the other
input parameters.

3. If (requested no_of bits > 5000) then Return (“Too many bits requested”,
Null).

4, If (requested_security strength > security_strength), then Return (“Invalid
requested_security strength”, Null).

5. If (len (additional_input) > 512), then Return (“Additional_input too long”,
Null).

6. If ((prediction_resistance_request = 1) and (prediction_resistance_flag # 1)),
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then Return (“Prediction resistance capability not instantiated”, Null).

Comment: Reseed if necessary. Note that
since the instantiate algorithm is inline with
the functions, this step has been written as a
combination of steps 6 and 7 of Section 9.3
and step 1 of the generate algorithm in
Section 10.1.1.4. Because of this combined
step, step 9 of Section 9.3.is not required.

7. If ((reseed_counter > 100,000) OR (prediction_resistance_request = 1)), then

7.1 status = Reseed_ Hash_DRBG_Instantiation (state_handle,
additional_inpuf).

7.2 If (status # “Success”), then Return (sfatus, Null).

Comment: Get the new internal state values
that have changed.

7.3 V=internal_state (state_handle).V, C = internal_state (state_handle).C,
reseed_counter = internal_state (state_handle).reseed_counter.

7.4 additional_input = Null.

Comment: Steps 8-16 provide the rest of the
generate algorithm. Note that in this
implementation, the Hashgen routine is also
inline as steps 9-13.

8. If (additional input # Null), then do
7.1 w=Hash (0x02 || V|| additional_input).
7.2 V= (V+w) mod 2*°.

9. m= [requested_ no_of _ btts_‘ '
outlen

10. data=V.
11. W =the Null string.
12.Fori=1tom

12.1 w; = Hash (data).

12.22 HEonr=previcus—suips
123 previeus—supuiblosl=wx
124-W=W| w.
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12.53 data = (data + 1) mod 2*°,
13. pseudorandom_bits = Leftmost (requested_no_of bits) bits of W.
14. H=Hash (0x03 || V).
15. V= (V + H+ C + reseed_counter) mod 2**.
16. reseed counter = reseed_counter + 1. I
Comments: Update the working state.
13. Update the changed values in the state.
13.1 internal_state (state_handle).V = V.
13.2 internal-state-(state—handleypreviows—outpui—block=
previous—output—block:
133-internal_state (state_handle).reseed_counter = reseed_counter.
14. Return (“Success”, pseudorandom_bits).
F.2 HMAC_DRBG Example
This example of HMAC_DRBG uses the SHA-256 hash function. Reseeding and
prediction resistance are not provided. The nonce for instantiation consists of a random
value with security strength/2 bits of entropy; the nonce is obtained by increasing the call
for entropy bits via the Get_entropy_input call by security_strength/2 bits (i.e., by adding

security_strength/2 bits to the security strength value). The Update function is specified
in Section 10.1.2.2.

A personalization string is allowed, but additional input is not. A total of 3 internal states
are provided. For this implementation, the functions and algorithms are written as separate
routines. Also, the Get_entropy_input function uses only two input parameters, since the
first two parameters (as specified in Section 9) have the same value.

The internal state contains the values for V, Key, reseed counter, and security_strength,
where ¥ and C are bitstrings, and reseed _counter and security_strength are integers. Note:
an empty state is represented as {Null, Nulil, 0, 0}.

In accordance with Table 2 in Section 10.1, security strengths of 112, 128, 192 and 256
may be supported. Using SHA-256, the following definitions are applicable for the
instantiate and generate functions and algorithms:

1. highest_supported_security strength= 256.
2. Output block (outlen) = 256 bits.

3. Required minimum entropy for the entropy input at instantiation = 3/2
security_strength (this includes the entropy required for the nonce).

4. Seed length (seedlen) = 440 bits.
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. Maximum number of bits per request (max_number of bits_per_request) = 7500
bits.

6. Reseed_interval (reseed interval) = 10,000 requests.

7. Maximum length of the personalization string (max_personalization_string_length)

F.21

= 160 bits.

Maximum length of the entropy input (max length) = 1000 bits.
Instantiation of HMAC_DRBG

This implementation will return a text message and an invalid state handle (-1) when an error
is encountered.

Instantiate. HMAC_DRBG (...):

Input: integer (requested_instantiation_security _strength), bitstring

personalization_string.

Output: string status, integer state_handle.

Process:

Check the validity of the input parameters.

. If (requested_instantiation_security strength > 256), then Return (“Invalid

requested_instantiation_security strength”, -1).

. If (len (personalization_string) > 160), then Return (“Personalization_string

too long”, -1)

Comment: Set the security strength to
one of the valid security strengths.

. If (requested_security strength < 112), then security_strength =112

Else (requested_security _strength < 128), then security_strength = 128
Else (requested_security strength < 192), then security_strength = 192
Else security strength=256.

Comment: Get the entropy_input and
the nonce.

. min_entropy = 1.5 x security_strength.
5. (status, entropy input) = Get_entropy_input (min_entropy, 1000).
. If (status # “Success”), then Return (“Feilure-indication-returnedCatastrophic

failure of-by- the entropy source:” || status, -1).

Comment: Invoke the instantiate algorithm.
Note that the entropy_input contains the
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nonce.

