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Abstract

This Recommendation specifies mechanisms for the generation of random bits using deterministic
methods. The methods provided are based on either hash functions, block cipher algorithms or number
theoretic problems.

KEY WORDS: deterministic random bit generator (DRBG); entropy; hash function; random number
generator



NIST SP 800-90 DRAFT September 2005

Table of Contents

1 AShORIY .ot isvis s eTredss s sidusesereE ssissrenses BT
2 Introduction........aniiiniiiniiisssssiis ssivssieies OF
3 __ Scope... smsssssssesssssenssuvssssussnnssssunssnsnnanssnenzstsannssnsonanzsnsanssasasetsaasiassssetusnasnsissintisinsis ..98
4 ‘Terme ahid definitions....covssereneresreinnssmzsszsessonses 108
6 184
7 DRBG Functional Model.......ccoocoeeeiineiniineeiinniisseeisisiiseissinsissasinsassssansssssssussansssssnsssnnas 1948
7.1__Entropy Input 1948

7.2 Other Inputs 1948

7.3 _The Internal State ? 2049

7.4 The DRBG Functions 2018

7.5 Health Tests 2049

8. DRBG Concepts and General RequUirements ........ccoceeeeeeeeiieeeeieiniinneeiinsaeensaseneeenes .. 2120
8.1 DRBG Functions 2120

8.2 DRBG Instantiations 2120

8.3 Internal States 2120

8.4 Security Strengths Supported by an Instantiation 2224

8.5 DRBG Boundaries 2322

8.6 Seeds 2423

8.6.1 Seed Construction for Instantiation 2423

8.6.2 Seed Construction for Reseeding seeee 2524

8.6.3. Entropy Requirements for the Entropy Input 2524

8.6.4 Seed Length 2626

8.6.5 Entropy Input Source 2628

8.6.6 _ Entropy Input and Seed Privacy 2626

8.6.7 Nonce.... 2625

8.6.8 Reseeding 2626

8.6.9 Seed Use 2726

8.6.10 Seed Separation 2728

8.7  Other Inputs to the DRBG 2726

8.7.1 _ Personalization String 2726




NIST SP 800-90 DRAFT September 2005
8.7.2 Additional Input 2827
8.8 Prediction Resistance and Backtracking Resistance 2827
9 DRBG Functions 3138
9.1 Instantiating a DRBG 3130
9.2 Reseeding a DRBG Instantiation 3433
9.3 Generating Pseudorandom Bits Using a DRBG........... 3636
9.4 Removing a DRBG Instantiation 3938
9.5 Auxilliary Functions 3938
9.5.1 Derivation Function Using a Hash Function {(Hash df) 3938
9.5.2 Derivation Function Using a Block Cipher Algorithm (Block Cipher_df) 4039
9.5.4 Block Cipher Hash Function 4241
9.6 Self-Testing of the DRBG 4342
9.6.1 Testing the Instantiate Function 4342
9.6.2 Testing the Generate Function.............occeeveirieciicnsiincnnene. 4342
9.6.3 Testing the Reseed Function ..........ccccveceneniecinnne.. 4443
9.6.4 Testing the Uninstantiate Function 4443
9.7 Error Handling 4443
10 DRBG Algorithm Specifications .......c.c.cccccuviiireeenssssrseassnsssssszesssssssssssassssnnssssssssnssssssaes FOLS
10.1 Deterministic RBGs Based on Hash Functions 4645
10.1.1 Hash DRBG 4746
10.1.2 HMAC DRBG (...) 5362
10.2 DRBGs Based on Block Ciphers ...........occeeeieceennneece.s 5968
10.2.1 CTR DRBG...cisiisraccseinssasiesciszssnesnsscsanassencsncnssssisnsssnenssassssnsssassnas 5968
10.3 Deterministic RBG Based on Number Theoretic Problems 6968
10.3.1 Dual Elliptic Curve Deterministic RBG (Dual EC_DRBG) 6968
11 ASSUFANCE iceerrriscrinerioniasarasseaeasnraneciseeianessersanstrnsessseasssnssosss st e asumasnessn s emesembesamesnmsnaeaans 7778
11.1_Minimal Documentation Requirements ........c.ceesieeeceiincancas 7776
11.2 Implementation Validation Testing 7877
11.3 Operational/Health Testing ...........oeconneiesiniiniienniciieinisiaans 78%7
11.3.1 Overview 7877
11.3.2 Known Answer Testing .......ccecieeiioresesssarnsnsssnsmssnssssnnsiamsssesnssssssssasasnsanssssassnsassasosasssases 7948




NIST SP 800-90 DRAFT September 2005

Appendix A: (Normative) Application-Specific Constants 8078

A.1 Constants for the Dual EC DRBG 8078

A.1.1  Curve P-224 8079

A.1.2 Curve P-256 8180

A.1.3 Curve P-384 8180

A.1.4 Curve P-521. 8284

A.2 Using Alternative Points in the Dual EC DRBG() 8284

A.2.1 Generating Alternative P.Q 8382

A.2.2 Additional Self-testing Required for Alternative P.Q 8382

Appendix B : (Normative) Conversion and Auxilliary Routines...................... 8483

B.1__ Bitstring to an Integer 8483

B.2 Integer to a Bitstring 8483

B.3 Inteqer to an Octet String 8483

B.4 Octet String to an Integer 8584

B.5 _Converting Random Numbers from/to Random Bits 8584

B.5.1 Converting Random Bits into a Random Number..... 8584

B.5.2 Converting a Random Number into Random Bits 8887

Appendix C: (Normative) Entropy and Entropy SOUIces ........cccceeviiiisiisiiniicsens 9190

C.1__What is Entropy ? 9180

C.2 ENtropy SOUFCE....urueazmecasssissuaissassassesnssssisnsisiasssnsssssanasssissnsssas 9190

C.2 Entropy Assessment 9284
Appendix D: Constructing a Random Bit Generator (RBG) from Entropy Sources

and DRBG MechaniSms ........cceeceiivnamennnnsnsinsnnsiasnsnssnssens e ssgsarzemeycsssscssadsTuneisaus 9584

D.1_Entropy Input for a DRBG 9584

D.2 Availability of Entropy Input for a DREG 9698

D.2.1 Using a Readily Available Entropy Input Source 9686

D.2.2 _No Readily Available Entropy Input Source .........c.cccoeeeneneeee 9786

D.2 Persistance Considerations 9786

Appendix E: (Informative) Security Considerations ..........oooeoecnececncnnence.... 9998

E.1_Extracting Bits in the Dual EC DRBG {...) 99988

E.1.1 _ Potential Bias Due to Modular Arithmetic for Curves Over F, 9988

v



NIST SP 800-90 DRAFT September 2005

E.1.2 Adjusting for the missing bit{s) of entropy in the x coordinates. 9998
Appendix F: (Informative) Example Pseudocode for Each DRBG..........ccccecueeiienennens 102101
F.1 _Hash DRBG Example 102404
F.1.1 _Instantiation of Hash DRBG. 103402

F.1.2 Reseeding a Hash DRBG Instantiation ... 104403

F.1.3 Generating Pseudorandom Bits Using Hash DRBG 106465

F.2 HMAC DRBG Example 10840%
F.2.1 _Instantiation of HMAC DREG ............ 109408

F.2.2 Generating Pseudorandom Bits Using HMAC DRBG 110408

F.3 CTR DRBG Example Using a Derivation Function 112444
F.3.1 The Update Function 113442
F.3.2 Instantiation of CTR DRBG Using a Derivation Function 113442

F.3.3 Reseeding a CTR _DRBG Instantiation Using a Derivation Function 115444

F.3.4 Generating Pseudorandom Bits Using CTR DRBG 116446

F.4 CTR DRBG Example Without a Derivation Function 119448
F.4.1 The Update Function 119148

F.4.2 Instantiation of CTR DRBG Without a Derivation Function .. 119448

F.4.3  Reseeding a CTR_DRBG Instantiation Without a Derivation Function ...........ccceaeee 121420

F.4.4 Generating Pseudorandom Bits Using CTR_DRBG 122424

F.5 Dual EC DRBG EXample......coccosinnsineisnissnisinssnissionsasnssases ... 122424
F.5.1 Instantiation of Dual EC DRBG 123422
F.5.2 Reseeding a Dual EC_DRBG Instantiation 125424
F.5.3 Generating Pseudorandom Bits Using Dual EC DRBG 126425
Appendix G: (Informative) DRBG Selection ...........ocoevnieiiiicniiiinniincnnnnn... 128427
G.1 Hash DRBG.......cccocieniiniaiianinrnennnenoncanenenaecs 128427
G.2 HMAC DREG s 128427
Gl3n ICTRADRB Gl 129428
G.4 DRBGs Based on Hard Problems ........c.ceuueecesinisiessessnmsinsesinnniinenississsissnssssssnsssnsnssenssassnesas 130420

Appendix H : (Informative) ReferenCes .o isiieieiiseiisinecinsiisnissecsnssrsecssnessscessecensesas | S2TSE

vi



NIST SP 800-90

DRAFT September 2005

B
w«

n
&~

:

L&)
-

T EEE R R

1
H

L8 &R

L]
G

(5]
«

&3
&

o4
-2

vii



NIST SP 800-90 DRAFT September 2005

|
:

i
E

f

<]
b

4

E
L=

E

E 3
=

i
5
'S
@




NIST SP 800-90 DRAFT September 2005




DRAFT September 2005

NIST SP 800-90

[-1:]

e

I TIoIIIiom

a7
98
98
98

11.4—Operational/Health-Testing

410

1400

LEEELEE L E oA

100

100

100

A 114 CuvallR 224
o ediver

T

ya D 988

104

P
P
_

Vo

sa- B AR4

ot

102
COOToRe B2 )

A1l d Curva P 531
A —oUfVe o

102

103
o

Ad21 Curva 233

la s

e edVE- St S

104

A 123 Cunva-B.233

4

2.

T

1

108

1‘..

107

A 128 CurvaR-400

Pt e-B-40u—

108
o s

AA2T-Curve-K-5¥




NIST SP 800-90 DRAFT September 2005

MWMMW“"Mm 122
DB-8—Functional-Requirements-for-the-Qutput-Generation-Funetion: 123
D.7—Functional-Requirements-for Support-Functions 124
ANNEXE: (Informative) DRBG-Selection S — 126
E4-—Choosing-a-DRBG-Algerithm 128
E.2—DRBGs Based-on-Hash-Functi 126
E2:1+—Hash-DRBG 427

E 2.1 4—Implementation-lssues- 127
E-2-1-2-Perermance-Rroperties 127

E.2.2— HMAG-DRBG 127
E-2-:2-+—hmplementation-Properties 128




NIST SP 800-90 DRAFT

September 2005

E4- —DRBEGs Based-on-Hard Problems

E4-+mplementation-Considerations
E441 - Dual-EG-BRBG———

E442-Misali-Sehneff——r== e s

F 4 1 Dlssllsnlnn
g SHah

xii



NIST SP 800-90

DRAFT

September 2005

E - e
E e én
—T

-
o

g

3

g

163

L

8

-
I

-

3t

xiii



NIST SP 800-90 DRAFT September 2005

Random Number Generation Using
Deterministic Random Bit Generators

1 Authority

This document has been developed by the National Institute of Standards and Technology
(NIST) in furtherance of its statutory responsibilities under the Federal Information
Security Management Act (FISMA) of 2002, Public Law 107-347.

NIST is responsible for developing standards and guidelines, including minimum
requirements, for providing adequate information security for all agency operations and
assets, but such standards and guidelines shall not apply to national security systems. This
recommendation is consistent with the requirements of the Office of Management and
Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as
analyzed in A-130, Appendix IV: Analysis of Key Sections. Supplemental information is
provided in A-130, Appendix III.

This recommendation has been prepared for use by federal agencies. It may be used by
nongovernmental organizations on a voluntary basis and is not subject to copyright.
(Attribution would be appreciated by NIST.)

Nothing in this document should be taken to contradict standards and guidelines made
mandatory and binding on federal agencies by the Secretary of Commerce under statutory
authority. Nor should this recommendation be interpreted as altering or superseding the
existing authorities of the Secretary of Commerce, Director of the OMB, or any other
federal official.

Conformance testing for implementations of the deterministic random bit generators
(DRBGs) that are specified in this Recommendation will be conducted within the
framework of the Cryptographic Module Validation Program (CMVP), a joint effort of
NIST and the Communications Security Establishment of the Government of Canada. An
implementation of a DRBG must adhere to the requirements in this Recommendation in
order to be validated under the CMVP. The requirements of this Recommendation are
indicated by the word “shall.”

2 Introduction

This Recommendation specifies techniques for the generation of random bits that may then be
used directly or converted to random numbers when random values are required by
applications using cryptography.

There are two fundamentally different strategies for generating random bits. One strategy is to
produce bits non-deterministically, where every bit of output is based on a physical process
that is unpredictable; this class of random bit generators (RBGs) is commonly known as non-

14
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deterministic random bit generators (NRBGs)!. The other strategy is to compute bits
deterministically using an algorithm; this class of RBGs is known as Deterministic Random
Bit Generators (DRBGs)?. This Recommendation will specify Approved DRBG mechanisms.

A DRBG uses an algorithm that produces a sequence of bits from an initial value that is
determined by a seed. Once the seed is provided and the initial value determined, the
DRBG is said to be instantiated. Because of the deterministic nature of the process, a
DRBG is said to produce pseudorandom bits, rather than random bits. The seed used to
instantiate the DRBG must contain sufficient entropy to provide assurance of randomness.
If the seed is kept secret, and the algorithm is well designed, the bits output by the DRBG
will appear to be random. However, the security provided by an RBG that uses a DRBG is
a system implementation issue; both the DRBG and its source of entropy must be
considered when determining whether the RBG is appropriate for use by consuming
applications. Therefore, in this Recommendation the acronym RBG will be used to mean a
DRBG, together with its source of entropy.

3 Scope

This Recommendation includes:
1. Requirements for the use of deterministic random bit generator mechanisms,

2. Specifications for deterministic random bit generator mechanisms that use hash
functions, block ciphers and number theoretic problems,

3. Implementation issues, and
4. Assurance considerations.

This Recommendation specifies several diverse DRBG mechanisms, all of which provided
acceptable security when this Recommendation was published. However, in the event that
new attacks are found on a particular class of mechanisms, a diversity of approved
mechanisms will allow a timely transition to a different class of DRBG mechanism.

Random number generation does not require interoperability between two entities, e.g.,
communicating entities may use different DRBG mechanisms without affecting their
ability to communicate. Therefore, an entity may choose a single appropriate DRBG
mechanism for their applications; see Annex D for a discussion of DRBG selection.

The precise structure, design and development of a random bit generator is outside the
scope of this Recommendation.

1 NRBGs have also been called True Random Number (or Bit) Generators or Handware Random Number
Generators.

2 DRBGS have also been called Pseudorandom Bit Ggr?erators.
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This Recommendation provides preliminary guidance on the selection of an entropy source
and the construction of an RBG from an entropy source and an Approved DRBG.
Additional guidance is under development in these areas.

4 Terms and definitions

For the purposes of this part of the Recommendation, the following terms and definitions

apply.

Algorithm A clearly specified mathematical process for computation; a
set of rules that, if followed, will give a prescribed result.

Approved FIPS approved or NIST Recommended. An algorithm or

technique that is either 1) specified in a FIPS or NIST
Recommendation, or 2) adopted in a FIPS or NIST
Recommendation and specified either (a) in an appendix to the
FIPS or NIST Recommendation, or (b) in a document
referenced by the FIPS or NIST Recommendation

Backtracking Resistance

The assurance that the output sequence from an RBG remains
indistinguishable from an ideal random sequence even to an
attacker who compromises the RBG in the future, up to the
claimed security strength of the RBG. For example, an RBG
that allowed an attacker to "backtrack" from the current
working state to generate prior outputs would not provide
backtracking resistance. The complementary assurance is
called Prediction Resistance.

Biased A bitstring (or number) that is chosen from a sample space is
said to be biased if one bitstring (or number) is more likely to
be chosen than another bitstring (or number). Contrast with
unbiased.

Bitstring A bitstring is an ordered sequence of 0’s and 1°s. The leftmost

bit is the most significant bit of the string and is the newest bit
generated. The rightmost bit is the least significant bit of the
string. :

Bitwise Exclusive Or

An operation on two bitstrings of equal length that combines
corresponding bits of each bitstring using an exclusive-or
operation.

16
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Block Cipher

A symmetric key cryptographic algorithm that transforms a
block of information at a time using a cryptographic key. For
a block cipher algorithm, the length of the input block is the
same as the length of the output block.

Consuming Application

The application (including middle ware) that uses random
numbers or bits obtained from an Approved random bit
generator.

Cryptographic Key (Key)

A parameter that determines the operation of a cryptographic
function such as:

1. The transformation from plain text to cipher text and
vice versa,

2. The synchronized generation of keying material,

3. A digital signature computation or validation.

Deterministic Algorithm

An algorithm that, given the same inputs, always produces the
same outputs.

Deterministic Random
Bit Generator (DRBG)

An RBG that uses a deterministic algorithm to produce a
pseudorandom sequence of bits from a secret initial value
called a seed (which contains entropy and possibly a
personalization string) along with other possible inputs.
Additional non-deterministic inputs may allow periodic
reseeding. The outputs do not always contain full entropy,
contrast this with an NRBG. A DRBG is often called a
Pseudorandom Number (or Bit) Generator. A DRBG has an
assessed security strength and is designed with the goal of
requiring an adversary to do at least the amount of work
associated with that security strength in order to distinguish
the output from an ideal random sequence.

DRBG Boundary

A conceptual boundary that is used to explain the operations
of a DRBG and its interaction with and relation to other
processes.

Entropy

A measure of the disorder, randomness or variability in a
closed system. The entropy of X is a mathematical measure of
the amount of information provided by an observation of X.
As such, entropy is always relative to an observer and his or
her knowledge prior to an observation. Also, see min-entropy.

17
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Entropy Input

The input to an RBG of a string of bits that contains entropy,
that is, the entropy input is digitized and is assessed. For an
NRBG, this is obtained from an entropy source. For a DRBG,
this is included in the seed material.

Entropy Input Source

A source of unpredictable data, such as thermal noise or hard
drive seek times. There is no assumption that the
unpredictable data has a uniform distribution.

Equivalent Process

Two processes are equivalent if, when the same values are
input to each process, the same output is produced.

Exclusive-or

A mathematical operation, symbol @, defined as:

0©0=0"
0@1=1
190=1
1®1=0.

Equivalent to binary addition without carry.

Full Entropy

An m-bit string has full entropy if every m-bit value is equally
likely to occur.

Hash Function

A (mathematical) function that maps values from a large
(possibly very large) domain into a smaller range. The
function satisfies the following properties:

1. (One-way) It is computationally infeasible to find any
input that maps to any pre-specified output;

2. (Collision free) It is computationally infeasible to find
any two distinct inputs that map to the same output.

Implementation

An implementation of an RBG is a cryptographic device or
portion of a cryptographic device that is the physical
embodiment of the RBG design, for example, some code
running on a computing platform. An implementation may be
designed to handle more than one instatniation at a time.

Implementation Testing

Testing by an independent and accredited party to ensure that

for Validation an implemention of a standard conforms to the specifications
of that standard.
Instantiation of an RBG | An instantiation of an RBG is a specific, logically

independent, initialized RBG. One instantiation is
distinguished from another by a handle (e.g., an identifying
number).

18
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Internal State

The collection of stored information about an RBG
instantiation. This can include both secret and non-secret
information.

Key

See Cryptographic Key.

Non-Deterministic
Random Bit Generator
(Non-deterministic RBG)
(NRBG)

An RBG that produces output that is fully dependent on some
unpredictable physical source that produces entropy. Contrast
with a DRBG. Other names for non-deterministic RBGs are
True Random Number (or Bit) Generators and, simply,
Random Number (or Bit) Generators.

Operational Testing

Testing within an implementation immediately prior to or
during normal operation to determine that the implementation
continues to perform as implemented and optionally validated.

Personalization String

An optional string of bits that is combined with a secret input
and a nonce to produce a seed.

Prediction Resistance

A_compromise of the DRBG internal state has no effect on the
security of future DRBG outputs. H-a-eempromise-of-Statey

ae5assuta

remains-seeure—That is, an adversary who is given access to
all of any-subset-efthe output sequence after the compromise
cannot distinguish it from random; if the adversary knows
only part of the future output sequence, en-adversaryhe cannot
predict any bit of that future output sequence that he has not
already seen. The complementaty assurance is called
Backtracking Resistance.

Pseudorandom

A process or data produced by a process is said to be
pseudorandom when the outcome is deterministic, yet also
effectively random as long as the internal action of the process
is hidden from observation. For cryptographic purposes,
“effectively” means “within the limits of the intended
cryptographic strength.” Note: Non-cryptographic use of
“pseudorandom” has less stringent meanings for “effectively.”

Pseudorandom Number
Generator

See Deterministic Random Bit Generator.

Public Key In an asymmetric (public) key cryptosystem, that key of an
entity’s key pair that is publicly known.
Public Key Pair In an asymmetric (public) key cryposystem, the public key

and associated private key.

19
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Random Number

For the purposes of this standard, a value in a set that has an
equal probability of being selected from the total population of
possibilities and hence is unpredictable. A random number is
an instance of an unbiased random variable, that is, the output
produced by a uniformly distributed random process.

Random Bit Generator
(RBG)

A device or algorithm that outputs a sequence of binary bits
that appears to be statistically independent and unbiased.

Random Number
Generator (RNG)

A device or algorithm that can produce a sequence of random
numbers that appears to be from an ideal random distribution.

Reseed

To aquire additional bits with sufficient entropy for the
desired security strength

Security Strength

A number associated with the amount of work (that is, the
number of operations) that is required to break a cryptographic
algorithm or system; a security strength is specified in bits and
is a specific value from the set (112, 128, 192, 256). The
amount of work needed is 2 raised to the security strength.

Seed

Noun : A string of bits that is used as input to a Deterministic
Random Bit Generator (DRBG). The seed will determine a
portion of the internal state of the DRBG, and its entropy must
be sufficient to support the security strength of the DRBG.

Verb : To aquire bits with sufficient entropy for the desired
security strength. These bits will be used as input to a DRBG
to determine a portion of the initial internal state. Contrast
with reseed.

Seedlife

The length of the seed period.

Seed Period

The period of time between initializing a DRBG with one seed
and reseeding that DRBG with another seed.

Sequence

An ordered set of quantities.

Shall

Used to indicate a requirement of this Standard.

Should

Used to indicate a highly desirable feature for a DRBG that is
not necessarily required by this Standard.

20
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Statistically Unique

A value is said to be statistically unique when it has a
negligible probability to occur again in a set of such values.
When a random value is required to be statistically unique, it
may be selected either with or without replacement from the
sample space of possibilities; this is in contrast to when a
value is required to be unique, as then it must be selected
without replacement.

String

See Sequence.

Unbiased

A bitstring (or number) that is chosen from a sample space is
said to be unbiased if all potential bitstrings (or numbers) have
the same probability of being chosen. Contrast with biased.

Unpredictable

In the context of random bit generation, an output bit is
unpredictable if an adversary has only a negligible advantage
(that is, essentially not much better than chance) in predicting
it correctly.

Working State

A subset of the internal state that is used by a DRBG to
produce pseudorandom bits at a given point in time. The
working state (and thus, the internal state) is updated to the
next state prior to producing another string of pseudorandom
bits.

21
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5 Symbols and abbreviated terms

The following abbreviations are used in this document:
Abbreviation Meaning
AES Advanced Encryption Standard.

DRBG Deterministic Random Bit Generator.
ECDLP Elliptic Curve Discrete Logarithm Problem.
FIPS Federal Information Processing Standard.
HMAC Keyed-Hash Message Authentication Code.
NRBG Non-deterministic Random Bit Generator.
RBG Random Bit Generator.

TDEA Triple Data Encryption Algorithm.

The following symbols are used in this document.

Symbol Meaning

+ Addition

X1 Ceiling: the smallest integer = X. For
example, [5] =5, and [5.3] =6.

XoY Bitwise exclusive-or (also bitwise addition
mod 2) of two bitstrings X and Y of the
same length.

XY Concatenation of two strings X and Y. X and
Y are either both bitstrings, or both octet
strings.

ged (x,)) The greatest common divisor of the integers
x and y.

len (a) The length in bits of string a.

x mod n The unique remainder » (where 0 <r < n-1)
when integer x is divided by n. For example,
23 mod 7 =2.

22
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Symbol Meaning

Used in a figure to illustrate a "switch"
@ between sources of input.

{aj, ..a} The internal state of the DRBG at a point in
time. The types and number of the &
depends on the specific DRBG.

0° A string of x zero bits.

23
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6 General Discussion and Organization

This Recommendation is organized as follows:

— Section 7 provides a functional model for a DRBG and discusses the major DRBG
components.

— Section 8 provides DRBG concepts and general requirements. This section
provides concepts and general requirements for the implementation and use of a
DRBG. The DRBG functions are explained and requirements for an
implementation are provided.

— Section 9 specifies the DRBG functions introduced in Section 8. These functions
use the DRBG algorithms specified in Section 10.

— Section 10 specifies Approved DRBG algorithms. Algorithms have been specified
that are based on the hash functions specified in FIPS 180-2 (Secure Hash
Standard), block cipher algorithms specified in FIPS 197 and NIST Special
Publication 800-67 (AES and TDEA, respectively), and a number theoretic
problem that is expressed in elliptic curve technology.

