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Random Number Generation
Part 3: Deterministic Random Bit Generator Mechanisms

1 Scope

The Standard consists of four parts:
e Part 1: Overview and Basic Principles
e Part 2: Entropy Sources
e Part 3: Deterministic Random Bit Generator Mechanisms
e Part 4: Random Bit Generator Construction
Part 1 should be read for a basic understanding of this Standard before reading Part 3.

This part of ANSI X9.82 defines techniques for the generation of random bits using
deterministic methods. This part includes:

1. A model for a deterministic random bit generator,
2. Requirements for deterministic random bit generator mechanisms,

3. Specifications for deterministic random bit generator mechanisms that use hash
functions, block ciphers and number theoretic problems,

4. Implementation issues, and
5. Assurance considerations.

This part of ANS X9.82 specifies several diverse DRBG mechanisms, all of which
provided acceptable security when this Standard was approved. However, in the event that
new attacks are found on a particular class of mechanisms, a diversity of approved
mechanisms will allow a timely transition to a different class of DRBG mechanism.

Random number generation does not require interoperability between two entities, e.g.,
communicating entities may use different DRBG mechanisms without affecting their
ability to communicate. Therefore, an entity may choose a single appropriate DRBG
mechanism for their applications; see Annex D for a discussion of DRBG selection.

The precise structure, design and development of a random bit generator is outside the
scope of this Standard.

2 Conformance
An implementation of a deterministic random bit generator (DRBG) may claim

conformance with ANS X9.82 if it implements the mandatory provisions of Part 1, the
mandatory requirements of one or more of the DRBG mechanisms specified in this part of

7



ANS X9.82, Part 3 - DRAFT - March 2006

the Standard, an entropy source from Part 2 and the appropriate mandatory requirements of
Part 4.

Conformance can be assured by a testing laboratory associated with the Cryptographic
Module Validation Program (CMVP) (see hitp:/csre.nist.gov/cryptval). Although an
implementation may claim conformance with the Standard apart from such testing,
implementation testing through the CMVP is strongly recommended.

3 Normative references

The following referenced documents are indispensable for the application of this Standard.
For dated references, only the edition cited applies. Nevertheless, parties to agreements
based on this document are encouraged to consider applying the most recent edition of the
referenced documents indicated below. For undated references, the latest edition of the
referenced document (including any amendments) applies.

ANS X9.52-1998, Triple Data Encryption Algorithm Modes of Operation.

ANS X9.62-2006, Public Key Cryptography for the Financial Services Industry - The Elliptic
Curve Digital Signature Algorithm (ECDSA).

ANS X9.63-2000, Public Key Cryptography for the Financial Services Industry - Key
Agreement and Key Transport Using Elliptic Key Cryptography.

ANS X9.82, Part 1-200x, Overview and Basic Principles, Draft.

ANS X9.82, Part 2-200x, Entropy Sources, Draft.

ANS X9.82, Part 4-200x, RBG Constructions, Draft.

FIPS 140-2, Security Requirements for Cryptographic Modules; ASC X9 Registry 00001.
FIPS 180-2, Secure Hash Standard (SHS), August 2002; ASC X9 Registry 00003.

FIPS 197, Advanced Encryption Standard (AES), November 2001; ASC X9 Registry 00002.
FIPS 198, Keyed-Hash Message Authentication Code (HMAC), March 6, 2002; ASC X9
Registry 00004.

4 Definitions and Acronyms

Definitions used in this part of ANS X9.82 are provided in Part 1.

The following abbreviations are used in this document:

Abbreviation Meaning
AES Advanced Encryption Standard.

ANS American National Standard

ASC Accredited Standards Committee

8
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DRBG Deterministic Random Bit Generator.
ECDLP Elliptic Curve Discrete Logarithm Problem.
FIPS Federal Information Processing Standard.
HMAC Keyed-Hash Message Authentication Code.
NRBG Non-deterministic Random Bit Generator.
RBG Random Bit Generator.
TDEA Triple Data Encryption Algorithm.
5 Symbols
The following symbols are used in this document.
Symbol Meaning
+ Addition
0 Ceiling: the smallest integer > X. For example, |5 | =5, and [5.3] =6.
Lx] Floor: The largest integer less than or equal to X. For example, [5]=5, and
L5.3]=5.
XeY Bitwise exclusive-or (also bitwise addition mod 2) of two bitstrings X and ¥ of
the same length.
XY Concatenation of two strings X and Y. X and Y are cither both bitstrings, or
both octet strings.
ged (x,y) The greatest common divisor of the integers x and y.
len (a) The length in bits of string a.
x mod n The unique remainder r (where 0 < r < n-1) when integer x is divided by n.

For example, 23 mod 7 = 2.

Used in a figure to illustrate a "switch" between sources of input.




ANS X9.82, Part 3 - DRAFT - March 2006

{ay, ...} The internal state of the DRBG at a point in time. The types and number of
the @; depends on the specific DRBG.

Oxab Hexadecimal notation that is used to define a byte (i.c., 8 bits) of information,
where a and b each specify 4 bits of information and have values from the
range {0, 1, 2,...F}. For example, Oxc6 is used to represent 11000110, where
¢ is 1100, and 6 is 0110.

0" A string of x zero bits.

10
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6 General Discussion and Organization

Part 1 of this Standard (Random Number Generation, Part 1: Overview and Basic
Principles) describes several cryptographic applications for random numbers and specifies
the characteristics for random numbers and random number generators, introducing the
concept of non-deterministic random bit generators (NRBGs) and deterministic random bit
generators (DRBGs). In addition, Part 1 also introduces a general functional model and
identifies the security properties expected for cryptographic random number generators.

Part 2 of this Standard (Entropy Sources) discusses entropy sources used by random bit
generators. In the case of DRBGs, the entropy sources are required to obtain seeds for the
DRBG.

Part 4 of this Standard (Random Bit Generator Constructions) provides guidance on
combining components to construct secure random bit generators.

This part of the Standard (Random Number Generation, Part 3: Deterministic Random Bit
Generator Mechanisms) specifies Approved DRBG mechanisms. A DRBG mechanism is
an RBG component that utilizes an algorithm to produce a sequence of bits from an initial
internal state that is determined by an input that is commonly known as a seed, which is
constructed using entropy input. Because of the deterministic nature of the process, a
DRBG mechanism is said to produce “pseudorandom” rather than random bits, i.e., the
string of bits produced by a DRBG mechanism is predictable and can be reconstructed,
given knowledge of the algorithm, the entropy input, the seed and any other input
information. However, if the seed and entropy input are kept secret, and the algorithm is
well designed, then the bitstrings will be unpredictable, up to the security level provided by
the DRBG.

The seed for a DRBG mechanism requires that sufficient entropy be provided during
instantiation and reseeding (see Parts 2 and 4 of this Standard). While a DRBG mechanism
may conform to this part of the Standard (i.e., Part 3), an implementation cannot achieve
the properties specified in Part 1 unless the entropy input source is included as specified in
Part 4. That is, the security of an RBG that uses a DRBG mechanism is a system
implementation issue; both the DRBG mechanism and its entropy input source must be
considered.

Throughout the remainder of this document, the term “DRBG mechanism” has been
shortened to “DRBG”.

The remaining sections of this part of the Standard are organized as follows:

— Section 7 provides a functional model for a DRBG that particularizes the gencral
functional model of Part 1.

— Section 8 provides DRBG concepts and general requirements.

— Section 9 specifies the DRBG functions that will be used to access the DRBG
algorithms specified in Section 10.

11
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— Section 10 specifies Approved DRBG algorithms.
— Section 11 addresses assurance issues for DRBGs.
This part of the Standard also includes the following normative annexes:
— Annex A specifies additional DRBG-specific information.
— Annex B provides conversion routines.
The following informative annexes are also included:
— Annex C discusses security considerations for selecting and implementing DRBGs.
— Annex D provides a discussion on DRBG selection.
— Annex E provides example pseudocode for each DRBG.

— Annex F relates the security properties identified in Part 1 to the requirements and
specifications in Part 3.

— Annex G provides a bibliography for related informational material.

12
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7 DRBG Functional Model
7.1 Functional Model

Part 1 of this Standard provides a general functional model for random bit generators
(RBGs). Figure 1 particularizes the functional model of Part 1 for DRBGs. The
components of this model are discussed in the following subsections.

Personalization

String Nonce  Entropy Input Additional Input
l l X A b
Instantiate Reseed
Function Function
h 4

Unmstat.ltlate Internal State Gener.ate

Function Function
RN Error I
“Health Tests |

Pseudorandom Output

Figure 1: DRBG Functional Model

7.2 Functional Model Components
7.2.1 Entropy Input

The entropy input is provided to a DRBG for the seed (see Section 8.4.2). The entropy
input and the seed shall be kept secret. The secrecy of this information provides the basis
for the security of the DRBG. At a minimum, the entropy input shall provide the requested
amount of entropy for a DRBG. Appropriate sources for the entropy input are discussed in
Parts 2 and 4 of this Standard.

Ideally, the entropy input will be full entropy; however, the DRBGs have been specified to
allow for some bias in the entropy input by allowing the length of the entropy input to be
longer than the required amount of entropy (expressed in bits). The entropy input can be
defined to be a variable length (within limits), as well as fixed length. In all cases, the
DRBG expects that when entropy input is requested, the returned bitstring will contain at
least the requested amount of entropy. Additional entropy beyond the amount requested is
not required, but is desirable.
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7.2.2 Other Inputs

Other information may be obtained by a DRBG as input. This information may or may not
be required to be kept secret by a consuming application; however, the security of the
DRBG itself does not rely on the secrecy of this information. The information should be
checked for validity when possible.

During DRBG instantiation, a nonce may be required, and if used, it is combined with the
entropy input to create the initial DRBG seed. The nonce and its use are discussed in
Section 8.4.2.

This Standard recommends the insertion of a personalization string during DRBG
instantiation; when used, the personalization string is combined with the entropy bits and a
nonce to create the initial DRBG seed. The personalization string shall be unique for all
instantiations of the same DRBG type (e.g., HMAC_DRBG). See Section 8.5.2 for
additional discussion on personalization strings.

Additional input may also be provided during reseeding and when pseudorandom bits are
requested. See Section 8.5.3 for a discussion of this input.

7.2.3 The Internal State

The internal state is the memory of the DRBG and consists of all of the parameters,
variables and other stored values that the DRBG uses or acts upon. The internal state
contains both administrative data (e.g., the security level) and data that is acted upon
and/or modified during the generation of pseudorandom bits (i.e., the working state). The
contents of the internal state is dependent on the specific DRBG and includes all
information that is required to produce the pseudorandom bits from one request to the next.

7.2.4 The DRBG Functions
The DRBG functions handle the DRBG’s internal state. The DRBGs in this Standard have
five separate functions:

1. The instantiate function acquires entropy input and may combine it with a nonce
and a personalization string to create a seed from which the initial internal state is
created.

2. The generate function generates pseudorandom bits upon request, using the current
internal state, and generates a new internal state for the next request.

3. The reseed function acquires new entropy input and combines it with the current
internal state and any additional input that is provided to create a new seed and a
new internal state.

4. The uninstantiate function zeroizes (i.c., erases) the internal state.

5. The health test function determines that the DRBG continues to function correctly.

14
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8. DRBG Concepts and General Requirements
8.1 Introduction

This section provides concepts and general requirements for the implementation and use of
a DRBG. The DRBG functions are explained and requirements for an implementation are
provided.

8.2 DRBG Functions and a DRBG Instantiation
8.2.1 Functions

A DRBG requires instantiate, uninstantiate, generate, and health testing functions. A
DRBG may also include a reseed function. A DRBG shall be instantiated prior to the
generation of output by the DRBG. These functions are specified in Section 9.

8.2.2 DRBG Instantiations

A DRBG may be used to obtain pseudorandom bits for different purposes (e.g., DSA
private keys and AES keys) and may be separately instantiated for each purpose.

A DRBG is instantiated
using a seed and may be

reseeded; when reseeded, Instantiale: Intitattie with seed,

the seed shall be ] Seed period 1
different than the seed

used for instantiation. [ (OpL) Reseed with seed , |

Each seed defines a seed

period for the DRBG Seed period 2
instantiation; an h 4

instantiation consists of [ €Opt) Reseed withwed,, |

one or more seed periods
that begin when a new
seed is acquired (see
Figure 2).

Seed periods 3ton

8.2.3 Internal States

o . Figure 2: DRBG Instantiation
During instantiation, an

initial internal state is
derived from the seed. The internal state for an instantiation includes:

1. Working state:

a. One or more values that are derived from the seed and become part of the
internal state; these values must usually remain secret, and

15
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b. A count of the number of requests ot blocks produced since the instantiation
was seeded or reseeded.

2. Administrative information (e.g., security strength and prediction resistance flag).

The internal state shall be protected at least as well as the intended use of the
pseudorandom output bits requested by the consuming application. Each DRBG
instantiation shall have its own internal state; the internal state for one DRBG instantiation
shall not be used as the internal state for a different instantiation.

A DRBG transitions between internal states when the generator is requested to provide
new pseudorandom bits. A DRBG may also be implemented to transition in response to
internal or external events (e.g., system interrupts) or to transition continuously (e.g.,
whenever time is available to run the generator).

A DRBG implementation may be designed to handle multiple instantiations. Sufficient
space must be available for the expected number of instantiations, i.e., sufficient memory
must be available to store the internal state associated with each instantiation.

8.2.4 Security Strengths Supported by an Instantiation

The DRBGs specified in this Standard support four security strengths: 112, 128, 192 or
256 bits. The actual security strength supported by a given instantiation depends on the
DRBG implementation and on the amount of entropy provided to the instantiate function
in the entropy input. Note that the security strength actually supported by a particular
instantiation could be less than the maximum security strength possible for that DRBG
implementation (see Table 1). For example, a DRBG that is designed to support a
maximum security strength of 256 bits could be instantiated to support only a 128-bit
security strength if the additional security provided by the 256-bit security strength is not
required.

Table 1: Possible Instantiated Security Strengths

Maximum Designed 112 128 192 256
Security Strength

Possible Instantiated 112 112, 128 112,128,192 | 112, 128, 192,
Security Strengths 256

A security strength for the instantiation is requested by a consuming application during
instantiation, and the instantiate function obtains the appropriate amount of entropy for the
requested security strength. Any security strength may be requested, but the DRBG will
only be instantiated to one of the four security strengths above, depending on the DRBG
implementation. A requested security strength that is below the 112-bit security strength or
is between two of the four security strengths will be instantiated to the next highest
strength (e.g., a requested security strength of 96 bits will result in an instantiation at the
112-bit security strength).

16
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Following instantiation, requests can be made to the generate function for pseudorandom
bits. For each generate request, a security strength to be provided for the bits is requested.
Any security strength can be requested up to the security strength of the instantiation, e.g.,
an instantiation could be instantiated at the 128-bit security strength, but a request for
pseudorandom bits could indicate that a lesser security strength is actually required for the
bits to be generated. The generate function checks that the requested security strength does
not exceed the security strength for the instantiation. Assuming that the request is valid, the
requested number of bits is returned.

When an instantiation is used for multiple purposes, the minimum entropy requirement for
each purpose must be considered. The DRBG needs to be instantiated for the highest
security strength required. For example, if one purpose requires a security strength of 112
bits, and another purpose requires a security strength of 256 bits, then the DRBG needs to
be instantiated to support the 256-bit security strength.

8.3 DRBG Boundaries

As a convenience, this Standard uses the notion of a “DRBG boundary” to explain the
operations of a DRBG and its interaction with and relation to other processes; a DRBG
boundary contains all DRBG functions and internal states required for a DRBG. A DRBG
boundary is entered via the DRBG’s public interfaces, which are made available to
consuming applications.

Within a DRBG boundary,

1. The DRBG internal state and the operation of the DRBG functions shall only be
affected according to the DRBG specification.

2. The DRBG internal state shall exist solely within the DRBG boundary. The
internal state shall be contained within the DRBG boundary and shall not be
accessed by non-DRBG functions.

3. Information about secret parts of the DRBG internal state and intermediate values
in computations involving these secret parts shall not affect any information that
leaves the DRBG boundary, except as specified for the DRBG pseudorandom bit
outputs.

Each DRBG includes one or more cryptographic primitives (e.g., a hash function). Other
applications may use the same cryptographic primitive as long as the DRBG’s internal
state and the DRBG functions are not affected.

A DRBG’s functions may be contained within a single device, or may be distributed across
multiple devices (see Figures 3 and 4). Figure 3 depicts a DRBG for which all functions
are contained within the same device. Figure 4 provides an example of DRBG functions
that are distributed across multiple devices. In this latter case, each device has a DRBG
sub-boundary that contains the DRBG functions implemented on that device, and the
boundary around the entire DRBG consists of the aggregation of sub-boundaries providing
the DRBG functionality. The use of distributed DRBG functions may be convenient for

17
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restricted environments (e.g., smart card applications) in which the primary use of the
DRBG does not require repeated use of the instantiate or reseed functions.

DRBG Boundary
Instantiate Instantiate |,
Function
I— Entropy
Input
Reseed Reseed  [*
Instantiation Function
. Generate
Requesi Bits Function
Test > Test ks
DRBG = Function
Uninstantiate Uni .
DREC nmtal_luaw
Function

Figure 3: DRBG Functions Within a Single Device

Although the entropy input that is used to create the seed is shown in the figures as
originating outside the DRBG boundary, it may originate from within the boundary.

Entropy Input
r _______________________________________________ 1
i i
i ; |
| i
| Uninstantiate Instantiate Protected State | | Generate Uninstantiate i
} Function Function ¥| Function Function !
| |
I
| |
| Test Test !
: Function Function I
: |
|
: DRBG Sub-Boundary (Instantiate) DRBG Sub-Boundary (Generate) :
R P e I
DRBG Boundary

Figure 4: Distributed DRBG Functions
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Each DRBG boundary or sub-boundary shall contain a test function to test the “health” of
other DRBG functions within that boundary. In addition, each boundary or sub-boundary
shall contain an uninstantiate function in order to perform and/or react to health testing.

When DRBG functions are distributed, appropriate mechanisms shall be used to protect
the confidentiality and integrity of the internal state or parts of the internal state that are
transferred between the distributed DRBG sub-boundaries. The confidentiality and
integrity mechanisms and security strength shall be consistent with the data to be protected
by the DRBG’s consuming application (see ASC X9 Registry).

8.4 Seeds

8.4.1 General Discussion

When a DRBG is used to generate pseudorandom bits, entropy input is acquired in order to
generate a seed prior to the generation of output bits by the DRBG. The seed is used to
instantiate the DRBG and determine the initial internal state that is used when calling the
DRBG to obtain the first output bits.

Reseeding is a means of restoring the secrecy of future outputs of the DRBG if a seed or
the internal state becomes known. Periodic reseeding is a good way of addressing the
threat of the DRBG seed, entropy input or working state being compromised over time. In
some implementations (e.g., smartcards), an adequate reseeding process may not be
possible. In these cases, the best policy might be to replace the DRBG, obtaining a new
seed in the process (e.g., obtain a new smart card).