7. (V, Key, reseed_counter) = Instantiate_algorithm (entropy_input,
personalization_string).

Comment: Find an unused internal state and
save the initial values.

8. (status, state_handie) = Find_state_space ().
9. If (status # “Success”), then Return (“No available state space:” || status, -1).
10. internal_state (state_handie) = {V, Key, reseed_counter, security_strength}.
11. Return (“Success” and state_handle).
Instantiate_algorithm (...):

Input: bitstring (entropy input, personalization_string).

Output: bitstring (V, Key), integer reseed_counter.

Process:
1. seed material = entropy_input || personalization_string.
2. Set Key to outlen bits of zeros.
3. Set V'to outlen/8 bytes of 0x01.
4. (Key, V)= Update (seed_material, Key, V).
5

E 3

F—reseed_counter = 1.
86. Return (V, Key, reseed_counter).
F.2.2 Generating Pseudorandom Bits Using HMAC_DRBG
The implementation returns a Null string as the pseudorandom bits if an error has been
detected.
HMAC_DRBGC(..):
Input: integer (state_handle, requested no_of bits, requested_security_strength).
Output: string (status), bitstring pseudorandom_bits.
Process:
Comment: Check for a valid state handle.

1. If ((state_handle < 0) or (state_handle > 2) or (internal_state (state_handle) =
{Null, Null, 0, 0}), then Return (“State not available for the indicated
state_handle”, Null).
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Comment: Get the internal state.

V = internal_state (state_handle).V, Key = internal_state (state_handle).Key,
security strength = internal_state (state_handle).security_strength,
reseed_counter = internal_state (state_handle).reseed_counter.

Comment: Check the validity of the rest of
the input parameters.

If (requested_no_of bits > 7500), then Return (“Too many bits requested”,
Null).

If (requested_security strength> security_strength), then Return (“Invalid
requested_security_strength”, Null).

Comment: Invoke the generate algorithm.

. (status, pseudorandom_bits, V, Key, reseed_counter) = Generate_algorithm

(V, Key, reseed_counter, requested_number_of bits).

If (status = “Reseed required”), then Return (“DRBG can no longer be used.
Please re-instantiate or reseed”, Null).

— & . 3

9—internal_state (state_handle) = {V, Key, security_strength, reseed_counter}.

108. Return (“Success”, pseudorandom_bits).

Generate_algorithm (...):

Input: bitstring (V—e#d, Key), integer (reseed_counter, requested_number_of_ bits).

Output: string status, bitstring (pseudorandom_bits, V, Key), integer reseed_counter.

Process:

1

If (reseed_counter = 10,000), then Return (“Reseed required”, Null, ¥, Key,
reseed_counter). '

temp = Null.
While (len (femp) < requested_no_of bits) do:
3.1 V=HMAC (Key V).
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3.2 W=t oldrthen-Return-{“ERROR-outputs-mateh™ Nulf . Key:
resses—caiers
I2—Irold=1

34—temp =temp| V.

pseudorandom _bits = Leftmost (requested no_of bits) of temp.

(Key, V) = Update (additional_input, Key, V).

reseed_counter = reseed_counter + 1.

&S @ A

7. Return (“Success”, pseudorandom_bits, V, Key, reseed_counter).
F.3 CTR_DRBG Example Using a Derivation Function

This example of CTR_DRBG uses AES-128. The reseed and prediction resistance
capabilities are available, and a block cipher derivation function using AES-128 is used.
Both a personalization string and additional input are allowed. A total of 5 internal states
are available. For this implementation, the functions and algorithms are written as separate
routines. The Block_Encrypt function (specified in Section 10.4.2) uses AES-128 in the
ECB mode.

The nonce for instantiation (instantiation_nonce) consists of a 32-bit incrementing counter.
The nonce is initialized when the DRBG is installed (e.g., by a call to the clock or by
setting it to a fixed value) and is incremented for each instantiation.

The internal state contains the values for V, Key, previous—outpui—bloelk-reseed counter,
and security_strength, where V5 and Key aﬂd-prewew—owput—bleek-are strings, and all

other values are integers. Since prediction resistance is always available, there is no need
for prediction resistance flag in the internal state. Note: an empty statre is represented as
{Nulil, Null, 0, 0}.

In accordance with Table 3 in Section 10.2.1, security strengths of 112 and 128 may be
supported. Using AES-128, the following definitions are applicable for the instantiate,
reseed and generate functions:

1. highest _supported_security strength=128.
2. Output block length (outlen) = 128 bits.

3. Key length (feylen) = 128 bits.
4

. Required minimum entropy for the entropy input during instantiation and reseeding
= security_strength.

L

Minimum entropy input length (min _length) = security _strength bits.
6. Maximum entropy input length (max length) = 1000 bits.

7. Maximum personalization string input length
(max_personalization_string_input_length) = 800 bits.
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8. Maximum additional input length (max_additional_input_length) = 800 bits.
9. Seed length (seedlen) = 256 bits.

10. Maximum number of bits per request (max_number_of bits_per_request) = 4000
bits.

11. Reseed interval (reseed_interval) = 100,000 requests. Note that for this value, the
instantiation count will not repeat during the reseed interval.

F.3.1 The Update Function

Update (...):
Imput: bitstring (provided_data, Key, V).
Output: bitstring (Key, V).

