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Random Number Generation
Part 3: Deterministic Random Bit Generator Mechanisms

Contribution of the U.S. Federal Government and not subject to copyright

1 Scope

This part of ANSI X9.82 defines techniques for the generation of random bits using
deterministic methods. This part includes:

1. A model for a deterministic random bit generator,
2. Requirements for deterministic random bit generator mechanisms,

3. Specifications for deterministic random bit generator mechanisms that use hash
functions, block ciphers and number theoretic problems,

4. Implementation issues, and
5. Assurance considerations.

The precise structure, design and development of a random bit generator is outside the
scope of this standard.

This part of ANS X9.82 specifies several diverse DRBG mechanisms, all of which
provided acceptable security when this Standard was approved. However, in the event that
new attacks are found on a particular class of mechanisms, a diversity of approved
mechanisms will allow a timely transition to a different class of DRBG mechanism.

Random number generation does not require interoperability between two entities, e.g.,
communicating entities may use different DRBG mechanisms without affecting their
ability to communicate. Therefore, an entity may choose a single appropriate DRBG
mechanism for their applications; see Annex E for a discussion of DRBG selection.

2 Conformance

An implementation of a deterministic random bit generator (DRBG) may claim
conformance with ANSI X9.82 if it implements the mandatory provisions of Part 1, the
mandatory requirements of one or more of the DRBG mechanisms specified in this part of
the Standard, an entropy source from Part 2 and the appropriate mandatory requirements of
Part 4.

Conformance can be assured by a testing laboratory associated with the Cryptographic
Module Validation Program (CMVP) (see http://csrc.nist.gov/cryptval). Although an
implementation may claim conformance with the Standard apart from such testing,
implementation testing through the CMVP is strongly recommended.
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3 Normative references

The following referenced documents are indispensable for the application of this
document. For dated references, only the edition cited applies. Nevertheless, parties to
agreements based on this document are encouraged to consider applying the most recent
edition of the referenced documents indicated below. For undated references, the latest
edition of the referenced document (including any amendments) applies.

ANS X9.52-1998, Triple Data Encryption Algorithm Modes of Operation.

ANS X9.62-2000, Public Key Cryptography for the Financial Services Industry - The Elliptic
Curve Digital Signature Algorithm (ECDSA).

ANS X9.63-2000, Public Key Cryptography for the Financial Services Industry - Key
Agreement and Key Transport Using Elliptic Key Cryptography.

ANS X9.82, Part 1-200x, Overview and Basic Principles, Draft.

ANS X9.82, Part 2-200x, Entropy Sources, Draft.

ANS X9.82, Part 4-200x, RBG Constructions, Draft.

FIPS 180-2, Secure Hash Standard (SHS), August 2002; ASC X9 Registry 00003.

FIPS 197, Advanced Encryption Standard (AES), November 2001; ASC X9 Registry 00002.

FIPS 198, Keyed-Hash Message Authentication Code (HMAC), March 6, 2002; ASC X9
Registry 00004.

4 Terms and definitions

Definitions used in this part of ANS X9.82 are provided in Part 1.

5 Symbols
The following symbols are used in this document.
Symbol Meaning
+ Addition
X1 Ceiling: the smallest integer > X. For example, [5| = 5, and

[5.3] =6.

XeoY Bitwise exclusive-or (also bitwise addition mod 2) of two

bitstrings X and Y of the same length.

10
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X\IlY Concatenation of two strings X and Y. X and Y are either both
bitstrings, or both octet strings.

ged (x,y) The greatest common divisor of the integers x and y.

len (a) The length in bits of string a.

x mod n The unique remainder » (where 0 < r < n-1) when integer x is
divided by n. For example, 23 mod 7 = 2.
Used in a figure to illustrate a "switch" between sources of

@ input.

{as, ..a} The internal state of the DRBG at a point in time. The types
and number of the a; depends on the specific DRBG.

0 A string of x zero bits.

"
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6 General Discussion and Organization

Part 1 of this Standard (Random Number Generation, Part 1. Overview and Basic
Principles) describes several cryptographic applications for random numbers, specifies the
characteristics for random numbers and random number generators, and provides
mathematical and cryptographic background information on the concept of randomness.
Random bit generators are used for the generation of random numbers. Part 1 specifies
requirements for random bit generators that are applicable to both non-deterministic
random bit generators (NRBGs) and deterministic random bit generators (DRBGs). In
addition, Part 1 also introduces a general functional model and a conceptual cryptographic
Application Programming Interface (API) for random bit generators.

Part 2 of this Standard (Entropy Sources) discusses entropy sources used by random bit
generators. In the case of DRBGs, the entropy sources are required to seed and reseed the
DRBG.

Part 4 of this Standard (Random Bit Generator Constructions) provides guidance on
combining components to construct random bit generators.

This part of the Standard (Random Number Generation, Part 3: Deterministic Random Bit
Generator Mechanisms) specifies Approved DRBG mechanisms. A DRBG mechanism is
an RBG component that utilizes an algorithm to produce a sequence of bits from an initial
internal state that is determined by an input that is commonly known as a seed. Because of
the deterministic nature of the process, a DRBG mechanism is said to produce
“pseudorandom” rather than random bits, i.e., the string of bits produced by a DRBG
mechanism is predictable and can be reconstructed, given knowledge of the algorithm, the
seed and any other input information. However, if the input is kept secret, and the
algorithm is well designed, the bitstrings will appear to be random. [

The seed for a DRBG mechanism requires that sufficient entropy be provided during
instantiation and reseeding (see Parts 2 and 4 of this Standard). While a DRBG mechanism
may conform to this part of the Standard (i.e., Part 3), an implementation cannot achieve
the goals specified in Part 1 unless the entropy input source is included as specified in Part
4, That is, the security of an RBG that uses a DRBG mechanism is a system
implementation issue; both the DRBG mechanism and its entropy input source must be
considered.

Throughout the remainder of this document, the term “DRBG mechanism™ has been
shortened to “DRBG”.

The remaining sections of this part of the Standard are organized as follows:

— Section 7 provides a functional model for a DRBG that particularizes the functional
model of Part 1.

— Section 8 provides DRBG concepts and general requirements.

— Section 9 specifies the DRBG functions that will be used to access the DRBG
12
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algorithms specified in Section 10.

— Section 10 specifies Approved DRBG algorithms.

— Section 11 addresses assurance issues for DRBGs.
This part of the Standard also includes the following normative annexes:

— Annex A specifies additional DRBG-specific information.

— Annex B provides conversion routines,

— Annex C discusses security considerations for selecting and implementing DRBGs.
The following informative annexes are also included:

— Annex D discusses the functional requircments specified in Part 1 as they are
fulfilled by this part of the Standard,

— Annex E provides a discussion on DRBG selection.
— Annex F provides example pseudocode for each DRBG,
— Annex G provides a bibliography for related informational material.

13
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7 DRBG Functional Model
7.1 Functional Model

Part 1 of this Standard provides a general functional model for random bit generators
(RBGs). Figure 1 particularizes the functional model of Part 1 for DRBGs.

Personalization
String Nonce  Entropy Input Additional Input
X I
Instantiate Reseed
Function Function

\ 4
Unmstar.mate IuterRalState Gener.ate
Function Function

SN - Error l
Tests |
State Pseudorandom Output

Figure 1: DRBG Functional Model

7.2 Functional Mode! Components
7.2.1 Introduction

Part 1 of this Standard provides general functional reguirements for random bit generators,
These requirements are discussed briefly in this section.

7.2.2 Entropy Input

The entropy input is provided to a DRBG for the seed (see Section Jiil]). The entropy
input and the seed shall be kept secret. The secrecy of this information provides the basis
for the security of the DRBG. At a minimum, the entropy input shall provide the requested
amount of entropy for a DRBG. Appropriate sources for the entropy input are discussed in
Parts 2 and 4 of this Standard.

The DRBGs, as specified in this part of the Standard and further discussed in Part 4, allow
14
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for some bias in the entropy input. Whenever a bitstring containing entropy is required by
the DRBG, a request is made that indicates the minimum amount of entropy to be returned;
the request may obtain entopy input bits from a buffer containing readily available entopy
bits or may cause entropy input bits to be acquired. The request may be fulfilled by a
bitsting that is equal to or greater in length than the requested entropy. The DRBG expects
that the returned bitstring will contain at least the amount of entropy requested. Additional
entropy beyond the amount requested is not required, but is desirable.

7.2.3 Other Inputs

Other information may be obtained by a DRBG as input. This information may or may not
be required to be kept secret by a consuming application; however, the security of the
DRBG itself does not rely on the secrecy of this information. The information should be
checked for validity when possible.

During DRBG instantiation, a nonce is required and is combined with the entropy input to
create the initial DRBG seed. Criteria for the nonce are provided in Section 8.4.

This Standard recommends the insertion of a personalization string during DRBG
instantiation; when used, the personalization string is combined with the entropy bits and a
nonce to create the initial DRBG seed. The personalization string shall be unique for all
instantiations of the same DRBG type (e.g., HMAC_DRBG). See Section 8.5.2 for
additional discussion on personalization strings.

Additional input may also be provided during reseeding and when pseudorandom bits are
requested. See Section 8.5.3 for a discussion of this input.
7.2.4 The Internal State

The internal state is the memory of the DRBG and consists of all of the parameters,
variables and other stored values that the DRBG uses or acts upon. The internal state
contains both administrative data and data that is acted upon and/or modified during the
generation of pseudorandom bits (i.e., the working state). The contents of the internal state
is dependent on the specific DRBG and includes all information that is required to produce
the pseudorandom bits from one request to the next.

7.2.5 The DRBG Functions
The DRBG functions handle the DRBG’s internal state. The DRBGs in this Standard have
four separate functions:

1. The instantiate function acquires entropy input and combines it with a nonce and a
personalization string to create a seed from which the initial internal state is
created.

2. The generate function generates pseudorandom bits upon request, using the current
internal state, and generates a new internal state for the next request.

3. The reseed function acquires new entropy input and combines it with the current

15
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internal state and any additional input that is provided to create a new seed and a
new internal state.

4. The uninstantiate function zeroizes (i.e., crases) the internal state.
7.2.6 Testing

Testing is concerned with assessing and reacting to the health of the DRBG. The health
tests are discussed in Sections il and HH.

16



ANS X9.82, Part 3 - DRAFT - August 2005

8. DRBG Concepts and General Requirements
8.1 Introduction

This section provides concepts and general requirements for the implementation and use of
a DRBG. The DRBG functions are explained and requirements for an implementation are
provided.

8.2 DRBG Functions and a DRBG Instantiation
8.21 Functions

A DRBG requires instantiate, uninstantiate, generate, and testing functions. A DRBG may
also include a reseed function. A DRBG shall be instantiated prior to the generation of
output by the DRBG.

8.2.2 DRBG Instantiations

A DRBG may be used to obtain pseudorandom bits for different purposes (e.g., DSA
private keys and AES keys) and may be separately instantiated for each purpose.

A DRBG is instantiated using a seed and may be reseeded; when reseeded, the seed shall
be different than the seed used for instantiation. Each seed defines a seed period for the
DRBG instantiation; an instantiation consists of one or more seed periods that begin when
a new seed is acquired (see Figure 2).

8.2.3 Internal States

During instantiation, an Instantiate: Initialize with seed
initial internal state is
derived from the seed.
The internal state for an
instantiation includes:

1. Working state: Seed period 2

A

a. One or more [ (Opt) Reseed withseed , |
values that
are derived . Seed periods 3ton
from the seed
and become
part of the

] Seed period 1
k4
[ (Opt) Reseed with seed ; |

internal state;
these values Figure 2: DRBG Instantiation

must usually
remain secret, and

b. A count of the number of requests or blocks produced since the instantiation
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was seeded or reseeded.
2. Administrative information (e.g., security strength and prediction resistance flag).

The internal state shall be protected at least as well as the intended use of the
pseudorandom output bits requested by the consuming application. Each DRBG
instantiation shall have its own internal state. The internal state for one DRBG
instantiation shall not be used as the internal state for a different instantiation.

A DRBG transitions between internal states when the generator is requested to provide
new pseudorandom bits. A DRBG may also be implemented to transition in response to
internal or external events (e.g., System interrupts) or to transition continuously (e.g.,
whenever time is available to run the generator).

A DRBG implementation may be designed to handle multiple instantiations. Sufficient
space must be available for the expected number of instantiations, i.e., sufficient memory
must be available to store the internal state associated with each instantiation.

8.2.4 Security Strengths Supported by an Instantiation

The DRBG:s specified in this Standard support four security strengths: 112, 128, 192 or
256 bits. The actual security strength supported by a given instantiation depends on the
DRBG implementation and on the amount of entropy provided to the instantiate function
in the entropy input. Note that the security strength actually supported by a particular
instantiation may be less than the maximum security strength possible for that DRBG
implementation (see Table 1). For example, a DRBG that is designed to support a
maximum security strength of 256 bits may be instantiated to support only a 128-bit
security strength.

Table 1: Possible Instantiated Security Strengths

Maximum Designed 112 128 192 256
Security Strength

Possible Instantiated 112 112,128 112,128,192 | 112, 128,192,
Security Strengths 256

A security strength for the instantiation is requested by a consuming application during
instantiation, and the instantiate function obtains the appropriate amount of entropy for the
requested security strength. Any security strength may be requested, but the DRBG will
only be instantiated to one of the four security strengths above, depending on the DRBG
implementation. A requested security strength that is below the 112-bit security strength or
is between two of the four security strengths will be instantiated to the next highest level
(e.g., a requested security strength of 96 bits will result in an instantiation at the 112-bit
security strength).

Following instantiation, requests can be made to the generate function for pseudorandom
bits. For each generate request, a security strength to be provided for the bits is requested.
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Any security strength can be requested up to the security strength of the instantiation, e.g.,
an instantiation could be instantiated at the 128-bit security strength, but a request for
pseudorandom bits could indicate that a lesser security strength is actually required for the
bits to be generated. The generate function checks that the requested security strength does
not exceed the security strength for the instantiation. Assuming that the request is valid, the
requested number of bits is returned.

When an instantiation is used for multiple purposes, the minimum entropy requirement for
each purpose must be considered. The DRBG needs to be instantiated for the highest
security strength required. For example, if one purpose requires a security strength of 112
bits, and another purpose requires a security strength of 256 bits, then the DRBG needs to
be instantiated to support the 256-bit security strength.

8.3 DRBG Boundaries

As a convenience, this Standard uses the notion of a “DRBG boundary” to explain the
operations of a DRBG and its interaction with and relation to other processes; a DRBG
boundary contains all DRBG functions and internal states required for a DRBG. A DRBG
boundary is entered via the DRBG’s public interfaces, which are made available to
consuming applications.

Within a DRBG boundary,

1. The DRBG internal state and the operation of the DRBG functions shall only be
affected according to the DRBG specification.

2. The DRBG internal state shall exist solely within the DRBG boundary. The
internal state shall be contained within the DRBG boundary and shall not be
accessed by non-DRBG functions.

3. Information about secret parts of the DRBG internal state and intermediate values
in computations involving these secret parts shall not affect any information that
leaves the DRBG boundary, except as specified for the DRBG pseudorandom bit
outputs.

Each DRBG includes one or more cryptographic primitives (e.g., a hash function). Other
applications may use the same cryptographic primitive as long as the DRBG’s internal
state and the DRBG functions are not affected.

A DRBG’s functions may be contained within a single device, or may be distributed across
multiple devices (see Figures 3 and 4). Figure 3 depicts a DRBG for which all functions
are contained within the same device. Figure 4 provides an example of DRBG functions
that are distributed across multiple devices. In this case, each device has a DRBG sub-
boundary that contains the DRBG functions implemented on that device, and the boundary
around the entire DRBG consists of the aggregation of sub-boundaries providing the
DRBG functionality. The use of distibuted DRBG functions may be convenient for
restricted environments (e.g., smart card applications) in which the primary use of the
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DRBG does not require repeated use of the instantiate or reseed functions.

DREG Boundary
Instantiate Instantiate |,
Function
— Eniropy
Input
Reseed Reseed -
Instantiation Function
i Generate
Request Bits _ Function
Test Test LTS
DRBG = Function
Uninstantiate e e
DREC U .mw
Funetion

Figure 3: DRBG Functions Within a Single Device

Although the entropy input that is used to create the seed is shown in the figures as
originating outside the DRBG boundary, it may originate from within the boundary.

___________________________ S
|
1
I
Promcmd St |
Generuie Test t
Function | | Fune tan |
|
|
|
|
|
DRBG Sub Boundary (Canerat) :
e i e oo e A B i i i e

Figure 4: Distributed DRBG Functions
Each DRBG boundary or sub-boundary shall contain an uninstantiate function and a test
function to test the “health” of other DRBG functions within that boundary.

When DRBG functions are distributed, appropriate mechanisms shall be used to protect
20
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the confidentiality and integrity of the internal state or parts of the internal state that are
transferred between the distributed DRBG sub-boundaries. The confidentiality and
integrity mechanisms and security strength shall be consistent with the data to be protected
by the DRBG’s consuming application (see SP 800-57).

8.4 Seeds

8.4.1 General Discussion

When a DRBG is used to generate pseudorandom bits, entropy input is acquired in order to
generate a seed prior to the generation of output bits by the DRBG. The seed is used to
instantiate the DRBG and determine the initial internal state that is used when calling the
DRBG to obtain the first output bits.

Reseeding is a means of recovering the secrecy of the output of the DRBG if a seed or the
internal state becomes known. Periodic reseeding is a good countermeasure to the potential
threat that the seeds and DRBG output become compromised. In some implementations
(e.g., smartcards), an adequate reseeding process may not be possible. In these cases, the
best policy might be to replace the DRBG, obtaining a new seed in the process (e.g., obtain
a new smart card).

8.4.2 Generation and Handling of Seeds

The seed and its use by a DRBG is generated and handled as follows:

1. Seed construction for

instantiation: Figure 5 depicts the

. Optional
§eed cgns'truc‘uon process for‘ Entropy Nonce Personalization
instantiation. The seed material Input String

used to determine a seed for
instantiation consists of entropy
input, a nonce and an optional Opt.
personalization string. Entropy dr
input is always be used in the
construction of a seed;
requirements for the entropy input
are discussed in item 3. A nonce
is also be used; requirements for Figure 5: Seed Construction for Instantiation
the nonce are discussed in item 7.

This Standard also recommends

the inclusion of a personalization string; requirements for the personalization string
are discussed in Section 8.5.2.

Seed

Depending on the DRBG and the source of the entropy input, a derivation function
is required to derive a seed from the seed material, When full entropy input is
readily available, the DRBGs based on block cipher algorithms (see Section 10.2)
may be implemented without a derivation function. When implemented in this
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manner, a nonce is not used as shown in Figure 5. Note, however, that the
personalization string could contain a nonce, if desired.

The goal of this seed construction is to ensure that the seed is statistically unique.

2. Seed construction for

reseeding: Figure 6 depicts the

seed construction process for I"S‘:; ;‘e“' Entropy A(‘)i"’iti't‘i’:s:d
. . . -

reseeding an instantiation. The Value npu Input

seed material for reseeding
consists of a value that is /
carried in the internal state!, L2

new entropy input and, odp["
optonally, additional input. The

internal state value and the
entropy input are required; Seed
requirements for the entropy
input are discussed in item 3.
Requirements for the additional Figure 6: Seed Construction for Reseeding
input are discussed in Section

8.5.3. Asinitem 1, a derivation function may be required for reseeding. See item 1
for further guidance.

3. Entropy requirements for the entropy input: The entropy input for the seed shall
contain sufficient entropy for the desired security strength. Additional entropy may
be provided in the nonce or the optional personalization string during instantiation,
or in the additional input during reseeding, but this is not required. Entropy
contained in the seed components is distributed across the seed (e.g., using an
appropriate derivation function) by the instantiate and reseed functions.

The entropy input shall have entropy that is equal to or greater than the security
strength of the instantiation. Note that the use of more entropy than the minimum
value will offer a security “cushion”. This may be useful if the assessment of the
entropy provided in the entropy input is incorrect. Having more entropy than the
assessed amount is acceptable; having less entropy than the assessed amount could be
fatal to security. The presence of more entropy than is required, especially during the
instantiatiation, will provide a higher level of assurance than the minimum required

entropy.
\4. Seed length: The minimum length of the seed depends on the DRBG and the
security strength required by the consuming application. See Section 10, Comment [ebb3]: Page: 31
"""" This may need to be revised if lhe
5. Entropy input source: The source of the entropy input may be an Approved NRBG, Dual EC_DRBG is not retained.

an Approved DRBG (or chain of Approved DRBGs) that is seeded by an Approved
NRBG, or an Approved entropy source. Further discussion about the entropy input
is provided in Parts 2 and 4 of this Standard.

! See each DRBG specification for the value that is usze%.
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Entropy input and seed privacy: The entropy input and the resulting seed shall be
handled in a manner that is consistent with the security required for the data
protected by the consuming application. For example, if the DRBG is used to
generate keys, then the entropy inputs and seeds used to generate the keys shall be
treated at least as well as the key.

Nonce: A nonce is required to construct a seed during instantation. The nonce shall
be either:

a. A random value with at least (security_strength/2) bits of entropy,
b. A non-random value that is guaranteed to never repeat, or

c. A non-random value that is expected to repeat no more often than a
(security_strength/2)-bit random string would be expected to repeat.

For case a, the nonce may be acquired from the same source and at the same time
as the entropy input. In this case the seed could be considered to be constructed
from an “extra strong” entropy input and the optional personalization string, where
the entropy for the entropy input is equal to or greater than (3/2 security_strength)
bits.

Reseeding: Generating too many outputs from a seed (and other input information)
may provide sufficient information for successfully predicting future outputs unless
prediction resistance is provided (see Section 8.6). Periodic reseeding will reduce
security risks, reducing the likelihood of a compromise of the data that is protected
by cryptographic mechanisms that use the DRBG.

Seeds have a finite seedlife (i.e., the length of the seed period); the maximum
seedlife is dependent on the DRBG used. Reseeding is accomplished by 1) an
explicit reseeding of the DRBG by the application, or 2) by the generate function
when prediction resistance is requested (see Section 8.6) or the limit of the seedlife
is reached. An alternative to reseeding is to create an entirely new instantiation.

Reseeding of the DRBG shall be performed in accordance with the specification
for the given DRBG. The DRBG reseed specifications within this Standard are
designed to produce a new seed that is determined by both the old seed and newly-
obtained entropy input that will support the desired security strength.

Seed use: [DRBGs may be used to generate both secret and public information. In
either case, the seed and the entropy input from which the seed is derived shall be
kept secret. A single instantiation of a DRBG should not be used to generate both
secret and public values. However, cost and risk factors must be taken into account
when determining whether different instantiations for secret and public values can
be accommodated|

intentionally used to reseed the same instantiation or used as a seed for another
DRBG instantiation.
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A DRBG shall not provide output until a seed is available, and the internal state
has been initialized.

10. Seed separation: Seeds used by DRBGs shall not be used for other purposes (e.g.,
domain parameter or prime number generation).

8.5 Other Inputs to the DRBG

8.5.1 Discussion

Other input may be provided during DRBG instantiation, pseudorandom bit generation and
reseeding. This input may contain entropy, but this is not required. During instantiation, a
personalization string may be provided and combined with entropy input and a nonce to
derive a seed (see Section 8.4, item 1). When pseudorandom bits are requested and when
reseeding is performed, additional input may be provided (see Section 8.5.3).

Depending on the method for acquiring the input, the exact value of the input may or may
not be known to the user or application. For example, the input could be derived directly
from values entered by the user or application, or the input could be derived from
information introduced by the user or application (e.g., from timing statistics based on key
strokes), or the input could be the output of another DRBG or an NRBG.