— Section 11 addresses assurance issues for DRBGs, including documentation
requirements, implementation validation and health testing,

This Recommendation also includes the following appendices:
— Appendix A specifies additional DRBG-specific information.
— Appendix B provides conversion routines.
— Appendix C provides guidance on entropy and entropy sources.

— Appendix D provides guidance on the construction of a random bit generator from
an entropy source and a DRBG.

— Appendix E discusses security considerations for implementing DRBGs.
— Appendix F provides example pseudocode for each DRBG.
— Appendix G provides a discussion on DRBG selection.

— Appendix H provides references.

24
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7 DRBG Functional Model

Figure 1 provides a functional model of DRBGs. The components of this model are
discussed in the following subsections.

Personalization

String Nonce  Entropy Input Additional Input
l l X X
Instantiate Reseed
Function Function

h 4

Uninstantiate
Function

Generate
Function

l

Pseudorandom Output

Figure 1: DRBG Functional Model
7.21 Entropy Input

The entropy input is provided to a DRBG for the seed (see Section 8.6). The entropy input
and the seed shall be kept secret. The secrecy of this information provides the basis for the
security of the DRBG. At a minimum, the entropy input shall provide the requested
amount of entropy for a DRBG. Appropriate sources for the entropy input are discussed in
Appendix C.

The DRBGs allow for some bias in the entropy input. Whenever a bitstring containing
entropy is required by the DRBG, a request is made that indicates the minimum amount of
entropy to be returned; the request may obtain entopy input bits from a buffer containing
readily available entropy bits or may cause entropy input bits to be acquired. The request
may be fulfilled by a bitstring that is equal to or greater in length than the requested
entropy. The DRBG expects that the returned bitstring will contain at least the amount of
entropy requested. Additional entropy beyond the amount requested is not required, but is
desirable.

7.32 Other Inputs

Other information may be obtainied by a DRBG as input. This information may or may not
be required to be kept secret by a consuming application; however, the security of the
25
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DRBG itself does not rely on the secrecy of this information. The information should be
checked for validity when possible.

During DRBG instantiation, a nonce is required and is combined with the entropy input to
create the initial DRBG seed. Criteria for the nonce are provided in Section 8.6.7.

This Recommendation strongly advizes the insertion of a personalization string during
DRBG instantiation; when used, the personalization string is combined with the entropy
bits and a nonce to create the initial DRBG seed. The personalization string shall be
unique for all instantiations of the same DRBG type (e.g., HMAC_DRBG). See Section
8.7.1 for additional discussion on personalization strings.

Additional input may also be provided during reseeding and when pseudorandom bits are
requested. See Section 8.7.2 for a discussion of this input.

7.43 The Internal State

The internal state is the memory of the DRBG and consists of all of the parameters,
variables and other stored values that the DRBG uses or acts upon, The internal state
contains both administrative data and data that is acted upon and/or modified during the
generation of pseudorandom bits (i.e., the working state). The contents of the internal state
is dependent on the specific DRBG and includes all information that is required to produce
the pseudorandom bits from one request to the next.

7.64 The DRBG Functions

The DRBG functions handle the DRBG’s internal state. The DRBGs in this
Recommendation have four separate functions (exclusive of health tests):

1. The instantiate function acquires entropy input and combines it with a nonce and a
personalization string to create a seed from which the initial internal state is
created.

2. The generate function generates pseudorandom bits upon request, using the current
internal state, and generates a new internal state for the next request.

3. The reseed function acquires new entropy input and combines it with the current
internal state and any additional input that is provided to create a new seed and a
new internal state.

4. The uninstantiate function zeroizes (i.e., erases) the internal state.

7.65 Health Tests
Health testing is concerned with assessing and reacting to the health of the DRBG (.e.,

testing to determine that the DRBG continues to function correctly). The health tests are
discussed in Sections 9.6 and 11.4.
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8. DRBG Concepts and General Requirements
8.1 DRBG Functions

A DRBG requires instantiate, uninstantiate, generate, and testing functions. A DRBG may
also include a reseed function. A DRBG shall be instantiated prior to the generation of
output by the DRBG. These functions are specified in Section 9.

8.2 DRBG Instantiations

A DRBG may be used to obtain
pseudorandom bits for different Instantiate: Intialize with seed,
purposes (e.g., DSA private keys and
AES keys) and may be separately
instantiated for each purpose.

A DRBG is instantiated using a seed
and may be reseeded; when reseeded, Seed period 2
the seed shall be different than the
seed used for instantiation. Each seed
defines a seed period for the DRBG
instantiation; an instantiation consists
of one or more seed periods that begin
when a new seed is acquired (see
Figure 2).

8.3 Internal States

Seed period 1

3
I(?pt) Reseed with seed , |

b
[ (Opt) Resecd withaseed, |

Seed periods 3 14

Figure 2: DRBG Instantiation

During instantiation, an initial internal state is derived from the seed. The internal state for
an instantiation includes:

1. Working state:

a. One or more values that are derived ftom the seed and become part of the
internal state; these values must usually remain secret, and

b. A count of the number of requests or blocks produced since the instantiation
was seeded or reseeded.

2. Administrative information (e.g., security strength and prediction resistance flag).

The internal state shall be protected at least as well as the intended use of the
pseudorandom output bits requested by the consuming application. A DRBG
implementation may be designed to handle multiple instantiations. Each DRBG
instantiation shall have its own internal state. The internal state for one DRBG
instantiation shall not be used as the internal state for a different instantiation.

A DRBG transitions between internal states when the generator is requested to provide
new pseudorandom bits. A DRBG may also be implemented to transition in response to
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internal or external events (e.g., system interrupts) or to transition continuously (e.g.,
whenever time is available to run the generator).

8.4 Security Strengths Supported by an Instantiation

The DRBGs specified in this Recommendation support four security strengths: 112, 128,
192 or 256 bits. The actual security strength supported by a given instantiation depends on
the DRBG implementation and on the amount of entropy provided to the instantiate
function. Note that the security strength actually supported by a particular instantiation
may be less than the maximum security strength possible for that DRBG implementation
(see Table 1). For example, a DRBG that is designed to support a maximum security
strength of 256 bits may be instantiated to support only a 128-bit security strength.

Table 1: Possible Instantiated Security Strengths

Maximum Designed 112 128 192 256
Security Strength

Possible Instantiated 112 112, 128 112,128,192 | 112, 128, 192,
Security Strengths 256

A security strength for the instantiation is requested by a consuming application during
instantiation, and the instantiate function obtains the appropriate amount of entropy for the
requested security strength. Any security strength may be requested, but the DRBG will
only be instantiated to one of the four security strengths above, depending on the DRBG
implementation. A requested security strength that is below the 112-bit security strength or
is between two of the four security strengths will be instantiated to the next highest level
(e.g., arequested security strength of 96 bits will result in an instantiation at the 112-bit
security strength).

Following instantiation, requests can be made to the generate function for pseudorandom
bits. For each generate request, a security strength to be provided for the bits is requested.
Any security strength can be requested up to the security strength of the instantiation, e.g.,
an instantiation could be instantiated at the 128-bit security strength, but a request for
pseudorandom bits could indicate that a lesser security strength is actually required for the
bits to be generated. The generate function checks that the requested security strength does
not exceed the security strength for the instantiation. Assuming that the request is valid, the
requested number of bits is returned.

When an instantiation is used for multiple purposes, the minimum entropy requirement for
each purpose must be considered. The DRBG needs to be instantiated for the highest
security strength required. For example, if one purpose requires a security strength of 112
bits, and another purpose requires a security strength of 256 bits, then the DRBG needs to
be instantiated to support the 256-bit security strength.
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8.5 DRBG Boundaries

As a convenience, this Standard uses the notion of a “DRBG boundary” to explain the
operations of a DRBG and its interaction with and relation to other processes; a DRBG
boundary contains all DRBG functions and internal states required for a DRBG. A DRBG
boundary is entered via the DRBG’s public interfaces, which are made available to
consuming applications.

Within a DRBG boundary,

1. The DRBG internal state and the operation of the DRBG functions shall only be
affected according to the DRBG specification.

2. The DRBG internal state shall exist solely within the DRBG boundary. The
internal state shall be contained within the DRBG boundary and shall notbe
accessed by non-DRBG functions |or other instantiations of that or other DRBGs|

3. Information about secret parts of the DRBG internal state and intermediate values
in computations involving these secret parts shall not affect any information that
leaves the DRBG boundary, except as specified for the DRBG pseudorandom bit
outputs.

Each DRBG includes one or more cryptographic primitives (e.g., a hash function). Other
applications may use the same cryptographic primitive as long as the DRBG’s internal
state and the DRBG functions are not affected.

A DRBG’s functions may be contained within a single device, or may be distributed across

multiple devices (see Figures 3 and 4). T

Figure 3 depicts a DRBG for which all e —
functions are contained within the same tastonitite ——] | hane

device. Figure 4 provides an example of Jrocahe s i
DRBG functions that are distributed across Raweed )| TRewed

multiple devices. In this case, each device s e Frcetur

has a DRBG sub-boundary that contains the —

DRBG functions implemented on that Regquest Bits J—"| | Paeudorandlom
device, and the boundary around the entire

DRBG consists of the aggregation of sub- Tot —A [ Teting =)
boundaries providing the DRBG —
functionality. The use of distributed DRBG Unlastantste | it
functions may be convenient for restricted b

environments (e.g., smart card applications)
in which the primary use of the DRBG does Figure 3: DRBG Functions within a
not require repeated use of the instantiate or Single Device

reseed functions.

Although the entropy input is shown in the figures as originating outside the DRBG
boundary, it may originate from within the boundary.
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Figure 4: Distributed DRBG Functions

Each DRBG boundary or sub-boundary shall contain a test function to test the “health” of
other DRBG functions within that boundary.

When DRBG functions are distributed, appropriate mechanisms shall be used to protect
the confidentiality and integrity of the internal state or parts of the internal state that are
transferred between the distributed DRBG sub-boundaries. The confidentiality and
integrity mechanisms and security strength shall be consistent with the data to be protected
by the DRBG’s consuming application (see SP 800-57).

8.6 Seeds

When a DRBG is used to generate pseudorandom bits, a seed shall be acquired prior to the
generation of output bits by the DRBG. The seed is used to instantiate the DRBG and
determine the initial internal state that is used when calling the DRBG to obtain the first
output bits.

Reseeding is a means of recovering the secrecy of the output of the DRBG if a seed or the
internal state becomes known. Periodic reseeding is a good countermeasure to the potential
threat that the seeds and DRBG output become compromised. In some implementations
(e.g., smartcards), an adequate reseeding process may not be possible. In these cases, the
best policy might be to replace the DRBG, obtaining a new seed in the process (e.g., obtain
a new smart card).

The seed and its use by a DRBG shall be generated and handled as specified in the
following subsections.

8.6.1 Seed Construction for Instantiation
Figure 5 depicts the seed construction process for instantiation. The seed material used to
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determine a seed for instantiation

consists of entropy input, a nonce and an
optional personalization string. Entropy Entropy Nonce eapine |
input shall always be used in the Input String

construction of a seed; requirements for
the entropy input are discussed in item
Section 8.6.3. A nonce shall also be Opt.
used; requirements for the nonce are dr,
discussed in Section 8.6.7. This
Recommendation also advises the
inclusion of a personalization string;
requirements for the personalization
string are discussed in Section 8.7.2.

Seed

Figure 5: Seed Construction for Instantiation
Depending on the DRBG and the source

of the entropy input, a derivation function is required to derive a seed from the seed
material. When full entropy input is readily available, the DRBG based on block cipher
algorithms (see Section 10.2) may be implemented without a derivation function. When
implemented in this manner, a nonce (as shown in Figure 5) is not used. Note, however,
that the personalization string could contain a nonce, if desired.

The goal of this seed construction is to ensure that the seed is statistically unique.
8.6.2 Seed Construction for

Reseeding
Figure 6 depicts the seed construction .

i . . e Internal Optional
process for reseeding an instantiation. State Entropy Additional
The seed material for reseeding Value Input Input
consists of a value that is carried in the
internal state3, new entropy input and,
optonally, additional input. The 0;:.
internal state value and the entropy df

input are required; requirements for
the entropy input are discussed in
Secrtion 8.6.3. Requirements for the Seed
additional input are discussed in
Section 8.7.3. As in Section 8.6.1, a
derivation function may be required
for reseeding. See Section 8.6.1 for
further guidance.

Figure 6: Seed Construction for Reseeding

8.6.3. Entropy Requirements for the Entropy Input

The entropy input for the seed shall contain sufficient entropy for the desired security
strength. Additional entropy may be provided in the nonce or the optional personalization

3 See each DRBG specification for the value that is usseli.
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string during instantiation, or in the additional input during reseeding, but this is not
required. Entropy contained in the seed components is distributed across the seed (e.g.,
using an appropriate derivation function) by the instantiate and reseed functions.

The entropy input shall have entropy that is equal to or greater than the security strength of
the instantiation. Note that the use of more entropy than the minimum value will offer a
security “cushion”. This may be useful if the assessment of the entropy provided in the
entropy input is incorrect. Having more entropy than the assessed amount is acceptable;
having less entropy than the assessed amount could be fatal to security. The presence of more
entropy than is required, especially during the instantiatiation, will provide a higher level of
assurance than the minimum required entropy.

8.6.4 Seed Length

The minimum length of the seed depends on the DRBG and the security strength required
by the consuming application. See Section 10.

8.6.5 Entropy Input Source

The source of the entropy input may be an Approved NRBG, an Approved DRBG (or
chain of Approved DRBGs) that is seeded by an Approved NRBG, or another source
whose entropy characteristics are known. Further discussion about the entropy input is
provided in Appendix C.

8.6.6 Entropy Input and Seed Privacy

The entropy input and the resulting seed shall be handled in a manner that is consistent
with the security required for the data protected by the consuming application. For
example, if the DRBG is used to generate keys, then the entropy inputs and seeds used to
generate the keys shall be treated at least as well as the key (at a minimum).

8.6.7 Nonce

A nonce is required to construct a seed during instantation. The nonce shall be either:
a. A random value with at least (security strength/2) bits of entropy,
b. A non-random value that is guaranteed to never repeat, or

c. A non-random value that is expected to repeat no more often than a
(security_strength/2)-bit random string would be expected to repeat.

For case a, the nonce may be acquired from the same source and at the same time as the
entropy input. In this case, the seed could be considered to be constructed from an “extra
strong” entropy input and the optional personalization string, where the entropy for the
entropy input is equal to or greater than (3/2 security_strength) bits.

8.6.8 Reseeding
Generating too many outputs from a seed (and other input information) may provide
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sufficient information for successfully predicting future outputs unless prediction
resistance is provided (see Section 8.8). Periodic reseeding will reduce security risks,
reducing the likelihood of a compromise of the data that is protected by cryptographic
mechanisms that use the DRBG.

Seeds shall have a finite seedlife (i.e., the length of the seed period); the maximum seedlife
is dependent on the DRBG used. Reseeding is accomplished by 1) an explicit reseeding of
the DRBG by the application, or 2) by the generate function when prediction resistance is
requested (see Section 8.8) or the limit of the seedlife is reached. An alternative to
reseeding is to create an entirely new instantiation.

Reseeding of the DRBG shall be performed in accordance with the specification for the
given DRBG. The DRBG reseed specifications within this Recommendation are designed
to produce a new seed that is determined by both the old seed and newly-obtained entropy
input that will support the desired security strength.

8.6.9 Seed Use

A seed that is used to initialize one instantiation of a DRBG shall not be intentionally used
to reseed the same instantiation or used as a seed for another DRBG instantiation. Note
that a DRBG does not provide output until a seed is available, and the internal state has
been initialized (see Section 10).

8.6.10 Seed Separation

Seeds used by DRBGs shall not be used for other purposes (e.g., domain parameter or
prime number generation).

8.7  Other Inputs to the DRBG

Other input may be provided during DRBG instantiation, pseudorandom bit generation and
reseeding, This input may contain entropy, but this is not required. During instantiation, a
personalization string may be provided and combined with entropy input and a nonce to
derive a seed (see Section 8.6.1). When pseudorandom bits are requested and when
reseeding is performed, additional input may be provided.

Depending on the method for acquiring the input, the exact value of the input may or may
not be known to the user or application. For example, the input could be derived directly
from values entered by the user or application, or the input could be derived from
information introduced by the user or application (e.g., from timing statistics based on key
strokes), or the input could be the output of another DRBG or an NRBG.

8.7.1 Personalization String
During instantiation, a personalization string should be used to derive the seed (see
Section 8.6.1). The intent of a personalization string is to differentiate this DRBG

instantiation from all the others that might ever appear. The personalization string should
be set to some bitstring that is as unique as possible, and may include secret information.
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The value of any secret information contained in the personalization string sheuld be no
greater than the claimed strength of the DRBG, as the DRBG's cryptographic mechanisms
will protect this information from disclosure. Good choices for the personalization string
contents include:

1. Device serial numbers,

Public keys,

User identification,

Private keys,

PINs and passwords,

Secret per-module or per-device values,
Timestamps,

Network addresses,

W 2 NN R WD

Special secret key values for this specific DRBG instantiation,
10. Application identifiers,
11. Protocol version identifiers,
12. Random numbers, and
13. Nonces.
8.7.2 Additional Input

During each request for bits from a DRBG and during reseeding, the insertion of additional
input is allowed. This input is optional and may be either secret or publicly known; its
value is arbitrary, although its length may be restricted, depending on the implementation
and the DRBG. The use of additional input may be a means of providing more entropy for
the DRBG internal state that will increase assurance that the entropy requirements are met.
If the additional input is kept secret and has sufficient entropy, the input can provide more
assurance when recovering from the compromise of the seed or one or more DRBG
internal states.

8.8 Prediction Resistance and Backtracking Resistance
Figure 7 depicts the sequence of DRBG internal states that result from a given seed. Some
subset of bits from each internal state are used to generate pseudorandom bits upon request

by a user. The following discussions will use the figure to explain backtracking and
prediction resistance.
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State, |
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Figure 7: Sequence of DRBG States

Suppose that a compromise occurs at State,, where State contains both secret and public
information.

Backtracking Resistance: Backtracking resistance means that a compromise of the DRBG
internal state has no effect on the security of prior outputs. That is, an adversary who is

given access to all of any-subset-ofthat prior output sequence cannot distinguish it from
random; if the adversary knows only part of the prior output, he cannot determine any bit
of that prior output sequence that the-adwversaryhe has not already seen. In-otherwords;¢

For example, suppose that an adversary knows Statey,-.and-also-lnevws-the-output-bits
from State-to-State. - Backiracking resistance means that;

a._The output bits from State, to State,., cannot be distinguished from random.

—b. The prior internal state values themselves (State, to State,., ) cannot be
recovered, given knowledge of the secret information in State,-State,-and-is
aa%p&bbﬁs—eaﬂne%b&ée!emﬂned—ﬁem—knmﬂedge—aﬁsmw&e—émﬁe ~cannotbe

: s-Hram-Siate,-to-State, o appear-to-be
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S!aieﬁe—Siate,_g-

Backtracking resistance can be provided by ensuring that the DRBG algorithm is a one-
way function. All DRBGs in this Recommendation have been designed to provide
backtracking resistance.

Prediction Resistance: Prediction resistance means that a compromise of the DRBG
internal state has no et‘fect on the secur :tv ot tutme DRBG outputs i—f‘-a—eempfemle&af

MW&MWWWWWThM is, an adversary who is given access
to all of any-subset-ofthe output sequence after the compromise cannot distinguish it from
random; if the adversary knows only part of the future output sequence, an-adversaryhe
cannot predict any bit of that future output sequence that he has not already seen.1a-other

(]

For example, suppose that an adversary knows Stafe: -and-also-knows-the-output-bits from
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State..ato-State...—Prediction resistance means that;

a. _The output bits from State,.; and forward cannot be distinguished from an ideal
random bitstring by the adversary,

—b. The future internal state values themselves (Statex+; and forward ) cannot be

predlcted g1ven knowledge of Statex -StateH-aadqfes-et*taput—bﬁs-eaﬂnet—be

Prediction resistance can be pr0v1ded only by ensuring that a DRBG is effectively reseeded
between DRBG requests. That is, an amount of entropy that is sufficient to support the
security strength of the DRBG (i.c., an amount that is at least equal to the security strength)
must be added to the DRBG in a way that ensures that knowledge of the currentprevious
DRBG internal state does not allow an adversary any useful knowledge about future
DRBG internal states or outputs.
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9 DRBG Functions

The DRBG functions in this Recommendation are specified as an algorithm and an
“envelope” of pseudocode around that algorithm. The pseudocode in the envelapes
(provided in this section) checks the input parameters, obtains input not provided by the
input parameters, accesses the appropriate DRBG algorithm and handles the internal state.
A function need not be implemented using such envelopes, but the function shall have
equivalent functionality.

In the specifications of this Recommendation, the following pseudo-functions are used for
convenience. These functions are not specifically defined in this Recommendation, but
have the following meaning:
o Get_entropy: A function that is used to obtain entropy input. The function call is:
(status, entropy_input) = Get_entropy (min_entropy, min_ length, max_
length)

which requests a string of bits (entropy_input) with at least min_entropy bits of
entropy. The length for the string shall be equal to or greater than min_length bits,
and less than or equal to max_length bits. A status code is also returned from the
function. -

e Block Encrypt: A basic encryption operation that uses the selected block cipher
algorithm. The function call is:

output_block = Block_Encrypt (Key, input_block)

For TDEA, the basic encryption operation is called the forward cipher operation
(see SP 800-67); for AES, the basic encryption operation is called the cipher
operation (see FIPS 197). The basic encryption operation is equivalent to an
encryption operation on a single block of data using the ECB mode.

Note that an implementation may choose to define this functionality differently; for
example, for many of the DRBGs, the min_length = min_entropy for the Get_entropy
function, in which case, the second parameter could be omitted.

9.1 Instantiating a DRBG
A DRBG shall be instantiated prior to the generation of pseudorandom bits. The instantiate
function:
1. Checks the validity of the input parameters,
Determines the security strength for the DRBG instantiation,
Determines any DRBG specific parameters (e.g., elliptic curve domain parameters),

Obtains entropy input with entropy sufficient to support the security strength,

OO

Obtains the nonce,
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6. Determines the initial internal state using the instantiate algorithm,
7. Returns a state_handle for the internal state to the consuming application.

Let working_state be the working state for the particular DRBG, and let min_length, max
length, and highest_supported_security_strength be defined for each DRBG (sce Section
10).

The following or an equivalent process shall be used to instantiate a DRBG.
Input from a consuming application:

1. requested instantiation_security_strength: A requested security strength for the
instantiation. DRBG implementations that support only one security strength do not
require this parameter; however, any application using that DRBG implementation
must be aware of this limitation.

2. prediction _resistance_flag: Indicates whether or not prediction resistance may be
required by a the consuming application during one or more requests for
pseudorandom bits, DRBGs that are implemented to always or never support
prediction resistance do not require this parameter. However, the user ofa
consuming application must determine whether or not prediction resistance may be
required by the application before electing to use such a DRBG implementation. [f
the prediction_resistance_flag is not needed (i.e., because prediction resistance is
always or never performed), then the input parameter may be omitted, and the
prediction_resistance_flag may be omitted from the internal state in step 11.

3. personalization_string: An optional input that provides personal ization information
(see Sections 8.6.1 and 8.7.1). The maximum length of the personalization string
(max_personalization_string_length) is implementation dependent, but shall be
less than or equal to the maximum length specified for the given DRBG (see
Section 10). If a personalization string will never be used, then the input parameter
and step 3 may be omitted, and step 9 may be modified to omit the personalization
string.

Required information not provided by the consuming application:

Comment: This input shall not be provided
by the consuming application as an input
parameter during the instantiate request.

1. entropy_input: Input bits containing entropy. The maximum length ofthe
entropy_input is implementation dependent, but shall be less than or equal to the
specified maximum length for the selected DRBG (see Section 10).

2. nonce: A nonce as specified in Section 8.6.7. Note that if a random value is used as
the nonce, the entropy_input and nonce could be acquired using a single
Get_entropy call (see step 6); in this case, the first parameter would be adjusted to
include the entropy for the nonce (i.e., security_strength would be increased by at
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least security strength/2), step 8 would be omitted, and the nonce would be omitted
from the parameter list in step 9.

Output to a consuming application:

1.

status: The status returned from the instantiate function. The starus will indicate
SUCCESS or an ERROR. If an ERROR is indicated, either no state_handle or an
invalid state_handle shall be returned. A consuming application should check the
status to determine that the DRBG has been correctly instantiated.

state_handle: Used to identify the internal state for this instantiation in subsequent
calls to the generate, reseed, uninstantiate and test functions.

Information retained within the DRBG boundary:

The internal state for the DRBG, including the working_state and administrative
information (see Sections 8. 3 and 10).

Process:
Comment: Check the validity of the input
parameters.
1. If requested instantiation_security_strength >

highest_supported_security_strength, then reruen an ERROR.

2. If prediction_resistance_flag is set, and prediction resistance is not supported, then
return an ERROR.
3. Ifthe length of the personalization_string > max_personalization_string_length,
return an ERROR.
4 Set security strength to the nearest security strength greater than or equal to
requested_instantiation_security_strength.
Comment: The following step is required by
the Dual EC DRBG when multiple curves
are available (see Section 10.3.2.2.2).
Otherwise, the step should be omitted.
5. Using security strength, select appropriate DRBG parameters.
Comment: Obtain the entropy input.
6. (status, entropy input) = Get_entropy (security_strength, min_length,
max_length).
7. Ifan ERROR is returned in step 6, return an ERROR.
8. Obtain a nonce. Comment: This step shall include any

appropriate checks on the acceptability of the
nonce. See Section 8.6.7.