Process:
1. temp = Null.
2. While (Ien (temp) <256) do

4
5
6.
7

8.

3.1 V=(V+1)mod 2.
3.2 output block= AES_ECB_Encrypt (Key, V).
3.3 temp = temp || ouput_block.

. temp = Leftmost 256 bits of temp.

temp = temp @ provided_data.
Key = Leftmost 128 bits of temp.
V' = Rightmost 128 bits of temp.
Return (Key, V).

F.3.2 Instantiation of CTR_DRBG Using a Derivation Function

This implementation will return a text message and an invalid state handle (-1) when an error
is encountered. Block_Cipher_df is the derivation function in Section 10.4.2, and uses AES-
128 in the ECB mode as the Block_Encrypt function.

Note that this implementation does not include the prediction_resistance_flag in the input
parameters, nor save it in the internal state, since prediction resistance is always available.

Instantiate. CTR_DRBG (...):

Input: integer (requested_instantiation_security_strength), bitstring

personalization_string.

Output: string status, integer state_handle.
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Process:
Comment: Check the validity of the input
parameters.
1. If (requested_instantiation_security_strength > 128) then Return (“Invalid

10.

11.

requested_instantiation_security_strength”, -1).

If (lem (personalization_string) > 800), then Return (“Personalization_string
too long”, -1).

If (requested _instantiation_security _strength < 112), then security_strength =
112

Else security_strength=128.
Comment: Get the entropy input.

(status, entropy _input) = Get_entropy_input (security_strength,
security_strength, 1000).

If (status # “Success™), then Return (“Eeilure-indicationreturned
byCatastrophic failure of the entropy source” || status, -1).

Comment: Increment the nonce; actual coding
must ensure that the nonce wraps when its
storage limit is reached, and that the counter
pertains to all instantiations, not just this one.

instantiation_nonce = instantiation_nonce + 1.

Comment: Invoke the instantiate algorithm.

(V, Key, previows—ontpui—bloek:reseed_counter) = Instantiate_algorithm

(entropy_input, instantiation_nonce, personalization_string).

Comment: Find an available internal state and
save the initial values.

(status, state_handle) = Find_state_space ().
If (status # “Success”), then Return (“No available state space:” || status, -1).

Comment: Save the internal state.

internal_state _(state_handle) = {V, Key, previous—ewipwt—block;

reseed counter, security_strength}.

Return (“Success”, state_handle).

Instantiate_algorithm (...):

Input: bitstring (entropy_input, nonce, personalization_string).

Output: bitstring (¥, Key), integer (reseed_counter).
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Process:

1. seed material = entropy input || nonce || personalization_string.

2. seed material = Block_Cipher_df (seed_material, 256).

3. Key=0"%, Comment: 128 bits.

4. V=02, Comment: 128 bits.

5. (Key, V)= Update (seed_material, Key, V).

6. reseed _counter=1.

7. previous—outpui—block=AES_ECB_Enerypttkeys-i9:
Conmment-Produce-a-string-efseedlen

ZOFOS:

8—zeros=0don
10-Return (V, Key, previows—eutput—bloel—reseed counter).

F.3.3 Reseeding a CTR_DRBG Instantiation Using a Derivation Function

The implementation is designed to return a text message as the status when an error is
encountered.

Reseed_CTR_DRBG_Instantiation (...):
Input; integer (state handle), bitstring additional_input.
Output: string status.
Process:

Comment: Check for the validity of
state_handle.

1. If ((state_handle < 0) or (state_handle > 4) or (internal_state(state_handle) =
{Null, Null, -NaH=0, 0}), then Return (“State not available for the indicated
state_handle™).

Comment: Get the internal state values.

2. V=internal_state (state_handle).V, Key = internal_state (state_handle).Key,

security:strengt; = internal_state_(state_hanc?le). security_strength.
3. If (len (additional_input) > 800), then Return (“Additional_input too long™).

| 4, (status, entropy_input) = Get_entropy-input (security_strength,
security_strength, 1000).

| 6. If (status # “Success”), then Return (“Eailure-indieationreturned
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byCatastrophic failure of the entropy source:” || status).
Comment: Invoke the reseed algorithm.

7. (V, Key, reseed_counter) = Reseed_algorithm (V, Key, reseed_counter,
entropy_input, additional_input).

8. internal state (state_handle) = {V, Key, previous—outpui—block

reseed_counter, security strength }.
9. Return (“Success”).
Reseed_algorithm (...):

Input: bitstring (¥, Key), integer (reseed_counter), bitstring (entropy_input,
additional _inpuf).

Output: bitstring (¥, Key), integer (reseed_counter).
Process:
1. seed material = entropy_input || additional _input.
2. seed material = Block_Cipher_df (seed_material, 256).
3. (Key, V)= Update (seed_material, Key, V).
4. reseed counter=1.

5. Return ¥, Key, reseed counter).
F.3.4 Generating Pseudorandom Bits Using CTR_DRBG

The implementation returns a Null string as the pseudorandom bits if an error has been
detected.
CTR _DRBGC(..):

Input: integer (state_handle, requested_no_of bits, requested_security_strength,
prediction_resistance_request), bitstring additional_input.

Qutput: string status, bitstring pseudorandom_bits.
Process:
Comment: Check the validity of state handle.