8.5.2 Personalization String

During instantiation, a personalization string should be used to derive the seed (see
Section 8.4). The intent of a personalization string is to differentiate this DRBG
instantiation from all the others that might ever appear. The personalization string should
be set to some bitstring that is as unique as possible, and may include secret information.
The value of any secret information contained in the personalization string should be no
greater than the claimed strength of the DRBG, as the DRBG's cryptographic mechanisms
(specifically, its backtracking resistance and the entropy provided in the entropy input) will

protect this information from disclosure. Good choices for the personalization string
contents include:

1. Device serial numbers,

Public keys,

User identification,

Private keys,

PINs and passwords,

Secret per-module or per-device values,
Timestamps,

Network addresses,

W X N kWb

Special secret key values for this specific DRBG instantiation,
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10. Application identifiers,
11. Protocol version identifiers,
12. Random numbers, and

13. Nonces.
8.5.3 Additional Input

During each request for bits from a DRBG and during reseeding, the insertion of additional
input is allowed. This input is optional and may be either secret or publicly known; its
value is arbitrary, although its length may be restricted, depending on the implementation
and the DRBG. The use of additional input may be a means of providing more entropy for
the DRBG internal state that will increase assurance that the entropy requirements are met.
If the additional input is kept secret and has sufficient entropy, the input can provide more
assurance when recovering from the compromise of the seed or one or more DRBG
internal states.

8.6 Prediction Resistance and Backtracking Resistance

Figure 7 depicts the sequence of DRBG internal states that result from a given seed. The
internal state is used to generate pseudorandom bits upon request by a user. The following
discussions will use the figure to explain backtracking and prediction resistance. Suppose
that a compromise occurs at State,, where State, contains both secret and public
information.

Seed — | State; State, | * * ° State, 5| |State,, || State, State,,| |State | * * ®

Figure 7: Sequence of DRBG States

Backtracking Resistance: Backlracking resistance means that a compromise ol the DRBG
internal state has no efTect on the security ol prior outputs. That is, an adversary who is
given access to all ol any-subset-etthat prior output sequence cannot distinguish it from
random; if the adversary knows only part of the prior output, he cannot determine any bit
of that prlor output sequence that the—aévefsaﬁthe has not already seen. fn-etheryverds—ea

For example, suppose that an adversary knows State;g\;;aﬂd—alse-kﬂews—ﬂwe%pa{—bi{s
from-State,to-State, o Backtracking resistance means that:

2. The output bits from State; to State,., cannot be distinguished from random. + [ Formatted: Bullets and Numbering ]
a—b, The prior internal state values themselves (State; to Stare, | ) cannot be ( Formatted =
[Formatted ]
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recovered, given knowledge of the secret information in State,.Stete, _-and-Hs
autput-bits-cannot-be-determined-from-knowledge-of-State AheSidle eannotbe
%&W&mn—mﬂwaﬁ&pwmm ArSere, o pppeario-be
random=—the-outputbitsfor State, -cannot-be predicted-from-the-output-bits-of

Stertento-Stette - | . [ comment [ebb5]: Page: 34
..... . e e convolusd.

Backtracking resistance can be provided by ensuring that the internal state transition
function of a DRBG is a one-way function. All DRBGs in this Standard have been
designed to provide backtracking resistance.

Prediction Resistance: Prediction resistance means that a compromise ol the DRBG
internal state has no effect on the seeurity of future DRBG outputs. Ha-compromise-ol
Stette - +!b€ﬂl+fiwtﬁeﬂﬁwe%ﬁﬂcﬂ&ﬁﬂd%ﬁmﬂﬂte+hdi—ﬁw—ﬂu$u Esequence-fest lebng
from-states-efierthe-compromise remains-seeure—That Is, an adversary who is given access
to all of any-subsetefthe output sequence after the compromise cannot distinguish it from

random; if the adversary knows only part of the future output sequence, an-adversaryhe
cannot predict any bit of that future output sequence that he has not already seen.-tr-other
words—rcompromise-tic-Ho-effect-on-theseenrity-offitire-onipitis:
For example, suppose that an adversary knows State,: -and-also-knows-the-output-bitstrom
Stateoto-State,,~Prediction resistance means that:

a.The outpul bits from State,; and forward cannot be distinguished from an ideal < [ Formatted: Bullets and Numbering
random bitstring by the adversary. [Formatted
b—b. The future internal state values themselves (Statey | and forward ) cannot be [ Formatted

predicted, given knowledge of State,.-Stete, \and-itsoutput-bits-cannot-be

deterpined-from-knowledge-of-Site -(heState ~cannot-be—backed-up=-In

addition—stnece-the-output-bitsfrom-Stafe to-State, » appeaito-berandor-the

outputbitsfor-State_-eannot-be predictedfromthe-output- bits- ot State to-Stete. o
State,. and-its-ouputbits-cannot-be predicted-from-knowledge-ob-State —tn-addition:
beeause-the-output-bitsfrom-Stafe . Ao-Mafe, appear lt%fﬂﬂtl&ﬂ%—thefliﬂwl—hﬂﬂ
State. -eannotbe-determinedtrom-the-output-bits-oF-Stete - to-Stette

Prediction resistance can be provided only by ensuring that a DRBG is effectively reseeded
between DRBG requests. That is, an amount of entropy that is sufficient to support the
security strength of the DRBG (i.e., an amount that is at least equal to the security strength)
must be added to the DRBG in a way that ensures that knowledge of the currentprevious
DRBG internal state does not allow an adversary any useful knowledge about future
DRBG internal states or outputs.
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9 DRBG Functions
9.1 General Discussion

The DRBG functions in this Standard are specified as an algorithm and an “envelope” of
pseudocode around that algorithm. The pseudocode in the envelopes checks the input
parameters, obtains input not provided by the input parameters, accesses the appropriate
DRBG algorithm and handles the internal state. A function need not be implemented using
such envelopes, but the function shall have equivalent functionality.

In the specifications of this Standard, the following pseudo-functions are used. These
functions are not specifically defined in this Standard, but have the following meaning:

e Get_entropy: A function that is used to obtain entropy input. The function call is:

(status, entropy_input) = Get_entropy (min_entropy, min_ length, max_
length)

which requests a string of bits (entropy input) with at least min_entropy bits of
entropy. The length for the string shall be equal to or greater than min_length bits,
and less than or equal to max_length bits. A status code is also returned from the
function.

e Block_Encrypt: A basic encryption operation that uses the selected block cipher
algorithm. The function call is:

output block = Block_Encrypt (Key, input_block)

For TDEA, the basic encryption operation is called the forward cipher operation;
for AES, the basic encryption operation is called the cipher operation. The basic
encryption operation is equivalent to an encryption operation on a single block of
data using the ECB mode.

Note that an implementation may choose to define this functionality differently; for
example, for many of the DRBGs, the min_length = min_entropy for the Get_entropy
function, in which case, the second parameter could be omitted.

9.2 Instantiating a DRBG
A DRBG shall be instantiated prior to the generation of pseudorandom bits. The instantiate
function shall:
1. Check the validity of the other input parameters,
2. Determine the security strength for the DRBG instantiation,
3. Determine any DRBG specific parameters (e.g., elliptic curve domain parameters),
4. Obtain entropy input with entropy sufficient to support the security strength,
5. Obtain the nonce,
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Determine the initial internal state using the instantiate algorithm,

If possible, request that pseudorandom bits be generated; the generate function will
test that successive internal state values are not identical.

Return a state handle for the internal state to the consuming application.

Let working state be the working state for the particular DRBG, and let min_length, max
length, and highest_supported security_strength be defined for each DRBG (see Section
10). If a generate function is not contained in the same sub-boundary as the instantiate
function, steps 13 and 14 are not performed.

The following or an equivalent process shall be used to instantiate a DRBG.

Input from a consuming application:

1.

requested_instantiation_security_strength: A requested security strength for the
instantiation. DRBG implementations that support only one security strength do not
require this parameter; however, any application using that DRBG implementation
must be aware of this limitation.

. prediction resistance_flag: Indicates whether or not prediction resistance may be

required by a the consuming application during one or more requests for
pseudorandom bits. DRBGs that are implemented to always or never support
prediction resistance do not require this parameter. However, the user of a
consuming application must determine whether or not prediction resistance may be
required by the application before electing to use such a DRBG implementation. If
the prediction_resistance_flag is not needed (i.e., because prediction resistance is
always or never performed), then the input parameter may be omitted, and the
prediction resistance_flag may be omitted from the internal state in step 12.

. personalization_string: An optional input that provides personalization information

(see Sections 8.4 and 8.5.2). The maximum length of the personalization string
(max_personalization_string length) is implementation dependent, but shall be <
2% bits. If a personalization string will never be used, then the input parameter and
step 3 may be omitted, and step 9 may be modified to omit the personalization
string.

DRBG _specific_input_parameters : Any additional parameters that are allowed for
a specific DRBG (see Section 10). The use of the DRBG-specific input parameters

is discussed for the DRBG instantiate algorithms. If a DRBG or a DRBG
implementation does not use these parameters, then step 5 may be omitted.

Required information not provided by the consuming application:

1.

Comment: This input shall not be provided
by the consuming application as an input
parameter during the instantiate request.

entropy _input: Input bits containing entropy. The maximum length of the
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entropy_input is implementation def)endent, but shall be < 2°° bits.

nonce: A nonce as specified in Section 8.4. Note that if a random value is used as
the nonce, the entropy input and nonce could be acquired using a single
Get_entropy call (see step 6); in this case, the first parameter would be adjusted to
include the entropy for the nonce (i.e., security strength would be increased by at
least security strength/2), step 8 would be omitted, and the nonce would be omitted
from the parameter list in step 9.

OQutput to a consuming application:

1.

status: The status returned from the instantiate function. The status will indicate
SUCCESS or an ERROR. If an ERROR is indicated, either no state handle or an
invalid state_handle shall be returned. A consuming application should check the
status to determine that the DRBG has been correctly instantiated.

state_handle: Used to identify the internal state for this instantiation in subsequent
calls to the generate, reseed, uninstantiate and test functions.

Information retained within the DRBG boundary:

The internal state for the DRBG, including the working_state and administrative
information (see Sections 8.2.3 and 10).

Process:

Comment: Check the validity of the input
parameters.

If requested_instantiation_security_strength >
highest_supported security strength, then reruen an ERROR.

If prediction resistance flag is set, and prediction resistance is not supported, then
return an ERROR.

If the length of the personalization string > max_personalization_string_length,
return an ERROR.

Set security_strength to the nearest security strength greater than or equal to
requested_instantiation_security strength.

Comment: The following step is required by
the Dual EC_DRBG when multiple curves
are available (see Section 10.3.2.2.2), and by
the MS_DRBG (see Section 10.3.3.2.3).
Otherwise, the step should be omitted.

. Using security_strength and DRBG specific_input parameters (if available), select

appropriate DRBG parameters.

Comment: Obtain the entropy input.
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6. (status, entropy_input) = Get_entropy (security_strength, min_length,
max_length).

7. If an ERROR is returned in step 6, return an ERROR.

8. Obtain a nonce. Comment: This step shall include any
appropriate checks on the acceptability of the
nonce. See Section 8.4

Comment: Call the appropriate instantiate
algorithm in Section 10 to obtain values for
the initial working state.

9. (status. working state) = Instantiate_algorithm (entropy input, nonce,
personalization_string, other DRBG_parameters).

10. If an ERROR is returned trom step 9, then
[0.1 Delete all instantiations using the uninstantiate function.
10.2  Return the ERROR status from step 9.
Comment: Set up the initial internal state.

11. Get a state_handle that will be used to locate the internal state for this instantiation.
If an unused internal state cannot be found, return an ERROR.

12. Set the internal state indicated by state_handle to the initial values for the
working_state and administrative information, as appropriate.

Comment: Invoke the generate function in
Section 9.4 to test that two consecutive
internal states are not identical?. Ignore the
returned pseudorandom bits.

13. (status, pseudorandom_bits) = Generate_Function (state_handle, 64,
security_strength, No_prediction_resistance, Null, additional _input).

14. If status indicates that two consecutive internal states were identical, then
14.1 Delete all instantiations using the uninstantiate function.
142 Return the ERROR status from step 14.
15. Return SUCCESS and state_handle.
9.3 Reseeding a DRBG Instantiation
The reseeding of an instantiation is not required, but is recommended whenever an

application and implementation are able to perform this process. Reseeding will insert
additional entropy into the generation of pseudorandom bits. Reseeding may be:

¢ explicitly requested by an application,

. . . 0
2 This 1s the continuous random number test from FIP% 140-2
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e performed when prediction resistance is requested by an application,

e triggered by the generate function when a predetermined number of pseudorandom
outputs have been produced (i.e., at the end of the seedlife), or

o triggered by external events (e.g., whenever sufficient entropy is available).

If a reseed capability is not available, a new DRBG instantiation may be created (see
Section 9.2).

The reseed function shall:
1. Check the validity of the input parameters,
2. Obtain entropy input with sufficient entropy to support the security strength, and

3. Using the reseed algorithm, combine the current working state with the new
entropy input and any additional input to determine the new working state. The
reseed algorithm will check that two consecutive states are different.

Let working state be the working state for the particular DRBG, and let min_length and
max_length be defined for each DRBG (see Section 10).

The following or an equivalent process shall be used to reseed the DRBG instantiation.
Input from a consuming application:
1) state_handle: A pointer or index that indicates the internal state to be reseeded.
This value was returned from the instantiate function specified in Section 9.2.

2) additional_input: An optional input. The maximum length of the additional input
(max_additional _input_length) is implementation dependent, but shall be < 2%
bits. If additional_input will never be used, then the input parameter and step 2
may be omitted, and step 5 may be modified to remove the additional input from
the parameter list.

Required information not provided by the consuming application:

Comment: This input shall not be provided
by the consuming application in the input
parameters.
1. entropy input: Input bits containing entropy. The maximum length of the
entropy_input is implementation dependent, but shall be < 2°° bits.
2. Internal state values required by the DRBG for reseeding, i.e., the working state
and administrative information, as appropriate.
Output to a consuming application:

1. status: The status returned from the function. The starus will indicate SUCCESS or
an ERROR.
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Information retained within the DRBG boundary:
Replaced internal state values (i.e., the working _state).
Process:

Comment: Get the current internal state and
check the input parameters.

1. Using state_handle, obtain the current internal state. If state_handle indicates an
invalid or unused internal state, return an ERROR.

2. Ifthe length of the additional input > max_additional_input length, return an
ERROR.

Comment: Obtain the entropy input.

3. (status, entropy_input) = Get_entropy (security_strength, min_length,
max_length).

4. Ifan ERROR is returned in step 3, return an ERROR.

Comment: Get the new working_state using
the appropriate reseed algorithm in Section
10.

5. (status, working state) = Reseed_algorithm (working_state, entropy_input,
additional input).

Comment: If an ERROR is returned, two
consecutive states are the same.

6. If an ERROR is returned from step 6, then
6.1 Delete all instantiations using the uninstantiate function.
6.2 Return the ERROR status from step 5.

Comment: Save the new values of the internal
state.

7 Replace the working state in the internal state indicated by state_handle with the
new values.

8. Return SUCCESS.
9.4 Generating Pseudorandom Bits Using a DRBG
This function is used to generate pseudorandom bits after instantiation or reseeding (see
Sections 9.2 and 9.3). The generate function shall:

1. Check the validity of the input parameters,

2. Ifthe instantiation needs additional entropy because the end of the seedlife has
been reached or prediction resistance is required, call the reseed function to obtain
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sufficient entropy.

3. Generate the requested pseudorandom bits using the generate algorithm. The
generate algorithm will check that two consecutive states are not the same.

4. Update the working state.

5. Return the requested pseudorandom bits to the consuming appication.
Let outlen be the length of the output block of the cryptographic primitive (see Section 10).
The following or an equivalent process shall be used to generate pseudorandom bits.

Input from a consuming application:
1. state_handle: A pointer or index that indicates the internal state to be used.

2. requested number of bits: The number of pseudorandom bits to be returned from
the generate function. The max_number_of bits per_request is implementation
dependent but shall be < the value provided in Section 10 for a specific DRBG..

3. requested security strength: The security strength to be associated with the
requested pseudorandom bits. DRBG implementations that support only one
security strength do not require this parameter; however, any application using that
DRBG implementation must be aware of this limitation.

4. prediction resistance request: Indicates whether or not prediction resistance is to
be provided. DRBGs that are implemented to always or never support prediction
resistance do not require this parameter. However, the user of a consuming
application must determine whether or not prediction resistance may be required by
the application before electing to use such a DRBG implementation. If the
prediction_resistance_request parameter is not needed, then the input parameter
and step 5 may be omitted.

If prediction resistance is never provided, then step 5 may be omitted, and step 7
may be modified to omit the check for the prediction_resistance_request.

If prediction resistance is always performed, then step 5 may be omitted, and steps
7 and 8 are replaced by:

status = Reseed (state_handle, additional inpuf).
If status indicates an ERROR, then return ERROR.
Using state_handle, obtain the new internal state.

(status, pseudorandom_bits, working_state) = Generate_algorithm
(working_state, requested number_of bits).

Note that if additional input is never provided, then the additional _input parameter
in the Reseed call above may be omitted.

5. additional input. An optional input. The maximum length of the additional input
(max_additional_input_length) is implementation dependent, but shall be < 2%
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bits. If additional _input will never be used, then the input parameter, step 4, step
7.4 and the additional input input parameter in step 8 may be omitted.

Required information not provided by the consuming application:

1. Internal state values required for generation for the working state and
administrative information, as appropriate.

Output to a consuming application:

1. status: The status returned from the function. The starus will indicate SUCCESS
or an ERROR.

2. pseudorandom_bits: The pseudorandom bits that were requested.
Information retained within the DRBG boundary:

Replaced internal state values (i.e., the working state).
Process:

Comment Get the internal state and check the
input parameters.

1. Using state handle, obtain the current internal state for the instantiation. If
state _handle indicates an invalid or unused internal state, then return an ERROR.

2. Ifrequested number of bits > max_number of bits per request, then return an
ERROR.

3. If requested security strength> the security strength indicated in the internal
state, then return an ERROR.

4. Ifthe length of the additional input > max_additional input length, then return an
ERROR.

5. If prediction_resistance_request is set, and prediction_resistance_flag is not set,
then return an ERROR.

6. Clear the reseed required flag.

Comment: Get the requested pseudorandom
bits.

7. Ifreseed required flag is set, or if prediction resistance_request is set, then

Comment: Reseed the instantiation (see
Section 9.3).

7.1 status = Reseed (state_handle, additional_input).
7.2 If status indicates an ERROR, then return an ERROR.
7.3 Using state _handle, obtain the new internal state.
7.4 additional _input = the Null string.
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7.5 Clear the reseed required flag.

Comment: Request the generation of
pseudorandom_bits using the appropriate
generate algorithm in Section 10.

8. (Status, pseudorandom_bits, working_state) = Generate_algorithm
(working state, requested number of bits, additional input).

9. If status indicates that a reseed is required before the requested bits can be
generated, then

9.1 Set the reseed required flag.
9.2 Gotostep 7.

Comment: If an ERROR is returned, two
consecutive states are the same.

10. If an ERROR is returned from step 8,
10.1 Delete all instantiations using the uninstantiate function.
10.2 Return the ERROR received from step 8.

10. Replace the old working_state in the internal state indicated by state handle with
the new working_state.

11. Return SUCCESS and pseudorandom_bits.

Implementation notes:

If a reseed capability is not available, then steps 6 and 7 may be removed; and step 9 is
replaced by:

9. 1If status indicates that a reseed is required before the requested bits can be
generated, then

9.1 status = Uninstantiate (state_handle).
9.2 If an ERROR is returned in step 9.1, then return the ERROR.
9.3 Return an indication that the DRBG instantiation can no longer be used.
9.5 Removing a DRBG Instantiation
The internal state for an instantiation may need to be “released”. This may be required, for

example, following health testing of the instantiation function. The uninstantiate function
shall:

1. Check the input parameter for validity.
2. Empty the internal state.
The following or an equivalent process shall be used to remove (i.e., uninstantiate) a
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DRBG instantiation:
Input from a consuming application:

1. state_handle: A pointer or index that indicates the internal state to be “released”.
Output to a consuming application:

1. status: The status returned from the function. The status will indicate SUCCESS or
ERROR.

Information retained within the DRBG boundary:
An empty internal state.

Process:
1. If state handle indicates an invalid state, then return an ERROR.
2. Erase the contents of the internal state indicated by state handle.
3. Return SUCCESS.

9.6 Auxilliary Functions
9.6.1 Introduction

Derivation functions are internal functions that are used during DRBG instantiation and
reseeding to either derive internal state values or to distribute entropy throughout a
bitstring. Two methods are provided. One method is based on hash functions (see Section
9.6.2), and the other method is based on block cipher algorithms (see 9.6.3). The block
cipher derivation function uses a a CBC_MAC that is specified in Section 9.6.4.

9.6.2 Derivation Function Using a Hash Function (Hash_df)
The hash-based derivation function hashes an input string and returns the requested

number of bits. Let Hash (...) be the hash function used by the DRBG, and let outlen be its
output length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. input string: The string to be hashed.

2. no_of bits_to_return: The number of bits to be returned by Hash_df. The
maximum length (max_number _of bits) is implementation dependent, but shall be
< (255 x outlen). no_of bits_to_return is represented as a 32-bit integer.

Output:

1. status: The status returned from Hash_df. The status will indicate SUCCESS or
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ERROR.
2. requested_bits : The result of performing the Hash_df.
Process:
1. Ifno_of bits to_return > max_number of bits, then return an ERROR.
2. temp = the Null string.

no _of bits to return
3. len= [ -l == :
outlen

4. counter = a 32-bit binary value representing the integer "1".
5. Fori=1to lendo
5.1 temp = temp || Hash (counter || no_of bits to return | input string).
5.2 counter = counter + 1.
6. requested bits = Lefimost (no of bits_to_return) of temp.
7. Return SUCCESS and requested_bits.
9.6.3 Derivation Function Using a Block Cipher Algorithm
Let Block_Cipher_Hash be the function specified in Section 9.6.4. Let Let outlen be its
output block length, and let keylen be the key length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. input string: The string to be operated on. This string shall be a multiple of 8 bits.

2. no of bits to_return: The number of bits to be returned by Block_Cipher_df. The
maximum length (max_number_of bits) is 512 bits for the currently approved block cipher
algorithms.

Output:
1. status: The status returned from Block_Cipher_df. The status will indicate
SUCCESS or ERROR.

2. requested bits : The result of performing the Block_Cipher_df.

Process:

1. If (number_of bits to_return> max _number of bits), then return an ERROR.

2. L=len (input_string)/8. Comment: L is the bitstring represention of
the integer resulting from len (input_string)/8.
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L shall be represented as a 32-bit integer.

N = number_of bits to_return/8.  Comment : N is the bitsting represention of
the integer resulting from
number of bits _to return/8. N shall be
represented as a 32-bit integer.

Comment: Prepend the string length and the
requested length of the output to the
input _string.

S=L || N| input_string || 0x80.
Comment : Pad S with zeros, if necessary.
While (len (S) mod outlen) # 0, S =S || 0x00.

Comment : Compute the starting value.

5. temp = the Null string.

9.

i=0. Comment : i shall be represented as a 32-bit
integer.

K = Leftmost keylen bits of 0x010203...1F.
While len (femp) < keylen + outlen, do

8.1 [y =] govten-len ) Comment: The integer represenation of 7 is
padded with zeros to outlen bits.

8.2 temp = temp | Block_Cipher_Hash (X, (IV || S)).
83 i=i+1.