8.4.2 Generation and Handling of Seeds

The seed and its use by a DRBG is generated and handled as follows:

1. Seed construction for

instantiation: Figure 5 depicts the

i Optional
§eed construction process for. Entropy Nonce e rsonalisation
instantiation. The seed material Tnput String
used to determine a seed for
instantiation consists of entropy
. ; 3
input, a nonce and an optional Opt

personalization string. Entropy df,
input is always used in the
construction of a seed;
requirements for the entropy input
are discussed in item 3. Except
for the case noted below, a nonce  Figure 5: Seed Construction for Instantiation
is used; requirements for the

nonce are discussed in item 7.

This Standard also recommends the inclusion of a personalization string;
requirements for the personalization string are discussed in Section 8.5.2.

Seed

19



ANS X9.82, Part 3 - DRAFT - March 2006

Depending on the DRBG and the source of the entropy input, a derivation function
may be required to derive a seed from the seed material. However, in certain
circumstances, the DRBG based on block cipher algorithms (see Section 10.3) may
be implemented without a derivation function. When implemented in this manner, a
nonce (as shown in Figure 5) is not used. Note, however, that the personalization
string could contain a nonce, if desired.

2. Seed construction for
reseeding: Figure 6 depicts the
seed construction process for I“St:;t"a' Entropy A?l':it.'t‘i’“"ll
di instantiation. The ) Input b
reseeding an ins n. Value Tnput
seed material for reseeding
consists of a value that is

carried in the internal statel, 4
new entropy input and, (LF:'L

optionally, additional input.
The internal state value and the
entropy input are required; Seed
requirements for the entropy
input are discussed in item 3.
Requirements for the additional Figure 6: Seed Construction for Reseeding
input are discussed in Section

8.5.3. As in item 1, a derivation function may be required for reseeding. See item 1
for further guidance.

3. Entropy requirements for the entropy input: The entropy input shall have entropy
that is equal to or greater than the security strength of the instantiation. Additional
entropy may be provided in the nonce or the optional personalization string during
instantiation, or in the additional input during reseeding and generation, but this is
not required. The use of mote entropy than the minimum value will offer a security
“cushion”. This may be useful if the assessment of the entropy provided in the entropy
input is incorrect. Having more entropy than the assessed amount is acceptable;
having less entropy than the assessed amount could be fatal to security. The presence
of more entropy than is required, especially during the instantiatiation, will provide a
higher level of assurance than the minimum required entropy.

4. Seed length: The minimum length of the seed depends on the DRBG and the
security strength required by the consuming application. See Section 10.

5. Entropy input source: The source of the entropy input shall be either:
a. An Approved NRBG,

! See each DRBG specification for the value that is used.
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b. An Approved DRBG, thus forming a chain of at least two DRBGs; the
highest-level DRBG in the chain shall be seeded by an Approved NRBG or
an entropy source, or

c. An appropriate entropy source.

Further discussion about the entropy input source is provided in Parts 2 and 4 of
this Standard.

Entropy input and seed privacy: The entropy input and the resulting seed shall be
handled in a manner that is consistent with the security required for the data
protected by the consuming application. For example, if the DRBG is used to
generate keys, then the entropy inputs and seeds used to generate the keys shall (at
a minimum) be protected as well as the key.

. Nonce: A nonce may be required in the construction of a seed during instantation in
order to provide a security cushion to block certain attacks. The nonce shall be
either:

a. A random value with at least (security_strength/2) bits of entropy,

b. A non-random value that is expected to repeat no more often than a
(security strength/2)-bit random string would be expected to repeat.

For case a, the nonce may be acquired from the same source and at the same time
as the entropy input. In this case, the seed could be considered to be constructed
from an “extra strong” entropy input and the optional personalization string, where
the entropy for the entropy input is equal to or greater than (3/2 security_strength)
bits.

The nonce is required for instantiation to provide security_strength bits of security.
When a DRBG is instantiated many times without a nonce, a compromise may
become more likely. In some consuming applications, a single DRBG compromise
may reveal long-term secrets (e.g., a compromise of the DSA per-message secret
reveals the signing key). Further discussion is provided in Annex C.2.

Reseeding: Generating too many outputs from a seed (and other input information)
may provide sufficient information for successfully predicting future outputs.
Periodic reseeding will reduce security risks, reducing the likelihood of a
compromise of the data that is protected by cryptographic mechanisms that use the
DRBG.

Seeds have a finite seedlife (i.e., the length of the seed period); the maximum
seedlife is dependent on the DRBG used. Reseeding is accomplished by 1) an
explicit reseeding of the DRBG by the consuming application, or 2) by the generate
function when either prediction resistance is requested, or when the limit of the
seedlife is reached.

Reseeding of the DRBG shall be performed in accordance with the specification
for the given DRBG. The DRBG reseed specifications within this Standard are
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designed to produce a new seed that is determined by both the current internal state
and newly-obtained entropy input that will support the desired security strength.

An alternative to reseeding is to create an entirely new instantiation. However,
reseeding is preferred over creating a new instantiation. If there is an undetected
failure in the entropy input source, a reseceded DRBG instantiation will still retain
any previous entropy, whereas a newly instantiated DRBG may not have sufficient
entropy to support the requested security strength.

9. Seed use: A seed that is used to initialize one instantiation of a DRBG shall not be
intentionally used to reseed the same instantiation or used as a seed for another
DRBG instantiation.

A DRBG does not provide output until a seed is available, and the internal state has
been initialized.

10. Seed separation: Seeds used by DRBGs and the entropy input used to create those
seeds shall not be used for other purposes (e.g., domain parameter or prime
number generation).

8.5 Other Inputs to the DRBG
8.5.1 Discussion

Other input may be provided during DRBG instantiation, pseudorandom bit generation and
reseeding. This input may contain entropy, but this is not required. During instantiation, a
personalization string may be provided and combined with entropy input and a nonce to
derive a seed (see Section 8.5.2). When pseudorandom bits are requested and when
reseeding is performed, additional input may be provided (see Section 8.5.3).

Depending on the method for acquiring the input, the exact value of the input may or may
not be known to the user or consuming application. For example, the input could be
derived directly from values entered by the user or consuming application, or the input
could be derived from information introduced by the user or consuming application (e.g.,
from timing statistics based on key strokes or movements of the computer’s mouse), or the
input could be the output of another DRBG or an NRBG.

8.5.2 Personalization String

During instantiation, a personalization string should be used to detive the seed (see
Section 8.4.2). The intent of a personalization string is to differentiate this DRBG
instantiation from all other instantiations that might ever be created. The personalization
stting should be set to some bitstring that is as unique as possible, and may include secret
information. The value of any secret information contained in the personalization string
should be no greater than the claimed strength of the DRBG, as the DRBG's cryptographic
mechanisms (specifically, its backtracking resistance and the entropy provided in the
entropy input) will protect this information from disclosure. Good choices for the
personalization string contents include:

e Device serial numbers, e Public keys,
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o User identification, e Special secret key values for this

o Private keys, specific DRBG instantiation,

o PINs and passwords, e Application identifiers,

. e Protocol version identifiers,
e Secret per-module or per-device

values, e Random numbers, and
¢ Timestamps, e Nonces.

¢ Network addresses,
8.5.3 Additional Input

During each request for bits from a DRBG and during reseeding, the insertion of additional
input is allowed. This input is optional, and the ability to enter additional input may or may
not be included in an implementation. Additional input may be restricted, depending on the
implementation and the DRBG. The use of additional input may be a means of providing
more entropy for the DRBG internal state that will increase assurance that the entropy
requirements are met. If the additional input is kept secret and has sufficient entropy, the
input can provide more assurance when recovering from the compromise of the entropy
input, the seed or one or more DRBG internal states.

8.6 Prediction Resistance and Backtracking Resistance

Part 1 discusses backtracking and prediction resistance. All DRBGs in this Standard have
been designed to provide backtracking resistance. Prediction resistance can be provided
only by ensuring that a DRBG is effectively resceded between DRBG requests. The
DRBG:s in this Standard can (optionally) be implemented to support prediction resistance
(see Section 9), and a user or application can request prediction resistance when needed.
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9 DRBG Functions
9.1 General Discussion

The DRBG functions in this Standard are specified as an algorithm (see Section 10) and an
“envelope” of pseudocode around that algorithm (defined in this section). The pseudocode
in the envelopes checks the input parameters, obtains input not provided by the input
parameters, accesses the appropriate DRBG algorithm and handles the internal state. A
function need not be implemented using such envelopes (e.g., all code may be
implemented in-line), but the function shall have equivalent functionality.

In the specifications of this Standard, a Get_entropy_input pseudo-function is used for
convenience. This function is not fully specified in this Standard, but has the following
meaning:

Get_entropy_input: A function that is used to obtain entropy input. The function call
is:

(status, entropy_input) = Get_entropy_input (min_entropy, min_length, max_
length)

which requests a string of bits (entropy input) with at least min_entropy bits of
entropy. The length for the string shall be equal to or greater than min_length bits, and
less than or equal to max_length bits. A status code is also returned from the function.

Note that an implementation may choose to define this functionality differently; for
example, for many of the DRBGs, the min_length = min_entropy for the
Get_entropy_input function, in which case, the second parameter could be omitted.

9.2 Instantiating a DRBG
A DRBG shall be instantiated prior to the generation of pseudorandom bits. The instantiate
function:

1. Checks the validity of the other input parameters,
Determines the security strength for the DRBG instantiation,
Determines any DRBG specific parameters (e.g., elliptic curve domain parameters),
Obtains entropy input with entropy sufficient to support the security strength,
Obtains the nonce (if required),

Determines the initial internal state using the instantiate algorithm,

SO

Returns a state_handle for the internal state to the consuming application (see
below).
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Let working state be the working state for the particular DRBG, and let min_length, max_
length, and highest supported_security_strength be defined for each DRBG (see Section
10). The following or an equivalent process shall be used to instantiate a DRBG.

Input from a consuming application for instantiation:

1.

requested_instantiation_security_strength: A requested security strength for the
instantiation. DRBG implementations that support only one security strength do not
require this parameter; however, any application using that DRBG implementation
must be aware of this limitation.

2. prediction resistance_flag: Indicates whether or not prediction resistance may be

required by a the consuming application during one or more requests for
pseudorandom bits. DRBGs that are implemented to always or never support
prediction resistance do not require this parameter. However, the user of a
consuming application must determine whether or not prediction resistance may be
required by the consuming application before electing to use such a DRBG
implementation. If the prediction_resistance_flag is not needed (i.e., because
prediction resistance is always or never performed), then the input parameter may
be omitted, and the prediction_resistance_flag may be omitted from the internal
state in step 11 of the instantiate process.

3. personalization string: An optional input that provides personalization information

(see Sections 8.4.2 and 8.5.2). The maximum length of the personalization string
(max_personalization_string_length) is implementation dependent, but shall be
less than or equal to the maximum length specified for the given DRBG (see
Section 10). If a personalization string will never be used, then the input parameter
and step 3 of the instantiate process may be omitted, and instantiate process step 9
may be modified to omit the personalization string.

Required information not provided by the consuming application during

instantiation:
Comment: This input shall not be provided
by the consuming application as an input
parameter during the instantiate request.
1. entropy_input: Input bits containing entropy. The maximum length of the

entropy_input is implementation dependent, but shall be less than or equal to the
specified maximum length for the selected DRBG (see Section 10).

nonce: A nonce as specified in Section 8.4.2. Note that if a random value is used as
the nonce, the entropy_input and nonce could be acquired using a single
Get_entropy_input call (see step 6 of the instantiate process); in this case, the first
parameter would be adjusted to include the entropy for the nonce (i.c.,

security strength would be increased by at least security_strength/2), process step
8 would be omitted, and the nonce would be omitted from the parameter list in
process step 9.
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Output to a consuming application after instantiation:

1. status: The status returned from the instantiate function. The status will indicate
SUCCESS or an ERROR. If an ERROR is indicated, either no state_handle or an
invalid state_handle shall be returned. A consuming application sheuld check the
status to determine that the DRBG has been correctly instantiated.

2. state_handle: Used to identify the internal state for this instantiation in subsequent
calls to the generate, reseed, uninstantiate and test functions.

Information retained within the DRBG boundary after instantiation:

The internal state for the DRBG, including the working_state and administrative
information (see Sections 8.2.3 and 10).

Instantiate Process:

Comment: Check the validity of the input
parameters.

1. If requested instantiation security_strength >
highest_supported_security_strength, then return an ERROR_FLAG.

2. If prediction_resistance_flag is set, and prediction resistance is not supported, then
return an ERROR_FLAG.

3. If the length of the personalization_string > max_personalization_string_length,
return an ERROR_FLAG.

4 Set security_strength to the nearest security strength greater than or equal to
requested_instantiation_security_strength.

Comment: The following step is required by
the Dual_EC_DRBG when multiple curves
are available (see Section 10.4.2.2.2).
Otherwise, the step should be omitted.

5. Using the security strength, select appropriate DRBG parameters.
. Comment: Obtain the entropy input.

6. (status, entropy input) = Get_entropy_input (security_strength, min_length,
max_length).

7. If an ERROR is returned in step 6, return a CATASTROPHIC_ERROR_FLAG.

8. Obtain a nonce. Comment: This step shall include any
appropriate checks on the acceptability of the
nonce. See Section 8.4.2.

Comment: Call the appropriate instantiate
algorithm in Section 10 to obtain values for
the initial working_state.
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9. initial_working state = Instantiate_algorithm (entropy input, nonce,
personalization_string).

10. Get a state handle for a currently empty state. If an empty internal state cannot be
found, return an ERROR_FLAG.

11. Set the internal state indicated by state_handle to the initial values for the internal
state (i.e., set the working state to the values returned as initial_working state in
step 9 and any other values required for the working state (see Section 10), and set
the administrative information to the appropriate values (e.g., the values of
security_strength and the prediction_resistance_flag).

12. Return SUCCESS and state_handle.
9.3 Reseeding a DRBG Instantiation
The reseeding of an instantiation is not required, but is recommended whenever a

consuming application and implementation are able to perform this process. Reseeding
will insert additional entropy into the generation of pseudorandom bits. Reseeding may be:

o explicitly requested by a consuming application,
e performed when prediction resistance is requested by a consuming application,

e triggered by the generate function when a predetermined number of pseudorandom
outputs have been produced or a predetermined number of generate requests have
been made (i.c., at the end of the seedlife), or

e triggered by external events (c.g., whenever sufficient entropy is available).

If a reseed capability is not available, a new DRBG instantiation may be created (see
Section 9.2).

The reseed function:
1. Checks the validity of the input parameters,
2. Obtains entropy input with sufficient entropy to support the security strength, and

3. Using the reseed algorithm, combines the current internal state with the new
entropy input and any additional input to determine the new internal state.

Let working state be the working state for the particular DRBG, and let min_length and
max_length be defined for each DRBG (see Section 10).

The following or an equivalent process shall be used to reseed the DRBG instantiation.
Input from a consuming application for reseeding:

1) state_handle: A pointer or index that indicates the internal state to be reseeded.
This value was returned from the instantiate function specified in Section 9.2.

2) additional input: An optional input. The maximum length of the additional _input
(max_additional_input_length) is implementation dependent, but shall be less than
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or equal to the maximum value specified for the given DRBG (see Section 10). If
additional _input will never be used, then the input parameter and step 2 of the
reseed process may be omitted, and step 5 may be modified to remove the
additional _input from the parameter list.

Required information not provided by the consuming application during reseeding:

Comment: This input shall net be provided
by the consuming application in the input
parameters.

1. entropy input: Input bits containing entropy. The maximum length of the
entropy_input is implementation dependent, but shall be less than or equal to the
specified maximum length for the selected DRBG (see Section 10).

2. Internal state values required by the DRBG for reseeding, i.e., the working_state
and administrative information, as appropriate.

Output to a consuming application after reseeding:

1. status: The status returned from the function. The status will indicate SUCCESS or
an ERROR.

Information retained within the DRBG boundary after reseeding:
Replaced internal state values (i.e., the working_state).
Reseed Process:

Comment: Get the current internal state and
check the input parameters.

1. Using state_handle, obtain the current internal state. If state_handle indicates an
invalid or empty internal state, return an ERROR_FLAG.

2. Ifthe length of the additional input > max_additional input length, return an
ERROR_FLAG.

Comment: Obtain the entropy input.

3. (status, entropy_input) = Get_entropy_input (security strength, min_length,
max_length).

4. Ifan ERROR is returned in step 3, return a CATASTROPHIC_ERROR_FLAG.

Comment: Get the new working state using
the appropriate reseed algorithm in Section
10.

5. new working state = Reseed_algorithm (working_state, entropy_input,
additional _input).

Comment: Save the new values of the internal
state.
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6. Replace the working_state in the internal state indicated by state_handle with the

7.

values of new_working state obtained in step 5.
Return SUCCESS.

9.4 Generating Pseudorandom Bits Using a DRBG

This function is used to generate pseudorandom bits after instantiation or reseeding (sce
Sections 9.2 and 9.3). The generate function:

1.
2.

4.
5.

Checks the validity of the input parameters,

Calls the reseed function to obtain sufficient entropy if the instantiation needs
additional entropy because the end of the seedlife has been reached or prediction
resistance is required; see Sections 9.4.2 and 9.4.3 for more information on
reseeding at the end of the seedlife and on handling prediction resistance requests.

. Generates the requested pseudorandom bits using the generate algorithm. The

generate algorithm will check that two consecutive outputs are not the same.
Updates the working state.

Returns the requested pseudorandom bits to the consuming application.

9.4.1 The Generate Function

Let outlen be the length of the output block of the cryptographic primitive (see Section 10).

The following or an equivalent process shall be used to generate pseudorandom bits.

Input from a consuming application for generation:

1.
2.

state_handle: A pointer or index that indicates the internal state to be used.

requested number_of bits: The number of pseudorandom bits to be returned from
the generate function. The max_number of bits_per_request is implementation
dependent but shall be less than or equal to the value provided in Section 10 for a
specific DRBG.

requested_security strength: The security strength to be associated with the
requested pseudorandom bits. DRBG implementations that support only one
security strength do not require this parameter; however, any consuming
application using that DRBG implementation must be aware of this limitation.

4. prediction_resistance_request: Indicates whether or not prediction resistance is to

be provided. DRBGs that are implemented to always or never support prediction
resistance do not require this parameter. However, the user of a consuming
application must determine whether or not prediction resistance may be required by
the application before electing to use such a DRBG implementation.

If prediction resistance is never provided, then the prediction_resistance_request
input parameter and step 5 of the generate process may be omitted, and step 7 may
be modified to omit the check for the prediction_resistance_request.
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If prediction resistance is always performed, then the prediction_resistance_request
input parameter and step 5 may be omitted, and steps 7 and 8 are replaced by:

status = Reseed (state_handle, additional_inpuf).
If status indicates an ERROR, then return status.
Using state_handle, obtain the new internal state.

(status, pseudorandom_bits, new_working_state) = Generate_algorithm
(working_state, requested_number_of bits).

Note that if additional_input is never provided, then the additional input parameter
in the Reseed call above may be omitted.