1. If ((state_handle < 0) or (state_handle > 4) or (internal_state (state_handle) =
{Null, Null, Nut-0, 0}), then Return (“State not available for the indicated
state_handle”, Null).

Comment: Get the internal state.

2. V=internal_state (state_handle).V, Key = internal_state (state_handle).Key,

internal_state"(state_ham?le). security_streng—{‘h,
137
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reseed counter = internal_state (state_handle).reseed_counter.

Comment: Check the rest of the input
parameters.

If (requested no_of bits > 4000), then Return (“Too many bits requested”,
Null).

If (requested_security_strength > security_strength), then Return (“Invalid
requested_security_strength”, Null).

If (len (additional_input) > 800), then Return (“Additional_input too long”,
Null).

6. reseed required flag=0.

10.

If ((reseed_required_flag = 1) OR (prediction_resistance_flag = 1)), then

7.1 status = Reseed_CTR_DRBG_Instantiation (state_handle,
additional _input).

7.2 If (status = “Success”), then Return (status, Null).

Comment: Get the new working state values;
the administrative information was not
affected.

7.3 V= internal_state (state_handle).V, Key = internal_state

(state_handle).Key;-previous—outpui—block—internal-state
(state—handle)—previous—output-bloel-, reseed_counter = internal_state

(state_handle).reseed_counter.
7.4 additional_input = Null.
7.5 reseed required flag="0.

Comment: Generate bits using the generate
algorithm.

(status, pseudorandom_bits, V, Key, previous—outpui—bloelk-—reseed counter) =
Generate_algorithm (V, Key, pﬂevww—eutpm—élaek,—reseed_counter,

requested_number_of bits, additional_input).
If (status = “Reseed required”), then

9.1 reseed required flag=1.

9.2 Gotostep7.

101-FEori=0-+te-5-de
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113 M

Y-internal_state (state_handle) = {V, Key, reseed_counter,
previeus—outpui-block-security _strengthsreseed—counter).
1211. Return (“Success”, pseudorandom_bits).
Generate_algorithm (...):

Input: bitstring (V—eld. Key-eld—previous—output—bloek), integer (reseed_counter,
requested_number of bits) bitstring additional_input.

Output: string status, bitstring (returned_bits, V, Key-previows—outpui—bloek),

integer reseed_counter.

Process:
1. If (reseed counter > 100,000), then Return (“Reseed required”, Null, V,
Key, previous—owtpui—bloek-reseed_counter).

2. If (additional input # Null), then
2.1 additional_input = Block_Cipher_df (additional_input, 256).

3. temp= Null.

4. While (len (temp) < requested number_of bits) do:
41 V=(+1)mod2",

4.2  output block= AES_ECB_Encrypt (Key, V).

43 i

4-5—temp = temp || ouput_block.
5. returned_bits = Lefimost (requested_number_of bits) of temp.
6. zeros=0"°.

7. (Key, V)= Update (zeros, Key, V)

Comment; Produce a string of 256 zeros.
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8. reseed counter =reseed counter + 1.

9. Return (“Success”, returned_bits, V, Key, previcus—outpui—blocl;

reseed_counter).
F.4 CTR_DRBG Example Without a Derivation Function

This example of CTR_DRBG is the same as the previous example except that a derivation
function is not used (i.e., full entropy is always available). As in Appendix F.3, the
CTR_DRBG uses AES-128. The reseed and prediction resistance capabilities are available.
Both a personalization string and additional input are allowed. A total of 5 internal states
are available. For this implementation, the functions and algorithms are written as separate
routines. The Block_Enerypt function (as specified in Section 10.4.2) uses AES-128 in
the ECB mode.

The nonce for instantiation (instantiation_nonce) consists of a 32-bit incrementing counter
that is the initial bits of the personalization string (Section 8.6.1 states that when a
derivation function is used, the nonce, if used, is contained in the personalization string).
The nonce is initialized when the DRBG is installed (e.g., by a call to the clock or by
setting it to a fixed value) and is incremented for each instantiation.

The internal state contains the values for V, Key, previcus—output—_blocl—reseed_counter,
and security_strength, where V; and Key and-previous—eutput—bloek-are strings, and all

other values are integers.Since prediction resistance is always available, there is no need
for prediction_resistance_flag in the internal state.

In accordance with Table 3 in Section 10.2.1, security strengths of 112 and 128 may be
supported. The definitions are the same as those provided in Appendix F.3, except that to
be compliant with Table 3, the maximum size of the personalization_string is 224 bits in
order to accommodate the 32-bits of the instantiation_nonce (i.e., len
(instantiation_nonce) + len (personalization_string) must be < seedlen, where seedlen =
256 bits). In addition, the maximum size of any additional_input is 256 bits (i.e., len
(additional_input < seedlen)).

F.4.1 The Update Function

The update function is the same as that provided in Appendix F.3.1.
F.4.2 Instantiation of CTR_DRBG Without a Derivation Function

The instantiate_function (Instantiate CTR_DRBG)_is the same as that provided in
Appendix F.3.2, except for the following:
e Step 2 is replaced by:

If (len (personalization_string) > 224), then Return (“Personalization_string tco
long”, -1).

e Step 6 is replaced by :
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instantiation_nonce = instantiation_nonce + 1.
personalization_string = instantiation_nonce || personalization_string.