Comment: Compute the requested number of
bits.

K = Leftmost keylen bits of temp.

10. X = Next outlen bits of temp.

11.
12

13.
14.

temp = the Null string.

. While len (temp) < number of bits_to_return, do

12.1 X =Block_Encrypt (X, X).

12.2 temp = temp || X.

requested_bits = Leftmost number_of bits to_return of temp.
Return SUCCESS and requested_bits.
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9.6.4 Block_Cipher_Hash Function

Let outlen be the length of the output block of the block cipher algorithm to be used.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. Key: The key to be used for the block cipher opeation.

2. data_to_hash: The data to be operated upon. Note that the length of data to_hash
must be a multiple of outlen. This is guanteed by steps 4 and 8.1 in Section 9.6.3.

Output:
1. output_block: The result to be returned from the Block_Cipher_Hash operation.
Process:

Qotten, Comment: Set the first chaining value to outlen zeros.

1. chaining value =
2. n=len (data_to hash)loutlen.
3. Split the data_to_hash into n blocks of outlen bits each forming block, to block,.
4. Fori=1tondo
4.1 input block= chaining value @ block; .
4.2 chaining_value = Block_Encrypt (Key, input_block).
output_block = chaining_value.
6. Return output_block.
9.7 Self-Testing of the DRBG

9.7.1 Discussion

A DRBG shall perform self testing to obtain assurance that the implementation continues
to operate as designed and implemented (health testing). The testing function(s) within a
DRBG boundary (or sub-boundary) shall test each DRBG function within that boundary.

Errors occurring during testing shall be perceived as complete DRBG failures. The
condition causing the failure shall be corrected and the DRBG re-instantiated before
requesting pseudorandom bits (also, see Section 9.8)

9.7.2 Testing the Instantiate Function

Whenever the instantiate function is invoked, known-answer tests on the instantiate

function shall be performed prior to creating an operational instantiation. The

security_strength, prediction_resistance flag and DRBG specific_parameters used in the

invocation shall be used during the test. Representative fixed values and lengths of the

entropy_input, nonce and personalization_string (if allowed) shall be used; the value of
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the entropy_input used during testing shall net be intentionally reused during normal
operations (either by the instantiate or the reseed functions). Error handling shall be also
be tested, including an error in obtaining the entropy input (e.g., the entropy input source
is broken).

If the values used during the test produce the expected results, and errors are handled
correctly, then the instantiate function may be used to instantiate using the tested values of
security_strength, prediction_resistance_flag and DRBG specific_parameters.

An implementation should provide a capability to test the instantiate function on demand.
9.7.3 Testing the Generate Function

The generate function shall be tested upon power-up and at periodic intervals. The interval
between periodic tests shall be consistent with the environment in which the DRBG is
used. Note that in some environments, the periodic tests may need to be delayed until after
a critical event has concluded; in this case, the periodic test shall be performed at the
carliest possible opportunity.

Known-answer tests shall be performed on the generate function using each implemented
security_strength. Representative fixed values and lengths for the

requested number_of bits and additional input (if allowed) and the working state of the
internal state value (see Sections 8.2.3 and 10) shall be used. If prediction resistance is
available, then each combination of the security_strength, prediction resistance request
and prediction_resistance_flag shall be tested. The error handling for each input parameter
shall also be tested, and testing shall include setting the reseed counter to meect or exceed
the reseed_interval in order to check that the implementation is reseeded or that the DRBG
is “shut down”, as appropriate.

Ifthe values used during the test produce the expected results, and errors are handled
correctly, then the generate function may be used during normal operations.

Bits generated during health testing shall not be output as pseudorandom bits.

An implementation should provide a capability to test the generate function on demand.
9.7.4 Testing the Reseed Function

A known-answer test of the reseed function shall use the security _strength in the internal
state of the instantiation to be reseeded. Representative values of the entropy input and
additional input (if allowed) and the working state of the internal state value (see Sections

8.2.3 and 10) shall be used. Error handling shall also be tested, including an error in
obtaining the entropy_input (e.g., the entropy input source is broken).

Ifthe values used during the test produce the expected results, and errors are handled
correctly, then the reseed function may be used to reseed the instantiation.

The reseed function may be called every time that the generate function is called if
prediction resistance is available, and considerbly less frequently otherwise. In particular :
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1. When prediction resistance is available in an implementation, the reseed function
shall be tested whenever the generate function is tested (see above).

2. When prediction resistance is not available in an implementation, the reseed
function shall be tested whenever the reseed function is invoked and before the
reseed is performed on the operational instantiation.

An implementation should provide a capability to test the reseed function on demand.
9.7.6 Testing the Uninstantiate Function

The uninstantiate function shall be tested whenever other functions are tested. Testing
shall attempt to demonstrate that error handling is performed correctly, and the internal
state has been "emptied". The reseed function shall be tested:

9.8 Error Handling

The expected errors are indicated for each DRBG function (see Sections 9.2 - 9.5) and for
the derivation functions in Section 9.6. The error handling routines should indicate the
type of error. For catastrophic errors (e.g., entropy input source failure), the DRBG shall
not produce further output until the source of the error is corrected.

Many errors during normal operation may be caused by an application’s improper DRBG
request. In these cases, the application user is responsible for correcting the request within
the limits of the user’s organizational security policy. For example, if a failure indicating
an invalid requested security strength is returned, a security strength higher than the DRBG
or the DRBG instantiation can support has been requested. The user may reduce the
requested security strength if the organization’s security policy allows the information to
be protected using a lower security strength, or the user shall use an appropriately
instantiated DRBG.

Failures that indicate that the entropy source has failed or that the DRBG failed health
testing (see Sections 9.7 and 11.4) shall be handled as complete DRBG failures. The
indicated DRBG problem shall be corrected, and the DRBG shall be re-instantiated before
the DRBG can be used to produce pseudorandom bits.
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10 DRBG Algorithm Specifications

Several DRBGs are specified in this Standard. The selection of a DRBG depends on
several factors, including the security strength to be supported and what cryptographic
primitives are available. An analysis of the consuming application’s requirements for
random numbers shall be conducted in order to select an appropriate DRBG. A detailed
discussion on DRBG selection is provided in Annex E. Pseudocode examples for each
DRBG are provided in Annex F. Conversion specifications required for the DRBG
implementations (e.g., between integers and bitstrings) are provided in Annex B.

10.1 Deterministic RBGs Based on Hash Functions
10.1.1 Discussion

A hash DRBG is based on a hash function that is non-invertible or one-way. The hash
DRBGs specified in this Standard have been designed to use any Approved hash function
and may be used by applications requiring various security strengths, providing that the
appropriate hash function is used and sufficient entropy is obtained for the seed. The
following are provided as DRBGs based on hash functions:

1. The Hash_df_DRBG specified in Section 10.1.2.
2. The HMAC_DRBG specified in Section 10.1.3.

The maximum security strength that could be supported by each hash function is provided
in SP 800-57. However, this Standard supports only four security strengths: 112, 128, 192,
and 256. Table 3 specifies the values that shall be used for the function envelopes and
DRBG algorithm for each Approved hash function. The specifications in this Standard
assume that a single appropriate hash function will be selected for a DRBG
implementation; i.e., a DRBG implementation will not contain multiple hash functions
from which to choose during instantiation.

Table 3: Definitions for Hash-Based DRBGs

SHA-1 ‘ SHA-224 | SHA-256 ‘ SHA-384 | SHA-512

Supported security strengths See SP 800-57
highest_supported_security_strength " See SP 800-57

Output Block Length (outlen) 160 ‘ 224 | 256 —'l 384 [ 512 |
Required minimum entropy for security_strength

instantiate and reseed

Minimum entropy input length security_strength
(min_length)

Maximum entropy input length < 2% bits

(max_ length)
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SHA-1 | SHA-224 | SHA-256 | SHA-384 | SHA-512

Seed length (seedlen) for 368 368 368 816 816
Hash_df DRBG

Maximum personalization string < 2% bits
length

(max_personalization_string_length)

Maximum additional_input length < 2% bits
(max_additional_input_length)

max_number of bits_per request < 2" bits
Number of requests between <2®

reseeds (reseed_interval)

Note that since SHA-224 is based on SHA-256, there is no efficiency benefit for using the
SHA-224; this is also the case for SHA-384 and SHA-512, i.e., the use of SHA-256 or
SHA-512 instead of SHA-224 or SHA-384, respectively, is preferred. The value for
seedlen is determined by subtracting the count field and one byte of padding from the hash
funetion input block length: in the case of SHA-1, SHA-224 and SHA 256, seedlen = 512 -
64 - 8 = 440; for SHA-384 and SHA-512, seedlen = 1024 - 128 - 8 = 888.

10.1.2 Hash_DRBG

10.1.2.1 Discussion

Figure 8 presents the normal operation of the Hash_ DRBG. The Hash_DRBG requires
the use of'a hash function during the instantiate, reseed and generate functions; the same
hash function shall be used in all functions. The hash function to be used shall meet or
exceed the desired security strength of the consuming application.

Implementation validation testing and health testing are discussed in Sections 9.7 and 11.
10:1.2.2 Specifications
1A R2AC HaghzDRBOIALGIM A Etate
The internal state for Hash_DRBG consists of?
1. The working state:
a. A value (V) of seedlen bits that is updated during each call to the DRBG.
b. A constant C of seedle bits that depends on the seed.

¢. A counter (reseed counter) that indicates the number of requests for
pseudorandom bits since new enfropy. inpui was obtained during instantiation
or reseeding:
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2. Adminisirative information:

a. The security_strength of the
DRBG instantiation.

b. A prediction_resistance flag
that indicates whether or not a
prediction resistance
capability is required for the
DRBG.

The values of Fand C are the eritical
values of the internal state upon which
the security of this DRBG depends (i.e..
Vand € are the “secret values” of the
internal state).

10.1.2.2.2 nstantiation of Hash_DRBG

Notes for the instantiate function:

The instantiation of Hash_DRBG
requires a call to the instantiate
function specified in Section 9.2; step
9 of that function calls the instantiate
algorithm in this section. For this
DRBG, no

DRBG_SPGC l_'ﬁ C'_fﬂp ut _para melers
are required for the instantiate
function specified in Section 9.2 (i.e..
step 5 should be omitted),

The values of

highest _supported_security strength
and min_length are provided in Table
3 of Section 10.1.1. The contents of

ANS X9.82, Part 3 - DRAFT - August 2005

(Opt.)
additional reseed
v imput C  counter

002V (| * et
.,
v
v
+
ilterate o chtain | ] v
i enoughbits 4, Counter, V reseed ¢

! {From 0) counter
i Hash Pseudorandom Bits
! Function '

Figure 8: Hash_DRBG

the internal state are provided in Section 10.1.2.2.1.

The instantiate algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using the
selected hush function. The output block length (cutfen), secd length (seedlen) and
appropriate security_strengths for the implemenited hash fusiction are provided in Table

3 of Section 10.1.1.

The following process o its equivalent shall be used as the instantiate algorithm for

this DRBG (see step 9 in Section 9.2).
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1. entropy_input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.4.

3. personalization_siving: The personelization string received from the consuming
application. If a personalization string wiil never be used, then steps 1 and 2
may be combined as follows:

seed = Hash_df (entropy input. seedlen).

L. working_state: The inital values for ¥, C and reseed counter (see Section
10:1.2:2:1).

1. seed material = entropy_input || nonee || personalization_string.
2. seed = Hash_df (seed_material, seedlen).

3, V=wseed.
4, C=Hash_df ((0x00 || V), seedlen). Comment: Preceed ¥ with a byte of
Zeroes.
5. reseed counter= 1.
6. Return V, C and reseed counter as the working state.
10.1.2.2.3 Resesding a Hash_DRBG Instantiation

Notes for the reseed function:
The reseeding of'a Hash_DRBG instantiation requires a call to the reseed function
specified in Section 9.3; step 5 of that function calls the reseed algorithm specified in
this section. The values for min_length are provided in Table 3 of Section 10.1.1.
The reseed algorithm:
Let Hash_df bz the hash derivation function specified in Section 9.6.2 using the
selected Lash function. The value for seedlen is provided in Table 3/of Section 10.1.1,
The following process or its equivalent shall be used us te reseed algorithm for this
DRBG (see step 5 in Section 9.3):
Input:
1. working state: The current values for V. C and reseed counter (see Section
10.1.2.2.1).
2. enirapy_inpui: The string of bits obtained from the entropy input source.
3. additional_input: The additional input string received from the consuming
applicwtion. Ifadditional_input will never be provided, thea step 2 may be
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modified to remove the additional_input.
Output:

1. status: The status of the reseed function. The returned status is either
SUCCESS or ERROR.

2. working state: The new values for I, € and reseed counter.
=
V_ald=1V.
seed_material = 0xO01 || ¥ || entropy_input || additional_input.
seed = Hash_df (seed material, seedlen).
V= seed.
If (V= V _old), then return an ERROR.

C = Hash_df ((0x00 || 1), seedlen), Comment: Preceed with a byte of all
Zeros.

T

7. reseed counter= 1.
8. Return V. € and reseed_counter as the new working state.
10.1.2.2.4 Generating Pseudorandom Bits Using Hash_DRBG
Notes for the generate function:
The generation of pseudorandom bits using a Hash_DRBG instantiation requires a call
to the generate function specified in Section 9.4; step 8 of that funetion calls the
generate algorithm specified in this section. The values for
max_number _of bits_per request and outlen are provided in Table 3 of Section 10.1.1.
The generate algorithm:
Let Hash be the selected hash function. The seed tength (seedlen) and the maxinium
interval between reseeding (reseed interval) are provided inTable 3 of Section 10.1.1.
Note that for this DRBG, the reseed counter is used to update the value of // as well as
to count the number of generition reguests.
The following process or its equivalent shall be used as the generite elgorithm for this
DRBG (see step 8 of Section 9.4):

e
1. working state: The curtent values for V. C and reseed counter (see Section
10:1.2.2.1).
2. requested_ntimber of bits: The number of peudorandom bits (o be rettirned to
the generate furiction,

3. additional input: The additional input string recsived from the consuming
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application. If additional_inpur will never be provided, then step 3 may be
omitted.

1. status: The status returned from the function. The status will indicate
SUCCESS, ERROR, or indicate that a reseed is required before the requested
pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits to be returned to the generate fanction.

3. working state: The new values for V, € and reseed counter.

Process:
1. V. old=V.
2. If reseed counter > reseed_interval, then retum an indication that a reseed is
required.

3. If(additional input # Null), then do
3.1'w = Hash (0x02 || V|| additional _inpur).
3.2 V= (V+ w) mod 27«4,
4. returned_bits = Hashgen (requested_number_of bits, V).
5. H=Hash (0x03 || V).
6. V=(V+ H+ C+ reseed. cowter) mod 2%,
7. If (V= V_old), return an ERROR.
8. reseed counter= reseed counter+ 1.
9. Return SUCCESS, returned bits, end the new values of V. C and
reseed counter forthe new working state.
Hashgen (..):
Input:
L. requested_no_of birs: The numiber of bits to be returned.
2, Vi The current value of 7,

1. returned_bits: The generated bits to be returned to the generate function.
s

I o |requested _no_of __birs-]
; outlen I

2. data=V.
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W = the Null string.
4. Fori=1tom
4.1 w; = Hash (data).
42 W =W | w.
4.3 data = (data + 1) mod 2°°°%".
5. returned bits = Leftmost (requested _no_of bits) bits of W.

6. Return returned_bits.
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10.1.3 HMAC_DRBG {(...) (Opt) additional ingwl
10.1.3.1 Discussion lmmm
HMAC_DRBG uses multiple UPDATE
occurrences of an Approved keyed hash

function, which is based on an Approved
hash function. The same hash function
shall be used throughout. The hash
function used shall meet or exceed the
security requirements of the consuming

application.
Figure 9 depicts the HMAC_DRBGin | ] L R
stages. HMAC_DRBG is specified .
using an internal function (Update). 1 :
This function is called during the Str : :
HMAC_DRBG instantiate, generate and i |:::‘m [ | i | HMAC
reseed algorithms to adjust the internal v !
state when new entropy or additional o enazaat
input is provided. The operations in the V. =
top portion of the figure are only ————
performed if the additional input is not '
null. Figure 10 depicts the Update Brewdomndom bit
function.
10.1.3.2 Specifications adiitional input
10.1.3.2.1 HMAC_DRBG Internal State
. The internal state for HMAC_DRBG v v 9
consists of:

UFDATE

1. The working state:

a. The value V of outlen bits,
which is updated each time
another outlen bits of output

are produced (where outlen is
specified in Table 3 of Figure 9: HMAC_DRBG
Section 10.1.1).

b. The Key of outlen bits, which is updated at least once each time that the DRBG
generates pseudorandom bits.

¢. A counter (reseed_counter) that indicates the number of requests for
pseudorandom bits since instantiation or reseeding.
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2. Administrative information:

10.1.3.2.2 The Update Function
{Update)

provided
a. The security strength of e T
the DRBG instantiation. v
b A V| 6x00 || provided data
prediction_resistance_flag
that indicates whether or Key B
not a prediction resistance s
capability is required for HMEI
the DRBG.
The values of ¥ and Key are the Key M S
critical values of the internal state TR
upon which the security of this DRBG
depends (i.e., ¥ and Key are the i
“secret values” of the internal state).

The Update function updates the

internal state of HMAC_DRBG using
the provided data. Let HMAC be the
keyed hash function specified in FIPS

198 using the hash function selected
for the DRBG from Table 3 in Section
10.1.1.

The following or an equivalent process shall be used as the Update function.

Figure 10: HMAC_DRBG Update Function

Input:
1. provided data: The data to be used.
2. K: The current value of Key.
3. V:The current value of V.
Output:
1. K:The new value for Key.
2. V: The new value for V.
Process:
1. K=HMAC (K, V| 0x00 || provided_data).
2, V=HMAC (K, V).
3. If (provided data = Null), then return K and V.
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4. K=HMAC (X, V| 0x01 || provided data).
5. V=HMAC(K, V).
6. Return K and V.

10.1.3.2.3 Instantiation of HMAC_DRBG

Notes for the instantiate function:

The instantiation of HMAC_DRBG requires a call to the instantiate function specified
in Section 9.2; step 9 of that function calls the instantiate algorithm specified in this
section. For this DRBG, no DRBG _specific input_parameters are required for the
instantiate function specified in Section 9.2 (i.e., step 5 should be omitted). The values
of highest_supported security_strength and min _length are provided in Table 3 of
Section 10.1.1. The contents of the internal state are provided in Section 10.1.2.2.1.

The instantiate algorithm:

Let Update be the function specified in Section 10.1.3.2.2. The ouput block length
(outlen) is provided in Table 3 of Section 10.1.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 8 of Section 9.2):

Input:
1. entropy_input. The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.4.

3. personalization_string: The personalization string received from the consuming
application. If a personalization_string will never be used, then step 1 may be
modified to remove the personalization_string.

Output:

1. status: The status returned [rom the instantiate function. where status is either
SUCCESS or ERROR.

2. working _state: The inital values for V, Key and reseed_counter (see Section
10.1.3.2.1).

Process:
1. seed material = entropy input || nonce || personalization_string.
2. Key old =0x00 00...00. Comment: outlen bits.
3. V old=0x0101..01. Comment: outlen bits.
Comment: Update Key and V.
4. (Key, V)= Update (seed material, Key old, V_old).
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5. If((Key = Key old) or (V= 1V _old)). then return an ERROR.
6. reseed counter=1.

7. Return SUCCESS, V, Key and reseed counter as the initial working_state.
10.1.3.2.4 Reseeding an HMAC_DRBG Instantiation

Notes for the reseed function:

The reseeding of an HMAC_DRBG instantiation requires a call to the reseed function
specified in Section 9.3; step 5 of that function calls the reseed algorithm specified in
this section. The values for min length are provided in Table 3 of Section 10.1.1.

The reseed algorithm:

Let Update be the function specified in Section 10.1.3.2.2. The following process or its
equivalent shall be used as the reseed algorithmn for this DRBG (see step 5 of Section
9.3):
Input:
1. working_state: The current values for ¥, Key and reseed_counter (see Section
10.1.3.2.1).
2. entropy_input: The string of bits obtained from the entropy input source.

3. additional input: The additional input
string received from the consuming application. If additional_input will
never be used, then step 1 may bemodified to remove the additional input.

Output:
1. status: The status returned from the reseed function. The starus is either
SUCCESS or an ERROR.

2. working state: The new values for ¥, Key and reseed_counter.
Process:

1. V old=V; Key old= Key.

2. seed_material = entropy_input || additional_input.

3. (Key, V)=Update (seed material, Key old, V old).

Comment: Check for “stuck”bits.
4. If (V' ="V _old)or (Key = Key_old)), then return an ERROR.
5. reseed counter=1.

6. Return SUCCESS, V, Key and reseed counter as the new working_state.
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10.1.3.2.5 Generating Pseudorandom Bits Using HMAC_DRBG

Notes for the generate function:

The generation of pseudorandom bits using an HMAC_DRBG instantiation requires a
call to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number_of bits per request and outlen are provided in Table 3 of Section 10.1.1.

The generate algorithm :

Let HMAC be the keyed hash function specified in FIPS 198 using the hash function
selected for the DRBG. The value for reseed_interval is defined in Table 3 of Section
10.1.1.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of Section 9.4):

Input:

1. working state: The current values for V old, Key old and reseed_counter (see
Section 10.1.3.2.1).

2. requested number of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional input: The additional input string received from the consuming
application. If an implementation will never use additional input, then step 2
may be omitted. If additional input is not provided (regardless of whether or
not it will ever be provided), then a Null string shall be used as the
additional input in step 6.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, an ERROR or indicate that a reseed is required before the
requested pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits to be returned to the generate function.
3. working state: The new values for V, Key and reseed_counter.
Process:

1. Ifreseed counter > reseed interval, then return an indication that a reseed is
required.

2. Ifadditional input # Null, then (Key old, V old) = Update (additional_input,
Key old, V old).

3. temp = Null.
4. While (len (temp) < requested_number of bits) do:
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4.1 V=HMAC (Key old V old).
Comment: Check for stuck bits.

4.2 IE(V=V_old), then return an ERROR.

43 Vold=V.

4.4 temp=temp| V.
5. returned bits = Leftmost requested number of bits of temp.
6. (Key, V)= Update (additional input, Key old, V_old).

Comment: Check for “stuck” bits.

7. If((V ="V _old)or (Key = Key old)), then return an ERROR.
8. reseed counter = reseed counter+ 1.

9. Return SUCCESS, returned_bits, and the new values of Key, V and
reseed_counter as the working state).
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10.2 DRBGs Based on Block Ciphers

10.2.1 Discussion

A block cipher DRBG is based on a block cipher algorithm. The block cipher DRBGs
specified in this Standard have been designed to use any Approved block cipher
algorithm and may be used by applications requiring various levels of security, providing
that the appropriate block cipher algorithm and key length are used and sufficient entropy
is obtained for the seed. The following are provided as DRBGs based on block cipher
algorithms:

1. The CTR_DRBG specified in Section 10.2.2.
2. The OFB_DRBG specified in Section 10.2.3.

Table 4 specifies the values that shall be used for the function envelopes and DRBG
algorithm for each Approved block cipher algorithm. The specifications in this Standard
assume that a single appropriate block cipher algorithm and key size will be selected for a
DRBG implementation; i.e., a DRBG implementation will not contain multiple block
cipher algorithms or key sizes from which to choose during instantiation.

