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Random Number Generation
Part 3: Deterministic Random Bit Generator Mechanisms

Contribution of the U.S. Federal Government and not subject to copyright

1 Scope

This part of ANSI X9.82 defines techniques for the generation of random bits using
deterministic methods. This part includes:

1. A model for a deterministic random bit generator,
2. Requirements for deterministic random bit generator mechanisms,

3. Specifications for deterministic random bit generator mechanisms that use hash
functions, block ciphers and number theoretic problems,

4. Implementation issues, and
5. Assurance considerations.

The precise structure, design and development of a random bit generator is outside the
scope of this standard.

This part of ANS X9.82 specifies several diverse DRBG mechanisms, all of which
provided acceptable security when this Standard was approved. However, in the event that
new attacks are found on a particular class of mechanisms, a diversity of approved
mechanisms will allow a timely transition to a different class of DRBG mechanism.

Random number generation does not require interoperability between two entities, ¢.g.,
communicating entities may use different DRBG mechanisms without affecting their
ability to communicate. Therefore, an entity may choose a single appropriate DRBG
mechanism for their applications; see Annex E for a discussion of DRBG selection.

2 Conformance

An implementation of a deterministic random bit generator (DRBG) may claim
conformance with ANSI X9.82 if it implements the mandatory provisions of Part 1, the
mandatory requirements of one or more of the DRBG mechanisms specified in this part of
the Standard, an entropy source from Part 2 and the appropriate mandatory requirements of
Part 4.

Conformance can be assured by a testing laboratory associated with the Cryptographic
Module Validation Program (CMVP) (see http://csre.nist.gov/cryptval). Although an
implementation may claim conformance with the Standard apart from such testing,
implementation testing through the CMVP is strongly recommended.
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3 Normative references

The following referenced documents are indispensable for the application of this
document. For dated references, only the edition cited applies. Nevertheless, parties to
agreements based on this document are encouraged to consider applying the most recent
edition of the referenced documents indicated below. For undated references, the latest
edition of the referenced document (including any amendments) applies.

ANS X9.52-1998, Triple Data Encryption Algorithm Modes of Operation.

ANS X9.62-2005, Public Key Cryptography for the Financial Services Industry - The Elliptic
Curve Digital Signature Algorithm (ECDSA).

ANS X9.63-2000, Public Key Cryptography for the Financial Services Industry - Key
Agreement and Key Transport Using Elliptic Key Cryptography.

ANS X9.82, Part 1-200x, Overview and Basic Principles, Draft.

ANS X9.82, Part 2-200x, Entropy Sources, Draft.

ANS X9.82, Part 4-200x, RBG Constructions, Draft.

FIPS 180-2, Secure Hash Standard (SHS), August 2002; ASC X9 Registry 00003.

FIPS 197, Advanced Encryption Standard (AES), November 2001; ASC X9 Registry 00002.

FIPS 198, Keyed-Hash Message Authentication Code (HMAC), March 6, 2002; ASC X9
Registry 00004.

4 Terms and definitions

Definitions used in this part of ANS X9.82 are provided in Part 1.

5 Symbols
The following symbols are used in this document.
Symbol Meaning
+ Addition
[X1 Ceiling: the smallest integer > X. For example, [5] = 5, and

[5.3] =6.

Xov Bitwise exclusive-or (also bitwise addition mod 2) of two

bitstrings X and Y of the same length.

10
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XY Concatenation of two strings X and Y. X and Y are either both
bitstrings, ot both octet strings.

ged (x, y) The greatest common divisor of the integers x and y.

len (a) The length in bits of string a.

xmod n The unique remainder » (where 0 < » < n-1) when integer x is
divided by n. For example, 23 mod 7 = 2.
Used in a figure to illustrate a "switch”" between sources of

@ input.

{ai, ..a} The internal state of the DRBG at a point in time. The types
and number of the a; depends on the specific DRBG.

0* A string of x zero bits.

11
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6 General Discussion and Organization

Part 1 of this Standard (Random Number Generation, Part 1: Overview and Basic
Principles) describes several cryptographic applications for random numbers, specifies the
characteristics for random numbers and random number generators, and provides
mathematical and cryptographic background information on the concept of randomness.
Random bit generators are used for the generation of random numbers. Part 1 specifies
requirements for random bit generators that are applicable to both non-deterministic
random bit generators (NRBGs) and deterministic random bit generators (DRBGs). In
addition, Part 1 also introduces a general functional model and a conceptual cryptographic
Application Programming Interface (API) for random bit generators.

Part 2 of this Standard (Entropy Sources) discusses entropy sources used by random bit
generators. In the case of DRBGs, the entropy sources are required to seed and reseed the
DRBG.

Part 4 of this Standard (Random Bit Generator Constructions) provides guidance on
combining components to construct random bit generators.

This part of the Standard (Random Number Generation, Part 3: Deterministic Random Bit
Generator Mechanisms) specifies Approved DRBG mechanisms. A DRBG mechanism is
an RBG component that utilizes an algorithm to produce a sequence of bits from an initial
internal state that is determined by an input that is commonly known as a seed. Because of
the deterministic nature of the process, a DRBG mechanism is said to produce
“pseudorandom” rather than random bits, i.e., the string of bits produced by a DRBG
mechanism is predictable and can be reconstructed, given knowledge of the algorithm, the
seed and any other input information. However, if the input is kept secret, and the
algorithm is well designed, the bitstrings will appear to be random. |

The seed for a DRBG mechanism requires that sufficient entropy be provided during
instantiation and reseeding (see Parts 2 and 4 of this Standard). While a DRBG mechanism
may conform to this part of the Standard (i.e., Part 3), an implementation cannot achieve
the goals specified in Part 1 unless the entropy input source is included as specified in Part
4. That is, the security of an RBG that uses a DRBG mechanism is a system
implementation issue; both the DRBG mechanism and its entropy input source must be
considered.

Throughout the remainder of this document, the term “DRBG mechanism™ has been
shortened to “DRBG”.

The remaining sections of this part of the Standard are organized as follows:

— Section 7 provides a functional model for a DRBG that particularizes the functional
model of Part 1.

— Section 8 provides DRBG concepts and general requirements.

— Section 9 specifies the DRBG functions that will be used to access the DRBG
12
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algorithms specified in Section 10.

— Section 10 specifies Approved DRBG algorithms.

— Section 11 addresses assurance issues for DRBGs.
This part of the Standard also includes the following normative annexes:

— Annex A specifies additional DRBG-specific information.

— Annex B provides conversion routines.

— Annex C discusses security considerations for selecting and implementing DRBGs.
The following informative annexes are also included:

— Annex D provides a discussion on DRBG selection.

— Annex E provides example pseudocode for each DRBG.

— Annex F provides a bibliography for related informational material.

13
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7 DRBG Functional Model
7.1 Functional Model

Part 1 of this Standard provides a general functional model for random bit generators
(RBGs). Figure 1 particularizes the functional model of Part 1 for DRBGs.

Personalization
String Nonce  Entropy Input Additional Input
Instantiate Reseed
Function Function
A 4
Unmstal.ltlate Internal State Gener:ate
Function ; Function

= ;
Tests :
State_ Pseudorandom Qutput

Figure 1: DRBG Functional Model

7.2 Functional Model Components

7.2.1 Introduction

Part | of this Standard provides general functional requirements for random bit generators.
These requirements are discussed briefly in this section. |

7.2.2 Entropy Input

The entropy input is provided to a DRBG for the seed (see Section 8.4.2). The entropy
input and the seed shall be kept secret. The secrecy of this information provides the basis
for the security of the DRBG. At a minimum, the entropy input shall provide the requested
amount of entropy for a DRBG. Appropriate sources for the entropy input are discussed in
Parts 2 and 4 of this Standard.

The DRBGs, as specified in this part of the Standard and further discussed in Part 4, allow
14
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for some bias in the entropy input. Whenever a bitstring containing entropy is required by
the DRBG, a request is made that indicates the minimum amount of entropy to be returned;
the request may obtain entopy input bits from a buffer containing readily available entopy
bits or may cause entropy input bits to be acquired. The request may be fulfilled by a
bitsting that is equal to or greater in length than the requested entropy. The DRBG expects
that the returned bitstring will contain at least the amount of entropy requested. Additional
entropy beyond the amount requested is not required, but is desirable.

7.2.3 Other Inputs

Other information may be obtained by a DRBG as input. This information may or may not
be required to be kept secret by a consuming application; however, the security of the
DRBG itself does not rely on the secrecy of this information. The information should be
checked for validity when possible.

During DRBG instantiation, a nonce is required and is combined with the entropy input to
create the initial DRBG seed. Criteria for the nonce are provided in Section 8.4.2.

This Standard recommends the insertion of a personalization string during DRBG
instantiation; when used, the personalization string is combined with the entropy bits and a
nonce to create the initial DRBG seed. The personalization string shall be unique for all
instantiations of the same DRBG type (e.g., HMAC_DRBG). See Section 8.5.2 for
additional discussion on personalization strings.

Additional input may also be provided during reseeding and when pseudorandom bits are
requested. See Section 8.5.3 for a discussion of this input.
7.2.4 The Internal State

The internal state is the memory of the DRBG and consists of all of the parameters,
variables and other stored values that the DRBG uses or acts upon. The internal state
contains both administrative data and data that is acted upon and/or modified during the
generation of pseudorandom bits (i.c., the working state). The contents of the internal state
is dependent on the specific DRBG and includes all information that is required to produce
the pseudorandom bits from one request to the next.

7.2.5 The DRBG Functions
The DRBG functions handle the DRBG’s internal state. The DRBGs in this Standard have
four separate functions:

1. The instantiate function acquires entropy input and combines it with a nonce and a
personalization string to create a seed from which the initial internal state is
created.

2. The generate function generates pseudorandom bits upon request, using the current
internal state, and generates a new internal state for the next request.

3. The reseed function acquires new entropy input and combines it with the current

15
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internal state and any additional input that is provided to create a new seed and a
new internal state.

4. The uninstantiate function zeroizes (i.e., erases) the internal state.

7.2.6 Testing

Testing is concerned with assessing and reacting to the health of the DRBG. The health
tests are discussed in Sections 9.7 and 11.4.

16
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8. DRBG Concepts and General Requirements
8.1 Introduction

This section provides concepts and general requirements for the implementation and use of
a DRBG. The DRBG functions are explained and requirements for an implementation are
provided.

8.2 DRBG Functions and a DRBG Instantiation

8.21 Functions

A DRBG requires instantiate, uninstantiate, generate, and testing functions. A DRBG may
also include a reseed function. A DRBG shall be instantiated prior to the generation of
output by the DRBG.

8.2.2 DRBG Instantiations

A DRBG may be used to obtain pseudorandom bits for different purposes (e.g., DSA
private keys and AES keys) and may be separately instantiated for each purpose.

A DRBG is instantiated using a seed and may be reseeded; when reseeded, the seed shall
be different than the seed used for instantiation. Each seed defines a seed period for the
DRBG instantiation; an instantiation consists of one or more seed periods that begin when
anew seed is acquired (see Figure 2).

8.2.3 Internal States

During instantiation, an Instantiate: Initialize with seed;
initial internal state is
derived from the seed.
The internal state for an
instantiation includes:

1. Working state: Seed period 2
4

a. One or more [ (Opt Reseed with seed., |
values that
are derived ] Seed periods 3 ton
from the seed
and become
part of the

’ Seed period 1

[ (Opt) Reseed with sved , |

internal state;
these values Figure 2: DRBG Instantiation

must usually
remain secret, and

b. A count of the number of requests or blocks produced since the instantiation
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was seeded or reseeded.
2. Administrative information (e.g., security strength and prediction resistance flag).

The internal state shall be protected at least as well as the intended use of the
pseudorandom output bits requested by the consuming application. Each DRBG
instantiation shall have its own internal state. The internal state for one DRBG
instantiation shall not be used as the internal state for a different instantiation.

A DRBG transitions between internal states when the generator is requested to provide
new pseudorandom bits. A DRBG may also be implemented to transition in response to
internal ot external events (e.g., System interrupts) or to transition continuously (e.g.,
whenever time is available to run the generator).

A DRBG implementation may be designed to handle multiple instantiations. Sufficient
space must be available for the expected number of instantiations, i.e., sufficient memory
must be available 1o store the internal state associated with each instantiation.

8.2.4 Security Strengths Supported by an Instantiation

The DRBGs specified in this Standard support four security strengths: 112, 128, 192 or
256 bits. The actual security strength supported by a given instantiation depends on the
DRBG implementation and on the amount of entropy provided to the instantiate function
in the entropy input. Note that the security strength actually supported by a particular
instantiation may be less than the maximum security strength possible for that DRBG
implementation (see Table 1). For example, 2a DRBG that is designed to support a
maximum security strength of 256 bits may be instantiated to support only a 128-bit
security strength.

Table 1: Possible Instantiated Security Strengths

Maximum Designed 112 128 192 256
Security Strength

Possible Instantiated 112 112, 128 112,128,192 | 112, 128, 192,
Security Strengths 256

A security strength for the instantiation is requested by a consuming application during
instantiation, and the instantiate function obtains the appropriate amount of entropy for the
requested security strength. Any security strength may be requested, but the DRBG will
only be instantiated to one of the four security strengths above, depending on the DRBG
implementation. A requested security strength that is below the 112-bit security strength or
is between two of the four security strengths will be instantiated to the next highest level
(e.g., a requested security strength of 96 bits will result in an instantiation at the 112-bit
security strength).

Following instantiation, requests can be made to the generate function for pseudorandom
bits. For each generate request, a security strength to be provided for the bits is requested.
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Any security strength can be requested up to the security strength of the instantiation, e.g.,
an instantiation could be instantiated at the 128-bit security strength, but a request for
pseudorandom bits could indicate that a lesser security strength is actually required for the
bits to be generated. The generate function checks that the requested security strength does
not exceed the security strength for the instantiation. Assuming that the request is valid, the
requested number of bits is returned.

When an instantiation is used for multiple purposes, the minimum entropy requirement for
each purpose must be considered. The DRBG needs to be instantiated for the highest
security strength required. For example, if one purpose requires a security strength of 112
bits, and another purpose requires a security strength of 256 bits, then the DRBG needs to
be instantiated to support the 256-bit security strength.

8.3 DRBG Boundaries

As a convenience, this Standard uses the notion of a “DRBG boundary” to explain the
operations of a DRBG and its interaction with and relation to other processes; a DRBG
boundary contains all DRBG functions and internal states required for a DRBG. A DRBG
boundary is entered via the DRBG’s public interfaces, which are made available to
consuming applications.

Within a DRBG boundary,

1. The DRBG internal state and the operation of the DRBG functions shall only be
affected according to the DRBG specification.

2. The DRBG internal state shall exist solely within the DRBG boundary. The
internal state shall be contained within the DRBG boundary and shall net be
accessed by non-DRBG functions.

3. Information about secret parts of the DRBG internal state and intermediate values
in computations involving these secret parts shall not affect any information that
leaves the DRBG boundary, except as specified for the DRBG pseudorandom bit
outputs.

Each DRBG includes one or more cryptographic primitives (e.g., a hash function). Other
applications may use the same cryptographic primitive as long as the DRBG’s internal
state and the DRBG functions are not affected.

A DRBG’s functions may be contained within a single device, or may be distributed across
multiple devices (see Figures 3 and 4). Figure 3 depicts a DRBG for which all functions
are contained within the same device. Figure 4 provides an example of DRBG functions
that are distributed across multiple devices. In this case, each device has a DRBG sub-
boundary that contains the DRBG functions implemented on that device, and the boundary
around the entire DRBG consists of the aggregation of sub-boundaries providing the
DRBG functionality. The use of distibuted DRBG functions may be convenient for
restricted environments (e.g., smart card applications) in which the primary use of the
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DRBG does not require repeated use of the instantiate or reseed functions.

DRBG Boundary
Instantiate Instantiate |,
Function
— Entropy
Input
Reseed Resead
Instantiation Funciion
. = Generate
Request Bits Function
Test Test [Staks
DRBG = Function
Uninstantiate Uninstani
DREC hin . iate
Function

Figure 3: DRBG Functions Within a Single Device

Although the entropy input that is used to create the seed is shown in the figures as
originating outside the DRBG boundary, it may originate from within the boundary.

Protecied St

Generwe Tesi
Punciian | | Frincfion

Figure 4: Distributed DRBG Functions
Each DRBG boundary or sub-boundary shall contain an uninstantiate function and a test
function to test the “health” of other DRBG functions within that boundary.

When DRBG functions are distributed, appropriate mechanisms shall be used to protect
20
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the confidentiality and integrity of the internal state or parts of the internal state that are
transferred between the distributed DRBG sub-boundaries. The confidentiality and
integrity mechanisms and security strength shall be consistent with the data to be protected
by the DRBG’s consuming application (see SP 800-57).

8.4 Seeds
8.4.1 General Discussion

When a DRBG is used to generate pseudorandom bits, entropy input is acquired in order to
generate a seed prior to the generation of output bits by the DRBG. The seed is used to
instantiate the DRBG and determine the initial internal state that is used when calling the
DRBG to obtain the first output bits.

Reseeding is a means of recovering the secrecy of the output of the DRBG if a seed or the
internal state becomes known. Periodic reseeding is a good countermeasure to the potential
threat that the seeds and DRBG output become compromised. In some implementations
(e.g., smartcards), an adequate reseeding process may not be possible. In these cases, the
best policy might be to replace the DRBG, obtaining a new seed in the process (e.g., obtain
a new smart card).

8.4.2 Generation and Handling of Seeds

The seed and its use by a DRBG is generated and handled as follows:

1. Seed construction for

instantiation: Figure 5 depicts the

i Optional
§eed cc.)ns.tructlon process for_ Entropy Nonce Dersomlivaion
instantiation. The seed material Input String

used to determine a seed for

instantiation consists of entropy /
input, a nonce and an optional 0';‘_
personalization string. Entropy dr

input is always be used in the
construction of a seed;
requirements for the entropy input
are discussed in item 3. A nonce
is also be used; requirements for Figure 5: Seed Construction for Instantiation
the nonce are discussed in item 7.

This Standard also recommends

the inclusion of a personalization string; requirements for the personalization string
are discussed in Section 8.5.2.

Seed

Depending on the DRBG and the source of the entropy input, a derivation function
is required to derive a seed from the seed material. When full entropy input is
readily available, the DRBGs based on block cipher algorithms (see Section 10.2)
may be implemented without a derivation function. When implemented in-this
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manner, a nonce is not used as shown in Figure 5. Note, however, that the
personalization string could contain a nonce, if desired.

The goal of this seed construction is to ensure that the seed is statistically unique.

2. Seed construction for
reseeding: Figure 6 depicts the
seed construction process for Internal Optional

. . . . State Additional

reseeding an instantiation. The Value Input Input
seed material for reseeding
consists of a value that is
carried in the internal state!, L 2
new entropy input and, Ud‘}"
optonally, additional input. The
internal state value and the
entropy input are required; Seed
requirements for the entropy
input are discussed in item 3.
Requirements for the additional Figure 6: Seed Construction for Reseeding
input are discussed in Section
8.5.3. As in item 1, a derivation function may be required for reseeding. See item 1
for further guidance.