Comment: Call the appropriate instantiate
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algorithm in Section 10 to obtain values for
the initial working state.

9. working_state = Instantiate_algorithm (entropy_input, nonce,
personalization_string, other DRBG_parameters).

10. Get a state_handle for a currently empty internal state. If an unused internal state
cannot be found, return an ERROR.

11. Set the internal state indicated by state_handle to the initial values for the
working_state and administrative information, as appropriate.

12. Return SUCCESS and state_handle.
9.2 Reseeding a DRBG Instantiation
The reseeding of an instantiation is not required, but is recommended whenever an

application and implementation are able to perform this process. Reseeding will insert
additional entropy into the generation of pseudorandom bits. Reseeding may be:

e explicitly requested by an application,
e performed when prediction resistance is requested by an application,

e triggered by the generate function when a predetermined number of pseudorandom
outputs have been produced (i.e., at the end of the seedlife), or

e triggered by external events (e.g., whenever sufficient entropy is available).

If a reseed capability is not available, a new DRBG instantiation may be created (see
Section 9.1).

The reseed function:
1. Checks the validity of the input parameters,
2. Obtains entropy input with sufficient entropy to support the security strength, and

3. Using the reseed algorithm, combines the current working state with the new
entropy input and any additional input to determine the new working state.

Let working_state be the working state for the particular DRBG, and let min_length and
max_ length be defined for each DRBG (see Section 10).

The following or an equivalent process shall be used to reseed the DRBG instantiation.
Input from a consuming application:

1) state_handle: A pointer or index that indicates the internal state to be reseeded.
This value was returned from the instantiate function specified in Section 9.1.

2) additional_input: An optional input. The maximum length of the additional _input
(max_additional_input_length) is implementation dependent, but shall be less than

40



NIST SP 800-90 DRAFT September 2005

or equal to the maximum value specified for the given DRBG (see Section 10). If
additional _input will never be used, then the input parameter and step 2 may be
omitted, and step 2 may be modified to remove the additional_input from the
parameter list.

Required information not provided by the consuming application:

Comment: This input shall net be provided
by the consuming application in the input
parameters.

1. entropy_input: Input bits containing entropy. The maximum length of the
entropy_input is implementation dependent, but shall be less than or equal to the
specified maximum length for the selected DRBG (see Section 10).

2. Internal state values required by the DRBG for reseeding for the working_state and
administrative information, as appropriate.

Output to a consuming application:
1. status: The status returned from the function. The status will indicate SUCCESS or

an ERROR.
Information retained within the DRBG boundary:
Replaced internal state values (i.e., the working_state).
Process:

Comment: Get the current internal state and
check the input parameters.

1. Using state_handle, obtain the current internal state. If state_handle indicates an
invalid or unused internal state, return an ERROR.

2. Ifthe length of the additional input > max_additional_input_length, return an
ERROR.

Comment: Obtain the entropy input.

3. (status, entropy_input) = Get_entropy (security_strength, min_length,
max_length).

4, If an ERROR is returned in step 3, return an ERROR.

Comment: Get the new working_state using
the appropriate reseed algorithm in Section
10.

5. working_state = Reseed_algorithm (working_state, entropy_input,
additional _input).

6. Replace the working_state in the internal state indicated by state_handle with the
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7.

new values.
Return SUCCESS.

9.3 Generating Pseudorandom Bits Using a DRBG

This function is used to generate pseudorandom bits after instantiation or reseeding (see
Sections 9.1 and 9.2). The generate function:

1.
2.

4.
5.

Checks the validity of the input parameters,

Calls the reseed function to obtain sufficient entropy if the instantiation needs
additional entropy because the end of the seedlife has been reached or prediction
resistance is required,

Generates the requested pseudorandom bits using the generate algorithm. The
generate algorithm will check that two consecutive states are not the same.

Updates the working state.

Returns the requested pseudorandom bits to the consuming appication.

Let outlen be the length of the output block of the cryptographic primitive (see Section 10).

The following or an equivalent process shall be used to generate pseudorandom bits.

Input from a consuming application:

1.
2.

state_handle: A pointer or index that indicates the internal state to be used.

requested_number_of bits: The number of pseudorandom bits to be returned from
the generate function. The max_number_of bits_per_request is implementation
dependent but shall be less than or equal to the value provided in Section 10 for a
specific DRBG.

requested_security strength: The security strength to be associated with the
requested pseudorandom bits. DRBG implementations that support only one
security strength do not require this parameter; however, any application using that
DRBG implementation must be aware of this limitation.

4. prediction_resistance_request: Indicates whether or not prediction resistance is to

be provided. DRBGs that are implemented to always or never support prediction
resistance do not require this parameter. However, the user of a consuming
application must determine whether or not prediction resistance may be required by
the application before electing to use such a DRBG implementation.

If prediction resistance is never provided, then the prediction_resistance_request
input parameter and step 5 may be omitted, and step 7 may be modified to omit the
check for the prediction_resistance_request.

If prediction resistance is always performed, then the prediction_resistance_request
input parameter and step 5 may be omitted, and steps 7 and 8 are replaced by:
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status = Reseed (state_handle, additional _input).
If status indicates an ERROR, then return ERROR.
Using state_handle, obtain the new internal state.

(status, pseudorandom_bits, working_state) = Generate_algorithm
(working state, requested_number_of _bits).

Note that if additional _input is never provided, then the additional _input parameter
in the Reseed call above may be omitted.

5. additional_input: An optional input. The maximum length of the additional _input
(max_additional_input_length) is implementation dependent, but shall be less than
or equal to the specified maximum length for the selected DRBG (see Section 10).
If additional_input will never be used, then the input parameter, step 4, step 7.4 and
the additional_input input parameter in step 8 may be omitted.

Required information not provided by the consuming application:

1. Internal state values required for generation for the working_state and
administrative information, as appropriate.

Output to a consuming application:

1.  status: The status returned from the function. The status will indicate SUCCESS
or an ERROR.

2.  pseudorandom_bits: The pseudorandom bits that were requested.
Information retained within the DRBG boundary:

Replaced internal state values (i.e., the working_state).
Process:

Comment Get the internal state and check the
input parameters.

1. Using state_handle, obtain the current internal state for the instantiation. If
state_handle indicates an invalid or unused internal state, then return an ERROR.

2. If requested number _of bits > max_number_of bits_per_request, then return an
ERROR.

3. If requested security_strength> the security strength indicated in the internal
state, then return an ERROR.

4, Ifthe length of the additional input > max_additional_input_length, then return an
ERROR.

5. If prediction_resistance_request is set, and prediction_resistance_flag is not set,
then return an ERROR.
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6. Clear the reseed required flag.

Comment: Get the requested pseudorandom
bits.

7. If reseed required flag is set, or if prediction_resistance_request is set, then

Comment: Reseed the instantiation (see
Section 9.2).

7.1 status = Reseed (state_handle, additional_input).

7.2 If status indicates an ERROR, then return an ERROR.
7.3 Using state_handle, obtain the new internal state.

7.4 additional _input = the Null string.

7.5 Clear the reseed _required flag.

Comment: Request the generation of
pseudorandom_bits using the appropriate
generate algorithm in Section 10.

8. (status, pseudorandom_bits, working_state) = Generate_algorithm
(working_state, requested_number_of bits, additional_input).

9. 1If status indicates that a reseed is required before the requested bits can be
generated, then

9.1 Set the reseed required flag.
92 Gotostep7.

Comment: If an ERROR is returned, two
consecutive states are the same.

10. If an ERROR is returned from step 8,
10.1 Delete all instantiations using the uninstantiate function.
10.2 Return the ERROR received from step 8.

11. Replace the old working_state in the internal state indicated by state_handle with
the new working_state.

12. Return SUCCESS and pseudorandom_bits.

Implementation notes:

If a reseed capability is not available, then steps 6 and 7 may be removed; and step 9 is
replaced by:

9. If status indicates that a reseed is required before the requested bits can be
generated, then
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9.1 status = Uninstantiate (state_handle).
9.2 If an ERROR is returned in step 9.1, then return the ERROR.
9.3 Return an indication that the DRBG instantiation can no longer be used.
9.4 Removing a DRBG Instantiation
The internal state for an instantiation may need to be “released”. The uninstantiate
function:
1. Checks the input parameter for validity.

2. Empties the internal state.

The following or an equivalent process shall be used to remove (i.e., uninstantiate) a
DRBG instantiation:

Input from a consuming application;
1. state_handle: A pointer or index that indicates the internal state to be “released”.
Output to a consuming application:

1. status: The status returned from the function. The status will indicate SUCCESS or
ERROR.

Information retained within the DRBG boundary:
An empty internal state.

Process:
1. If state_handle indicates an invalid state, then return an ERROR.
2. Erase the contents of the internal state indicated by state_handle.
3. Return SUCCESS.

9.5 Auxilliary Functions

Derivation functions are internal functions that are used during DRBG instantiation and
reseeding to either derive internal state values or to distribute entropy throughout a
bitstring. Two methods are provided. One method is based on hash functions (see Section
9.6.1), and the other method is based on block cipher algorithms (see 9.6.2). The block
cipher derivation function uses a Block_Cipher_Hash function that is specified in Section
9.6.3.

9.5.1 Derivation Function Using a Hash Function (Hash_df)

This derivation function is used by the Hash_DRBG and Dual_EC_DRBG specified in

Section 10. The hash-based derivation function hashes an input string and returns the

requested number of bits. Let Hash (...) be the hash function used by the DRBG, and let
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outlen be its output length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. input_string: The string to be hashed.

2. no_of bits_to _return: The number of bits to be returned by Hash_df. The
maximum length (max_number_of bits) is implementation dependent, but shall be
less than or equal to (255 x outlen). no_of bits_to_return is represented as a 32-bit

integer.
Output:
1. status: The status returned from Hash_df. The status will indicate SUCCESS or
ERROR.

2. requested bits : The result of performing the Hash_df.

Process:
1. Ifno_of bits to return> max_number_of bits, then return an ERROR.
2. temp = the Null string.

no of bits to retu
3. len= 2 == ™).
outlen

4. counter = an 8-bit binary value representing the integer "1".
5. Fori=1tolendo

Comment : In step 5.1, no_of bits to_return
is used as a 32-bit string.

5.1 temp = temp | Hash (counter || no_of bits_to_return || input_string).
5.2 counter = counter + 1.
6. requested_bits = Leftmost (no_of bits_to_return) of temp.
7. Return SUCCESS and requested_bits.
9.5.2 Derivation Function Using a Block Cipher Algorithm (Block_Cipher_df)

This derivation function is used by the CTR_DRBG that is specified in Section 10.2. Let
Block_Cipher_Hash be the function specified in Section 9.6.3. Let Let outlen be its
output block length, which is a multiple of 8 bits for the Approved block cipher algorithms,
and let keylen be the key length.

The following or an equivalent process shall be used to derive the requested number of
bits.
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Input:
1. input_string: The string to be operated on. This string shall be a multiple of 8 bits.

2. no_of bits to_return: The number of bits to be returned by Block_Cipher_df. The
maximum length (max_number _of bits) is 512 bits for the currently approved block cipher
algorithms.

Output:

1. status: The status returned from Block_Cipher_df. The status will indicate
SUCCESS or ERROR.

2. requested bits : The result of performing the Block_Cipher_df.

Process:

1. If (number_of bits_to_return> max_number_of bits), then return an ERROR.

2. L=len (input_string)/8. Comment: L is the bitstring represention of
the integer resulting from len (input_string)/8.
L shall be represented as a 32-bit integer.

3. N=number of bits to_return/8.  Comment : N is the bitsting represention of
the integer resulting from
number _of bits_to_return/8. N shall be
represented as a 32-bit integer.

Comment: Prepend the string length and the
requested length of the output to the
input_string.

3. S=L||N| input_string || 0x80.

Comment : Pad S with zeros, if necessary.
4. While (len (S) mod outlen) # 0, S =S || 0x00.

Comment : Compute the starting value.
5. temp = the Null string.

6. i=0. Comment : i shall be represented as a 32-bit
integer, i.e., len (i) = 32.

7. K = Leftmost keylen bits of 0x010203...1F.
8. While len (temp) < keylen + outlen, do

8.1 Iy=i|Quien-len® Comment: The 32-bit integer represenation of
i is padded with zeros to outlen bits.

8.2 temp = temp || Block_Cipher_Hash (X, (IV'{ S)).
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83 i=i+l.

Comment: Compute the requested number of
bits.

9. K=Leftmost keylen bits of temp.

10. X = Next outlen bits of temp.

11. temp = the Null string.

12. While len (temp) < number_of bits_to_return, do

12.1 X=Block Encrypt (X, X).
12.2 temp = temp || X.

13. requested_bits = Lefimost number_of bits_to_return of temp.
14. Return SUCCESS and requested_bits.

9.54

Block_Cipher_Hash Function

Let outlen be the length of the output block of the block cipher algorithm to be used.

The following or an equivalent process shall be used to derive the requested number of

bits.

Input:
1.
2.

Key: The key to be used for the block cipher opeation.

data_to_hash: The data to be operated upon. Note that the length of data_to_hash
must be a multiple of outlen. This is guaranteed by steps 4 and 8.1 in Section 9.6.2.

Output:

1.

output_block: The result to be returned from the Block_Cipher_Hash operation.

Process:

1.
2
8z
4

. Fori=1tondo

chaining value = 0"

Comment: Set the first chaining value to outlen zeros.
n=len (data _to_hash)/outlen.

Split the data_to_hash into n blocks of outlen bits each forming block, to blocky.

4.1 input block= chaining_value @ block; .
42 chaining value = Block_Encrypt (Key, input_block).
output_block = chaining_value.

Return output_block.
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9.6 Self-Testing of the DRBG

A DRBG shall perform self testing to obtain assurance that the implementation continues
to operate as designed and implemented (health testing). The testing function(s) within a
DRBG boundary (or sub-boundary) shall test each DRBG function within that boundary.

Errors occurring during testing shall be perceived as complete DRBG failures. The
condition causing the failure shall be corrected and the DRBG re-instantiated before
requesting pseudorandom bits (also, see Section 9.7)

9.6.1 Testing the Instantiate Function

Known-answer tests on the instantiate function shall be performed prior to creating each
operational instantiation. However, if several instantiations are performed in quick
succession using the same input parameters, then the testing may be reduced to testing
prior to creating the first instantiation using that parameter set.

The security strength and prediction_resistance_flag to be used in the operational
invocation shall be used during the test. Representative fixed values and lengths of the
entropy_input, nonce and personalization_string (if allowed) shall be used; the value of
the entropy _input used during testing shall not be intentionally reused during normal
operations (either by the instantiate or the reseed functions). Error handling shall be also
be tested, including an error in obtaining the entropy_input (e.g., the entropy input source
is broken).

If the values used during the test produce the expected results, and errors are handled
correctly, then the instantiate function may be used to instantiate using the tested values of
security_strength and prediction_resistance_flag.

An implementation should provide a capability to test the instantiate function on demand.
9.6.2 Testing the Generate Function

Known-answer tests shall be performed on the generate function before the first use of the
function and at reasonable intervals defined by the implementer. The implementer shall
document the intervals and provide a justification for the selected intervals.

The known-answer tests shall be performed for each implemented security_strength.
Representative fixed values and lengths for the requested_number_of bits and
additional_input (if allowed) and the working state of the internal state value (see Sections
8.3 and 10) shall be used. If prediction resistance is available, then each combination of
the security_strength, prediction_resistance_request and prediction_resistance_flag shall
be tested. The error handling for each input parameter shall also be tested, and testing shall
include setting the reseed _counter to meet or exceed the reseed_interval in order to check
that the implementation is reseeded or that the DRBG is “shut down”, as appropriate.

If the values used during the test produce the expected results, and errors are handled
correctly, then the generate function may be used during normal operations.

49



NIST SP 800-90 DRAFT September 2005

Bits generated during health testing shall not be output as pseudorandom bits.
An implementation should provide a capability to test the generate function on demand.

Note that the generate function performs a continuous test by comparing sequential output
blocks.

9.6.3 Testing the Reseed Function

A known-answer test of the reseed function shall use the security strength in the internal
state of the instantiation to be reseeded. Representative values of the entropy_input and
additional_input (if allowed) and the working state of the internal state value shall be used
(see Sections 8.3 and 10). Error handling shall also be tested, including an error in
obtaining the entropy_input (e.g., the entropy_input source is broken).

If the values used during the test produce the expected results, and errors are handled
correctly, then the reseed function may be used to reseed the instantiation.

The reseed function may be called every time that the generate function is called if
prediction resistance is available, and considerbly less frequently otherwise. Self-test shall
be performed as follows:

1. When prediction resistance is available in an implementation, the reseed function
shall be tested whenever the generate function is tested (see above).

2. When prediction resistance is not available in an implementation, the reseed
function shall be tested whenever the reseed function is invoked and before the
reseed is performed on the operational instantiation.

An implementation should provide a capability to test the reseed function on demand.
9.6.4 Testing the Uninstantiate Function

The uninstantiate function shall be tested whenever other functions are tested. Testing
shall attempt to demonstrate that error handling is performed correctly, and the internal
state has been "emptied".

9.7 Error Handling

The expected errors are indicated for each DRBG function (see Sections 9.1 - 9.4) and for
the derivation functions in Section 9.5. The error handling routines should indicate the
type of error. For catastrophic errors (e.g., entropy input source failure), the DRBG shall
not produce further output until the source of the error is corrected.

Many errors during normal operation may be caused by an application’s improper DRBG
request. In these cases, the application user is responsible for correcting the request within
the limits of the user’s organizational security policy. For example, if a failure indicating
an invalid requested security strength is returned, a security strength higher than the DRBG
or the DRBG instantiation can support has been requested. The user may reduce the
requested security strength if the organization’s security policy allows the information to
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be protected using a lower security strength, or the user shall use an appropriately
instantiated DRBG.

Failures that indicate that the entropy source has failed or that the DRBG failed health
testing (see Sections 9.6 and 11.4) shall be handled as complete DRBG failures. The
indicated DRBG problem shall be corrected, and the DRBG shall be re-instantiated before
the DRBG can be used to produce pseudorandom bits.
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10 DRBG Algorithm Specifications

Several DRBGs are specified in this Recommendation. The selection of a DRBG depends
on several factors, including the security strength to be supported and what cryptographic
primitives are available. An analysis of the consuming application’s requirements for
random numbers shall be conducted in order to select an appropriate DRBG. A detailed
discussion on DRBG selection is provided in Appendix G. Pseudocode examples for each
DRBG are provided in Appendix F. Conversion specifications required for the DRBG
implementations (e.g., between integers and bitstrings) are provided in Appendix B.

10.1 Deterministic RBGs Based on Hash Functions

A DRBG may be based on a hash function that is non-invertible or one-way. The hash
DRBGs specified in this Recommendation have been designed to use any Approved hash
function and may be used by applications requiring various security strengths, providing
that the appropriate hash function is used and sufficient entropy is obtained for the seed.

The following are provided as DRBGs based on hash functions:
1. The Hash DRBG specified in Section 10.1.1.
2. The HMAC_DRBG specified in Section 10.1.2.

The maximum security strength that could be supported by each hash function is provided
in SP 800-57. However, this Recommendation supports only four security strengths: 112,
128, 192, and 256. Table 2 specifies the values that shall be used for the function
envelopes and DRBG algorithm for each Approved hash function.

Table 2: Definitions for Hash-Based DRBGs

SHA-1 l SHA-224 l SHA-256 ‘ SHA-384 | SHA-512

Supported security strengths See SP 800-57
highest_supported_security_strength See SP 800-57

Output Block Length (outlen) 160 | 224 | 256 | 384 \ 512
Required minimum entropy for security strength

instantiate and reseed

Minimum entropy input length security_strength
(min_length)

Maximum entropy input length < 2% bits

(max_ length)

Seed length (seedlen) for 440 440 440 888 888
Hash_DRBG
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SHA-1 | SHA-224 \ SHA-256 ‘ SHA-384 | SHA-512

Maximum personalization string < 2% bits
length

(max_personalization_string_length)

Maximum additional_input length < 2% bits
(max_additional_input length)

max_number_of bits_per_request < 2" bits
Number of requests between <2®

reseeds (reseed_interval)

Note that since SHA-224 is based on SHA-256, there is no efficiency benefit for using the
SHA-224; this is also the case for SHA-384 and SHA-512, i.e., the use of SHA-256 or
SHA-512 instead of SHA-224 or SHA-384, respectively, is preferred. The value for
seedlen is determined by subtracting the count field (in the hash fu ction specification) and
one byte of padding from the hash function input block length; in the case of SHA-1, SHA-
224 and SHA 256, seedlen =512 - 64 - § = 440; for SHA-384 and SHA-512, seedlen=
1024 - 128 - 8 = 888.

10.1.1 Hash_DRBG
Figure 8 presents the normal operation of the Hash_DRBG. The Hash_DRBG requires
the use of a hash function during the instantiate, reseed and generate functions; the same

hash function shall be used in all functions. The hash function to be used shall meet or
exceed the desired security strength of the consuming application.

Implementation validation testing and health testing are discussed in Sections 9.6 and 11.
10.1.1.1 Hash_DRBG Internal State

The internal_state for Hash_DRBG consists of:
1. The working state:.
a. A value (V) of seedlen bits that is updated during each call to the DRBG.
b. A constant C of seedlen bits that depends on the seed.

c. The previous_output_block; this will be used to perform a continuous test on
the output from the generate function.

d. A counter (reseed_counter) that indicates the number of requests for
pseudorandom bits since new entropy_input was obtained during instantiation
or reseeding.

2. Administrative information:
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a. The security_strength of the (Opt)
. . 8 additional reseed
DRBG instantiation. Vv iput C counter

b. A prediction resistance_flag
that indicates whether or not a
prediction resistance
capability is required for the
DRBG.

The values of ¥ and C are the critical
values of the internal state upon which
the security of this DRBG depends (i.e.,
V and C are the “secret values” of the
internal state).

10.1.1.2 Instantiation of Hash_DRBG

inpud wNal T p4

11—

Notes for the instantiate function:
The instantiation of Hash_ DRBG
requires a call to the instantiate
function specified in Section 9.1; step
9 of that function calls the instantiate
algorithm in this section. For this ememoning 1 ¥ o
DRBG, step 5 should be omitted. { eowghbin o Counter; Y reseed ¢
The values of

From 0) ! counter
. . Hash i+ Psoudorandom Bi
highest_supported_security_strength iﬁmﬂm\ j* Feendorancom Hes

and min_length are provided in Table eenesene s nesenenennad

2 of Section 10.1. The contents of the |
internal state are provided in Section
10.1.1.1. Figure 8: Hash_DRBG

The instantiate algorithm:

Let Hash_df be the hash derivation function specified in Section 9.5.1 using the
selected hash function. The output block length (outlen), seed length (seedlen) and
appropriate security _strengths for the implemented hash function are provided in Table
2 of Section 10.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 9 in Section 9.1).

Input:
1. entropy input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.6.7.

3. personalization_string: The personalization string received from the consuming
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application. If a personalization_string will never be used, then steps 1 and 2
may be combined as follows:

seed = Hash_df (entropy_input, seedlen).
Output:

1. working state: The inital values for ¥, C, previous_output_block and
reseed_counter (see Section 10.1.1.1).

Process:
1. seed material = entropy input || nonce || personalization_string.
2. seed=Hash_df (seed_material, seedlen).

V = seed.

4. C=Hash_df ((0x00 || V), seedlen). Comment: Preceed ¥ with a byte of
ZEros.

5. reseed_counter=1.

Comment: Generate the initial block
for comparing with the first DRBG
output block (for continuous testing).

previous_output block = Hash (V).
H=Hash (0x03 || 7).
V=(V+H+ C+ reseed_counter) mod oseedlen

© o® N

reseed_counter = 2.

10. Return V, C, previous_output_block and reseed_counter as the working_state.
10.1.1.3 Reseeding a Hash_DRBG Instantiation

Notes for the reseed function:

The reseeding of a Hash_DRBG instantiation requires a call to the reseed function
specified in Section 9.2; step 5 of that function calls the reseed algorithm specified in
this section. The values for min_length are provided in Table 2 of Section 10.1.

The reseed algorithm:

Let Hash_df be the hash derivation function specified in Section 9.5.1 using the
selected hash function. The value for seedlen is provided in Table 2 of Section 10.1.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 in Section 9.2):

Input:

1. working state: The current values for V, C, previous_output_block and
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. reseed counter (see Section 10.1.1.1).
2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application. If additional_input will never be provided, then step 1 may be
modified to remove the additional_input.

Output:

1. working_state: The new values for V, C, previous_output_block and reseed
counter.

Process:

1. seed material = 0x01 || V|| entropy_input || additional_input.

2. seed=Hash_df (seed material, seedlen).
3. V=seed.
4, C=Hash_df ((0x00 || ), seedlen). Comment: Preceed with a byte of all

Zeros.

W

reseed_counter = 1.

6. Return V, C, previous _output_block and reseed_counter for the new
working_state.

10.1.1.4 Generating Pseudorandom Bits Using Hash_DRBG

Notes for the generate function:

The generation of pseudorandom bits using a Hash_DRBG instantiation requires a call
to the generate function specified in Section 9.3; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number_of bits_per request and outlen are provided in Table 2 of Section 10.1.