Table 4: Definitions for Block Cipher- Based DRBGs

3Key | AES-128 | AES-192 | AES-256
TDEA
Supported security strengths See SP 800-57
highest_supported_security strength See SP 800-57
Output block length (outlen) 64 128 128 128
Key length (keylen) 168 128 192 256
_—Required minimum entropy for security_strength
instantiate and reseed
Seed length (seedlen = outlen + keylen) 232 | 256 | 320 | 384
A derivation function is used:
Minimum entropy input length security strength
(min _length)
Maximum entropy input length < 2% bits
(max _length)
Maximum personalization string < 2% bits
length
(max_personalization_string_length)
Maximum additional_input length < 2% bits
(max_additional_input_length)
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3Key | AES-128 | AES-192 | AES-256
TDEA
A derivation function is not used (full
entropy is available):
Minimum entropy input length seedlen ]
(min _length) (outlen + keylen)
Maximum entropy input length seedlen
(max _length) (outlen + keylen)
Maximum personalization string seedlen
length
(max_personalization_string_length)
Maximum additional_input length seedlen
(max_additional_input_length)
max_number_of bits_per_request <2 <2"
Number of requests between reseeds <2* <2®

(reseed_interval)

The block cipher DRBGs may be implemented to use the block cipher derivation
function specified in Section 9.6.3. However, these DRBGs are specified to allow an
implementation tradeoff with respect to the use of this derivation function. If a source for
full entropy input is always available to provide entropy input when requested, the use of
the derivation function is optional; otherwise, the derivation functon shall be used. Table
4 provides lengths required for the entropy input, personalization_string and

additional input for each case.

When full entropy is available, and a derivation function is not used by an
implementation, the seed construction (seeSection 8.4.2) shall not use a nonce?.

When using TDEA as the selected block cipher algorithm, the keys shall be handled as
64-bit blocks containing 56 bits of key and 8 bits of parity as specified for the TDEA

engine.

3 The specifications in this Standard do not accommodate the special treatment required for a nonce in this

casc.
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10.2.2 CTR_DRBG

10.2.2.1 Discussion

CTR_DRBG uses an Approved block
cipher algorithm in the counter mode as
specified in [SP 800-38A]. The same block
cipher algorithm and key length shall be
used for all block cipher operations. The
block cipher algorithm and key length shall
meet or exceed the security requirements of
the consuming application. The values to be
used for the implementation of this DRBG
are specified in Table 4 of Section 10.2.1.

CTR_DRBG is specified using an internal
function (Update). Figure 11 depicts the
Update function. This function is called by
the instantiate, generate and reseed
algorithms to adjust the internal state when
new entropy or additional input is provided.
Figure 12 depicts the CTR_DRBG in three
stages. The operations in the top portion of
the figure are only performed if the
additional input is not null.

10.2.2.2 Specifications

10.2.2.2.1 CTR_DRBG Internal State

ANSI X9.82, Part 3 - Draft — August 2005

Tterate

Figure 11: CTR_DRBG Update

The internal state for CTR_DRBG consists of:

1. The working state:

a. The value V of outlen bits, which is updated each time another outlen bits of
output are produced (see Table 4 in Section 10.2.1).

b. The Key of keylen bits, which is updated whenever a predetermined number of

output blocks are generated.

c. A counter (reseed_counter) that indicates the number of requests for
pseudorandom bits since instantiation or reseeding.

2. Administrative information:

a. The security strength of the DRBG instantiation.

b. A prediction_resistance_flag that indicates whether or not a prediction
resistance capability is required for the DRBG.
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The values of ¥ and Key are the critical
values of the internal state upon which the
security of this DRBG depends (i.e., V" and
Key are the “secret values” of the internal
state).

10.2.2.2.2 The Update Function (Update)

The Update function updates the internal
state of the CTR_DRBG using the

provided_data. The values for outlen, keylen

and seedlen are provided in Table 4 of

Section 10.2.1. The block cipher operation in

step 2.2 uses the selected block cipher
algorithm.

The following or an equivalent process shall

be used as the Update function.
Input:

1. provided data: The data to be
used. This must be exactly
seedlen bits in length; this length
is guaranteed by the construction
of the provided data in the
instantiate, reseed and generate
functions.

2. Key: The current value of Key.

3. V: The current value of V.
Output:

1. K: The new value for Key.

2. V: The new value for V.
Process:

1. temp = Null.

2. While (len (temp) < seedlen) do

2.1 V=(F+1)mod 2"
2.2 output block =

Block Encrypt (Key, V).
2.3 temp = temp || ouput_block.
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3. temp = Lefimost seedlen bits of temp.
4 temp = temp ® provided data.

5. Key = Leftmost keylen bits of temp.

6. V=Rightmost outlen bits of temp.

7

. Return the new values of Key and V.
10.2.2.2.3 Instantiation of CTR_DRBG

Notes for the instantiate function:

The instantiation of CTR_DRBG requires a call to the instantiate function specified
in Section 9.2; step 9 of that function calls the instantiate algorithm specified in this
section. For this DRBG, no DRBG _specific input_parameters are required for the
instantiate function specified in Section 9.2 (i.e., step 5 should be omitted). The
values of highest_supported _security strength and min _length are provided in Table
4 of Section 10.2.1. The contents of the internal state are provided in Section
10.2.2.2.1.

The instantiate algorithm:

Let Update be the function specified in Section 10.2.2.2.2, and let Bloek_Cipher_df
be the derivation function specified in Section 9.6.3 using the chosen block cipher
algorithm and key size. The output block length (outlen), key length (keylen), seed
length (seedlen) and security strengths for the block cipher algorithms are provided
in Table 4 of Section 10.2.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG:

Input:
1. entropy_input: The string of bits obtained from the entropy input source.

2. nonce: A string of bits as specified in Section 8.4; this string shall not be
present when a derivation function is not used.

3. personalization string: The personalization string received from the
consuming application.

Output:

1. working state: The inital values for V, Key and reseed_counter (see Section
10.2.2.2.1).

Process:
1. Ifthe block cipher derivation function is available, then

1.1 seed material = entropy input || nonce || personalization_string.
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6.

2. Key=
3.
4
5

1.2 seed material = Block_Cipher_df (seed_material, seedlen).

Else Comment: The block cipher
derivation function is not used and
full entropy is known to be available.

1.3 temp = len (personalization_string).
1.4 If temp > seedlen, then return an ERROR.

1.5 If (temp < seedlen), then personalization_string =
personalization string || 0°%" =",

1.6 seed material = entropy input © personalization_string.

pkevlen, Comment: keylen bits of zeros.

y = gouilen Comment: outlen bits of zeros.

. (Key, V)= Update (seed_material, Key, V).

. reseed counter = 1.

Return V, Key and reseed counter as the working_state.

Implementation notes:

1. Step 1 should consist of either steps 1.1 and 1.2, or steps 1.3 — 1.6. The decision for
the substeps to be used depends on whether the implementation has full entropy
and is using the derivation function.

2. If a personalization_string will never be provided from the instantiate function
and a derivation function will be used, then step 1.1 becomes:

seed material = Block_Cipher_df (entropy_input, seedlen).

3. If a personalization_string will never be provided from the instantiate function, a
full entropy source will be available and a derivation function will not be used,
then step 1 becomes

seed_material = entropy _input.

That is, steps 1.3 — 1.6 collapse into the above step.
10.2.2.2.4 Reseeding a CTR_DRBG Instantiation

Notes for the reseed function:

The reseeding of a CTR_DRBG instantiation requires a call to the reseed function
specified in Section 9.3; step 5 of that function calls the reseed algorithm specified in
this section. The values for min length are provided in Table 4 of Section 10.2.1.

The reseed algorithm:
Let Update be the function specified in Section 10.2.2.2.2, and let Block_Cipher_df
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be the derivation function specified in Section 9.6.3 using the chosen block cipher
algorithm and key size. The seed length (seedlen) is provided in Table 4 of Section
10.2.1.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 of Section 9.3):

Input:

1. working state: The current values for ¥, Key and reseed_counter (see Section
10.2.2.2.1).

2. entropy_input: The string of bits obtained from the entropy input source.

3. additional input: The additional input string received from the consuming

application.
Output:
1. status: The status returned from the instantiate function. The status is either
SUCCESS or an ERROR.

2. working state: The new values for V, Key and reseed_counter.
Process:
1. Ifthe block cipher derivation function is available, then
1.1 seed material = entropy input || additional _input.
1.2 seed material = Block_Cipher_df (seed material, seedlen).

Else Comment: The block cipher
derivation function is not used
because full entropy is known to be
available.

1.3 temp = len (additional_input).
1.4 If temp > seedlen, then return an ERROR.

1.5 If (zt‘ielmp < seedlen), then additional input = additional _input ||
(seedien- temp'

1.6 seed material = entropy input © additional_input.
V _old=V; Key old= Key.
(Key, V) = Update (seed material, Key, V).
If (V=V _old) or (Key = Key old)), then return an ERROR.

reseed counter = 1.

A U

Return V, Key and reseed counter as the working_state.
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Implementation notes:

1. Step 1 should consist of either steps 1.1 and 1.2, or steps 1.3 — 1.6. The decision
for the substeps to be used depends on whether the implementation has full
entropy and is using the derivation function.

2. Ifadditional_input will never be provided from the reseed function and a
derivation function will be used, then step 1.1 becomes:

seed_material = Block_Cipher_df (entropy_input, seedlen).

3. Ifadditional input will never be provided from the reseed function, a full entropy
source will be available and a derivation function will not be used, then step 1
becomes

seed_material = entropy_input.
That is, steps 1.3 — 1.6 collapse into the above step.
10.2.2.2.5 Generating Pseudorandom Bits Using CTR_DRBG

Notes for the generate function:

The generation of pseudorandom bits using a CTR_DRBG instantiation requires a
call to the generate function specified in Section 9.4, step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number of bits_per request and outlen are provided in Table 4 of Section
10.2.1. If the derivation function is not used, then the maximum allowed length of
additional_input = seedlen.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of Section 9.4):

Let Block_Cipher_df be the derivation function specified in Section 9.6.3, and let
Update be the function specified in Section 10.2.2.2.2 using the chosen block cipher
algorithm and key size. The seed length (seedlen) and the value of reseed_interval are
provided in Table 4 of Section 10.2.1. Step 4.2 below uses the selected block cipher
algorithm. If a derivation function is not used for a DRBG implementation, then step
2.2 shall be omitted.

The following process or its equivalent shall be used as generate algorithm for this
DRBG (see step 8 of Section 9.4):

Input:

1. working_state: The current values for V, Key and reseed_counter (see Section
10.2.2.2.1).

2. requested _number_of bits: The number of pseudorandom bits to be returned
to the generate function.

3. additional_input: The additional input string received from the consuming
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application. If additional input will never be provided, then step 3 may be
omitted.

Output:

1.

2.
3.

status: The status returned from the function. The status will indicate
SUCCESS, an ERROR or indicate that a reseed is required before the
requested pseudorandom bits can be generated.

returned_bits: The pseudorandom bits returned to the generate function.

working state: The new values for V, Key and reseed_counter.

Process:

1.
2.

V _old=V.Key old=Key.

If reseed counter > reseed interval, then return an indication that a reseed is
required.

If (additional input # Null), then

Comment: If the length of the additional
input is > seedlen, derive seedlen bits.

3.1 temp =len (additional input).

Comment: If a block cipher derivation
function is used:

3.2 If (temp > seedlen), then additional input = Block_Cipher_df
(additional input, seedlen).

Comment; If the length of the
additional_input is < seedlen, pad with
zeros to seedlen bits.

3.3 If (temp < seedlen), then additional input = additional input || 0°°°""

temp

3.4 (Key, V)= Update (additional_input, Key, V).
temp = Null.

5. While (len (femp) < requested number of bits) do:

5.1 V=(V+1)mod 2",

5.2 output_block = Block_Encrypt (Key, V).

5.3 temp = temp || ouput_block.

returned_bits = Leftmost requested number of bits of temp.

Comment: Update for backtracking
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resistance.

Oseedlen

7. zeros= Comment: Produce a string of

seedlen zeros.
8. (Key, V)= Update (zeros, Key, V).
9. If ((V="V _old) or (Key = Key old)), then return an ERROR.
10. reseed counter = reseed counter + 1.

11 Return SUCCESS and returned_bits; also return Key, V and reseed_counter
as the new working state.
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10.2.3 OFB_DRBG

10.2.3.1 Discussion

OFB_DRBG uses an Approved block cipher
algorithm in the output feedback mode as
specified in [SP 800-38A]. The same block
cipher algorithm and key length shall be
used for all block cipher operations. The
block cipher algorithm and key length shall
meet or exceed the security requirements of
the consuming application. The values to be
used for the implementation of this DRBG
are specified in Table 4 in Section 10.2.1.

OFB_DRBG is specified using an internal
function (Update). Figure 13 depicts the
OFB_DRBG in three stages. The operations
in the top portion of the figure are only
performed if non-null additional input is
provided. Figure 14 depicts the Update
function. This function is called by the
instantiate, generate and reseed algorithms to
adjust the internal state when new entropy or
additional input is provided.Note that
OFB_DRBG is basically the same as
CTR_DRBG, except that the block cipher
mode is OFB rather than CTR.

10.2.3.2 Specifications
10.2.3.2.1 OFB_DRBG Internal State
The internal state for OFB_DRBG consists
of:
1. The working_state:

a. The value V, which is updated
each time another outlen bits of
output are produced.

b. The Key, which is updated
whenever a predetermined
number of output blocks are
generated.

¢. A counter (reseed counter) that
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indicates the number of requests
for pseudorandom bits since V Eey
instantiation or reseeding. 1ot tima

Iterate

2. Administrative information:

a. The security strength of the DRBG
instantiation.

b. A prediction resistance_flag that
indicates whether or not a
prediction resistance capability is

required for the DRBG. B
B | (B |- |
The values of ¥ and Key are the critical values

of the internal state upon which the security of

this DRBG depends (i.e., ¥ and Key are the provided data——» @
“secret values” of the internal state).
10.2.3.2.2 The Update Function(Update)

[En] v ]

The Update function updates the internal state

of the OFB_DRBG using the provided_data.
The values for outlen, keylen and seedlen are Figure 14: OFB_DRBG Update
provided in Table 4 of Section 10.2.1. The

block cipher operation in step 2.1 uses the

selected block cipher algorithm and key size.

The following or an equivalent process shall be used as the Update function.
Input:
. provided data: The data to be used.
2. Key: The current value of Key.
3. V: The current value of V.
Output:
1. K: The new value for Key.
2. V:The new value for V.
Process:
1. temp = Null
2. While (len (temp) < seedlen) do
2.1 V=Block_Encrypt (Key, V).
22 temp=temp||V.
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. temp = Lefimost seedlen bits of temp.
temp = temp ® provided_data.

3

4

5. Key = Leftmost keylen bits of temp.
6. V=Rightmost outlen bits of temp.
7

. Return the new values of Key and V.
10.2.3.2.3 Instantiation of OFB_DRBG {(...)
This process is the same as the instantiation process for CTR_DRBG in Section
10.2.2.2.3, except that the Update function to be used is specified in Section 10.2.3.2.2.
10.2.3.2.4 Reseeding an OFB_DRBG Instantiation
This process is the same as the reseeding process for CTR_DRBG in Section 10.2.2.2.4,
except that the Update function to be used is specified in Section 10.2.3.2.2
10.2.3.2.5 Generating Pseudorandom Bits Using OFB_DRBG
This process is the same as the generation process for CTR_DRBG in Section 10.2.2.2.5,

except that the Update function to be used is specified in Section 10.2.3.2.2 and step 5
shall be as follows:

5. While (len (temp) < requested number of bit) do:
5.1 V=Block Encrypt (Key, V).
52 temp=temp| V.
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10.3 Deterministic RBGs Based on Number Theoretic Problems
10.3.1 Discussion

A DRBG can be designed to take advantage of number theoretic problems (e.g., the
discrete logarithm problem). If done correctly, such a generator’s properties of randomness
and/or unpredictability will be assured by the difficulty of finding a solution to that
problem. Section 10.3.2 specifies a DRBG based on the elliptic curve discrete logarithm
problem; Section 10.3.3 specifies a DRBG based on a problem related to the RSA problem
of finding roots modulo a composite integer.

10.3.2 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)
10.3.2.1 Discussion

Dual EC_DRBG is based on the following hard problem, sometimes known as the
“clliptic curve discrete logarithm problem” (ECDLP): given points P and Q on an elliptic
curve of order n, find a such that O = aP.

Dual_EC_DRBG uses a seed that is m bits in length (i.e., seedlen = m) to initiate the
generation of outlen-bit pseudorandom strings by performing scalar multiplications on two
points in an elliptic curve group, where the curve is defined over a field approximately i
in size. For all the NIST curves given in this Standard, m > 163. Figure 15 depicts the
Dual_EC_DRBG.

seed 3

Instand or
Teseed only

[Optional] O-ow T(**P))Is——'|ro(x (;*Q))lr—' E’gft:“

additional input @J v
0 P Q Pseudorandom

Bits

I sdditional inpul = Full

Figure 15: Dual_EC_DRBG

The instantiation of this DRBG requires the selection of an appropriate elliptic curve and
curve points specified in Annex A.1 for the desired security strength. The seed used to
determine the initial value (s) of the DRBG shall have entropy that is at least

security strength + 64 bits. Further requirements for the seed are provided in Section 8.4.

Backtracking resistance is inherent in the algorithm, even if the internal state is
compromised. As shown in Figure 16, Dual_EC_DRBG generates a seedlen-bit number
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for each step i = 1,2,3,..., as follows:

Si = @(x(Si— *P))

Ri=o(x(Si *Q)) 1 [

Each arrow in the figure represents an Elliptic } S, ﬁ{ 8, ——* ﬂ
Curve scalar multiplication operation, followed == S
by the extraction of the x coordinate for the —E i
resulting point and for the random output R;, and B

by truncation to produce the output. Following a R, R:‘
line in the direction of the arrow is the normal e —_—
operation; inverting the direction implies the

ability to solve the ECDLP for that specific curve.

An adversary’s ability to invert an arrow in the Figure 16: Dual_EC_DRBG (...)
figure implies that the adversary has solved the Backtracking Resistance
ECDLP for that specific elliptic curve. Backtracking resistence is built into the design, as
knowledge of S; does not allow an adversary to determine S (and so forth) unless the
adversary is able to solve the ECDLP for that specific curve. In addition, knowledge of R
does not allow an adversary to determine S; (and so forth) unless the adversary is able to
solve the ECDLP for that specific curve.

Table 5 specifies the values that shall be used for the envelope and algorithm for each
curve. Complete specifications for each curve are provided in Annex A.1. Note that all
curves except the first three can be instantiated at a security strength lower than its highest
possible security strength. For example, the highest security strength that can be supported
by curve P-384 is 192 bits; however, this curve can alternatively be instantiated to support
only the 112 or 128-bit security strengths).

Table 5: Definitions for the Dual_EC_DRBG

P-224 1 B-233 ‘ K-233 | P-256 | B-283 | K-283

Supported security strengths See SP 800-57
highest_supported_ See SP 800-57

security_strength

Output block length (outlen = 208 216 216 240 264 264

largest multiple of 8 less than
seedlen - (13 + log; (the cofactor))

Required minimum entropy for security strength
instantiate and reseed
Minimum entropy input length 224 240 240 256 288 288

|(min _length =8 x [ seedlen/8] )I

Maximum entropy input length < 2" bits
(max _length)

69

Comment [ebb6]: Page: 78
Why can't this be min_entropy ?




Dual_EC_DRBG

ANS X9.82, Part 3 - DRAFT - August 2005

P-224 | B-233 | K-233 | P-256 | B-283 | K-283

Maximum personalization string < 2" bits
length

(max_personalization_string_length)

Maximum additional_input length < 2" bits

(max_additional_input_length)

Seed length (seedlen = m)

224 | 233 | 233 \ 256 [ 283 ‘ 283

Appropriate hash functions

SHA-1, SHA-224, SHA-256, SHA-384, SHA-512

max_number_of bits_per_request

outlen x reseed_interval

Number of blocks between
reseeding (reseed_interval)

< 10,000 blocks

P-384 | B-409 | K-409 | P-521 | B-571 ‘ K-571

Supported security strengths

See 800-57

highest_supported
security strength

See SP 800-57

Output block length (outlen =
smallest multiple of 8 less than
seedlen - (13 + log; (the cofactor))

368 392 392 504 552 552

Required minimum entropy for
instantiate and reseed

security_stength

Minimum entropy input length
(min_length = 8 x [ seedlen/8 )

384 416 416 528 576 576

Maximum entropy input length < 2" bits
(max _length)

Maximum personalization string < 2" bits
length

(max_personalization_string_length)

Maximum additional_input length <28 bits

(max_additional_input_length)

Seed length (seedlen = m)

384 ] 409 ‘ 409 521 | 571 l 571

Appropriate hash functions

SHA-224, SHA-256, SHA- | SHA-256, SHA-384, SHA-
384, SHA-512 512

max_number_of bits_per_request

outlen x reseed_interval

Number of blocks between
reseeding (reseed_interval)

< 10,000 blocks
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Validation and Operational testing are discussed in Section 11. Detected errors shall result
in a transition to the error state.

10.3.2.2 Specifications
10.3.2.21 Dual_EC_DRBG Internal State and Other Specification Details

The internal state for Dual_EC_DRBG consists of:
1. The working_stafe:
a. A value (s) that determines the current position on the curve.

b. The elliptic curve domain parameters (curve_type, seedlen, p, a, b, n), where
curve_type indicates a prime field F,, or a pseudorandom or Koblitz curve over
the binary field F,"; seedlen is the length of the seed ; a and b are two field
elements that define the equation of the curve, and # is the order of the point G.
If only one curve will be used by an implementation, these parameters need not
be present in the working_state. If only one type of curve is implemented, the
curve_type parameter may be omitted.

c. Two points P and Q on the curve; the generating point G specified in FIPS 186-
3 for the chosen curve will be used as P. If only one curve will be used by an
implementation, these points need not be present in the working_state.

d. A counter (block counter) that indicates the number of blocks of random
produced by the Dual_EC_DRBG since the initial seeding or the previous
reseeding.

2. Administrative information:
a. The security_strength provided by the instance of the DRBG,

b. A prediction_resistance_flag that indicates whether prediction resistance is
required by the DRBG, and

The value of s is the critical value of the internal state upon which the security of this
DRBG depends (i.e., s is the “secret value” of the internal state).

10.3.2.2.2 Instantiation of Dual_EC_DRBG

Notes for the instantiate function:

The instantiation of Dual_EC_DRBG requires a call to the instantiate function
specified in Section 9.2; step 9 of that function calls the instantiate algorithm in this
section. For this DRBG, a DRBG-specific input parameter of requested curve_type is
optional (see the definition for curve_type in Section 10.3.2.2.1). If only one type of
curve is available, then this parameter may be omitted. If multiple types are available,
then a Prime_field curve will be selected if the parameter is omitted; if a
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Prime_field curve is not available, then a Random_binary_curve will be selected.

In step 5 of the instantiate function, the following step shall be performed to select an
appropriate curve if multiple curves are available.

5. Using requested_curve type (if provided), the security_strength and Table 5 in
Section 10.3.2.1, select the smallest available curve that has a security strength
> security strength.

5.1 Ifrequested curve type is indicated, then select a curve of that type. If no
suitable curve of that type is available for the
requested_security strength, then return an ERROR.

5.2 Ifacurve type is not requested, then select an appropriate
Prime_field curve if a suitable curve is available. If no suitable
Prime_field curve is available, then select a Random_binary _curve if a
suitable curve is available. If no suitable Random_binary curve is
available, then select a Koblitz_curve. If no suitable Koblitz curve is
available, then return an ERROR.

The values for curve_type, seedlen, p, a, b, n, P, Q are determined by that curve.