Entropy

3. Entropy requirements for the entropy input: The entropy input for the seed shall
contain sufficient entropy for the desired security strength. Additional entropy may
be provided in the nonce or the optional personalization string during instantiation,
or in the additional input during reseeding, but this is not required. Entropy
contained in the seed components is distributed across the seed (e.g., using an
appropriate derivation function) by the instantiate and reseed functions.

The entropy input shall have entropy that is equal to or greater than the security
strength of the instantiation. Note that the use of more entropy than the minimum
value will offer a security “cushion”. This may be useful if the assessment of the
entropy provided in the entropy input is incorrect. Having more entropy than the
assessed amount is acceptable; having less entropy than the assessed amount could be
fatal to security. The presence of more entropy than is required, especially during the
instantiatiation, will provide a higher level of assurance than the minimum required
entropy.

4. Seed length: The minimum length of the seed depends on the DRBG and the
security strength required by the consuming application. See Section 10.

5. Entropy input source: The source of the entropy input may be an Approved NRBG,
an Approved DRBG (or chain of Approved DRBGs) that is seeded by an Approved
NRBG, or an Approved entropy source. Further discussion about the entropy input
is provided in Parts 2 and 4 of this Standard.

1 See each DRBG specification for the value that is usze%
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6. Entropy input and seed privacy: The entropy input and the resulting seed shall be
handled in a manner that is consistent with the security required for the data
protected by the consuming application. For example, if the DRBG is used to
generate keys, then the entropy inputs and seeds used to generate the keys shall be
treated at least as well as the key.

7. Nonce: A nonce is required to construct a seed during instantation. The nonce shall
be either:

A random value with at least (security strength/2) bits of entropy,
b. A non-random value that is guaranteed to never repeat, or

¢. A non-random value that is expected to repeat no more often than a
(security strength/2)-bit random string would be expected to repeat.

For case a, the nonce may be acquired from the same source and at the same time
as the entropy input. In this case the seed could be considered to be constructed
from an “extra strong” entropy input and the optional personalization string, where
the entropy for the entropy input is equal to or greater than (3/2 security_strength)
bits.

8. Reseeding: Generating too many outputs from a seed (and other input information)
may provide sufficient information for successfully predicting future outputs unless
prediction resistance is provided (see Part 1). Periodic reseeding will reduce
security risks, reducing the likelihood of a compromise of the data that is protected
by cryptographic mechanisms that use the DRBG.

Seeds have a finite seedlife (i.e., the length of the seed period); the maximum
seedlife is dependent on the DRBG used. Reseeding is accomplished by 1) an
explicit reseeding of the DRBG by the application, or 2) by the generate function
when prediction resistance is requested, or the limit of the seedlife is reached. An
alternative to reseeding is to create an entirely new instantiation.

Reseeding of the DRBG shall be performed in accordance with the specification
for the given DRBG. The DRBG reseed specifications within this Standard are
designed to produce a new seed that is determined by both the current internal state
and newly-obtained entropy input that will support the desired security strength.

A seed that is used to initialize one instantiation of a DRBG shall not be
intentionally used to reseed the same instantiation or used as a seed for another
DRBG instantiation.
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A DRBG shall not provide output until a seed is available, and the internal state
has been initialized.

10. Seed separation: Seeds used by DRBGs shall not be used for other purposes (e.g.,
domain parameter or prime number generation).

8.5  Other Inputs to the DRBG
8.5.1 Discussion

Other input may be provided during DRBG instantiation, pseudorandom bit generation and
reseeding. This input may contain entropy, but this is not required. During instantiation, a
personalization string may be provided and combined with entropy input and a nonce to
derive a seed (see Section 8.4, item 1). When pseudorandom bits are requested and when
reseeding is performed, additional input may be provided (see Section 8.5.3).

Depending on the method for acquiring the input, the exact value of the input may or may
not be known to the user or application. For example, the input could be derived directly
from values entered by the user or application, or the input could be derived from
information introduced by the user or application (e.g., from timing statistics based on key
strokes), or the input could be the output of another DRBG or an NRBG.

8.5.2 Personalization String

During instantiation, a personalization string should be used to derive the seed (see
Section 8.4.2). The intent of a personalization string is to differentiate this DRBG
instantiation from all the others that might ever appear. The personalization string should
be set to some bitstring that is as unique as possible, and may include secret information.
The value of any secret information contained in the personalization string should be no
greater than the claimed strength of the DRBG, as the DRBG's cryptographic mechanisms
(specifically, its backtracking resistance and the entropy provided in the entropy input) will
protect this information from disclosure. Good choices for the personalization string
contents include:

1. Device serial numbers,

Public keys,

User identification,

Private keys,

PINs and passwords,

Secret per-module or per-device values,
Timestamps,

Network addresses,

© e N o R W

Special secret key values for this specific DRBG instantiation,

24



ANS X9.82, Part 3 - DRAFT - August 2005

10. Application identifiers,
11. Protocol version identifiers,
12. Random numbers, and

13. Nonces.
8.5.3 Additional Input

During each request for bits from a DRBG and during reseeding, the insertion of additional
input is allowed. This input is optional and may be either secret or publicly known; its
value is arbitrary, although its length may be restricted, depending on the implementation
and the DRBG. The use of additional input may be a means of providing more entropy for
the DRBG internal state that will increase assurance that the entropy requirements are met.
If the additional input is kept secret and has sufficient entropy, the input can provide more
assurance when recovering from the compromise of the seed or one or more DRBG
internal states.

State, ;| |State,5| * * °

l State, |

Figure 7: Sequence of DRBG States

Seed — & State, State, | * * * State_,| [State, |
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9 DRBG Functions
9.1 General Discussion

The DRBG functions in this Standard are specified as an algorithm (see Section 10) and an
“envelope” of pseudocode around that algorithm (defined in this section). The pseudocode
in the envelopes checks the input parameters, obtains input not provided by the input
parameters, accesses the appropriate DRBG algorithm and handles the internal state. A
function need not be implemented using such envelopes, but the function shall have
equivalent functionality.

In the specifications of this Standard, the following pseudo-functions are used. These
functions are not specifically defined in this Standard, but have the following meaning:

e Get_entropy: A function that is used to obtain entropy input. The function call is:

(status, entropy_input) = Get_entropy (min_entropy, min_ length, max_
length)

which requests a string of bits (entropy_inpuf) with at least min_entropy bits of
entropy. The length for the string shall be equal to or greater than min. length bits,
and less than or equal to max_length bits. A status code is also returned from the
function.

e Block Encrypt: A basic encryption operation that uses the selected block cipher
algorithm. The function call is:

output_block = Block_Encrypt (Key, input_block)

For TDEA, the basic encryption operation is called the forward cipher operation
(see SP 800-67); for AES, the basic encryption operation is called the cipher
operation (see FIPS 197). The basic encryption operation is equivalent to an
encryption operation on a single block of data using the ECB mode.

Note that an implementation may choose to define this functionality differently; for
example, for many of the DRBGs, the min_length = min_entropy for the Get_entropy
function, in which case, the second parameter could be omitted.

9.2 Instantiating a DRBG
A DRBG shall be instantiated prior to the generation of pseudorandom bits. The instantiate
function:
1. Checks the validity of the other input parameters,
2. Determines the security strength for the DRBG instantiation,
3. Determines any DRBG specific parameters (e.g., elliptic curve domain parameters),
4

. Obtains entropy input with entropy sufficient to support the security strength,
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5. Obtains the nonce,
6. Determines the initial internal state using the instantiate algorithm,
7. Returns a state_handle for the internal state to the consuming application.

Let working_state be the working state for the particular DRBG, and let min_length, max_
length, and highest_supported_security_strength be defined for each DRBG (see Section
10). The following or an equivalent process shall be used to instantiate a DRBG.

Input from a consuming application:

1. requested_instantiation_security_strength: A requested security strength for the
instantiation. DRBG implementations that support only one security strength do not
require this parameter; however, any application using that DRBG implementation
must be aware of this limitation. '

2. prediction_resistance_flag: Indicates whether or not prediction resistance may be
required by a the consuming application during one or more requests for
pseudorandom bits. DRBGs that are implemented to always or never support
prediction resistance do not require this parameter. However, the user ofa
consuming application must determine whether or not prediction resistance may be
required by the application before electing to use such a DRBG implementation. If
the prediction_resistance_flag is not needed (i.e., because prediction resistance is
always or never performed), then the input parameter may be omitted, and the
prediction _resistance_flag may be omitted from the internal state in step 11.

3. personalization_string: An optional input that provides personalization information
(see Sections 8.4.2 and 8.5.2). The maximum length of the personalization string
(max_personalization_string length) is implementation dependent, but shall be <
the maximum length specified for the given DRBG (see Section 10). If a
personalization string will never be used, then the input parameter and step 3 may
be omitted, and step 9 may be modified to omit the personalization string.

Required information not provided by the consuming application:

Comment: This input shall not be provided
by the consuming application as an input
parameter during the instantiate request.

1. entropy_input: Input bits containing entropy. The maximum length of the
entropy_input is implementation dependent, but shall be < 2% bits.

2. nonce: A nonce as specified in Section 8.4.2. Note that if a random value is used as
the nonce, the entropy_input and nonce could be acquired using a single
Get_entropy call (see step 6); in this case, the first parameter would be adjusted to
include the entropy for the nonce (i.c., security_strength would be increased by at
least security strength/2), step 8 would be omitted, and the nonce would be omitted
from the parameter list in step 9.
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Output to a consuming application:

1. status: The status returned from the instantiate function. The status will indicate
SUCCESS or an ERROR. If an ERROR is indicated, either no state_handle or an
invalid state_handle shall be returned. A consuming application should check the
status to determine that the DRBG has been correctly instantiated.

2. state_handle: Used to identify the internal state for this instantiation in subsequent
calls to the generate, reseed, uninstantiate and test functions.

Information retained within the DRBG boundary:

The internal state for the DRBG, including the working_state and administrative
information (see Sections 8.2.3 and 10).

Process:

Comment: Check the validity of the input
parameters.

1. If requested_instantiation_security_strength >
highest supported_security_strength, then return an ERROR.

2. If prediction resistance_flag is set, and prediction resistance is not supported, then
return an ERROR.

3. Ifthe length of the personalization_string > max_personalization_string_length,
return an ERROR.

4  Set security_strength to the nearest security strength greater than or equal to
requested_instantiation_security_strength.

Comment: The following step is required by
the Dual EC_DRBG when multiple curves
are available (see Section 10.3.2.2.2).
Otherwise, the step should be omitted.

5. Using the security strength, select appropriate DRBG parameters.
Comment: Obtain the entropy input.

6. (status, entropy input) = Get_entropy (security_strength, min_length,

max_length).
7. If an ERROR is returned in step 6, return an ERROR.
8. Obtain a nonce. Comment: This step shall include any

appropriate checks on the acceptability of the
nonce. See Section 8.4.2.

Comment: Call the appropriate instantiate
algorithm in Section 10 to obtain values for
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the initial working state.

9. working state = Instantiate_algorithm (entropy_input, nonce,
personalization_string, other DRBG_parameters).

10. Get a state_handle for a currently empty state. If an unused internal state cannot be
found, return an ERROR.

11. Set the internal state indicated by state_handle to the initial values for the
working_state and administrative information, as appropriate.

12. Return SUCCESS and state_handle.
9.3 Reseeding a DRBG Instantiation
The reseeding of an instantiation is not required, but is recommended whenever an

application and implementation are able to perform this process. Reseeding will insert
additional entropy into the generation of pseudorandom bits. Reseeding may be:

e explicitly requested by an application,
o performed when prediction resistance is requested by an application,

e triggered by the generate function after a predetermined number of pseudorandom
outputs have been produced or a pre-determined number of requests have been
made, or

e triggered by external events (e.g., whenever sufficient entropy is available).

If a reseed capability is not available, a new DRBG instantiation may be created (see
Section 9.2).

The reseed function:
1. Checks the validity of the input parameters,
2. Obtains entropy input with sufficient entropy to support the security strength, and

3. Using the reseed algorithm, combines the current internal state with the new
entropy input and any additional input to determine the new internal state.

Let working_state be the working state for the particular DRBG, and let min_length and
max_ length be defined for each DRBG (see Section 10).

The following or an equivalent process shall be used to reseed the DRBG instantiation.
Input from a consuming application:

1) state handle: A pointer or index that indicates the internal state to be reseeded.
This value was returned from the instantiate function specified in Section 9.2.

2) additional input: An optional input. The maximum length of the additional input
(max_additional_input length) is implementation dependent, but shall be < the
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maximum value specified for the given DRBG (see Section 10). If additional _input
will never be used, then the input parameter and step 2 may be omitted, and step 5
may be modified to remove the additional_input from the parameter list.

Required information not provided by the consuming application:

Comment: This input shall not be provided
by the consuming application in the input
parameters.

1. entropy_input: Input bits containing entropy. The maximum length of the
entropy_input is implementation dependent, but shall be < 2% bits.

2. Internal state values required by the DRBG for reseeding, i.e., the working_state
and administrative information, as appropriate.

Output to a consuming application:

1. status: The status returned from the function. The status will indicate SUCCESS or
an ERROR.

Information retained within the DRBG boundary:
Replaced internal state values (i.e., the working_state).
Process:

Comment: Get the current internal state and
check the input parameters.

1. Using state_handle, obtain the current internal state. If stafe_handle indicates an
invalid or unused internal state, return an ERROR.

2. Ifthe length of the additional _input > max_additional_input_length, return an
ERROR.

Comment: Obtain the entropy input.

3. (status, entropy input) = Get_entropy (security strength, min_length,
max_length).

4. If an ERROR is returned in step 3, return an ERROR.

Comment: Get the new working state using
the appropriate reseed algorithm in Section
10.

5. (status, working state) = Reseed_algorithm (working state, entropy input,
additional input).

IComment: If an ERROR is returned, two
consecutive states are the same.

6. If an ERROR is returned from step 6, then
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6.1 Delete all instantiations using the uninstantiate function.
6.2 Return the ERROR status from step 5

Comment: Save the new values of the internal
state.

Replace the working_state in the internal state indicated by state_handle with the
new values.

Return SUCCESS.

9.4 Generating Pseudorandom Bits Using a DRBG

This function is used to generate pseudorandom bits after instantiation or reseeding (see
Sections 9.2 and 9.3). The generate function:

1.
2

4.
5.
Let outlen be the length of the output block of the cryptographic primitive (see Section 10).

Checks the validity of the input parameters,

Calls the reseed function to obtain sufficient entropy if the instantiation needs
additional entropy because the end of the seedlife has been reached or prediction
resistance is required.

Generates the requested pseudorandom bits using the generate algorithm. The
generate algorithm will check that two consecutive outputs are not the same.

Updates the working state.

Returns the requested pseudorandom bits to the consuming application.

The following or an equivalent process shall be used to generate pseudorandom bits.

Input from a consuming application:

1.
2.

state_handle: A pointer or index that indicates the internal state to be used.

requested number_of bits: The number of pseudorandom bits to be returned from
the generate function. The max_number_of bits_per request is implementation
dependent but shall be < the value provided in Section 10 for a specific DRBG.
requested_security strength: The security strength to be associated with the
requested pseudorandom bits. DRBG implementations that support only one
security strength do not require this parameter; however, any application using that
DRBG implementation must be aware of this limitation.

4. prediction resistance_request: Indicates whether or not prediction resistance is to

be provided. DRBGs that are implemented to always or never support prediction
resistance do not require this parameter. However, the user of a consuming
application must determine whether or not prediction resistance may be required by
the application before electing to use such a DRBG implementation.

If prediction resistance is never provided, then the prediction_resistance_request
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input parameter and step 5 may be omitted, and step 7 may be modified to omit the
check for the prediction_resistance_request.

If prediction resistance is always performed, then the prediction_resistance_request
input parameter and step 5 may be omitted, and steps 7 and 8 are replaced by:

status = Reseed (state_handle, additional _input).
If status indicates an ERROR, then return ERROR.
Using state_handle, obtain the new internal state.

(status, pseudorandom_bits, working_state) = Generate_algorithm
(working_state, requested _number_of bits).

Note that if additional_input is never provided, then the additional input parameter
in the Reseed call above may be omitted.

5. additional input: An optional input. The maximum length of the additional_input
(max_additional_input length) is implementation dependent, but shall be < 2%
bits. If additional_input will never be used, then the input parameter, step 4, step
7.4 and the additional input input parameter in step 8 may be omitted.

Required information not provided by the consuming application:

1. Internal state values required for generation for the working_state and
administrative information, as appropriate.

Output to a consuming application:

1.  status: The status returned from the function. The status will indicate SUCCESS
or an ERROR.

2.  pseudorandom_bits: The pseudorandom bits that were requested.
Information retained within the DRBG boundary:

Replaced internal state values (i.e., the working state).
Process:

Comment Get the internal state and check the
input parameters.

1. Using state_handle, obtain the current internal state for the instantiation. If
state_handle indicates an invalid or unused internal state, then return an ERROR.

2. If requested_number_of bits > max_number_of bits_per request, then return an
ERROR.

3. If requested security strength> the security strength indicated in the internal
state, then return an ERROR.

4. If the length of the additional _input > max_additional _input_length, then return an
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ERROR.

5. If prediction_resistance_request is set, and prediction_resistance_flag is not set,
then return an ERROR.

6. Clear the reseed_required_flag.
Comment: Check whether a reseed is needed.
7. If reseed required flag is set, or if prediction_resistance_request is set, then

Comment: Reseed the instantiation (see
Section 9.3).

7.1 status = Reseed (state_handle, additional input).

7.2 If status indicates an ERROR, then return an ERROR.
7.3 Using state_handle, obtain the new internal state.

7.4 additional input = the Null string.

7.5 Clear the reseed required flag.

Comment: Request the generation of
pseudorandom_bits using the appropriate
generate algorithm in Section 10.

8. (status, pseudorandom_bits, working_state) = Generate_algorithm
(working state, requested_number _of bits, additional_inpur).

9. If status indicates that a reseed is required before the requested bits can be
generated, then

9.1 Set the reseed required flag.
9.2 Gotostep7.

Comment: If an ERROR is returned, two
consecutive states are the same.

10. If an ERROR is returned from step 8,
10.1 Delete all instantiations using the uninstantiate function.
10.2 Return the ERROR received from step 8.

11. Replace the old working state in the internal state indicated by state_handle with
the new working_state.

12. Return SUCCESS and pseudorandom_bits.

Implementation notes:

If a reseed capability is not available, then steps 6 and 7 may be removed; and step 9 is
replaced by:
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9. If status indicates that a reseed is required before the requested bits can be
generated, then

9.1 status = Uninstantiate (state_handle).
9.2 If an ERROR is returned in step 9.1, then return the ERROR.
9.3 Return an indication that the DRBG instantiation can no longer be used.