The generate algorithm:

Let Hash be the selected hash function. The seed length (seedlen) and the maximum
interval between reseeding (reseed_interval) are provided inTable 2 of Section 10.1.
Note that for this DRBG, the reseed counter is used to update the value of ¥ as well as
to count the number of generation requests.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of Section 9.3):

Input:

1. working state: The current values for V, C, previous_output_block and
reseed_counter (see Section 10.1.1.1).

2. requested number of bits: The number of pseudorandom bits to be returned to
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the generate function.

3. additional_input: The additional input string received from the consuming
application. If additional_input will never be provided, then step 3 may be
omitted.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, ERROR, or indicate that a reseed is required before the requested
pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits to be returned to the generate function.

3. working state: The new values for V, C, previous_output_block and
reseed_counter.

Process:

1. If reseed _counter > reseed_interval, then return an indication that a reseed is
required.

2. If (additional input # Null), then do
3.1 w = Hash (0x02 || V|| additional_input).
3.2 V= (V+w) mod 2"

4, (status, returned_bits, previous_output_block) = Hashgen
(requested_number_of bits, V, previous_output_block).

If an ERROR is returned in step 4, then return ERROR.
H =Hash (0x03 || V).

V=(V+ H+ C + reseed_counter) mod geedlen
reseed_counter = reseed_counter + 1.

Return SUCCESS, returned_bits, and the new values of V, C,
previous_output_block and reseed_counter for the new working_state.

Hashgen (...):

© % N o

Input:
1. requested no_of bits: The number of bits to be returned.
2. V: The current value of V.

3. previous_output_block: The last output block from the previous generate
request.

Output:

1. status: The status returned from this routine. The status will indicate
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SUCCESS or an ERROR.
2. returned bits: The generated bits to be returned to the generate function.

3. previous_output_block: The last output block generated using this routine.

Process:
L m= Irrequested_ no_ of_btts.l '
outlen
2. data=V.

W = the Null string.
4, Fori=1tom
4.1 w; = Hash (data).
4.2 If (w; = previous_output_block), then return an ERROR.
4.3 previous_output_block = w;.
44 W=W| wi
4.5 data = (data + 1) mod 27",
5. returned_bits = Leftmost (requested_no_of bits) bits of W.
6. Return SUCCESS, returned bits, previous_output_block.
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10.1.2 HMAC_DRBG (...)

HMAC_DRBG uses multiple occurrences of an Approved keyed hash function, which is
based on an Approved hash function. The same hash function shall be used throughout.
The hash function used shall meet or exceed the security requirements of the consuming
application.

Figure 9 depicts the HMAC_DRBG in stages. HMAC_DRBG is specified using an
internal function (Update). This function is called during the HMAC_DRBG instantiate,

generate and reseed algorithms to adjust (Opt) ditlenalinput
the internal state when new entropy or
additional input is provided. The lIf'N“Il

operations in the top portion of the figure
are only performed if the additional input UPDATE
. . . m
is not. null. Figure 10 depicts the Update = EEE]

function. (el .

10.1.2.1 HMAC_DRBG Internal State

The internal state for HMAC_DRBG
consists of:

1. The working state: o
a. The value V of outlen bits, 1
which is updated each time
another outlen bits of output HMAC |
are produced (where outlen is - v i
specified in Table 2 of Section ‘:""
10.1). S Reoavwf] -
b. The Key of outlen bits, which !
is updated at least once each Frrlorsadonbiz
time that the DRBG generates
additional input

pseudorandom bits.

¢. A counter (reseed_counter)
that indicates the number of
requests for pseundorandom
bits since instantiation or
reseeding.

UPDATE

2. Administrative information:

a. The security strength of the
DRBG instantiation. N,

b. A prediction_resistance_flag

that indicates whether or not a Figure 9: HMAC_DRBG Generate Function
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prediction resistance capability is required for the DRBG.

The values of ¥ and Key are the critical

values of the internal state upon which the | vl

security of this DRBG depends (i.e., V v —
and Key are the “secret values” of the
internal state).
10.1.2.2 The Update Function (Update) Rey HMAC
v

The Update function updates the internal Koy N MAC
state of HMAC_DRBG using the {v:l
provided_data. Note that for this DRBG, -
the Update function also serves as a :, Mot dut = bt |
derivation function for the instantiate and
reseed functions. e i S
Let HMAC be the keyed hash function | [ioetipesedan
specified in FIPS 198 using the hash ! I
function selected for the DRBG from L | avac |
Table 2 in Section 10.1. : L 5

L
The following or an equivalent process | & | L
shall be used as the Update function.

Key v

Input:

1. provided data: The data to be Figure 10: HMAC_DRBG Update Function
used.

2. K: The current value of Key.

3. V: The current value of V.
Output:

1. K: The new value for Key.

2. V: The new value for V.
Process:

1. K=HMAC (K, V|| 0x00 || provided_data).
V=HMAC (X, V).
If (provided data = Null), then return K and V.
K=HMAC (X, V| 0x01 || provided_data).
V=HMAC (X, ).
Return K and V.

A i
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10.1.2.3 Instantiation of HMAC_DRBG

Notes for the instantiate function:

The instantiation of HMAC_DRBG requires a call to the instantiate function specified
in Section 9.2; step 9 of that function calls the instantiate algorithm specified in this
section. For this DRBG, step 5 should be omitted. The values of
highest_supported_security_strength and min _length are provided in Table 2 of
Section 10.1. The contents of the internal state are provided in Section 10.1.2.1.

The instantiate algorithm:

Let Update be the function specified in Section 10.1.2.2. The ouput block length
(outlen) is provided in Table 2 of Section 10.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 8 of Section 9.1):

Input:
1. entropy_input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.6.7.

3. personalization_string: The personalization string received from the consuming
application. If a personalization_string will never be used, then step 1 may be
modified to remove the personalization_string.

Output:

1. working_state: The inital values for ¥, Key and reseed_counter (see Section
10.1.2.1).

Process:
1. seed_material = entropy_input || nonce || personalization_string.
2. Key=0x00 00...00. Comment: outlen bits.
3. ¥V=0x0101...01. Comment: outlen bits.
Comment: Update Key and V.
4. (Key, V)= Update (seed_material, Key, V).

Comment: Generate the initial block for
comparing with the first DRBG output block
(for continuous testing).

V=HMAC (Key, V).
6. (Key, V)= Update (seed_material, Key, V)

7. reseed counter=1.
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8. Return ¥, Key and reseed_counter as the initial working_state.
10.1.2.4 Reseeding an HMAC_DRBG Instantiation

Notes for the reseed function:

The reseeding of an HMAC_DRBG instantiation requires a call to the reseed function
specified in Section 9.2; step 5 of that function calls the reseed algorithm specified in
this section. The values for min_length are provided in Table 2 of Section 10.1.

The reseed algorithm:

Let Update be the function specified in Section 10.1.2.2. The following process or its
equivalent shall be used as the reseed algorithmn for this DRBG (see step 5 of Section
9.2):

Input:

1. working_state: The current values for V, Key and reseed_counter (see Section
10.1.2.1).

2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application. If additional_input will never be used, then step 1 may bemodified
to remove the additional_input.

Output:

1. working state: The new values for ¥, Key and reseed_counter.
Process:

1. seed material = entropy_input || additional_input.

2. (Key, V)= Update (seed_material, Key, V).

3. reseed counter =1,

4. Return V, Key and reseed_counter as the new working_state.
10.1.2.5 Generating Pseudorandom Bits Using HMAC_DRBG

Notes for the generate function:

The generation of pseudorandom bits using an HMAC_DRBG instantiation requires a
call to the generate function specified in Section 9.3; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number_of bits_per_request and outlen are provided in Table 2 of Section 10.1.

The generate algorithm :

Let HMAC be the keyed hash function specified in FIPS 198 using the hash function
selected for the DRBG. The value for reseed_interval is defined in Table 2 of Section
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10.1.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of Section 9.3):

Input:

1. working_state: The current values for ¥, Key and reseed_counter (see Section
10.1.2.1).

2. requested_number_of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional_input: The additional input string received from the consuming
application. If an implementation will never use additional_input, then step 3
may be omitted. If an implementation does not include the additional _input
parameter as one of the calling parameters, or if the implementation allows
additional_input, but a given request does not provide any additional_input,
then a Null string shall be used as the additional_input in step 7.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, an ERROR or indicate that a reseed is required before the
requested pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits to be returned to the generate function.
3. working_state: The new values for V, Key and reseed_counter.
Process:

1. If reseed counter > reseed_interval, then return an indication that a reseed is
required.

V old=V.
If additional _input # Null, then (Key, V) = Update (additional_input, Key, V).
temp = Null.

A=l

While (len (femp) < requested_number_of bits) do:
5.1 V=HMAC (Key V).

Comment: Continuous test — check that
successive values of ¥ are not identical.

5.2 If(¥'=V _old), then return an ERROR.
53 V.old=V.
54 temp=temp| V.
6. returned_bits = Leftmost requested_number_of bits of temp.
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7. (Key, V)= Update (additional _input, Key, V).
8. reseed_counter = reseed_counter + 1.

9. Return SUCCESS, returned bits, and the new values of Key, V' and
reseed_counter as the working_state).
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10.2 DRBGSs Based on Block Ciphers

A block cipher DRBG is based on a block cipher
algorithm. The block cipher DRBG specified in
this Recommendation has been designed to use
any Approved block cipher algorithm and may l 1 i
be used by applications requiring various levels _ I ‘ :
of security, providing that the appropriate block ¥ —v%: : + |
cipher algorithm and key length are used, and ! :
sufficient entropy is obtained for the seed. I }
10.21 CTR_DRBG i[ Block i
i |

CTR_DRBG uses an Approved block cipher
algorithm in the counter mode as specified in SP
800-38A. The same block cipher algorithm and
key length shall be used for all block cipher B, l B, fu |Bl l
operations. The block cipher algorithm and key
length shall meet or exceed the security
requirements of the consuming application.

provided daia——» @
CTR_DRBG is specified using an internal I
function (Update). Figure 11 depicts the
Update function. This function is called by the

instantiate, generate and reseed algorithms to

adjust the internal state when new entropy or
additional input is provided. Figure 12 depicts

the CTR_DRBG in three stages. The operations
in the top portion of the figure are only
performed if the additional input is not null.

Figure 11: CTR_DRBG Update Function

Table 3 specifies the values that shall be used for the function envelopes and DRBG
algorithms.

Table 3: Definitions for the CTR_DRBG

3Key | AES-128 | AES-192 | AES-256
TDEA
Supported security strengths See SP 800-57
highest_supported_security strength See SP 800-57
Output block length (outlen) 64 128 128 128
Key length (keylen) 168 128 192 256
Required minimum entropy for security strength
instantiate and reseed
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3Key | AES-128 | AES-192 | AES-256
TDEA

Seed length (seedlen = outlen + keylen) 232 256 320 384

A derivation function is used:

Minimum entropy input length security strength
(min _length)

Maximum entropy input length < 2% bits
(max _length)

Maximum personalization string < 2% bits
length
(max_personalization_string_length)

Maximum additional_input length < 2% bits
(max_additional_input_length)

A derivation function is not used (full
entropy is available):

Minimum entropy input length seedlen
(min _length) (outlen + keylen)

Maximum entropy input length seedlen
(max _length) (outlen + keylen)

Maximum personalization string seedlen
length
(max_personalization_string_length)

Maximum additional_input length seedlen
(max_additional_input_length)

max_number_of bits_per_request <28 <2P

Number of requests between reseeds <2* <2®
(reseed_interval)

The CTR_ DRBG may be implemented to use the block cipher derivation function
specified in Section 9.5.2. However, the DRBG is specified to allow an implementation
tradeoff with respect to the use of this derivation function. If a source for full entropy
input is always available to provide entropy input when requested, the use of the
derivation function is optional; otherwise, the derivation functon shall be used. Table 3
provides lengths required for the entropy_input, personalization_string and

additional _input for each case.
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When full entropy is available, and a
derivation function is not used by an
implementation, the seed

(Opt) additlonal input

construction (see Section 8.6.1) shall
not use a nonce*.

BLOCK CIFHER
DERIVATION

FUNCTION
When using TDEA as the selected sordlen bits I
block cipher algorithm, the keys
shall be handled as 64-bit blocks UPDATE
containing 56 bits of key and 8 bits
of parity as specified for the TDEA
engine specified in SP 800-67.
10.2.1.1 CTR_DRBG Internal State
The internal state for CTR_DRBG
consists of:
Note: B, is the previous ouiputblack Ticrate
1. The working state: | 0T
a. The value V of outlen b1 ¢ l :
bits, which is updated Smke
each time another outlen Ky | v |Ba 100 | - ' Eﬁi‘;;‘;t :
bits of output are :
produced (see Table 3 in 3
Section 10.2.1). <
b. The Key of keylen bits, , '
which is updated . .
whenever a
predetermined number of
output blocks are o
generated.
c. The
previous_output_block; = —
this is required to perform Kay | vljpeseed | - l UFDATE

a continuous test on the 1 [
+a—1

output from the generate
function.

d. A counter

gre.s"eed_counter) that Figure 12;: CTR-DRBG
indicates the number of

requests for

4 The specifications in this Standard do not accommodate the special treatment required for a nonce in this
case.
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pseudorandom bits since instantiation or reseeding.
2. Administrative information:
a. The security_strength of the DRBG instantiation.

b. A prediction_resistance_flag that indicates whether or not a prediction
resistance capability is required for the DRBG.

The values of ¥ and Key are the critical values of the internal state upon which the
security of this DRBG depends (i.e., ¥ and Key are the “secret values” of the internal
state).

10.2.1.2 The Update Function (Update)

The Update function updates the internal state of the CTR_DRBG using the
provided_data. The values for outlen, keylen and seedlen are provided in Table 3 of
Section 10.2.1. The block cipher operation in step 2.2 uses the selected block cipher
algorithm (also see Section 9).

The following or an equivalent process shall be used as the Update function.
Input:

1. provided data: The data to be used. This must be exactly seedlen bits in
length; this length is guaranteed by the construction of the provided data in
the instantiate, reseed and generate functions.

2. Key: The current value of Key.
3. V:The current value of V.
Output:
1. K: The new value for Key.
2. V:The new value for V.
Process:
1. temp = Null.
2. While (len (temp) < seedlen) do
2.1 V=(V+1)mod 2°"
29 output_block = Block_Encrypt (Key, V).
2.3 temp=temp || ouput_block.
3. temp = Leftmost seedlen bits of temp.
4 temp = temp ® provided_data.
5. Key = Leftmost keylen bits of temp.
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6. V' =TRightmost outlen bits of temp.
7. Return the new values of Key and V.
10.2.1.3 Instantiation of CTR_DRBG

Notes for the instantiate function:

The instantiation of CTR_DRBG requires a call to the instantiate function specified
in Section 9.1; step 9 of that function calls the instantiate algorithm specified in this
section. For this DRBG, step 5 should be omitted. The values of

highest _supported_security_strength and min _length are provided in Table 3 of
Section 10.2.1. The contents of the internal state are provided in Section 10.2.1.1.

The instantiate algorithm:

Let Update be the function specified in Section 10.2.1.2, and let Block_Cipher_df
be the derivation function specified in Section 9.5.2 using the chosen block cipher
algorithm and key size. The output block length (outlen), key length (keylen), seed
length (seedlen) and security_strengths for the block cipher algorithms are provided
in Table 3 of Section 10.2.1. '

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG: '

Input:
1. entropy_input: The string of bits obtained from the entropy input source.

2. nonce: A string of bits as specified in Section 8.6.7; this string shall not be
present when a derivation function is not used.

3. personalization_string: The personalization string received from the
consuming application.

Output:

1. working state: The inital values for ¥, Key, previous_output_block and
reseed_counter (see Section 10.2.1.1).

Process:
1. Ifthe block cipher derivation function is available, then
1.1 seed material = entropy_input || nonce || personalization_string.
1.2 seed material = Block_Cipher_df (seed_material, seedlen).

Else Comment: The block cipher
derivation function is not used and
full entropy is known to be available.

1.3 temp = len (personalization_string).
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1.4 If (temp < seedlen), then personalization_string =
personalization_string || 0¥eedlen-1emp

1.5 seed material = entropy_input ® personalization_string.
Key = 0F'n, Comment: keylen bits of zeros.
y = geuten, Comment: outlen bits of zeros.
(Key, V) = Update (seed_material, Key, V).

reseed _counter = 1.

N

Comment: Generate the initial block for
comparing with the first DRBG output block
(for continuous testing).

6. previous output_block = Block Encrypt (Key, V).

Oseedlen

7. zeros = Comment: Produce a string of

seedlen zeros.
8. (Key, V)= Update (zeros, Key, V).

9. Return ¥, Key, previous_output_block and reseed_counter as the
working_state.

Implementation notes:

1. If a personalization_string will never be provided from the instantiate function and
a derivation function will be used, then step 1.1 becomes:

seed_material = Block_Cipher_df (entropy_input, seedlen).

2. Ifapersonalization_string will never be provided from the instantiate function, a
full entropy source will be available and a derivation function will not be used,
then step 1 becomes

seed_material = entropy _input.

That is, steps 1.3 — 1.6 collapse into the above step.
10.2.1.4 Reseeding a CTR_DRBG Instantiation

Notes for the reseed function:

The reseeding of a CTR_DRBG instantiation requires a call to the reseed function
specified in Section 9.2; step 5 of that function calls the reseed algorithm specified in
this section. The values for min _length are provided in Table 3 of Section 10.2.1.

The reseed algorithm:

Let Update be the function specified in Section 10.2.1.2, and let Block_Cipher_df

be the derivation function specified in Section 9.5.2 using the chosen block cipher

algorithm and key size. The seed length (seedlen) is provided in Table 3 of Section
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10.2.1.

If a block cipher derivation function is to be used, then the Block_Cipher_df
specified in Section 9.5.2 shall be implemented using the chosen block cipher
algorithm and key size; in this case, step 1 below shall consist of steps 1.1 and 1.2
(i.e., steps 1.3 to 1.5 shall not be used).

If full entropy is available whenever entropy input is required, and a block cipher
derivation function is not to be used, then step 1 below shall consist of steps 1.3 to
1.5 (i.e., steps 1.1 and 1.2 shall not be used).

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 of Section 9.2):

Input:

1. working_state: The current values for V, Key and reseed_counter (see Section
10.2.1.1).

2. entropy input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application.

Output:

1. working_state: The new values for V, Key, previous_output_block and
reseed _counter.

Process:
1. Ifthe block cipher derivation function is available, then
1.1 seed material = entropy_input || additional_input.
1.2 seed material = Block_Cipher_df (seed_material, seedlen).

Else Comment: The block cipher
derivation function is not used
because full entropy is known to be
available.

1.3  temp = len (additional input).

14 If ({ﬁmp < seedlen), then additional_input = additional_input ||
Osee en-lemp'

1.5 seed material = entropy input © additional_input.
2. (Key, V)= Update (seed_material, Key, V).
3. reseed counter=1.

4. Return V, Key, previous_output_block and reseed_counter as the
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working state.

Implementation notes:

1. If additional_input will never be provided from the reseed function and a
derivation function will be used, then step 1.1 becomes:

seed_material = Block_Cipher_df (entropy_input, seedlen).

2. If additional input will never be provided from the reseed function, a full entropy
source will be available and a derivation function will not be used, then step 1
becomes :

seed_material = entropy_input.

That is, steps 1.3 — 1.6 collapse into the above step.
10.2.1.5 Generating Pseudorandom Bits Using CTR_DRBG

Notes for the generate function:

The generation of pseudorandom bits using a CTR_DRBG instantiation requires a
call to the generate function specified in Section 9.3, step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number_of bits_per_request and outlen are provided in Table 3 of Section
10.2.1. If the derivation function is not used, then the maximum allowed length of
additional_input = seedlen.

Let Update be the function specified in Section 10.2.1.2. The seed length (seedlen)
and the value of reseed_interval are provided in Table 3 of Section 10.2.1. Step 5.2
below uses the selected block cipher algorithm, If a derivation function is not used for
a DRBG implementation, then step 3.2 shall be omitted.

If a block cipher derivation function is to be used, then the Block_Cipher_df
specified in Section 9.5.2 shall be implemented using the chosen block cipher
algorithm and key size; in this case, step 3.2 below shall be included.

If full entropy is available whenever entropy input is required, and a block cipher
derivation function is not to be used, then step 3.2 below shall not be used.

The following process or its equivalent shall be used as generate algorithm for this
DRBG (see step 8 of Section 9.3):

Input:

1. working_state: The current values for V, Key, previous_output_block and
reseed_counter (see Section 10.2.1.1).

2. requested_number of bits: The number of pseudorandom bits to be returned
to the generate function.

3. additional_input: The additional input string received from the consuming
application. If additional_input will never be provided, then step 3 may be
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omitted.

Output:

1.

status: The status returned from the function. The status will indicate
SUCCESS, an ERROR or indicate that a reseed is required before the
requested pseudorandom bits can be generated.

returned_bits: The pseudorandom bits returned to the generate function.

3. working state: The new values for V, Key, previous_output_block and
reseed_counter.
Process:
1. Ifreseed counter > reseed_interval, then return an indication that a reseed is

required.
V old=V.

3. If (additional_input # Null), then

Comment: If the length of the additional
input is > seedlen, derive seedlen bits.

3.1 temp=Ilen (additional input).

Comment: If a block cipher derivation
function is used:

3.2 If (temp > seedlen), then additional_input = Block_Cipher_df
(additional_input, seedlen).

Comment: If the length of the
additional_input is < seedlen, pad with
zeros to seedlen bits.

3.3 If (temp < seedlen), then additional_input = additional _input || 0**"-

temp

3.4 (Key, V)= Update (additional_input, Key, V).
temp = Null.

5. While (len (femp) < requested number_of bits) do:

5.1 V=(¥+1)mod2°"",
5.2 output_block = Block_Encrypt (Key, V).

Comment: Continuous test — Check that the
old and new output blocks are different.

5.3 If (output_block = previous_output_block), then return an ERROR.
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5.4 previous_output_block = output_block.
5.5 temp =temp | ouput_block.
6. returned_bits = Leftmost requested_number_of _bits of temp.

Comment: Update for backtracking
resistance.

geeedlen, Comment: Produce a string of

seedlen zeros.

7. zeros=

8. (Key, ¥)=Update (zeros, Key, V).
9. reseed_counter = reseed _counter + 1.

10 Return SUCCESS and returned_bits; also return Key, V,
previous_output_block and reseed_counter as the new working_state.
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10.3 Deterministic RBGs Based on Number Theoretic Problems

A DRBG can be designed to take advantage of number theoretic problems (e.g., the
discrete logarithm problem). If done correctly, such a generator’s properties of randomness
and/or unpredictability will be assured by the difficulty of finding a solution to that
problem. This section specifies a DRBG based on the elliptic curve discrete logarithm
problem.

10.3.1 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)

Dual EC_DRBG is based on the following hard problem, sometimes known as the
“elliptic curve discrete logarithm problem” (ECDLP): given points P and Q on an elliptic
curve of order n, find a such that Q = aP.

Dual EC_DRBG uses a seed that is m bits in length (i.e., seedlen = m) to initiate the
generation of outlen-bit pseudorandom strings by performing scalar multiplications on two
points in an elliptic curve group, where the curve is defined over a field approximately 2"
in size. For all the NIST curves given in this Standard, m > 163. Figure 13 depicts the
Dual_EC_DRBG.

seed
Tnstard. o
Teseed onty

>-lots L ot (52 o Y

[Optional]
additional input 33_] i
0 P Q Pseudorandom

Bits

H sddifionalingut = Full

Figure 13: Dual_EC_DRBG

The instantiation of this DRBG requires the
selection of an appropriate elliptic curve and
curve points specified in Annex A.1 for the
desired security strength. The seed used to
determine the initial value (s) of the DRBG shall l |
have entropy that is at least security_strength +
64 bits. Further requirements for the seed are R, R,
provided in Section 8.6.

Backtracking resistance is inherent in the
algorithm, even if the internal state is
compromised. As shown in Figure 14,

Figure 14: Dual_EC_DRBG (...)
Backtracking Resistance
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Dual EC_DRBG generates a seedlen-bit number for each step i = 1,2,3,..., as follows:

Si = @ X(Si-1 *P))

Ri= (xS *Q) ).
Each arrow in the figure represents an Elliptic Curve scalar multiplication operation,
followed by the extraction of the x coordinate for the resulting point and for the random
output R, and by truncation to produce the output. Following a line in the direction of the
arrow is the normal operation; inverting the direction implies the ability to solve the
ECDLP for that specific curve. An adversary’s ability to invert an arrow in the figure
implies that the adversary has solved the ECDLP for that specific elliptic curve.
Backtracking resistence is built into the design, as knowledge of S does not allow an
adversary to determine Sy (and so forth) unless the adversary is able to solve the ECDLP
for that specific curve. In addition, knowledge of R, does not allow an adversary to
determine S; (and so forth) unless the adversary is able to solve the ECDLP for that
specific curve.

Table 4 specifies the values that shall be used for the envelope and algorithm for each
curve. Complete specifications for each curve are provided in Annex A.1. Note that all
curves except the P-224 curve can be instantiated at a security strength lower than its
highest possible security strength. For example, the highest security strength that can be
supported by curve P-384 is 192 bits; however, this curve can alternatively be instantiated
to support only the 112 or 128-bit security strengths).