The values for highest_supported security strength and min_length are determined by
the selected curve (see Table 5 in Section 10.3.2.1).

The instantiate algorithm :

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 5 in Section 10.3.2.1. Let seedlen be the
appropriate value from Table 5.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 9 of Section 9.2):

Input:
1. entropy_input. The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.4.

3. personalization_string: The personalization string received from the consuming
application.

Output:
1. s: The initial secret value for the working state.
2. block_counter: The initialized block counter for reseeding.
Process:
L. seed material = entropy input | nonce || personalization_string.
Comment: Use a hash function to ensure that
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the entropy is distributed throughout the bits,
and s is m (i.e., seedlen) bits in length.

2. s=Hash_df (seed _material, seedlen).

Comment: Save all state information.
3. block_counter = 0.
4. Return s and block counter for the working state.

Implementation notes:

If an implementation never uses a personalization_string, then steps 1 and 2 may be
combined as follows :

s = Hash_df (entropy_input, seedlen).
10.3.2.2.3 Reseeding of a Dual_EC_DRBG Instantiation[,w -

Notes for the reseed function:

The reseed of Dual EC_DRBG requires a call to the reseed function specified in
Section 9.3; step 5 of that function calls the reseed algorithm in this section. The values
for min _length are provided in Table 5 of Section 10.3.2.1.

The reseed algorithm :

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 5 in Section 10.3.2.1.

The following process or its equivalent shall be used to reseed the Dual EC_DRBG
process after it has been instantiated (see step 5 in Section 9.3):

Input:
1. s: The current value of the secret parameter in the working_state.
2. entropy_input: The string of bits obtained from the entropy input source.

3. additional input: The additional input string received from the consuming
application.

Output:

1. status: The status returned from the reseed function. The status is either
SUCCESS or ERROR.

2. s: The new value of the secret parameter in the working_state.
3. block counter: The re-initialized block counter for reseeding.
Process:

Comment: pad8 returns a copy of s padded
on the right with binary 0’s, if necessary, to a
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multiple of 8.
1. seed_material = pad8 (s) || entropy_input || additional_input_string.
s old=s.
s = Hash_df (seed_material, seedlen).
If (s = s_old), then return an ERROR.

block _counter = 0.

LU

6. Return s and block_counter for the new working_state.

Implementation notes:

If an implementation never allows additional_input, then step 1 may be modified as
follows :

seed_material = pad8 (s) || entropy_input.
10.3.2.2.4 Generating Pseudorandom Bits Using Dual_EC_DRBG

Notes for the generate function:

The generation of pseudorandom bits using a Dual_EC_DRBG instantiation requires a
call to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number _of bits per request and outlen are provided in Table 4 of Section 10.2.1.

The generate algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 5 in Section 10.3.2.1. The value of
reseed_interval is also provided in Table 5.

The following are used by the generate algorithm:

a. pad8 (bitstring) returns a copy of the bitstring padded on the right with binary
0’s, if necessary, to a multiple of 8.

b. Truncate (bitstring, in len, out_len) inputs a bitstring of in_len bits, returning
a string consisting of the leftmost out_len bits of bitstring. 1f in_len < out_len,
the bitstring is padded on the right with (out_len - in_len) zeroes, and the result
is returned.

¢. x(A) is the x-coordinate of the point 4 on the curve.

d. ¢ (x) maps field elements to non-negative integers, taking the bit vector
representation of a field element and interpreting it as the binary expansion of
an integer. Section 10.3.2.2.4 has the details of this mapping.

The precise definition of @(x) used in steps 6 and 7 below depends on the field
representation of the curve points. In keeping with the convention of FIPS 186-
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2, the following elements will be associated with each other (note that m =
seedlen):

B: |cpil|Cmal - |C1]co| , abitstring, with cn. being leftmost
Zi oem2"™ 4 2t et € Z;
Fa: cmi2™ + .. 422 + ¢2'+ ¢ modp € GF(p) ;

Fb: cuyat™' @ ... ®cot? ® it D ¢ € GF(2" ), when a polynomial basis
is used;

2 m-|
Fec: cpap @ Cm-2B2 ] cm.3[32 D..® coB2 e GF(2™), when a normal
basis is used.

Thus, any field element x of the form Fa, Fb or Fc will be converted to the
integer Z or bitstring B, and vice versa, as appropriate.

e. *isthe symbol representing scalar multiplication of a point on the curve.

The following process or its equivalent shall be used to generate pseudorandom bits
(see step 8 in Section 9.4):

Input:

1. working state: The current values for s, curve_type, seedlen, p, a, b, n, P, Q
and reseed counter (see Section 10.1.3.2.1).

2. requested number of bits: The number of pseudorandom bits to be returned to
the generate functione.

3. additional_input: The additional input string received from the consuming
application.

Output:

1. status: The status returned from the function. The starus will indicate
SUCCESS, ERROR or an indication that a reseed is required before the
requested pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits to be returned to the generate function.
3. s: The new value for the secret parameter in the working_state.
4. block _counter: The updated block counter for reseeding.

Process:

Comment: Check whether a reseed is
required.

requested _number _of _ bits

1. If (block counter +{
- outlen

—D >reseed_interval, then
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return an indication that a reseed is required.

Comment: If additional input is Null, set to
seedlen zeroes; otherwise, Hash_df to
seedlen bits.

2. If(additional_input_string = Null), then additional _input =0
Else additional_input = Hash_df (pad8 (additional_input_string), seedlen).

Comment: Produce requested no_of bits,
outlen bits at a time:

3. temp = the Null string.

4 i=0.

5. (=5 ® additional _input.

6. s old=s.

7. s=0(x(t *P)). Comment: { is to be interpreted as a seedlen-

bit unsigned integer. To be precise, when
curve_type = Prime_field_curve, t should be
reduced mod #; the operation * will effect
this. s is a seedlen-bit number.

8. If(s=s_old), then return an ERROR.
9. r =o(x(s *Q)). Comment: r is a seedlen-bit number.
10. temp = temp || (rightmost outlen bits of r ).

11. additional input=0 Comment: seedlen zeroes;
additional_input string is added only on the
first iteration.

12. block counter = block counter + 1.

13.i=i+1.

14. If (len (temp) < requested_number of bits), then go to step 6.

15 returned_bits = Truncate (temp, i x outlen, requested_number_of bits).

16. Return SUCCESS, returned_bits, and s and block_counter for the
working_state.
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10.3.3 Micali-Schnorr Deterministic RBG (MS_DRBG)
10.3.3.1 Discussion

The MS_DRBG generalizes the RSA generator, which is defined as follows: Let ged(x, »)
denote the greatest common divisor of the integers x and y, and ¢(#) represent the Euler phi
function?. Select n, the product of two distinct large primes, and e, a positive integer such
that ged(e, §(n)) = 1. Define f(y) = y° mod n . Starting with a seed yy, form the sequence
¥i+1 = f(y)), and output the string consisting of the Ig lg (») least significant bits of each y;.
These bits are known to be as secure as the RSA function f, and are commonly referred to
as the hard bits.

The Micali-Schnorr generator MS_DRBG uses the same e and # as the RSA generator, but
produces many more random bits per iteration and eliminates the overlap between the state
sequence and the output bits. Each y; € [0, n) is viewed as the concatenation s; || z; of an -
bit number s; and a k = lg(n)-r bit number z;. The s; are used to propagate the integer
sequence y;+; = si° mod n; the z; are output as random bits. » must be at least
2*min{security_strength, lg(n)/e}, where security strength is the desired security strength
of the generator, and e > 65,537. (See Section 10.3.3.2.2). A random r-bit seed sy is used to
initialize the process.

Figure 17 depicts the MS_DRBG. Under the proper assumption, the MS_DRBG is an
example of a cryptographically secure generator, i.e., one that passes all polynomial-time
statistical tests. The assumption is that sequences of the form s° mod n are statistically the
same as sequences of integers in Z,. This assumption is stronger than requiring the
intractability of the RSA problem. See [1] for a discussion of these concepts and references
to further details.

seed

Ltand. and meopd oude

::ﬁ y£=57 mio:::(n S;-:hﬁmmbdt
(Opt) r ajr .
P ¥ =i poeudorandom bits

i

Emmlm:unn

Figure 17: MS_DRBG

4 The Euler phi function : ¢(n) = the number of posi.}iye integers < n that are relatively prime to n. For an
RSA modulus n = pq, §(n) = (p-1)(g-1).
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For MS_DRBG, the s values are assumed to be r-bit integers, and “statistically the same”
means indistinguishable by any polynomial-time algorithm. Accepting the stronger
assumption allows k to be a significant percentage of Ig(#). Note that in the specifications,
7 has been redefined as seedlen, and k has been redefined to be outlen in order to be

consistent with the other DRBGs.

The specifications for the MS_DRBG (see Section 10.3.3.2) allow e and £ (i.e., outlen) to
be specified. The lengths seedlen and outlen, the RSA modulus #, and the value of the
exponent e are variable within the bounds described below. The bounds are based on the
desired security strength for the bits produced. For maximum efficiency, e should be kept
small and outlen should be large. The outlen bits generated at cach step are concatenated
to form pseudorandom bitstrings of any desired length. Table 6 provides definitions for
using with the MS_DRBG functions and algorithms.

Table 6: Definitions for MS_DRBG

Ig () = 2048 ‘ Ig (n) = 3072

Supported security strengths

See SP 800-57

highest_supported_security_strength

See SP 800-57

Output Block Length (outlen = k)

8 < outlen < min{ lg(n) — 2*security_strength,
lg(n) — 2*lg(n)le

Required minimum entropy for
instantiate and reseed

Security strength

Minimum entropy input length
(min _length)

security strength

Maximum entropy input length
(max _length)

< 2" bits

Maximum personalization string
length
(max_personalization_string_length)

<2 pits

Maximum additional_input length
(max_additional_input_length)

<25 bits

Number of hard bits (Ig (Ig (n))

11 11

Seed length (seedlen =r)

lg(n) — outlen

Appropriate hash functions

SHA-1, SHA-224, SHA-256, SHA-384, SHA-512

max_number_of bits_per_request

outlen x reseed_interval

Number of blocks of outlen
between reseeds (reseed _interval)

< 50,000 blocks
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10.3.3.2 MS_DRBG Specifications
10.3.3.2.1 Internal State for MS_DRBG

The internal state for MS_DRBG consists of:
1. The working state:
The M-S parameters n, e, seedlen and outlen, and

b. An integer S in [0,2°°¥") that propagates the internal state sequence from
which pseudorandom bits are derived.

¢. A counter (block_counter) that indicates the number of blocks of random
produced by MS_DRBG during the current instance since the previous
reseeding.

2. Administrative information:
a. The security strength provided by the instance of the DRBG, and

b. A prediction_resistance_flag that indicates whether prediction resistance is
required by the DRBG.

The value of S is the critical value of the internal state upon which the security of this
DRBG depends (i.e., s is the “secret value” of the internal state).

10.3.3.2.2 Selection of the M-S parameters

The instantiation of MS_DRBG consists of selecting an appropriate RSA modulus # and
exponent e; sizes seedlen and outlen for the seeds and output strings, respectively; and a
starting seed.

The M-S parameters n, seedlen, ¢ and outlen are selected to satisfy the following six
conditions, based on strength:

1. l<e < d(n); ged(e, d(m)) =1. Comment: ensures that the mapping s — s°
mod n is 1-1.

2. (e x seedlen) 2 2*g(n). Comment: ensures that the exponentiation
requires a full modular reduction.

3. seedlen = 2*security strength. Comment: protects against a tableization
attack.

4. outlen and seedlen are multiples of 8. Comment: This is an implementation
convenience.

5. outlen > 8; seedlen + outlen=lg(n). Comment: all bits are used.

6. n=p*q. Comment: p and ¢ are strong [as in FIPS 186-
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3], secret primes .

The M-S parameters are determined in this order:

1.

The size of the modulus lg(r) is set first. It shall conform to the values given in
Table 6 for the requested security_strength.

The RSA exponent e. The implementation should allow the application to request
any odd integer e in the range[l <e < 28"~ _2#2 “¥") | [(Comment: The
inequality ensures that e < ¢(n) when an Approved algorithm is used to generate the
primes p and q.] If e is not provided during an instantiate request, or requested e =
0 is supplied, the default value e=3 should be used.

The number outlen of output bits used for each iteration. The implementation
should allow any multiple of 8 in the range 8 < outlen < min{ Ig(n) —
2*security_strength, lg(n) — 2*1g(n)/e } to be requested. However, if a value for
outlen is not provided or requested outlen = 0 is specified, outlen should be
selected as the Jargest multiple of 8 integer in the allowable range and within the
range of bits currently known to be hard bits for the RSA problem. That value is
lg(lg(n)), as shown in Table 6. Thus, in all cases, the default value 8 will be used if
requested outlen=10.

Any values for requested e and requested outlen outside these ranges shall be
flagged as errors.

Set the size of the seeds: seedlen = lg(n) — outlen.

Selection of the modulus #. Two primes p and g of size '4lg(n) bits, having entropy
at least min_entropy, and satistying ged (e, (p-1)(g-1)) = 1 shall be generated as
specified in FIPS 186-3. An implementation shall use strong primes as defined in
that document: each of p-1, p+1, g-1, g+1 shall have a large prime factor of at least
security_strength bits. [Comment: Any Approved algorithm will generate a
modulus of size 1g(r) bits using strong primes of size % lg(r) bits, and will allow
the exponent e to be specified beforehand.]

The difficulty of the RSA problem relies on the secrecy of the primes p and ¢ comprising
the modulus. Whenever private primes are generated, the implementation shall clear
memory of those values immediately after » has been computed. Only the modulus » shall
be kept in the internal szate.

10.3.3.2.3 Instantiation of MS_DRBG

Notes for the instantiate function:

The instantiation of MS_DRBG requires a call to the instantiate function specified in
Section 9.2; step 8 of that function calls the instantiate algorithm in this section. For
this DRBG, two DRBG-specific input parameters may be provided: requested e and
requested_outlen.

The values for highest_supported security strength and min_length are provided in

80

Comment [ebb8]: Page: 89
For DSS, 16,537 < e < (2"™2%_1), where nlen is
the length of n, and s is the security strength.




MS_DRBG

ANS X9.82, Part 3 - DRAFT - August 2005

Table 6 in Section 10.3.3.1.

In step 5 of the instantiate function, the following steps shall be used to select values
for n, e, seedlen and outlen:

5. Using security_strength, requested_e (if provided) and requested_outlen (if
provided), select values for », e, seedlen and outlen.

5.1

52

53

54

5.5

Comment: Determine the modulus size.
If security_strength =112, then lg (1) = 2048
Else Ig (n) = 3072.
Comment: Select the exponent e.
If requested e < 65537 or is not provided, then e = 65,537
Else
52.1 e=requested e.

5.2.2 If (requested e <3) or(requested e > 218001 _ (0 i 21216y o
(requested_e is even), then return an ERROR.

Comment : Select the output length outlen.
If requested outlen = 0 or is not provided, then outlen =8
Else
5.3.1 outlen = requested outlen.

5.3.2 [If(outlen <1) or (outlen > min ( |_lg (n)-2x security_strengthJ s

|_lg (n) x (1 - 2/e) ) or (outlen is not a multiple of 8), then return
an ERROR.

Comment : Determine the seed length
(seedlen).

seedlen = 1g (n) - outlen.
Comment: Get the modulus ».

Using Ig (n) and e, get a random modulus n. n shall be the product of
two primes p and g such that :

1) Each has a length of Ig (r)/2 bits,
2) Each has at least security_strength + 64 bits of entropy,
3) ged(e, (p-1),(g-1) = L.

4) (p-1), (p+1), (g-1) and (g+1) shall each have a large prime factor of
at least security_strength bits.

81



MS_DRBG ANS X9.82, Part 3 - DRAFT - August 2005

56 n=pxgq.
57 p=q=0.

Since the values for working state values n, e, and outlen have been determined by
step 5 (above), they need not be provided to nor returned from the instantiate algorithm
in step 9; however, the value of seedlen is required by the instantite algorithm and must
be provided to it.

The instantiate algorithm:
Let Hash (...) be an Approved hash function for the security strengths to be supported.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 9 in Section 9.2):

Input:
1. entropy_input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.4.

3. personalization_string: The personalization string received from the consuming
application.

4. seedlen: The length of the seed.
Output:

1. working state: The inital values for S and block_counter (see Section
10.3.3.2.1).

Process:
L. seed material = entropy input || nonce || personalization_string.
2. S =Hash_df (seed material, seedlen).
3. block counter = 0.
4. Return SUCCESS, S and block_counter for the working state.

Implementation notes:

If a personalization_string will never be provided, then steps 1 and 2 may be combined as
follows:

S = Hash_df (entropy_input, seedlen).
10.3.3.2.4 Reseeding of a MS_DRBG Instantiation

Notes for the reseed function:

The reseed of MS_DRBG requires a call to the reseed function specified in Section
9.3; step 5 of that function calls the reseed algorithm in this section. The values for
min_length are provided in Table 6 of Section 10.3.3.1.
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The reseed algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 6 in Section 10.3.3.1.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 of Section 9.3):

Input:
1. working state: The current values for seedlen and S.
2. entropy input: The string of bits obtained from the entropy input source.

3. additional input: The additional input string received from the consuming
application.

Output:

1. status: The status of performing this algorihm. The status is either SUCCESS
or ERROR.

2. working_state: The new values for S and block_counter.
Process:

1. seed material = S || entropy input || additional _input.

2. S old=S.

3. S=Hash_df (seed _material, seedlen).

4. If(S=S old), then return an ERROR.

5. block counter =0.
6. Return SUCCESS, and the new values of S and block_counter.

Implementation notes:

If additional_input will never be provided, then steps 1 may be modified as follows:

seed material = S || entropy_input.
10.3.3.2.5 Generating Pseudorandom Bits Using MS_DRBG

Notes for the generate function:

The generation of pseudorandom bits using an MS_DRBG instantiation requires a call
to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number_of bits_per_request and outlen are provided in Table 6 of Section
10.3.3.1.

The generate algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
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appropriate hash function from Table 6 in Section 10.3.3.1. The value of
reseed_interval is also specified in Table 6.

Let pad8 (bitstring) be a function that inputs an arbitrary length bitstring and returns a
copy of that bitstring padded on the right with binary 0°s, if necessary, to a multiple of
8. Note: This is an implementation convenience for byte-oriented functions.

Let Truncate (bits, in_len, out_len ) be a function that inputs a bitstring of in_len bits,
returning a string consisting of the leftmost our len bits of input. If in_len < out_len,
the input string is returned padded on the right with out _len —in_len zeroes.

The following process or its equivalent shall be used to generate pseudorandom bits
(see step 8 in Section 9.4):

Input:

1. working state: The current values for n, e, seedlen, outlen, S, and
reseed_counter (see Section 10.3.3.2.1).

2. requested number of bits: The number of pseudorandom bits to be returned to
the generate functione.

3. additional_input: The additional input string received from the consuming
application.

Output:

1. status: The status returned from thefunction. The status will indicate
SUCCESS, an ERROR or an indication that a reseed is required before the
requested pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits to be returned to the generate function.
3. S: The updated secret value in the working_state.
4. block _counter: The updated block counter for reseeding.

Process:

Comment: Check whether a reseed is
required.

requested _number _of _ bits

1. If (block counter+[
- outlen

D >reseed_interval, then

return an indication that a reseed is required.
2. If (additional _input = Null) then additional_input =0

Comment: additional input set to seedlen
ZEroes.

Else additional_input = Hash_df (pad8 (additional_input_string), seedlen).
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Comment: Hash to seedlen bits.

Comment: Produce
requested_number of bits, outlen at a time.

3. temp = the Null string.

4. i=0.

5. S old=S.

6. s=S additional_input. Comment: s is to be interpreted as a seedlen-
bit unsigned integer.

7. S=L(s*mod n) /2" | Comment: S is a seedlen-bit number.

8. If(S=S old), then return ERROR.
9. R = (s°mod n) mod 2", Comment: R is an outlen-bit number.
10. temp =temp | R

seedlen

11. additional input=0 Comment: seedlen zeroes.
12.i=i+1.

13. block _counter = block_counter+1.

14. If (len (temp) < requested number of bits), then go to step 6.

15. returned bits = Truncate (femp, i x k, requested_number of bits).

16. Return SUCCESS, returned_bits and the values of S and block_counter for the
working_state.
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11 Assurance

11.1 Overview

A user of a DRBG for cryptographic
purposes requires assurance that the

generator actually produces random and Design «> Evaluation

unpredictable bits. The user needs l l
assurance that the design of the generator,

its implementation and its use to support Standards
cryptographic services are adequate to l

protect the user's information. In addition,

the user requires assurance that the Implem entation < Validation

generator continues to operate correctly.
The assurance strategy for the DRBGs in
this standard is depicted in Figure 18. Operational Tests

The design of each DRBG in this standard
has received an evaluation of its security

properties prior to its selection for Figure 18: DRBG Assurance Strategy
inclusion in this Standard.

The accuracy of an implementation of a DRBG process may be asserted by an
implementer, but this Standard requires the development of basic documentation to
provide minimal assurance that the DRBG process has been implemented properly (see
Section 11.2). An implementation should be validated for conformance to this Standard by
an accredited laboratory (see Section 11.3). Such validations provide a higher level of
assurance that the DRBG is correctly implemented. Validation testing for DRBG processes
consists of testing whether or not the DRBG process produces the expected result, given a
specific set of input parameters (e.g., entropy input). Implementations used directly by
consuming applications should also be validated against conformance to FIPS 140-2.

Operational (i.e., health) tests on the DRBG shall be implemented within a DRBG
boundary or sub-boundary in order to determine that the process continues to operate as
designed and implemented. See Section 11.4 for further information.

A cryptographic module containing a DRBG should be validated (see FIPS 140-2 [8]).
The consuming application or cryptographic service that uses a DRBG should also be
validated and periodically tested for continued correct operation. However, this level of
testing is outside the scope of this Standard.

Note that any entropy input used for testing (either for validation testing or
operational/health testing) may be publicly known. Therefore, entropy input used for
testing shall not knowingly be used for normal operational use.
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11.2 Minimal Documentation Requirements

This Standard requires the development of a set of documentation that will provide
assurance to users and (optionally) validators that the DRBGs in this Standard have been
implemented properly. Much of this documentation may be placed in a user’s manual. [This
documentation shall consist of the following as a minimum:r

e Document how the implementation has been designed to permit implementation
validation and operational testing.

e Document the type of DRBG (e.g., Hash DRBG, Dual_EC_DRBG), and the
cryptographic primitives used (e.g., SHA-256, AES-128).

e Document the security strengths supported by the implementation.

e Document features supported by the implemention (e.g., prediction resistance, the
available elliptic curves, etc.).

e In the case of the CTR_DRBG and OFB_DRBG, indicate whether a derivation
function is provided. If a derivation function is not used, documentation shall
clearly indicate that the implementation can only be used when full entropy input is
available.

e Document any support functions other than operational testing.
11.3 Implementation Validation Testing
A DRBG process may be tested for conformance to this Standard. Regardless of whether
or not validation testing is obtained by an implementer, a DRBG shall be designed to be
tested to ensure that the product is correctly implemented; this will allow validation testing

to be obtained by a consumer, if desired. A testing interface shall be available for this
purpose in order to allow the insertion of input and the extraction of output for testing.

Implementations to be validated shall include the following:
¢ Documentation specified in Section 11.2.
¢ Any documentation or results required in derived test requirements.