9.5 Removing a DRBG Instantiation

The internal state for an instantiation may need to be “released”. The uninstantiate
function:

1. Checks the input parameter for validity.
2. Empties the internal state.

The following or an equivalent process shall be used to remove (i.e., uninstantiate) a
DRBG instantiation:

Input from a consuming application:
1. state_handle: A pointer or index that indicates the internal state to be “released”.
Output to a consuming application:

1. status: The status returned from the function. The status will indicate SUCCESS or
ERROR.

Information retained within the DRBG boundary:
An empty internal state.

Process:
1. If state_handle indicates an invalid state, then return an ERROR.
2. Erase the contents of the internal state indicated by state_handle.
3. Return SUCCESS.

9.6 Auxilliary Functions

9.6.1 Introduction

Derivation functions are internal functions that are used during DRBG instantiation and
reseeding to either derive internal state values or o distribute entropy throughout a
bitstring. Two methods are provided. One method is based on hash functions (see Section
9.6.2), and the other method is based on block cipher algorithms (see Section 9.6.3). The
block cipher derivation function uses the Block_Cipher_Hash function specified in
Section 9.6.4.
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9.6.2 Derivation Function Using a Hash Function (Hash_df)

The hash-based derivation function hashes an input string and returns the requested
number of bits. Let Hash (...) be the hash function used by the DRBG, and let outlen be its
output length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. input string: The string to be hashed.

2. no of bits_to return: The number of bits to be returned by Hash_df. The
maximum length (max_number of bits) is implementation dependent, but shall be
< (255 x outlen). The no_of bits_to_return is represented as a 32-bit integer.

Output:
1. status: The status returned from Hash_df. The status will indicate SUCCESS or
ERROR.

2. requested bits : The result of performing the Hash_df.

Process:
1. Ifno_of bits to return> max_number_of bits, then return an ERROR.
2. temp = the Null string.

no of bits to return
3. len= o == :
outlen

4. counter = an 8-bit binary value representing the integer "1".
5. Fori=1tolendo
5.1 temp=temp | Hash (counter || no_of bits to_return || input_string).
5.2 counter = counter + 1.
6. requested_bits = Lefimost (no_of bits_to_return) of temp.
7. Return SUCCESS and requested bits.
9.6.3 Derivation Function Using a Block Cipher Algorithm (Block_GCipher_df)

Let Block_Cipher_Hash be the function specified in Section 9.6.4. Let Let outlen be its
output block length, and let keylen be the key length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
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1. input_string: The string to be operated on. This string shall be a multiple of 8 bits.
2. no_of bits_to_return: The number of bits to be returned by Block_Cipher_df. The
maximum length (max_number of bits) is 512 bits for the currently approved
block cipher algorithms.
Output:
1. status: The status returned from Block_Cipher_df. The status will indicate
SUCCESS or ERROR.
2. requested bits : The result of performing the Block_Cipher_df.
Process:

1. If (number _of bits_to_return> max_number_of bits), then return an ERROR.

2. L=len (input_string)/8. Comment: L is the bitstring represention of
the integer resulting from len (input_string)/8.
L shall be represented as a 32-bit integer.

3. N=number of bits to return/3.  Comment : N is the bitsting represention of
the integer resulting from
number of bits to return/8. N shall be
represented as a 32-bit integer.

Comment: Prepend the string length and the
requested length of the output to the
input string.

3. S=L||N| input_string || 0x80.

Comment : Pad S with zeros, if necessary.

4. While (len (S) mod outlen) =0, S =S || 0x00.
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Comment : Compute the starting value.

5. temp = the Null string.

i=0. Comment : i shall be represented as a 32-bit
integer.

K = Leftmost keylen bits of 0x010203...1F.

8. While len (temp) < keylen + outlen, do

8.1 [y =i| olen-ten(® Comment: The integer represenation of i is
padded with zeros to outlen bits.

8.2 temp = temp || Block_Cipher_Hash (X, (IV || S)).
83 i=i+l.
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Comment: Compute the requested number of
bits.

9. K= Leftmost keylen bits of temp.
10. X = Next outlen bits of temp.
11. temp = the Null string.
12. While len (temp) < number _of bits_to_return, do
12.1 X = Block_Encrypt (X, X).
12.2 temp = temp || X.
13. requested_bits = Lefimost number_of bits_to_return of temp.

14. Return SUCCESS and requested bits.
9.6.4 Block_Cipher_Hash Function

Let outlen be the length of the output block of the block cipher algorithm to be used.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. Key: The key to be used for the block cipher operation.

2. data_to_hash: The data to be operated upon. Note that the length of data_to_hash
must be a multiple of outlen. This is guaranteed by steps 4 and 8.1 in Section 9.6.3.

QOutput:
1. output_block: The result to be returned from the Block_Cipher_Hash operation.
Process:

Qovlen, Comment: Set the first chaining value to outlen zeros.

1. chaining value =
2. n=len (data_to hash) outlen.
3. Split the data_to_hash into n blocks of outlen bits each forming block to block,.
4, Fori=1tondo

4.1 input_block= chaining_value ® block; .

4.2 chaining value = Block_Encrypt (Key, input_block).
5. output_block = chaining_value.

6. Return output block.
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9.7 Self-Testing of the DRBG
9.7.1 Discussion

A DRBG shall perform self testing to obtain assurance that the implementation continues
to operate as designed and implemented (health testing). The testing function(s) within a
DRBG boundary (or sub-boundary) shall test each DRBG function within that boundary.

Errors occurring during testing shall be perceived as complete DRBG failures. The
condition causing the failure shall be corrected and the DRBG re-instantiated before
requesting pseudorandom bits (also, see Section 9.8)

9.7.2 Testing the Instantiate Function

Known-answer tests on the instantiate function shall be performed prior to creating each
operational instantiation. However, if several instantiations are performed in quick
succession using the same input parameters, then the testing may be reduced to testing
prior to creating the first instantiation using that parameter set.

The security_strength and prediction resistance_flag to be used in the operational
invocation shall be used during the test. Representative fixed values and lengths of the
entropy_input, nonce and personalization_string (if allowed) shall be used; the value of
the entropy_input used during testing shall not be intentionally reused during normal
operations (either by the instantiate or the reseed functions). Error handling shall be also
be tested, including an error in obtaining the entropy input (e.g., the entropy input source
is broken).

[f the values used during the test produce the expected results, and errors are handled
correctly, then the instantiate function may be used to instantiate using the tested values of
security_strength and prediction_resistance_flag.

An implementation should provide a capability to test the instantiate function on demand.

9.7.3 Testing the Generate Function

Known-answer tests shall be performed on the generate function before the first use of the
function and at reasonable intervals defined by the implementer. The implementer shall
document the intervals and provide a justification for the selected intervals.

The known-answer tests shall be performed for each implemented security_strength.
Representative fixed values and lengths for the requested number of bits and

additional _input (if allowed) and the working state of the internal state value (sec Sections
8.2.3 and 10) shall be used. If prediction resistance is available, then each combination of
the security strength, prediction_resistance request and prediction resistance_flag shall
be tested. The error handling for each input parameter shall also be tested, and testing shall
include setting the reseed counter to meet or exceed the reseed_interval in order to check
that the implementation is reseeded or that the DRBG is “shut down”, as appropriate.

If the values used during the test produce the expected results, and errors are handled
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correctly, then the generate function may be used during normal operations.
Bits generated during health testing shall not be output as pseudorandom bits.
An implementation should provide a capability to test the generate function on demand.

Note that the generate function performs a continuous test by comparing sequential output
blocks} for some DRBGs, additional values of the working state are checked to determine

that they have changed (see the generate function for each DRBG in Section 10 and step - [Comment [EBBS5]: Page: 40

10 in Section 9.4). Do we want to do this ?

9.7.4 Testing the Reseed Function

A known-answer test of the reseed function shall use the security_strength in the internal
state of the instantiation to be reseeded. Representative values of the entropy_input and
additional input (if allowed) and the working state of the internal state value shall be used
(see Sections 8.2.3 and 10). Error handling shall also be tested, including an error in
obtaining the entropy input (e.g., the entropy_input source is broken).

If the values used during the test produce the expected results, and errors are handled
correctly, then the reseed function may be used to reseed the instantiation.

The reseed function may be called every time that the generate function is called if
prediction resistance is available, and considerbly less frequently otherwise. Self-test shall
be performed as follows:

1. When prediction resistance is available in an implementation, the reseed function
shall be tested whenever the generate function is tested (see above).

2. When prediction resistance is not available in an implementation, the reseed
function shall be tested whenever the reseed function is invoked and before the
reseed is performed on the operational instantiation.

An implementation should provide a capability to test the reseed function on demand.

Note that for some DRBGs, the reseed function performs a continuous test by comparing
working state values after reseeding with the working state values before reseeding (see

Comment [EBB6]: Page: 40

the reseed function for each DRBG in Section 10 and step 6 in Section93)] ; --[D LEBBS]: Pa
o we want to do this

9.7.5 Testing the Uninstantiate Function

The uninstantiate function shall be tested whenever other functions are tested. Testing
shall attempt to demonstrate that error handling is performed correctly, and the internal
state has been "emptied".

9.8 Error Handling

The expected errors are indicated for each DRBG function (see Sections 9.2 - 9.5) and for
the derivation functions in Section 9.6. The error handling routines should indicate the
type of error. For catastrophic errors (e.g., entropy input source failure), the DRBG shall
not produce further output until the source of the error is corrected.
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Many errors during normal operation may be caused by an application’s improper DRBG
request. In these cases, the application user is responsible for correcting the request within
the limits of the user’s organizational security policy. For example, if a failure indicating
an invalid requested security strength is returned, a security strength higher than the DRBG
or the DRBG instantiation can support has been requested. The user may reduce the
requested security strength if the organization’s security policy allows the information to
be protected using a lower security strength, or the user shall use an appropriately
instantiated DRBG.

Failures that indicate that the entropy source has failed or that the DRBG failed health
testing (see Sections 9.7 and 11.4) shall be handled as complete DRBG failures. The
indicated DRBG problem shall be corrected, and the DRBG shall be re-instantiated before
the DRBG can be used to produce pseudorandom bits.
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10 DRBG Algorithm Specifications

Several DRBGs are specified in this Standard. The selection of a DRBG depends on
several factors, including the security strength to be supported and what eryptographic
primitives are available. An analysis of the consuming application’s requirements for
random numbers shall be conducted in order to select an appropriate DRBG. A detailed
discussion on DRBG selection is provided in Annex D. Pseudocode examples for each
DRBG are provided in Annex E. Conversion specifications required for the DRBG
implementations (e.g., between integers and bitstrings) are provided in Annex B.

10.1 Deterministic RBGs Based on Hash Functions
10.1.1 Discussion

A hash DRBG is based on a hash function that is non-invertible or one-way. The hash
DRBGs specified in this Standard have been designed to use any Approved hash function
and may be used by applications requiring various security strengths, providing that the
appropriate hash funetion is used and sufficient entropy is obtained for the seed. The
following are provided as DRBGs based on hash functions:

1. The Hash_df DRBG specified in Section 10.1.2.
2. The HMAC_DRBG specified in Section 10.1.3.

The maximum security strength that could be supported by each hash function is provided
in SP 800-57. This Standard supports only four security strengths for DRBGs: 112, 128,
192, and 256. Table 3 specifies the values that shall be used for the function envelopes and
DRBG algorithm for each Approved hash function. The specifications in this Standard
assume that a single appropriate hash function will be selected for a DRBG
implementation; i.¢., a DRBG implementation will not contain multiple hash functions
from which to choose during instantiation.

Table 3: Definitions for Hash-Based DRBGs

SHA-1 | SHA-224 ! SHA-256 | SHA-384 ‘ SHA-512

Supported security strengths See SP 800-57
highest_supported_security_strength See SP 800-57

Output Block Length (outlen) 160 | 224 l 256 | 384 ‘ 512
Required minimum entropy for security strength

instantiate and reseed

Minimum entropy input length security strength
(min_length)

Maximum entropy input length < 2% bits

(max_ length)
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SHA-1 | SHA-224 | SHA-256 | SHA-384 | SHA-512

Seed length (seedien) for
Hash_df DRBG

Maximum personalization string < 2% bits
length

(max_personalization_string_length)

Maximum additional_input length < 2% bits
(max_additional_input_length)

max_number_of bits_per_request < 2" bits
Number of requests between <2%

reseeds (reseed_interval)

Note that since SHA-224 is based on SHA-256, there is no efficiency benefit for using the
SHA-224; this is also the case for SHA-384 and SHA-512, i.e., the use of SHA-256 or
SHA-512 instead of SHA-224 or SHA-384, respectively, is preferred. The value for
seedlen is determined by subtracting the count field and one byte of padding from the hash
function input block length; in the case of SHA-1, SHA-224 and SHA 256, seedlen = 512-
64 - 8 = 440; for SHA-384 and SHA-512, seedlen= 1024 - 128 - 8 = 888.
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10.1.3 HMAC_DRBG (...)

10.1.3.1 Discussion

HMAC_DRBG uses multiple
occurrences of an Approved keyed hash
function, which is based on an Approved
hash function. The same hash function
shall be used throughout. The hash
function used shall meet or exceed the
security requirements of the consuming
application.

Figure 9 depicts the HMAC_DRBG in
stages. HMAC_DRBG is specified using
an internal function (Update). This
function is called by the HMAC_DRBG
instantiate, generate and reseed algorithms
to adjust the internal state when new
entropy or additional input is provided.
The operations in the top portion of the
figure are only performed if the additional
input is not null. Figure 10 depicts the
Update function.

10.4.3.2 Specifications

10.1.3.21 HMAC_DRBG Internal State

. The internal state for HMAC_DRBG
consists of:

1. The working_state:

a. The value V¥ of outlen bits,
which is updated each time
another outlen bits of output
are produced (where outlen is
specified in Table 3 of Section
10.1.1).
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Figure 9: HWAC_DRBG Generate Function

b. The outlen-bit Key, which is updated at least once each time that the DRBG

generates pseudorandom bits.

c. A counter (reseed counter) that indicates the number of requests for
pseudorandom bits since instantiation or reseeding.

2. Administrative information:
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a. The security strength of the
DRBG instantiation.

b. A prediction resistance_flag
that indicates whether or not a
prediction resistance capability
is required for the DRBG
instantiation.

The values of ¥ and Key are the critical
values of the internal state upon which the
security of this DRBG depends (i.e., V'
and Key are the “secret values” of the
internal state).

10.1.3.2.2 The Update Function (Update)

The Update function updates the internal
state of HMAC_DRBG using the
provided data. Let HMAC be the keyed
hash function specified in FIPS 198 using
the hash function selected for the DRBG
from Table 3 in Section 10.1.1.

The following or an equivalent process
shall be used as the Update function.

Input:
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Figure 10: HMAC_DRBG Update Function

1. provided data: The data to be used.

2. K: The current value of Key.

3. V: The current value of V.
Output:

1. K: The new value for Key.

2. V: The new value for V.

Process:

1. K=HMAC (X, V|| 0x00 || provided_data).

7=HMAC (X, V).

. K=HMAC (X, V|| 0x01 || provided_data).

2
3. If (provided data = Null), then return K and V.
4
5

¥=HMAC (X, V).
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6. Return K and V.
10.1.3.2.3 Instantiation of HMAC_DRBG

Notes for the instantiate function:

The instantiation of HMAC_DRBG requires a call to the instantiate function specified
in Section 9.2; step 9 of that function calls the instantiate algorithm specified in this
section. For this DRBG, step 5 should be omitted. The values of

highest _supported security strength and min _length are provided in Table 3 of
Section 10.1.1. The contents of the internal state are provided in Section 10.1.2.2.1.

The instantiate algorithm:

Let Update be the function specified in Section 10.1.3.2.2. The ouput block length
(outlen) is provided in Table 3 of Section 10.1.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 9 of Section 9.2):

Input:
1. entropy input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.4.2.

3. personalization string: The personalization string received from the consuming
application. If a personalization_string will never be used, then step 1 may be
modified to remove the personalization_string.

QOutput:

1. working state: The inital values for ¥, Key and reseed_counter (see Section
10.1.3.2.1).

Process:
1. seed material = entropy input || nonce || personalization_string.
2. Key = 0x00 00...00. Comment: outlen bits.
3. ¥V =0x0101...01. Comment: outlen bits.
Comment: Update Key and V.
4. (Key, V)= Update (seed _material, Key, V).

Comment: Generate the initial block for
comparing with the 1st DRBG output block
(for continuous testing)

V=HMAC (Key, V).
6. (Key, V)= Update (seed _material, Key, V).
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5.
6.
10.1.3.24

reseed counter = 1.
Return ¥, Key and reseed_counter as the initial working_state.
Reseeding an HWAC_DRBG Instantiation

Notes for the reseed function:

The reseeding of an HMAC_DRBG instantiation requires a call to the reseed function
specified in Section 9.3; step 5 of that function calls the reseed algorithm specified in
this section. The values for min_length are provided in Table 3 of Section 10.1.1.

The reseed algorithm:

Let Update be the function specified in Section 10.1.3.2.2. The following process or its
equivalent shall be used as the reseed algorithmn for this DRBG (see step 5 of Section

9.3):
Input:
1.

working_state: The current values for ¥, Key and reseed_counter (see Section
10.1.3.2.1).

entropy_input: The string of bits obtained from the entropy input source.

3. additional input: The additional input string received from the consuming

application. If additional_input will never be used, then step 1 may be modified
to remove the additional input.

Qutput:

1.

status: The status returned from the reseed function. The status is either
SUCCESS or an ERROR.

2. working state: The new values for V, Key and reseed_counter.
Process:

1. V_ old="V; Key_old= Key.

2. seed material = entropy_input || additional input.

3. (Key, V)= Update (seed_material, Key_old, V_old).
Comment: Check that the old and new values
of Key and V are not identical.

4. If (V =V _old) or (Key = Key_old)), then return an ERROR.

5. reseed counter = 1.

Return SUCCESS, V, Key and reseed counter as the new working_state.
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Generating Pseudorandom Bits Using HMAC_DRBG

Notes for the generate function:

The generation of pseudorandom bits using an HMAC_DRBG instantiation requires a
call to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number_of bits per_request and outlen are provided in Table 3 of Section 10.1.1.

The generate algorithm :

Let HMAC be the keyed hash function specified in FIPS 198 using the hash function
selected for the DRBG. The value for reseed interval is defined in Table 3 of Section

10.1.1.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of Section 9.4):

Input:
1.

working state: The current values for V, Key and reseed counter (see Section
10.1.3.2.1).

2. requested number of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional _input: The additional input string received from the consuming
application, If an implementation will never use additional_input, then step 3
may be omitted. If an implementation does not include the additional input
parameter as one of the calling parameters, or if the implementation allows
additional_input, but a given request does not provide any additional input,
then a Null string shall be used as the additional _input in step 7.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, an ERROR or indicate that a reseed is required before the
requested pseudorandom bits can be generated.