5. additional_input: An optional input. The maximum length of the additional_input
(max_additional input_length) is implementation dependent, but shall be less than
or equal to the specified maximum length for the selected DRBG (see Section 10).
If additional_input will never be used, then the input parametet, process step 4,
step 7.4 and the additional_input input parameter in steps 7.1 and 8 may be
omitted.

Required information not provided by the consuming application during generation:

1. Internal state values required for generation for the working state and
administrative information, as appropriate.

Output to a consuming application after generation:

1.  status: The status returned from the function. The status will indicate SUCCESS
or an ERROR.

2.  pseudorandom_bits: The pseudorandom bits that were requested.
Information retained within the DRBG boundary after generation:

Replaced internal state values (i.e., the new working_state).
Generate Process:

Comment Get the internal state and check the
input parameters.

1. Using state_handle, obtain the current internal state for the instantiation. If
state handle indicates an invalid or empty internal state, then return an
ERROR_FLAG.

2. If requested number of bits > max_number_of bits_per request, then return an
ERROR_FLAG.

3. If requested security_strength > the security_strength indicated in the internal
state, then return an ERROR_FLAG.

4. Ifthe length of the additional _input > max_additional input_length, then return an
ERROR_FLAG.
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5. If prediction_resistance_request is set, and prediction_resistance_flag is not set,
then return an ERROR_FLAG.

6. Clear the reseed required_flag. Comment: See Section 9.4.2 for discussion.

Comment: Reseed if necessary (see Section
9.3).

7. If reseed required flag is set, or if prediction_resistance_request is set, then
7.1 status = Reseed (state_handle, additional_inpuf).
7.2 If status indicates an ERROR, then return status.
7.3 Using state_handle, obtain the new internal state.
7.4 additional input = the Null string.
7.5 Clear the reseed required flag.

Comment: Request the generation of
pseudorandom_bits using the appropriate
generate algorithm in Section 10.

8. (status, pseudorandom_bits, new_working state) = Generate_algorithm
(working state, requested_number_of bits, additional _input).

9. If status indicates that a reseed is required before the requested bits can be
generated, then

9.1 Set the reseed required flag.
9.2 Gotostep 7.

10. Replace the old working state in the internal state indicated by state_handle with
the values of new working state.

11. Return SUCCESS and pseudorandom_bits.

Implementation notes:

If a reseed capability is not available, then steps 6 and 7 may be removed; and step 9 is
replaced by:

9. If status indicates that a reseed is required before the requested bits can be
generated, then

9.1 status = Uninstantiate (state_handle).

9.2 Return an indication that the DRBG instantiation can no longer be used.
9.4.2 Reseeding at the End of the Seedlife

When pseudorandom bits are requested by a consuming application, the generate function
checks whether or not a reseed is required by comparing the counter within the internal

31



ANS X9.82, Part 3 - DRAFT - March 2006

state (see Section 8.2.3) against a predetermined reseed interval for the DRBG
implementation. This is specified in the generate function (see Section 9.4.1) as follows:

Step 6 clears the reseed required flag.

Step 7 checks the value of the reseed required flag. At this time, it is clear, so step
7 would be skipped unless prediction resistance was requested by the consuming
application. For the purposes of this explanation, assume that prediction resistance
was not requested.

¢. Step 8 calls the Generate_algorithm, which will check whether a reseed is
required. If it is required, an appropriate status will be returned.

d. Step 9 checks the status returned by the Generate_algorithm. If the status
indicates that a reseed is not required, the generate process continues with step 10.

e. Ifthe status indicates that a reseed is required, then the reseed required flag is set,
and processing continues by going back to step 7 (see steps 9.1 and 9.2).

f. The substeps in step 7 are executed. The reseed function will be called; any
additional_input provided by the consuming application in the generate request
will be used during reseeding. The new values of the internal state are acquired, any
additional_input provided by the consuming application in the generate request is
replaced by a Null string, and the reseed required flag is cleared.

g. The generate algorithm is called (again) in step 8, the check of the returned sratus is
made in step 9, and (presumably) step 10 is then executed.

9.4.3 Handling Prediction Resistance Requests

When pseudorandom bits are requested by a consuming application with prediction
resistance, the generate function specified in Section 9.4.1 checks that the instantiation
allows prediction resistance requests (see step 5 of the generate process); clears the
reseed_required flag (even though the flag won’t be used in this case); executes the
substeps of step 7, resulting in a reseed, a new internal state for the instantiation and a Null
value for any additional input provided during the generate request; obtains pseudorandom
bits (see step 8); passes through step 9, since another reseed will not be required; and
continues with step 10.

9.5 Removing a DRBG Instantiation

The internal state for an instantiation may need to be “released” by erasing the contents of
the internal state. The uninstantiate function:

1. Checks the input parameter for validity.
2. Empties the internal state.

The following or an equivalent process shall be used to remove (i.¢., uninstantiate) a
DRBG instantiation:

Input from a consuming application for uninstantiation:
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1. state_handle: A pointer or index that indicates the internal state to be “released”.
Output to a consuming application after uninstantiation:

1. status: The status returned from the function. The status will indicate SUCCESS or
ERROR_FLAG.

Information retained within the DRBG boundary after uninstantiation:
An empty internal state.
Uninstantiate Process:
1. If state_handle indicates an invalid state, then return an ERROR_FLAG.
2. Erase the contents of the internal state indicated by state_handle.
3. Return SUCCESS.
9.6 Self-Testing of the DRBG (Health Testing)

9.6.1 Discussion

A DRBG shall perform self testing to obtain assurance that the implementation continues
to operate as designed and implemented (health testing). The testing function(s) within a
DRBG boundary (or sub-boundary) shall test each DRBG function within that boundary.
Note that this may require the creation and use of an instantiation for testing purposes only.

Errors occurring during testing shall be perceived as catastrophic DRBG failures (see
Section 9.7.3). The condition causing the failure shall be corrected and the DRBG re-
instantiated before requesting pseudorandom bits (also, see Section 9.7)

9.6.2 Testing the Instantiate Function

Known-answer tests on the instantiate function shall be performed prior to creating each
operational instantiation. However, if several instantiations are performed in quick
succession using the same input parameters, then the testing may be reduced to testing only
prior to creating the first instantiation using that parameter set until such time as the
succession of instantiations is completed. Thereafter, other instantiations shall be tested as
specified above.

The security_strength and prediction_resistance_flag to be used in the operational
invocation shall be used during the test. Representative fixed values and lengths of the
entropy_input, nonce and personalization_string (if allowed) shall be used; the value of
the entropy _input used during testing shall not be intentionally reused during normal
operations (either by the instantiate or the reseed functions). Error handling shall also be
tested, including whether or not the instantiate function handles an error from the entropy
input source correctly.
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If the values used during the test produce the expected results, and errors are handled
correctly, then the instantiate function may be used to instantiate using the tested values of
security_strength and prediction _resistance_flag.

An implementation should provide a capability to test the instantiate function on demand.
9.6.3 Testing the Generate Function

Known-answer tests shall be performed on the generate function before the first use of the
function and at reasonable intervals defined by the implementer. The implementer shall
document the intervals and provide a justification for the selected intervals.

The known-answer tests shall be performed for each implemented security strength.
Representative fixed values and lengths for the requested_number_of bits and
additional_input (if allowed) and the working state of the internal state value (see Sections
8.2.3 and 10) shall be used. If prediction resistance is available, then each combination of
the security_strength, prediction_resistance request and prediction_resistance_flag shall
be tested. The error handling for each input parameter shall also be tested, and testing shall
include setting the reseed counter to meet or exceed the reseed _interval in order to check
that the implementation is reseeded or that the DRBG is “shut down”, as appropriate.

If the values used during the test produce the expected results, and errors are handled
correctly, then the generate function may be used during normal operations.

Bits generated during health testing shall not be output as pseudorandom bits.

An implementation should provide a capability to test the generate function on demand.
9.6.4 Testing the Reseed Function

A known-answer test of the reseed function shall use the security strength in the internal
state of the instantiation to be reseeded. Representative values of the entropy_input and
additional _input (if allowed) and the working state of the internal state value shall be used

(see Sections 8.2.3 and 10). Error handling shall also be tested, including an error in
obtaining the entropy_input (e.g., the entropy_input source is broken).

If the values used during the test produce the expected results, and errors are handled
correctly, then the reseed function may be used to reseed the instantiation.

Self-test shall be performed as follows:

1. When prediction resistance is available in an implementation, the reseed function
shall be tested whenever the generate function is tested (see above).

2. When prediction resistance is not available in an implementation, the reseed
function shall be tested whenever the reseed function is invoked and before the
reseed is performed on the operational instantiation.

An implementation should provide a capability to test the reseed function on demand.
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9.6.5 Testing the Uninstantiate Function

The uninstantiate function shall be tested whenever other functions are tested. Testing
shall attempt to demonstrate that error handling is performed correctly, and the internal
state has been zeroized.

9.7 Error Handling
9.7.1 General Discussion

The expected errors are indicated for cach DRBG function (see Sections 9.2 - 9.5) and for
the derivation functions in Section 10.5. The error handling routines should indicate the
type of error.

9.7.2 Errors Encountered During Normal Operation

Many errors during normal operation may be caused by a consuming application’s
improper DRBG request; these errors are indicated by “ERROR_FLAG” in the
pseudocode. In these cases, the consuming application user is responsible for correcting
the request within the limits of the user’s organizational security policy. For example, if a
failure indicating an invalid requested security strength is returned, a security strength
higher than the DRBG or the DRBG instantiation can support has been requested. The user
may reduce the requested security strength if the organization’s security policy allows the
information to be protected using a lower security strength, or the user shall use an
appropriately instantiated DRBG.

For catastrophic errors (i.e., those errors indicated by the
CATASTROPHIC_ERROR_FLAG in the pseudocode), the DRBG shall not produce
further output until the source of the error is corrected, and the DRBG is re-instantiated.

9.7.3 Errors Encountered During Self-Testing

During self-testing, all unexpected behavior is catastrophic. The DRBG shall be corrected,
and the DRBG shall be re-instantiated before the DRBG can be used to produce
pseudorandom bits. Examples of unexpected behavior include:

o A test deliberately inserts an error, and the error is not detected, or

o A different result is returned from the instantiate, reseed or generate function
than was expected.
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10 DRBG Algorithm Specifications
10.1 Overview

Several DRBGs are specified in this Standard. The selection of a DRBG depends on
several factors, including the security strength to be supported and what cryptographic
primitives are available. An analysis of the consuming application’s requirements for
random numbers should be conducted in order to select an appropriate DRBG. A detailed
discussion on DRBG selection is provided in Annex D. Pseudocode examples for each
DRBG are provided in Annex E. Conversion specifications required for the DRBG
implementations (e.g., between integers and bitstrings) are provided in Annex B.

10.2 Deterministic RBG Based on Hash Functions
10.2.1 Discussion

A hash DRBG is based on a hash function that is non-invertible or one-way. The hash-
based DRBG specified in this Standard has been designed to use any Approved hash
function and may be used by consuming applications requiring various security strengths,
providing that the appropriate hash function is used and sufficient entropy is obtained for
the seed.

The maximum security strength that could be supported by each hash function is provided
in ASC X9 Registry 0003. This Standard supports only four security strengths for DRBGs:
112, 128, 192, and 256 bits. Table 2 specifies the values that shall be used for the function
envelopes and DRBG algorithm for each Approved hash function.

Table 2: Definitions for the Hash-Based DRBG

SHA-1 ‘ SHA-224 | SHA-256 | SHA-384 l SHA-512

Supported security strengths See ASC X9 Registry 0003
highest_supported_security strength See ASC X9 Registry 0003

Output Block Length (outlen) 160 [ 224 ‘ 256 ‘ 384 | 512
Required minimum entropy for security strength

instantiate and reseed

Minimum entropy input length security_strength
(min_length)

Maximum entropy input length < 2% bits

(max_length)

Seed length (seedlen) 440 ‘ 440 l 440 | 888 l 888
Maximum personalization string < 2% bits
length

(max_personalization_string_length)
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SHA-1 ‘ SHA-224 [ SHA-256 ‘ SHA-384 | SHA-512

Maximum additional_input length < 2% bits
(max_additional_input_length)

max_number_of bits_per_request < 2" bits
Number of requests between <2

reseeds (reseed _interval)

Note that since SHA-224 is based on SHA-
256, there is no efficiency benefit for using
the SHA-224; this is also the case for SHA-
384 and SHA-512, i.e., the use of SHA-256 or
SHA-512 instead of SHA-224 or SHA-384,
respectively, is preferred. The value for
seedlen is determined by subtracting the count
field (in the hash function specification) and
one byte of padding from the hash function
input block length; in the case of SHA-1,
SHA-224 and SHA 256, seedlen =512 - 64 -
8 = 440; for SHA-384 and SHA-512, seedlen
=1024 - 128 - 8 = 888.

10.2.2 HMAC_DRBG (...)

10.2.2.1 Discussion

HMAC_DRBG uses multiple occurrences of
an Approved keyed hash function, which is
based on an Approved hash function. This
DRBG uses the Update function specified in
Section 10.2.2.2 and the HMAC function
within the Update function as the derivation
function during instantiation and reseeding.
The same hash function shall be used
throughout an HMAC DRBG instantiation.
The hash function used shall meet or exceed
the security requirements of the consuming
application.

Figure 7 depicts the HMAC_DRBG in three
stages. HMAC_DRBG is specified using an
internal function (Update). This function is
called by the HMAC_DRBG instantiate,
generate and reseed algorithms to adjust the
internal state when new entropy or additional
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input is provided, as well as to update the internal state after pseudorandom bits are
generated. The operations in the top portion of the figure are only performed if the
additional input is not null. Figure 8 depicts the Update function.

10.2.2.2 Specifications

10.2.2.2.1 HMAC_DRBG Internal State

The internal state for HMAC_DRBG
consists of:

V18500 || provided dats

1. The working state: Key

a. The value V of outlen bits, Key
which is updated each time
another outlen bits of output
are produced (where outlen is K'i e ac v
specified in Table 2 of Section
10.2.1).

b. The outlen-bit Key, which is
updated at least once each time
that the DRBG generates
pseudorandom bits.

c. A counter (reseed counter)
that indicates the number of
requests for pseudorandom bits

since instantiation or
reseeding. Figure 8: HMAC_DRBG Update Function

2. Administrative information:
a. The security strength of the DRBG instantiation.

b. A prediction_resistance flag that indicates whether or not a prediction
resistance capability is required for the DRBG instantiation.

The values of ¥ and Key are the critical values of the internal state upon which the security
of this DRBG depends (i.c., ¥ and Key are the “secret values” of the internal state).

10.2.2.2.2 The Update Function (Update)
The Update function updates the internal state of HMAC_DRBG using the

provided data. Note that for this DRBG, the Update function also serves as a derivation
function for the instantiate and reseed functions.

Let HMAC be the keyed hash function specified in FIPS 198 using the hash function
selected for the DRBG from Table 2 in Section 10.2.1.

The following or an equivalent process shall be used as the Update function.
Input:
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1. provided data: The data to be used.
2. K: The current value of Key.
3. V: The current value of V.
Output:
1. K: The new value for Key.
2. V: The new value for V.
HMAC_DRBG Update Process:
1. K=HMAC (X, V| 0x00 || provided data).
2. V=HMAC(, V).
3. If (provided data = Null), then return K and V.
4. K=HMAC (X, V|| 0x01 || provided_data).
5. V=HMAC(K, V).
6. Return K and V.
10.2.2.2.3 Instantiation of HWAC_DRBG

Notes for the instantiate function specified in Section 9.2:

The instantiation of HMAC_DRBG requires a call to the instantiate function specified
in Section 9.2. Process step 9 of that function calls the instantiate algorithm specified in
this section. For this DRBG, step 5 of the instantiate process should be omitted. The
values of highest_supported security strength and min _length are provided in Table 2
of Section 10.2.1. The contents of the internal state are provided in Section 10.2.2.2.1.

The instantiate algorithm:

Let Update be the function specified in Section 10.2.2.2.2. The output block length
(outlen) is provided in Table 2 of Section 10.2.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 9 of the instantiate process in Section 9.2):

Input:
1. entropy_input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.4.2.

3. personalization_string: The personalization string received from the consuming
application. If a personalization_string will never be used, then step 1 may be
modified to remove the personalization_string.

Output:

1. initial working state: The inital values for V, Key and reseed counter (see
Section 10.2.2.2.1).
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HMAC_DRBG Instantiate Process:
1. seed material = entropy input || nonce || personalization_string.
2. Key =0x00 00...00. Comment: outlen bits.
3. ¥V =0x0101...01. Comment: outlen bits.
Comment: Update Key and V.
4. (Key, V) =Update (seed_material, Key, V).
5. reseed counter=1.

6. Return V, Key and reseed_counter as the initial working_state.
10.2.2.2.4 Reseeding an HMAC_DRBG Instantiation

Notes for the reseed function specified in Section 9.3:

The reseeding of an HMAC_DRBG instantiation requires a call to the reseed function
specified in Section 9.3. Process step 5 of that function calls the reseed algorithm
specified in this section. The values for min_length are provided in Table 2 of Section
10.2.1.

The reseed algorithm:

Let Update be the function specified in Section 10.2.2.2.2. The following process or its
equivalent shall be used as the reseed algorithmn for this DRBG (see step 5 of the
reseed process in Section 9.3):

Input:

1. working state: The current values for V, Key and reseed counter (see Section
10.2.2.2.1).

2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application. If additional input will never be used, then process step 1 may be
modified to remove the additional input.

Output:

1. new_working_state: The new values for V, Key and reseed_counter.
HMAC_DRBG Reseed Process:

1. seed material = entropy_input || additional _input.

2. (Key, V) = Update (seed material, Key old, V_old).
3. reseed counter=1.
4

. Return ¥V, Key and reseed_counter as the new_working_state.

40



HMAC_DRBG ANS X9.82, Part 3 - DRAFT - March 2006

10.2.2.2.5 Generating Pseudorandom Bits Using HMAC_DRBG

Notes for the generate function specified in Section 9.4:

The generation of psecudorandom bits using an HMAC_DRBG instantiation requires a
call to the generate function specified in Section 9.4. Process step 8 of that function
calls the generate algorithm specified in this section. The values for
max_number of bits per request and outlen are provided in Table 2 of Section 10.2.1.

The generate algorithm :

Let HMAC be the keyed hash function specified in ASC X9 Registry 00004 using the
hash function selected for the DRBG. The value for reseed interval is defined in Table
2 of Section 10.2.1.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (sce step 8 of the generate process in Section 9.4):

Input:

1. working state: The current values for V, Key and reseed_counter (see Section
10.2.2.2.1).

2. requested number of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional_input: The additional input string received from the consuming
application. If an implementation will never use additional_input, then step 3 of
the HMAC generate process may be omitted. If an implementation does not
include the additional input parameter as one of the calling parameters, or if
the implementation allows additional input, but a given request does not
provide any additional input, then a Null string shall be used as the
additional input in step 6.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS or indicate that a reseed is required before the requested
pseudorandom bits can be generated.