11.4 Operational/Health Testing
11.4.1 Overview

A DRBG implementation shall perform self-tests to ensure that the DRBG continues to
function properly. Self-tests of the DRBG processes shall be performed prior to the first
instantiation and periodically, and a capability to perform self-tests on demand shall be
included (see Section 9.7). A DRBG implementation may optionally perform other self-
tests for DRBG functionality in addition to the tests specified in this Standard.

All data output from the DRBG boundary shall be inhibited while these tests are
performed. The results from known-answer-tests (see Section 11.4.2) shall not be output
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as random bits during normal operation.

When a DRBG fails a self-test, the DRBG shall enter an error state and output an error
indicator. The DRBG shall not perform any DRBG operations while in the error state, and
no pseudorandom bits shall be output when an error state exists. When in an error state,
user intervention (e.g., power cycling, restart of the DRBG) shall be required to exit the
error state (see Sections 7.2.7 and 9.8).

11.4.2 Known Answer Testing

Known answer testing shall be conducted prior to the first instantiation and periodically,
and may be conducted on demand. A known-answer test involves operating the DRBG
with data for which the correct output is already known and determining if the calculated
output equals the expected output (the known answer). The test fails if the calculated
output does not equal the known answer. In this case, the DRBG shall enter an error state
and output an error indicator (see Sections 7.2.7 and 9.8).

The generalized known answer testing is specified in Section 9.7. Testing shall be
performed on all DRBG functions implemented.

88



ANS X9.82, Part 3 - DRAFT - August 2005

Annex A: (Normative) Application-Specific Constants
A.1 Constants for the Dual EC_DRBG

The Dual EC_DRBG requires the specifications of an elliptic curve and two points on the
elliptic curve. One of the following NIST approved curves and points shall be used in
applications requiring certification under FIPS 140-2. More details about these curves may
be found in FIPS PUB 186-3, the Digital Signature Standard.

A.1.1 Curves over Prime Fields

Each of following mod p curves is given by the equation:
y* =x* 3x + b (mod p)
Notation:
p - Order of the field F,, given in decimal

r - order of the Elliptic Curve Group, in decimal . Note that r is used here for
consistency with FIPS 186-3 but is referred to as n in the description of the
Dual_EC_DRBG (...)

b - coefficient above
The x and y coordinates of the base point, ie generator G, are

the same as for the point P.
A.1.1.1 Curve P-224

26959946667150639794667015087019630673557916\
260026308143510066298881

1l

p

~
I

26959946667150639794667015087019625940457807\
714424391721682722368061

b = b4050a85 0c04b3ab £5413256 5044b0b7 d7bfd8ba 27003943
2355ffb4

Px = b70e0cbd 6ébb4bf7f 321390b9 4a03cld3 56¢21122 343280d6
115cld21
Py = pd376388 b5£723fb 4c22dfe6 cd4375a0 5a074764 44d58199

85007e34

89



ANS X9.82, Part 3 - DRAFT - August 2005

Ox 68623591 6elladfa £080a451 477fa27a f21248be 916d3458

ab83a3cH

Qy = 6060018a 24b35beb6 caecf3f0 7f2c6bd3 4ed747% 55362c8f
5707adca

A.1.1.2 Curve P-256

p = 11579208921035624876269744694940757353008614\
3415290314195533631308867097853951

¥ = 11579208921035624876269744694940757352999695\
5224135760342422259061068512044369

b= 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0£f6 3bce3c3e
27d2604b

Px = 6b17d1f2 el12c4247 fB8bceb6e5 63a440f2 77037d81 2deb33al
f4a13945 d898c296

Py = 4fe342e2 fela7f9% B8eeTebda 7c0f9%el6 2bce3357 6b31l5ece
cbb64068 37bf51f5

Ox

€97445£4 5cdef9f0 d3e05ele 585£c297 235b82b5 be8ff3ef
ca67c598 52018192

b28ef557 ba3ldfcb dd2lac46 e2af9le3c 304fd44cb 87058ada
2cb81515 1e610046

A.1.1.3 Curve P-384

p = 39402006196394479212279040100143613805079739\
27046544666794829340424572177149687032904726\
6088258938001861606973112319

¥ = 39402006196394479212279040100143613805079739\
27046544666794690527962765939911326356939895\
6308152294913554433653942643

b=Db3312fa7 e23ee7ed 988e056b e3f82d19 181d9c6e feB814112 0314088f
5013875a ¢656398d B8a2edl19d 2a85cBed d3eclaef

Px = aaB7ca22 be8b0537 8eblc7le £320ad74 6eld3b62 8ba79b98
59f741e0 82542a38 5502f25d bf55296c 3a545e38 72760ab7

Py = 3617deda 96262c6f 5d9e98bf 9292dc29 f8f4ldbd 289aldic
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€9da3113 b5£0b8c0 0ab0blce 1d7e819d 7a431ld7c 90ealebf

Ox = 8e722de3 125bddb0 5580164b fe20b8bd 32216a62 926¢5750
2ceede3l c47816ed dle89769 124179d0 b6951064 28815065

Qy = 023b1660 dd701d08 39fd45ee c36f9%ee7 b32el3b3 15dc0261
Daalb636 e346df67 1£790f84 c5e09b05 674dbb7e 45c803dd
A.1.1.4 Curve P-521

p = 68647976601306097149819007990813932172694353\
00143305409394463459185543183397656052122559\
64066145455497729631139148085803712198799971\
6643812574028291115057151

r = 68647976601306097149819007990813932172694353\
00143305409394463459185543183397655394245057\
74633321719753296399637136332111386476861244\
0380340372808892707005449

b=051953eb 9618elc9 alf929%a2 1a0Ob6854 Oeea2da7 25b99b31
5£3b8b48 9918efl0 9e156193 95lec7ed 37b1l652c Obd3bblb
£073573d £883d2c3 4flef451 £d46b503 f00

Px = c6858e06 b70404e9 cd9%e3ecb 662395b4 429c6481 39053fbd
21f828af 606b4d3d baaldbSe 77efe759 28feldcl 27a2ffa8
de3348b3 cl856a42 9bf97e7e 3lc2ebbd 66

Py = 11839296 a789%a3bc 0045c8a5 fbd2c7dl bd998£54 44957904
46817afb d17273e6 62c97ee7 2995ef42 640c550b 9013fad0
761353c7 086a272c 24088bed 4769fdl6 650

Ox = 1b9fa3eb 18d683c6 b6576369 4ac8efba ec6fabdd £2276171
24272650 7dd08add 4c3b3fdc lebc5bl2 22ddba07 7£722943
b24c3edf a0f85fe2 4d0c8c0l 591f0be6 £63

Qy = 1£3bdba5 85295d9a 1110d1df 119430ef 8442¢501 8976134 37ef91b8 1dcOb813
2¢8d5¢39 ¢32d0e00 4a3092b7 d327c0e7 add26d2c 7b69b581 90666529 11e45777 9de

A.1.2 Curves over Binary Fields

For each field degree m, a pseudo-random curve (B) and a Koblitz curve (K) are given.

The pseudo-random curve has the form
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E y+xy=x+x+b,
and the Koblitz curve has the form
E y+xy=x+ ax*+ 1, where a= 0 or 1.

For each pseudorandom curve, the cofactor is f= 2. The cofactor of each Koblitz curve is f
=2ifa=1,andf=4ifa=0.

The coefficients of the pseudo-random curves, and the coordinates of the points 2 and Q
for both kinds of curves, are given in terms of both the polynomial and normal basis
representations, in hex.

NOTE: An implementation may choose to represent coordinates in either basis. However,
in order to gain certification it must demonstrate agreement with the test output vectors,
which have been generated using the normal basis representation for each of the binary
curves.

The order r of the base point P is given in decimal.

Note that 7 is used here for consistency with FIPS 186-3 but is referred to as » in the
description of the Dual EC_DRBG(). # is given in decimal

A.1.2.1 Curve K-233

a=2~0
r = 34508731733952818937173779311385127605709409888622521\
26328087024741343

Polynomial Basis:

Px = 00000172 32baB853a 7e731lafl 29£22ff4 149563a4 19c26bf5
Oadc9doe efad6l26

Py = 000001db 537dece8 19b7£70f 555a67c4 27a8cd9%> fl8aeb9b
56e0cl110 56fae6a3

Normal Basis:

Px = 000000fd e76d9dcd 26e643ac 26£1aa%0 laal2978 4b71£fc07
22b2d056 14d650b3

Py

00000064 3317633 155c9e04 47ba8020 a3cd43177 450ee036
d6335014 34cac978

Polynomial Basis:

Ox = 000000aa 7178e973 8a6f797a 1c265465 06106896 0ab8b3fe
a3afc77f 18404eee

Oy = 0000002d 12a8f3e9 884bf31d 052a8eaf 414b8%1a 0ad049le
1£9d2576 79248ee2
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Normal Basis:

Ox = 0000015a 96493d91 eb56b5f10 579a7d58 eb895e06 8d9%4elaf
86d34143 4377548c¢
Qy = 0000006b 13a689bb 3730dfd7 ad6486ea ff8ebéchb 9d815981

a927d2eb 8cfaSb00
A.1.2.3 Curve B-233

¥ = 69017463467905637874347558622770255558398127373450135\
55379383634485463

Polynomial Basis:
b = 066 647ede6c 332cT7f8c
0923bb58 213b333b 20e9ced42 81fell5f 7d8£90ad

Px = 000000fa c9dfcbac 8313bb21 39flbb75 5fef65bc 391£8b36
£8f8eb73 71£d558Db
Py = 00000100 6a08a419 03350678 e58528be bf8albef f867a7ca

36716f7e 01£81052
Normal Basis:

b = 1a0 03e0962d 4f9%a8e40
7c904a95 38163adb 82521260 0c7752ad 52233279

Px = 0000018b 863524b3 cdfefb94 f2784e0b ll6faac5 4404bcdl
62a363ba b84aldch
Py = 00000049 25df77bd 8b8fflab ££519417 822bfedf 2bbd7526

44292c98 c7afoel2

Polynomial Basis:

Ox = 000000chb 50ceO4af fdea6lll aaccfe04 ae5fOdfe 95a59db4
cd4abalc 1126615a

Qy = 0000005b abB8a93a0 5c42caae 1b322bl4 876ec2e0 5c994a25
8e67295e 5808eaf?d

Normal Basis;

Ox 00000055 eal7clca 4a4312f3 4562737c 257f4fa8 3b9d3d48

8al23cab 238f69%a2

Qy = 00000055 d60eal7a 1cb969a8 3786a82f 8172e889 026195f9
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923badbl beeb5702
A.1.2.2 Curve K-283

a=20
r = 38853377844514581418389238136470378132848117337930613\
24295874997529815829704422603873

Polynomial Basis:

Px = 0503213f 78cad488 3fla3b8l 62f188eb5 53cd265f 23clb67a
16876913 bOc2ac24 58492836

Py = 0lccda38 0f1c9e31 8d90£f95d 07e5426f eB87e45c0 8184698
e4596236 4e341161 77dd2259

Normal Basis:

Px = 03ab9593 £8db09fc 188fld7c 4ac9fcc3 e57fcd3b dbl5024b
212c7022 9de5fcd9 2ebleat0

Py = 02118c47 55e7345¢c d8£603ef 93b98b1l0 6feB8854f feb9a3b3
04634cc8 3a0e759f 0c2686bl

Polynomial Basis:

Ox = 0388eeed 1cc5808d 140d5179 76fbalfa 9cl4b886 914387a6
890a9497 £d3370b6 9cdd3779

Oy = 04d86b99 fed2ecad 1dc9fd77 ed5928ac ef908£97 leb22cf6
8e436df4 dbebel6e b2c2dff4

Normal Basis:

Ox

004abl7d 72374eb7 dac733d8 83d7b650 eb03ccb9 d6c60197
74f41ef2 1b8elell 0feBaab8

07243a25 e2e7e633 7897e8bl 9791c813 0317aecf 8clac2a4
2ac03dac 4afdabe8 ffc9888c

A.1.2.4 Curve B-283

¥ = 77706755689029162836778476272940756265696259243769048\
89109196526770044277787378692871

Polynomial Basis:

b = 27b680a c8b8596d a5adafB8a 19a0303f
ca97fd76 45309fa2 ab81485a £6263e31 3b79a2f5

Px = 05£93925 8db7dd90 e1934f8c 70b0dfec 2eed25b8 557eac9c
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80e2e198 f8cdbecd 86b12053

Py = 03676854 fe24l1l4lc b98fe6d4 b20d02b4 516££702 350eddbl
826779c8 13f0df45 beB112f4

Normal Basis:
b = 157261b 894739fb 5al13503f 55f0b3f1l
0c560116 66331022 01138ccl 80c0206b dafbc951

Px = 0749468e 464eed68 634b21f7 £61cb700 701817e6 bc36a236
4cb8906e 940948ea a463c35d
Py = 062968bd 3b489%ac5 c9859da 68475c31 bbafcdcd ccd0dc90

5b70£624 46£49c05 2£49c08c

Polynomial Basis:

Ox = 06530328 33283d%e b6ebc03c 2d735ed9 12b46bcl 2e364643
£8e309d9 d55e9440 28190bas

Oy = 03693cd3 8b4e022d ef8lbb7f 949ca7f4 287cbc3d 3aaeB8632
a6fea7l9 e0dad9998 48211443

Normal Basis:

Ox = 06c2366¢c 8acc000a 5b516dfc 4cf8a204 b255dd0d e53fl8el
99718e05 47b3845f 000626c¢9

Qy = 03667£53 eleb28e9 99bfb2cb %e609116 969d78fb 94a264a9
a2045878 132caBf5 85b874ef

A.1.2.5 Curve K-409

a=20

r = 33052798439512429947595765401638551991420234148214060\
96423243950228807112892491910506732584577774580140963\
66590617731358671

Polynomial Basis:

Px = 0060f05f 658f49cl ad3abl89 0£718421 0efd0987 e307c84c
27accfb8 f9f67cc2 c46018%e bbSaaaab2 ee222ebl b35540ct
e9023746

Py = 01e36905 0Ob7c4ed42 acbaldac bf04299c 3460782f 918ead27
e6325165 e%ealle3 dabfécd2 e9c55215 aa%ca27a 5863ec48
d8e0286b
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Normal Basis:

Px = 01b559c7 cba2422e 3affel33 43e808b5 5e012d72 6calbieb
at3aeafb cle3a%8e 10calfcf 98350c3b 7£89a975 4a8eldcO
713cecda

Py = 016d8c42 052£07e7 713e7490 eff318ba labdéfef 8a5433c8
94b24£f5c 817aeb79 852496fb e€e803a47 bc8a2038 78ebflcd
99afd7d6

Polynomial Basis:

Ox = Olba%aé6c 2d3ledf6 671lce7dl fl6fdab2 7c72ca88 cc3b33e9
b2ef536e 92bc06ad OcacOdéa 821898c2 847b5d7e 8506£d26
9eSldfcc

Qy = 019d9567 d1931672 ab748567 c4fb75a4 e0658b9% bfl7901le
b7d41148 489%ab481 354977ac 390bbb05 a6e782b5 13caalb9
02a846ef

Normal Basis:

Ox = 00e8b595 6a3f2ech eB8e3e3cf e4c2003a 687feecc ade30le5
c34d47ef a723dac6 36flef6a cdbSced42 309£c937 £a5460d5
223c3743

Oy = 001£61£f2 2a66d942 delll1925 dd94da7d 5c02ed4c2 23328beb
9019al157 d7b700f6 dB8b42316 efe8193d 68c%0cel fe57ad2b
4£6950281

A.1.2.6 Curve B-409

¥ = 66105596879024859895191530803277103982840468296428121\
92846487983041577748273748052081437237621791109659798\
67288366567526771

Polynomial Basis:

b = 021a5c2 cB8ee9feb 5c4b9a7b
3b7b476b 7fd6422e £1£3dd67 4761fa%99 dé6ac27c8
a9al97b2 72822f6c d57a55aa 4£50ae3l 7bl3545f

Px = 01544860 d088ddb3 496b0c60 64756260 44lcdeda £1771d4ad
b01ffeSb 34e59703 dc255a86 8all8051 5603aeab 60794e54
bb79%6a’7

Py = 0061lblct abé6be5f3 2bbfa783 24edl06a 7636b9%c5 a7bdl98d
0158aad4f 5488d08f 38514flf df4b4f40 d2181b36 8lc364ba
0273c706

96



ANS X9.82, Part 3 - DRAFT - August 2005

Normal Basis:

b = 1244065 1c3d3772 f7f5alfe
6715559 e2129%bdf al04d52f7 b6ac7c53 2cf0ed06
£610072d 88ad2fdc c50c6fde 72843670 £8b3742a

Px = 00ceacbc 9£475767 d8e69f3b 5dfab398 13685262 bcacf22b
84c7b6dd 981899e7 318c96£f0 761£f77c6 02c0l6ce d7c548de
830d708f

Py = 0199d64b a8f089c6 db0eOb6l e80bb959 34afdlOca f2e8be76
dlc5e9af fc7476df 49142691 ad303902 88aal9c c59c¢l1573
aa3c009%a

Polynomial Basis:

Ox = 01920ed2 5ec895fc 704acOda 05a9%3ace 25£c9646 ab4533c0
4£759cel ac0e53d8 096b2318 déefdd0d7 1d2affdé 915e8d7a
e2977127

Oy = 011d1d15 0cl27a29 77b48al7 fac8aal3 96985213 3179fcl7
74£9d3db 1fébeed43 d8cO4cce 35f2abf8 022230f6 457£260a
72444bfd

Normal Basis:

Ox = 01b248le 3265c48d 28db6172 95efafd5 77f7d0ed 175cc49b
0fcbl1982 639bc380 eee80285 ebefBa7b 1a31566d 602c07dc
dc85ab5ab

Qy = 00d40712d 082d31ba 22497958 b1178993 a2f5dc4l £14207e4
0f8ccda8 06b637cc £1380320 b6ffodfd 8e811f1l4 49c4c23e
2f4823fe

A.1.2,7 Curve K-571

a=20

¥ = 19322687615086291723476759454659936721494636648532174\
99328617625725759571144780212268133978522706711834706\
71280082535146127367497406661731192968242161709250355\
5733685276673

Polynomial Basis:

Px = 026eb7a8 59923fbc 82189631 £8103fed ac9ca297 0012d5d4
60248048 01841lcad 43709584 93b205e6 47da304d b4ceb08c
bbdlba39 494776fb 988b4717 4dca88c7 e2945283 a01lc8972

97



ANS X9.82, Part 3 - DRAFT - August 2005

Py = 0349dc80 7f4fbf37 4fdaeade 3bca9531 4dd58cec 9£307ab4
ffc6lefc 006d8a2c 9d4979c0 acddaea’ 4fbebbb9 f772aedc
b620b0la 7ha7aflb 320430c8 591984f6 0lcddcld 3eflc7a3

Normal Basis:

Px = 004bb2db a418d0db 107adae0 03427e5d 7ccl3%ac b465e593
4f0beal2a b2f3622b ¢29b3d5b %aa7alfd fd5d8be6 6057cl00
8e71e484 bcd98f22 bf847642 37673674 29ef2ec5 bc3ebcf?

Py = 044cbb57 de20788d 2c952d7b 56cf39bd 3e89b189 84bdlZde
751lceffd 369dd8da c6a59%etbe 745df44d 8220ce22 aa2c852c
fcbbefd49 ebaa%98bd 2483e331 80e04286 feaa2530 50caff60

Polynomial Basis:

Ox = 06c6b2ea8 63120582 6a8e4328 412a3400 Obe7c¢c23f 19982e7f
35164bl12 cl18df503 2997173d 9776babl 2dafeb8e 97elaaldd
4726eaae 6473c2bc 7e0c2752 fed22ac2 e86fbcfc 00468dc4d

Qy = 070blc34 39bb9845 42£21349 21££f78d0 cebefb9b £27£02b5
0f83c658 £29b2076 ac77c8ac 0lbbe59c 02d090fb 20aada3b
£4745614 78445d04 £d2ee388 3cbd5508 f7edcfe7 a803dd47

Normal Basis:

Ox = 0le8ceeb 3c73b384 ad828269 7566e3ad bl1573fd 7aff7abd
1af60123 062e560c 1lbb66d35 d00cd77e 101e7606 6afcdOc9
8c8826eb 799p91e33 1328701c 9fbb5c3ab 01d798af c4fbeab’

Qy = 079d03ff 6£51d98d 467%aa59% 97b5leca e2ecf2fe bad9ledf
d5df7df7 277bb265 b58bllad 5b916e99 fea7ef78 49314dfl
0af703bd 1b202c8c £a97760b 27044clS ac5d9fb5 65381df3

A.1.2.8 Curve B-571

¥ = 38645375230172583446953518909319873442989273297064349\
98657235251451519142289560424536143999389415773083133\
88112192694448624687246281681307023452828830333241139\
3191105285703

Polynomial Basis:

b = 2f40e7e 2221£295 de297117
b7£3d62f 5c6a97ff cb8ceffl cdéba8ce 4a%al8ad
84ffabbd 8efab933 2be7ad67 56a66e29 4afdl85a
78ffl2aa 520ed4de7 39bacalc 7ffeff7f 2955727a
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Px = 0303001d 34b85629 6cl6c0d4 0d3cd775 0a93dld2 955fa80a
a5f40fc8 db7b2abd bde53950 £4c0d293 cdd711a3 5b67fbl4
99ae6003 8614£f139 4abfa3b4 c850d927 ele7769c Beec2dld

Py= 037bf273 42da639b 6dccfffe b73d69d7 8céc27a6 009cbbca 1980f853
3921e8a6 84423e43 bab08a57 6291af8f 461bb2a8 b3531d2f
0485¢c19% 16e2f151 6e23dd3c lad827af 1lb8aclbb

Normal Basis:

b = 3762d0d 47116006 179da356
88eeaccf 59labcde a7500011 8d9608c5 9132d434
26101ald fb377411 5£586623 £75£0000 1ce61198
- 3cl1275fa 31£5bc9f 4belalOf4 67£01ca8 85c74777

Px = 00735e03 5def5925 cc33173e b2aBce77 67522b46 6d278b65
0a291612 7dfead9d2 d361089f 0a7a0247 al84elc7 04417866
e0feOfeb Off8f2£f3 £9176418 £97dl1l7e 624e2015 dfl662a8

Py = 004a3642 0572616c df7e606f ccadaecf c3b76dab 0ebl248d
d03fbdfc 9cd3242c 4726be57 9855e812 deTec5c5 00b4576a
24628048 b6a72d88 0062eed0 dd34bl09 6d3acbb6 b0ladad7

Polynomial Basis:

Ox = 0le263e6 afad323f 934e50e4 daOb01l5b 3£6727f4 27701lcc3
0dcdl1145 cl2e3c66 50ccd260 5ccdb5ata 609cS5acd 3aed%e2d
32de8e64 80303414 dc0907f0 21f8cefd cfb45700 56£8d686

Qy = 06c99cbb 0c686abe déb7015d e2cbelBa 3f623ae2 c87abdal
d6cd7b78 b37f49cc 5e88de04 b5668dad 2df3£34c 50b8c56a
3140d87f 8labb42e 919b3f8d 61743ba9 ldbcbllb defdabcf

Normal Basis:

Ox = 0leced46 40b698fe eb575fcO0 65156¢chf £94c277a 5335ela2
28b65c22 aff27777 dl59cfee c7£1270c c84bca33 8f34abdd
6748£592 bf322442 e2ffeffe 9%9eba321ld cdbbde75 a269e745

Qy = 0lcadda7 5647bba5 8c08b5e2 2b633e3a 5dd3b2c9 5db81f2d
220cba3d 7a38e692 072b3db2 6465b27a 2abd56b4 2291£982
3a902eb5 038dl162a 7a578d37 8dd0c620 4f722521 b8084d4c

A.2 Test Moduli for the MS_DRBG (...}

Each modulus is of the form n = pg with p =2p, + 1, ¢ = 2q, + 1, where p; and g, are
(lg(n)/2 — 1)-bit primes.
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A.2.1 The Test Modulus n of Size 2048 Bits

The hexadecimal value of the modulus # is:
clla01f2 5daf396a a927157b af6£504f 78cba324 57b58c6b
£7d851af 42385cc7? 905b06£f4 1f6d47ab 1b3a2cl2 17d14d15
070c9da5 24734ada 2fel7a95 e600ae%a 4f8bla66 96661le4d0
7d3043ec d1023126 5d8ealdl 81lcf23c6 dd3dec9e b3fce204
509299bb cca63dee 435a2251 ad0765d4 9d29db2e fbabalél
27%aeb5f 6899fed8 7973e36c 1fb13086 d9231b6b 925a8495
4bha0fbca feaB44ea 77a9f852 £86915a4 e71bdlba b9b269c3
9a7a827a 41311ffa 4470140c 8b6509fe 5dbd39e3 ec816066
2d036e13 0e07e233 06a39b18 dble8efe 64418880 8lac3673
2b4091f6 63690d03 3b486d74 371la20fc 3e2l4bce 7ed0e787
5eadd4453 ¢d161d32 8185204 59896571

A.2.2 The Test Modulus n of Size 3072 Bits

The hexadecimal value of the modulus # is:
c6046ba6 8beaal6l c468a9a7 4da34ded 21398c73 020837c7
d2a4042b dd9a7628 cab8022e 5bc4246f 75da8d26 03da8021
41c5d112 835e6bdb 57ed799e 28d6fad9 c3d0f5b5 £9776cld
0a901bf7 73ae3113 35d0470e da91b442 dbac62la cdd324e2
a70244d7 cbl55adc 4b77dd94 fafe069d 5b5ccd94 86e9febl
5081190 abb24f54 2d7d21e9 c90453c6 9ac63143 401d6b35
ed56ca2f 64ae76f9 2df80328 b48£7962 d5¢cIb779 b2078496
7d374£02 06b8afbf 678d7f5f 36c3d84e c9e55c28 Tce5c668
17ee05b4 1059168f b5cSe2a3 6bc2féce 3b43bdld 56eebdds
70ffe6le 5a7023a9 04d98f8a 96bFfaf55 55al2f81 5561b401
63f3a50e alel6a36 3f5cddd4 aldb275c 4fc2d650 d51fle9d3
£5£d7631 cad5914f f6fe62a0 be55b997 5£6566bb 47e76276
f4e3b2eb 837bf0da 9d824687 04247%a3 04147399 2d8l4a3a
TbeTbc3d 06992df6 6cld7d06 f8clalle 2bbb573a 0e278e7a
daa600£f3 2577030e 95b73dd9 96b65£98 47402485 e27138bd

d5f02522 09bcf005 6640alb3 bldd97ad‘70187eO4-01ba817d
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ANNEX B : (Normative) Conversion and Auxilliary Routines

B.1 Bitstring to an Integer

Input:

1. by, by,..., b, The bitstring to be converted.
Output:

1. x The requested integer representation of the bitstring.
Process:

1. Let (by, by, ..., by) be the bits of b from leftmost to rightmost.

2. x=) 20,

i=1
3. Return x.