2. returned bits: The pseudorandom bits to be returned to the generate function.

3. working state: The new values for V, Key and reseed_counter.

Process:

1. If reseed _counter > reseed interval, then return an indication that a reseed is
required.

2. Key old=Key,V old=V.

3. If additional input # Null, then

3.1 (Key, V)= Update (additional_input, Key _old, V_old).
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IComment: Continuous test - Check for that
successive values of ¥ and Key are not
identical.

3.2 If((Key = Key old) OR (V = V_old)), then return and ERROR.
3.3 Key old=Key; V_old= vl
temp = Null.

While (len (femp) < requested_number_of bits) do:
5.1 V=HMAC (Key old V old).

Comment: Continuous test - Check for that
successive values of V are not identical.

52 If(V'=V _old), then return an ERROR.
53 Vold=V.
54 temp=temp| V.

returned_bits = Leftmost requested number_of bits of temp.

7. (Key, V)= Update (additional_input, Key old, V_old).

IComment: Continuous test - Check for that
successive values of ¥ and Key are not
identical.

8. If((V="V old) or (Key = Key_old)), then return an ERROR||

9. reseed_counter = reseed_counter + 1.

10.

Return SUCCESS, returned_bits, and the new values of Key, V and
reseed_counter as the working_state).
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10.2 DRBG Based on Block Ciphers
10.2.1 Discussion

A block cipher DRBG is based on a block cipher algorithm. The block cipher DRBG
specified in this Standard has been designed to use any Approved block cipher algorithm
and may be used by applications requiring various levels of security, providing that the
appropriate block cipher algorithm and key length are used, and sufficient entropy is
obtained for the seed.

10.2.2 CTR_DRBG

10.2.21 CTR_DRBG Description

CTR_DRBG uses an Approved block cipher
algorithm in the counter mode as specified in Key
[SP 800-38A]. The same block cipher === S
algorithm and key length shall be used for all : 1 }
block cipher operations. The block cipher v | i {
algorithm and key length shall meet or @ | I
exceed the security requirements of the t. | :
I
|
I
I
|

consuming application.

I
I

CTR_DRBG is specified using an internal i Encrypt
function (Update). Figure 11 depicts the |
Update function. This function is called by
the instantiate, generate and reseed algorithms
to adjust the internal state when new entropy
or additional input is provided. Figure 12
depicts the CTR_DRBG in three stages. The
operations in the top portion of the figure are
only performed if the additional input is not
null.

provided data——» ®

Table 4 specifies the values that shall be used
for the function envelopes and DRBG
algorithms. The specification in this Standard
requires that a single appropriate block cipher
algorithm and key size will be selected for an
implementation; i.e., an implementation will

not contain multiple block cipher algorithms

or key sizes from which to choose during instantiation.

Table 4: Definitions for the CTR_DRBG

Figure 11: CTR_DRBG Update Function

TDEA

3Key | AES-128 | AES-192 AES-256J
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3 Key
TDEA

AES-128 | AES-192 | AES-256

Supported security strengths

See SP 800-57

highest_supported_security_strength

See SP 800-57

Output block length (outlen)

64

128 128 128

Key length (keylen)

168

128 192 256

Required minimum entropy for
instantiate and reseed

security strength

Seed length (seedlen = outlen + keylen)

232

256 | 320 \ 384

A derivation function is used:

Minimum entropy input length
(min _length)

security_strength

Maximum entropy input length
(max _length)

< 2% bits

Maximum personalization string
length
(max_personalization_string_length)

< 2% bits

Maximum additional_input length
(max_additional_input_length)

< 2% bits

A derivation function is not used (full
entropy is available):

Minimum entropy input length
(min _length) (outlen + keylen)

seedlen

Maximum entropy input length
(max _length) (outlen + keylen)

seedlen

Maximum personalization string
length
(max_personalization_string_length)

seedlen

Maximum additional_input length
(max_additional_input_length)

seedlen

max_number_of bits_per_request

<28

< 219

Number of requests between reseeds
(reseed_interval)

< 232

< 248

The CTR_ DRBG may be implemented to use the block cipher derivation function
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specified in Section 9.6.3.
However, the DRBG is specified Ortyaditamlingt
to allow an implementation
tradeoff with respect to the use of _ LOCK CIFHER,
this derivation function. If a e oo | “Fwerion
source for full entropy input is

always available to provide j/"—:m“ﬁ‘ el
entropy input when requested,
the use of the derivation function
is optional; otherwise, the
derivation functon shall be used.
Table 4 provides lengths required
for the entropy_input,
personalization_string and
additional _input for each case.

UPDATE

When full entropy is available, Note: By, is the previous output black lierate
and a derivation function is not
used by an implementation, the } l
seed construction shall not use a e

nonce? (sec Section 8.4.2). \Kil V Bt | ommter

When using TDEA as the
selected block cipher algorithm, i

the keys shall be handled as 64- i:l
bit blocks containing 56 bits of CYETEN CY
key and 8 bits of parity as I

specified for the TDEA engine. PR

10.2.2.2 Specifications

Block

10.2.2.2.1 CTR_DRBG Internal

State l
The internal state for | —
CTR_DRBG consists of: {K"' [" fated | = I UFDATE
1. The working state: e 1 I

a. The value V of outlen
bits, which is updated
each time another
outlen bits of output Figure 12: CTR-DRBG
are produced (see
Table 4 in Section 10.2.2.1).

2 The specifications in this Standard do not accommggate the special treatment required for a nonce in this
case
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b. The keylen-bit Key, which is updated whenever a predetermined number of
output blocks are generated.

c. The previous_output_block; this is required to perform a continuous test on the
output from the generate function.

d. A counter (reseed_counter) that indicates the number of requests for
pseudorandom bits since instantiation or reseeding.

2. Administrative information:
a. The security strength of the DRBG instantiation.

b. A prediction_resistance_flag that indicates whether or not a prediction
resistance capability is required for the DRBG.

The values of ¥, Key and previous_ output_block are the critical values of the internal state
upon which the security of this DRBG depends (i.e., ¥, Key and previous_ output_block
are the “secret values” of the internal state).

10.2.2.2.2 The Update Function (Update)

The Update function updates the internal state of the CTR_DRBG using the
provided_data. The values for outlen, keylen and seedlen ate provided in Table 4 of
Section 10.2.2.1. The block cipher operation in step 2.2 uses the selected block cipher
algorithm.

The following or an equivalent process shall be used as the Update function:
Input:

1. provided data: The data to be used. This must be exactly seedlen bits in length;
this length is guaranteed by the construction of the provided data in the
instantiate, reseed and generate functions.

2. Key: The current value of Key.
3. V: The current value of V.
Output:
1. K: The new value for Key.
2. V:The new value for V.
Process:
1. temp = Null.
2. While (len (temp) < seedlen) do
2.1 V=(¥+1)mod 2™".
2.2 output_block = Block_Enerypt (Key, V).
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2.3 temp=temp || ouput_block.
3. temp = Leftmost seedlen bits of temp.
4  temp = temp @ provided data.
5. Key = Leftmost keylen bits of femp.
6. V' =Rightmost outlen bits of temp.
7

. Return the new values of Key and V.
10.2.2.2.3 Instantiation of CTR_DRBG

Notes for the instantiate function:

The instantiation of CTR_DRBG requires a call to the instantiate function specified in
Section 9.2; step 9 of that function calls the instantiate algorithm specified in this
section. For this DRBG, step 5 should be omitted. The values of
highest_supported_security_strength and min _length are provided in Table 4 of
Section 10.2.2.1. The contents of the internal state are provided in Section 10.2.2.2.1.

The instantiate algorithm:

Let Update be the function specified in Section 10.2.2.2.2. The output block length
(outlen), key length (keylen), seed length (seedlen) and security strengths for the block
cipher algorithms are provided in Table 4 of Section 10.2.2.1.

If a block cipher derivation function is to be used, then the Block_Cipher_df specified
in Section 9.6.3 shall be implemented using the chosen block cipher algorithm and key
size; in this case, step 1 below shall consist of steps 1.1 and 1.2 (i.e., steps 1.3 to 1.5
shall not be used).

If full entropy is available whenever entropy input is required, and a block cipher
derivation function is not to be used, then step 1 below shall consist of steps 1.3 to 1.5
(i.e., steps 1.1 and 1.2 shall not be used).

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG:

Input:
1. entropy input: The string of bits obtained from the entropy input source.

2. nonce: A string of bits as specified in Section 8.4.2; this string shall not be
present unless a derivation function is used.

3. personalization_string: The personalization string received from the consuming
application.

Output:

1. working state: The inital values for V, Key, previous_output block and
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reseed_counter (see Section 10.2.2.2.1).
Process:
1. If the block cipher derivation function is available, then
1.1 seed material = entropy input || nonce || personalization_string.
1.2 seed material = Block_Cipher_df (seed material, seedlen).

Else Comment: If the block cipher
derivation function is not used and full
entropy is known to be available.

1.3  temp = len (personalization_string).

1.4 If (temp < seedlen), then personalization_string =
personalization string || 0¥ 1",

1.5 seed material = entropy_input ® personalization_string.
Key = (", Comment: keylen bits of zeros.
y =, Comment: outlen bits of zeros.

(Key, V)= Update (seed_material, Key, V).

SO

reseed counter=1.

Comment: Generate the initial block for
comparing with the 1st DRBG output block
(for continuous testing)

6. first output block = Block_Enerypt (Key, V).

grecdten, Comment: Produce a string of seedlen

ZEros.

8. (Key, V)= Update (seed_material, Key, V).

9. Return V, Key, first output_block and reseed_counter as the working_state.

7. zeros =

Implementation notes:

1. If a personalization_string will never be provided from the instantiate function and
a derivation function will be used, then step 1.1 becomes:

seed material = Block_Cipher_df (entropy_input, seedlen).

2. If a personalization_string will never be provided from the instantiate function, a
full entropy source will be available and a derivation function will not be used, then
step 1 becomes

seed_material = entropy_input.
That is, steps 1.3 — 1.5 collapse into the above step.
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10.2.2.2.4 Reseeding a CTR_DRBG Instantiation

Notes for the reseed function:

The reseeding of a CTR_DRBG instantiation requires a call to the reseed function
specified in Section 9.3; step 5 of that function calls the reseed algorithm specified in
this section. The values for min _length are provided in Table 4 of Section 10.2.2.1.

The reseed algorithm:

Let Update be the function specified in Section 10.2.2.2.2. The seed length (seedlen) is
provided in Table 4 of Section 10.2.2.1.

If a block cipher derivation function is to be used, then the Block_Cipher_df specified
in Section 9.6.3 shall be implemented using the chosen block cipher algorithm and key
size: in this case, step 1 below shall consist of steps 1.1 and 1.2 (i.e., steps 1.3 to 1.5
shall not be used).

If full entropy is available whenever entropy input is required, and a block cipher
derivation function is not to be used, then step 1 below shall consist of steps 1.3 to 1.5
(i.e., steps 1.1 tand 1.2 shall not be used).

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (sce step 5 of Section 9.3):

Input:

1. working state: The current values for V, Key, previous_output_block and
reseed_counter (see Section 10.2.2.2.1).

2. entropy_input: The string of bits obtained from the entropy input source.

3. additional input: The additional input string received from the consuming
application.

Output:

1. status: The status returned from the instantiate function. The status is either
SUCCESS or an ERROR.

2. working state: The new values for V, Key, previous_output_block and
reseed counter.

Process:
1. Ifthe block cipher derivation function is available, then
1.1 seed material = entropy_input || additional input.
1.2 seed material = Block_Cipher_df (seed material, seedlen).

Else Comment: The block cipher derivation
function is not used because full
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entropy is known to be available.
1.3 temp = len (additional input).

seedlen -

1.4 If (temp < seedlen), then additional_input = additional input || 0

temp

1.5 seed material = entropy input ® additional input.
V_old=V; Key old= Key.
(Key, V) = Update (seed material, Key, V).
If (VW =V _old) or (Key = Key_old)), then return an ERROR.

reseed counter = 1.

Sy o = 1D

Return SUCCESS, V, Key, previous output_block and reseed_counter as the
working state.

Implementation notes:

1. If additional input will never be provided from the reseed function and a
derivation function will be used, then step 1.1 becomes:

seed_material = Block_Cipher_df (entropy_input, seedlen).

2. If additional input will never be provided from the reseed function, a full entropy
source will be available and a derivation function will not be used, then step 1
becomes

seed_material = entropy _input.
That is, steps 1.3 — 1.5 collapse into the above step.
10.2.2.2.5 Generating Pseudorandom Bits Using CTR_DRBG

Notes for the generate function:

The generation of pseudorandom bits using a CTR_DRBG instantiation requires a call
to the generate function specified in Section 9.4, step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number_of bits per_request and outlen are provided in Table 4 of Section
10.2.2.1. If the derivation function is not used, then the maximum allowed length of
additional _input = seedlen.

Let Update be the function specified in Section 10.2.2.2.2. The seed length (seedlen)
and the value of reseed interval are provided in Table 4 of Section 10.2.2.1. Step 5.2
below uses the selected block cipher algorithm. If a derivation function is not used for
a DRBG implementation, then step 3.2 shall be omitted.

If a block cipher derivation function is to be used, then the Block_Cipher_df specified
in Section 9.6.3 shall be implemented using the chosen block cipher algorithm and key
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size; in this case, step 3.2 below shall be included.

If full entropy is available whenever entropy input is required, and a block cipher
derivation function is not to be used, then step 2 below shall not be used.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of Section 9.4):

Input:

1. working state: The current values for V, Key, previous output_block and
reseed_counter (see Section 10.2.2.2.1).

2. requested_number_of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional_input: The additional input string received from the consuming
application. If additional_input will never be provided, then step 3 may be
omitted.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, an ERROR or indicate that a reseed is required before the
requested pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits returned to the generate function.
3. working state: The new values for ¥, Key and reseed_counter.

Process:
1. V old=V.Key old=Key.

2. If reseed counter > reseed interval, then return an indication that a reseed is
required.

3. If (additional input # Null), then

Comment: If the length of the additional input
is > seedlen, derive seedlen bits.

3.1 temp = len (additional_input).

Comment: If a block cipher derivation
function is used:

3.2 If (temp > seedlen), then additional input = Block_Cipher_df
(additional input, seedlen).

Comment: If the length of the
additional _input is < seedlen, pad with zeros
to seedlen bits.
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3.3 If (temp < seedlen), then additional _input = additional _input || reedlen-

temp

3.4 (Key, V)= Update (additional input, Key old, V_old).
|3.5 If ((Key = Key_old) OR (V = V_old)), then return an ERROR!_ o _..—| Comment [EBB9): Page: 59

Is this additional step useful ?

4. temp = Null.

5. While (len (temp) < requested number of bits) do:
51 V=(V+1)mod 27,
5.2 output block = Block_Encrypt (Key, V).

Comment: Continuous test: Check that the old
and new output blocks are different.

5.3 If (output_block = previous output_block), then return an ERROR.
5.4 previous_output_block = output_block.
5.5 temp=temp | ouput block.

6. returned bits = Leftmost requested_number _of bits of temp.

Comment: Update for backtracking
resistance.

greedien. Comment: Produce a string of seedlen

ZEros.

7. zeros=

8. Key old=Key; V old=V.
9. (Key, V)= Update (zeros, Key old, V_old).

|10. If (V =V _old) or (Key = Key old)), then return an ERROR.[ [ Comment [EBB10]: Page: 59 J
““““ S is this additional step useful ?

11. reseed counter = reseed counter + 1.

12 Return SUCCESS and returned_bits; also return Key, V, output_block and
reseed counter as the new working state.
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10.3 Deterministic RBGs Based on Number Theoretic Problems
10.3.1 Discussion

A DRBG can be designed to take advantage of number theoretic problems (e.g., the
discrete logarithm problem). If done correctly, such a generator’s properties of randomness
and/or unpredictability will be assured by the difficulty of finding a solution to that
problem. Section 10.3.2 specifies a DRBG based on the elliptic curve discrete logarithm
problem.

10.3.2 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)
10.3.2.1 Discussion

The Dual EC_DRBG is based on the following hard problem, sometimes known as the
“elliptic curve discrete logarithm problem” (ECDLP): given points P and Q on an elliptic
curve of order n, find a such that 0= aP.

Dual EC_DRBG uses a seed that is m bits in length (i.e., seedlen = m) to initiate the
generation of outlen-bit pseudorandom strings by performing scalar multiplications on two
points in an elliptic curve group, where the curve is defined over a field approximately 2"
in size. For all the NIST curves given in this Standard for the DRBG, m = 224. Figure 15
depicts the Dual_EC_DRBG.

seed )

Instand, ox
Teseed onky

t ‘ 5 N r Extract
I @ & B Mot (s*Q) Bite

additional input :_@_T i 1 .3
0 P Q Pseudorandom

Bits

 sddifionslinput = Bl

Figure 15: Dual_EC_DRBG

The instantiation of this DRBG requires the selection of an appropriate elliptic curve and
curve points specified in Annex A.1 for the desired security strength. Requirements for the
seed are provided in Section 8.4.2.

Backtracking resistance is inherent in the algorithm, even if the internal state is
compromised. As shown in Figure 16, Dual EC_DRBG generates a seedlen-bit number
for each step i = 1,2,3,..., as follows:
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Si= @(x(Si-1 *P))
Ri=o(x(Si *0)).

Each arrow in the figure represents an Elliptic
Curve scalar multiplication operation, followed
by the extraction of the x coordinate for the
resulting point and for the random output R; and
by truncation to produce the output (formal
definitions for @ and x are given in Section
10.3.2.2.4). Following a line in the direction of

the arrow is the normal operation; inverting the
direction implies the ability to solve the ECDLP
for that specific curve. An adversary’s ability to
invert an arrow in the figure implies that the adversary has solved the ECDLP for that
specific elliptic curve. Backtracking resistence is built into the design, as knowledge of S
does not allow an adversary to determine S (and so forth) unless the adversary is able to
solve the ECDLP for that specific curve. In addition, knowledge of R; does not allow an
adversary to determine S; (and so forth) unless the adversary is able to solve the ECDLP
for that specific curve.

Figure 16: Dual_EC_DRBG {(...)
Backtracking Resistance

Table 5 specifies the values that shall be used for the envelope and algorithm for each
curve. Complete specifications for each curve are provided in Annex A.1. Note that all
curves except the first three can be instantiated at a security strength lower than its highest
possible security strength. For example, the highest security strength that can be supported
by curve P-384 is 192 bits; however, this curve can alternatively be instantiated to support
only the 112 or 128-bit security strengths).