The instantiate_algorithm (Instantiate_algorithm) is the same as that provided in
Appendix F.3.2, except that step 1 is replaced by:

temp = len (personalization_string).

If (temp < 256), then personalization_string = personalizatiori_string || 023¢emp,

seed_material = entropy_input ® personalization_string.
F.4.3 Reseeding a CTR_DRBG Instantiation Without a Derivation Function

e The reseed_function (Reseed_CTR_DRBG) is the same as that provided in
Appendix F.3.3, except that step 3 is replaced by:

If (len (additional_input) > 256), then Return (“4dditional_input too long™).

The instantiate algorithm (Reseed_algorithm) is the same as that provided in Appendix
F.3.3. except that step 1 is replaced by:

temp = len (additional _inpur).
If (temp < 256), then additional_input = additional_input || 075"
seed_material = entropy_input © additional_input.
F.4.4 Generating Pseudorandom Bits Using CTR_DRBG
The generate function (CTR_DRBG) is the same as that provided in Appendix F.3.4,
except that step 5 is replaced by :
If (len (additional_input) > 256), then Return (“Additional_input too long”, Null).

The generate algorithm (Generate_algorithm) is the same as that provided in Appendix
F.3.4, except that step 2.1 is replaced by:

temp = len (additional _input).
If (temp < 256), then additional_input = additional_input || QZ6temp,

F.5 Dual_EC_DRBG Example

This example of Dual_EC_DRBG allows a consuming application to instantiate using any
of the threefour prime curves. The elliptic curve to be used is selected during instantiation
in accordance with the following:

requested_instantiation_security_strength | Elliptic Curve
<112 P-256
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113 -128 P-256
129 - 192 P-384
193 - 256 P-521

A reseed capability is available, but prediction resistance is not available. Both a
personalization_string and an additional_input are allowed. A total of 10 internal states are
provided. For this implementation, the algorithms are provided as inline code within the
functions.

The nonce for instantiation (instantiation_nonce) consists of a random value with
security _strength/2 bits of entropy; the nonce is obtained by a separate call to the
Get_entropy_input routine than that used to obtain the entropy input itself. Also, the
Get_entropy_input function uses only two input parameters, since the first two
parameters (the min_entropy and the min_length) have the same value.

The internal state contains values for s, seedlen, p, a, b, n, P, Q. -+4—eld; block counter and
security_strength.

In accordance with Table 4 in Section 10.3.1, security strengths of 112, 128, 192 and 256
may be supported. SHA-256 has been selected as the hash function. The following
definitions are applicable for the instantiate, reseed and generate functions:

1. highest supported security strength=256.
2. Output block length (outlen): See Table 4.

3. Required minimum entropy for the entropy input at instantiation and reseed =
security_strength. y

4. Maximum entropy input length (max _length) = 1000 bits.

5. Maximum personalization string length (max_personalization_string length) =
800 bits.

6. Maximum additional input length (max_additional input length) = 800 bits.
7. Seed length (seedlen): See Table 4.

8. Maximum number of bits per request (max_number_of bits_per request) =
1000 bits.

9. Resced interval (reseed_interval) = 40;0002°% blocks.
F.5.1 Instantiation of Dual_EC_DRBG

This implementation will return a text message and an invalid state handle (-1) when an
ERROR is encountered. Hash_df is specified in Section 10.4.1.

Instantiate_Dual EC_DRBG (...):
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Input: integer (requested_instantiation_security_strength), bitstring
personalization_string.

Output: string status, integer state_handle.
Process:

Comment : Check the validity of the input
parameters.

1. If (requested instantiation_security_strength> 256) then Return (“Invalid
requested_instantiation_security_strength”, -1).

2. If (len (personalization_string) > 800), then Return (“personalization_string
too long”, -1).

Comment : Select the prime field curve in
accordance with the
requested_instantiation_security_strength.

3. Ifrequested instantiation_security strength <112}, then
{security_strength=112; seedlen = 256; outlen =240}
Else if (requested_instantiation security strength < 128), then
{security_strength = 128; seedlen = 256; outlen = 240}
Else if (requested_instantiation_security strength < 192), then
{security strength =192;, seedlen = 384; outlen = 368}
Else {security_strength = 256;, seedlen = 512; outlen = 504}.

4. Select the appropriate elliptic curve from Appendix A using the Table in
Appendix F.5 to obtain the domain parameters p, a, b, n, P, and Q.

Comment: Request entropy_input.
5. (status, entropy _input) = Get_entropy_input (security_strength, 1000).

6. If (status # “Success™), then Return (“Eailure-indicationreturned
byCatastrophic failure of the entropy_input source:” || status, -1).

7. (status, instantiation_nonce) = Get_entropy_input (security_strength/2, 1000).

8. If (status = “Success”), then Return (“Catastrophic failure of FaHlure-indieation
returned-by-the random nonce source:” || status, -1).

Comment: Perform the instantiate algorithm.
9. seed_material = entropy_input || instantiation_nonce || personalization_string.
10. s = Hash_df (seed material, seedlen).

Nr—old=gtxs—+E)-
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12, block_counter = 0.

Comment: Find an unused internal state and
save the initial values.