In this Standard, the binary length of an integer x is defined as the smallest integer n
satisfying x < 2",

B.2 Integer to a Bitstring

Input:

1. x The non-negative to be converted.
Output:

1. by, by, ..., b, The bitstring representation of the integer x.
Process:

1. Let (b1, ba, ..., by) represent the bitstring, where b; = 0 or 1, and b, is the most
significant bit, while b, is the least significant bit.

2. For any integer n that satisfies x < 2", the bits 4, shall satisfy:

= znZZ(""')b, .
i=1

3. Return b4, by, ..., b,.

In this Standard, the binary length of the integer x is defined as the smallest integer » that
satisfies x < 2",

B.3 Integer to an Octet String

Input:
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1. A non-negative integer x, and the intended length # of the octet string satisfying
2" > x.
Output:
1. An octet string O of length » octets.
Process:
1. Let Oy, O, ..., O, be the octets of O from leftmost to rightmost.
2. The octets of O shall satisfy:

x =2 250,
fori=1ton
3. Return O.

B.4 Octet String to an Integer

Input:
1. An octet string O of length # octets.
Output:
1. A non-negative integer x.
Process:
1. Let Oy, Oy, ..., O, be the octets of O from leftmost to rightmost.
2. xis defined as follows:
x =320,
fori=1tn

3. Returnx.
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Annex C: (Informative) Security Considerations

[The information in this annex needs nto be reconsidered. Is C.1 needed here ? The
information in C.2 is provided in SP 800-57. C.3 is needed only if Dual EC_DRBG is
retianed. What other information is appropriate ?]

C.1 The Security of Hash Functions

[Add a discussion as to why it is OK to use SHA-1 to generate pseudorandom curves of
greater than 80 bits of security. The security strength of a hash function for these
generators is = the output block size. If there is no vulnerability to collision (e.g., when a
hash function is used as an element in a well-designed RNG) and the function is not
invertible, than the strength is = the ouput block size. However, when a hash function is
used as an element in an application/cryptographic service where vulnerability to collisions
is a consideration, then the strength = half the size of the output block.] ]

C.2 Algorithm and Keysize Selection

This section provides guidance for the selection of appropriate algorithms and key sizes. It
emphasizes the importance of acquiring cryptographic systems with appropriate algorithms
and key sizes to provide adequate protection for 1) the expected lifetime of the system and
2) any data protected by that system during the expected lifetime of the data. Also included
is the necessity for selecting appropriate random bit generators to support the
cryptographic algorithms.

Cryptographic algorithms provide different levels (i.e., different “strengths”) of security,
depending on the algorithm and the key size used. Two algorithms are considered to be of
equivalent strength for the given key sizes (X and Y) if the amount of work needed to
“break the algorithms” or determine the keys (with the given key sizes) is approximately
the same using a given resource. The strength of an algorithm (sometimes called the work
factor) for a given key size is traditionally described in terms of the amount of work it
takes to try all keys for a symmetric algorithm with a key size of "X" that has no short cut
attacks (i.e., the most cfficient attack is to try all possible keys). In this case, the best attack
is said to be the exhaustion attack. An algorithm that has a "Y" bit key, but whose strength
is equivalent to an "X" bit key of such a symmetric algorithm is said to provide “X bits of
security” or to provide "X-bits of strength". An algorithm that provides X bits of strength
would, on average, take 2% T 10 attack, where 7T is the amount of time that is required to
perform one encryption of a plaintext value and comparison of the result against the
corresponding ciphertext value.

Determining the security strength of an algorithm can be nontrivial. For example, consider
TDEA. TDEA uses three 56-bit keys (K1, K2 and K3). If each of these keys is
independently generated, then this is called the three key option or three key TDEA
(3TDEA). However, if K1 and K2 are independently generated, and K3 is set equal to K1,
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then this is called the two key option or two key TDEA (2TDEA). One might expect that
3TDEA would provide 56 x 3 = 168 bits of strength. However, there is an attack on
3TDEA that reduces the strength to the work that would be involved in exhausting a 112-
bit key. For 2TDEA, if exhaustion were the best attack, then the strength of 2TDEA would
be 56 x 2 = 112 bits. This appears to be the case if the attacker has only a few matched
plain and cipher pairs. However, if the attacker can obtain approximately 2% such pairs,
then 2TDEA has strength that is comparable to an 80-bit algorithm (see [ASCX9.52],
Annex B) and, therefore, is not appropriate for this Standard, since the lowest security
strength provides 112 bits of security.

The comparable key sizes discussed in this section are based on assessments made as of
the publication of this Standard. Advances in factoring algorithms, advances in general
discrete logarithm attacks, elliptic curve discrete logarithm attacks and quantum computing
may affect these assessments in the future. New or improved attacks or technologies may
be developed that leave some of the current algorithms completely insecure. If quantum
computing becomes a practical reality, the asymmeltric techniques may no longer be
secure. Periodic reviews will be performed to determine whether the stated comparable
sizes need to be revised (e.g., the key sizes need to be increased) or the algorithms are no
longer secure.

When selecting a block cipher cryptographic algorithm (e.g., AES or TDEA), the block
size may also be a factor that should be considered, since the amount of security provided
by several of the modes defined in [SP 800-38] is dependent on the block sizeS. More
information on this issue is provided in [SP 800-38].

Table 7 provides associated key sizes for the Approved algorithms and hash functions.

1. Column I indicates the security strength provided by the algorithms and key sizes
in a particular row.

2. Column 2 provides the symmetric key algorithms that provide the indicated level of
security (at a minimum), where TDEA is approved in [ASC X9.52], and AES is
specified in [FIPS 197]. The table entry for TDEA requires the use of three distinct
keys.

3. Column 3 provides the comparable security strengths for hash functions that are
specified in FIPS180-2. The hash function entries assume that collision resistance
is required (e.g., the application uses the hash function for digital signatures). For
applications that are not concerned with collisions, the appropriate application
standard will specify the appropriate hash functions for the security level. For this
Standard, see Section 10.1.1 and Table 3.

5 Suppose that the block size is b b:ts The collision resistance of a MAC is limited by the size of the tag and
collisions become probable after 2 messages, if the full b bits are used as a tag. When using the Output
Feedback mode of encryptlon the maximum cycle length of the cipher can be at most 2° blocks; the average
cipher length is less than 2° blocks. When using the pher Block Chaining mode, plaintext information is
likely to begin to leak after 22 plocks have been encryp ed with the same key.
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4. Column 4 indicates the size of the parameters associated with the standards that use
discrete logs and finite field arithmetic (DSA as defined in ASC X9.30 for digital
signatures, and Diffie-Hellman (DH) and MQV key agreement as defined in [ANS
X9.42], where L is the size of the modulus p, and N is the size of . L is commonly
considered to be the key size for the algorithm, although L is actually the key size
of the public key, and N is the key size of the private key.

5. Column 5 defines the value for k (the size of the modulus ) for the RSA algorithm
specified in ANS X9.31 for digital signatures, and specified in ANS X9.44 for key
establishment. The value of k is commonly considered to be the key size.

6. Column 6 defines the value of f (the size of n, where n is the order of the base point
G) for the discrete log algorithms using elliptic curve arithmetic that are specified
for digital signatures in ANS X9.62, and for key establishment as specified in ANS
X9.63. The value of fis commonly considered to be the key size.

Table 7: Equivalent strengths.

Bits of Symmetric Hash DSA, D-H, MQV RSA Elliptic

security key algs. functions Curves

112 3-key TDEA | SHA-224 L =2048 k= 2048 f=224
N=224

128 AES-128 SHA-256 L =13072 k=3072 f=256
N =256

192 AES-192 SHA-384 f=>384

256 AES-256 SHA-512

C.3 Extracting Bits in the Dual_EC_DRBG (...)

C.3.1 Potential Bias Due to Modular Arithmetic for Curves Over F,

For the mod p curves (i.e, a Prime field curve ), there is a potential bias in the output due to
the modular arithmetic. This behavior is succinctly explained in Part 1 of this Standard,
and two approaches to correcting the bias are presented there. The Negligible Skew
Method described in Section 14.2.2 of Part 1 is appropriate for the NIST curves, since all
were selected to be over prime fields near a power of 2 in size. Each NIST prime has at
least 32 leading 1's in its binary representation, and at least 16 of the leftmost (high-order)
bits are discarded in each block produced. These two facts imply that there is a small
fraction ( < 1/2*?) of outlen outputs for which a bias to 0 may occur in one or more bits.
This can only happen when the first 32 bits of an x-coordinate are all zero. As the leftmost
16 bits (at least) are discarded, an adversary can never be certain when a “biased” block
has occurred. Thus, any bias due to the modular arithmetic may safely be ignored.

105



ANS X9.82, Part 3 - DRAFT - August 2005

C.3.2 Adjusting for the missing bit(s) of entropy in the x coordinates.

In a truly random sequence, it should not be possible to predict any bits from previously
observed bits. With the Dual EC_DRBG (...), the full output block of bits produced by
the algorithm is “missing” some entropy. Fortunately, by discarding some of the bits,
those bits remaining can be made to have nearly “full strength”, in the sense that the
entropy that they are missing is negligibly small.

To illustrate what can happen, suppose that a mod p curve with m=256 is selected, and that
all 256 bits produced were output by the generator, i.e. that outlen = 256 also. Suppose also
that 255 of these bits are published, and the 256-th bit is kept “secret”. About Y% the time,
the unpublished bit could easily be determined from the other 255 bits. Similarly, if 254 of
the bits are published, about % of the time the other two bits could be predicted. This is a
simple consequence of the fact that only about 1/2 of all 2" bitstrings of length m occur in
the list of all x coordinates of curve points.

The situation is slightly worse with the binary curves, since each has a cofactor of 2 or 4.
This means that only about 1/4 or 1/8, respectively, of the m-bitstrings occur as x
coordinates. Thus, the NIST elliptic curves have m-bit outputs that are lacking 1,2 or 3 bits
of entropy, when taken in their entirety.

The "abouts" in the preceding example can be made more precise, taking into account the
difference between 2" and p, and the actual number of points on the curve (which is
always within 2 * p” of p). For the NIST curves, these differences won't matter at the scale
of the results, so they will be ignored. This allows the heuristics given here to work for any
curve with "about” (2™)/f points, where f= 1,2 or 4 is the curve's cofactor.

The basic assumption needed is that the approximately (2")/(2f) x coordinates that do occur
are "uniformly distributed”: a randomly selected m-bit pattern has a probability 1/2f of
being an x coordinate. The assumption allows a straightforward calculation,--albeit
approximate--for the entropy in the rightmost (least significant) m-d bits of

Dual EC_DRBG output, with d << m.

The formula is £ = - sum {;=0} to {j=2d} [ 20 binomprob(2d, z,2%0] pilogap;}.

The term in braces represents the approximate number of (m-d)-bitstrings, which fall into
one of 1+27 categories as determined by the number of times j it occurs in an x coordinate;
7= (2f-1)/2f is the probability that any particular string occurs in an x coordinate; p; =
(j*2/)/2" is the probability that a member of the j-th category occurs. Note that the /=0
category contributes nothing to the entropy (randomness).

The values of E for d up to 16 are:

log2(f): 0 d: 0 entropy: 255.00000000 m-d: 256
log2(/): 0 d: 1 entropy: 254.50000000 m-d: 255
log2(f): 0 d: 2 entropy: 253.78063906 m-d: 254
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252.90244224
251.95336161
250.97708960
249.98863897
248.99434222
247.99717670
246.99858974
245.99929521
244.99964769
243.99982387
242.99991194
241.99995597
240.99997800
239.99998900

254.00000000
253.75000000
253.32398965
252.68128674
251.85475372
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246.99576643
245.99788495
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m-d: 253
m-d: 252
m-d: 251
m-d: 250
m-d: 249
m-d: 248
m-d: 247

m-d: 246

m-d: 245
m-d: 244
m-d: 243

m-d: 242
m-d: 241
m-d: 240

m-d: 256
m-d: 255
m-d: 254
m-d: 253
m-d: 252
m-d: 251
m-d: 250
m-d: 249
m-d: 248
m-d: 247

m-d: 246
m-d: 245
m-d. 244
m-d: 243
m-d: 242
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log2(f): 1 d: 15 entropy: 240.99993397 m-d: 241
log2(f): 1 d: 16 entropy: 239.99996700 m-d: 240

log2(f): 2 d: 0 entropy: 253.00000000 m-d: 256
log2(f): 2 d: 1 entropy: 252.87500000 m-d: 255
log2(f): 2 d: 2 entropy: 252.64397615 m-d: 254
log2(f): 2 d: 3 entropy: 252.24578858 m-d: 253
log2(): 2 d: 4 entropy: 251.63432894 m-d: 252
log2(f): 2 d: 5 entropy: 250.83126431 m-d: 251
log2(f): 2 d: 6 entropy: 249.91896704 m-d: 250
log2(f): 2 d: 7 entropy: 248.96005989 m-d: 249
log2(f): 2 d: 8 entropy: 247.98015668 m-d: 248
log2(f): 2 d: 9 entropy: 246.99010852 m-d: 247
log2(f): 2 d: 10 entropy: 245.99506164 m-d: 246
log2(f): 2 d: 11 entropy: 244.99753265 m-d: 245
log2(f): 2 d: 12 entropy: 243.99876678 m-d: 244
log2(f): 2 d: 13 entropy: 242.99938350 m-d: 243
log2(f): 2 d: 14 entropy: 241.99969178 m-d: 242
log2(f): 2 d: 15 entropy: 240.99984590 m-d: 241
d

log2(f): 2 d: 16 entropy: 239.99992298 m-d: 240
Observations:
a) Each table starts where it should, at 1, 2 or 3 missing bits;
b) The missing entropy rapidly decreases;

¢) Each doubling of the log2(f)actor requires about 1 more bit to be discarded for the
same level of entropy;

d) For log2(f) = 0, i.e, the mod p curves, d=13 leaves 1 bit of information in every
10,000 (m-13)-bit outputs.

Based on these calculations, for the mod p curves, it is recommended that an
implementation shall remove at least the leftmost, ie, most significant, 13 bits of every m-
bit output, and that the Dual_EC_DRBG (...) be reseeded every 10,000 iterations. For the
binary curves, either 14 or 15 of the lefimost bits shall be removed, as determined by the
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cofactor being 2 or 4, respectively. Using this value for 4 in the mod p curves insures that
no bit has a bias from the modular reduction exceeding 1/2*

For ease of implementation, the value of d should be adjusted upward, if necessary, until
the number of bits remaining , m-d= blocksize, is a multiple of 8. By this rule, the actual
number of bits discarded from each block will range from 16 to 19.
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ANNEX D: (Informative) Functional Requirements
[Should this annex be retained? Should it just address those requirements that are
appropriate for DRBGs? ]
D.1 General Functional Requirements

The following functional requirements apply to all random bit generators:

1. The implementation shall be designed to allow validation testing, including
documenting specific design assertions about howt the RBG operates. This shall
include mechanisms for testing all detectable error conditions.

Implementation validation testing for DRBGs is discussed in Section 11.3.

2. The RBG shall be designed with the intent of meeting the security properties in
Part 1, Section 8. This is on a best effort basis, as aspects of some of these
properties are not testable.

Documentation requirement: There shall be design documentation that describes
how the RBG is intended to meet all security properties, including protection from
misbehavior.

The fulfillment of general RBG requirements is discussed in Part 4. Part 1, Section
8 includes discussions of backtracking and prediction resistance, RBG output
properties and RBG operational properties. Part 3-specific requirements are
discussed below. Documentation requirements for RBGs are listed in Section 11.2.

3. The RBG shall support backtracking resistance. [ still think this is a wasted
statement, since implied by requirement 2.]

Backtracking resistance has been designed into each DRBG specified in Section
10.

Optional attributes for the functions in an RBG are as follows:

4. The RBG may be capable of supporting prediction resistance.

An optional prediction resistance capability is specified for the DRBG functions in
Section 9.2 - 9.4 and is also discussed in Section 8.6.

D.2 Functional Requirements for Entropy Input

These requirements are addressed in Parts 2 and 4 of this Standard.

D.3 Functional Requirements for Other Inputs

No general function requirements are stated in Part Ifor other inputs. However, Part 3
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requirements for other input are discussed in Section 7.2.3.

D.4 Functional Requirements for the Internal State

The requirements for the internal state of a RBG are:

1.

The internal state shall be protected in a manner that is consistent with the use and
sensitivity of the output.

The internal state shall be protected at least as well as the intended use of the
pseudorandom output bits requested by the consuming application. (see Section
8.2.3).

The internal state shall be functionally maintained properly across power failures,
reboots, etc. or regain a secure condition before any output is generated (i.e.,
either the integrity of the internal state shall be assured, or the internal state shall
be re-initialized with a new statistically unique value).

This requirement is outside the scope of this Standard. Fulfilling this requirement
may be addressed, for example, by implementing the DRBG in a FIPS 140-2
validated module. Further discussion of this requirement will be addressed in Part
4,

The RBG shall satisfy the requirements for a particular security strength (from the
set of [112, 128, 192, 256, or potentially unlimited]) in the internal state
components.

Documentation requirement: The security strength provided by the RBG shall be
documented.

Sections 8.4, 9.2, 9.3 and the DRBG algorithms in Section 10 address the
acquisition of sufficent entropy for the seed to satisfy a given security strength.
Documentation requirements are listed in Section 11.2.

D.5 Functional Requirements for the Internal State Transition Function

The requirements for the internal state transition functions of an RBG are:

1.

The deterministic elements of internal state transition functions shall be verifiable
via known-answer testing during installation and/or startup and/or initialization,
and periodic health tests.

A DRBG shall perform self-tests to ensure that the DRBG continues to function
properly. Self tests are discussed in Sections 9.7 and 11.4.

The internal state transition function shall, over time, depend on all the entropy
carried by the internal state. That is, added entropy shall affect the internal state.

This requirement is fulfilled by the design of the DRBGs specified in Section 10.

3. The Internal State Transition Function shall resist observation and analysis via
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power consumption, timing, radiation emissions, or other side channels as
appropriate, depending on the access by an observer who could be an adversary.
What is appropriate (if anything) depends on the details of the implementation and
shall be described by the implementation documentation.

Documentation requirement: This aspect of the design shall be documented.

This requirement is outside the scope of this Standard. Fulfilling this requirement
may be addressed, for example, by implementing the DRBG in a FIPS 140-2
validated module. Part 4 will address this requirement further.

It shall not be feasible (either intentionally or unintentionally) to cause the Internal
State Transition Function to return to a prior state in normal operation (this
excludes testing and authorized verification of the RBG output), except possibly by
chance (depending on the specific design).

This requirement is fulfilled by the design of the DRBGs specified in Section 10.

D.6 Functional Requirements for the Output Generation Function

The functional requirements for the output generation function are:

1.

The output generation function shall be deterministic (given all inputs) and shall
allow known-answer testing when requested.

The determinism of the output generation function is inherent in the DRBG
algorithm designs of Section 10. Known answer testing is discussed in Sections 9.7,
11.3 and 11.4.

The output shall be inhibited until the internal state obtains sufficient assessed
entropy.

Section 8.4 states that a DRBG shall not provide output until a seed is available.
Sections 9.2 - 9.5 request entropy at appropriate times during the instantiate, reseed
and generate functions.

Once a particular internal state has been used for output, the internal state shall be
changed before more output is produced. The OGF shall not reuse any bit from the
subset of bits of the pool that were used to produce output. An ISTF shall either
update the internal state between successive actions of the OGF, or the OGI' shall
select independent subsets of bits in the internal state without reusing any
previously selected bits between updates of the internal state by the ISTF. In the
latter case, this process shall update the internal state in ovder to select a different
set of bits from the “pool” of bits from which output is to be dervied.

Documentation requirement: This aspect of the design shall be documented.

The specifications for the DRBG algorithms in Section 10 include an update of the
internal state prior to returning the requested pseudorandom bits to the consuming
application. Documentation requirements are listed in Section 11.2.
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Test output from a known answer test shall be separated from operational output
(e.g., random output that is used for a cryptographic purpose).

Section 11.4.1 states that all data output from the DRBG module shall be inhibited
while operational tests are performed. The results from known-answer tests shall
not be output as random bits during normal operationy

The output generation function shall protect the internal state, so that analysis of
RBG outputs does not veveal useful information (from the point of view of
compromise) about the internal state that could be used to reveal information
about other outputs.

The DRBG algorithms specified in Section 10 have been designed to fulfill this
requirement.