Table §: Definitions for the Dual_EC_DRBG

-

P-224 P-256 P-384 P-521
Supported security strengths See SP 800-57
highest_supported_ See SP 800-57
security_strength
Output block length (max_outlen = 208 240 368 504
largest multiple of 8 less than
seedlen - (13 + log; (the cofactor))
Required minimum entropy for security_strength
instantiate and reseed
Minimum entropy input length 224 256 384 528
kmin _length=8 x [seedlen/8] )l L
Maximum entropy input length < 2" bits
(max _length)
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P-224 P-256 P-384 P-521

Maximum personalization string
length
(max_personalization_string_length)

<2 bits

Supported security strengths

See SP 800-57

Seed length (seedlen = m) 224 256 384 521
Appropriate hash functions SHA-1, SHA-224, SHA-256, | SHA-224, | SHA-256,
SHA-384, SHA-512 SHA-256, | SHA-384,
SHA-384, | SHA-512
SHA-512

max_number_of bits_per_request

max_outlen x reseed_interval

Number of blocks between
reseeding (reseed_interval)

< 2 blocks

Validation and Operational testing are discussed in Section 11. Detected errors shall result

in a transition to the error state.
10.3.2.2 Specifications

10.3.2.21 Dual_EC_DRBG Internal State and Other Specification Details

The internal state for Dual_EC_DRBG consists of:

1. The working state:

A value (s) that determines the current position on the curve.

b. The elliptic curve domain parameters (seedlen, p, a, b, n), whete seedlen is the
length of the seed ; @ and b are two field elements that define the equation of
the curve, and # is the order of the point G. If only one curve will be used by an
implementation, these parameters need not be present in the working_state.

c. Two points P and Q on the curve; the generating point G specified in FIPS 186-
3 for the chosen curve will be used as P. If only one curve will be used by an
implementation, these points need not be present in the working_state.

d. r old, the previous output block.

e. A counter (block counter) that indicates the number of blocks of random
produced by the Dual_EC_DRBG since the initial seeding or the previous

reseeding.

2. Administrative information:

a. The security strength provided by the instance of the DRBG,

b. A prediction_resistance_flag that indicates whether prediction resistance is
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required by the DRBG.

The value of s is the critical value of the internal state upon which the security of this
DRBG depends (i.e., s is the “secret value™ of the internal state).

10.3.2.2.2 Instantiation of Dual_EC_DRBG

Notes for the instantiate function:

The instantiation of Dual_EC_DRBG requires a call to the instantiate function
specified in Section 9.2; step 9 of that function calls the instantiate algorithm in this
section.

In step 5 of the instantiate function, the following step shall be performed to select an
appropriate curve if multiple curves are available.

5. Using the security_strength and Table § in Section 10.3.2.1, select the smallest
available curve that has a security strength > security strength.

The values for seedlen, p, a, b, n, P, Q are determined by that curve.

It is recommended that the default values be used for P and Q as given in Annex A.1.
However, an implementation may use different pairs of points, provided that they are
verifiably random, as evidenced by the use of the procedure specified in Annex A.2.1
and the self-test procedure described in Annex A.2.2.

The values for highest supported security_strength and min_length are determined by
the selected curve (see Table 5 in Section 10.3.2.1).

The instantiate algorithm :

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 5 in Section 10.3.2.1. Let seedlen be the
appropriate value from Table 5.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 9 of Section 9.2):

Input:
1. entropy_input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.4.2.

3. personalization_string: The personalization string received from the consuming
application.

Output:
1. s: The initial secret value for the working_state.
2. r_old: The initial output block (which will not be used).

3. block _counter: The initialized block counter for reseeding.
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Process:
1. seed matevial = entropy input || nonce || personalization_string.

Comment: Use a hash function to ensure that
the entropy is distributed throughout the bits,
and s is m (i.e., seedlen) bits in length.

2. s=Hash_df (seed material, seedlen).

Comment: Generate the initial block for
comparing with the 1st DRBG output block
(for continuous testing).

3. r old=o(x(s *Q)). Comment:  is a seedlen-bit number.

4. block counter =0.

5. Return s, r_old and block counter for the working state.
Hoan-bnplemematon-peser e servoRatisation—steine—thensteps—tand-2-may-be

comdined-antollovs—
10.3.2.2.3 Reseeding of a Dual_EC_DRBG Instantiation

Notes for the reseed function:

The reseed of Dual EC_DRBG requires a call to the reseed function specified in
Section 9.3; step 5 of that function calls the reseed algorithm in this section. The values
for min _length are provided in Table § of Section 10.3.2.1.

The reseed algorithm :

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table § in Section 10.3.2.1.

The following process or its equivalent shall be used to reseed the Dual EC_DRBG
process after it has been instantiated (see step 5 in Section 9.3):

Input:
1. s: The current value of the secret parameter in the working_state.
2. entropy input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application.

Output:

1. status: The status returned from the reseed function.
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2. s: The new value of the secret parameter in the working state.
3. block counter: The re-initialized block counter for reseeding,
Process:

Comment: pad8 returns a copy of s padded
on the right with binary 0’s, if necessary, to a
multiple of 8.

1. seed material = pad8 (s) || entropy_input || additional _input_string.
2. s=Hash_df (seed_material, seedlen).

3. block _counter =0.

4, Return s and block counter for the new working_state.

Implementation notes:

If an implementation never allows additional_input, then step 1 may be modified as
follows :

seed_material = pad8 (s) || entropy_input.
10.3.2.2.4 Generating Pseudorandom Bits Using Dual_EC_DRBG

Notes for the generate function:

The generation of pseudorandom bits using a Dual_EC_DRBG instantiation requires a
call to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number of bits_per request and max_outlen are provided in Table 5 of Section
10.3.2.1. outlen is the number of pseudorandom bits taken from each x-coordinate as
the Dual EC_DRBG steps. For performance reasons, the value of outlen should be set
to the maximum value as provided in Table 5. However, an implementation may set
outlen to any multiple of 8 bits less than or equal to max_outlen. The bits that become
the Dual_ EC_DRBG output are always the rightmost bits, i.e., the least significant bits
of the x-coordinates.

The generate algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 5 in Section 10.3.2.1. The value of
reseed_interval is also provided in Table §5.

The following are used by the generate algorithm:

a. pad8 (bitstring) returns a copy of the bitstring padded on the right with binary
0’s, if necessary, to a multiple of 8.

b. Truncate (bitstring, in_len, out_len) inputs a bitstring of in_len bits, returning
a string consisting of the leftmost out_len bits of bitstring. 1f in_len < out_len,

65



Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - August 2005

C.

c.

the bitstring is padded on the right with (out_len - in_len) zeroes, and the result
is returned.

x(A) is the x-coordinate of the point 4 on the curve, given in alfine coordinates.
An implementation may choose to represent points internally using other
coordinate systems; for instance, when efficiency is a primary concern. In this
case. a point shall be translated back to atfine coordinates before x() is applied..

¢ (x) maps field elements to non-negative integers, taking the bit vector
representation of a field element and interpreting it as the binary expansion of
an integer.

The precise definition of ¢(x) used in steps 6 and 7 below depends on the field
representation of the curve points. In keeping with the convention of FIPS 186-
2, the following elements will be associated with each other (note that m =
seedlen):

B: |Cm1|Cmz| - |C1]co] , abitstring, with cu.; being lefimost
7 oem2"™ 42 a2t e e Z
Facm2™ + ... +c2% + c2'+ ¢ modp € GF(p) ;

Thus, any field element x of the form Fa will be converted to the integer Z or
bitstring B, and vice versa, as appropriate.

* is the symbol representing scalar multiplication of a point on the curve.

The following process or its equivalent shall be used to generate pscudorandom bits
(see step 8 in Section 9.4):

Input:

1. working state: The current values for s, seedlen, p, a, b, n, P, Q, r_old and
reseed_counter (see Section 10.1.3.2.1).

2. requested_number of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional _input: The additional input string received from the consuming
application.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, ERROR or an indication that a reseed is required before the
requested pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits to be returned to the generate function.

3. s: The new value for the secret parameter in the working_state.

4. r_old: The last output block.
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5.

block_counter: The updated block counter for reseeding.

Process:

L If (block _counter + [

Comment: Check whether a reseed is
required.

requested _number _of _bits

>reseed interval, then
outlen -

return an indication that a reseed is required.
Comment: If additional _input is Null, set to

seedlen zeroes; otherwise, Hash_df to
seedlen bits.

. If (additional input_string = Null), then additional_input =0

Else additional_input = Hash_df (pad8 (additional input_string), seedlen).

Comment: Produce requested no of bits,
outlen bits at a time:

3. temp = the Null string.

8.
9s

i=0.

. t=s® additional_input. Comment: ¢ is to be interpreted as a seedlen-
bit unsigned integer. To be precise, ¢ should
be reduced mod #; the operation * will effect
this.

s = o( x(t * P)). Comment: s is a seedlen-bit number.

r =o(x(s *Q)). Comment: r is a seedlen-bit number.
Comment: Continuous test — Compare the old
and new output blocks to assure that they are
different.

If (r = r_old), then return an ERROR.

rold=r.

10. temp = temp || (rightmost outlen bits of r ).

11. additional input=0 Comment: seedlen zeroes;

additional _input_string is added only on the
first iteration.

12. block_counter = block_counter + 1.
13.i=i+1.
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14. If (len (temp) < requested_number_of _bits), then go to step 5.
15 returned bits = Truncate (temp, i x outlen, requested_number_of bits).

16. Return SUCCESS, returned_bits, and s, r_old and block_counter for the
working state.

68



ANS X9.82, Part 3 - DRAFT - August 2005

11 Assurance

11.1 Overview

A user of a DRBG for cryptographic
purposes requires assurance that the

generator actually produces random and Design < Evaluation

unpredictable bits. The user needs l l
assurance that the design of the generator,

its implementation and its use to support Standards
cryptographic services are adequate to l l

protect the user's information. In addition,

the user requires assurance that the Implementation < Validation

generator continues to operate correctly.
The assurance strategy for the DRBGs in
this Standard is depicted in Figure 18. Operational Tests

The design of each DRBG in this standard
has received an evaluation of its security

propeljties prior to its selection for Figure 18: DRBG Assurance Strategy
inclusion in this Standard.

The accuracy of an implementation of a DRBG process may be asserted by an
implementer, but this Standard requires the development of basic documentation to
provide minimal assurance that the DRBG process has been implemented properly (see
Section 11.2). An implementation should be validated for conformance to this Standard by
an accredited laboratory (see Section 11.3). Such validations provide a higher level of
assurance that the DRBG is correctly implemented. Validation testing for DRBG processes
consists of testing whether or not the DRBG process produces the expected result, given a
specific set of input parameters (e.g., entropy input). Implementations used directly by
consuming applications should also be validated against conformance to FIPS 140-2.

Operational (i.e., health) tests on the DRBG shall be implemented within a DRBG
boundary or sub-boundary in order to determine that the process continues to operate as
designed and implemented. See Section 11.4 for further information.

A cryptographic module containing a DRBG should be validated (see FIPS 140-2 [8]).
The consuming application or cryptographic service that uses a DRBG should also be
validated and periodically tested for continued correct operation. However, this level of
testing is outside the scope of this Standard.

Note that any entropy input used for testing (either for validation testing or
operational/health testing) may be publicly known. Therefore, entropy input used for
testing shall not knowingly be used for normal operational use.
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11.2 Minimal Documentation Requirements

This Standard requires the development of a set of documentation that will provide
assurance to users and (optionally) validators that the DRBGs in this Standard have been
implemented properly. Much of this documentation may be placed in a user’s manual. Il"his

documentation shall consist of the following as a minimum: | Comment [ebb12]: Page: 70
""""""""" I Probably need to add additional documentation
e Document how the implementation has been designed to permit implementation requirements to address other requirements.

validation and operational testing.

e Document the type of DRBG (e.g., HMAC DRBG, Dual EC_DRBG), and the
cryptographic primitives used (e.g., SHA-256, AES-128).

e Document the security strengths supported by the implementation.

e Document features supported by the implemention (e.g., prediction resistance, the
available elliptic curves, etc.).

e In the case of the CTR_DRBG, indicate whether a derivation function is provided.
If a derivation function is not used, documentation shall clearly indicate that the
implementation can only be used when full entropy input is available.

e Document any support functions other than operational testing.
11.3 Implementation Validation Testing
A DRBG process may be tested for conformance to this Standard. Regardless of whether
or not validation testing is obtained by an implementer, a DRBG shall be designed to be
tested to ensure that the product is correctly implemented; this will allow validation testing

to be obtained by a consumer, if desired. A testing interface shall be available for this
purpose in order to allow the insertion of input and the extraction of output for testing.

Implementations to be validated shall include the following:
¢ Documentation specified in Section 11.2.
e Any documentation or results required in derived test requirements.

11.4 Operational/Health Testing

11.4.1 Overview

A DRBG implementation shall perform self-tests to ensure that the DRBG continues to
function properly. Self-tests of the DRBG processes shall be performed as specified in
Section 9.7. A DRBG implementation may optionally perform other self-tests for DRBG
functionality in addition to the tests specified in this Standard.

All data output from the DRBG boundary shall be inhibited while these tests are
performed. The results from known-answer-tests (see Section 11.4.2) shall not be output
as random bits during normal operation.
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When a DRBG fails a self-test, the DRBG shall enter an error state and output an error
indicator. The DRBG shall not perform any DRBG operations while in the error state, and
no pseudorandom bits shall be output when an error state exists. When in an error state,
user intervention (e.g., power cycling, restart of the DRBG) shall be required to exit the
error state (see Section 9.8). .

11.4.2 Known-Answer Testing

Known-answer testing shall be conducted as specified in Section 9.7. A known-answer test
involves operating the DRBG with data for which the correct output is already known and
determining if the calculated output equals the expected output (the known answer). The
test fails if the calculated output does not equal the known answer. In this case, the DRBG
shall enter an error state and output an error indicator (see Section 9.8).

The generalized known-answer testing is specified in Section 9.7. Testing shall be
performed on all DRBG functions implemented.
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Annex A: (Normative) Application-Specific Constants
A.1 Constants for the Dual EC_DRBG

The Dual_EC_DRBG requires the specifications of an elliptic curve and two points on the
elliptic curve. One of the following NIST approved curves and points shall be used in
applications requiring certification under FIPS 140-2. More details about these curves may
be found in FIPS PUB 186-3, the Digital Signature Standard.

A.1.1 Curves over Prime Fields

Each of following mod p curves is given by the equation:
y*=x°-3x+ b (mod p)
Notation:
p - Order of the field F}, , given in decimal

r - order of the Elliptic Curve Group, in decimal . Note that r is used here for
consistency with FIPS 186-3 but is referred to as » in the description of the
Dual_EC_DRBG (...)

a —(-3) in the above equation
b - coefficient above
The x and y coordinates of the base point, ie generator G, are

the same as for the point P.
A.1.1.1 Curve P-224

P = 26959946667150639794667015087019630673557916\
260026308143510066298881

r = 26959946667150639794667015087019625940457807\
714424391721682722368061

b = b4050a85 0c04b3ab £5413256 5044b0b7 d7bfd8ba 270b3943

2355ffb4

Px = b70e0cbd 6bb4bf7f 321390b9 4a03cld3 56¢c21122 343280d6
115cld21

Py

I

bd376388 b5£723fb 4c22dfe6 cd4375a0 5a074764 44d58199
85007e34
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Ox = 68623591 6elladfa f080a451 477fa27a £21248be 916d3458
ab83a3cH9

Qy 6060018a 24b35be6 caecf3f0 7f2c6bd3 4ed7479e 55362c8f
5707adca

A.1.1.2 Curve P-256

p = 11579208921035624876269744694940757353008614\
3415290314195533631308867097853951

¥ = 11579208921035624876269744694940757352999695\
5224135760342422259061068512044369

b= 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0£f6 3bce3c3e
27d2604b

Px = 6b17d1f2 el2cd4247 f8bcebe5 63a440f2 77037d81 2deb33al
£4a13945 dB898c296

Py = 4fe342e2 fela7f9p BeeTebda 7c0f9%el6 2bce3357 6b31l5ece
cbb64068 37bf51£5

Ox c97445f4 5cdef9f0 d3e0bele 585fc297 235b82b5 beB8ff3ef

ca67c598 52018192

b28ef557 ba3ldfcb dd2lacde e2a9le3c 304f44cb 87058ada
2cb81515 1e610046

A.1.1.3 Curve P-384

p = 39402006196394479212279040100143613805079739\
27046544666794829340424572177149687032904726\
6088258938001861606973112319

r = 39402006196394479212279040100143613805079739\
27046544666794690527962765939911326356939895\
6308152294913554433653942643

b=b3312fa7 e23ee7ed 988e056b e3f82d19 181d9%cée fe814112 0314088f
5013875a ¢656398d 8a2edl9d 2a85c8ed d3eczaef

Px = aaB87ca22 be8b0537 B8eblc7le £320ad74 6eld3b62 8ba79b98
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59f741e0 82542a38 5502£25d bf55296¢c 3a545e38 72760ab7

Py = 3617deda 96262c6f 5d9e98bf 9292dc29 f8f41dbd 289%aldic
e9da3113 b5f0b8cO 0ab0blce 1d7e819d 7a431d7c S90eale5f

Ox = 8e722de3 125bdadb0 5580164b fe20b8b4 32216a62 926c5750
2ceede3]l c478l6ed dle89769 124179d0 b6951064 28815065

Oy = 023b1660 dd701d08 39fd45ee c36f9%ee7 b32el3b3 15dc0261

0aalb636 e346df67 1£790f84 c5e09b05 674dbb7e 45c803dd
A.1.1.4 Curve P-521

p = 68647976601306097149819007990813932172694353\
00143305409394463459185543183397656052122559\
64066145455497729631139148085803712198799971\
6643812574028291115057151

r = 68647976601306097149819007990813932172694353\
00143305409394463459185543183397655394245057\
74633321719753296399637136332111386476861244\
0380340372808892707005449

b=051953eb 9618elc9 alf929a2 1alb6854 Oeea2da7 25b99b31
5f3b8b48 9918efl0 9e156193 95lec7ed 37b1652c Obd3bblb
£073573d £883d2c3 4flefd51 f£d46b503 £f00

Px = c6858e06 b70404e9 cd9%e3echb 662395b4 429c6481 39053fb5
21f828af 606b4d3d baaldbSe 77efe759 28feldcl 27a2ffa8
de3348b3 cl856a42 9bf97e7e 31lc2e5bd 66

Py = 11839296 a789%a3bc 0045c8ab fbd2c7dl bd998£54 449579b4
46817afb dl17273e6 62c97ee7 2995ef42 640c550b 9013fad0
761353c7 086a272c 24088be9 4769fdl6 650

Ox = 1b9fa3e5 18d683c6 b6576369 4acB8efba ec6fabdd £2276171
a4272650 7dd08add 4c3b3fdc lebcbbl2 22ddbal07 7£722943
b24c3edf a0f85fe2 4d0c8c0l 591f0be6 £63

Qy= 1f3bdbab 85295d9%a 1110dldf 1£9430ef 8442c501 8976ff34
37ef91b8 1dcOb813 2¢8d5¢39 ¢32d0e00 4a3092b7 d327¢0e7
a4d26d2c 7b69b58f 90666529 11e45777 9de
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Annex A.2 Using Alternative Points in the Dual_EC_DRBG()

The security of Dual_EC_DRBG() requires that the points P and Q be properly generated.
To avoid using potentially weak points, the points specified in Annex A.1 should be used.
However, an implementation may use different pairs of points provided that they are
verifiably random, as evidenced by the use ot the procedure specified in Annex A.2.1
below, and the self-test procedure in Annex A.2.2. An implementation that uses alternative
points generated by this Approved method shall have them “hard-wired” into its source
code, or hardware, as appropriate, and loaded into the working_state at instantiation. To
conform to this Standard, points shall use the procedure given in Annex A.2.1. and verify
their generation using Annex A.2.2.