2. returned bits: The pseudorandom bits to be returned to the generate function.
3. new working state: The new values for V, Key and reseed_counter.
HMAC_DRBG Generate Process:

1. If reseed counter > reseed_interval, then return an indication that a reseed is

required.
2. If additional input # Null, then (Key, V) = Update (additional_input, Key, V).
3. temp = Null.

4. While (len (temp) < requested number _of bits) do:
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4.1 V=HMAC (Key V).

42 temp=temp| V.

returned_bits = Leftmost requested_number_of bits of temp.
(Key, V) = Update (additional_input, Key, V).
reseed_counter = reseed_counter + 1.

Return SUCCESS, returned_bits, and the new values of Key, ¥ and
reseed_counter as the new_working_state).

&l =GN
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10.3 DRBG Based on Block Ciphers

10.3.1 Discussion
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A block cipher DRBG is based on a block cipher algorithm. The block cipher DRBG
specified in this Standard has been designed to use any Approved block cipher algorithm
and may be used by consuming applications requiring various levels of security, providing
that the appropriate block cipher algorithm and key length are used, and sufficient entropy

is obtained for the seed.
10.3.2CTR_DRBG

10.3.2.1 CTR_DRBG Description

CTR_DRBG uses an Approved block cipher
algorithm in the counter mode as specified in
ASC Registry 00002. The same block cipher
algorithm and key length shall be used for all
block cipher operations. The block cipher
algorithm and key length shall meet or
exceed the security requirements of the
consuming application.

CTR_DRBG is specified using an internal
function (Update). Figure 9 depicts the
Update function. This function is called by
the instantiate, generate and reseed algorithms
to adjust the internal state when new entropy
or additional input is provided, as well as to
update the internal state after pseudorandom
bits are generated. Figure 10 depicts the
CTR_DRBG in three stages. The operations
in the top portion of the figure are only
performed if the additional input is not null.

Table 3 specifies the values that shall be used
for the function envelopes and DRBG
algorithms.

Table 3: Definitions for the CTR_DRBG

provided data——» @

Figure 9: CTR_DRBG Update Function

3Key | AES-128 | AES-192 | AES-256

TDEA
Supported security strengths See ASC X9 Registry
highest_supported_security_strength See ASC X9 Registry
Output block length (outlen)

| 128 | 128 | 128
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3Key | AES-128 | AES-192 | AES-256
TDEA

Key length (keylen) 168 128 192 256

Required minimum entropy for security strength
instantiate and reseed

Seed length (seedlen = outlen + keylen) 232 J 256 [ 320 | 384

If a derivation function is used:

a. Minimum entropy input length security strength
(min _length)

b. Maximum entropy input length < 2% bits
(max_length)

¢. Maximum personalization string < 2% pits
length

(max_personalization_string_length)

d. Maximum additional_input length < 2% bits
(max_additional_input_length)

If a derivation function is not used:

a. Minimum entropy input length seedlen
(min _length = outlen + keylen)

b. Maximum entropy input length seedlen
(max _length) (outlen + keylen)

¢. Maximum personalization string seedlen
length

(max_personalization_string length)

d. Maximum additional_input length seedlen
(max_additional_input_length)

max_number_of bits_per_request <2B <2"

Number of requests between reseeds <2* <2®
(reseed_interval)

The CTR_ DRBG may be implemented to use the block cipher derivation function
specified in Section 10.5.2 during instantiation and reseeding. However, the DRBG is
specified to allow an implementation tradeoff with respect to the use of this derivation
function. The use of the derivation function is optional if either of the following is
available to provide entropy input when requested:
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e 'An Approved RBG with a security strength equal to or greater than the required
security strength of the CTR_DRBG instantiation, or

e An Approved
conditioned entropy (Opt) abditiomal Input
source.

Otherwise, the derivation
functon shall be used. Table 3
provides lengths required for the
entropy input,
personalization_string and
additional _input for each case.

BLOCK CIFHER
DERIVATION
FUNCTION

s
sendlen bits

UPDATE

addifonal_inpal ]0..0

When a derivation function is
not used by an implementation,
the seed construction shall not
use a nonce? (see Section 8.4.2).

When using TDEA as the
selected block cipher algorithm, ; erate i
the keys shall be handled as 64-
bit blocks containing 56 bits of : :
key and 8 bits of parity as |
specified for the TDEA engine State i E
in ANS X9.52. Key| v reseed !

connter
10.3.2.2 Specifications

10.3.2.2.1 CTR_DRBG Internal

The internal state for Pseudorandom bis
CTR_DRBG consists of:

1. The working_state: .

a. The value V of outlen
bits, which is updated l

Staie

cach time another

outlen bits of output |K0' Vs | - J UPDATE
are produced (see F

Table 3 in Section +a—1 I
10.3.2.1).

Figure 10: CTR-DRBG

2 The specifications in this Standard do not accommodate the special treatment required for a nonce in this
case.
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b. The keylen-bit Key, which is updated whenever a predetermined number of
output blocks are generated.

c. A counter (reseed_counter) that indicates the number of requests for
pseudorandom bits since instantiation or reseeding.

2. Administrative information:
a. The security_strength of the DRBG instantiation.

b. A prediction resistance_flag that indicates whether or not a prediction
resistance capability is required for the DRBG.

The values of V and Key are the critical values of the internal state upon which the security
of this DRBG depends (i.e., ¥ and Key are the “secret values” of the internal state).

10.3.2.2.2 The Update Function (Update)

The Update function updates the internal state of the CTR_DRBG using the
provided_data. The values for outlen, keylen and seedlen are provided in Table 3 of
Section 10.3.2.1. The block cipher operation in step step 2.2 of the CTR_DRBG update
process uses the selected block cipher algorithm (also see Section 10.5.4).

The following or an equivalent process shall be used as the Update function:
Input:

1. provided data: The data to be used. This must be exactly seedlen bits in length;
this length is guaranteed by the construction of the provided_data in the
instantiate, reseed and generate functions.

2. Key: The current value of Key.
3. V: The current value of V.
Output:
1. K: The new value for Key.
2. V: The new value for V.
CTR_DRBG Update Process:
1. temp = Null.
2. While (len (temp) < seedlen) do
2.1 V=(V+1)mod 2°""
2.2 output_block = Block_Encrypt (Key, V).
2.3 temp = temp || ouput_block.
3. temp = Lefimost seedlen bits of temp.
4 temp = temp ® provided data.
5. Key = Leftmost keylen bits of temp.
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6. V¥V =Rightmost outlen bits of temp.

7. Return the new values of Key and V.,
10.3.2.2.3 Instantiation of CTR_DRBG

Notes for the instantiate function specified in Section 9.2:

The instantiation of CTR_DRBG requires a call to the instantiate function specified in
Section 9.2. Process step 9 of that function calls the instantiate algorithm specified in
this section. For this DRBG, step 5 of the instantiate function should be omitted. The
values of highest_supported security_strength and min _length are provided in Table 3
of Section 10.3.2.1. The contents of the internal state are provided in Section
10.3.2.2.1.

The instantiate algorithm:

Let Update be the function specified in Section 10.3.2.2.2. The output block length
(outlen), key length (keylen), seed length (seedlen) and security strengths for the block
cipher algorithms are provided in Table 3 of Section 10.3.2.1.

For this DRBG, there are two cases for the processing. The input to the instantiate
algorithm is the same for each case; likewise for the output from the instantiate
algorithm. However, the process steps are slightly different (see Sections 10.3.2.2.3.1
and 10.3.2.2.3.2).

Input:
1. entropy input: The string of bits obtained from the entropy input source.

2. nonce: A string of bits as specified in Section 8.4.2; this string shall not be
present unless a derivation function is used.

3. personalization string: The personalization string received from the consuming
application.

Output:

1. initial working state: The inital values for V, Key, and reseed_counter (see
Section 10.3.2.2.1).

10.3.2.2.3.1 The Process Steps for Instantiation When a Derivation Function is Not Used
The following process or its equivalent shall be used as the instantiate algorithm for this
DRBG:
CTR_DRBG Instantiate Process:
1. temp = len (personalization_string).

Comment: Ensure that the length of the
personalization_string is exactly seedlen bits.
The maximum length was checked in Section
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9.2, processing step 3, using Table 3 to define
the maximum length.

2. If (temp < seedlen), then personalization_string = personalization_strin
seedlenptemp p - £~ P - &
0 N

seed_material = entropy input ® personalization_string.
Key = 0", Comment: keylen bits of zeros.
y = (ouen, Comment: outlen bits of zeros.

(Key, V) = Update (seed _material, Key, V).

reseed counter = 1.

RO

8. Return V, Key, and reseed_counter as the initial working_state.

Implementation note:

If a personalization string will never be provided from the instantiate function, then steps
1-3 are replaced by:

seed_material = entropy_inpul.

That is, steps 1-3 collapse into the above step.

10.3.2.2.3.2 The Process Steps for Instantiation When a Derivation Function is Used
Let Block_Cipher_df be the derivation function specified in Section 10.5.3 using the
chosen block cipher algorithm and key size

The following process or its equivalent shall be used as the instantiate algorithm for this
DRBG:

CTR_DRBG Instantiate Process:
1. seed material = entropy input || nonce || personalization_string.

Comment: Ensure that the length of the
seed_material is exactly seedlen bits.

seed_material = Block_Cipher_df (seed_material, seedlen).
Key = 0", Comment: keylen bits of zeros.
y = geuten, Comment: outlen bits of zeros.

(Key, V) = Update (seed_material, Key, V).

reseed _counter = 1.

SR

7. Return V, Key, and reseed counter as the initial_working_state.

Implementation note:

If a personalization_string will never be provided from the instantiate function, then steps
1-2 are replaced by:
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seed material = Block_Cipher_df (entropy_input, seedlen).
10.3.2.2.4 Reseeding a CTR_DRBG Instantiation

Notes for the reseed function specified in Section 9.3:

The reseeding of a CTR_DRBG instantiation requires a call to the reseed function
specified in Section 9.3. Process step 5 of that function calls the reseed algorithm
specified in this section. The values for min _length are provided in Table 3 of Section
10.3.2.1.

The reseed algorithm:

Let Update be the function specified in Section 10.3.2.2.2. The seed length (seedlen) is
provided in Table 3 of Section 10.3.2.1.

For this DRBG, there are two cases for the processing. The input to the reseed algorithm is
the same for each case; likewise for the output from the reseed algorithm. However, the
process steps are slightly different (see Sections 10.3.2.2.4.1 and 10.3.2.2.4.2).

Input:

1. working state: The current values for V, Key, previous_output_block and
reseed_counter (see Section 10.3.2.2.1).

2. entropy input: The string of bits obtained from the entropy input source.

3. additional input: The additional input string received from the consuming
application.

Output :

1. new_working state: The new values for V, Key, and reseed_counter.
10.3.2.2.4.1 The Process Steps for Reseeding When a Derivation Function is Not Used
The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 of the reseed process in Section 9.3):

CTR_DRBG Reseed Process
1. temp =len (additional input).

Comment: Ensure that the length of the
additional_input is exactly seedlen bits. The
maximum length was checked in Section 9.3,
processing step 2, using Table 3 to define the
maximum length.

2. If (temp < seedlen), then additional_input = additional_input || eedlen - temp

3. seed material = entropy_input ® additional_input.
4. (Key, V)= Update (seed_material, Key, V).
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5. reseed counter =1.
6. Return V, Key and reseed counter as the new_working_state.

Implementation note:

If additional _input will never be provided from the reseed function, then steps 1-3 are
replaced by:

seed _material = entropy_input.

That is, steps 1-3 collapse into the above step.
10.3.2.2.4.2 The Process Steps for Reseeding When a Derivation Function is Used

Let Block_Cipher_df be the derivation function specified in Section 10.5.3 using the
chosen block cipher algorithm and key size.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 of Section 9.3):

CTR_DRBG Reseed Process:
1. seed material = entropy input || additional input.

Comment: Ensure that the length of the
seed_material is exactly seedlen bits.

2. seed_material = Block_Cipher_df (seed material, seedlen).
3. (Key, V) =Update (seed_material, Key, V).
4. reseed counter=1.

5. Return V, Key, and reseed _counter as the new working state.

Implementation note:

If additional _input will never be provided from the reseed function, then steps 1-2
become:

seed_material = Block_Cipher_df (entropy_input, seedlen).
10.3.2.2.5 Generating Pseudorandom Bits Using CTR_DRBG

Notes for the generate function specified in Section 9.4:

The generation of pseudorandom bits using a CTR_DRBG instantiation requires a call
to the generate function specified in Section 9.4. Process step 8 of that function calls
the generate algorithm specified in this section. The values for

max_number of bits per request, max_additional_input_length, and outlen are
provided in Table 3 of Section 10.3.2.1. If the derivation function is not used, then the
maximum allowed length of additional input = seedlen.

For this DRBG, there are two cases for the processing. The input to the generate
algorithm is the same for each case; likewise for the output from the generate
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algorithm, However, the process steps are slightly different (see Sections 10.3.2.2.5.1
and 10.3.2.2.5.2).

Let Update be the function specified in Section 10.3.2.2.2, and let Block_Encrypt be
the function specified in Section 10.5.4. The seed length (seedlen) and the value of
reseed_interval are provided in Table 3 of Section 10.3.2.1.

Input:
1. working state: The current values for V, Key, and reseed_counter (see Section
10.3.2.2.1).

2. requested number of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional input; The additional input string received from the consuming
application. If additional_input will never be allowed, then step 3 becomes:

additional _input = 0°°““",

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, or indicate that a reseed is required before the requested
pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits returned to the generate function.
3. working state: The new values for V, Key, and reseed counter.
10.3.2.2.5.1 The Process Steps for Generating Pseudorandom BitsWhen a Derivation
Function is Not Used for the DRBG Implementation

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of the generate process in Section 9.4.1):

CTR_DRBG Generate Process:

1. If reseed counter > reseed_interval, then return an indication that a reseed is
required.

2. If (additional input # Null), then

Comment: Ensure that the length of the
additional_input is exactly seedlen bits. The
maximum length was checked in Section
9.4.1, processing step 4, using Table 3 to
define the maximum length. If the length of
the additional input is < seedlen, pad with
zero bits.

2.1 temp = len (additional_input).
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2.2 If (temp < seedlen), then
additional input = additional input || 07" 1",

2.3 (Key, V)= Update (additional_input, Key, V).

Else additional input = 0°¢%",
3. temp = Null.
4. While (len (temp) < requested number_of bits) do:

4.1 V=(V+1)mod2°"".

4.2  output_block = Block_Encrypt (Key, V).

4.3  temp =temp || output block.

returned_bits = Leftmost requested_number _of bits of temp.

Comment: Update for backtracking
resistance.

6. (Key, V)= Update (additional_input, Key, V).
7. reseed counter = reseed counter + 1.

8. Return SUCCESS and returned_bits; also return Key, V, and reseed counter as

the new_working_state.

10.3.2.2.5.2 The Process Steps for Generating Pseudorandom BitsWhen a Derivation

Function is Used for the DRBG Implementation

The Block_Cipher_df is specified in Section 10.5.3 and shall be implemented using the
chosen block cipher algorithm and key size.

The following process or its equivalent shall be used as generate algorithm for this DRBG
(see step 8 of the generate process in Section 9.4.1):

CTR_DRBG Generate Process:

1.

If reseed counter > reseed_interval, then return an indication that a reseed is
required.

If (additional _input # Null), then
2.1 additional input = Block_Cipher_df (additional_input, seedlen).
2.2 (Key, V)= Update (additional_input, Key, V).

Else additional _input = 0°"",
3. temp= Null.
4. While (len (temp) < requested number _of bits) do:

4.1 V=(V+1)mod2™""
4.2 output_block = Block_Encrypt (Key, V).
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4.3  temp=temp || output_block.
5. returned_bits = Leftmost requested number of bits of temp.

Comment: Update for backtracking
resistance.

6. (Key, V)= Update (additional_input, Key, V).
7. reseed counter = reseed counter + 1.

8. Return SUCCESS and returned_bits; also return Key, V, and reseed_counter as
the new_working_state.
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10.4 Deterministic RBG Based on Number Theoretic Problems
10.4.1 Discussion

A DRBG can be designed to take advantage of number theoretic problems (e.g., the
discrete logarithm problem). If done correctly, such a generator’s properties of randomness
and/or unpredictability will be assured by the difficulty of finding a solution to that
problem. Section 10.4.2 specifies a DRBG based on the elliptic curve discrete logarithm
problem.

10.4.2 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)
10.4.2.1 Discussion

The Dual_EC_DRBG is based on the following hard problem, sometimes known as the
“elliptic curve discrete logarithm problem” (ECDLP): given points P and Q on an elliptic
curve of order n, find a such that Q = aP.

Dual_EC_DRBG uses a seed that is m bits in length (i.e., seedlen = m) to initiate the
generation of outlen-bit pseudorandom strings by performing scalar multiplications on two
points in an elliptic curve group, where the curve is defined over a field approximately 2"
in size. For all of the NIST curves given in this Standard for the DRBG, m > 256. Figure
11 depicts the Dual_EC_DRBG.

seed &
Instand, or
Teseed only

E
[Optionall o ) et LTt e R
i

additional input m_T 1 i1
0 P Q Pseudorandom

Bits

I addifional input = Null

Figure 11: Dual_EC_DRBG

The instantiation of this DRBG requires the selection of an appropriate elliptic curve and
curve points specified in Annex A.1 for the desired security strength. The seed used to
determine the initial value (s) of the DRBG shall have entropy that is at least

security strength bits. Further requirements for the seed are provided in Section 8.2. This
DRBG uses the derivation function specified in Section 10.5.2 during instantiation and
reseeding.

Backtracking resistance is inherent in the algorithm, even if the internal state is
compromised. As shown in Figure 12, Dual_EC_DRBG generates a seedlen-bit number
for each step i = 1,2,3,..., as follows:
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S; = @(x(Si—; *P))
Ri=o(x(S; *Q)). r

Each arrow in the figure represents an Elliptic | So ——{ S 1 S —
Curve scalar multiplication operation, followed gt b

by the extraction of the x coordinate for the J L
resulting point and for the random output R; -

followed by truncation to produce the output L‘% R,

(formal definitions for ¢ and x are given in
Section 10.4.2.2.4). Following a line in the
direction of the arrow is the normal operation;
inverting the direction implies the ability to solve
the ECDLP for that specific curve. An
adversary’s ability to invert an arrow in the figure implies that the adversary has solved the
ECDLP for that specific elliptic curve. Backtracking resistence is built into the design, as
knowledge of S; does not allow an adversary to determine Sy (and so forth) unless the
adversary is able to solve the ECDLP for that specific curve. In addition, knowledge of Ry
does not allow an adversary to determine S; (and so forth) unless the adversary is able to
solve the ECDLP for that specific curve.

Figure 12: Dual_EC_DRBG {(...)
Backtracking Resistance

Table 4 specifies the values that shall be used for the envelope and algorithm for each
curve. Complete specifications for each curve are provided in Annex A.1. Note that all
curves can be instantiated at a security strength lower than its highest possible security
strength. For example, the highest security strength that can be supported by curve P-384 is
192 bits; however, this curve can alternatively be instantiated to support only the 112 or
128-bit security strengths).