Table 4: Definitions for the Dual_EC_DRBG

P-224 ‘ P-256 ! P-384 P-521
Supported security strengths See SP 800-57
highest_supported See SP 800-57
security_strength
Output block length (max_outlen = 208 240 368 504
largest multiple of 8 less than
seedlen - (13 + log; (the cofactor))
Required minimum entropy for security_strength
instantiate and reseed
Minimum entropy input length 224 256 384 528
(min_length =8 x rseedlen/S-l )
Maximum entropy input length <2 bits
(max _length)
Maximum personalization string < 2" bits
length
(max_personalization_string_length)
Supported security strengths See SP 800-57
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P-224 P-256 P-384 P-521
Seed length (seedlen = m) 224 256 384 521
Appropriate hash functions SHA-1, SHA-224, SHA-256, | SHA-224, | SHA-256,
SHA-384, SHA-512 SHA-256, | SHA-384,
SHA-384, | SHA-512
SHA-512
max_number_of bits_per_request max_outlen x reseed_interval
Number of blocks between < 2** blocks
reseeding (reseed_interval)

Validation and Operational testing are discussed in Section 11. Detected errors shall result
in a transition to the error state.

10.3.1.1 Dual_EC_DRBG Internal State

The internal state for Dual_EC_DRBG consists of:

1. The working state:

a.
b.

A value (s) that determines the current position on the curve.

The elliptic curve domain parameters (seedlen, p, a, b, n), where seedlen is the
length of the seed ; a and b are two field elements that definethe equation of
the curve, and » is the order of the point G. If only one curve will be used by an
implementation, these parameters need not be present in the working_state.

Two points P and Q on the curve; the generating point G specified in FIPS 186-
3 for the chosen curve will be used as P. If only one curve will be used by an
implementation, these points need not be present in the working_state.

¥_old, the previous output block.

A counter (block_counter) that indicates the number of blocks of random
produced by the Dual EC_DRBG since the initial seeding or the previous
reseeding,.

2. Administrative information:

a.
b.

The security_strength provided by the instance of the DRBG,

A prediction_resistance_flag that indicates whether prediction resistance is
required by the DRBG.

The value of s is the critical value of the internal state upon which the security of this
DRBG depends (i.e., s is the “secret value” of the internal state).

77




NIST SP 800-90 - Duai_ EC_DRBG DRAFT September 2005

10.3.1.2 [Instantiation of Dual_EC_DRBG

Notes for the instantiate function:

The instantiation of Dual_EC_DRBG requires a call to the instantiate function
specified in Section 9.1; step 9 of that function calls the instantiate algorithm in this
section.

In step 5 of the instantiate function, the following step shall be performed to select an
appropriate curve if multiple curves are available.

5. Using the security_strength and Table 4 in Section 10.3.1, select the smallest
available curve that has a security strength > security_strength.

The values for seedlen, p, a, b, n, P, Q are determined by that curve.

It is recommended that the default values be used for P and Q as given in Annex A.1.
However, an implementation may use different pairs of points, provided that they are
verifiably random, as evidenced by the use of the procedure specified in Annex A.2.1
and the self-test procedure described in Annex A.2.2.

The values for highest supported_security_strength and min_length are determined by
the selected curve (see Table 4 in Section 10.3.1).

The instantiate algorithm :

Let Hash_df be the hash derivation function specified in Section 9.5.1 using an
appropriate hash function from Table 4 in Section 10.3.1. Let seedlen be the
appropriate value from Table 4.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 9 of Section 9.1):

Input:
1. entropy_input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.6.7.

3. personalization_string: The personalization string received from the consuming
application.

Output:

1. s: The initial secret value for the working_state.

2. r_old: The initial output block (which will not be used).

3. block counter: The initialized block counter for reseeding.
Process:

1. seed material = entropy_input || nonce || personalization_string.

Comment: Use a hash function to ensure that
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the entropy is distributed throughout the bits,
and s is m (i.e., seedlen) bits in length.

2. s=Hash_df (seed material, seedlen).

Comment: Generate the initial block for
comparing with the 1st DRBG output block
(for continuous testing).

w

r_old= o(x(s * Q). Comment: r is a seedlen-bit number.
4. block _counter =0.

5. Return s, 7 old and block_counter for the working_state.
10.3.1.3 Reseeding of a Dual_EC_DRBG Instantiation

Notes for the reseed function:

The reseed of Dual EC_DRBG requires a call to the reseed function specified in
Section 9.2; step 5 of that function calls the reseed algorithm in this section. The values
for min _length are provided in Table 4 of Section 10.3. 1.

The reseed algorithm :

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 4 in Section 10.3. 1.

The following process or its equivalent shall be used to reseed the Dual EC_DRBG
process after it has been instantiated (see step 4 in Section 9.2):

Input:
1. s: The current value of the secret parameter in the working_state.
2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application.

Output:
1. s: The new value of the secret parameter in the working_state.
2. block_counter: The re-initialized block counter for reseeding,
Process:

Comment: pad8 returns a copy of s padded
on the right with binary 0’s, if necessary, to a
multiple of 8.

1. seed material = pad8 (s) || entropy _input || additional_input_string.
2. 5= Hash_df (seed_material, seedlen).
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3. block _counter=0.
4. Return s and block counter for the new working_state.

Implemeniation notes:

If an implementation never allows additional_input, then step 1 may be modified as
follows :

seed_material = pad8 (s) || entropy_input.
10.3.1.4 Generating Pseudorandom Bits Using Dual_EC_DRBG

Notes for the generate function:

The generation of pseudorandom bits using a Dual_EC_DRBG instantiation requires a
call to the generate function specified in Section 9.3; step 8 of that function calls the
generate algorithm specified in this section. The values for
max_number _of bits_per request and max_outlen are provided in Table 4 of Section
10.3.1. outlen is the number of pseudorandom bits taken from each x-coordinate as the
Dual EC_DRBG steps. For performance reasons, the value of outlen should be set to
the maximum value as provided in Table 4. However, an implementation may set
outlen to any multiple of 8 bits less than or equal to max_outlen. The bits that become
the Dual EC_DRBG output are always the rightmost bits, i.., the least significant bits
of the x-coordinates.

The generate algorithm:

Let Hash_df be the hash derivation function specified in Section 9.5.1 using an
appropriate hash function from Table 4 in Section 10.3.1. The value of reseed_interval
is also provided in Table 4.

The following are used by the generate algorithm:

a. pad8 (bitstring) returns a copy of the bitstring padded on the right with binary
0’s, if necessary, to a multiple of 8.

b. Truncate (bitstring, in_len, out_len) inputs a bitstring of in_len bits, returning
a string consisting of the leftmost out_len bits of bitstring. 1f in_len < out_len,
the bitstring is padded on the right with (out_len - in_len) zeroes, and the result
is returned.

c. x(A) is the x-coordinate of the point 4 on the curve, given in affine coordinates.
An implementation may choose to represent points internally using other
coordinate systems; for instance, when efficiency is a primary concern. In this
case, a point shall be translated back to affine coordinates before x() is applied.

d. ¢ (x) maps field elements to non-negative integers, taking the bit vector
representation of a field element and interpreting it as the binary expansion of
an integer.
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The precise definition of (x) used in steps 6 and 7 below depends on the field
representation of the curve points. In keeping with the convention of FIPS 186-
2, the following elements will be associated with each other (note that m =
seedlen):

B: |Cmi|Cmz| - |C1]Co| , abitstring, with c,.1 being leftmost
Z emi2™ + .t +e2't o € Z;
Farcp2™ + ... +c22 + ¢2'+ ¢o modp e GF(p) ;

Thus, any field element x of the form Fa will be converted to the integer Z or
bitstring B, and vice versa, as appropriate.

e. *isthe symbol representing scalar multiplication of a point on the curve.

The following process or its equivalent shall be used to generate pseudorandom bits
(see step 8 in Section 9.3):

Input:

1. working_state: The current values for s, seedlen, p, a, b, n, P, Q,r_old and
reseed_counter (see Section 10.3.1.1).

2. requested number_of bits: The number of pseudorandom bits to be returned to

the generate function.
3. additional_input: The additional input string received from the consuming
application.
Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, ERROR or an indication that a reseed is required before the
requested pseudorandom bits can be generated.

returned_bits: The pseudorandom bits to be returned to the generate function.
s: The new value for the secret parameter in the working_state.

r_old: The last output block.

oW

5. block_counter: The updated block counter for reseeding.
Process:

Comment: Check whether a reseed is
required. '

requested _number _of _bils

1. If (block counter+[
- outlen

return an indication that a reseed is required.

D >reseed_interval, then

Comment: If additional _input is Null, set to
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seedlen zeroes; otherwise, Hash_df to

seedlen bits.
2. If (additional_inpus_string = Null), then additional _input =0
Else additional _input = Hash_df (pad8 (additional_input_string), seedlen).
Comment: Produce requested no_of bits,
outlen bits at a time:

3. temp = the Null string.

4 i=0.

5. t=1s5® additional _input. Comment: ¢ is to be interpreted as a seedlen-
bit unsigned integer. To be precise, ¢ should
be reduced mod #; the operation * will effect
this.

6. s=o(x( *P)). Comment: s is a seedlen-bit number.

7. ¥ =o(x(s *Q)). Comment: r is a seedlen-bit number.
Comment: Continuous test — Compare the old
and new output blocks to assure that they are
different.

8. If (r=r_old), then return an ERROR.

9. rold=r.

10. temp = temp || (rightmost outlen bits of 7).

11. additional_input=0 Comment: seedlen zeroes;
additional_input_string is added only on the
first iteration.

12. block _counter = block_counter + 1.

13.i=i+1.

14. If (len (temp) < requested_number_of bits), then go to step 5.

15 returned_bits = Truncate (temp, i x outlen, requested_number_of bits).

16. Return SUCCESS, returned_bits, and s, r_old and block_counter for the
working_state.
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11 Assurance

A user of a DRBG for cryptographic purposes requires assurance that the generator
unpredictable bits. The user needs

assurance that the design of the generator, Design < Evaluation
cryptographic services are adequate to

protect the user's information. In addition,

generator continues to operate correctly. l l

The assurance strategy for the DRBGs in

15.

The design of each DRBG in this

evaluation of its security properties prior to

its selection for inclusion in this

actually produces random and

its implementation and its use to support l l

the user requires assurance that the ‘ Standards

this Recommendaion is depicted in Figure Implementaﬁon & Validation
Recommendation has received an Operational Tests
Recommendation. Figure 15: DRBG Assurance Strategy

An implementation shall be validated for

conformance to this Recommendation by a NVLAP accredited laboratory (see Section
11.2). The consuming application or cryptographic service that uses a DRBG should also
be validated and periodically tested for continued correct operation. However, this level of
testing is outside the scope of this Recommendation. Such validations provide a higher
level of assurance that the DRBG is correctly implemented. Validation testing for DRBG
processes consists of testing whether or not the DRBG process produces the expected
result, given a specific set of input parameters (e.g., entropy input).

Operational (i.e., health) tests on the DRBG shall be implemented within a DRBG
boundary or sub-boundary in order to determine that the process continues to operate as
designed and implemented. See Section 11.3 for further information.

A cryptographic module containing a DRBG shall be validated (see FIPS 140-2). The
consuming application or cryptographic service that uses a DRBG should also be validated
and periodically tested for continued correct operation. However, this level of testing is
outside the scope of this Recommendation.

Note that any entropy input used for testing (either for validation testing or
operational/health testing) may be publicly known. Therefore, entropy input used for
testing shall not knowingly be used for normal operational use.

11.1 Minimal Documentation Requirements
This Recommendation requires the development of a set of documentation that will

provide assurance to users and (optionally) validators that the DRBGs in this
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Recommendation have been implemented properly. Much of this documentation may be
placed in a user’s manual. This documentation shall consist of the following as a
minimum:

e Document how the implementation has been designed to permit implementation
validation and operational testing.

o Document the type of DRBG (e.g., CTR_DRBG, Dual EC_DRBG), and the
cryptographic primitives used (e.g., AES-128, SHA-256).
o Document the security strengths supported by the implementation.

e Document features supported by the implemention (e.g., prediction resistance, the
available elliptic curves, etc.).

e In the case of the CTR_DRBG, indicate whether a derivation function is provided.
If a derivation function is not used, documentation shall clearly indicate that the
implementation can only be used when full entropy input is available.

e Document any support functions other than operational testing.

11.2 Implementation Validation Testing

A DRBG process shall be tested for conformance to this Recommendation. A DRBG shall
be designed to be tested to ensure that the product is correctly implemented. A testing
interface shall be available for this purpose in order to allow the insertion of input and the
extraction of output for testing.

Implementations to be validated shall include the following:
e Documentation specified in Section 11.1.

e Any documentation or results required in derived test requirements.
11.3 Operational/Health Testing

11.3.1 Overview

A DRBG implementation shall perform self-tests to ensure that the DRBG continues to
function properly. Self-tests of the DRBG processes shall be performed as specified in
Section 9.6. A DRBG implementation may optionally perform other self-tests for DRBG
functionality in addition to the tests specified in this Recommendation.

All data output from the DRBG boundary shall be inhibited while these tests are
performed. The results from known-answer-tests (see Section 11.3.2) shall not be output
as random bits during normal operation.

When a DRBG fails a self-test, the DRBG shall enter an error state and output an error
indicator. The DRBG shall not perform any DRBG operations while in the error state, and
no pseudorandom bits shall be output when an error state exists. When in an error state,
user intervention (e.g., power cycling, restart of the DRBG) shall be required to exit the
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error state (see Section 9.6).
11.3.2 Known Answer Testing

Known-answer testing shall be conducted as specified in Section 9.6. A known-answer test
involves operating the DRBG with data for which the correct output is already known and
determining if the calculated output equals the expected output (the known answer). The
test fails if the calculated output does not equal the known answer. In this case, the DRBG
shall enter an error state and output an error indicator (see Section 9.7).

The generalized known-answer testing is specified in Section 9.6. Testing shall be
performed on all DRBG functions implemented.
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Appendix A: (Normative) Application-Specific Constants

[May need to include Hash_ DRBG constants]

A1 Constants for the Dual_EC_DRBG

The Dual_EC_DRBG requires the specifications of an elliptic curve and two points on the
elliptic curve. One of the following NIST approved curves and points shall be used in

applications requiring certification under FIPS 140-2. More details about these curves may
be found in FIPS PUB 186-3, the Digital Signature Standard.

Each of following curves is given by the equation:
¥ =x-3x+ b (mod p)
Notation:
p - Order of the field F,, given in decimal

r - order of the Elliptic Curve Group, in decimal . Note that » is used here for
consistency with FIPS 186-3 but is referred to as # in the description of the
Dual EC_DRBG (...)

a — (-3) in the above equation
b - coefficient above

The x and y coordinates of the base point, ie generator G, are the same as for the point
P.

A.1.1 Curve P-224

b= 26959946667150639794667015087019630673557916\
260026308143510066298881

¥ = 26959946667150639794667015087019625940457807\
714424391721682722368061

b = b4050a85 0c04b3ab £5413256 5044b0b7 d7bfd8ba 27003943

2355ffb4

Px = b70e0cbd 6bb4bf7f 321390b9 4a03cld3 56c21122 343280d6
115c1d21

Py = bd376388 b5f723fb 4c22dfe6 cd4375a0 5a074764 44d58199
85007e34

Ox = 68623591 6elladfa £080a451 477fa27a £21248be 916d3458
ab83a3cH9
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Qy = 6060018a 24b35be6 caecf3f0 7f2c6b43 4ed47479e 55362c8f
5707adca

A.1.2 Curve P-256

p = 11579208921035624876269744694940757353008614\
3415290314195533631308867097853951

F = 11579208921035624876269744694940757352999695\
5224135760342422259061068512044369

b= 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e
27d42604b

Px

6b17d1f2 el2c4247 f8bcebeb 63a440f2 77037d81 2deb33al
£4al13945 dB898c296

Py = 4fe342e2 felaTf9b 8eeTebda 7c0f9el6 2bce3357 6b3l5ece
cbb64068 37bf51£5

Ox

c97445f4 5cdef9f0 d3e05ele 585fc297 235b82b5 be8ff3ef
ca67¢cb98 52018192

b28e£557 ba3ldfch dd2lac46 e2a9le3c 304f44cb 87058ada
2cb81515 1e610046

A.1.3 Curve P-384

p = 39402006196394479212279040100143613805079739\
27046544666794829340424572177149687032904726\
6088258938001861606973112319

F = 39402006196394479212279040100143613805079739\
27046544666794690527962765939911326356939895\
6308152294913554433653942643

b=b3312fa7 e23ceTed 988e056b e3f82d19 181d9cée fe814112 0314088f
5013875a c656398d 8a2edl9d 2a85c8ed d3ec2aef

Px = aa87ca22 be8b0537 8eblc7le £320ad74 6eld3b62 8ba79b98
59£741e0 82542a38 5502f25d bf55296c 3a545e38 72760ab7

Py = 3617deda 96262c6f 5d9e98bf 9292dc29 £8f41dbd 289al4d7c
e9da3113 b5£0b8c0 0ab60blce 1d7e819d 7a431ld7c 90eale5f

Ox = 8e722de3 125bddb0 5580164b fe20b8b4 32216a62 926c5750
2ceede3l c4781l6ed d1e89769 124179d0 b6951064 28815065

Oy = 023b1660 dd701d08 39fd45ee c36f9ee’ b32e13b3 15dc0261

87



NIST SP 800-90 DRAFT September 2005

Qaalb636 e346df67 1£f790£f84 c5e09b05 674dbb7e 45¢c803dd
A.1.4 Curve P-521

p = 68647976601306097149819007990813932172694353\
00143305409394463459185543183397656052122559\
64066145455497729631139148085803712198799971\
6643812574028291115057151

¥ = 68647976601306097149819007990813932172694353\
00143305409394463459185543183397655394245057\
74633321719753296399637136332111386476861244\
0380340372808892707005449

b=051953eb 9618elc9 alf929%9a2 1al0b6854 Oeea2da7 25b99b31 5f3b8b48

9918ef10 9e156193 95lec7e9 37blé52c Obd3bblb f073573d £883d2c3
4flefd451 £d46b503 £00

Px = c6858e06 b70404e9 cd9e3echb 662395b4 429c6481 39053fb5
21f828af 606b4d3d baaldbbe 77efe759 28feldcl 27a2ffa8
de3348b3 clB856a42 9bf97e7e 31lc2ebbd 66

Py = 11839296 a789%a3bc 0045c8a5 fbd42c7dl bd998£54 4495579b4
46817afb d17273e6 62c97ee7 2995ef42 640c550b 9013fadd
761353¢c7 086a272c 24088be9 4769fdl6 650

Ox = 1b9fa3e5 18d683c6 b6576369 4acB8efba ecéfabdd £2276171
24272650 7dd08add 4c3b3fdc lebcbbl2 22ddbal7 7£722943
b24c3edf a0f85fe2 4d0c8c0l1 591f0be6 £63

Oy= 1f3bdbab 85295d9%a 1110didf 1£9430ef 8442c501 8976ff34
37e£f91b8 1dcOb813 2c¢c8d5¢39 c¢32d0e00 4a3092b7 d327c0e’
a4d26d2c Tb69b58f 90666529 11e45777 9de

A.2 Using Alternative Points in the Dual_EC_DRBG()

The security of Dual_EC_DRBG( ) requires that the points P and Q be properly
generated. To avoid using potentially weak points, the points specified in Annex A.1
should be used. However, an implementation may use different pairs of points provided
that they are verifiably random, as evidenced by the use of the procedure specified in
Appendix A.2.1 below, and the self-test procedure in Appendix A.2.2. An implementation
that uses alternative points generated by this Approved method shall have them “hard-
wired” into its source code, or hardware, as appropriate, and loaded into the working_state
at instantiation. To conform to this Recommendation, points shall use the procedure given
in Appendix A.2.1, and verify their generation using Appendix A.2.2.
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A.2.1 Generating Alternative P,Q

The curve shall be one of the NIST curves from FIPS 186-3 that is specified in Appendix

A1 of this Recommendation, and shall be appropriate for the desired security_strength, as
specified in Table 4, Section 10.3.1.

The point P shall remain the generator point G given in Appendix A.1 for the selected

curve. (This minor restriction simplifies the test procedure to verify just one point each
time.)

The point Q shall be generated using the procedure specified in ANS X9.62. The
following input is required:

An elliptic curve E = (Fy, a, b), cofactor 4, prime n, a bit string SEED, and hash
function Hash(). The curve parameters are given in Appendix A.1 of this
Recommendation. The minimum length m of SEED shall conform to Section 10.3.1,
Table 4, under “Seed length”. The bit length of SEED may be larger than m. The hash
function shall be SHA-512 in all cases.

If the output from the ANS X9.62 generation procedure is “failure”, a different SEED will
have to be used.

Otherwise, the output point shall be used as the point Q.
A.2.2 Additional Self-testing Required for Alternative P,Q

To insure that the point Q has been generated appropriately, an additional self-test
procedure shall be performed whenever the instantiate function is invoked. Section
9.6.2 specifies that known-answer tests on the instantiate function be performed prior
to creating an operational instantiation. As part of those tests, an implementation of the
generation procedure in ANS X9.62 shall be called with the SEED value used to
generate the alternate Q. The point returned shall be compared with the stored value of
0 used in place of the default value (see Appendix A.1 of this Recommendation). If
the generated value does not match the stored value, the implementation shall halt with
an error condition.
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Appendix B : (Normative) Conversion and Auxilliary Routines

B.1 Bitstring to an Integer

Input:

1. by, by ..., by The bitstring to be converted.
Output:

1. x The requested integer representation of the bitstring.
Process:

1. Let (by, by ..., by) be the bits of b from leftmost to rightmost.

2. x=)2p,.

i=l
3. Return x.

In this Standard, the binary length of an integet x is defined as the smallest integer n
satisfying x <2".
B.2 Integer to a Bitstring

Input:
1. x The non-negative to be converted.
Output:
1. by, b2, ... b,  The bitstring representation of the integer x.

Process:

1. Let (by, b, ..., by) represent the bitstring, where b; = 0 or 1, and b, is the most
significant bit, while b, is the least significant bit.

2. For any integer n that satisfies x < 2", the bits b, shall satisfy:
x= 22("")b,. .
i=1

3. Return by, b2, ..., by.

In this Standard, the binary length of the integer x is defined as the smallest integer » that
satisfies x <2,

B.3 Integer to an Octet String

Input:
920
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1. A non-negative integer x, and the intended length » of the octet string satisfying
25> x.
Output:
1. An octet string O of length » octets.
Process:
1. Let Oy, 02, ..., On be the octets of O from leftmost to rightmost.
2. The octets of O shall satisfy:

x =3 250
fori=1ton.
3. Return O.

B.4 Octet String to an Integer

Input:
1. An octet string O of length » octets.
Output:
1. A non-negative integer x.
Process:
1. Let Oy, O, ..., O, be the octets of O from lefimost to rightmost.
2. xis defined as follows:
x =3 2%,
fori=1tn
3. Returnx.
B.5 Converting Random Numbers from/to Random Bits
The random values required for cryptographic applicstions are generally of two types:
either a random bitstring of a specified length or a random integer in a specified interval. In
some cases, a DRBG may return a random number in a specified interval that needs to be

converted into random bits; in other cases, a DRBG returns a random bitstring that needs
to be converted to a random number in a specific range.

B.5.1 Converting Random Bits into a Random Number

In some cryptographic applications sequences of random numbers are required (do, a1, a2,)
where:

i) Each integer g satisfies 0 < a; < -1, for some positive integer r (the range of the
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random numbers);

ii) The equation a; = s holds, with probability almost exactly 1/r, for any i > 0 and for
any s (0<s<r-1);

iii) Each value g is statistically independent of any set of values g; (j # i).

Four techniques are specified for generating sequences of random numbers from sequences
of random bits.

If the range of the number required is a < a; < b rather than 0 < g; € r-1, then a random
number in the desired range can be obtained by computing a; + a, where g; is a2 random
number in the range 0 < g; < b-a (that is, when r = b-a+1).

B.5.1.1 The Simple Discard Method

Let m be the number of bits needed to represent the value (»—1). The following method
may be used to generate the random number a:

1. Use the random bit generator to generate a sequence of m random bits, (bo, b1, bu-

1)-

2. Let c=mz_12’b, :

i=0
3. Ifc <rthen put a=c, else discard ¢ and go to Step 1.
This method produces a random number a with no skew (no bias). A possible

disadvantage of this method, in general, is that the time needed to generate such a random
a is not a fixed length of time because of the conditional loop.

The ratio /2™ is a measure of the efficiency of the technique, and this ratio will always
satisfy 0.5 <7/2" < 1. If#/2" is close to 1, then the above method is simple and efficient.
However, if #/2™ is close to 0.5, then the simple discard method is less efficient, and the
more complex method below is recommended.

B.5.1.2 The Complex Discard Method

Choose a small positive integer ¢ (the number of same-size random number outputs
desired), and then let m be the number of bits in (# —1). This method may be used to
generate a sequence of 7 random numbers (do, ai, ... , Gr1):

1. Use the random bit generator to generate a sequence of m random bits, (bo, b1, ...,
bp-1).

m=1

2. Letc=Y2'p,.
i=0

3. Ife<?,then

let (ao, a1, ..., ar1) be the unique sequence of values satisfying 0 < a; < r -1 such
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-1
that ¢ = Zr’a,

i=0
else discard ¢ and go to Step 1.

This method produces random numbers (ag, i, .-- , @x.1) with no skew. A possible
disadvantage of this method, in general, is that the time needed to generate these numbers
is not a fixed length of time because of the conditional loop. The complex discard method
is guaranteed to produce a sequence of random outputs for each iteration and, therefore,
may have better overall performance than the simple discard method if many random
numbers are needed.