A.2.1 Generating Alternative P,Q

The curve shall be one of the NIST curves trom FIPS 186-3 that is specified in Annex A.1
of this Standard, and shall be appropriate for the desired security strength, as specified in
Table 35, Section 10.3.2.1.

The point £ shall remain the generator point G given in Annex A.l fot the selected curve.
(This minor restriction simplifies the test procedure to verify just one point each time.)

The point Q shall be generated using the procedure specified as Algorithm A.2.4.3 from
ANS X9.62 (Draft-2005-03-11). That algorithm requires the following input:

An elliptic curve £ = (£, a. b), cofactor A, prime #, a bit string SEED, and hash
function Hash(). The curve parameters are given in Annex A.l. The minimum length
m of SEED shall conform to Section 10.3.2.1, Table 5, under “Seed length™. The bit
length of SEED may be larger than m. The hash tunction shall be SHA-512 in all
cases.

[f the output of algorithm A.2.4.3 is “failure” a different SEED will have to be used.

Otherwise, the output point shall be used as the point Q.
A.2.2 Additional Self-testing Required for Alternative P,Q

To insure that the point Q has been generated appropriately. an additional self-test
procedure shall be performed whenever the instantiate function is invoked. Section 9.7.2
specifies that known-answer tests on the instantiate function be performed prior to creating
an operational instantiation. As part of those tests, an implementation of Algorithm A.2.4.3
shall be called with the SEED value used to generate the alternate Q. The point returned
shall be compared with the stored value of O used in place of the default value (see Annex
A.1). If the generated value does not match the stored value, the implementation shall halt
with an error condition.
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ANNEX B : (Normative) Conversion and Auxilliary Routines

B.1 Bitstring to an Integer

Input:

1. by, by,..., by  The bitstring to be converted.
Output:

1. x The requested integer representation of the bitstring.
Process:

1. Let (by, by ..., by) be the bits of b from leftmost to rightmost.

2. x=320p,.

i=1
3. Return x.

In this Standard, the binary length of an integer x is defined as the smallest integer n
satisfying x < 2".

B.2 Integer to a Bitstring
Input:
1. x The non-negative to be converted.
Output:
1. by, b, ..., b, The bitstring representation of the integer x.
Process:

1. Let (by, by, ..., b,) represent the bitstring, where b, = 0 or 1, and b, is the most
significant bit, while b, is the least significant bit.

2. For any integer » that satisfies x < 2", the bits 4, shall satisfy:
x= 22(”’i)b, .
i=]

3. Return b, b9, ..., b, -

In this Standard, the binary length of the integer x is defined as the smallest integer # that
satisfies x <2".

B.3 Integer to an Octet String

Input:
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1. A non-negative integer x, and the intended length » of the octet string satisfying
2> x
Output:
1. An octet string O of length » octets.
Process:
1. Let Oy, Oy,..., Oy be the octets of O from leftmost to rightmost.
2. The octets of O shall satisfy:

x =2 250,
fori=1ton
3. Return O.

B.4 Octet String to an Integer
Input:
1. An octet string O of length » octets.
Output:
1. A non-negative integer x.
Process:
1. Let Oy, Oy, ..., Oy be the octets of O from leftmost to rightmost.
2. x is defined as follows:
x =12 2%,
fori=1ton

3. Return x.
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Annex C: (Informative) Security Considerations

[The information in this annex needs to be reconsidered. Is C. I needed here ? The
information in C.2 is provided in SP 800-57. C.3 is needed only if Dual EC_DRBG is
retianed. What other information is appropriate ?]
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3 Suppose that the block size is & bits. The collision resistance of'a MAC is limited by the size of the tag and
collisions become probable after 22 messages, if the full b bits are used as a tag. When using the Output
Feedback mode of encryption, the maximum cycle length of the cipher can be at most 2 blocks; the average
cipher length is less than 2° blocks. When using the7gipher Block Chaining mode, plaintext information is
likely to begin to leak after 272 plocks have been encrypted with the same key.
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492 | AESH92 | SHA384 Feaesa
266 | AES-256 | SHAS12 f=512

C.3 Extracting Bits in the Dual_EC_DRBG {(...)
C.3.1 Potential Bias Due to Modular Arithmetic for Curves Over F,

For the mod p curves (i.¢, a Prime field curve ), there is a potential bias in the output due to
the modular arithmetic. This behavior is succinctly explained in Part 1 of this Standard,
and two approaches to correcting the bias are presented there. The Negligible Skew
Method described in Section 14.2.2 of Part 1 is appropriate for the NIST curves, since all
were selected to be over prime fields near a power of 2 in size. Each NIST prime has at
least 32 leading 1's in its binary representation, and at least 16 of the leftmost (high-order)
bits are discarded in each block produced. These two facts imply that there is a small
fraction ( < 1/2**) of outlen outputs for which a bias to 0 may occur in one or more bits.
This can only happen when the first 32 bits of an x-coordinate are all zero. As the leftmost
16 bits (at least) are discarded, an adversary can never be certain when a “biased” block
has occurred. Thus, any bias due to the modular arithmetic may safely be ignored.
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C.3.2 Adjusting for the missing bit(s) of entropy in the x coordinates.

In a truly random sequence, it should not be possible to predict any bits from previously
observed bits. With the Dual EC_DRBG (...), the full output block of bits produced by
the algorithm is “missing” some entropy. Fortunately, by discarding some of the bits,
those bits remaining can be made to have nearly “full strength”, in the sense that the
entropy that they are missing is negligibly small.

To illustrate what can happen, suppose that a mod p curve with m=256 is selected, and that
all 256 bits produced were output by the generator, i.e. that outlen = 256 also. Suppose also
that 255 of these bits are published, and the 256-th bit is kept “secret”. About ¥; the time,
the unpublished bit could easily be determined from the other 255 bits. Similarly, if 254 of
the bits are published, about ¥4 of the time the other two bits could be predicted. This is a
simple consequence of the fact that only about 1/2 of all 2" bitstrings of length m occur in
the list of all x coordinates of curve points.

The "abouts" in the preceding example can be made more precise, taking into account the
difference between 2™ and p, and the actual number of points on the curve (which is
always within 2 * p” of p). For the NIST curves, these differences won't matter at the scale
of the results, so they will be ignored. This allows the heuristics given here to work for any
curve with "about" (2")/f points, where f= 1 is the curve's cofactor.

The basic assumption needed is that the approximately (2")/(2f) x coordinates that do occur
are "uniformly distributed": a randomly selected m-bit pattern has a probability 1/2f of
being an x coordinate. The assumption allows a straightforward calculation,--albeit
approximate--for the entropy in the rightmost (least significant) m-d bits of
Dual_EC_DRBG output, with d <<m.

The formula is £ = - sum {j=0} to {=2% | 2t binomprob(2°, z, 2%h] p;loga{p}.

The term in braces represents the approximate number of (m-d)-bitstrings, which fall into
one of 1+2% categories as determined by the number of times j it occurs in an x coordinate;
z = (2f-1)/2fis the probability that any particular string occurs in an x coordinate; p; =
(7*2/)/2" is the probability that a member of the j-th category occurs. Note that the j=0
category contributes nothing to the entropy (randomness).

The values of E for d up to 16 are:

log2(f): 0 d: 0 entropy: 255.00000000 m-d: 256
log2(f): 0 d: 1 entropy: 254.50000000 m-d: 255
log2(f): 0 d: 2 entropy: 253.78063906 m-d: 254

log2(f): 0 d: 3 entropy: 252.90244224 m-d: 253
log2(f): 0 d: 4 entropy: 251.95336161 m-d: 252
log2(f): 0 d: 5 entropy: 250.97708960 m-d: 251
log2(f): 0 d: 6 entropy: 249.98863897 m-d: 250
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log2(f): 0 d: 7 entropy: 248.99434222 m-d. 249
log2(f): 0 d: 8 entropy: 247.99717670 m-d: 248
log2(f): 0 d: 9 entropy: 246.99858974 m-d. 247
log2(H: 0 d: 10 entropy: 245.99929521 m-d: 246
log2(): 0 d: 11 entropy: 244.99964769 m-d: 245
log2(f): 0 d: 12 entropy: 243.99982387 m-d: 244
10g2(): 0 d: 13 entropy: 242.99991194 m-d: 243
log2(f): 0 d: 14 entropy: 241.99995597 m-d: 242
log2(f): 0 d: 15 entropy: 240.99997800 m-d: 241
log2(f): 0 d: 16 entropy: 239.99998900 m-d: 240

Observations:
a) The table starts where it should, at 1 missing bit;
b) The missing entropy rapidly decreases;

¢) For log2(f) = 0, i.e, the mod p curves, d=13 leaves 1 bit of information in every
10,000 (m-13)-bit outputs.

Based on these calculations, for the mod p curves, it is recommended that an
implementation shall remove at least the leftmost (most significant) 13 bits of every m-bit
output.

For ease of implementation, the value of ¢ should be adjusted upward, if necessary, until
the number of bits remaining , m-d= outlen, is a multiple of 8. By this rule, the
recommended number of bits discarded from each x-coordinate will be either 16 or 17. As
noted in Section 10.3.2.2.4, an implementation may decide to truncate additional bits from
each x-coordinate, provided the number retained is a multiple of 8.

Because only half of all values in [0,1....,p-1] are valid x-coordinates on an elliptic curve
defined over F_p. it is clear that full x-coordinates should not be used as pseudorandom
bits. The solution to this problem is to truncate these x-coordinates by removing the high
order 16 or 17 bits. The entropy loss associated with such truncation amounts has been
demonstrated to be minimal [See Chart].

One might wonder if it would be desirable to truncate more than this amount. The obvious
drawback to such an approach is that increasing the truncation amount hinders the already
sluggish performance. However, there is an additional reason that argues against
increasing the truncation. Consider the case where the low s bits of each x-coordinate are
kept. Given some subinterval / of length 2° contained in [0, p), and letting N(/) denote the
number of x-coordinates in /, recent results on the distribution of x-coordinates in [0, p)
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provide the following bound:
IN()/ (p/2) -2/ p| <k*log” p/sqrtp

where & is some constant derived from the asymptotic estimates given in [Shparlinski].
For the case of P-321, this is roughly equivalent to

| N()- 200 | < k%277,

where the constant & is independent of the value of 5. For s < 2777 this inequality is weak
and provides very little support for the notion that these truncated x-coordinates are
uniformly distributed. On the other hand, the larger the value of s, the sharper this
inequality becomes, providing stronger evidence that the associated truncated x-
coordinates are uniformly distributed. Therefore, by keeping truncation to an acceptable
minimum, the performance is increased, and certain guarantees can be made about the
uniform distribution of the resulting truncated quantities.
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ANNEX D: (Informative) DRBG Selection

[This will need to be revised, based on the DRBGs that are retained and the content of Part
4.]

D.1 Choosing a DRBG Algorithm

Almost no application or system designer starts with the primary purpose of generating
good random bits. Instead, he typically starts with some goal that he wishes to accomplish,
then decides on some cryptographic mechanisms, such as digital signatures or block
ciphers that can help him achieve that goal. Typically, as he begins to understand the
requirements of those cryptographic mechanisms, he learns that he will also have to
generate some random bits, and that this must be done with great care, or he may
inadvertently weaken the cryptographic mechanisms that he has chosen to implement. At
this point, there are two things that may guide the designer's choice of a DRBG:

a. He may already have decided to include a set of cryptographic primitives as part of
his implementation. By choosing a DRBG based on one of these primitives, he can
minimize the cost of adding that DRBG. In hardware, this translates to lower gate
count, less power consumption, and less hardware that must be protected against
probing and power analysis. In software, this translates to fewer lines of code to
write, test, and validate.

For example, a module that generates RSA signatures has available some kind of
hashing engine, so a hash-based DRBG is a natural choice.

b. He may already have decided to trust a block cipher, hash function, keyed hash
function, etc., to have certain properties. By choosing a DRBG based on similar
properties, he can minimize the number of algorithms he has to trust.

For example, an AES-based DRBG might be a good choice when a module
provides encryption with AES. Since the DRBG is based for its security on the
strength of AES, the module's security is not made dependent on any additional
cryptographic primitives or assumptions.

c. Multiple cryptographic primitives may be available within the system or
application, but there may be restrictions that need to be addressed (e.g..code size
or performance requirements).

The DRBGs specified in this Standard have different performance characteristics,
implementation issues, and security assumptions.

D.2 DRBGs Based on Hash Functions

Two DRBGs are based on any Approved hash function: Hash_ DRBG, and

HMAC _DRBG. A hash function is composed of an initial value, a padding mechanism
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and a compression finction; the compression fuzniction itself muy be expressed as
Compress (1. .X), where /is the initial value, and X' is the compression funetion input. All
of tie myptﬁgmphsc security of the hash furstion depends on the compression function,
and the compression is by far the most time-consuming operation within the hash furction.

The hash-based DRBGs in this Standard allow for some tradeoffs between performance,
security assumptions required for the security of the DRBGs, and ease of implementation.

D.21 Hash_DRBG

BEEE HWAC_DRBG

HMAC_DRBG is a DRBG whose security is based on the assumption that HMAC is a
pseudorandom function. [I think the lollowing needs to be either augmented to complete
the idess. or removed. | The securlty of HMAC_DRBG is based on an attacker getting
sequences of no more than to 2** bits, generated by the following steps:

temp = the Null string.

While (len (temp) < requested_no_of bits:
V =HMAC (K, V).
temp=temp || V.

The steps in the “While” statement iterate [ requeesied _no_of bits/outlen | times. Intuitively,
so long as /¥ does not repeat, any aigunthm tlat can distinguish this output sequence from
an ideal random sequence can be used in a straightforward way to distinguish HMAC from
a psendorandom function.

Between these output sequences. both ¥ and K are updated using the following steps
(assuming no additional inputs):

K =HMAC (K, (¥ 0x01)) = Hash (opad (K) || Hash (ipad (K} || (V] 0x01))).
V'=HMAC (K. ¥)= Hash (opad (K) || (Hash (ipad (K) || ¥)).

where:
K and ¥ are outlen hits long,
opad (K) is K exclusive-ored with (infen/8) bytes of 0xSc, for a total of infen bits,
ipad (K) is K exclusive-ored with (infer/8) bytes of 0x36, for a total of infen bits,
outlen is the length of the hash function output block, and

inten is the lenath of the hash function input block.
D.2.2.1 Implementation Properties

The only thing requited to implement this DRBG is access to a hashing engine. However,
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the performance of the implementation will improve enormously (by about a factor of
two!) with either a dedicated HMAC engine, or direct access to the hash function's
underlying compression function. The “critical state values™ on which HMAC_DRBG
depends for its security (K and V) take up 2*outlen bits in the most compact form, but for
reasonable performance, 3*outlen bits are required in order to precompute padded values.

D.2.2.2 Performance Properties

Each outlen-bit picce of the requested pseudorandom output requires two compression
function calls to perform the HMAC computation. Each output request also incurs another
six compression function calls to update the state.

Note that an implementation that has access only to a high-level hashing engine loses
another factor of two in performance; if the performance of the DRBG is important,
HMAC_DRBG requires either a dedicated HMAC engine or access to the compression
function that underlies the hash function. However, if performance is not an important
issue, the DRBG can be implemented using nothing but a high-level hashing engine.

D.2.3Summary and Comparison of Hash-Based DRBGs

D.2.3.1Security

y wavs that the hash [unction is used in these DRBGs:

HMAC DRBG:
I, = HMAC (K. I7) = Hash (epad (X)) || (Hash (ipad (K} 15)).

gte

as specified in Annex E:2.2.

The adversary knows many specific bits of the input to the final compression function
whose output he sees: for SHA-256. the compression functior :s a total off 768 bits of

input. and the adversary knows 256 ol those bits*. (This is worse for SHA-1 and SHA-
384.) On the other hand. the adversary_doesn't even know the exclusive-or relationships

for outlen bits of the message input. In the case of SHA-256. this means that 256 bits are
unknown,

4 The innermost hash function provides outlen bits of input after its two compression function calls on ipad
(K) and V. The outermost hash function also requires two compression functions: the first operates on opad
(K) and produces outlen bits that are used as the chaining value for the final compression function on the
result from the innermost hash function concatenated with the hash function padding. Therefore, the input to
the final compression function is the length of the chaining value (outlen bits) + the length of the ouput from
the innermost hash function (outlen bits) + the length of the padding (inlen - outlen bits). In the case of SHA-
256, where inlen = 512, and outlen = 256, the length ggthe input to the last compression function is 768 bits,
of which only the padding bits are known (256 bits).
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HMAC DRBG (with access to the hash lunction’s compression function):

Reguest overhead: six compression functions?.

Cost for outlen bits of pseudorandem outpul: two compression functions.

Memory required for the eritical state values K and ¥ 3*outlen bits when
precomputation is used .

HMAC DRBG

Request overhead: eight compression function calls®.

hash engzine access onlv):

Cost for outlen bits ol pseudorandom output: four compression functions’.

Memory required [or the eritical state values K and F: 2%ourlen bits. since
precomputation is unavailable.

Additional inputs provided during pseudorandom bit seneration add considerably to the
request overhead. Instantiation and reseeding are somewhat more expensive than
pseudorandom output generation: however. these relatively rare operations can afford to be
somewhat more expensive Lo minimize the chances of a successful attack.

5 Two compression functions for each HMAC computation, and two compression functions for
precomputation.

6 There are two HMAC computations, each requiring two hash function calls. Each hash computation
requires two compression function calls.

. . . 87 . . L -
7 The single HMAC computation requires four compression functions as explained in the previous footnote.
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D.3 DRBGs Based on Block Ciphers
D.3.1 The Two Constructions: CTR and OFB

This standard describes DRBGs based on block ciphers using the CTR-mode. The CTR
mode vuarantees that short eveles cannot oceur in a single output request.The security of
the DRBGs relates in a very simple and clean way to the security of the block cipher in its
intended applications. This is a fundamental difference between the CTR. DRBG and a
hash function-bascd DRBG. whete the DRBG's security is ultimately based on
pseudorandomness properties that do not_form a normal part of the requirements for hash
functions. An attack on anv ol the hash-based DRBGs does_not necessarily represent a
weakness in the hash function: however, for these block cipher-based constructions. a
weakness in the DRBG is directly related to a weakness in the block cipher.