Table 4: Definitions for the Dual_EC_DRBG

P-256 ‘ P-384 ‘ P-521
Supported security strengths See SP 800-57
Size of the base field (in bits) 256 ‘ 384 ‘ 521
highest_supported_ See SP 800-57
security_strength
Output block length (max_outlen = 240 368 504
largest multiple of 8 less than (size
of the base field) - (13 + log; (the
cofactor))
Required minimum entropy for security_strength
instantiate and reseed
Minimum entropy input length security strength
(min_length)
Maximum entropy input length < 2" bits
(max _length)
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P-256 P-384 P-521
Maximum personalization string < 2" bits
length
(max_personalization_string_length)
Maximum additional input length < 2" bits
(max_additional_input_length)
Seed length (seedlen) 2 x security_strength
Appropriate hash functions SHA-1, SHA- | SHA-224, SHA- SHA-256,
224, SHA-256, | 256, SHA-384, SHA-384,
SHA-384, SHA- | SHA-512 SHA-512
512
max_number_of bits_per_request max_outlen x reseed_interval
Number of blocks between < 2* blocks
reseeding (reseed_interval)

10.4.2.2 Specifications
10.4.2.2.1 Dual_EC_DRBG Internal State

The internal state for Dual_EC_DRBG consists of:
1. The working state:
a. A value (s) that determines the current position on the curve.

b. The elliptic curve domain parameters (seedlen, p, a, b, n), where seedlen is the
length of the seed, p is the order of the field £, a and b are two field elements
that define the equation of the curve; and » is the order of the point G. If only
one curve will be used by an implementation, these parameters need not be
present in the working_state.

c. Two points P and Q on the curve; the generating point G specified in Annex
A.1 for the chosen curve will be used as P. If only one curve will be used by an
implementation, these points need not be present in the working_state.

d. A counter (block_counter) that indicates the number of blocks of random
produced by the Dual_EC_DRBG since the initial seeding or the previous
reseeding.

2. Administrative information:
a. The security_strength provided by the instance of the DRBG,

b. A prediction_resistance_flag that indicates whether prediction resistance is
required by the DRBG.
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The value of s is the critical value of the internal state upon which the security of this
DRBG depends (i.e., s is the “secret value” of the internal state).

10.4.2.2.2 Instantiation of Dual_EC_DRBG

Notes for the instantiate function specified in Section 9.2:

The instantiation of Dual EC_DRBG requires a call to the instantiate function
specified in Section 9.2. Process step 9 of that function calls the instantiate algorithm in
this section.

In process step 5 of the instantiate function, the following step shall be performed to
select an appropriate curve if multiple curves are available.

5. Using the security strength and Table 4 in Section 10.4.2.1, select the smallest
available curve that has a security strength > security strength.

The values for seedlen, p, a, b, n, P, Q are determined by that curve.

It is recommended that the default values be used for P and Q as given in Annex A.1.
However, an implementation may use different pairs of points, provided that they are
verifiably random, as evidenced by the use of the procedure specified in Annex A.2.1
and the self-test procedure described in Annex A.2.2.

The values for highest supported_security_strength and min_length are determined by
the selected curve (see Table 4 in Section 10.4.2.1).

The instantiate algorithm :

Let Hash_df be the hash derivation function specified in Section 10.5.2 using an
appropriate hash function from Table 4 in Section 10.4.2.1. Let seedlen be the
appropriate value from Table 4.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 9 of the instantiate process in Section 9.2):

Input:
1. entropy input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.4.2.

3. personalization_string: The personalization string received from the consuming
application.

Output:

1. s: The initial secret value for the initial working state.

2. block counter: The initialized block counter for reseeding.
Dual EC_DRBG Instantiate Process:

1. seed _material = entropy input || nonce || personalization_string.
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Comment: Use a hash function to ensure that
the entropy is distributed throughout the bits,
and s is m (i.e., seedlen) bits in length.

2. s =Hash_df (seed material, seedlen).
3. block _counter =0.

4. Return s, and block counter for the initial working_state.
10.4.2.2.3 Reseeding of a Dual_EC_DRBG Instantiation

Notes for the reseed function specified in Section 9.3:

The reseed of Dual_ EC_DRBG requires a call to the reseed function specified in
Section 9.3. Process step 5 of that function calls the reseed algorithm in this section.
The values for min _length are provided in Table 4 of Section 10.4.2.1.

The reseed algorithm :

Let Hash_df be the hash derivation function specified in Section 10.5.2 using an
appropriate hash function from Table 4 in Section 10.4.2.1.

The following process or its equivalent shall be used to reseed the Dual EC_DRBG
process after it has been instantiated (see step 5 of the reseed process in Section 9.3):

Input:
1. s: The current value of the secret parameter in the working state.
2. entropy input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application.

Output:
1. s: The new value of the secret parameter in the new working_state.
2. block counter: The re-initialized block counter for reseeding.
Dual_EC_DRBG Reseed Process

Comment:; pad8 returns a copy of s padded
on the right with binary 0’s, if necessary, to a
multiple of 8.

1. seed material = pad8 (s) || entropy_input || additional _input.
2. s=Hash_df (seed material, seedlen).

3. block_counter = 0.

4. Return s and block _counter for the new_working_state.

Implementation notes:
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If an implementation never allows additional_input, then step 1 may be modified as
follows :

seed_material = pad8 (s) || entropy_input.
10.4.2.2.4 Generating Pseudorandom Bits Using Dual_EC_DRBG

Notes for the generate function specified in Section 9.4:

The generation of pseudorandom bits using a Dual_EC_DRBG instantiation requires a
call to the generate function specified in Section 9.4. Process step 8 of that function
calls the generate algorithm specified in this section. The values for
max_number of bits_per request and max_outlen are provided in Table 4 of Section
10.4.2.1. outlen is the number of pseudorandom bits taken from each x-coordinate as
the Dual EC_DRBG steps. For performance reasons, the value of outlen should be set
to the maximum value as provided in Table 5. However, an implementation may set
outlen to any multiple of 8 bits less than or equal to max_outlen. The bits that become
the Dual_EC_DRBG output are always the rightmost bits, i.c., the least significant bits
of the x-coordinates.

The generate algorithm:

Let Hash_df be the hash derivation function specified in Section 10.5.2 using an
appropriate hash function from Table 4 in Section 10.4.2.1. The value of
reseed_interval is also provided in Table 4.

The following are used by the generate algorithm:

a. pads8 (bitstring) returns a copy of the bitstring padded on the right with binary
0’s, if necessary, to a multiple of 8.

b. Truncate (bitstring, in len, out_len) inputs a bitstring of in_len bits, returning
a string consisting of the leftmost out_len bits of bitstring. 1f in_len < out_len,
the bitstring is padded on the right with (out_len - in_len) zeroes, and the result
is returned. '

¢. x(A) is the x-coordinate of the point 4 on the curve, given in affine coordinates.
An implementation may choose to represent points internally using other
coordinate systems; for instance, when efficiency is a primary concern. In this
case, a point shall be translated back to affine coordinates before x() is applied.

d. ¢ (x) maps field elements to non-negative integers, taking the bit vector
representation of a ficld element and interpreting it as the binary expansion of
an integer.

The precise definition of @(x) used in steps 6 and 7 of the generate process
below depends on the field representation of the curve points. In keeping with
the convention of FIPS 186-2, the following elements will be associated with
cach other (note that, in this case. m denotes the size of the base field):

B: cmillcmzll - |lCi ] co , abitstring, with ¢, being lefimost
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Zooem2™ 4+ 2 2t e € Z
Fa: cmi2™ + .. +c22 + ¢2'+ ¢co modp € GF(p) ;

Thus, any field element x of the form Fa will be converted to the integer Z or
bitstring B, and vice versa, as appropriate.

e. *isthe symbol representing scalar multiplication of a point on the curve.

The following process or its equivalent shall be used to generate pseudorandom bits
(see step 8 of the generate process in Section 9.4):

Input:

1. working state: The current values for s, seedlen, p, a, b, n, P, Q, and
reseed_counter (see Section 10.4.2.2.1).

2. requested _number of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional _input: The additional input string received from the consuming
application.

QOutput:

1. status: The status returned from the function. The status will indicate
SUCCESS, or an indication that a reseed is required before the requested
pseudorandom bits can be generated.

2. returned bits: The pseudorandom bits to be returned to the generate function.
3. s: The new value for the secret parameter in the new working_state.
4. block counter: The updated block counter for reseeding.

Dual_EC_DRBG Generate Process:

Comment: Check whether a reseed is
required.

requested _number _of _ bits

1. If (block_counter + ’V —D >reseed_interval, then

outlen
return an indication that a reseed is required.

Comment: If additional input is Null, set to
seedlen zeroes; otherwise, Hash_df to
seedlen bits.

2. If (additional input_string = Null), then additional _input = 0
Else additional _input = Hash_df (pad8 (additional_input_string), seedlen).

Comment: Produce requested no_of bits,
outlen bits at a time:
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3. temp =the Null string.

4 i=0.

5. t=15 ® additional input. Comment: 7 is to be interpreted as a seedlen-
bit unsigned integer. To be precise, ¢ should
be reduced mod »; the operation * will effect
this.

6. s =o(x(t *P)). Comment: s is a seedlen-bit number.

7. r =o(x(s *Q)). Comment: 7 is a seedlen-bit number.

8. temp = temp || (rightmost outlen bits of r ).

9. additional _input=0 Comment: seedlen zeroes;

additional input_string is added only on the
first iteration.

10. block _counter = block _counter + 1.

1l.i=i+1.

12. If (len (temp) < requested_number of bits), then go to step 5.

13 returned_bits = Truncate (temp, i x outlen, requested_number_of bits).

14. Return SUCCESS, returned_bits, and s, and block_counter for the
new_working_state.

10.5 Auxilliary Functions
10.5.1 Discussion

Derivation functions are internal functions that are used during DRBG instantiation and
reseeding to either derive internal state values or to distribute entropy throughout a
bitstring. Two methods are provided. One method is based on hash functions (see Section
10.5.2), and the other method is based on block cipher algorithms (see 10.5.3). The block
cipher derivation function uses a Block_Cipher_Hash function that is specified in Section
10.5.4.

10.5.2 Derivation Function Using a Hash Function (Hash_df)
This derivation function is used by the Dual EC_DRBG specified Section 10.4.2. The
hash-based derivation function hashes an input string and returns the requested number of

bits. Let Hash (...) be the hash function used by the DRBG, and let outlen be its output
length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. input_string: The string to be hashed.
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2. no_of bits_to_return: The number of bits to be returned by Hash_df. The
maximum length (max_number of bits) is implementation dependent, but shall
be less than or equal to (255 x outlen). no_of bits to return is represented as a
32-bit integer.

Output:

1. status: The status returned from Hash_df. The status will indicate SUCCESS
or ERROR_FLAG.

2. requested bits : The result of performing the Hash_df.

Hash_df Process:

L.

If no_of bits to return> max _number_of bits, then return an ERROR-
FLAG.

temp = the Null string.

no_of _bits _to_return
len=———=—=—= :
outlen

counter = an 8-bit binary value representing the integer "1".

5. Fori=1to/lendo

6.
7.

Comment : In step 5.1, no_of bits to_return
is used as a 32-bit string.

5.1 temp = temp || Hash (counter || no_of bits_to_return || input_string).
5.2 counter = counter + 1.

requested bits = Leftmost (no_of bits_to_return) of temp.

Return SUCCESS and requested_bits.

10.5.3 Derivation Function Using a Block Cipher Algorithm (Block_Cipher_df)

This derivation function is used by the CTR_DRBG that is specified in Section 10.3.2. Let
Block Cipher_Hash be the function specified in Section 10.5.4. Let outlen be its output
block length, which is a multiple of 8 bits for the Approved block cipher algorithms, and
let keylen be the key length.

The following or an equivalent process shall be used to derive the requested number of

bits.
Input:
1.

input string: The string to be operated on. This string shall be a multiple of 8
bits.

no_of bits to return: The number of bits to be returned by Block_Cipher_df.
The maximum length (max_number of bits) is 512 bits for the currently
approved block cipher algorithms.
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Output:
1. status: The status returned from Block_Cipher_df. The status will indicate
SUCCESS or ERROR_FLAG.
2. requested_bits : The result of performing the Block_Cipher_df.
Block_Cipher_df Process:
1. If (number_of bits to return > max_number_of bits), then return an
ERROR_FLAG.

2. L =len (input_string)/8. Comment: L is the bitstring represention of
the integer resulting from len (input_string)/8.
L shall be represented as a 32-bit integer.

3. N=number of bits_to return/8. Comment : N is the bitstring represention of
the integer resulting from
number_of bits to_return/8. N shall be
represented as a 32-bit integer.

Comment: Prepend the string length and the
requested length of the output to the
input_string.

3. S=L| N| input_string || 0x80.

Comment : Pad S with zeros, if necessary.

4, While (len (S) mod outlen) =0, S =S || 0x00.

Comment : Compute the starting value.

5. temp = the Null string.

6. i=0. Comment : i shall be represented as a 32-bit
integer, i.e., len (i) = 32.

7. K= Leftmost keylen bits of 0x00010203...1F.

8. While len (temp) < keylen + outlen, do

8.1 Iy=i|oen-ten® Comment: The 32-bit integer represenation of
i is padded with zeros to outlen bits.

8.2 temp=temp || Block_Cipher_Hash (X, (/V || S)).

83 i=i+l
Comment: Compute the requested number of
bits.

9. K= Leftmost keylen bits of temp.

10. X = Next outlen bits of temp.

11. temp = the Null string.
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12. While len (temp) < number of bits to_return, do
12.1 X = Block_Encrypt (X, X).
12.2 temp = temp || X.
13. requested_bits = Leftmost number of bits_to_return of temp.
14. Return SUCCESS and requested _bits.
10.5.4 Block_Cipher_Hash Function
The Block_Encrypt pseudo-function is used for convenience in the specification of the

Block_Cipher_Hash function. This function is not specifically defined in this Standard,
but has the following meaning:

Block Encrypt: A basic encryption operation that uses the selected block cipher
algorithm. The function call is:

output_block = Block_Encrypt (Key, input_block)

For TDEA, the basic encryption operation is called the forward cipher operation (see
ANS X9.52); for AES, the basic encryption operation is called the cipher operation
(see ASC X9 Registry 00002). The basic encryption operation is equivalent to an
encryption operation on a single block of data using the ECB mode.

For the Block_Cipher_Hash function, let outlen be the length of the output block of the
block cipher algorithm to be used.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. Key: The key to be used for the block cipher opeation.

2. data to_hash: The data to be operated upon. Note that the length of
data to _hash must be a multiple of outlen. This is guaranteed by steps 4 and
8.1 in Section 10.5.3.

Output:

1. output_block: The result to be returned from the Block_Cipher_Hash
operation.

Block_Cipher_Hash process:

outlen

1. chaining value =0 Comment: Set the first chaining value to

outlen zeros.
2. n=len (data to_hash)/ outlen.

3. Split the data_to_hash into n blocks of outlen bits each forming block; to
block,.

4. Fori=1tondo
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4.1 input block= chaining value ® block; .
4.2 chaining value = Block_Encrypt (Key, input_block).
S. output block = chaining_value.

6. Return output block.
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11 Assurance

11.1 Overview

A user of a DRBG for cryptographic
purposes requires assurance that the
generator actually produces random and
unpredictable bits. The user needs l l
assurance that the design of the generator,
its implementation and its use to support Standards
cryptographic services are adequate to
protect the user's information. In addition,
the user requir?s assurance that the Implem entation < Validation
generator continues to operate correctly.
The assurance strategy for the DRBGs in
this Standard is depicted in Figure 13. Operational Tests

The design of each DRBG in this standard

Design < Evaluation

has received an evaluation of its security

properties prior to its selection for Figure 13: DRBG Assurance Strategy
inclusion in this Standard.

The accuracy of an implementation of a DRBG process may be asserted by an
implementer. However, this Standard requires that an implementation shall be designed to
allow validation testing, including documenting design assertions about how the DRBG
operates (see Section 11.2). This shall include mechanisms for testing all detectable error
conditions.

An implementation should be validated for conformance to this Standard by an accredited
laboratory (see Section 11.3). The consuming application or cryptographic service that
uses a DRBG should also be validated and periodically tested for continued correct
operation. However, this level of testing is outside the scope of this Standard. Such
validations provide a higher level of assurance that the DRBG is correctly implemented.
Validation testing for DRBG processes consists of testing whether or not the DRBG
process produces the expected result, given a specific set of input parameters (e.g., entropy
input). Implementations used directly by consuming applications should also be validated
against conformance to FIPS 140-2.

Health tests on the DRBG shall be implemented within a DRBG boundary or sub-
boundary in order to determine that the process continues to operate as designed and
implemented. See Section 11.4 for further information.

Note that any entropy input used for testing (either for validation testing or health testing)
may be publicly known. Therefore, entropy input used for testing shall not knowingly be
used for normal operational use.
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11.2 Minimal Documentation Requirements

This Standard requires the development of a set of documentation that will provide
assurance to users and (optionally) validators that the DRBGs in this Standard have been
implemented properly. Much of this documentation may be placed in a user’s manual. This
documentation shall consist of the following as a minimum:

e Document the method for obtaining entropy input.

e Document how the implementation has been designed to permit implementation
validation and health testing.

e Document the type of DRBG (e.g., HMAC_DRBG, Dual_EC_DRBG), and the
cryptographic primitives used (e.g., SHA-256).

e Document the security strengths supported by the implementation.

e Document features supported by the implemention (e.g., prediction resistance, the
available elliptic curves, etc.).

o In the case of the CTR_DRBG, indicate whether a derivation function is provided.
If a derivation function is not used, documentation shall clearly indicate that the
implementation can only be used if either of the following is available:

a. An Approved RBG with a security strength equal to or greater than the
required security strength of the CTR_DRBG instantiation, or

b. An Approved conditioned entropy source.
e Document any support functions other than health testing.
11.3 implementation Validation Testing
A DRBG process may be tested for conformance to this Standard. Regardless of whether
ot not validation testing is obtained by an implementer, a DRBG shall be designed to be
tested to ensure that the product is cotrectly implemented; this will allow validation testing

to be obtained by a consumer, if desired. A testing interface shall be available for this
purpose in order to allow the insettion of input and the extraction of output for testing.

Implementations to be validated shall include the following:
e Documentation specified in Section 11.2.

¢ Any documentation or results required in derived test requirements.
11.4 Health Testing

11.4.1 Overview

A DRBG implementation shall perform self-tests to ensure that the DRBG continues to
function properly. Self-tests of the DRBG processes shall be performed as specified in
Section 9.6. A DRBG implementation may optionally perform other self-tests for DRBG
functionality in addition to the tests specified in this Standard.
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All data output from the DRBG boundary shall be inhibited while these tests are
performed. The results from known-answer-tests (see Section 11.4.2) shall not be output
as random bits during normal operation.