The ratio F/2" is a measure of the efficiency of the technique, and this ratio will always
satisfy 0.5 <r/2" < 1. Hence, given r, it is recommended to choose ¢ so that ¢ is the
smallest value such that /2™ is close to 1. For example, if » =3, then choosing 1 =3
means that m =5 (as # is 27) and #*/m = 27/32 = 0.84, and choosing ¢ = 5 means that m = 8
(as ¥ is 243) and /m = 243/256 ~ 0.95. The complex discard method coincides with the
simple discard method when 7 = 1.

B.5.1.3 The Simple Modular Method

Let m be the number of bits needed to represent the value (»-1), and let § be a security
parameter. The following method may be used to generate one random number a:

1. Use the random bit generator to generate a sequence of m-+§ random bits, (g, by,
weey bnid).
m+s—1
2. Letc= > 2'b,.

i=0
3. Leta=cmodr.

The simple modular method can be coded to take constant time. This method produces a
random value with a negligible skew, that is, the probability that a;=w for any particular
value of w (0 < w < r~1) is not exactly 1/r. However, for a large enough value of 5, the
difference between the probability that a;=w for any particular value of w and 1/r is
negligible. The value of § shall be greater than or equal to 64, [ Why 64? What is the
relationship between s and the security strength?]

B.5.1.4 The Complex Modular Method
Choose a small positive integer ¢ (the number of same-size random number outputs

desired) and a security parameter §; let m be the number of bits in (' —1). The following
method may be used to generate a sequence of £ random numbers (ag, a1, ..., Ar1):

1. Use the random bit generator to generate a sequence of m-+/ random bits, (bo, by, ...
bumi).
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m+l=1
2. Letc= » 2'b modr.

i=0
3. Let (ag, a1, ..., an1) be the unique sequence of values satisfying 0 < @; < r-1 such

(-1
that c =Y r'a, .
i=0

The complex modular method is guaranteed to produce a sequence of random outputs with
each iteration and, therefore, may have better overall performance than the simple modular
method if many random numbers are needed. This method produces a random value with
a negligible skew; that is, the probability that a;=w for any particular value of w (0 < w < r-
1) is not exactly 1/. However, for a large enough value of §, the difference between the
probability that @,=w for any particular value of # and 1/r is negligible. The value of §
shall be greater than or equal to 64. The complex modular method coincides with the
simple modular method when #=1.

B.5.2 Converting a Random Number into Random Bits
B.5.2.1 The No Skew (Variable Length Extraction) Method

This is a method of extracting random unbiased bits from a random number modulo a
number n. First, a toy example is provided in order to explain how the method works, and
then pseudocode is given.

For the toy example, the insight is to look at the modulus # and the random number r as
bits, from left to right, and to partition the possible values of  into disjoint sets based on
the largest size of random bits that might be extracted. As a small example, if n = 11, then
the binary representation of # is b>1011”, and the possible values of 7 (in binary) are as
follows:

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010.

Let the lefimost bit be considered as the bit 4, and the rightmost bit be considered as the bit
L.

1. As the 4th bit of nis b’1’, look at the 4th bit of r.

2. Ifthe 4th bit of r is 0, then the remaining 3 bits can be extracted as unbiased random
bits. This forms a class of {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111] and maps
each respective element into the 3-bit sequences [000, 001, 010, 011, 100, 0101, 110,
111], each of which is unbiased, and the process is completed

3. Ifthe 4th bit of » is b’1’, then r falls into the remainder [1000, 1001, 1010], and the
process needs to continue with step 4 in order to extract unbiased bits.

4. As the 3rd bit of nis b’0’, the 3rd bit of 7 is always b0’ in the class determined in step
3; therefore the 3rd bit of r is already known to be biased, so the analysis moves to the
next bit (step 5).
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5. The 2nd bit of # is b’17, so this forms a subclass [1000, 1001], from which one random
unbiased bit can be extracted, namely the 1st bit.

The remaining value of 1010 cannot be used to extract random bits. However,
obtaining this value is not usual. For this tiny example: 8/11 of the time, 3 unbiased
random bits can be extracted; 2/11 of the time, 1 unbiased bit can be extracted; and
1/11, no unbiased bits can be extracted. As can be seen, it is not known ahead of time
how many unbiased bits will be able to be extracted, although the average will be
known.

Let both the modulus # and the random r values have m bits. This means that n(m) =b’1’,
although 7(m) may be either b’1° or b’0°.

1. outlen=0.
2. Doi=mto1by—-1

Comment: if n(i) =0, or r(i) = 1, then thisis a
skew situation; the routine cannot extract i-1
unbiased bits, so the index is shifted right to
check next bit

2.1 If (n(i) = b°0”) or (r(i) = b’1”)), then go to step 2.5.
2.2 outlen=i-1.
2.3 output = r(outlen,l).

24 i=1 Comment: all unbiased bits possible
have been extracted, so exit .

2.5 Continue
The extraction takes a variable amount of time, but this varying amount of time does not
leak any information to a potential adversary that can be used to attack the method.
B.5.2.2 The Negligible Skew (Fixed Length Extraction) Method

A possible disadvantage of the No Skew (Variable Length Extraction) Method of
Appendix B.5.2.1 is that it takes a variable amount of time to extract a variable number of
random bits. To address this concern and to simplify the extraction method, the following
method is specified that extracts a fixed length of random bits with a negligible skew. This
method exploits the fact that the modulus # is known before the extraction occurs.

1. Examine the modulus considered as a binary number from left to right, and
determine the index bit such that there are at least 16 ‘1° bits to the left. Call this bit
i.

2. Extract random bits from the random number r by truncating on the left up to bit i.
This is the output = r(j,1).

This method is especially appropriate when the high order bits of the modulus are all set to
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*1” for efficiency reasons, as is the case with the NIST elliptic curves over prime fields.

This method is acceptable for elliptic curves, based on the following analysis. When
considering the no skew method, once the random bits are extracted, it is obvious that less
than the full number of random bits can be extracted, and the extraction result will still be
random. The truncation of more bits than necessary is acceptable. What about truncation
of too few bits? For a random number, the no skew extraction process would continue
only if the 16 bits of r corresponding to the ‘1’ bits in » are all zero. For a random number,
this occurs about once every 2' times. As the modulus is at least 160 bits, this means that
144 bits with a skew are extracted in this case. On average, once every 9,437,184 output
bits (or more), there will be a 144-bit substring somewhere in that total that has a skew,
which will have the lefimost bit or bits tending to a binary zero bit or bits. This skew
could be as little as one bit. However, an adversary will not know exactly where this
skewed substring occurs. The 9,437,184 total output bits will still be overwhelmingly
likely to be within the statistical variation of a random bitstring; that is, the statistical
variation almost certainly will be much greater than this negligible skew.
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Appendix C: (Normative) Entropy and Entropy Sources

An examination of the DRBG algorithms in this Recommendation reveals a common
feature: each of them takes a seed and applies an algorithm to produce a potentially large
number of pseudo-random bits. The most important feature of the interaction between the
seed and the algorithm is that if an adversary doesn’t know the seed, then he can’t fell the
difference between the pseudo-random bits and a stream of truly random bits. Conversely,
if he knows (or can guess) the seed, then he can easily distinguish the output from random,
since the algorithm is deterministic. [Thus, the security of the DRBG output is directly
related to the adversary’s inability to guess the seed.

C.1 What is Entropy ?

The word “entropy” is used to describe a measure of randomness, i.., a description of how
hard a value is to guess. Entropy is a measure of uncertainty or unpredictability and is
dependent on the probabilities associated with the possible results for a given “event” (e.g.,
a throw of a die or flip of a coin).

In this Recommendation, entropy is relative to an adversary and his ability to
observe/predict a value. If the adversary has no uncertainty about the value, then the
entropy is zero (and so is the security of the relying application). Any assessment of the
entropy of a particular value is actually an assessment of how much of the value is
unknown to the adversary.

C.2 Entropy Source

Entropy is obtained from an entropy source. The entropy input required to seed or reseed a
DRBG shall be obtained either directly or indirectly from an entropy source (see Appendix
D for further information on RBG construction). The entropy source is the critical
component of an RBG that provides un-guessable values for the deterministic algorithm to
use as seeds for the random bit generation process.

Every entropy source must include some process that is unpredictable. An intuitive (though
often impractical) example is tossing a coin and recording the sequence of heads and tails.
More likely, the entropy source will be an electronic process, such as a noisy diode, which
receives a constant input voltage level and outputs a continuous, normally distributed
analog voltage level. Other possibilities include thermal noise or radioactive decay that are
measured by appropriate instruments. The unpredictability could involve human
interaction with an otherwise deterministic system, such as the sampling of a high-speed
counter whenever a human operator presses a key on a keyboard. In any case, there must
be something happening that is unpredictable to an adversary, either fundamentally
unpredictable (e.g., when the next particle is detected by a Geiger counter), or
unpredictable from a practical point of view (e.g., the adversary won’t know the exact
value of a high-speed counter if he isn’t close enough to the human pressing a key).

| Figure C-1 provides a generic model for an entropy source. A noise source (€.8..a noisy
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diode or a coin lip) provides the entropv. which is then converted to bits (i.e.. digitized).

itbues i . Zeresk-Some

entropy sources will perform further processing (conditioning) on the resulting bits,
perhaps guaranteeing unbiased output. An entropy source may even process the bits to the

point where the output bitstring will have
full entropys; i.e. the entropy of the .
bitstring will be (nearly) the same as its .
length. An assessment is made of the -2 gore o
amount of entropy that has been oblained. | y ' o als
perhaps on the digitalized data or on the 5 .
data resulting from the conditioning e~
= 1 ~—=+ Digitalization a7
process (see Appendix C.2). Health tests (Assesment) = T i
are performed to determine that the et e I:' i
entropy source is performing correctly. i [ (Optional) '
I 1 | Conditioning
Before a-seutee-of-entropyan entropy ' I“ _
source is selected for seeding a DRBG, a U
thorough evaluation of the amount of
entropy it is capable of providing must be
. ¥ Fig C-1: Entropy Source M |
determined. When-a-suitable-entropy o Bmine ade

source-ts-selecteda-turther assessment

SR e i

Guidance on the selection and use of entropy sources is currently under development and
is expected to be provided as a NIST Recommendation in the future.

C.2 Entropy Assessment

A DRBG requires a predetermined amount of entropy in the entropy input that is used to
seed or reseed an instantiation in order to provide the requested DRBG security strength.
Therefore, the amount of actual entropy obtained from an entropy source shall be assessed
before providing it as entropy input; a means of measuring the entropy is required. Note
that the actual entropy provided in a given string of entropy input bits is less than or equal
to the length of that bitstring; i.e., each bit of the entropy input has (at most) one bit of
entropy; multiple bits of the entropy input may be required to provide one bit of entropy.

There are many entropy measures defined in information theory; this Recommendation
uses a very conservative measure that is known as min-entropy (Hmn), and is defined as

Huin = -182( Prax )
where each possible value is p;, and ppa is the maximum probability of the p;. Hpin is
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expressed in bits and is the amount of entropy that is expected in each event that produces
a value of p;.

For example, suppose that a noisy diode is used as a source of entropy, and the diode
possible voltages divided into 16 intervals (column 1), with each interval assigned a 4-bit
string value from 0000 to 1111 (column 2). Whenever the diode is sampled, the result is
digitized and converted to the 4-bit value indicagted in Table C-1. The probability of each
interval has been determined for this diode and is provided in column 3. Note that other
diodes may behave differently.

Collecting entropy from an entropy source requires obtaining numerous samples, where
cach sample is the result from a given tvpe of event). Once sufficient samples have been
gathered, they generally need to be converted to bits (e.g. an analog voltage will be
mapped to some digital value. or coin tosses could be mapped to ones and zeros).

Table C-1 : Voltages Digitaization Ranges and Probabilities

Sampled Voltage | Digitized Output Probability (pi)
—0<Z<25 . 0000 0.000233
2.55Z<3 0001 0.001117
3<Z<35 0010 0.004860
3.5Z<4 0011 0.016540
4<7Z <45 0100 0.044057
4557 <5 0101 0.091848
5<Z <55 0110 0.149882
55£Z<6 0111 0.191462
6<Z<6.S5 1000 0.191462
65<27Z<7 1001 0.149882
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Sampled Voltage | Digitized Output Probability (pi)
7<Z<175 1010 0.091848
75<Z<8 1011 0.044057
8<Z <85 1100 0.016540
85<7Z<9 1101 0.004860
9<Z<95 1110 0.001117
9.5<Z <> 1111 0.000233

For this diode, the most likely digitized outputs are 0111 and 1000, each with a probability
0f 0.191462. Therefore, pmax = 0.191462. Using the min-entropy formula above:

Hyin = -182( Pmax ) = -1g2( 0.19462) = 2.38487.

This means that for each 4-bit sample from this diode, an entropy of 2.38487 bits is
expected.

One useful fact about min-entropy is that if two samples are independent (e.g., samplings
of the same noisy diode), then the entropy of their concatenation is the sum of their
entropy. This makes sense; if the samples are independent, then guessing one sample
provides no information for guessing another one. If various events are concatenated, then
the min-entropy for each event is added to find the min-entropy of the concatenated events.
In the noisy diode example, if sample has a min-entropy of 2.38487 bits, then ten samples
taken together have a min-entropy of 23.8487 bits, and one hundred samples have a min-
entropy of 238.487 bits.

These entropy measures relate directly to the security strengths of the Approved DRBG
algorithms. For example, to provide entropy input for a seed that is appropriate to
instantiate a DRBG with a security strength of 128 bits, at least 54 samplings of the diode
are required (128/2.38487 = 53.67 ~ 54) and would result in a bitstring of 216 bits to
provide at least 128 bits of entropy. Note that the samplings could actually contain more or
less entropy than expected. :
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Appendix D: Constructing a Random Bit Generator (RBG) from Entropy
Sources and DRBG Mechanisms

This Recommendation is primarily concerned with the DRBG algorithms for generating
pseudorandom outputs and how they are to be implemented. Some discussion of entropy
sources that may be used to provide entropy input are provided in Appendix C. This
appendix briefly describes how to combine the entropy source with a DRBG mechanism to
create an Approved RBG.

D.1__Entropy Input for a DRBG

Section 8.6.5 states that the source of a DRBG’s entropy input may be 1) an Approved
Non-deterministic Random Bit Generator (NRBG). 2) an Approved DRBG (or chain of
Approved DRBGs) or 3) an Approved entropy source whose entropv characterislics are
known. A clarification of concepts may be helpful at this point.

a. An entropy source provides entropy source outpul (see Appendix C.1). This
entropy source output may be used as the entropy input for a DRBG: i.e.._t_hc
entropy input source may be the output of an entropy source (see Figure 9.

b. An NRBG contains an entropy source (see Appendix C.1) and performs
algorithmic processing on the entropy source output in order to produce an output
with full entropy (see Figure #2).

¢. A DRBG is defined in the body of this Recommendation.

d. To form a chain of DRBGs (see Figure 22). the entropy input for the first DRBG
(the highest DRBG in the chain) shall be obtained from a “true” source of entropy
(i.e.. an Approved NRBG or an Approved entropy source whose entropy
characteristics are known). The entropy shall be equal to or greater than the entropy
required by any of the subordinate DRBGs.

Each subordinate DRBG is instantiated with entropy input acquired from an
entropy request to a higher DRBG in the chain. The entropy input shall contain
sufficient entropy to support the requested security level.

]

An Approved entropy soutce by itself (i.e.. not part of an NRBG) may or may not
provide full entropy. However, if full entropy is not provided. the amount of
entropy provided in a given sequence of outputs is known.

When designing an RBG using a DRBG, there are a number of concerns to be addressed in
| addition to the DRBG to be selected, including the entropy input source to be used, how
readily the entropy input to the DRBG can be provided, and how the DRBG maintains its
internal state information from one request to the next. Appendix G provides a discussion
on DRBG selection, and Appendix C provides some basic discussion on entropy sources.
| This appendix includes discussions about using entropy input sources whose output may or
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If the failure occurs prior to or during instantiation. an undetected failure would be
catastrophic. as the DRBG would totally fail to provide the promised security
strength. Therefore, extreme care must be taken to ensure that a DRBG is
instantiated with sufficient entropy.

If the failure occurred subsequent to instantiation, a request for prediction
resistance would not result in prediction resistance being provided; however, the
security strength of the output would be based on whatever entropy had previously
been obtained.

If the failure occurs prior to or during a normal reseed (at the end of the
reseed_interval), the security strength of the output would be based on whatever
entropy had previously been obtained. If the implemented reseed_interval is the
maximum that can be supported by the DRBG (see the tables in Section 10), then
the security provided by the DRBG algorithm is no longer assured. Therefore, the
use of a reseed_interval that is significantly less than the maximum interval is
recommended. This would provide additional time for the entropy source failure to
be detected.

D.2.2 No Readily Available Entropy Input Source

Many implementations of DRBGs will not have ready access to an entropy input source.

An-implementation-of this-type-has-thefollowing requirements:

The DRBG must be instantiated at a time when the DRBG has access to some reliable
entropy input source. In some applications, the entropy input source is only available
during manufacture or device setup; in others, it is occasionally available (e.g., when a user
is moving the mouse around on a laptop).

Over time. a DRBG mav be able to accumulate additional entropy from inputs provided by
the user or consuming application (i.e.. additional_input). For this reason. the DRBG
implementation should accept additional input whenever possible. Implementations that
have values that may have some entropy. such as limestamps or nonces from protocol runs,
should provide these values to the DRBG as additional inputs,

D.32 Persistance ConsiderationsSaving-the-lnternal-State

A DRBG is provided with entropy input during instantiation. and the instantiation exists
for as lone as the internal state is maintained. [n many environments. the internal state can
be maintained for a very long time because power is continually available during that time
or the internal state is stored in persistent memory (e.g.. flash memory) that is not affected
by power fluctuations.
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may not be readily available and discusses internal state persistance.
D.42 Availability of Entropy Input for a DRBG

$-6-5}-The choice of entropy input source may-will determine the specific “features” that
an RBG can offer a consuming application (e.g., whether reseeding or prediction resistance
is practical). Whenever entropy inpuyt is requested by a DRBG, the entropy input source
must provide sufficient entropy to support the security strength intended for the DRBG.-
The entropy input source may be able to provide entropy whenever requested (i.e.. entropy
is readilv available on demand). or too slowly to honor *frequent™ requests (e.g.. the
entopy input source may, in practice. be able to provide entropy only during instantiation).

In addition. the entropy input must be provided to the DRBG via a secure (i.e.. private and
authentic) channel.

D.2.1% Using a Readily Available Entropy Input Source

The ideal situation for a DRBG is to have ready access to some entropy input source that
provides entropy input (immediately) upon request. The entropy inpul source provides
bitstrings, along with a promise about how much entropy is available.

When the DRBG has a readily available source of entropy_input, reseeding and
instantiation can be done on demand, requests for prediction resistance can be honored,
and a DRBG can be reseeded when it has produced the maximum number of outputs (i.e.,
the reseed_interval is reached).

Upon each request for entropy input, the status of the request is returned to the calling
function (i.e., the instantiate or reseed function). A failure of the entropy input source has
the following consequences:

o Ifthe failure of the entropy source is detected, the DRBG functions are designed to
indicate the error and enter the error state (see Section 9.7). No further output is
produced until the failure is corrected.

s _Ifthe failure is not immediately detected, the DRBG will continue to provide

output, based on the entropy currently available in the internal state.

102



NIST SP 800-90 DRAFT September 2005

However. there are environments in which a DRBG does not have continual power or
persistant memory for maintaining the internal state. In this case. a DRBG can only be
instantiated when power is provided. and the DRBG instantiation only exists for as long as
the power is available. Whenever power is available. entropy input must be provided if the
DRBG is to be instantiated.

An example of this might be a smart card that contains a DRBG and is only powered up
when it is inserted into a reader. The reader provides not only the power. but must provide
entropy input for the DRBG in the smart card (i.e.. the smart card either is provided with
entropy input that is passed along to the smart card’s DRBG. or the reader produces the
entropy input). This example will be used to explain possible methods for addressing the
case in which a DRBG instantiation is short-lived. The method is an adaptation of a
concept that uses seed files in currently implemented RNGs.

For simplicity. assume that the reader produces the entropy input for the smart card’s
DRBG (DRBGyr.tived). The reader could contain an Approved NRBG or Approved
entropy source (see Appendix D.1). Alternatively. the reader could contain a DRBG
(DRBGee) whose output would be used to provide entropy input for DRBGion-tived: Also
for simplicity. assume that the reader has continual power or persistant memory that can be
used to maintain the internal state of its DRBG. In this case. DRBGigyre. must be
instantiated as discussed in Appendix D.1 with sufficient entropy to support any
DRBGeporliveg that “conneets™ to it (i.¢.. a chain of DRBGs is formed, with DRBGervtived
at the end of the chain, and DRBGi g immediately above it. The following is a common
method for interacting between the two DRBGs.

1. Whenever DRBGon.iived 18 ““connected” to DRBGsq, . & generate request is sent to
DRBGsoureer DRBGsource generates the requested out and provides it to DRBGgyon.

et @S entropy input for instantiation. The application using DRBG. v May
provide additional input to the DRBG as a personalization_string during the
instantiation process.

2. If the application has data containing entropy. the data is saved and provided to
DRBGgce in One-byte calls as additional_input. Each call will result in changes lo
the internal state of DRBGiqyee: €ach output from DRBG gy is ignored.

3. After DRBGngn-tived Provides output as requested by its application. k-bits of
additional output is generated by DRBGepgreived a0d provided as additional_input (o
DRBG.ycc in @ generate request. along with any other application data that might
contain entropy. This will result in another update of the internal state of
DRBGeguree. Any resulting output from this request is ignored.

John: I'm not sure what to do with the following:
A DRBG s Ls | Lina SiateEile thatiss I OO,
DRBG-nstantiation®—lt-ean-be used-to-save-the ipternal-state-in-case the-nower-to-the

5 The StateFile is often called a SEEDFILE, 104
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Appendix E: (Informative) Security Considerations
E.1 Extracting Bits in the Dual_EC_DRBG (...}

E.1.1 Potential Bias Due to Modular Arithmetic for Curves Over F,

For the mod p curves (i.e, a Prime field curve ), there is a potential bias in the output due to
the modular arithmetic. Two approaches to correcting the bias are presented. The
Negligible Skew Method described in Appendix B.5.2.2 is appropriate for the NIST
curves, since all were selected to be over prime fields near a power of 2 in size. Each NIST
prime has at least 32 leading 1's in its binary representation, and at least 16 of the leftmost
(high-order) bits are discarded in each block produced. These two facts imply that there is
a small fraction ( < 1/2*?) of outlen outputs for which a bias to 0 may occur in one or more
bits. This can only happen when the first 32 bits of an x-coordinate are all zero. As the
leftmost 16 bits (at least) are discarded, an adversary can never be certain when a “biased”
block has occurred. Thus, any bias due to the modular arithmetic may safely be ignored.

E.1.2 Adjusting for the missing bit(s) of entropy in the x coordinates.

In a truly random sequence, it should not be possible to predict any bits from previously
observed bits. With the Dual EC_DRBG (...), the full output block of bits produced by
the algorithm is “missing” some entropy. Fortunately, by discarding some of the bits,
those bits remaining can be made to have nearly “full strength”, in the sense that the
entropy that they are missing is negligibly small.

To illustrate what can happen, suppose that a mod p curve with m = 256 is selected, and
that all 256 bits produced were output by the generator, i.e. that outlen = 256 also. Suppose
also that 255 of these bits are published, and the 256-th bit is kept “secret”. About % the
time, the unpublished bit could easily be determined from the other 255 bits. Similarly, if
254 of the bits are published, about % of the time the other two bits could be predicted.
This is a simple consequence of the fact that only about 1/2 of all 2" bitstrings of length m
occur in the list of all x coordinates of curve points.

The "abouts" in the preceding example can be made more precise, taking into account the
difference between 2™ and p, and the actual number of points on the curve (which is
always within 2 * p” of p). For the NIST curves, these differences won't matter at the scale
of the results, so they will be ignored. This allows the heuristics given here to work for any
curve with "about” (2")/f points, where f= 1 is the curve's cofactor.

The basic assumption needed is that the approximately (2")/(2f) x coordinates that do occur
are "uniformly distributed": a randomly selected m-bit pattern has a probability 1/2f of
being an x coordinate. The assumption allows a straightforward calculation,—-albeit
approximate--for the entropy in the rightmost (least significant) m-d bits of
Dual_EC_DRBG output, with d << m.
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2d
The formulais E = —z [2”"" binomprob(Z",z,Z” - ])]p ,log, p;, where £ is the entropy.

j=0

The term in braces represents the approximate number of (m-d)-bitstrings, which fall into
one of 1+27 categories as determined by the number of times j it occurs in an x coordinate;
z = (2f-1)/2fis the probability that any particular string occurs in an x coordinate; p; =
(7*2/)/2™ is the probability that a member of the j-th category occurs. Note that the /=0
category contributes nothing to the entropy (randomness).