D.3.2 Choosing a Block Cipher

The choice of the block cipher algorithm to be used is a security issue. At present. only
I'DEA and AES are approved block cipher algorithms.

Consider a sequence of the maximum permiticd number of generate requests, each
producing the maximum number of DRBG outputs from each generate call. Assuming
that the block cipher behaves like a pseudorandom permutation Family, the probability of
distinguishing the full sequence of outpul bytes is:

1. For AES-128. there are a maximum of 22 blocks (i.e., 2% bytes = 2% bits)
generated per Generate (...) request. 2*7 (otal Generate (...) requests allowed.
possible keys. and 2'%® possible starting blocks.

4128

a. The expected probability of an intemal collision in a sequence of 2% random
128-bit blocks is about 27, Thus. the probability of secing an internal collision
in any of the Generate (...) scquences is about 2*._This probability is low
enough that it does not provide an efficient way to distinguish between DRBG
outputs and ideal random outpuis.

b. The probability of a key colliding between any two Generate S,"') requests in
the sequence of 2% such requests is never larger than about 2 This is also

neeligible. (For AES-192 and AES-236. this probability is even smaller.)

2. Forthree-kev I'DEEA with 168-bil keys and 64-bit blocks, things are a bit ditferent:
There are 2'® Generate (...) requests allowed. and a maximum of 2" blocks (i.e.,
2'% bytes = 2" bits) generated per Generate (...) request. (Note that this breaks the
more general model in this document of assuming 2™ IS G nocent
operations.) In this case:

a. The probability of an internal collision is never higher than about 27 per
Generate (...) requesl. and with only 2" such requests allowed. the probability
of ever seeing such an internal collision in 4 sequence of requests is never more
than about 2. (Note that if more requests are allowed, as required by the
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securtty strengthi2 b 1nd assumed elsewhere in the document. there would be an
unacceeptably high probability of this event happening at least once.

b. The expected probability of an internal collision in a sequence of 2" 64-bit
blocks is about 2‘33-._Thns. the probability of ever seeing an internal collision in
2% vutput sequences is still an acceptably low 2. (Note that if more
Generate (...) requests are allowed. there would be an unacceptably high
robability of this happening. leading to an efficient distinguisher between this
DRBG's outputs and ideal random outputs.

c. The probability of a key colliding between any two of the 2'° Generate (...)
requests is about 2"363, which is negligible.

To summarize: block size matiers. The limits on the numbers of Generate (...) requests
and the number of output bits per request require frequent reseeding of the DRBG.
Iurthermore, the limits cuarantee that even with reseeding. an adversary that is given a
really long sequence of DRBG outputs from several reseedings cannot distinguish that
output sequence from random reliably. The CTR_DRBG used with TDEA is suitable for
low-throughput applications. but not for applications requiring really large numbers of
DRBG outputs. For conereteness, if an application is going to require more than 2%

output bytes (2*° bits) in its lifetime, that application should not use a block cipher
DRBG with TDEA.

D.3.3 Conditioned Entropy Sources and the Derivation Function
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D.4 DRBGs Based on Hard Problems

The Dual_EC_DRBG bases its security on a "hard" number-theoretic problem. For the
types of curves used in the Dual_EC_DRBG, the Elliptic Curve Discrete Logarithm
Problem has no known attacks that are better than the "meet-in-the-middle" attacks, with a
work factor of sqrt (27).

This algorithm is decidedly less efficient to implement than some of the others. However,
in those cases where security is the utmost concern, as in SSL or IKE exchanges, the
additional complexity is not usually an issue. Except for dedicated servers, time spent on
the exchanges is just a small portion of the computational load; overall, there is no impact
on throughput by using a number-theoretic algorithm. As for SSL or IPSEC servets, more
and more of these servers are getting hardware support for cryptographic primitives like
modular exponentiation and elliptic curve arithmetic for the protocols themselves. Thus, it
makes sense to utilize those same primitives (in hardware or software) for the sake of high-
security random numbers.

D.4.1 Implementation Considerations

Random bits are produced in blocks of bits representing the x-coordinates on an elliptic
curve.

Because of the various security strengths allowed by this Standard there are multiple
curves available, with differing block sizes. The size is always a multiple of 8, about 16
bits less than a curve’s underlying field size. Blocks are concatenated and then truncated, if
necessary, to fullfil a request for any number of bits up to a maximum per call of 10,000
times the block length. The smallest blocksize is 216, meaning that at least 2M bits can be
requested on each call.)

An important detail concerning the Dual EC_DRBG is that every call for random bits,
whether it be for 2 million bits or a single bit, requires that at least one full block of bits be
produced; no unused bits are saved internally from the previous call. Each block produced
requires two point multiplications on an elliptic curve—a fair amount of computation.
|Applications such as IKE and SSL are encouraged to aggregate all their needs for random
bits into a single call to Dual EC_DRBG, and then parcel out the bits as required during

To avoid unnecessarily complex implementations, it should be noted that every curve in
the Standard need not be available to an application. To improve efficiency, there has been
much research done on the implementation of elliptic curve arithmetic; descriptions and
source code are available in the open literature.

As a final comment on the implementation of the Dual_EC_DRBG, note that having fixed
base points offers a distinct advantage for optimization. Tables can be precomputed that
allow nP to be attained as a series of point additions, resulting in an 8 to 10-fold speedup,
or more, if space permits.
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ANNEX E: (Informative) Example Pseudocode for Each DRBG
E.1 Preliminaries

The internal states in these examples are considered to be an array of states, identified by
state_handle. A particular state is addressed as internal_state (state_handle), where the
value of state_handle begins at 0 and ends at #-1, and » is the number of internal states
provided by an implementation. A particular element in the internal state is addressed by
internal_state (state_handle).element.

The pseudocode in this annex does not include the necessary conversions (e.g., integer to
bitstring) for an implementation. When conversions are required, they must be
accomplished as specified in annex B.

The following routine is defined for these pseudocode examples:

Find_state_space (): A function that finds an unused internal state. The function
returns a status (either “Success” or a message indicating that an unused internal state
is not available) and, if status = “Success”, a state_handle that points to an available
internal state in the array of internal states. If status # “Success”, an invalid
state_handle is returned.

When the uninstantantiate function is invoked in the following examples, the function
specified in Section 9.5 is called.

E.2
E.3 HMAC_DRBG Example

E.3.1 Discussion

This example of HMAC_DRBG uses the SHA-256 hash function. Reseeding and
prediction resistance are not provided. The nonce for instantiation consists of a random
value with security_strength/2 bits of entropy; the nonce is obtained by increasing the call
for entropy bits via the Get_entropy call by security strength/2 bits (i.e., by adding
security_strength/2 bits to the security_strength value).

A personalization string is allowed, but additional input is not. A total of 3 internal states
are provided. For this implementation, the functions and algorithms are written as separate
routines.

The internal state contains the values for V, Key, reseed counter, and security_strength,
where ¥ and C are bitstrings, and reseed_counter and security_strength are integers.

In accordance with Table 3 in Section 10.1.1, security strengths of 112, 128, 192 and 256
may supported. Using SHA-256, the following definitions are applicable for the instantiate
and generate functions and algorithms:
1. highest_supported security strength =256.
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Output block (outlen) = 256 bits.

3. Required minimum entropy for the entropy input at instantiation = 3/2

9.

E.8.2

security_strength (this includes the entropy required for the nonce).

Minimum entropy input length (min _length) = 3/2 security_strength (this includes
the minimum length for the nonce).

Seed length (seedlen) = 440 bits.

Maximum number of bits per request (max number _of bits per request) = 7500
bits.

Reseed _interval (reseed interval) = 10,000 requests.

Maximum length of the personalization string (max_personalization_string_length)
= 160 bits.

Maximum length of the entropy input (max length) = 1000 bits.
Instantiation of HMAC_DRBG

This implementation will return a text message and an invalid state handle (-1) when an error
is encountered.

Instantiate HMAC_DRBG (...):

Input: integer (requested_instantiation_security _strength), bitstring

personalization_string.

Output: string status, integer state handle.

Process:

Check the validity of the input parameters.

1. If (requested instantiation_security_strength > 256), then Return (“Invalid
requested_instantiation_security strength”, -1).

2. If (len (personalization_string)>160), then Return (“Personalization_string
too long”, -1)

Comment: Set the security strength to
one of the valid security strengths.

3. If (requested security strength < 112), then security_strength =112
Else (requested security strength < 128), then security_strength = 128
Else (requested security strength < 192), then security_strength = 192

Else security_strength =256.

Comment: Get the entropy_input and
the nonce.
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min_entropy = 1.5 x security_strength.
(status, entropy_input) = Get_entropy (min_entropy, min_entropy, 1000).

If (status # “Success”), then Return (“Failure indication returned by the
entropy source:” || status, -1).

Comment: Invoke the instantiate algorithm.
Note that the entropy input contains the
nonce.

(V, Key, reseed_counter) = Instantiate_algorithm (entropy input,
personalization_string).

Comment: Find an unused internal state and
save the initial values.

(status, state_handle) = Find_state_space ().

If (status # “Success”), then Return (“No available state space:” || szatus, -1).

10. internal_state (state_handle) = {V, Key, reseed_counter, security _strength}.

11. Return (“Success” and state handle).

Instantiate_algorithm (...):

Input: bitstring (entropy input, personalization_string).

Output: bitstring (¥, Key), integer reseed counter.

Process:

1.

8.

seed_material = entropy_input || personalization_string.

2. Set Key to outlen bits of zeros.

3. Set Vto outlen/8 bytes of 0x01.
4.
5
6
7

(Key, V)= Update (seed material, Key, V).
V' =HMAC (Key, V).

. (Key, V) = Update (seed_material, Key, V).

. reseed counter = 1.

Return (¥, Key, reseed counter).

E.3.3 Generating Pseudorandom Bits Using HMAC_DRBG

The implementation returns a Nu// string as the pseudorandom bits if an error has been
detected. This function uses the Update function specified in Section 10.1.3.2.2, and the
Uninstantiate function in Section 9.5.

HMAC_DRBG...):
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Input: integer (state_handle, requested_no_of bits, requested_security_strength).

Output: string (status), bitstring pseudorandom_bits.

Process:

9.

Comment: Check for a valid state handle.

If ((state_handle < 0) or (state_handle > 3) or (internal_state (state_handle) =
{Null, Null, 0, 0}), then Return (“State not available for the indicated
state_handle”, Null).

Comment: Get the internal state.

V = internal_state (state_handle).V, Key = internal_state (state_handle).Key,
security strength = internal_state (state_handle).security_strength,
reseed counter = internal _state (state_handle).reseed counter.

Comment: Check the validity of the rest of
the input parameters.

If (requested no_of bits > 7500), then Return (“Too many bits requested”,
Null).

If (requested_security_strength > security_strength), then Return (“Invalid
requested_security strength”, Null).

Comment: Invoke the generate algorithm.

(status, pseudorandom_bits, V, Key, reseed_counter) = Generate_algorithm
(V, Key, reseed_counter, requested_number_of bits).

If (status = “Reseed required”), then Return (“DRBG can no longer be used.
Please re-instantiate or reseed”, Null).

If (status = “ERROR: outputs match”), then
8.1 Fori=0to3,do
8.1.1 status = Uninstantiate (7).

8.1.2 If (status # “Success”), then Return (“DRBG FAILURE:
Successive outputs match, and uninstantiate failed”, Null).

8.2 Return (“DRBG ” || status, Null).
Comment: Update the internal state.

internal_state (state_handle) = {V, Key, security_strength, reseed_counter}.

10. Return (“Success”, pseudorandom_bits).

Generate_algorithm (...):

Input: bitstring (V_old, Key_old), integer (reseed_counter,
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requested_number_of bits).
Output: string status, bitstring (pseudorandom_bits, V, Key), integer reseed counter.
Process:

1 If (reseed_counter > 10,000), then Return (“Reseed required”, Null, V, Key,
reseed_counter).

2. temp = Null.
While (len (temp) < requested_no_of bits) do:
3.1 V=HMAC (Key old V old).

3.2 If(V=V_old), then Return (“ERROR: outputs match”, Null, V, Key,
reseed counter).

33 V. old=V.
34 temp=temp| V.

4. pseudorandom_bits = Leftmost (requested no_of bits) of temp.

5. (Key, V) = Update (additional_input, Key old, V_old).

6. If (V="V _old) or (Key= Key old)), then Return (“ERROR: outputs match”,
Null, V, Key, reseed_counter).

7. reseed counter = reseed counter+ 1.

8. Return (“Success”, pseudorandom_bits, V, Key, reseed _counter).

E.4 CTR_DRBG Example Using a Derivation Function

E.4.1 Discussion

This example of CTR_DRBG uses AES-128. The reseed and prediction resistance
capabilities are available, and a block cipher derivation function using AES-128 is used.
Both a personalization string and additional input are allowed. A total of 5 internal states
are available. For this implementation, the functions and algorithms are written as separate
routines. The Block_Encrypt function uses AES-128 in the ECB mode.

The nonce for instantiation (instantiation_nonce) consists of a 32-bit incrementing counter.
The nonce is initialized when the DRBG is installed (e.g., by a call to the clock or by
setting it to a fixed value) and is incremented for each instantiation.

The internal state contains the values for V, Key, previous_output block, reseed _counter,
and security_strength, where V, Key and previous output_block are strings, and all other
values are integers.Since prediction resistance is always available, there is no need for
prediction_resistance_flag in the internal state.

In accordance with Table 4 in Section 10.2.1, security strengths of 112 and 128 may be
supported. Using AES-128, the following definitions are applicable for the instantiate,
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reseed and generate functions:

1.

2
3.
4

o4

highest_supported_security strength=128.

. Output block length (outlen) = 128 bits.

Key length (keylen) = 128 bits.

. Required minimum entropy for the entropy input at instantiate and reseed =

security_strength.

Minimum entropy input length (min length) = security_strength bits.

6. Maximum entropy input length (max _length) = 1000 bits.

Maximum personalization string input length
(max personalization_string_input length) = 800 bits.

8. Maximum additional input length (max_additional input length) = 800 bits.

10.

11.

Seed length (seedlen) = 256 bits.

Maximum number of bits per request (max_number of bits _per request) = 4000

bits.

Reseed interval (reseed_interval) = 100,000 requests. Note that for this value, the
instantiation count will not repeat during the reseed interval.

E.4.2 The Update Function

Update (...):
Input: bitstring (provided_data, Key, V).
Output: bitstring (Key, V).

Process:
1. temp = Null.
2. While (len (femp) < 256) do

% N oo s

31 V=(V+1)mod 2%,

3.2 output_block = AES_ECB_Encrypt (Key, V).

3.3  temp=temp | ouput block.
temp = Leftmost 256 bits of temp.
temp = temp @ provided data.
Key = Leftmost 128 bits of temp.
V' =Rightmost 128 bits of temp.
Return (Key, V).
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E.4.3 Instantiation of CTR_DRBG Using a Derivation Function

This implementation will return a text message and an invalid state handle (-1) when an error
is encountered. Block_Cipher_df is the derivation function in Section 9.6.3, and uses AES-
128 in ECB mode as the Block Encrypt function.

Note that this implementation does not include the prediction resistance_flag in the input
parameters, nor save it in the internal state, since prediction resistance is always available.

Instantiate_CTR_DRBG (...):

Input: integer (requested instantiation_security_strength), bitstring
personalization_string.

Output: string status, integer state_handle.
Process:

Comment: Check the validity of the input
parameters.

1. If (requested instantiation_security_strength > 128) then Return (“Invalid
requested instantiation_security_strength”, -1).

2. If (len (personalization_string) > 800), then Return (“Personalization_string
too long”, -1).

3. If (requested instantiation_security strength < 112), then security_strength =
112

Else security strength = 128.
Comment: Get the entropy input.

4. (status, entropy input) = Get_entropy (security_strength, security_strength,
1000).

5. If (status # “Success”), then Return (“Failure indication returned by the
entropy source” || status, -1).

Comment: Increment the nonce; actual coding
must ensure that the nonce wraps when it’s
storage limit is reached, and that the counter
pertains to all instantiations, not just this one.

6. instantiation_nonce = instantiation_nonce + 1.
Comment: Invoke the instantiate algorithm.

7. (V, Key, previous output_block, reseed_counter) = Instantiate_algorithm
(entropy input, instantiation_nonce, personalization_string).

Comment: Find an available internal state and
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save the initial values.

9. (status, state_handle) = Find_state_space ().

10. If (status # “Success™), then Return (“No available state space:” || status, -1).
Comment: Save the internal state.

11. internal_state_(state handle) = {V, Key, previous_output_block,
reseed_counter, security strength}.

12. Return (“Success”, state_handle).
Instantiate_algorithm (...):
Input: bitstring (entropy input, nonce, personalization_string).
Output: bitstring (¥, Key), integer (reseed_counter).
Process:

1. seed material = entropy input || nonce || personalization_string.

seed_material = Block_Cipher_df (seed material, 256).
Key=0"%, Comment: 128 bits.
v=0"7%, Comment: 128 bits.

(Key, V)= Update (seed_material, Key, V).
reseed counter = 1.

first output block= AES_ECB_Encrypt (Key, V).
Oseedlen

SOl E=S1 ON U 1 al )

zeros = Comment: Produce a string of seedlen

Zeros.
9. (Key, V)= Update (zeros, Key, V).
10. Return (V, Key, first output_block, reseed_counter).
E.4.4 Reseeding a CTR_DRBG Instantiation Using a Derivation Function

The implementation is designed to return a text message as the stafus when an error is
encountered.
Reseed CTR_DRBG_Instantiation (...):

Input: integer (state_handle), bitstring additional_input.

Output: string status.

Process:

Comment: Check for the validity of
state_handle.
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1. If ((state_handle < 0) or (state_handle > 5) or (internal_state(state_handle) =
{Null, Null, Null, 0, 0}), then Return (“State not available for the indicated
state _handle”).

Comment: Get the internal state values.

2. V=internal _state (state_handle).V, Key = internal_state (state_handle).Key,
previous_output_block = internal_state (state_handle).previous_output_block,
security_strength = internal state (state_handle).security_strength.

3. If (len (additional input) > 800), then Return (“Additional_input too long”™).

4, (status, entropy_input) = Get_entropy (security_strength, security_strength,
1000).

6. If (status # “Success™), then Return (“Failure indication returned by the
entropy source:” || status).

Comment: Invoke the reseed algorithm.

7. (status, V, Key, reseed_counter) = Reseed_algorithm (V, Key, reseed_counter,
entropy input, additional _input).

8. If (status # “Success™), then
8.1 Fori=0to5,do
8.1.1 status = Uninstantiate (7).

8.1.2 If (status # “Success”), then Return (‘DRBG FAILURE:
Successive outputs match, and uninstantiate failed”, Null).

8.2 Return (“DRBG:” || status, Null).
Comment: Save the new internal state.

9. internal state (state handle) = {V, Key, previous_output_block,
reseed_counter, security strength }.