When a DRBG fails a self-test, the DRBG shall enter an error state and output an error
indicator. The DRBG shall not perform any DRBG operations while in the error state, and
no pseudorandom bits shall be output when an error state exists. When in an error state,
user intervention (e.g., power cycling, restart of the DRBG) shall be required to exit the
error state (see Section 9.7).

11.4.2 Known-Answer Testing

Known-answer testing shall be conducted as specified in Section 9.6. A known-answer test
involves operating the DRBG with data for which the correct output is already known and
determining if the calculated output equals the expected output (the known answer). The
test fails if the calculated output does not equal the known answer. In this case, the DRBG
shall enter an error state and output an error indicator (see Section 9.7).

The generalized known-answer testing is specified in Section 9.6. Testing shall be
performed on all DRBG functions implemented.
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Annex A: (Normative) Application-Specific Constants
Constants for the Dual_EC_DRBG

Dual_EC_DRBG requires the specifications of an elliptic curve and two points on the

elliptic curve. One of the following curves and points shall be used in applications
requiring certification under ASC X9 Registry 00001. More details about these curves may
be found in FIPS PUB 186-3, the Digital Signature Standard [§i

AA.

1 Curves over Prime Fields

Each of following mod p curves is given by the equation:

¥* =x*- 3x+ b (mod p)

Notation:
p - Order of the field F}, , given in decimal

A1

r - order of the Elliptic Curve Group, in decimal . Note that r is used here for
consistency with FIPS 186-3 but is referred to as » in the description of the

Dual EC_DRBG (...
a— (-3) in the above equation
b - coefticient above
The x and y coordinates of the base point, ie generator G, are the same as for the point
P.
.1.1 Curve P-256

p = 11579208921035624876269744694940757353008614\

3415290314195533631308867097853951

r = 11579208921035624876269744694940757352999695\

5224135760342422259061068512044369

b= 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e

Px

Py

27d2604b

= 6b17d1f2 el2c4247 f8bcebeb 63a440f2 77037d81 2deb33al
£4a13945 d898c296

= 4fe342e2 felalf9b 8ee7ebda 7c0f9%e16 2bce3357 6b3lbece
cbb64068 37bf51f5
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Ox

c97445f4 5cdef9f0 d3el5ele 585fc297 235b82b5 be8ff3ef
ca67c598 52018192

b28ef557 ba3ldfcb dd2lacd6 e2a9le3c 304f44cb 87058ada
2cb81515 1e610046

A.1.1.2 Curve P-384

p = 39402006196394479212279040100143613805079739\
27046544666794829340424572177149687032904726\
6088258938001861606973112319

r = 39402006196394479212279040100143613805079739\
27046544666794690527962765939911326356939895\
6308152294913554433653942643

b=Db3312fa7 e23ee7ed 988e056b e3£82d19 181d9cbe feB81l4112 0314088f
5013875a ¢656398d 8a2edl9d 2aB85cB8ed d3eclaef

Px = aaB7ca22 be8b0537 8eblc7le £320ad74 6eld3b62 8ba79b98
59f741e0 82542a38 5502f25d bf55296c 3ab45e38 72760ab7

Py = 3617deda 96262c6f 5d9e98bf 9292dc29 f8f4ldbd 28%ald7c
e9da3113 b5f0b8c0 0ab0blce 1d7e819d 7a431ld7c 90ealebf

Ox = 8e722de3 125bddb0 5580164b fe20b8bd 32216a62 926c5750
2ceede3l c47816ed dle89769 124179d0 b6951064 28815065

QD = 023b1660 dd701d08 39fd45ee c36f9%ee7 b32el13b3 15dc0261
0aalb636 e346df67 1£790£84 c5e09b05 674dbb7e 45¢c803dd
A.1.1.3 Curve P-521

p = 68647976601306097149819007990813932172694353\
00143305409394463459185543183397656052122559\
64066145455497729631139148085803712198799971\
6643812574028291115057151

r = 68647976601306097149819007990813932172694353\
00143305409394463459185543183397655394245057\
74633321719753296399637136332111386476861244\
0380340372808892707005449
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b=051953eb 9618elc9 alf929a2 1alb6854 Oeea2da7 25b99b31 5£3b8b48

9918ef10 9e156193 95lec7e9 37bl652c Obd3bblb f073573d £883d2c3
4flef451 £d46b503 £00

Px = c6858e06 b70404e9 cd9%e3ecb 662395b4 429c6481 39053fbS
21f828af 606b4d3d baaldbbe 77efe759 28feldcl 27a2ffa8
de3348b3 cl856a42 9bf97e7e 31lc2ebbd 66

Py = 11839296 a789%a3bc 0045c8a5 fb42c7dl bd998f54 449579b4
46817afb d17273e6 62c97ee’ 2995ef42 640c550b 9013fad0
761353c7 086a272c 24088be9 4769fdl6 650

Ox = 1b9fa3eb5 18d683c6 b6576369 4dacB8efba ec6fabdd £2276171
ad4272650 7dd08add 4c3b3fdc lebcS5bl2 22ddbal7 7£722943
b24c3edf a0f85fe2 4d0c8c0l 591f0Obeb £63

Qy= 1f3bdbab5 85295d9a 1110d1df 1f9430ef 8442c501 8976ff34
37ef91b8 1dcOb813 2¢8d5c39 ¢32d0e00 4a3092b7 d327cle’
ad4d26d2c 7b69%b58f 90666529 11e4d45777 9de

A.2 Using Alternative Points in the Dual_EC_DRBG()

The security of Dual_EC_DRBG( ) requires that the points P and Q be properly
generated. To avoid using potentially weak points, the points specified in Annex A.1
should be used. However, an implementation may use different pairs of points provided
that they are verifiably random, as evidenced by the use of the procedure specified in
Annex A.2.1 below, and the self-test procedure in Annex A.2.2. An implementation that
uses alternative points generated by this Approved method shall have them “hard-wired”
into its source code, or hardware, as appropriate, and loaded into the working_state at
instantiation. To conform to this Standard, alternatively generated points shall use the
procedure given in Annex A.2.1, and verify their generation using Annex A.2.2.

A.2.1 Generating Alternative P,Q

The curve shall be one of the curves that is specified in Annex A.1 of this Standard, and

shall be appropriate for the desired security_strength, as specified in Table 4, Section
10.4.2.1.

The point P shall remain the generator point G given in Annex A.1 for the selected curve.
(This minor restriction simplifies the test procedure to verify just one point each time.)

The point Q shall be generated using the procedure specified in ANS X9.62. The
following input is required:

An elliptic curve E = (Fy, a, b), cofactor A, prime n, a bit string SEED, and hash
function Hash(). The curve parameters are given in Annex A. The minimum length m
of SEED shall conform to Section 10.4.1, Table 4, under “Seed length”. The bit length
of SEED may be larger than m. The hash function shall be SHA-512 in all cases.
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If the output from the ANS X9.62 generation procedure is “failure”, a different SEED must
be used.

Otherwise, the output point shall be used as the point Q.
A.2.2 Additional Self-testing Required for Alternative P,Q

To insure that the point Q has been generated appropriately, an additional self-test
procedure shall be performed whenever the instantiate function is invoked. Section 9.6.2
specifies that known-answer tests on the instantiate function be performed prior to creating
an operational instantiation. As part of those tests, an implementation of the generation
procedure specified in ANS X9.62 shall be called with the SEED value used to generate
the alternate Q. The point returned shall be compared with the stored value of Q used in
place of the default value (see Annex A.1). If the generated value does not match the
stored value, the implementation shall halt with an error condition.
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ANNEX B : (Normative) Conversion and Auxilliary Routines

B.1 Bitstring to an Integer

Input:

1. by, by,..., by  The bitstring to be converted.
Output:

1. x The requested integer representation of the bitstring.
Process:

1. Let (by, by, ..., b,) be the bits of b from leftmost to rightmost.

2. x=) 20,

i=1
3. Return x.

In this Standard, the binary length of an integer x is defined as the smallest integer »
satisfying x < 2",

B.2 Integer to a Bitstring

Input:

1. x The non-negative integer to be converted.
Output:

1. by, by, ..., b, The bitstring representation of the integer x.
Process:

1. Let (&), b2, ..., by) represent the bitstring, where b, = 0 or 1, and b, is the most
significant bit, while b, is the least significant bit.

2. For any integer » that satisfies x <2, the bits ; shall satisfy:

x=320,.
i=1

3. Return by, by, ..., by.

In this Standard, the binary length of the integer x is defined as the smallest integer » that
satisfies x <2".

B.3 Integer to an Octet String

Input:
1. A non-negative integer x, and the intended length » of the octet string satisfying
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2> x
Output:
1. An octet string O of length » octets.
Process:
1. Let Oy, Oy, ..., Oy be the octets of O from leftmost to rightmost.
2. The octets of O shall satisfy:

x =325,
fori=1ton.
3. Return O.

B.4 Octet String to an Integer

Input:
1. An octet string O of length #n octets.
Output:
1. A non-negative integer x.
Process:
1. Let Oy, O, ..., O, be the octets of O from leftmost to rightmost.
2. xis defined as follows:
x =32 2%,
fori=1ton.
3. Returnx.
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Annex C: (Informative) Security Considerations
C.1 Extracting Bits in the Dual_EC_DRBG (...)

C.1.1 Potential Bias Due to Modular Arithmetic for Curves Over F,

Given an integer x in the range 0 to 2V-1, the #" bit of x depends solely upon whether

{—ZXTj is odd or even. If all of the values in this range are sampled uniformly, the 7" bit will

be 0 exactly ' of the time. But if x is restricted to Fp, i.e., to the range 0 to p-1, this
statement is no longer true.

By excluding the k = 2V — p values p, p+1, ..., 2V _1 from the set of all integers in Z,n, the

ratio of ones and zeroes in the #" bit is altered from 2"/ 2" to a value that can be no
smaller than (2N'] — k) 21 For all the primes p used in this Standard, k2 is smaller
than 27!, Thus, the ratio of ones and zeroes in any bit is within at least 2°' of 1.0.

To detect this small difference from random, a sample of 2** outputs is required before the
observed distribution of 1°s and 0’s is more than one standard deviation away from flat
random. This effect is dominated by the bias addressed below in Annex C.1.2.

C.1.2 Adjusting for the Missing Bit(s) of Entropy in the x Coordinates.

In a truly random sequence, it should not be possible to predict any bits from previously
observed bits. With the Dual EC_DRBG (...), the full output block of bits produced by
the algorithm is “missing” some entropy. Fortunately, by discarding some of the bits,
those bits remaining can be made to have nearly “full strength”, in the sense that the
entropy that they are missing is negligibly small.

To illustrate what can happen, suppose that a mod p curve with m = 256 is selected, and
that all 256 bits produced were output by the generator, i.e. that outlen = 256 also. Suppose
also that 255 of these bits are published, and the 256-th bit is kept “secret”. About %2 the
time, the unpublished bit could easily be determined from the other 255 bits. Similarly, if
254 of the bits are published, about % of the time the other two bits could be predicted.
This is a simple consequence of the fact that only about 1/2 of all 2™ bitstrings of length m
occur in the list of all x coordinates of curve points.

The "abouts" in the preceding example can be made more precise, taking into account the
difference between 2" and p, and the actual number of points on the curve (which is
always within 2 * p* of p). For the curves in Annex A.1, these differences won't matter at
the scale of the results, so they will be ignored. This allows the heuristics given here to
work for any curve with "about" (2”)/f points, where f= 1 is the curve's cofactor.

The basic assumption needed is that the approximately (2")/(2f) x coordinates that do occur
are "uniformly distributed": a randomly selected m-bit pattern has a probability 1/2f of
being an x coordinate. The assumption allows a straightforward calculation,--albeit
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approximate--for the entropy in the rightmost (least significant) m-d bits of
Dual_EC_DRBG output, with d << m.

24
The formulais E=-) [2"‘”" binomprob(Zd,z,Zd - _])]p ,log, p,, where E is the entropy.
=0

The term in braces represents the approximate number of (m-d)-bitstrings that fall into one
of 1+2¢ categories as determined by the number of times j it occurs in an x coordinate; z =
(2f£-1)/2fis the probability that any particular string occurs in an x coordinate; p; = (j*2/£)/2"
is the probability that a member of the j-th category occurs. Note that the j=0 category
contributes nothing to the entropy (randomness).

The values of E for d up to 16 are:
log2(f): 0 d: 0 entropy: 255.00000000 m-d: 256

log2(): 0 d: 1 entropy: 254.50000000 m-d: 255
log2(): 0 d: 2 entropy: 253.78063906 m-d: 254
log2(f): 0 d: 3 entropy: 252.90244224 m-d: 253
log2(f): 0 d: 4 entropy: 251.95336161 m-d: 252
log2(f): 0 d: 5 entropy: 250.97708960 m-d: 251
log2(f): 0 d: 6 entropy: 249.98863897 m-d: 250
log2(f): 0 d: 7 entropy: 248.99434222 m-d: 249
log2(f): 0 d: 8 entropy: 247.99717670 m-d: 248
log2(): 0 d: 9 entropy: 246.99858974 m-d: 247
log2(f): 0 d: 10 entropy: 245.99929521 m-d: 246
log2(f): 0 d: 11 entropy: 244.99964769 m-d: 245
log2(f): 0 d: 12 entropy: 243.99982387 m-d: 244
log2(f): 0 d: 13 entropy: 242.99991194 m-d: 243
log2(f): 0 & 14 entropy: 241.99995597 m-d: 242

log2(f): 0 d: 15 entropy: 240.99997800 m-d: 241
log2(f): 0 d: 16 entropy: 239.99998900 m-d: 240

Observations:

a) The table starts where it should, at 1 missing bit;

b) The missing entropy rapidly decreases;
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c) For log2(f) = 0, i.e, the mod p curves, @=13 leaves 1 bit of information in every
10,000 (m-13)-bit outputs (i.e., one bit of entropy is missing in a collection of
10,000 outputs).

Based on these calculations, for the mod p curves, it is recommended that an
implementation shall remove at least the leftmost (most significant) 13 bits of every m-bit
output.

For ease of implementation, the value of d should be adjusted upward, if necessary, until
the number of bits remaining , m-d= outlen, is a multiple of 8. By this rule, the
recommended number of bits discarded from each x-coordinate will be either 16 or 17. As
noted in Section 10.4.2.2.4, an implementation may decide to truncate additional bits from
each x-coordinate, provided that the number retained is a multiple of 8.

Because only half of all values in [0,1,...,p-1] are valid x-coordinates on an elliptic curve
defined over F,, it is clear that full x-coordinates should not be used as pseudorandom bits.
The solution to this problem is to truncate these x-coordinates by removing the high order
16 or 17 bits. The entropy loss associated with such truncation amounts has been
demonstrated to be minimal (see the above chart).

One might wonder if it would be desirable to truncate more than this amount. The obvious
drawback to such an approach is that increasing the truncation amount hinders the already
sluggish performance. However, there is an additional reason that argues against
increasing the truncation. Consider the case where the low s bits of each x-coordinate are
kept. Given some subinterval 7 of length 2° contained in [0, p), and letting N(/) denote the
number of x-coordinates in /, recent results on the distribution of x-coordinates in [0, p)
provide the following bound:

IN(D) / (pl2) - 2/ p| <k * log® p/ sart p,

where £ is some constant derived from the asymptotic estimates given in [9]. For the case
of P-521, this is roughly equivalent to:

| Ny 250 | <k *2°7,

where the constant & is independent of the value of 5. For s < 2°77_ this inequality is weak
and provides very little support for the notion that these truncated x-coordinates are
uniformly distributed. On the other hand, the larger the value of s, the sharper this
inequality becomes, providing stronger evidence that the associated truncated x-
coordinates are uniformly distributed. Therefore, by keeping truncation to an acceptable
minimum, the performance is increased, and certain guarantees can be made about the
uniform distribution of the resulting truncated quantities.

C.2 Reserve for a discussion of the nonce specified in Section 8.4.2, item 7
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ANNEX D: (Informative) DRBG Selection
D.1 Choosing a DRBG Algorithm

Almost no application or system designer starts with the primary purpose of generating
good random bits. Instead, the designer typically starts with some goal that he wishes to
accomplish, then decides on some cryptographic mechanisms, such as digital signatures or
block ciphers that can help achieve that goal. Typically, as the requirements of those
cryptographic mechanisms are better understood, he learns random bits will need to
generated, and that this must be done with great care, or the cryptographic mechanisms
will be weakened. At this point, there are three things that may guide the designer's choice
of a DRBG:

a. He may already have decided to include a set of cryptographic primitives as part of
his implementation. By choosing a DRBG based on one of these primitives, he can
minimize the cost of adding that DRBG. In hardware, this translates to lower gate
count, less power consumption, and less hardware that must be protected against
probing and power analysis. In software, this translates to fewer lines of code to
write, test, and validate.

For example, a module that generates RSA signatures has an available hash
function, so a hash-based DRBG is a natural choice.

b. He may already have decided to trust a block cipher, hash function, keyed hash
function, etc., to have certain properties. By choosing a DRBG based on similar
properties, he can minimize the number of algorithms he has to trust.

For example, an AES-based DRBG might be a good choice when a module
provides encryption with AES. Since the security of the DRBG is dependent on the
strength of AES, the module's security is not made dependent on any additional
cryptographic primitives or assumptions.

c. Multiple cryptographic primitives may be available within the system or
application, but there may be restrictions that need to be addressed (e.g.,code size
or performance requirements).

The DRBGs specified in this Standard have different performance characteristics,
implementation issues, and security assumptions.

D.2 HMAC_DRBG

HMAC_DRBG is built around the use of some approved hash function in the HMAC
construction. To generate pseudorandom bits from a secret key (Key) and a starting value
¥, the DRBG computes

V'=HMAC (Key, V).
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At the end of a generation request, the DRBG DRBG generates a new Key and V, each
requiring one HMAC computation.

Performance. HMAC DRBG produces pseudorandom outputs considerably more slowly
than the underlying hash function processes inputs; for SHA-256, a long generate request
produces output bits at about 1/4 of the rate that the hash function can process input bits.
Each generate request also involves additional overhead equivalent to processing 2048
extra bits with SHA-256. Note, however, that hash functions are typically quite fast; few if
any consuming applications are expected to need output bits faster than HMAC_DRBG
can provide them.

Security. The security of HMAC_DRBG is based on the assumption that an Approved
hash function used in the HMAC construction is a pseudorandom function family.
Informally, this means that when an attacker doesn’t know the key used, HMAC outputs
look random, even given knowledge and control over the inputs. In general, even
relatively weak hash functions seem to be quite strong when used in the HMAC
construction. On the other hand, there is not a reduction proof from the hash function’s
collision resistance properties to the security of the DRBG; the security of HMAC_DRBG
ultimately relies on the pseudorandomness properties of the underlying hash function. Note
that the pseudorandomness of HMAC is a widely used, though unproven, assumption in
designs.

Constraints on Outputs. As shown in Table 2 of Section 10.2.1, for each hash function,
up to 2*® generate requests may be made, each of up to 2' bits.