The values of E for d up to 16 are:

log2(f): 0 d: 0 entropy: 255.00000000 m-d: 256
log2(f): 0 d: 1 entropy: 254.50000000 m-d: 255
log2(f): 0 d: 2 entropy: 253.78063906 m-d: 254

log2(f): 0 d: 3 entropy: 252.90244224 m-d: 253
log2(f): 0 d: 4 entropy: 251.95336161 m-d: 252
log2(f): 0 d: 5 entropy: 250.97708960 m-d: 251
log2(f): 0 d: 6 entropy: 249.98863897 m-d: 250
log2(f): 0 d: 7 entropy: 248.99434222 m-d: 249
log2(f): 0 d: 8 entropy: 247.99717670 m-d: 248
log2(f): 0 d: 9 entropy: 246.99858974 m-d: 247
log2(f): 0 d: 10 entropy: 245.99929521 m-d. 246
log2(f): 0 d: 11 entropy: 244.99964769 m-d:. 245
log2(f): 0 d: 12 entropy: 243.99982387 m-d: 244

log2(f): 0 d: 13 entropy: 242.99991194 m-d: 243
log2(f): 0 d: 14 entropy: 241.99995597 m-d. 242
log2(f): 0 d: 15 entropy: 240.99997800 m-d: 241
log2(f): 0 d: 16 entropy: 239.99998900 m-d: 240

Observations:
a) The table starts where it should, at 1 missing bit;
b) The missing entropy rapidly decreases;

¢) For log2(f) = 0, i.e, the mod p curves, d=13 leaves 1 bit of information in every
10,000 (m-13)-bit outputs.

Based on these calculations, for the mod p curves, it is recommended that an
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implementation shall remove at least the leftmost (most significant) 13 bits of every m-bit
output.

For ease of implementation, the value of d should be adjusted upward, if necessary, until
the number of bits remaining , m-d= outlen, is a multiple of 8. By this rule, the
recommended number of bits discarded from each x-coordinate will be either 16 or 17. As
noted in Section 10.3.1.4, an implementation may decide to truncate additional bits from
each x-coordinate, provided the number retained is a multiple of 8.

Because only half of all values in [0,1,...,p-1] are valid x-coordinates on an elliptic curve
defined over F_p, it is clear that full x-coordinates should not be used as pseudorandom
bits. The solution to this problem is to truncate these x-coordinates by removing the high
order 16 or 17 bits. The entropy loss associated with such truncation amounts has been
demonstrated to be minimal (see the above chart).

One might wonder if it would be desirable to truncate more than this amount. The obvious
drawback to such an approach is that increasing the truncation amount hinders the already
sluggish performance. However, there is an additional reason that argues against
increasing the truncation. Consider the case where the low s bits of each x-coordinate are
kept. Given some subinterval  of length 27 contained in [0, p), and letting N(/) denote the
number of x-coordinates in , recent results on the distribution of x-coordinates in [0, p)
provide the following bound:

IN()/ (p/2)-2° I p| <k *log’ p/sart p,

where k is some constant derived from the asymptotic estimates given in [Shparlinski].
For the case of P-521, this is roughly equivalent to:

| N(I)' 2(3-1) | < k *2277,

where the constant & is independent of the value of 5. For s < 227 this inequality is weak
and provides very little support for the notion that these truncated x-coordinates are
uniformly distributed. On the other hand, the larger the value of s, the sharper this
inequality becomes, providing stronger evidence that the associated truncated x-
coordinates are uniformly distributed. Therefore, by keeping truncation to an acceptable
minimum, the performance is increased, and certain guarantees can be made about the
uniform distribution of the resulting truncated quantities.
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Appendix F: (Informative) Example Pseudocode for Each DRBG

The internal states in these examples are considered to be an array of states, identified by
state_handle. A particular state is addressed as infernal_state (state_handle), where the
value of state_handle begins at 0 and ends at »-1, and » is the number of internal states
provided by an implementation. A particular element in the internal state is addressed by
internal_state (state_handle).element.

The pseudocode in this annex does not include the necessary conversions (e.g., integer to
bitstring) for an implementation. When conversions are required, they must be
accomplished as specified in Appendix B.

The following routine is defined for these pseudocode examples:

Find_state_space (): A function that finds an unused internal state. The function
returns a status (either “Success” or a message indicating that an unused internal state
is not available) and, if status = “Success”, a state_handle that points to an available
internal_state in the array of internal states. If status # “Success”, an invalid
state_handle is returned.

When thé uninstantantiate function is invoked in the following examples, the function
specified in Section 9.4 is called.

F.1 Hash_DRBG Example

This example of Hash_DRBG uses the SHA-1 hash function, and prediction resistance is
supported in the example. Both a personalization string and additional input are allowed. A
32-bit incrementing counter is used as the nonce for instantiation (instantiation_nonce); the
nonce is initialized when the DRBG is installed (e.g., by a call to the clock or by setting it
to a fixed value) and is incremented for each instantiation.

A total of 10 internal states are provided (i.e., 10 instantiations may be handled
simultaneously).

For this implementation, the functions and algorithms are “inline”, i.e., the algorithms are
not called as separate routines from the function envelopes.

The internal state contains values for V, C, previous output_block, reseed_counter,
security_strength and prediction_resistance_flag, where V and C are bitstrings, and
reseed_counter, security strength and the prediction_resistance_flag are integers. A
requested prediction resistance capability is indicated when prediction_resistance_flag = 1.
Note: an empty internal state is represented as {Nuil, Null, 0, 0, 0}.

In accordance with Table 2 in Section 10.1, the 112 and 128 bit security strengths may be
supported. Using SHA-1, the following definitions are applicable for the instantiate,
generate and reseed functions and algorithms:

1. highest_supported_security strength=128.
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SIS

o

Output block length (outlen) = 160 bits.

Required minimum entropy for instantiation and reseed = security_strength.
Minimum entropy input length (min _length) = security_strength.

Sced length (seedlen) = 440 bits.

Maximum number of bits per request (max_number of bits _per request) = 5000
bits.

Reseed interval (reseed_interval) = 100,000 requests.

8. Maximum length of the personalization string (max_personalization_string_length)

= 512 bits.

Maximum length of additional input (max_additional_input_string_length) = 512
bits.

10. Maximum length of entropy input (max _length) = 1000 bits.

F.1.1

Instantiation of Hash_DRBG

This implementation will return a text message and an invalid state handle (-1) when an
error is encountered. Note that the value of instantiation_nonce is an internal value that is
always available to the instantiate function.

Note that this implementation does not check the prediction_resistance_flag, since the
implementation can handle prediction resistance. However, if an application actually wants
prediction resistance, the implementation expects that prediction_resistance_flag =1
during instantiation; this will be used in the generate function in Appendixx F.1.3.

Instantiate_Hash_DRBG (...):

Input: integer (requested_instantiation_security_strength, prediction_resistance_flag),

bitstring personalization_string).

Output: string status, integer state_handle.

Process:

Comment: Check the input parameters.

1. If (requested_instantiation_security_strength > 128), then Return (“Invalid
requested_instantiation_security_strength”, -1).

2. If (len (personalization_string) > 512), then Return (“Personalization_string
too long”, -1).

Comment: Set the security_strength to one of
the valid security strengths.

3. If(requested_instantiation_security_strength < 112), then security_strength =
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112
Else security strength=128.
Comment: Get the entropy _input.

4. (status, entropy_input) = Get. entropy (security_strength, security_strength,
1000).

5. If (status # “Success”), then Return (“Failure indication returned by the
entropy_input source:” || status, -1).

Comment: Increment the nonce; actual coding
must ensure that it wraps when it’s storage
limit is reached.

6. instantiation_nonce = instantiation_nonce + 1.

Comment: The instantiate algorithm is
provided in steps 7-14.

7. seed_material = entropy input || instantiation_nonce || personalization_string.
seed = Hash_df (seed_material, 440).

9. V=seed.
10. C = Hash_df ((0x00 || 7), 440).

Comment: Generate the initial block
for comparing with the first DRBG
output block (for continuous testing).

11. previous _output block=V.

12. H=Hash (0x03 || V).

13. V= (V+ H+ C+ 1) mod 2°¢¥",
14. reseed counter = 2.

Comment: Find an unused internal
state and save the initial values.

15. (status, state_handle) = Find_state_space ( ).
16. If (status # “Success”), then Return (status, -1).

17. internal_state (state_handle) = {V, C, previous_output_block, reseed_counter,
security strength, prediction_resistance_flag}.

18. Return (“Success”, state_handle).
F.1.2 Reseeding a Hash_DRBG Instantiation

The implementation is designed to return a text message as the stafus when an error is
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encountered.

Reseed_Hash_DRBG_Instantiation (...):

Input:

integer state_handle, bitstring additional_input.

Output: string status.

Process:
Comment: Check the validity of the
state_handle.
1. If ((state_handle < 0) ot (state_handle > 9) or (internal_state (state_handle) =

© o N o

11.

{Null, Null, Null, 0, 0, 0})), then Return (“State not available for the
state_handle”™).

Comment; Get the internal state values
needed to determine the new internal state.

Get the appropriate internal_state values, e.g., V' =
internal_state(state_handle).V, security_strength =
internal_state(state_handle).security_strength.

Check the length of the additional_input.
If (len (additional_inpuf) > 512), then Return (“Addditional_input too long”).
Comment: Get the entropy_input.

(status, entropy_input) = Get_entropy (security_strength, security_strength,
1000).

If (status # “Success”), then Return (“Failure indication returned by the
entropy_input source:” || status).

Comment: The reseed algorithm is provided
in steps 6-10.

seed_material = 0x01 || V|| entropy_input || additional_input.
seed = Hash_df (seed material, 440).

V = seed.

C = Hash_df ((0x00 || V), 440).

. reseed_counter = 1.

Comment: Update the working_state portion
of the internal state.

Update the appropriate state values.
11.1 internal_state (state_handle).V="V.
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11.2 internal_ state (state_handle).C = C.
11.3 internal_ state (state_handle).reseed_counter = reseed_counter.

12. Return (“Success™).

F.1.3 Generating Pseudorandom Bits Using Hash_DRBG

The implementation returns a Null string as the pseudorandom bits if an error has been
detected. Prediction resistance is requested when prediction_resistance_request = 1.

In this implementation, prediction resistance is requested by supplying
prediction_resistance_request =1 when the Hash_DRBG function is invoked.

Hash_DRBG (...):

Input: integer (state_handle, requested_no_of bits, requested_security_strength,
prediction_resistance_request), bitstring additional _input.

Output: string status, bitstring pseudorandom_bits.
Process:

Comment: Check the validity of the
state_handle.

1. If ((state_handle < 0) or (state_handle > 9) or (state (state_handle) = { Null,
Null, Null, 0, 0, 0})), then Return (“State not available for the state_handle”,
Null).

Comment: Get the internal state values.

2. V=internal_state (state_handle).V, C = internal_state (state_handle).C,
previous_output_block = internal_state (state_handle). previous_output_block,
reseed_counter = internal_state (state_handle).reseed_counter,
security_strength = internal_state (state_handle).security_strength,
prediction_resistance._flag = internal_state
(state_handle).prediction_resistance_flag.

Comment: Check the validity of the other
input parameters.

3. If (requested no_of bits > 5000) then Return (“Too many bits requested”,
Null).

4. If (requested_security _strength> security_strength), then Return (“Invalid
requested_security _strength”, Null).

5. If (len (additional_inpuf) > 512), then Return (“Additional_input too long”,
Null).

6. If (prediction_resistance_request = 1) and (prediction_resistance_flag+ 1)),
then Return (“Prediction resistance capability not instantiated”, Null).
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Comment: Reseed if necessary. Note that
since the instantiate algorithm is inline with
the functions, this step has been written as a
combination of steps 6 and 7 of Section 9.3
and step 1 of the generate algorithm in
Section 10.1.1.4. Because of this combined
step, step 9 of Section 9.3.is not required.

7. If ((reseed_counter > 100,000) OR (prediction_resistance_request = 1)), then

7.1 status = Reseed_ Hash_DRBG_Instantiation (state_handle,
additional _input).

7.2 If (status # “Success”), then Return (status, Null).

Comment: Get the new internal state values
that have changed.

7.3 V=internal_state (state_handle).V, C = internal_state (state_handle).C,
reseed_counter = internal_state (state_handle).reseed_counter.

7.4  additional_input = Null.

Comment: Steps 8-flflprovide the rest of the
generate algorithm. Note that in this
implementation, the Hashgen routine is also
inline as steps 9-J

8. If (additional_input # Null), then do
7.1 w = Hash (0x02 || V|| additional_input).
7.2 V= (¥ +w) mod 2*°,

9. m= [requested _no_of _ bn‘s-’ .

outlen

10. data=V.
11. W= the Null string.
12.Fori=1tom

12.1 w; = Hash (data).

12.2 If (w; = previous_output_block), then Return (“Fatal error: output blocks
match”, Null).

12.3 previous output_block =w;.
124 W=W| w
12.5 data= (data + 1) mod oseedlen
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13. pseudorandom_bits = Leftmost (requested_no_of bits) bits of W.
14. H = Hash (0x03 || 7).
15. V= (V+ H+ C + reseed_counter) mod 2**°.
16. reseed counter = reseed counter + 1.
Comments: Update the working_state.
13. Update the changed values in the state.
13.1 internal state (state_handle).V = V.

13.2 internal_state (state_handle).previous_output_block =
previous_output_block.

13.3 internal_state (state_handle).reseed_counter = reseed_counter.
14. Return (“Success$”, pseudorandom_bits).
F.2 HMAC_DRBG Example

This example of HMAC_DRBG uses the SHA-256 hash function. Reseeding and
prediction resistance are not provided. The nonce for instantiation consists of a random
value with security_strength/2 bits of entropy; the nonce is obtained by increasing the call
for entropy bits via the Get_entropy call by security_strength/2 bits (i.e., by adding
security_strength/2 bits to the security_strength value).

A personalization string is allowed, but additional input is not. A total of 3 internal states
are provided. For this implementation, the functions and algorithms are written as separate
routines.

The internal state contains the values for V, Key, reseed counter, and security_strength,
where ¥ and C are bitstrings, and reseed counter and security_strength are integers.

In accordance with Table 2 in Section 10.1, security strengths of 112, 128, 192 and 256
may supported. Using SHA-256, the following definitions are applicable for the instantiate
and generate functions and algorithms:

1. highest supported_security strength = 256.
2. Output block (outlen) = 256 bits.

3. Required minimum entropy for the entropy input at instantiation = 3/2
security_strength (this includes the entropy required for the nonce).

4. Minimum entropy input length (min _length) = 3/2 security_strength (this includes
the minimum length for the nonce).

5. Seed length (seedlen) = 440 bits.

6. Maximum number of bits per request (max_number_of bits_per_request) = 7500
bits.
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9.

F.21

Reseed_interval (reseed interval) = 10,000 requests.

Maximum length of the personalization string (max_personalization_string_length)
= 160 bits.

Maximum length of the entropy input (max _length) = 1000 bits.
Instantiation of HMAC_DRBG

This implementation will return a text message and an invalid state handle (-1) when an error
is encountered.

Instantiate. HMAC_DRBG (...):

Input: integer (requested_instantiation_security_strength), bitstring

personalization_string.

Output: string status, integer state_handle.

Process:

Check the validity of the input parameters.

. If (requested_instantiation_security_strength > 256), then Return (“Invalid

requested_instantiation_security_strength”, -1).

. If (len (personalization_string)>160), then Return (“Personalization_string

too long”, -1)

Comment: Set the security strengthto
one of the valid security strengths.

. If (requested_security_strength < 112), then security_strength =112

Else (requested_ security strength < 128), then security_strength =128
Else (requested_security_strength < 192), then security_strength =192
Else security_strength = 256.

Comment: Get the entropy input and
the nonce.

. min_entropy = 1.5 x security_strength.
5. (status, entropy_input) = Get_entropy (min_entropy, min_entropy, 1000).

. If (status # “Success™), then Return (“Failure indication returned by the

entropy source:” || status, -1).

Comment: Invoke the instantiate algorithm.
Note that the entropy_input contains the
nonce.

. (V, Key, reseed_counter) = Instantiate_algorithm (entropy_input,
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personalization_string).

Comment: Find an unused internal state and
save the initial values.

8. (status, state_handle) = Find_state_space ( ).
9. 1If (status # “Success”), then Return (“No available state space:” || status, -1).
10. internal_state (state_handle) = {V, Key, reseed_counter, security_strength}.
11. Return (“Success” and state_handle).
Instantiate_algorithm (...):
Input: bitstring (entropy _input, personalization_string).
Output: bitstring (V, Key), integer reseed_counter.
Process:
1. seed material = entropy.input || personalization_string.
2. Set Key to outlen bits of zeros.
3. Set V1o outlen/8 bytes of 0x01.
4, (Key, V)= Update (seed_material, Key, V).
5. V=HMAC (Key, V).
6. (Key, V)= Update (seed material, Key, V).
7. reseed counter=1.
8. Return (V] Key, reseed_counter).
F.2.2 Generating Pseudorandom Bits Using HMAC_DRBG
The implementation returns a Null string as the pseudorandom bits if an error has been

detected. This function uses the Update function specified in Section 10.1.2.2, and the
Uninstantiate function in Section 9.4.

HMAC_DRBG(...):
Input: integer (state_handle, requested_no_of bits, requested_security_strength).
Output: string (szatus), bitstring pseudorandom_bits.
Process:
Comment: Check for a valid state handle.

1. If((state_handle < 0) or (state_handle > 3) or (internal_state (state_handle) =
{Null, Null, 0, 0}), then Return (“State not available for the indicated
state_handle”, Null).
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9.

Comment: Get the internal state.

V = internal_state (state_handle).V, Key = internal_state (state_handle).Key,
security strength = internal_state (state_handle).security_strength,
reseed _counter = internal_state (state_handle).reseed_counter.

Comment: Check the validity of the rest of
the input parameters.

If (requested_no_of bits > 7500), then Return (“Too many bits requested”,
Null).

If (requested_security_strength > security_strength), then Return (“Invalid
requested_security_strength”, Null).

Comment: Invoke the generate algorithm.

(status, pseudorandom_bits, V, Key, reseed_counter) = Generate_algorithm
(V, Key, reseed_counter, requested_number_of bits).

If (status = “Reseed required”), then Return (“DRBG can no longer be used.
Please re-instantiate or reseed”, Null).

If (status = “ERROR: outputs match™), then
8.1 Fori=0to3,do
8.1.1 status = Uninstantiate (7).

8.1.2 If(status # “Success”), then Return (“DRBG FAILURE:
Successive outputs match, and uninstantiate failed”, Null).

8.2 Return (“DRBG || status, Null).
Comment: Update the internal state.

internal_state (state_handle) = {V, Key, security_strength, reseed_counter}.

10. Return (“Success”, pseudorandom_bits).

Generate_algorithm (...):

Input: bitstring (V_old, Key), integer (reseed_counter, requested_number_of bits).

Output: string status, bitstring (pseudorandom_bits, V, Key), integer reseed_counter.

Process:
1 If (reseed_counter > 10,000), then Return (“Reseed required”, Nufl, ¥, Key,
reseed_counter).
2. temp = Null.
3 While (len (temp) < requested no_of bits) do:

3.1 ¥=HMAC (Key V).
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3.2 If (V= V_old), then Return (“ERROR: outputs match”, Null, V, Key,
reseed_counter).

33 V.old=V.
34 temp=temp| V.
4. pseudorandom_bits = Lefimost (requested_no_of bits) of temp.
5. (Key, V)= Update (additional _input, Key, V).
6. reseed_counter =reseed_counter + 1.
7. Return (“Success”, pseudorandom_bits, V, Key, reseed_counter).
F.3 CTR_DRBG Example Using a Derivation Function

This example of CTR_DRBG uses AES-128. The reseed and prediction resistance
capabilities are available, and a block cipher derivation function using AES-128 is used.
Both a personalization string and additional input are allowed. A total of 5 internal states
are available. For this implementation, the functions and algorithms are written as separate
routines. The Block_Enecrypt function uses AES-128 in the ECB mode.

The nonce for instantiation (instantiation_nonce) consists of a 32-bit incrementing counter.
The nonce is initialized when the DRBG is installed (e.g., by a call to the clock or by
setting it to a fixed value) and is incremented for each instantiation.

The internal state contains the values for ¥, Key, previous_output_block, reseed_counter,
and security_strength, where V, Key and previous_output_block are strings, and all other
values are integers.Since prediction resistance is always available, there is no need for
prediction_resistance_flag in the internal state.

In accordance with Table 3 in Section 10.2.1, security strengths of 112 and 128 may be
supported. Using AES-128, the following definitions are applicable for the instantiate,
reseed and generate functions:

1. highest supported_security_strength = 128.
2. Output block length (outlen) = 128 bits.

3. Key length (keylen) = 128 bits.
4

. Required minimum entropy for the entropy input at instantiate and reseed =
security_strength.

w

Minimum entropy input length (min _length) = security_strength bits.
6. Maximum entropy input length (max _length) = 1000 bits.

7. Maximum petsonalization string input length
(max_personalization_string_input_length) = 800 bits.

8. Maximum additional input length (max_additional_input_length) = 800 bits.
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9. Seed length (seedlen) = 256 bits.

10. Maximum number of bits per request (max_number_of bits_per_request) = 4000
bits.

11. Reseed interval (reseed_interval) = 100,000 requests. Note that for this value, the
instantiation count will not repeat during the reseed interval.

F.3.1 The Update Function

Update (...):
Input: bitstring (provided_data, Key, V).
Output: bitstring (Key, V).

Process:
1. temp = Null.
2. While (len (femp) < 256) do

4
5
6.
7

8.

3.1 V=(V+1)mod2",
3.2 output_block= AES_ECB_Encrypt (Key, V).
3.3 temp = temp || ouput_block.

. temp = Leftmost 256 bits of temp.

temp = temp ® provided_data.
Key = Lefimost 128 bits of temp.
V= Rightmost 128 bits of temp.
Return (Key, V).

F.3.2 Instantiation of CTR_DRBG Using a Derivation Function

This implementation will return a text message and an invalid state handle (-1) when an error
is encountered. Block_Cipher_df is the derivation function in Section 9.5.2, and uses AES-
128 in ECB mode as the Block_Encrypt function.

Note that this implementation does not include the prediction_resistance_flag in the input
parameters, nor save it in the internal state, since prediction resistance is always available.

Instantiate_CTR_DRBG (...):

Input: integer (requested_instantiation_security_strength), bitstring

personalization_string.

Output: string status, integer state_handle.

Process:

Comment: Check the validity of the input
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parameters.

1. If (requested_instantiation_security_strength > 128) then Return (“Invalid
requested_instantiation_security_strength”, -1).

2. If (len (personalization_string) > 800), then Return (“Personalization_string
too long”, -1).

3. If (requested_instantiation_security_strength < 112), then security_strength =
112

Else security_strength = 128.
Comment: Get the entropy input.

4. (status, entropy input) = Get_entropy (security_strength, security_strength,
1000).

5. If (status # “Success™), then Return (“Failure indication returned by the
entropy source” || status, -1).

Comment: Increment the nonce; actual coding
must ensure that the nonce wraps when its
storage limit is reached, and that the counter
pertains to all instantiations, not just this one.

6. instantiation_nonce = instantiation_nonce + 1.
Comment: Invoke the instantiate algorithm.

7. (V, Key, previous_output_block, reseed_counter) = Instantiate_algorithm
(entropy_input, instantiation_nonce, personalization_string).

Comment; Find an available internal state and
save the initial values.

9. (status, state_handle) = Find_state_space ().
10. If (status = “Success™), then Return (“No available state space:” || status, -1).
Comment: Save the internal state.

11. internal_state_ (state_handle) = {V, Key, previous_output_block,
reseed_counter, security_strength}.

12. Return (“Success”, state_handle).
Instantiate_algorithm (...):
Input: bitstring (entropy_input, nonce, personalization_string).
Output: bitstring (V, Key), integer (reseed_counter).

Process:
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9.

® Ny kR w b=

seed_material = entropy input || nonce || personalization_string.
seed_material = Block_Cipher_df (seed material, 256).

0'%, Comment: 128 bits.
V=0%, Comment: 128 bits.
(Key, V) = Update (seed _material, Key, V).

reseed counter = 1.

previous output_block= AES_ECB_Encrypt (Key, V).

Key =

seedlen

zeros =0 Comment: Produce a string of seedlen

Zeros.

(Key, V)= Update (zeros, Key, V).

10. Return (¥, Key, previous_output_block, reseed_counter).

F.3.3 Reseeding a CTR_DRBG Instantiation Using a Derivation Function

The implementation is designed to return a text message as the status when an error is
encountered.

Reseed_CTR_DRBG_Instantiation (...):
Input: integer (state_handle), bitstring additional _input.

Output: string status.

Process:
Comment: Check for the validity of
state_handle.
1. If ((state_handle < 0) or (state_handle > 5) or (internal_state(state_handle) =

{Null, Null, Null, 0, 0}), then Return (“State not available for the indicated
state_handle™).

Comment: Get the internal state values.

V = internal_state (state_handle).V, Key = internal_state (state_handle).Key,
previous_output_block = internal_state (state_handle). previous_output_block,
security_strength = internal_state (state_handle).security_strength.

If (len (additional_input) > 800), then Return (“Additional_input too long”).

(status, entropy_input) = Get_entropy (security _strength, security_strength,
1000).

If (status # “Success™), then Return (“Failure indication returned by the
entropy source:” || status).
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Comment: Invoke the reseed algorithm.

7. (V, Key, reseed_counter) = Reseed_algorithm (V, Key, reseed _counter,
entropy_input, additional _input).

8. internal state (state handle) = {V, Key, previous_output_block,
reseed_counter, security strength }.

9. Return (“Success”).
Reseed_algorithm (...):

Input; bitstring (V, Key), integer (reseed_counter), bitstring (entropy_input,
additional _input).

Output: bitstring (V, Key), integer (reseed_counter).
Process:
1. seed material = entropy input || additional input.
2. seed material = Block_Cipher_df (seed_material, 256).
3. (Key, V) =Update (seed_material, Key, V).
4. reseed counter=1.