10. Return (“Success”™).
Reseed_algorithm (...):

Input: bitstring (V_old, Key_old), integer (reseed counter), bitstring (entropy_input,
additional _inpuf).

Output: string status, bitstring (V, Key), integer (reseed_counter).
Process:
1. seed material = entropy_input || additional _input.
2. seed material = Block_Cipher_df (seed_material, 256).
3. (Key, V) = Update (seed material, Key old, _old).
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4, If ((Key = Key_old) or (V =V old)), then Return (ERROR: updates match”).
5. reseed counter = 1.
6. Return (“Success”, V, Key, reseed counter).
E.4.5 Generating Pseudorandom Bits Using CTR_DRBG
The implementation returns a Nu/l string as the pseudorandom bits if an error has been
detected.
CTR_DRBG(...):

Input: integer (state handle, requested no_of bits, requested_security_strength,
prediction_resistance_request), bitstring additional _input.

Output: string status, bitstring pseudorandom_bits.
Process:
Comment: Check the validity of state_handle.

1. If ((state_handle < 0) or (state_handle > S) or (internal_state (state_handle) =
{Null, Null, Null, 0, 0}), then Return (“State not available for the indicated
state_handle”, Null).

Comment: Get the internal state.

2. V=internal_state (state_handle).V, Key = internal_state (state_handle).Key,
previous_output_block = internal_state (state_handle). previous_output_block,
security strength = internal state (state_handle).security _strength,
reseed_counter = internal_state (state_handle).reseed_counter.

Comment: Check the rest of the input
parameters.

3. If (requested no_of bits >4000), then Return (“Too many bits requested”,
Null).

4, If (requested _security strength > security strength), then Return (“Invalid
requested security strength”, Null).

5. If (len (additional_input) > 800), then Return (“Additional input too long”,
Null).

6. reseed required flag= 0.
7. If (reseed_required flag= 1), then

7.1 status = Reseed_CTR_DRBG_Instantiation (state_handle,
additional _input).

7.2 If (status # “Success™), then Return (status, Null).

Comment: Get the new working state values;
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the administrative information was not
affected.

7.3  V=internal_state (state handle).V, Key = internal _state
(state_handle).Key, previous_output_block = internal_state
(state_handle). previous output block, reseed counter = internal_state
(state_handle).reseed counter.

7.4 additional _input = Null.
7.5 reseed required flag=0.

Comment: Generate bits using the generate
algorithm.

8. (status, pseudorandom bits, V, Key, previous output block, reseed_counter) =
Generate_algorithm (V, Key, previous_output_block, reseed counter,
requested_number of bits, additional _input).

9. If (status = “Reseed required™), then
9.1 reseed required flag=1.
9.2 Gotostep7.
10. If (status = “ERROR: outputs match”), then
10.1 Fori=0to 5, do
8.1.1 status = Uninstantiate (i).

8.1.2 If(status # “Success”), then Return (“DRBG FAILURE:
Successive outputs match, and uninstantiate failed”, Null).

10.2 Return (“DRBG: ” || status, Null).

11. internal state (state_handle) = {V, Key, previous output_block,
security_strength, reseed_counter).

12. Return (“Success”, pseudorandom_bits).
Generate_algorithm (...):

Input: bitstring (V_old, Key_old, previous_output_block), integer (reseed_counter,
requested number of bits) bitstring additional _input.

Output: string status, bitstring (returned_bits, V, Key, previous_output_block),
integer reseed counter.

Process:

1. If (reseed counter > 100,000), then Return (“Failure”, Null, V, Key,
previous output_block, reseed counter).

2. If (additional input # Null), then
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2.1 temp = len (additional input).

2.2 If (temp > 256), then additional _input = Bloek_Cipher_df
(additional input, 256).

2.3 If (temp < 256), then additional _input = additional _input || 07 ™.

2.4 (Key, V)= Update (additional input, Key old, V_old).

2.5 If((Key = Key old) or (V ="V _old)), then Return (“ERROR: outputs
match®, Null, V, Key, previous output_block, reseed_counter).

3. temp = Null.

4. While (len (temp) < requested _number_of bits) do:
4.1 V=(+1)mod2".
4.2 output block = AES_ECB_Encrypt (Key, V).

4.3 If (output_block = previous output_block), then Return (“ERROR:
outputs match”, Null, V, Key, previous_output_block,
reseed_counter).

4.4 previous output_block = output_block.
4.5 temp = temp || ouput_block.
returned_bits = Leftmost (requested_number_of_ bits) of temp.

0%, Comment: Produce a string of 256 zeros.

zeros =
Key old=Key, V old=V.
. (Key, V)= Update (zeros, Key, V)

If (Key = Key old) or (V' =V _oid), then Return (“ERROR: outputs maich”,
Null, V, Key, previous output_block, reseed_counter).

© o N o w

10. reseed_counter = reseed _counter + 1.

11. Return (“Success”, returned bits, V, Key, previous_output_block,
reseed _counter).

E.5 CTR_DRBG Example Without a Derivation Function
E.6.1 Discussion

This example of CTR_DRBG is the same as the previous example except that a derivation
function is not used (i.e., full entropy is always available). As before the CTR_DRBG uses
AES-128. The reseed and prediction resistance capabilities are available. Both a
personalization string and additional input are allowed. A total of 5 internal states are
available. For this implementation, the functions and algorithms are written as separate
routines. The Block_Encrypt function uses AES-128 in the ECB mode.
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The nonce for instantiation (instantiation_nonce) consists of a 32-bit incrementing counter
that is prepended to the personalization string. The nonce is initialized when the DRBG is
installed (e.g., by a call to the clock or by setting it to a fixed value) and is incremented for
each instantiation.

The internal state contains the values for V, Key, previous output_block, reseed counter,
and security_strength, where V, Key and previous_output_block are strings, and all other
values are integers.Since prediction resistance is always available, there is no need for
prediction resistance flag in the internal state.

In accordance with Table 4 in Section 10.2.1, security strengths of 112 and 128 may be
supported. The definitions are the same as those provided in Annex E.4.1, except that the
maximum size of the personalization_string is 224 bits in order to accommodate the 32-
bits of the instantiation nonce (i.e., len (instantiation_nonce) + len
(personalization_string) must be < seedlen). In addition, the maximum size of any
additional _input is 256 bits (i.e., len (additional _input < seedlen).

E. 5.2 The Update Function

The update function is the same as that provided in Annex E.4.2.

E.5.3 Instantiation of CTR_DRBG Without a Derivation Function

This implementation will return a text message and an invalid state handle (-1) when an error
is encountered.

Note that this implementation does not include the prediction_resistance_flag in the input
parameters, nor save it in the internal state, since prediction resistance is always available.

Instantiate_ CTR_DRBG (...):

Input: integer (requested instantiation_security_strength), bitstring
personalization_string.

Output: string status, integer state_handle.
Process:

Comment: Check the validity of the input
parameters.

1. If (requested_instantiation_security strength > 128) then Return (“Invalid
requested instantiation security_strength”, -1).

2. If (len (personalization string) > 224), then Return (“Personalization_string
too long”, -1).

3. If (requested instantiation_security_strength < 112), then security_strength =
112

Else security_strength = 128.
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Comment: Get the entropy input.

4, (status, entropy inpuf) = Get_entropy (security_strength, secuvity_strength,
1000).
5. If (status # “Success™), then Return (“Failure indication returned by the

entropy source” || status, -1).

Comment: Increment the nonce; actual coding
must ensure that the nonce wraps when it’s
storage limit is reached, and that the counter
pertains to all instantiations, not just this one.

6. instantiation_nonce = instantiation_nonce + 1.

Comment: Invoke the instantiate algorithm.

~

. personalization_string = instantiation_nonce || personalization_string.

=]

. (V, Key, previous _output _block, reseed_counter) = Instantiate_algorithm
(entropy_input, personalization_string).

Comment; Find an available internal state and
save the initial values.

9. (status, state_handle) = Find_state_space ().
10. If (status # “Success”), then Return (“No available state space:” || status, -1).
Comment: Save the internal state.

11. internal_state (state_handle) = {V, Key, previous_output_block,
reseed_counter, security strength}.

12. Return (“Success”, state_handle).
Instantiate_algorithm (...):
Input: bitstring (entropy input, nonce, personalization_string).
Output: bitstring (¥, Key), integer (reseed_counter).
Process:
1. temp =len (personalization_string).
If (temp < 256), then personalization_string = personalization_string || QFetemp,
seed _material = entropy_input ® personalization_string.
Key = 0'%%. Comment: 128 bits.
y=0"% Comment: 128 bits.
(Key, V) = Update (seed material, Key, V).

SANIR AN Sl
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7. reseed counter=1.
8. first_output_block = AES_ECB_Encrypt (Key, V).

Oseedlen

9. zeros= Comment: Produce a string of seedlen

ZEeros.
10. (Key, V) = Update (zeros, Key, V).
11. Return (V, Key, first output block, reseed counter).
E.b.4 Reseeding a CTR_DRBG Instantiation Without a Derivation Function

The implementation is designed to return a text message as the status when an error is
encountered.
Reseed_CTR_DRBG_Instantiation (...):

Input: integer (state_handle), bitstring additional _input.

Output: string status.

Process:

Comment: Check for the validity of
state_handle.

1. If ((state_handle < 0) or (state handle > 5) or (internal state(state_handle) =
{Null, Null, Null, 0, 0}), then Return (“State not available for the indicated
state_handle”).

Comment: Get the internal state values.

2. V=internal state (state_handle).V, Key = internal_state (state_handle).Key,
previous output_block = internal state (state_handle).previous_output_block,
security strength = internal_state (state handle).security strength.

3. If (len (additional inpuf) > 256), then Return (“Additional input too long”).

4, (status, entropy _input) = Get_entropy (security strength, security strength,
1000).

6. If (status # “Success”), then Return (“Failure indication returned by the
entropy source:” || status).

Comment: Invoke the reseed algorithm.

7. (status, V, Key, reseed counter) = Reseed_algorithm (V, Key, reseed_counter,
entropy input, additional _input).

8. If (status # “Success™), then
8.1 Fori=0to5,do
8.1.1 status = Uninstantiate (i).
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8.1.2 If (status # “Success”), then Return (“DRBG FAILURE:
Successive outputs match, and uninstantiate failed”, Null).

8.2 Return (“DRBG:” | status, Null).
Comment: Save the new internal state.

9. internal state (state_handle) = {V, Key, previous_output_block,
reseed _counter, security strength }.

10. Return (“Success”™).
Reseed_algorithm (...):

Input: bitstring (V_old, Key_old), integer (reseed_counter), bitstring (entropy_input,
additional _input).

Output: string status, bitstring (V, Key), integer (reseed_counter).
Process:
1. temp =len (personalization string).
2. If (femp < 256), then personalization string = personalization_string || 0°°*"™.
3. seed material = entropy input ® personalization_string.
4. (Key, V)= Update (seed _material, Key old, _old).
5. If (Key = Key old) or (V =V old)), then Return (ERROR: updates match™).
6. reseed counter=1.
7. Return (“Success”, V, Key, reseed _counter).
E.5.5 Generating Pseudorandom Bits Using CTR_DRBG

The generate function is the same as that provided in Annex E.4.5.
E.6 Dual_EC_DRBG Example

E.6.1 Discussion

This example of Dual_EC_DRBG allows a consuming application to instantiate using any
of the four prime curves, depending on the security strength. A reseed capability is
available, but prediction resistance is not available. Both a personalization_string and
additional input are allowed. A total of 10 internal states are provided. For this
implementation, the algorithms are provided as inline code within the functions.

The nonce for instantiation (instantiation_nonce) consists of a random value with
security_strength/2 bits of entropy; the nonce is obtained by a separate call to the
Get_entropy routine.

The internal state contains values for s, seedlen, p, a, b, n, P, O, r_old, block_counter and
security strength. In accordance with Table 5 in Section 10.3.2.1, security strengths of
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112, 128, 192 and 256 may be supported. SHA-256 has been selected as the hash function.
The following definitions are applicable for the instantiate, reseed and generate functions:

1. highest supported security strength =256.
2. Output block length (outlen): See Table 4.

3. Required minimum entropy for the entropy input at instantiation and reseed =
security_strength.

4. Minimum entropy input length (min length): See Table §.
5. Maximum entropy input length (max _length) = 1000 bits.

6. Maximum personalization string length (max_personalization_string length) =
800 bits.

7. Maximum additional input length (max_additional _input_length) = 800 bits.
8. Seed length (seedlen): See Table 5.

9. Maximum number of bits per request (max_number of bits_per_request) =
1000 bits.

10. Reseed interval (reseed _interval) = 10,000 blocks.
E.6.2 Instantiation of Dual_EC_DRBG
This implementation will return a test message and an invalid state handle (-1) when an
ERROR is encountered. Hash_df is specified in Section 9.6.2.
Instantiate_Dual_EC_DRBG (...):

Input: integer (requested _instantiation_security_strength), bitstring
personalization_string.

Output: string status, integer state_handle.
Process:

Comment : Check the validity of the input
parameters.

1. If (requested_instantiation security strength > 256) then Return (“Invalid
requested_instantiation security strength”, -1).

2. If (len (personalization_string) > 800), then Return (“personalization_string
too long”, -1).

Comment : Select the prime field curve in
accordance with the
requested_instantiation_security strength

3. If (requested_instantiation_security strength < 112), then
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{security strength =112; seedlen = 224; outlen = 208;
min_entropy input len =224}

Else if (requested instantiation security_strength < 128), then

{security strength = 128, seedlen=256; outlen = 240;
min_entropy input len =256}

Else if (requested_instantiation_security_strength < 192), then

{security_strength =192;, seedlen = 384; outlen = 368,
min_entropy input len = 384}

Else {security_strength = 256;, seedlen = 521; outlen = 504,
min_entropy input len= 528}.

4, Select elliptic curve P-seedlen from Annex A to obtain the domain parameters
p, a, b, n, P,and Q.

Comment: Request entropy_input.

5. (status, entropy input) = Get_entropy (security_strength,
min_entropy input_length, 1000).

6. 1If (status # “Success™), then Return (“Failure indication returned by the
entropy_input source:” || status, -1).

7. (status, instantiation _nonce) = Get_entropy (security_strength/2,
security_strength/2, 1000).

8. If (status # “Success™), then Return (“Failure indication returned by the
random nonce source:” || status, -1).

Comment: Perform the instantiate algorithm.
9. seed material = entropy input || instantiation_nonce || personalization_string.
10. s = Hash_df (seed material, seedlen).
11. r_old = @( x(s * Q)).
12. block counter = 0.

Comment: Find an unused internal state and
save the initial values.

13. (status, state_handle) = Find_state_space ().
14. If (status # “Success”), then Return (status, -1).

15. internal_state (state_handle) = {s, seedlen, p, a, b, n, P, Q, v _old,
block_counter, security strength}.

16. Return (“Success”, state_handle).
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E.6.3 Reseeding a Dual_EC_DRBG Instantiation

The implementation is designed to return a text message as the status when an error is
encountered.

Reseed_Dual_EC_DRBG_Instantiation (...):

Input: integer state_handle, string additional input string.

Output: string status.

Process:

7.
8.
9.

Comment: Check the input parameters.

If ((state_handle < 0) or (state_handle > 10) or (internal_state
(state_handle).security strength = 0)), then Return (“State not available for the
state_handle™).

If (len (additional _input) > 800), then Return (“Additional_input too long™).

Comment: Get the appropriate state values for
the indicated state_handle.

s = internal_state (state_handle).s, seedlen = internal_state
(state_handle).seedlen, security strength = internal_state
(state_handle).security strength.

Comment: Request new entropy_input with
the appropriate entropy and bit length.

(status, entropy_input) = Get_entropy (security_strength,
min_entropy_input_length, 1000).

If (status # “Success”), then Return (“Failure indication returned by the
entropy source:”|| status).

Comment: Perform the reseed algorithm.
seed_material = pad8 (s) || entropy input || additional_input.
s = Hash_df (seed _material, seedlen).

Comment: Update the changed values in the
state.

internal_state (state_handle).s = s.
internal state.block _counter = 0.

Return (“Success”).

E.6.4 Generating Pseudorandom Bits Using Dual_EC_DRBG

The implemenation returns a Null string as the pseudorandom bits if an error is
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encountered.
Dual EC_DRBG (...):

Input: integer (state_handle, requested_security strength, requested_no_of bits),
bitstring additional _input.

Output: string status, bitstring pseudorandom_bits.
Process:
Comment: Check for an invalid state handle.

1. If (state_handle < 0) or (state_handle > 10) or (internal_state (state_handle) =
0)), then Return (“State not available for the state_handle”, Null).

Comment: Get the appropriate state
values for the indicated state _handle.

2. s = internal_state (state_handle).s, seedlen = internal_state
(state_handle).seedlen, P = internal_state (state_handle). P, Q = internal_state
(state_handle).Q, r_old = internal_state (state_handle).r_old, block_counter =
internal_state (state_handle).block_counter.

Comment: Check the rest of the input
parameters.

3. If (requested number of bits > 1000), then Return (“Too many bits
requested”, Null).

4. If (requested_security_strength > security_strength), then Return (“Invalid
requested_strength”, Null).

5. If (len (additional input) > 800), then Return (“Additional_input too long”,
Null).

Comment: Check whether a reseed is
required.

requested _number _of bits

6. If (block counter +[ —l> 10,000, then

outlen

6.1 Reseed_Dual_ EC_DRBG_Instantiation (state_handle,
additional_input).

6.2 If (status # “Success”), then Return (status).
6.3 s=internal state (state_handle).s, block counter = internal_state

(state_handle).block_counter.
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6.4 additional input = Null.

Comment: Execute the generate algorithm.

. If (additional input = Null) then additional_input = 0

Comment: additional input set to m zeroes.
Else additional _input = Hash_df (pad8 (additional_input), seedlen).

Comment: Produce requested no_of bits,
outlen bits at a time:

8. temp = the Null string.

9.

10.
11.
12.
13.
14.
15.
16.

17.
18.
19.

i=0.

t =5 @ additional _input.
5 =o(x(1 *P)).

r =¢(x(s * Q).

If (r = r_old), then Return (“ERROR: outputs match”, Null).
rold=rv.

temp = temp || (rightmost outlen bits of r ).

= Oseedlen

additional_inpu Comment: seedlen zeroes; additional _input

is added only on the first iteration.
block counter = block _counter + 1.
i=i+1.

If (len (temp) < requested_no_of bits), then go to step 10.

20. pseudorandom_bits = Truncate (temp, i x outlen, requested no_of bits).

21.
22,
23.
24,

Comment: Update the changed values
in the state.

internal_state.s = s.
internal_state.r_old =r_old.
internal_state.block counter = block counter.

Return (“Success”, pseudorandom_bits).
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