1312. (status, state_handle) = Find_state_space ().
H413. If (status # “Success™), then Return (status, -1).

1514. internal_state (state_handle) = {s, seedlen, p, a, b, n, P, O, ¥—eld:
block_counter, security strength}.

1615. Return (“Success”, state_handle).
F.5.2 Reseeding a Dual_EC_DRBG Instantiation

The implementation is designed to return a text message as the status when an error is
encountered.
Reseed_Dual EC_DRBG_Instantiation (...):
Input: integer state_handle, string additional input_string.
Output: string status.
Process:
Comment: Check the input parameters.

1. If ((state_handle < 0) or (state_handle > 9) or (internal_state
(state_handle).security strength = 0)), then Return (“State not available for the
state_handle”).

2. If (lem (additional_input) > 800), then Return (“Additional input too long™).

Comment: Get the appropriate state values for
the indicated state handle.

3. s=internal_state (state_handle).s, seedlen = internal_state
(state_handle).seedlen, security_strength = internal_state
(state_handle).security_strength.

Comment: Request new entropy_input with
the appropriate entropy and bit length.

3. (status, entropy_input) = Get_entropy_input (security_strength, 1000).

4, If (status # “Success™), then Return (“Catastrophic failure of Failure-indication
returned-by-the entropy source:”|| stafus).

Comment: Perform the reseed algorithm.

5. seed_material = pad8 (s) || entropy_input || additional input.
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6. s=Hash_df (seed material, seedlen).

Comment: Update the changed values in the
state.

7. internal_state (state_handle).s = s.
8. internal_state.block_counter = 0.
9. Return (“Success”).
F.5.3 Generating Pseudorandom Bits Using Dual_EC_DRBG
The implemenation returns a Null string as the pseudorandom bits if an error is
encountered.
Dual EC_DRBG (...):

Input: integer (state_handle, requested_security_strength, requested no_of bits),
bitstring additional_input.

Output: string status, bitstring pseudorandom_bits.
Process:
Comment: Check for an invalid state_handle.

1. If ((state_handle < 0) or (state_handle > 9) or (internal_state (state_handle) =
0)), then Return (“State not available for the state_handle”, Null).

Comment: Get the appropriate state
values for the indicated state_handle.

2. s=internal_state (state_handle).s, seedlen = internal_state
(state_handle).seedlen, P = internal_state (state_handle).P, Q = internal_state

(state_handle). Q, r—etd—internal-state-(state—handley-r—otd-block_counter =

internal_state (stat;_handle). block—_ counter.

Comment: Check the rest of the input
parameters.

3. If (requested_number_of bits > 1000), then Return (“Too many bits
requested”, Null).

4. If (requested_security_strength > security strength), then Return (“Invalid
requested_strength”, Null).

5. If (len (additional inpuf) > 800), then Return (“Additional_input too long”,
Null).

Comment: Check whether a reseed is
required.
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requested _number _of _bits
outlen

6. If (block_counter +‘> .}> 10,0002°%), then

6.1 Reseed_Dual EC_DRBG_Instantiation (state_handle,
additional_inpuf).

6.2 If (status # “Success”), then Return (status).

6.3 s=internal_state (state_handle).s, block counter = internal_state
(state_handle).block_counter.
6.4 additional_input = Null.
Comment: Execute the generate algorithm.
7. If (additional_input = Null) then additional_input =0
Comment: additional _input set to m zeroes.
Else additional input = Hash_df (pad8 (additional _input), seedlen).

Comment: Produce requested_no_of bits,
outlen bits at a time:

8. temp = the Null string.

9. i=0.

10. t= s @ additional _input.

11. s = o( x(z * P)).

12. 7 = o(x(s * Q)).

L0 el thenRetirn (SRR RORvutputs-mateh - Aadl:
Hr—ald=~

I5-temp = temp || (rightmost outlen bits of r).

1614. additional _input=0°°""*", Comment: seedlen zeroes; additional_input
is added only on the first iteration.

1715, block_counter = block counter + 1,

1816. i=it+1.

1917. If (len (temp) <
requested no_of bits), then go to step
10.

2018. pseudorandom_bits = Truncate (femp, i X outlen, requested no_of bits).

Comment: Update the changed values
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in the state.
2119. internal_state.s =s.
23—internal_state.block_counter = block counter.

2421. Return (“Success”, pseudorandom_bits).
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Appendix G: (Informative) DRBG Selection

Almost no application or system designer starts with the primary purpose of generating
good random bits. Instead, he typically starts with some goal that he wishes to accomplish,
then decides on some cryptographic mechanisms, such as digital signatures or block
ciphers that can help him achieve that goal. Typically, as he begins to understand the
requirements of those cryptographic mechanisms, he learns that he will also have to
generate some random bits, and that this must be done with great care, or he may
inadvertently weaken the cryptographic mechanisms that he has chosen to implement. At
this point, there are two things that may guide the designer's choice of a DRBG:

a. He may already have decided to include a set of cryptographic primitives as part of
his implementation. By choosing a DRBG based on one of these primitives, he can
minimize the cost of adding that DRBG. In hardware, this translates to lower gate
count, less power consumption, and less hardware that must be protected against
probing and power analysis. In software, this translates to fewer lines of code to
write, test, and validate.