Resources. HMAC_DRBG requires access to a dedicated HMAC implementation for
optimal performance. However, a general-purpose hash function implementation can
always be used to implement HMAC. Any implementation requires the storage space
required for the internal state (see Section 10.2.2.2.1).

Algorithm Choices. The choice of hash functions that may be used by HMAC_DRBG is
discussed in Section 10.2.1.

D.3 CTR_DRBG

CTR_DRBG is based on using an Approved block cipher algorithm in counter mode (see

ASC X9 Registry 00002). At the present time, only three-key TDEA and AES are Comment [ebb2]: This reference is only
approved for use in this DRBG. Pseudorandom outputs are generated by encrypting usetul for AES, not TDEA.

successive values of a counter; after a generate request, a new key and new starting counter

value are generated.

Performance. For large Generate requests, CTR_DRBG produces outputs at the same
speed as the underlying block cipher algorithm encrypts data. Furthermore, CTR_DRBG
is parallelizeable. At the end of each Generate request, work equivalent to 2, 3 or 4
encryptions is performed, depending on the choice of underlying block cipher algorithm, to
generate new keys and counters for the next Generate request.

Security. The security of CTR_DRBG is directly based on the security of the underlying
block cipher algorithm, in the sense that, so long as some limits on the total number of
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outputs are observed, any attack on CTR_DRBG represents an attack on the underlying
block cipher algorithm.

Constraints on Outputs. As shown in Table 3 of Section 10.3.2.1, for each of the three
AES key sizes, up to 2*® generate requests may be made, each of up to 2" bits, with a
negligible chance of any weakness that does not represent a weakness in AES. However,
the smaller block size of TDEA imposes more constraints: each generate request is limited
to 2'° bits, and at most 2*? such requests may be made.

Resources. CTR_DRBG may be implemented with or without a derivation function.

When a derivation function is used, CTR_DRBG can process the personalization string
and any additional input in the same way as any other DRBG, but at a cost in performance
because of the use of the derivation function (as opposed to not using the derivation
function; see below). Such an implementation may be seeded by any Approved source of
entropy input that may or may not provide full entropy.

When a derivation function is not used, CTR_DRBG is more efficient when the
personalization string and any additional input are provided, but is less flexible because the
lengths of the personalization string and additional input cannot exceed seedlen bits. Such
implementations must be seeded by 1) an Approved RBG with a security strength equal to
or greater than the required security strength of the CTR_DRBG instantiation, or 2) an
Approved conditioned entropy source.

CTR_DRBG requires access to a block cipher algorithm, including the ability to change
keys, and the storage space required for the internal state (see Section 10.3.2.2.1).

Algorithm Choices. The choice of block cipher algorithms and key sizes that may be
used by CTR_DRBG is discussed in Section 10.3.2.1.

D.4 DRBGs Based on Hard Problems

The Dual EC_DRBG generates pseudorandom outputs by extracting bits from elliptic
curve points. The secret, internal state of the DRBG is a value S that is the x-coordinate of
a point on an elliptic curve. Outputs are produced by first computing R to be the x-
coordinate of the point $*P and then extracting low order bits from the x-coordinate of the
elliptic curve point R*Q.

Performance. Due to the elliptic curve arithmetic involved in this DRBG, this algorithm
generates pseudorandom bits more slowly than the other DRBGS in this Standard. It
should be noted, however, that the design of this algorithm allows for certain performance-
enhancing possibilities. First, note that the use of fixed base points allows a substantial
increase in the performance of this DRBG via the use of tables. By storing multiples of the
points P and Q, the elliptic curve multiplication can be accomplished via point additions
rather than multiplications, a much less expensive operation. In more constrained
environments where table storage is not an option, the use of so-called Montgomery
Coordinates of the form (X : Z) can be used as a method to increase performance, since the
y-coordinates of the computed points are not required. A given implementation of this
DRBG need not include all three of the curves specified in Annex A.1. Once the designer
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decides upon the strength required by a given application, he can then choose to implement
the single curve that most appropriately meets this requirement. For a common level of
optimization expended, the higher strength curves will be slower and tend toward less
efficient use of output blocks. To mitigate the latter, the designer should be aware that
every distinct request for random bits, whether for two million bits or a single bit, requires
the computational expense of at least two elliptic curve point multiplications. Applications
requiring large blocks of random bits (such as IKE or SSL), can thus be implemented most
efficiently by first making a single call to the DRBG for all the required bits, and then
appropriately partitioning these bits as required by the protocol. For applications that
already have hardware or software support for elliptic curve arithmetic, this DRBG is a
natural choice, as it allows the designer to utilize existing capabilities to generate truly
high-security random numbers.

Security. The security of Dual_EC_DRBG is based on the so-called "Elliptic Curve
Discrete Logarithm Problem" that has no known attacks better than the so-called "meet-in-
the-middle" attacks. For an elliptic curve defined over a field of size 2, the work factor of
these attacks is approximately 2™ so that solving this problem is computationally
infeasible for the curves in this Standard. The Dual_EC_DRBG is the only DRBG in this
Standard whose security is related to a hard problem in number theory.

Constraints on Qutputs. For any one of the three elliptic curves, a particular instance of
Dual_EC_DRBG may generate at most 2% output blocks before reseeding, where the size
of the output blocks is discussed in Section 10.4.2.2.4. Since the sequence of output
blocks is expected to cycle in approximately sqrt(#) bits (where # is the (prime) order of
the particular elliptic curve being used), this is quite a conservative reseed interval for any
one of the three possible curves.

Resources. Any entropy input source may be used with Dual_EC_DRBG, provided that
it is capable of generating at least min_entropy bits of entropy in a string of max_length =
21 bits. This DRBG also requires an appropriate hash function (see Table 4) that is used
exclusively for producing an appropriately-sized initial state from the entropy input at
instantiation or reseeding. An implementation of this DRBG must also have enough
storage for the internal state (see 10.4.2.2.1). Some optimizations require additional
storage for moderate to large tables of pre-computed values.

Algorithm Choices. The choice of appropriate elliptic curves and points used by
Dual_EC_DRBG is discussed in Annex A.1.
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ANNEX E: (Informative) Example Pseudocode for Each DRBG
E.1 Preliminaries

The internal states in these examples are considered to be an array of states, identified by
state_handle. A patticular state is addressed as internal_state (state_handle), where the
value of state_handle begins at 0 and ends at n-1, and » is the number of internal states
provided by an implementation. A particular element in the internal state is addressed by
internal_state (state handle).element. In an empty internal state, all bitstrings are set to
Null, and all integers are set to 0.

For each example in this annex, arbitary values have been selected that are consistent with
the allowed values for each DRBG, as specified in the appropriate table in Section 10.

The pseudocode in this annex does not include the necessary conversions (e.g., integer to
bitstring) for an implementation. When conversions are required, they must be
accomplished as specified in Annex B.

The following routine is defined for these pseudocode examples:

Find_state space (): A function that finds an unused internal state. The function
returns a status (either “Success” or a message indicating that an unused internal state
is not available) and, if starus = “Success”, a state_handle that points to an available
internal_state in the array of internal states. If status # “Success”, an invalid
state_handle is returned.

When the uninstantantiate function is invoked in the following examples, the function
specified in Section 9.5 is called.

E.2 HMAC_DRBG Example
E.2.1 Discussion

This example of HMAC_DRBG uses the SHA-256 hash function. Reseeding and
prediction resistance are not provided. The nonce for instantiation consists of a random
value with security_strength/2 bits of entropy; the nonce is obtained by increasing the call
for entropy bits via the Get_entropy_input call by security_strength/2 bits (i.e., by adding
security_strength/2 bits to the security_strength value). The Update function is specified
in Section 10.2.2.2.2.

A personalization string is allowed, but additional input is not. A total of 3 internal states
are provided. For this implementation, the functions and algorithms are written as separate
routines. Also, the Get_entropy_input function uses only two input parameters, since the
first two parameters (as specified in Section 9) have the same value.

The internal state contains the values for V, Key, reseed counter, and security_strength,
where ¥ and C are bitstrings, and reseed counter and security_strength are integers.

82



ANS X9.82, Part 3 - DRAFT - March 2006

In accordance with Table 2 in Section 10.2.1, security strengths of 112, 128, 192 and 256
bits may be supported. Using SHA-256, the following definitions are applicable for the
instantiate and generate functions and algorithms:

1.
2.
3.

highest supported_security strength =256.
Output block (outlen) = 256 bits.

Required minimum entropy for the entropy input at instantiation = 3/2
security_strength (this includes the entropy required for the nonce).

Seed length (seedlen) = 440 bits.

5. Maximum number of bits per request (max_number of bits per request) = 7500

bits.

Reseed _interval (reséed_ interval) = 10,000 requests.

7. Maximum length of the personalization string (max_personalization string _length)

8.

E.2.2

=160 bits.
Maximum length of the entropy input (max length) = 1000 bits.
Instantiation of HMAC_DRBG

This implementation will return a text message and an invalid state handle (-1) when an error
is encountered.

Instantiate. HMAC_DRBG (...):

Input: integer (requested instantiation_security strength), bitstring

personalization_string.

Output: string status, integer state_handle.

Process:

Check the validity of the input parameters.

1. If (requested_instantiation security strength> 256), then Return (“Invalid
requested_instantiation security strength”, -1).

2. If (len (personalization_string) > 160), then Return (“Personalization_string
too long”, -1)

Comment: Set the security strength to
one of the valid security strengths.

3. If (requested security strength < 112), then security_strength =112
Else (requested_security _strength < 128), then security strength =128
Else (requested _security strength < 192), then security strength =192
Else security_strength = 256.
Comment: Get the entropy_input and
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the nonce.

min_entropy = 1.5 x security _strength.

5. (status, entropy input) = Get_entropy_input (min_entropy, 1000).

8.
9.

If (status # “Success”), then Return (“Catastrophic failure of the entropy
source:” || status, -1).

Comment: Invoke the instantiate algorithm.
Note that the entropy input contains the
nonce.

(V, Key, reseed_counter) = Instantiate_algorithm (entropy_input,
personalization_string).

Comment: Find ah unused internal state and
save the initial values.

(status, state_handle) = Find_state_space ().

If (status + “Success™), then Return (“No available state space:” || status, -1).

10. internal_state (state_handle) = {V, Key, reseed_counter, security _strengthy.

11. Return (““Success™ and state _handle).

Instantiate_algorithm (...):

Input: bitstring (entropy input, personalization_string).

Output: bitstring (¥, Key), integer reseed counter.

Process:
1. seed material = entropy_input || personalization_string.
2. Set Key to outlen bits of zeros.
3. Set V' to outlen/8 bytes of 0x01.
4. (Key, V)= Update (seed _material, Key, V).
5. reseed counter=1.
6. Return (¥, Key, reseed counter).

E.2.3 Generating Pseudorandom Bits Using HMAC_DRBG

The implementation returns a Null string as the pseudorandom bits if an error has been

detected.

HMAC_DRBG(...):

Input: integer (state_handle, requested_no_of bits, requested_security strength).

Output: string (status), bitstring pseudorandom_bits.

Process:
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Comment: Check for a valid state handle.

If ((state_handle < 0) or (state_handle > 2) or (internal state (state_handle) =
{Null, Null, 0, 0}), then Return (“State not available for the indicated
state_handle”, Null).

Comment: Get the internal state.

V = internal_state (state_handle).V, Key = internal _state (state_handle).Key,
security_strength = internal state (state_handle).security_strength,
reseed_counter = internal state (state_handle).reseed_counter.

Comment: Check the validity of the rest of
the input parameters.

. If (requested no_of bits > 7500), then Return (“Too many bits requested”,

Null).

If (requested_security strength > security strength), then Return (“Invalid
requested_security strength”, Null).

Comment: Invoke the generate algorithm.

(status, pseudorandom_bits, V, Key, reseed_counter) = Generate_algorithm
(V, Key, reseed_counter, requested number_of bits).

If (status = “Reseed required”), then Return (“DRBG can no longer be used.
Please re-instantiate or reseed”, Null).

internal_state (state_handle) = {V, Key, security_strength, reseed_counter}.

Return (“Success”, pseudorandom_bits).

Generate_algorithm (...):

Input: bitstring (V, Key), integer (reseed counter, requested_number _of bits).

Output: string status, bitstring (pseudorandom_bits, V, Key), integer reseed_counter.

Process:

1

If (reseed_counter 2 10,000), then Return (“Reseed required”, Null, V, Key,
reseed_counter).

temp = Null.

While (len (temp) < requested no_of bits) do:

3.1 V=HMAC (Key V).

32 temp=temp| V.

pseudorandom_bits = Leftmost (requested_no_of bits) of temp.
(Key, V) = Update (additional_input, Key, V).

reseed counter = reseed _counter + 1.
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7. Return (“Success”, pseudorandom_bits, V, Key, reseed_counter).
E.3 CTR_DRBG Example Using a Derivation Function

E.3.1 Discussion

This example of CTR_DRBG uses AES-128. The reseed and prediction resistance
capabilities are available, and a block cipher derivation function using AES-128 is used.
Both a personalization string and additional input are allowed. A total of 5 internal states
are available. For this implementation, the functions and algorithms are written as separate
routines. The Block_Encrypt function (specified in Section 10.5.3) uses AES-128 in the
ECB mode.

The nonce for instantiation (instantiation_nonce) consists of a 32-bit incrementing counter.
The nonce is initialized when the DRBG is installed (e.g., by a call to the clock or by
setting it to a fixed value) and is incremented for each instantiation.

The internal state contains the values for ¥, Key, reseed counter, and security strength,
where V and Key are strings, and all other values are integers. Since prediction resistance is
always available, there is no need for prediction_resistance_flag in the internal state.

In accordance with Table 3 in Section 10.3.2.1, security strengths of 112 and 128 bits may
be supported. Using AES-128, the following definitions are applicable for the instantiate,
reseed and generate functions:

1. highest supported security strength=128.
2. Output block length (outlen) = 128 bits.

3. Key length (keylen) = 128 bits.
4

. Required minimum entropy for the entropy input during instantiation and reseeding
= security_strength.

W

Minimum entropy input length (min length) = security _strength bits.
6. Maximum entropy input length (max length) = 1000 bits.

7. Maximum personalization string input length
(max_personalization_string input_length) = 800 bits.

8. Maximum additional input length (max_additional input_length) = 800 bits.
9. Seed length (seedlen) = 256 bits.

10. Maximum number of bits per request (max_number_of bits per_request) = 4000
bits.

11. Reseed interval (reseed_interval) = 100,000 requests. Note that for this value, the
instantiation count will not repeat during the reseed interval.

E.3.2 The Update Function
Update (...):
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Input: bitstring (provided data, Key, V).
Output: bitstring (Key, V).
Process:
1. temp = Null.
2. While (len (femp) < 256) do
3.1 V=(¥+1)mod2'%,
3.2 output_block= AES_ECB_Encrypt (Key, V).
3.3 temp = temp || ouput_block.
4. temp = Leftmost 256 bits of temp.
5 temp = temp @ provided data.
6. Key = Leftmost 128 bits of temp.
7. V=Rightmost 128 bits of temp.
8. Return (Key, V).
E.3.3 Instantiation of CTR_DRBG Using a Derivation Function
This implementation will return a text message and an invalid state handle (-1) when an error

is encountered. Block Cipher_df is the derivation function in Section 10.5.3, and uses AES-
128 in the ECB mode as the Block_Encrypt function.

Note that this implementation does not include the prediction_resistance_flag in the input
parameters, nor save it in the internal state, since prediction resistance is always available.

Instantiate_CTR_DRBG (...):

Input: integer (requested_instantiation security_strength), bitstring
personalization_string.

Output: string status, integer state handle:
Process:

Comment: Check the validity of the input
parameters.

1. If (requested_instantiation_security strength > 128) then Return (“Invalid
requested_instantiation_security_strength”, -1).

2. If (len (personalization_string) > 800), then Return (“Personalization_string
too long”, -1).

3. If (requested instantiation_security strength < 112), then security_strength =
112

Else security strength = 128.
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Comment: Get the entropy input.

(status, entropy _input) = Get_entropy_input (security_strength,
security_strength, 1000).

If (status # “Success”), then Return (“Catastrophic failure of the entropy
source” || status, -1).

Comment: Increment the nonce; actual coding
must ensure that the nonce wraps when its
storage limit is reached, and that the counter
pertains to all instantiations, not just this one.

instantiation_nonce = instantiation nonce + 1.
Comment: Invoke the instantiate algorithm.

(V, Key, reseed_counter) = Instantiate_algorithm (entropy input,
instantiation_nonce, personalization_string).

Comment: Find an available internal state and
save the initial values.

(status, state_handle) = Find_state_space ( ).
If (status # “Success”), then Return (“No available state space:” | status, -1).

Comment: Save the internal state.

10. internal_state (state_handle) = {V, Key, reseed counter, security_strength}.

11. Return (“Success”, state_handle).

Instantiate_algorithm (...):

Input: bitstring (entropy_input, nonce, personalization_string).

Output: bitstring (V, Key), integer (reseed_counter).

Process:

1.

seed_material = entropy input || nonce || personalization_string.

2. seed material = Block_Cipher_df (seed_material, 256).

3. Key= 0'%, Comment: 128 bits.
4.
5
6
7

V=07, Comment: 128 bits.
(Key, V) = Update (seed_material, Key, V).

. reseed counter=1.

Return (V, Key, reseed counter).
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E.3.4 Reseeding a CTR_DRBG Instantiation Using a Derivation Function
The implementation is designed to return a text message as the starus when an error is
encountered.
Reseed_CTR_DRBG_Instantiation (...):
Input: integer (state_handle), bitstring additional_input.
Output: string status.
Process:

Comment: Check for the validity of
state_handle.

1. If ((state_handle < 0) or (state handle > 4) or (internal_state(state_handle) =
{Null, Null, 0, 0}), then Return (“State not available for the indicated
state_handle™).

Comment: Get the internal state values.

2. V=internal_state (state_handle).V, Key = internal_state (state_handle).Key,
security_strength = internal_state (state_handle).security_strength.

3. If (len (additional_inpur) > 800), then Return (“Additional_input too long”).

4. (status, entropy_input) = Get_entropy_input (security_strength,
security strength, 1000).

6. If (status # “Success”), then Return (“Catastrophic failure of the entropy
source:” || status).

Comment: Invoke the reseed algorithm.

7. (V, Key, reseed_counter) = Reseed_algorithm (V, Key, reseed_counter,
entropy_input, additional _inpuf).

8. internal state (state_handle) = {V, Key, reseed_counter, security strength }.
9. Return (“Success”).
Reseed_algorithm (...):

Input: bitstring (¥, Key), integer (reseed_counter), bitstring (entropy_input,
additional _input).

Output: bitstring (V, Key), integer (reseed_counter).

Process:
1. seed material = entropy input || additional _input.
2. seed material = Block_Cipher_df (seed_material, 256).
3. (Key, V)= Update (seed material, Key, V).
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4. reseed counter=1.
5. Return V, Key, reseed_counter).
E.3.5 Generating Pseudorandom Bits Using CTR_DRBG
The implementation returns a Null string as the pseudorandom bits if an error has been
detected.
CTR_DRBGC...):

Input: integer (state_handle, requested no_of bits, requested_security _strength,
prediction_resistance request), bitstring additional _input.