5. Return V, Key, reseed_counter).
F.3.4 Generating Pseudorandom Bits Using CTR_DRBG

The implementation returns a Null string a$ the pseudorandom bits if an error has been
detected.
CTR_DRBG(...):

Input: integer (state_handle, requested_no_of bits, requested_security _strength,
prediction_resistance_request), bitstring additional _input.

Output: string status, bitstring pseudorandom_bits.
Process:
Comment: Check the validity of state_handle.

1. If((state_handle < 0) or (state_handle > 5) or (internal_state (state_handle) =
{Null, Null, Null, 0, 0}), then Return (“State not available for the indicated
state_handle”, Null). .

Comment: Get the internal state.

2. V=internal_state (state_handle).V, Key = internal_state (state_handle).Key,
previous_output_block = internal_state (state_handle). previous_output_block,
security_strength = internal _state (state_handle).security_strength,
reseed_counter = internal_state (state_handle).reseed_counter.
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Comment: Check the rest of the input
parameters.

If (requested no_of bits > 4000), then Return (“Too many bits requested”,
Null).

If (requested_security strength> security strength), then Return (“Invalid
requested_security_strength”, Null).

If (len (additional_input) > 800), then Return (“Additional _input too long”,
Null).

6. reseed required flag=0.

7. If (reseed_required_flag = 1), then

10.

7.1 status = ReseedCTR_DRBG_Instantiation (state_handle,
additional _input).

7.2 If (status # “Success”), then Return (status, Null).

Comment: Get the new working state values;
the administrative information was not
affected.

7.3 V=internal_state (state_handle).V, Key = internal_state
(state_handle).Key, previous_output_block = internal_state
(state_handle). previous output_block, reseed _counter = internal_state
(state_handle).reseed_counter.

7.4 additional_input = Null.
7.5 reseed_required flag=0.

Comment: Generate bits using the generate
algorithm.

(status, pseudorandom_bits, V, Key, previous_output_block, reseed_counter) =
Generate_algorithm (¥, Key, previous_output block, reseed counter,
requested number_of bits, additional _input).

If (status = “Reseed required”), then
9.1 reseed required flag=1.
9.2 Goto step 7.
If (starus = “ERROR: outputs match”), then
10.1 Fori=0to 5,do
8.1.1 status = Uninstantiate (7).
8.1.2 If (status # “Success”), then Return (“DRBG FAILURE:
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Successive outputs match, and uninstantiate failed”, Null).
10.2 Return (“DRBG: ” || status, Null).

11. internal_state (state_handle) = {V, Key, previous_output_block,
security_strength, reseed_counter).

12. Return (“Success”, pseudorandom_bits).
Generate_algorithm (...):

Input: bitstring (V_old, Key_old, previous_output_block), integer (reseed_counter,
requested_number of bits) bitstring additional_input.

Output: string status, bitstring (returned_bits, V, Key, previous_output_block),
integer reseed_counter.

Process:

1. If (reseed counter > 100,000), then Return (“Failure”, Null, V, Key,
previous_output_block, reseed counter).

2. If(additional _input # Null), then
2.1 temp =len (additional input).

2.2 If (temp > 256), then additional _input = Block_Cipher_df
(additional_input, 256).

2.3 If (temp < 256), then additional_input = additional_input || 0%~ ",
2.4 (Key, V)= Update (additional _input, Key old, V_old).

2.5 If((Key = Key old)or (V=7V_old)), then Return (“‘ERROR: outputs
match”, Null, V, Key, previous_output_block, reseed counter).

3. temp= Null.

4. While (len (femp) < requested _number_of bits) do:
4.1 V=+1)mod2'%
4.2 output_block= AES_ECB_Encrypt (Key, V).

4.3 If (output_block = previous output_block), then Return (“ERROR:
outputs match”, Null, V, Key, previous_output_block,
reseed_counter).

4.4  previous output block= output_block.
4.5 temp=temp || ouput block.
5. returned bits = Leftmost (requested_number_of bits) of temp.

0256'

6. zeros= Comment: Produce a string of 256 zeros.
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7. (Key, V)= Update (zeros, Key, V)
reseed_counter = reseed_counter + 1.

9. Return (“Success”, returned_bits, V, Key, previous_output_block,
reseed_counter).

F.4 CTR_DRBG Example Without a Derivation Function

This example of CTR_DRBG is the same as the previous example except that a derivation
function is not used (i.e., full entropy is always available). As before the CTR_DRBG uses
AES-128. The reseed and prediction resistance capabilities are available. Both a
personalization string and additional input are allowed. A total of 5 internal states are
available. For this implementation, the functions and algorithms are written as separate
routines. The Block_Encrypt function uses AES-128 in the ECB mode.

The nonce for instantiation (instantiation_nonce) consists of a 32-bit incrementing counter
that is prepended to the personalization string. The nonce is initialized when the DRBG is
installed (e.g., by a call to the clock or by setting it to a fixed value) and is incremented for
each instantiation.

The internal state contains the values for V, Key, previous_output_block, reseed_counter,
and security_strength, where V, Key and previous_output_block are strings, and all other
values are integers.Since prediction resistance is always available, there is no need for
prediction_resistance_{flag in the internal state.

In accordance with Table 3 in Section 10.2.1, security strengths of 112 and 128 may be
supported. The definitions are the same as those provided in Appendix F.3, except that the
maximum size of the personalization_string is 224 bits in order to accommodate the 32-
bits of the instantiation_nonce (i.e., len (instantiation_nonce) + len
(personalization_string) must be < seedlen). In addition, the maximum size of any
additional_input is 256 bits (i.., len (additional _input < seedlen).

F.4.1 The Update Function

The update function is the same as that provided in Annex F.3.1.
F.4.2 Instantiation of CTR_DRBG Without a Derivation Function

This implementation will return a text message and an invalid state handle (-1) when an error
is encountered.

Note that this implementation does not include the prediction_resistance_flag in the input
parameters, nor save it in the internal state, since prediction resistance is always available.

Instantiate CTR_DRBG (...):

Input: integer (requested_instantiation_security_strength), bitstring
personalization_string.
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Output: string status, integer state_handle.

Process:
Comment: Check the validity of the input
parameters.
1. If (requested_instantiation_security_strength> 128) then Return (“Invalid

10.

11.

12.

requested_instantiation_security_strength”, -1).

If (len (personalization_string) > 224), then Return (“Personalization_string
too long”, -1).

If (requested_instantiation_security_strength < 112), then security_strength =
112

Else security strength = 128.
Comment: Get the entropy input.

(status, entropy_input) = Get_entropy (security_strength, security_strength,
1000).

If (status # “Success™), then Return (“Failure indication returned by the
entropy source” || status, -1).

Comment: Increment the nonce; actual coding
must ensure that the nonce wraps when its
storage limit is reached, and that the counter
pertains to all instantiations, not just this one.

instantiation_nonce = instantiation_nonce + 1.
Comment: Invoke the instantiate algorithm.
personalization_string = instantiation_nonce || personalization_string.

(V, Key, previous_output_block, reseed_counter) = Instantiate_algorithm
(entropy_input, personalization_string).

Comment: Find an available internal state and
save the initial values.

(status, state_handle) = Find_state_space ().
If (status # “Success™), then Return (“No available state space:” || status, -1).
Comment: Save the internal state.

internal_state_ (state_handle) = {V, Key, previous_output_block,
reseed_counter, security strengthy.

Return (“Success”, state_handle).

Instantiate_algorithm (...):
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Input: bitstring (entropy_input, nonce, personalization_string).

Output: bitstring (¥, Key), integer (reseed_counter).

Process:

1.

N B S o

temp = len (personalization_string).

If (temp < 256), then personalization_string = personalization_string || Qe-temp,
seed material = entropy_input @ personalization_string.

Key= 0'%. Comment: 128 bits.

V=02, Comment: 128 bits.

(Key, V) = Update (seed_material, Key, V).

reseed_counter = 1.

previous_output_block=AES_ECB_Encrypt (Key, V).

Oseedlen

zeros = Comment: Produce a string of seedlen zeros.

10. (Key, V) = Update (zeros, Key, V).

11. Return (¥, Key, previous_output _block, reseed_counter).

F.4.3 Reseeding a CTR_DRBG Instantiation Without a Derivation Function

The implementation is designed to return a text message as the status when an error is
encountered.

Reseed CTR_DRBG_Instantiation (...):
Input: integer (state_handle), bitstring additional_input.

Output: string status.

Process:
Comment: Check for the validity of
state_handle.
1. If ((state_handle < 0) or (state_handle > 5) or (internal_state(state_handle) =

3.
4.

{Null, Null, Null, 0, 0}), then Return (“State not available for the indicated
state_handle”).

Comment: Get the internal state values.

V = internal_state (state_handle).V, Key = internal_state (state_handle).Key,
previous_output_block = internal_state (state_handle).previous_output_block,
security_strength = internal_state (state_handle).security_strength.

If (len (additional_input) > 256), then Return (“Additional_input too long”).

(status, entropy_input) = Get_entropy (security_strength, security_strength,
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1000).
6. If (status # “Success”), then Return (“Failure indication returned by the
entropy source:” || status).
Comment: Invoke the reseed algorithm.
7. (V, Key, reseed_counter) = Reseed_algorithm (V, Key, reseed_counier,
entropy _input, additional input).
Comment: Save the new internal state.
8. internal state (state_handle) = {V, Key, previous_output_block,
reseed_counter, security strength }.
9. Return (“Success™).

Reseed_algorithm (...):

Input: bitstring (V, Key), integer (reseed_counter), bitstring (entropy_input,

additional_inpuf).

Output: bitstring (V, Key), integer (reseed_counter).

Process:
1. temp = len (personalization_string).
2. If (temp < 256), then personalization_string = personalization_string || p¥etemp,
3. seed material = entropy _input ® personalization_string.
4, (Key, V)= Update (seed_material, Key, V).
5. reseed counter=1.
6. Return (“Success”, V, Key, reseed_counter).

F.4.4 Generating Pseudorandom Bits Using CTR_DRBG

The generate function is the same as that provided in Annex E.3.5.
F.5 Dual_EC_DRBG Example

This example of Dual_EC_DRBG allows a consuming application to instantiate using any
of the four prime curves, depending on the security strength. A reseed capability is
available, but prediction resistance is not available. Both a personalization_string and an

additional_input are allowed. A total of 10 internal states are provided. For this
implementation, the algorithms are provided as inline code within the functions.

The nonce for instantiation (instantiation_nonce) consists of a random value with
security_strength/2 bits of entropy; the nonce is obtained by a separate call to the
Get_entropy routine.

The internal state contains values for s, seedlen, p, a, b, n, P, Q, r_old, block_counter and
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security_strength. In accordance with Table 4 in Section 10.3.1, security strengths of 112,
128, 192 and 256 may be supported. SHA-256 has been selected as the hash function. The
following definitions are applicable for the instantiate, reseed and generate functions:

1. highest_supported security strength=256.
2. Output block length (outlen): See Table 4.

3. Required minimum entropy for the entropy input at instantiation and reseed =
security_strength.

4. Minimum entropy input length (mirn _length): See Table 4.
5. Maximum entropy input length (max length) = 1000 bits.

6. Maximum personalization string length (max_personalization_string length) =
800 bits.

7. Maximum additional input length (max_additional_input_length) = 800 bits.
8. Seed length (seedlen): See Table 4.

9. Maximum number of bits per request (max_number_of bits_per_request) =
1000 bits.

10. Reseed interval (reseed_inferval) = 10,000 blocks.
F.5.1 Instantiation of Dual_EC_DRBG

This implementation will return a test message and an invalid state handle (-1) when an
ERROR is encountered. Hash_df is specified in Section 9.5.1.
Instantiate_Dual_EC_DRBG (..):

Input: integer (requested_instantiation_security_strength), bitstring
personalization_string.

Output: string status, integer state_handle.
Process:

Comment : Check the validity of the input
parameters.

1. If (requested_instantiation_security_strength > 256) then Return (“Invalid
requested_instantiation_security_strength”, -1).

2. If (len (personalization_string) > 800), then Return (“personalization_string
too long”, -1).

Comment : Select the prime field curve in
accordance with the
requested_instantiation_security_strength
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3.

If (requested_instantiation_security_strength < 112), then

{security strength =112; seedlen = 224; outlen = 208;
min_entropy input _len =224}

Else if (requested_instantiation_security _strength < 128), then

{security_strength =128; seedlen =256; outlen = 240;
min_entropy_input_len =256}

Else if (requested_instantiation_security_strength < 192), then

{security strength=192;, seedlen = 384; outlen = 368,
min_entropy input len =384}

Else {security strength = 256;, seedlen = 521; outlen = 504,
min_entropy_input len=528}.

Select elliptic curve P-seedlen from Annex A to obtain the domain parameters
p,a,b,n, Pyand Q.

Comment: Request entropy _input.

(status, entropy_input) = Get_entropy (security_strength,
min_entropy input length, 1000).

If (status # “Success™), then Return (“Failure indication returned by the
entropy_input source:” || status, -1).

(status, instantiation_nonce) = Get_entropy (security_strength/2,
security_strength/2, 1000).

If (status # “Success”), then Return (“Failure indication returned by the
random nonce source:” || status, -1).

Comment: Perform the instantiate algorithm.

9. seed_material = entropy_input || instantiation_nonce || personalization_string.
10. s = Hash_df (seed material, seedlen).

11. r_old = @(x(s * Q)).

12. block_counter = 0.

Comment: Find an unused internal state and
save the initial values.

13. (status, state_handle) = Find_state_space ().

14. If (status # “Success”), then Return (status, -1).

15. internal_state (state_handle) = {s, seedlen, p, a, b, n, P, O, r_old,

block _counter, security_strength}.
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16. Return (“Success”, state_handle).
F.5.2 Reseeding a Dual_ EC_DRBG Instantiation

The implementation is designed to return a text message as the status when an etror is
encountered.
Reseed_Dual_EC_DRBG_Instantiation (...):
Input: integer state_handle, string additional_input_string.
Output: string status.
Process:
Comment: Check the input parameters.

1. If((state_handle < 0) or (state_handle > 10) or (internal_state
(state_handle).security strength = 0)), then Return (“State not available for the
state_handle™).

2. If (len (additional_input) > 800), then Return (“Additional input too long™).

Comment: Get the appropriate state values for
the indicated state_handle.

3. s=internal_state (state_handle).s, seedlen = internal_state
(state_handle).seedlen, security_strength = internal_state
(state_handle).security_strength.

Comment: Request new entropy input with
the appropriate entropy and bit length.

3. (status, entropy input) = Get_entropy (security_strength,
min_ entropy_input_length, 1000).

4. If (status # “Success”), then Return (“Failure indication returned by the
entropy source:”|| status).

Comment: Perform the reseed algorithm.
5. seed material = pad8 (s) || entropy_input || additional_input.
6. s=Hash_df (seed material, seedlen).

Comment: Update the changed values in the
state.

7. internal_state (state_handle).s = s.
8. internal_state.block_counter = 0.

9. Return (“Success”).
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F.5.3 Generating Pseudorandom Bits Using Dual_EC_DRBG

The implemenation returns a Null string as the pseudorandom bits if an error is
encountered.

Dual_EC_DRBG (...):

Input: integer (state_handle, requested_security_strength, requested_no_of bits),
bitstring additional _input.

Output: string status, bitstring pseudorandom_bits.
Process:
Comment: Check for an invalid state_handle.

1. If ((state_handle < 0) or (state_handle > 10) or (internal_state (state_handle) =
0)), then Return (“State not available for the state_handle”, Null).

Comment: Get the appropriate state
values for the indicated state_handle.

2. s=internal_state (state_handle).s, seedlen = internal_state
(state_handle).seedlen, P = internal_state (state_handle).P, Q = internal_state
(state_handle).Q, ¥ old = internal_state (state_handle).r_old, block_counter =
internal_state (state_handle).block_counter.

Comment: Check the rest of the input
parameters.

3. If (requested number_of bits > 1000), then Return (“Too many bits
requested”, Null).

4. If (requested security strength> security_strength), then Return (“Invalid
requested_strength”, Null).

5. If (lem (additional_input) > 800), then Return (“Additional_input too long”,
Null).

Comment: Check whether a reseed is
required.

requested _number _of _bits

6. If (block _counter +|V ]> 10,000), then

outlen

6.1 Reseed_Dual EC_DRBG_Instantiation (state_handle,
additional_input).

6.2 If (status # “Success”), then Return (status).

6.3 s = internal_state (state_handle).s, block_counter = internal_state
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(state_handle).block_counter.

6.4 additional_input = Null.

Comment: Execute the generate algorithm.

. If (additional_input = Null) then additional_input = 0

Comment: additional _input set to m zeroes.
Else additional_input = Hash_df (pad8 (additional_input), seedlen).

Comment: Produce requested no_of bits,
outlen bits at a time:

8. temp = the Null string.

9.

10.

11

12.
13.
14.
15.
16.

17.
18.
19.

i=0.
t = s ®© additional_input.
.5 = @(x(t * P)).
r =o(x(s * Q).
If (" = r_old), then Return (“ERROR: outputs match”, Null).
rold=r
temp = temp || (vightmost outlen bits of r).
additional_input=0°*", Comment: seedlen zeroes; additional _input
is added only on the first iteration.
block counter = block_counter + 1.
i=i+1.
If (len (temp) < requested no_of bits), then go to step 10.

20. pseudorandom_bits = Truncate (temp, i x outlen, requested_no_of bits).

21.
22,
23,
24,

Comment: Update the changed values
in the state.

internal_state.s = s.
internal_state.r_old =r_old.
internal_state.block counter = block_counter.

Return (“Success”, pseudorandom _bits).
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Appendix G: (Informative) DRBG Selection

Almost no application or system designer starts with the primary purpose of generating
good random bits. Instead, he typically starts with some goal that he wishes to accomplish,
then decides on some cryptographic mechanisms, such as digital signatures or block
ciphers that can help him achieve that goal. Typically, as he begins to understand the
requirements of those cryptographic mechanisms, he learns that he will also have to
generate some random bits, and that this must be done with great care, or he may
inadvertently weaken the cryptographic mechanisms that he has chosen to implement. At
this point, there are two things that may guide the designer's choice of a DRBG:

a. He may already have decided to include a set of cryptographic primitives as part of
his implementation. By choosing a DRBG based on one of these primitives, he can
minimize the cost of adding that DRBG. In hardware, this translates to lower gate
count, less power consumption, and less hardware that must be protected against
probing and power analysis. In software, this translates to fewer lines of code to
write, test, and validate.

For example, a module that generates RSA signatures has available some kind of
hashing engine, so a hash-based DRBG is a natural choice.

b. He may already have decided to trust a block cipher, hash function, keyed hash
function, etc., to have certain properties. By choosing a DRBG based on similar
properties, he can minimize the number of algorithms he has to trust.

For example, an AES-based DRBG might be a good choice when a module
provides encryption with AES. Since the DRBG is based for its security on the
strength of AES, the module's security is not made dependent on any additional
cryptographic primitives or assumptions.

¢. Multiple cryptographic primitives may be available within the system or
application, but there may be restrictions that need to be addressed (e.g.,code size
or performance requirements).

The DRBGs specified in this Standard have different performance characteristics,
implementation issues, and security assumptions.

G.1 Hash_DRBG

[Need to insertitext here]
G.2 HMAC_DRBG
HMAC_DRBG is 2 DRBG built around the use of some approved hash function in the

HMAC construction. To generate pseudorandom bits from a secret key (Key) and a
starting vatue ¥, the DRBG computes
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¥'=HMAC (Key, V).

At the end of a generation request, the DRBG regenerates Key and V, each requiring one
HMAC computation.

Security. The security of HMAC_DRBG is based on the assumption that an approved
hash function used in the HMAC construction is a pseudorandom function family.
Informally, this just means that when an attacker doesn’t know the key used, HMAC
outputs look random, even given knowledge and control over the inputs. In general, even
relatively weak hash functions seem to be quite strong when used in the HMAC
construction. On the other hand, there is not a reduction proof from the hash function’s
collision resistance properties to the security of the DRBG:; the security of HMAC_DRBG
depends on the security of the underlying hash function, but it is possible, in principle, for
HMAC_DRBG to be broken by someone who cannot find collisions or preimages for the
underlying hash function. lThat said, the pseudorandomness of HMAC is a widely used
assumption in designing cryptographic protocols.

Performance. HMAC DRBG produces pseudorandom outputs considerably more slowly
than the underlying hash function processes inputs; for SHA-256, a long generate request
produces output bits at about 1/4 of the rate that the hash function can process input bits.
Each generate request also involves additional overhead equivalent to processing 2048
extra bits with SHA-256. Note, however, that hash functions are typically quite fast; few if
any applications are expected to need output bits faster than HMAC_DRBG can provide
them.

Resources. Any entropy input source may be used with HMAC_DRBG, as it uses
HMAC to process all its inputs. HMAC_DRBG requires access to @ hashing engine or an
HMAC implementation, and the storage space required for the internal state (see Section
10.1.2.1.

Algorithm Choices. The choice of algorithms that may be used by HMAC_DRBG is
discussed in Section 10.1.

G.3 CTR_DRBG

CTR_DRBG is a DRBG based on using an Approved block cipher in counter mode. At
the time of this writing, only three-key TDEA and AES are approved for use within ANS
X9.82. Pseudorandom outputs are generated by encrypting successive values of a counter;
after a generate request, a new key and new starting counter value are generated.

Security. The security of CTR_DRBG is directly based on the security of the underlying
block cipher, in the sense that, so long as some limits on the total number of outputs are
observed, any attack on CTR_DRBG represents an attack on the underlying block cipher.

Constraints on Qutputs. For shown in Table 3 of Section 10.2.1, for each of the three
AES key sizes, up to 2*® generate requests may be made, each of up to 2'° bits, with a
negligible chance of any weakness that does not represent a weakness in AES. However,
the smaller block size of TDEA imposes more constraints; each generate request is limited
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to 2" bits, and at most 2** such requests may be made.

Performance. For large generate requests, CTR_DRBG produces outputs at the same
speed as the underlying block cipher encrypts data. Furthermore, CTR_DRBG is
parallelizeable. At the end of each generate request, work equivalent to 2, 3 and 4 block
encryptions is done to derive new keys and counters for the next generation request.

Resources. [CTR_DRBG is ideal for situations in which 1) prediction resistance is often
required, and 2) an Approved entropy source or another RBG is readily available to
provide entropy input so that a derivation function is not required. Without the readily
available source of entropy input, a derivation function must be used each time additional
entropy input is required, thus slowing down the random bit generation process. For
instantiation and reseeding without frequent requests for prediction resistance, however,
the use of a derivation function should not lead to an important performance penalty, since
both these operations are done only very rarely. CTR_DRBG implementations may also
suffer a substantial performance penalty if they process additional input with generate
requests, since the derivation function may be required in this case as well, unless the
length of the additional input is limited to be less than or equal to the seed length (seedlen).
CTR_DRBG requires access to a block cipher engine, including the ability to change
keys, and the storage space required for the internal state (see Section 10.2.1.1))

Algorithm Choices. . The choice of algorithms that may be used by CTR_DRBG is
discussed in Section 10.2.1.

G.4 DRBGs Based on Hard Problems

The Dual_EC_DRBG bases its security on a "hard" number-theoretic problem. For the
types of curves used in the Dual_EC_DRBG, the Elliptic Curve Discrete Logarithm
Problem has no known attacks that are better than the "meet-in-the-middle" attacks, with a
work factor of sqrt (2™).

This algorithm is decidedly less efficient to implement than the other DRBGs. However, in
those cases where security is the utmost concern, as in SSL or IKE exchanges, the
additional complexity is not usually an issue. Except for dedicated servers, time spent on
the exchanges is just a small portion of the computational load; overall, there is no impact
on throughput by using a number-theoretic algorithm. As for SSL or IPSEC servers, more
and more of these servers are getting hardware support for cryptographic primitives like
modular exponentiation and elliptic curve arithmetic for the protocols themselves. Thus, it
makes sense to utilize those same primitives (in hardware or software) for the sake of high-
security random numbers.

Implementation Considerations

Random bits are produced in blocks of bits representing the x-coordinates on an elliptic
curve.

Because of the various security strengths allowed by this Standard there are multiple
curves available, with differing block sizes. The size is always a multiple of 8, about 16
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bits less than a curve’s underlying field size. Blocks are concatenated and then truncated, if
necessary, to fullfil a request for any number of bits up to a maximum per call of 10,000
times the block length. The smallest blocksize is 216, meaning that at least 2M bits can be
requested on each call.)

|An important detail concerning the Dual_EC_DRBG is that every call for random bits,
whether it be for 2 million bits or a single bit, requires that at least one full block of bits be
produced; no unused bits are saved internally from the previous call. iEach block produced
requires two point multiplications on an elliptic curve—a fair amount of computation.
Applications such as IKE and SSL are encouraged to aggregate all their needs for random
bits into a single call to Dual_ EC_DRBG, and then parcel out the bits as required during
the protocol exchange. A C language structure, for example, is an ideal vehicle for this.

To avoid unnecessarily complex implementations, note that every curve in the Standard
need not be available to an application. To improve efficiency, there has been much
research done on the implementation of elliptic curve arithmetic; descriptions and source
code are available in the open literature.

As a final comment on the implementation of the Dual_EC_DRBG, note that having fixed
base points offers a distinct advantage for optimization. Tables can be precomputed that
allow nP to be attained as a series of point additions, resulting in an 8 to 10-fold speedup,
or more, if space permits.
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