For example, a module that generates RSA signatures has an available hash
function, so a hash-based DRBG is a natural choice.

b. He may already have decided to trust a block cipher, hash function, keyed hash
function, etc., to have certain properties. By choosing a DRBG based on similar
properties, he can minimize the number of algorithms he has to trust.

For example, an AES-based DRBG might be a good choice when a module
provides encryption with AES. Since the security of the DRBG is on the strength
of AES, the module's security is not made dependent on any additional
cryptographic primitives or assumptions.

c. Multiple cryptographic primitives may be available within the system or
consuming application, but there may be restrictions that need to be addressed (e.g.,
code size or performance requirements).

The DRBG:s specified in this Recommendation have different performance characteristics,
implementation issues, and security assumptions.

G.1 Hash_DRBG

Hash DRBG is based on the use of an Approved hash function in a counter mode similar
to the counter mode specified in NIST SP 800-38A. For each Generate request, the current
value of V (a secret value in the internal state) is used as the starting counter that is
iteratively changed to generate each successive n-bit block of requested output. where # is

the number of bits in the hash function output block. At the end of the Generate request,
and before the pseudorandom output is returned to the consuming application, the secret
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value ¥ is updated in order to prevent backtracking.

Performance. Within a Generate request, each n-bit block of output requires one hash

function computation and some additions: an additional hash function computation is

required to provide the backtracking resistance. Hash DRBG produces pseudorandom
output bits in about half the time required by HMAC DRBG.

Security. Hash DRBG'’s security depends on the underlying hash function’s behavior

when ing a series of sequential input bl ._If the hash function is repl a
random oracle, Hash DRBG is secure. It is difficult to relate the properties of the hash
function required by Hash_DRBG with common properties. such as collision resistance,

pre-image resistance, or pseudorandomness. There are known problems with
Hash DRBG when the DRBG is instantiated with insufficient entropy for the requested

security stren d then later provided with enough entropy to attain the amount of

entropy required for the security strength, via the inclusion of additional input during a
Generate request. However, when Hash_DRBG is provided with the amount of entropy

specified in this Recommendation, this problem is no longer valid.

Con%traints on Qutputs. As shown in Table 2 of Section 10.1, for each hash function, up
to 2% generate requests may be made, each of up to 2" bits.

Resources. Hash DRBG requires access to a hash function, and the ability to perform

addition with seedlen-bit integers. Hash DRBG uses the hash-based derivatio i
Hash_df specified in Section 10.4.1 during instantiation and reseeding. Any

implementation requires the storage space required for the internal state (see Section
10.1.1.1).

Algorithm Choices. The choice of hash functions that may be used by Hash DRBG is
discussed in Section 10.1.

Plesd-e-inserttesd-here]
G.2 HMAC_DRBG

HMAC DRBG is e PRBG-built around the use of some approved hash function in the
HMAC construction. To generate pseudorandom bits from a secret key (Key) and a
starting value ¥, the DRBG computes

7=HMAC (Key, V).

At the end of a generation request, the DRBG generates a new Key and V, each requiring
one HMAC computation.

Performance. HMAC_ DRBG produces pseudorandom outputs considerably more slowly
than the underlying hash function processes inputs; for SHA-256. a long generate request

produces output bits at about 1/4 of the rate that the hash function can process input bits.
Each generate request also involves additional overhead equivalent to processing 2048
extra bits with SHA-256. Note. however. that hash functions are typically quite fast: few if
any consuming applications are expected to need output bits faster than HMAC DRBG
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can provide them.

Security. The security of HMAC_DRBG is based on the assumption that an approved
Approved hash function used in the HMAC construction is a pseudorandom function
family. Informally, this just means that when an attacker doesn’t know the key used,
HMAC outputs look random, even given knowledge and control over the inputs. In
general, even relatively weak hash functions seem to be quite strong when used in the
HMAC construction. On the other hand, there is not a reduction proof from the hash
function’s collision resistance properties to the security of the DRBG; the security of
HMAC DRBG depends on the securlty of the underlymg hash functlon Note thag—bm—rt

SHHSHRS-OFPrEHaEes-for-the- HRae PR E-REshHHaReHOR: Hal-Sad _the
pseudorandomness of HMAC is a widely used assumption in designing cryptographic
protocols.

Constrain(s on Outputs. As shown in Table 2 of Section 10.1, for each hash function, up
to 2 generate requests may be made, each of up to 2" bits.

Resources. HMAC_DRBG requires access to a dedicated HMAC implementation for
optimal performance. However, a general-purpose hash function implementation can
always be used to implement HMAC. Any implementation requires the storage space

ﬂllll‘ed for Lhe internal state ;see Sectlon 10 1.2, l)a—kaﬁtmrg-erwm%@

Algorithm Choices. The choice of elgerithms-hash functions that may be used by
HMAC_DRBG is discussed in Section 10.1.

G.3 CTR_DRBG

CTR_DRBG is a BRBG-based on using an Approved block cipher algorithm in counter
mode (see SP 800-38A). At the present time-ofthis-weiting, only three-key TDEA and
AES are approved for use within-ANS-X9-82by the Federal government for use in this
DRBG. Pseudorandom outputs are generated by encrypting successive values of a
counter; after a generate request, a new key and new starting counter value are generated.