Output: string status, bitstring pseudorandom_bits.
Process:
Comment: Check the validity of state_handle.

1. If ((state_handle < 0) or (state handle > 4) or (internal_state (state_handle) =
{Null, Null, 0, 0}), then Return (“State not available for the indicated
state_handle”, Null).

Comment: Get the internal state.

2. V=internal state (state_handle).V, Key = internal_state (state_handle).Key,
security_strength = internal _state (state_handle).security_strength,
reseed _counter = internal state (state_handle).reseed _counter.

Comment: Check the rest of the input
parameters.

3. If (requested no of bits > 4000), then Return (“Too many bits requested”,
Null).

4. 1If (requested security strength > security_strength), then Return (“Invalid
requested_security strength”, Null).

5. If (len (additional _input) > 800), then Return (“Additional input too long”,
Null).

6. reseed required flag=0.
7. If ((reseed_required flag = 1) OR (prediction_resistance_flag = 1)), then

7.1 status = Reseed_CTR_DRBG_Instantiation (state_handle,
additional_input).

7.2 If (status # “Success™), then Return (status, Null).

Comment: Get the new working state values;
the administrative information was not
affected.
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V = internal_state (state_handle).V, Key = internal state
(state handle).Key, reseed counter = internal_state
(state _handle).reseed_counter.

additional _input = Null.
reseed_required flag = 0.

Comment: Generate bits using the generate
algorithm.

8. (status, pseudorandom _bits, V, Key, reseed counter) = Generate_algorithm
(V, Key, reseed_counter, requested_number of bits, additional _input).

9. If (status = “Reseed required™), then

9.1
9.2

reseed required flag = 1.
Go to step 7.

10. internal state (state_handle) = {V, Key, reseed_counter, security_strength).

11. Return (“Success”, pseudorandom_bits).

Generate_

Input:

algorithm (...):

bitstring (¥, Key), integer (reseed_counter, requested_number_of bits)
bitstring additional_input.

Output: string status, bitstring (returned_bits, V, Key), integer reseed _counter.

Process:

1.

If (reseed counter > 100,000), then Return (“Reseed required”, Null, V,
Key, reseed counter).

If (additional _input = Null), then
2.1 additional input = Block_Cipher_df (additional input, 256).
2.2 (Key, V)= Update (additional _input, Key, V).

3. temp= Null.

© N oo ow

While (len (femp) < requested number _of bits) do:

4.1 V=(+1)mod2'%

4.2  output block= AES_ECB_Encrypt (Key, V).

4.3 temp = temp || ouput_block.

returned_bits = Leftmost (requested number_of bits) of temp.

0%, Comment: Produce a string of 256 zeros.

zeros =
(Key, V) = Update (zeros, Key, V)
reseed_counter = reseed counter + 1.
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9. Return (“Success”, returned _bits, V, Key, reseed _counter).
E.4 CTR_DRBG Example Without a Derivation Function

E.4.1 Discussion

This example of CTR_DRBG is the same as the previous example except that a derivation
function is not used. As in Annex E.3, the CTR_DRBG uses AES-128. The reseed and
prediction resistance capabilities are available. Both a personalization string and additional
input are allowed. A total of 5 internal states are available. For this implementation, the
functions and algorithms are written as separate routines. The Block_Encrypt function (as
specified in Section 10.5.4) uses AES-128 in the ECB mode.

The nonce for instantiation (instantiation_nonce) consists of a 32-bit incrementing counter
that is the initial bits of the personalization string (Section 8.5.2 states that when a
derivation function is used, the nonce, if used, is contained in the personalization string).
The nonce is initialized when the DRBG is installed (e.g., by a call to the clock or by
setting it to a fixed value) and is incremented for each instantiation.

The internal state contains the values for V, Key, reseed counter, and security strength,
where V and Key are strings, and all other values are integers.Since prediction resistance is
always available, there is no need for prediction_resistance_flag in the internal state.

In accordance with Table 3 in Section 10.3.2.1, security strengths of 112 and 128 bits may
be supported. The definitions are the same as those provided in Annex E.3, except that to
be compliant with Table 3, the maximum size of the personalization_string is 224 bits in
order to accommodate the 32-bits of the instantiation_nonce (i.e., len
(instantiation_nonce) + len (personalization string) must be < seedlen, where seedlen =
256 bits). In addition, the maximum size of any additional input is 256 bits (i.e., len
(additional _input < seedlen)).

E.4.2 The Update Function

The update function is the same as that provided in Annex E.3.2.
E.4.3 Instantiation of CTR_DRBG Without a Derivation Function

The instantiate function (Instantiate. CTR_DRBG) is the same as that provided in Annex
E.3.3, except for the following:
e Step 2 is replaced by:

If (len (personalization string) > 224), then Return (“Personalization_string t0o
long”, -1).

e Step 6 is replaced by :
instantiation_nonce = instantiation_nonce + 1.

personalization_string = instantiation nonce || personalization_string.
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The instantiate algorithm (Instantiate_algorithm) is the same as that provided in Annex
E.3.3, except that steps 1 and 2 are replaced by:

temp = len (personalization_string).
If (temp < 256), then personalization_string = personalization_string || 0°°°™.

seed_material = entropy_input @ personalization_string.
E.4.4 Reseeding a CTR_DRBG Instantiation Without a Derivation Function

The reseed function (Reseed_ CTR_DRBG) is the same as that provided in Annex E.3.4,
except that step 3 is replaced by:

If (len (additional_input) > 256), then Return (“Additional_input too long”).
The reseed algorithm (Reseed_algorithm) is the same as that provided in Annex E.3.4,
except that steps 1 and 2 are replaced by:
temp = len (additional _input).
If (temp < 256), then additional _input = additional _input || 0*°*™.

seed_material = entropy input ® additional _input.
E.4.5 Generating Pseudorandom Bits Using CTR_DRBG

The generate function (CTR_DRBG) is the same as that provided in Annex E.3.5, except
that step 5 is replaced by :

If (len (additional _input) > 256), then Return (“Additional_input too long”, Null).

The generate algorithm (Generate_algorithm) is the same as that provided in Annex
E.3.5, except that step 2.1 is replaced by:

temp = len (additional _input).

If (temp < 256), then additional input = additional input || 0%

E.5 Dual_EC_DRBG Example
E.5.1 Discussion

This example of Dual_EC_DRBG allows a consuming application to instantiate using any
of the three prime curves. The elliptic curve to be used is selected during instantiation in
accordance with the following:

requested_instantiation_security_strength | Elliptic Curve
<112 P-256
113 — 128 P-256
129 - 192 P-384
193 — 256 P-521

93



ANS X9.82, Part 3 - DRAFT - March 2006

A reseed capability is available, but prediction resistance is not available. Both a
personalization_string and an additional _input are allowed. A total of 10 internal states are
provided. For this implementation, the algorithms are provided as inline code within the
functions.

The nonce for instantiation (instantiation_nonce) consists of a random value with
security_strength/2 bits of entropy; the nonce is obtained by a separate call to the
Get_entropy_input routine than that used to obtain the entropy input itself. Also, the
Get_entropy_input function uses only two input parameters, since the first two
parameters (the min_entropy and the min_length) have the same value.

The internal state contains values for s, seedlen, p, a, b, n, P, O, block_counter and
security _strength.

In accordance with Table 4 in Section 10.4.2, security strengths of 112, 128, 192 and 256
bits may be supported. SHA-256 has been selected as the hash function. The following
definitions are applicable for the instantiate, reseed and generate functions:

1. highest supported security strength = 256.
2. Output block length (outlen): See Table 4.

3. Required minimum entropy for the entropy input at instantiation and reseed =
security_strength.

4, Maximum entropy input length (max length) = 1000 bits.

5. Maximum personalization string length (max personalization_string_length) =
800 bits.

6. Maximum additional input length (max_additional input_length) = 800 bits.
7. Seed length (seedlen): =2 x security strength.

8. Maximum number of bits per request (max_number_of bits_per request) =
1000 bits.

9. Reseed interval (reseed_interval) = 2%2 blocks.
E.5.2 Instantiation of Dual_EC_DRBG
This implementation will return a text message and an invalid state handle (-1) when an
ERROR is encountered. Hash_df is specified in Section 10.5.2.
Instantiate_Dual EC_DRBG (...):

Input: integer (requested instantiation_security_strength), bitstring
personalization_string.

Output: string status, integer state_handle.

Process:
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Comment : Check the validity of the input
parameters.

. If (requested _instantiation_security strength > 256) then Return (“Invalid
requested_instantiation security _strength”, -1).

. If (len (personalization_string) > 800), then Return (“personalization_string
too long”, -1).

Comment : Select the prime field curve in
accordance with the
requested_instantiation_security strength.

. If requested instantiation security_strength < 112), then
{security_strength=112; seedlen =224; outlen =240}
Else if (requested instantiation_security strength < 128), then
{security strength=128; seedlen=256; outlen =240}
Else if (requested instantiation_security strength < 192), then
{security_strength=192; seedlen = 384; outlen =368}
Else {security_strength = 256; seedlen = 512; outlen = 504}.

Select the appropriate elliptic curve from Annex A using the Table in Annex
F.5.1 to obtain the domain parameters p, a, b, n, P, and Q.

Comment: Request entropy _input.
. (status, entropy input) = Get_entropy_input (security_strength, 1000).

. If (status # “Success™), then Return (“Catastrophic failure of the entropy_input
source:” || status, -1).

. (status, instantiation_nonce) = Get_entropy_input (security_strength/2, 1000).

. If (status # “Success™), then Return (“Catastrophic failure of the random nonce
source:” || status, -1).

Comment: Perform the instantiate algorithm.

9. seed _material = entropy input || instantiation_nonce || personalization_string.

10. s = Hash_df (seed_material, seedlen).

11. block counter = 0.

Comment: Find an unused internal state and
save the initial values.

12. (status, state_handle) = Find_state_space ().

13. If (status # “Success™), then Return (status, -1).
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14. internal_state (state handle) = {s, seedlen, p, a, b, n, P, Q, block_counter,
security_strength}.

15. Return (“Success”, state_handle).

E.5.3 Reseeding a Dual EC_DRBG Instantiation
The implementation is designed to return a text message as the status when an error is
encountered.
Reseed_Dual EC_DRBG_Instantiation (...):

Input: integer state_handle, string additional _input.

Output: string startus.

Process:

Comment: Check the input parameters.

1. If ((state_handle < 0) or (state_handle > 9) or (internal_state
(state_handle).security strength = 0)), then Return (“State not available for the
state_handle”).

2. If (len (additional _input) > 800), then Return (“Additional input too long”).

Comment: Get the appropriate state values for
the indicated state handle.

3. s=internal_state (state handle).s, seedlen = internal state
(state_handle).seedlen, security strength = internal_state
(state_handle).security strength.

Comment: Request new entropy input with
the appropriate entropy and bit length.

3. (status, entropy_input) = Get_entropy_input (security_strength, 1000).

4. If (status # “Success”), then Return (“Catastrophic failure of the entropy
source:”|| status).

Comment: Perform the reseed algorithm.
5. seed material = pad8 (s) || entropy input || additional_input.
6. s=Hash_a8f (seed_material, seedlen).

Comment: Update the changed values in the
state.

7. internal state (state_handle).s = s.
internal_state.block _counter = 0.

9. Return (“Success”).
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E.5.4 Generating Pseudorandom Bits Using Dual_EC_DRBG

The implemenation returns a Nu/l string as the pseudorandom bits if an error is
encountered.

Dual EC_DRBG (...):

Input: integer (state_handle, requested_security_strength, requested _no_aof_bits),
bitstring additional input.

Output: string status, bitstring pseudorandom_bits.
Process:
Comment: Check for an invalid state_handle.

1. If ((state_handle < 0) or (state_handle > 9) or (internal_state (state_handle) =
0)), then Return (“State not available for the state_handle”, Null).

Comment: Get the appropriate state
values for the indicated state_handle.

2. s=internal_state (state handle).s, seedlen = internal_state
(state _handle).seedlen, P = internal_state (state_handle).P, Q = internal_state
(state_handle).Q, block counter = internal state (state_handle).block_counter.

Comment: Check the rest of the input
parameters.

3. If (requested number of bits > 1000), then Return (“Too many bits
requested”, Null).

4. If (requested security strength > security_strength), then Return (“Invalid
requested _strength”, Null).

5. If (len (additional_inpur) > 800), then Return (“Additional_input too long”,
Null).

Comment: Check whether a reseed is
required.

requested _number _of _bits

6. If (block counter J{ —‘> 2°%), then

outlen

6.1 Reseed_Dual_EC_DRBG_Instantiation (state_handle,
additional _input).

6.2 If (status # “Success™), then Return (status).

6.3 s=internal state (state_handle).s, block_counter = internal_state
(state_handle).block_counter.
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6.4 additional input = Null.

Comment: Execute the generate algorithm.
If (additional input = Null) then additional _input = 0

Comment: additional _input set to m zeroes.
Else additional _input = Hash_df (pad8 (additional input), seedlen).

Comment: Produce requested no of bits,
outlen bits at a time:

8. temp = the Null string.

9.

10.
11.
12.
13.
14.

15.
16.
17.

i=0.
t =5 @ additional _input.
5 = @(x(1 *P)).

r=o(x(s * Q).
temp = temp || (vightmost outlen bits of r ).

(= Oseed[en

additional _inpu Comment: seedlen zeroes; additional _input

is added only on the first iteration.

block counter = block _counter + 1.
i=i+1.
If (len (femp) < requested no of bits), then go to step 10.

18. pseudorandom bits = Truncate (temp, i x outlen, requested_no_of bits).

19.
20.
21.

Comment: Update the changed values
in the state.

internal state.s =s.
internal state.block _counter = block_counter.

Return (“Success”, pseudorandom_bits).
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ANNEX F: (Informative) DRBG Provision of RBG Security
Properties

F.1 Introduction

Part 1 of this Standard identifies several security properties that are required for
cryptographic random number generators. This annex discusses how these properties are
provided by the DRBGs in this part of the Standard or points to sections in Part 3 or in
other parts of the Standard that will provide appropriate guidance for fulfilling the security
properties.

F.2 Security Strengths

Part 1 identifies four security strengths that RBGs support : 112, 128, 192 and 256 bits.
These security levels may be supported in Part 3 by requesting the appropriate security
level during instantiation and generation (see Sections 8.2.4, 9.2 and 9.4), and by the use of
an appropriate entropy input source (see Parts 2 and Parts 4).

F.3 Entropy and Min-Entropy

Part 1 defines the use of min-entropy to measure the amount of entropy needed to support
a given security strength. Part 3 requests the entropy via the use of a Get_entropy_input
call (see Section 9.1). Parts 2 and 4 provide guidance on supporting this call.

F.4 Backtracking Resistance and Prediction Resistance

Part 1 defines backtracking and prediction resistance. As indicated in Section 8.6, the
DRBGs in Part 3 have been designed to support backtracking resistance. Prediction
resistance may be provided using a DRBG when:

1. A reseed capability is available that can obtain the appropriate amount of entropy
required to support the security level of the instantiation during each call for
entropy input (see Section 9.3),

2. A prediction resistance flag that is used as input during instantiation indicates that
prediction resistance may be required for the instantiation (see Section 9.2), and

3. A prediction resistance request is made in a generate request (see Section 9.4).
F.5 Indistinguishability and Unpredictability

Part 1 states that this Standard requires indistinguishability from random, in addition to
unpredictability for RBG output. The DRBGs in this Standard have been designed to
provide these properties when provided with sufficient entropy as discussed in Parts 2 and
4.
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F.6 Desired RBG Output Properties

Part 1 states that the output of a cryptographically secure RBG has the following desired
properties:

1. Under reasonable assumptions, it is not feasible to distinguish the output of the
RBG from true random numbers that are uniformly distributed with or without
replacement. Informally, all possible outputs occur with equal probability, and a
series of outputs appears to conform to a uniform distribution.

2. Given only a sequence of output bits, it is not feasible to compute or predict any
other output bit, either past or future. Note that this is different from both
prediction resistance and backtracking resistance.

3. The outputs of an RBG are statistically unique. That is, the output values either (A)
are allowed to repeat with a negligible probability or (B) are prohibited from
repeating (whether by being selected without replacement or by discarding
duplicates) to meet application requirements for a specified class of outputs. Note
that option B will impose constraints on the minimum output size and maximum
cryptoperiod.

The DRBGs in this Standard have been designed to provide these properties when
provided with sufficient entropy as discussed in Parts 2 and 4.

F.7 Desired RBG Operational Properties

The desired operational properties of an RBG are as follows:

1. The RBG does not generate bits unless the generator has been assessed to possess
sufficient entropy.

The Get_entropy_input call (see Section 9.1) is used during instantiation to obtain
sufficient entropy to support the desired security level. This property is supported
ift
a. The source of entropy input is designed and implemented as required in
Parts 2 and 4 of this Standard,

b. Entropy input is not returned during instantiation unless the requested
amount of entropy has been obtained (see Section 9.2).

2. When an error is detected, the RBG either (a) enters a permanent error state, or (b)
is able to recover from a loss or compromise of entropy if the permanent error state
is deemed unacceptable for the application requirements.

Part 3 specifies the conditions that must be tested for each DRBG function (see
Sections 9.2, 9.3 and 9.4), the tests to be made during health testing (see Section
9.6) and the handling of any errors detected (see Section 9.7).

‘3. The design and implementation of an RBG has a defined logical protection
boundary. The RBG needs to be protected in a manner that is consistent with the
use and sensitivity of the output for the consuming application.
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Part 3 uses a conceptual DRBG boundary to provide this property. Requirements
for the DRBG boundary are provided in Section 8.3.

The probability that the RBG can “misbehave” in some pathological way that
violates the output vequirements (e.g., constant output or small cycles; that is,
looping such that the same output is repeated) is sufficiently small.

Assurance of this property may be obtained when an RBG implementation is
validated as discussed in Sections 2 and 11.3 of Part 3, and in Parts 2 and 4.

The RBG design includes methods to prohibit predictable influence, manipulation,
or side-channel observation as appropriate, depending on the threat model.

Assurance of this property may be obtained when an RBG implementation is
validated as discussed in Sections 2 and 11.3 of Part 3, and in Parts 2 and 4.

The RBG output does not directly leak secret information to an adversary observer.

Assurance of this property may be obtained when an RBG implementation is
validated for as discussed in Section 2 and 11.3 of Part 3, and in Parts 2 and 4.

The RBG can be run in known-answer test mode. All portions that can have
known-answer fests are tested in this mode. When an RBG is in known-answer test
mode, the RBG is not capable of being used to generate output bits and does not
use any stored secret information; however, it may use non-secvet information for
testing purposes.

The health testing of a DRBG is discussed in Sections 9.6 and 11.4.
. An RBG is designed to support backtracking resistance.

The DRBGs in Part 3 have been designed to support backtracking resistance (see
Section 8.6).

. An RBG may support prediction resistance.

A DRBG may be designed and implemented to support prediction resistance. See
Annex F.4 for additional information.
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