1. Overview: Constructing a DRBG from Algorithms and Entropy Sources

The rest of this document is primarily concerned with the algorithms for generating
pseudorandom outputs and how they are to be implemented. The source of seeding
material for the DRBGs is mostly left to the designer to get right. In this appendix, we
briefly describe how this can be done.

2. Internally Seeded DRBG

The ideal situation for a full DRBG is to have ready access to some entropy source. The
entropy source provides bit strings along with a promise about how much entropy the bit
strings have. An example of an entropy source would be a ring oscillator sampled one
hundred times per second, where extensive analysis had been done to ensure that each
sequence of 100 bits sampled had at least 80 bits of entropy. Any DRBG with an internal
source of entropy can be used to access its underlying entropy source: if the source
DRBG promises k bits of security, then each new request for k£ or more bits of output with
prediction resistance from the source DRBG can be assumed to contain £ bits of min-
entropy.

When the DRBG has an internal source of entropy, reseeding and instantiation can be
done on demand, requests for prediction resistance can be honored, and when a DRBG
hits a required reseed interval after having generated too many outputs, it can simply
reseed.

An internally seeded DRBG may use a seedfile, as described below, but does not require
one.

3. Externally Seeded DRBG

Many implementations of DRBGs will not have access to an entropy source. We call
these externally seeded DRBGs. An externally seeded DRBG has the following
requirements:
¢ The DRBG must be instantiated at a time when the DRBG has access to some
entropy source, and the entropy provided for instantiation must be provided over a
secure (private and authentic) channel. In some applications, the entropy source
is only available during manufacture or device setup; in others, it is occasionally
available (e.g., when a user is moving the mouse around on a laptop).
¢ The DRBG must maintain its working state for as long as the DRBG may be
called upon to generate outputs. This typically requires some kind of persistent
memory to avoid losing state during power down. This may be maintained
directly as the state of the DRBG, or maintained in a seedfile, as described below.

Over time, an externally seeded DRBG may be able to accumulate entropy from
additional inputs provided by the user or consuming application. For this reason, the
DRBG implementation should accept additional input whenever possible.



Implementations that have values which may have entropy, such as timestamps, nonces
from protocol runs, etc., should provide them to the DRBG as additional inputs.

4. Using a Persistent DRBG as a Seedfile

A seedfile is persistent storage kept for a DRBG. It is used both to protect against silent
failure of its entropy source, and also to allow externally seeded DRBGs to instantiate
itself on power up and save all the entropy in its state back to the seedfile whenever
necessary. Seedfiles are used and described in many cryptographic PRNGs, including
/dev/random and Yarrow-160.

In X9.82, a seedfile is simply a DRBG instance whose working state is stored in some
kind of persistent storage. Let SEEDFILE be the DRBG which is being used as a
seedfile, and whose working state is stored in persistent storage. The following explains
how the seedfile is used to support a DRBG (CURRENT) whose state is stored in volatile
storage, but which may accumulate entropy over time from additional inputs:

e SEEDFILE is instantiated from some entropy source (possibly another RBG)
when it is available, such as during manufacturing or device setup.

e At power up, CURRENT is instantiated. This is done by requesting a seed from
SEEDFILE’s generate routine and using that seed to instantiate CURRENT. Any
additional input which is available from the application should be provided in the
personalization string during CURRENT’s instantiation.

e During operation, application data which might contain some entropy should be
stored up, and periodically used as additional input in one-byte generate requests
to SEEDFILE. The resulting one-byte outputs are discarded.

e At power down, CURRENT generates a k bit output. This output is used as
additional input, along with any other available application data which might have
some entropy, in a one-byte generate request to SEEDFILE. The one byte output
is discarded.

e If the application rarely or never has a power down, then a £-bit value from
CURRENT should periodically (e.g., once a day) be generated and used as
additional input in a one-byte generate request to SEEDFILE, and the resulting
output byte should be discarded.

5. Seeding Many DRBGs from One DRBG

Some applications may benefit from using different DRBGs for different applications.
However, this must be done with some care, to avoid introducing new weaknesses. In
order to use multiple different DRBGs for different consuming applications, the
following steps shall be done:
e The parent DRBG is first instantiated with as much entropy as is available.
e Each child DRBG is instantiated with seed material acquired from a generate
request to the parent DRBG.