Performance. For large Generate requests, CTR DRBG produces outputs at the same
eed as the underlyi lock cipher algorithm enc data. Furthermore, CTR
150



NIST SP 800-90 DRAFT DecemberSeptomber 2005

is parallelizeable. At the end of each Generate request, work equivalent to 2, 3 and 4 block
encryptions is performed to derive new keys and counters for the next Generate request.

Security. The security of CTR_DRBG is directly based on the security of the underlying
block cipher algorithm, in the sense that, so long as some limits on the total number of
outputs are observed, any attack on CTR_DRBG represents an attack on the underlying
block cipher algorithm.

Constraints on Outputs. AsFer shown in Table 3 of Section 10.2.1, for each of the three
AES key sizes, up to 2*® generate requests may be made, each of up to 2'” bits, with a
negligible chance of any weakness that does not represent a weakness in AES. However,
the smaller block size of TDEA imposes more constraints;-; each generate request is
limited to 2*° bits, and at most 2° such requests may be made.

Resources. CTR DRBG may be implemented with or without a derivation function.

When a derivation function is used. CTR__DRBG can process the personalization string
and any additional input in the same way as any other DRBG. but at a cost in performance

be ¢ of the use of the derivation function. Such an implementation may be seeded b
any Approved source of entropy input that may or may not provide full entropy.

When a derivation function is not used, CTR_DRBG is more efficient when the
personalization string and any additional input are provided. but is less flexible because the

lengths of the personalization string and additional input cannot exceed seedlen bits. Such
implementations must be seeded by a source of entropy input that provides full entropy

e.g.. an Approved conditioned entropy source or Approved NRBG).

CTR_DRBG requires access to a block cipher algorithm, including the ability to change
keys, and the storage space required for the internal state (see Section 10.2.1.1).
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Algorithm Cheices.- - -The choice of block cipher algorithms and key sizes that may be
used by CTR_DRBG is discussed in Section 10.2.1.

G.4 DRBGs Based on Hard Problems

The Dual EC_DRBG generates pseudorandom outputs by extracting bits from elliptic

curve points, The secret, internal state of the DRBG is a value S that is the x-coordinate of
a point on an elliptic curve. Outputs are produced by first computing R to be the x-
coordinate of the point $*P and then extracting low order bits from the x-coordinate of the
elliptic curve point R*Q.

Performance. Due to the elliptic curve arithmetic involved in this DRBG. this algorithm
generates pseudorandom bits more slowly than the other DRBGS in this Recommendation.,
It should be noted, however, that the design of this algorithm allows for certain
performance-enhancing possibilities. First, note that the use of fixed base points allows a
substantial increase in the performance of this DRBG via the use of tables. By storing
multiples of the points P and Q. the elliptic curve multiplication can be accomplished via
point additions rather than multiplications. a much less expensive operation. In more
constrained environments where table storage is not an option. the use of so-called
Montgomery Coordinates of the form (X : Z) can be used as a method to increase
performance. since the y-coordinates of the computed points are not required. A given
implementation of this DRBG need not include all three of the NIST-Approved curves.
Once the designer decides upon the strength required by a given application, he can then
choose to implement the single curve that most appropriately meets this requirement. For
a common level of optimization expended. the higher strength curves will be slower and
tend toward less efficient use of output blocks. To mitigate the latter, the designer should

be aware that every distinct request for random bits. whether for two million bits or a
single bit, requires the computational expense of at least two elliptic curve point
multiplications. Applications requiring large blocks of random bits (such as IKE or SSL).
can thus be implemented most efficiently by first making a single call to the DRBG for all
the required bits. and then appropriately partitioning these bits as required by the protocol.
For applications that already have hardware or software support for elliptic curve
arithmetic, this DRBG is a natural choice, as it allows the designer to utilize existing
capabilities to generate truly high-security random numbers.

Security. The security of Dual EC_DRBG is based on the so-called "Elliptic Curve
Discrete Logarithm Problem" that has no known attacks better than the so-called "meet-in-
the-middle" attacks. For an elliptic curve defined over a field of size 2™, the work factor of
these attacks is approximately 2™, so that solving this problem is computationally
infeasible for the curves in this Recommendation. The Dual EC_DRBG is the only

DRBG in this Recommendation whose security is related to a hard problem in Number
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Theory.

Constraints on Qutputs. For any one of the three elliptic curves. a particular instance of
Dual EC DRBG may generate at most 2°2 output blocks before reseeding. Since the
sequence of output blocks is expected to cycle in approximately sqrt{n) bits (where n is the
(prime) order of the particular elliptic curve being used), this is quite a conservative reseed
interval for any one of the three possible curves.

Resources. Any entropy input source may be used with Dual EC_DRBG, provided that
it is capable of generating at least min_entropy bits of entropy in a string of max_length =
28 bits. This DRBG also requires an appropriate hash function (see Table 4) that is used
exclusively for producing an appropriately-sized initial state from the entropy input at
instantiation or reseeding. An implementation of this DRBG must also have enough
storage for the internal state (see 10.3.1.1). Some optimizations require additional storage
for moderate to large tables of pre-computed values.

Algorithm Choeices. The choice of appropriate elliptic curves and points used by
Dual_EC_DRBG is discussed in Appendix A.1.
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