The output generation function shall use information from the internal state that
contains sufficient entropy to support the required security strength.

Documentation requirement : This aspect of the design shall be documented.

Providing that the seed used to initialize the DRBG contains the appropriate
amount of entropy for the required security strength, the output generation function
in the DRBGs in this Standard have been designed to fulfill this requirement.
Documentation requirements are listed in Section 11.2.

The output generation function shall resist observation and analysis via power
consumption, timing, radiation emissions, or other side channels as appropriate.

Documentation requirement: This aspect of the design shall be documented.

This requirement is outside the scope of this Standard. Fulfilling this requirement
may be addressed, for example, by implementing the DRBG in a FIPS 140-2
validated module. Part 4 will discuss this requirement further.

D.7 Functional Requirements for Support Functions

The functional requirements for support functions in Part 1 are:

1.

An RBG shall be designed to permit testing that will ensure that the generator
continues to operate correctly. These tests shall be performed at start-up (after
either initialization or re-initialization), upon request and may also be performed
periodically or continuously.

Section 11.4 specifies a requirement for operational (health) testing. A general
method for operational testing is provided in Section 9.7.

Output shall be inhibited during power-up, on-request and periodic testing until
testing is complete and the result is acceptable. If the result is not acceptable, the
RBG shall enter an error state.

Section 11.4 specifies that operational testing shall be conducted during power-up,
113



ANS X9.82, Part 3 - DRAFT - August 2005

on demand and at periodic intervals; this section also specifies that output shall be
inhibited during testing. Section 9.7 specifies operational tests.

Output need not be inhibited during continuous testing unless an unacceptable
result is encountered. When an unacceptable result is thus determined, output shall
be inhibited, and the RBG shall enter an error state.

Continuous testing is not specified for DRBGs.

When an RBG fails a test, the RBG shall enter an error state and output an error
indicator. The RBG shall not perform any operations while in the error state. The
other parts of this Standard address error recovery in more detail, as appropriate.

Section 11.4 specifies this requirement. Sections 9.7 and 9.8 discuss the error
handling process.

. Any other support functions implemented shall be documented regarding their
purpose and the principles used in their design.

Documentation requirements are listed in Section 11.2.
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ANNEX E: (Informative) DRBG Selection

[This will need to be revised, based on the DRBGs that are retained and the content of Part
4.]

E.1 Choosing a DRBG Algorithm

Almost no system designer starts with the idea that he's going to generate good random
bits. Instead, he typically starts with some goal that he wishes to accomplish, then decides
on some cryptographic mechanisms such as digital signatures or block ciphers that can
help him achieve that goal. Typically, as he begins to understand the requirements of those
cryptographic mechanisms, he learns that he will also have to generate some random bits,
and that this must be done with great care, or he may inadvertently weaken the
cryptographic mechanisms that he has chosen to implement. At this point, there are two
things that may guide the designer's choice of a DRBG:

a. He may already have decided to include a block cipher, hash function, keyed hash
function, etc., as part of his implementation. By choosing a DRBG based on one of
these mechanisms, he can minimize the cost of adding that DRBG. In hardware,
this translates to lower gate count, less power consumption, and less hardware that
must be protected against probing and power analysis. In sofiware, this translates
to fewer lines of code to write, test, and validate.

For example, a designer of a module that does RSA signatures probably already has
available some kind of hashing engine, so one of the hash-based DRBGs is a
natural choice.

b. He may already have decided to trust a block cipher, hash function, keyed hash
function, etc., to have certain properties. By choosing a DRBG based on similar
properties of these mechanisms, he can minimize the number of algorithms he has
to trust.

For example, a designer of a module that provides encryption with AES can
implement an AES-based DRBG. Since the DRBG is based for its security on the
strength of AES, the module's security is not made dependent on any additional
cryptographic primitives or assumptions.

The DRBGs specified in this standard have different performance characteristics,
implementation issues, and security assumptions.

E.2 DRBGs Based on Hash Functions
Two DRBGs are based on any Approved hash function: Hash_DRBG, and

HMAC _DRBG. A hash function is composed of an initial value, a padding mechanism
and a compression function; the compression function itself may be expressed as
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Compress (I, X), where / is the initial value, and X is the compression function input. All
of the cryptographic security of the hash function depends on the compression function,
and the compression is by far the most time-consuming operation within the hash function.

The hash-based DRBGs in this Standard allow for some tradeoffs between performance,
security assumptions required for the security of the DRBGs, and case of implementation.

E.2.1 Hash_DRBG

Hash_DRBG is closely related to the DRBG specified in FIPS-186-2, and can be seen as
an updated version of that DRBG that can be used as a general-purpose DRBG. Although
a formal analysis of this DRBG is not available, it is clear that the security of the DRBG
depends on the security of Hashgen. Specifically, an attacker can get a large number of
sequences of values:

Hash (V), Hash (V+1), Hash (V+2), ...

[f the attacker can distinguish any of these sequences from a random sequence of values,
then the DRBG can be broken.

E.2.1.1 Implementation Issues

This DRBG requires a hash function, some surrounding logic, and the ability to add
numbers modulo 2°““" where seedlen is the length of the seed. Hash_DRBG also uses
hash_df internally when instantiating, reseeding, or processing additional input. Note that
hash_df requires only access to a general-purpose hashing engine and the use of a 48-bit
counter. The “critical state values” on which the Hash_DRBG depends for its security (¥,
C and reseed_counter) require seedlen + outlen + 48 bits of memory®.

E.2.1.2 Performance Properties

Each time that Hash DRBG is called, a compression function computation is required for
each outlen bits of requested output (or portion thereof), where outlen is the size of the
hash function output block. For example, if outlen = 160, and 360 bits of pseudorandom
data are requested, three compression function calls are made (two to produce the first 320
bits, and a third from which to select the remaining 40 bits. In addition, there is a certain
amount of overhead to updating the state in order to achieve backtracking resistance; this
requires one compression function call and some additions modulo 2°“**"", plus the update
of reseed_counter. For the above example, a total of four compression function calls are
required, three to generate the requested output bits, and one to update the state.

E.2.2 HMAC_DRBG
HMAC_DRBG is a DRBG whose security is based on the assumption that HMAC is a

pseudorandom function. The security of HMAC_DRBG is based on an attacker getting
sequences of up to 2°° bits, generated by the following steps:

temp = the Null string.

6 V is seedlen bits long, C is outlen bits long (whercI qgllen is the length of the hash function output block),
and reseed _counter is a maximum of 48 bits in length.
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While (len (temp) < requested_no_of bits:
V=HMAC (K, V).
temp =temp || V.

The steps in the “While” statement iterate [ requested no of bitsloutlen | times. Intuitively,
so long as ¥ does not repeat, any algorithm that can distinguish this output sequence from
an ideal random sequence can be used in a straightforward way to distinguish HMAC from
a pseudorandom function.

Between these output sequences, both ¥ and K are updated using the following steps
(assuming no additional inputs):

K=HMAC (K, (V| 0x01)) = Hash (opad (K) || Hash (ipad (X) || (V|| 0x01))).
V'=HMAC (K, V) = Hash (opad (K} | (Hash (ipad (K) || 7).

where:
K and V are outlen bits long,
opad (K) is K exclusive-ored with (inlen/8) bytes of 0x5c, for a total of inlen bits,
ipad (K) is K exclusive-ored with (inlen/8) bytes of 0x36, for a total of inlen bits,
outlen is the length of the hash function output block, and
inlen is the length of the hash function input block.

E.2.2.1 Implementation Properties

The only thing required to implement this DRBG is access to a hashing engine. However,
the performance of the implementation will improve enormously (by about a factor of
two!) with either a dedicated HMAC engine, or direct access to the hash function's
underlying compression function. The “critical state values” on which HMAC_DRBG
depends for its security (K and V) take up 2*outlen bits in the most compact form, but for
reasonable performance, 3*outlen bits are required in order to precompute padded values.

E.2.2.2 Performance Properties

HMAC_DRBG is about a factor of two slower than Hash_ DRBG for long bitstrings
produced by a single request. That is, each outlen-bit piece of the requested pseudorandom
output requires two compression function calls to perform the HMAC computation. Each
output request also incurs another six compression function calls to update the state.

Note that an implementation that has access only to a high-level hashing engine loses
another factor of two in performance; if the performance of the DRBG is important,
HMAC_DRBG requires either a dedicated HMAC engine or access to the compression
function that underlies the hash function. However, if performance is not an important
issue, the DRBG can be implemented using nothing but a high-level hashing engine.
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E.2.3Summary and Comparison of Hash-Based DRBGs

E.2.3.1 Security

ILis interesting to contrast the two ways that the hash lunction is used in these DRBGs:
Hash DRBG:
Hash (/). Hash (V+1). Hash (V+2)...

The only unknown input into the compression function used by the hash lunction is this
sequence ol seeret values. 1744, Sinee the initial value of the hash function is publicly
known. the adversary is given [ull knowledge of all but seedfen bits of input into the
compression function. and knowledge of the close relationship between these inputs. as
well.

HMAC DRBG:
Vi =HMAC (K. Iy) = Hash (opad (K) || (Hash (ipad (K) || Is)).
¥, = HMAC (K. V) = Hash (opad (K) || (Hash (ipad (K) [| V).
Iy = HMAC (K. V5) = Hash (opad (X) || (Hash (ipad (X) [| 7).

ele

as specified in Annex 1:.2.2.

The adversary knows many specilic bits of the input to the final compression function
whose output he sees: for SHA-256. the compression function takes a total o’ 768 bits ol
input. and the adversary knows 256 of those bits”. (This is worse for SHA-1 and SHA-
384.) On the other hand, the adversary doesn't even know the exclusive-or relationships
for outlen bits ol the message input. In the case of SHA-256. this means that 256 bits are
unknown.

It is clear that Hash DRBG makes stronger assumptions on the strength of the
compression function. although thev are not precisely comparable. Specifically.
HMAC DRBG allows an adversary to precisely know many bits of the inpul to the
compression functions. but not to know complete exclusive-or or additive relationships
between these bits of input.

7 The innermost hash function provides outlen bits of input after its two compression function calls on ipad
(K) and V. The outermost hash function also requires two compression functions: the first operates on opad
(K) and produces outlen bits that are used as the chaining value for the final compression function on the
result from the innermost hash function concatenated with the hash function padding, Therefore, the input to
the final compression function is the length of the chaining value (outlen bits) + the length of the ouput from
the innermost hash function (outlen bits) + the length of the padding (inlen - outlen bits). In the case of SHA-
256, where inlen = 512, and outlen = 256, the length,ﬁféhe input to the last compression function is 768 bits,
of which only the padding bits are known (256 bits).
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E.2.3.2 Performance / Implementation Tradeoffs

The following performance and implementation tradeoffs should be considered when
selecting a hash-based DRIBG with regard to the overhead associated with requesting
pseudorandom bits. the cost of actually generating eutfen bits (not including the overhead).
and the memory required tor the critical state values for cach DRBG. The overhead is,
essentially, the cost of updating the state prior to the next request [or pseudorandom bits.
The cost ol generating each outlen block of bits of output should be multiplied by the
number of outlen-bit blocks of output required in order to obtain the true cost of
pseudorandom bil generation. Both the overhead and generation costs assume that
prediction resistance and reseeding are not required. and that additional input is not
provided for the request: il this is not the case. the costs are increased accordingly, Nole
that the memory requirements do nolt take into account other information in the state that is
required for a given DRBG.

Hash DRBG:

swaulhint

Request overhead: one compression {unction and several additions mod 2

Cosl [or outlen bits of pseudorandom outpul: one compression function.

Memory required [or the eritical state values V., C and reseed counter: infen + onilen -
32 bits.

HMAC DRBG (with access to the hash function’s compression [unction):

Reguest overhead: six compression functions®,

Cost lor ontlen bits of pseudorandon output: two compression functions.

Memory required Tor the critical state values K and 172 3*outlen bits when
precomputation is used .

HMAC DRBG (hash engine access only):

Request overhead: eight compression function calls®.

Cosl [or outlen bits of pseudorandom output: [bur compression functions!".

Memory reguired for the eritical state values K and 12 2*outlen bits, since
precomputation is unavailable.

For these DRBGs. additional inpuis provided during pseudorandom bit generation add
considerably to the request overhead. Instantiation and reseeding are somewhal more
expensive than pseudorandom output generation: however. these relatively rare operations
can afford to be somewhat more expensive to minimize the chances of a successful attack.

8 Two compression functions for each HMAC computation. and two compression functions for
precomputation

% There are two HMAC computations. each requiring two hash (unction calls Each hash compulation
requires (wo compression lunction calls
P

10 - . . 119 ‘ .
The smgle IMAC computation requires four compression {unctions as explained in the previous footnote
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E.3 DRBGs Based on Block Ciphers

E.3.1 The Two Constructions: CTR and OFB

T'his standard deseribes two classes of DRBGs based on block ciphers: One ¢lass uses the
block cipher in OFB-mode. the other class uses the CTR-mode. There are no practical
security differences between these two DRBGs: CTR mode guarantees that short eveles
cannot occur in a single output request. while OFB-mode guarantees that short eveles will
have an extremely low probability. OFB-mode makes slightly less demanding
assumptions on the block cipher. but the security of both DRBGs relates in a very simple
and clean way lo the security of the block cipher in its intended applications. This isa
fundamental difference between these DRBGs and the DRBGs based on hash functions.
where the DRBG's security is ultimately based on pseudorandomness properties that do not
form a normal part of the requirements for hash functions. An attack on any of the hash-
based DRBGs does not necessarily represent a weakness in the hash function: however, for
these block cipher-based constructions. a weakness in the DRIBG is direetly related o a
weakness in the block cipher.

Specilically. suppose that there is an algorithm tor distinguishing the outputs of ¢ither
DRBG from random with some advantage. [['that algorithm exists. it can be used to build
a new algorithm lor distinguishing the block cipher from a random permutation. with the
same time and memory requirements and advantage,

Because there is no practical security difference between the two_classes of block-cipher
based DRBGs. the choice between the bwo constructions is entirely a matter of
implementation convenience and performance. An implementation that uses a block
cipher in OFR. CBC. or [ull-block CFB mode can casily be used (o implement the OF13-
based DRBG construction: an implementation that already supports counter mode can
reuse that hardware or software to implement the counter-mode DRBG. In terms of
performance. the CTR-mode construction is more amenable to pipelining and parallelism,
while the OFB-mode construction seems Lo require slightly less supporting hardware.

E.3.2 Choosing a Block Cipher

While security is not an issue in choosing between the two DRBG constructions. the
choice of the block cipher algorithm to be used is more of an issue. At present. only TDEA
and ALS are approved block cipher algorithms. Heweser: the-twe-bleek-—eipher-DRBG
constraetions will work toruny block cipherwith-a-bloek-length= o+ und key-length=

: i HH S wmmmkwwm
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Consider a sequence of the maximum permitted number of generate requests. cach

producing the maximum number of DRBG outputs from cach generate call. Assuming

that the block cipher behaves like a pseudorandom permutation family, the probability of

distinguishing the full sequence of output bytes is:

1.

For ALS-128. there arc a maximum of 2% blocks (i.e., 2°% bytes = 2*° bits)

generated per Generate (...) request. 272 total Generate (...) requests allowed, 2%
possible keys. and 2'%® possible starting blocks.

a

I'he probability of an internal collision in a single Generate (...) request is
never higher than about 27, and so the probability ol an internal collision in
any given Generate (...) request is never higher than about 2% (This applies
only o the OF B-mode. but a collision of this kind would result in a very easy
distinguisher.)

The expected probability of an internal collision in a sequence of 2% random
128-bit blocks is about 27, Thus. the probability of seeing an internal collision
in any of the Generate (...) sequences is about 22 This probability is low
enough that it does not provide an efficient way to distinguish between DRBG
outputs and ideal random outpuls.

The probability of a key colliding between any two Generate g) requests in
the sequence of 22 such requests is never larger than about 2% This is also
negligible. (For AES-192 and AES-256. this probability is even smaller.)

For three-key ITDEA with 168-bit kevs and 64-bit blocks. things are a bit dilferent;
I'here are 2'° Generate (...) requests allowed. and a maximum of 2" blocks (i.e.,

2" bytes = 2™ bits) generated per Generate (...) request. (Note that this breaks the
more general model in this document of assuming 2% innocent operations.) In this

case.

a.

C.

The probability of an ifternal collision is never higher than about 2" per
Generate (...) request, and with only 2'% such requests allowed. the probability
of ever seeing such an internal collision in a sequence of requests is never more
than about 2°°._(Note that if more requests are allowed. as required by the 2%
bound assumed elsewliere in the document. there would be an unacceptably
high probability of this event happening at least once.)

Ihe expected probability of an internal collision in a sequence of 2" 64-bit
blocks is about 2%, Thus. the probability of ever seeing an internal collision in
2'® putput sequences is still an aceeptably low 2%, (Note that if more
Generate (...) requests are allowed, there would be an unacceptably high
probability of this happening, leading to an efficient distinguisher between this
DRBG's outputs and ideal random outputs.

I'he probability of a kev colliding between any two of the 2'S Generate (...)
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requests is about 2*¢, which is negligible.

o summarize: block size matters much more than the choice of DRBG construction that is
used. The limits on the numbers of Generate (...) requests and the number of output bits
per request require frequent resceding of the DRBG. Furthermore. the limits guarantee
that even with reseeding. an adversary that is given a really long sequence of DRBG
oulputs [rom several reseedings cannot distinguish that output sequence from random
reliably. The block cipher DRBGs used with TDEA are suitable for low-throughput
applications, but not for applications requiring really large numbers of DRBG outpuls.
FFor conereteness, if an application is going to require more than 2% putput bytes (
bits) in its lifetime. that application should not use a block cipher DRBG with TDEA

E.3.3 Conditioned Entropy Sources and the Derivation Function

235

[Some or all of this section probably belongs in Part 4]

Ihe block cipher DRBGs are defined w be used in one ol two ways for initializing the
DRBG state during instantiation and reseeding: Either with lreelorm inpul strings
conlaining some specified amount of entropy. or with full-entropy strings of precisely
specilied lengths The freeform strings will require the use of a derivation function, whereas
the use of full-entropy strings will not. | he block cipher derivation function uses the block
cipher algorithm to compute several parallel CBC-MACs on the input string under a fixed
key and using different IVs. uses the result to produce a key and starting block. and runs
the block cipher in OF B-mode Lo generate outpuls from the derivation function. An
implementation must choose whether to provide full entropy. or to support the derivation
function. This is a high-level system design decision: it affects the kinds of entropy
sources that may be used. the gate count or code size of the implementation. and the
interface that applications will have to the DRBG. On one extreme, a very low gate count
desion may use hardware entropy sources that are casily conditioned. such as a bank of
ring oscillators that are exclusive-ored together. rather than to support a lot of complicated
processing on input sieings. On the other extreme. a general-purpose DRBG
implementation mav need the ability to process freeform input strings as personalization
strings and additional inputs: in this case. the block cipher derivation function must be
implemented.

E.4 DRBGs Based on Hard Problems

The Dual EC_DRBG and MS_DRBG base their security on a "hard" number-theoretic
problem. For the types of curves used in the Dual_EC_DRBG, the Elliptic Curve Discrete
Logarithm Problem has no known attacks that are better than the "meet-in-the-middle"
attacks, with a work factor of sqrt (2™). In the case of MS_DRBG, which is based loosely
on the RSA problem, the work factor of the best algorithm is more complex to state, but
well-established.

These algorithms are decidedly less efficient to implement than some of the others.
However, in those cases where security is the utmost concern, as in SSL or IKE exchanges,
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the additional complexity is not usually an issue. Except for dedicated servers, time spent
on the exchanges is just a small portion of the computational load; overall, there is no
impact on throughput by using a number-theoretic algorithm. As for SSL or IPSEC
servers, more and more of these servers are getting hardware support for cryptographic
primitives like modular exponentiation and elliptic curve arithmetic for the protocols
themselves. Thus, it makes sense to utilize those same primitives (in hardware or software)
for the sake of high-security random numbers.

E.4.1 implementation Considerations

E.4.1.1 Dual_EC_DRBG

Random bits are produced in blocks of bits representing the x-coordinates on an elliptic
curve.

Because of the various security levels allowed by this Standard there are multiple curves
available , with differing block sizes. The size is always a multiple of 8, about 16 bits less
than a curve’s underlying field size. Blocks are concatenated and then truncated, if
necessary, to fullfil a request for any number of bits up to a maximum per call of 10,000
times the block length. The smallest blocksize is 216, meaning that at least 2M bits can be
requested on each call.)

An important detail concerning the Dual EC_DRBG is that every call for random bits,
whether it be for 2 million bits or a single bit, requires that at least one full block of bits be
produced; no unused bits are saved internally from the previous call. Each block produced
requires two point multiplications on an elliptic curve—a fair amount of computation.
IApplications such as IKE and SSL are encouraged to aggregate all their needs for random
bits into a single call to Dual_EC_DRBG, and then parcel out the bits as required during
the protocol exchange. \A C structure, for example, is an ideal vehicle for this.

To avoid unnecessarily complex implementations, it should be noted that every curve in
the Standard need not be available to an application. For instance, one may choose to do
arithmetic only over the prime order fields in a software application, or perhaps a particular
binary curve in a hardware application. To improve efficiency, there has been much
research done on the implementation of elliptic curve arithmetic; descriptions and source
code are available in the open literature.

As a final comment on the implementation of the Dual EC_DRBG, note that having fixed
base points offers a distinct advantage for optimization. Tables can be precomputed that
allow nP to be attained as a series of point additions, resulting in an 8 to 10-fold speedup,
or more, if space permits.

E.4.1.2. Micali-Schnorr

Micali-Schnorr was designed to be a more efficient version of the predecessor algorithm,

the Blum-Blum-Shub (BBS) DRBG. BBS uses the recursion x; = x> mod n to generate

its state sequence, producing a single pseudorandom bit as the least significant bit of x;.

Later, it was shown that O( In(In 7)) ) bits could be taken on each iteration, but this is still a
123
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very small percentage of those produced. The MS_DRBG allows a much larger percentage
of n bits to be used on each iteration, and has an additional advantage in that no output bits
are used to propagate the sequence. It does, however, rely on a stronger assumption for its
security than the intractability of integer factorization.

As ANS X9.82 standard evolved, committee members argued for restricting the number of
bits generated on each exponentiation to O( In(In #) ) hard bits, as is done in BBS. The
result is that the efficiency argument for choosing MS over BBS doesn’t apply.
Nonetheless, a user does have more options in the choice of parameters.

Micali_Schnorr offers an alternative to Dual EC_DRBG in the class of algorithms based
on a hard problem from number theory, and presents an advantage in its simplicity. All
that’s required for implementation is a routine that computes x° mod »; this can be readily
found in commercial and open source toolkits.
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ANNEX F: (Informative) Example Pseudocode for Each DRBG

[These examples do not reflect the latest changes to Part 3. They will be revised when the
decision is made as to which DRBGs will be retained.]

F.1 Preliminaries

The internal states in these examples are considered to be an array of states, identified by
state_handle. A particular state is addressed as internal state (state_handle), where the
value of state_handle begins at 0 and ends at #-1, and » is the number of internal states
provided by an implementation. A particular element in the internal state is addressed by
internal_state (state_handle).element.

The pseudocode in this annex does not include the necessary conversions (e.g., integer to
bitstring) for an implementation. When conversions are required, they must be
accomplished as specified in annex B.

The following routine is defined for these pseudocode examples:

Find_state_space (): A function that finds an unused internal state. The function
returns a status (either “Success” or a message indicating that an unused internal state
is not available) and, if status = “Success”, a state_handle that points to an available
internal_state in the array of internal states. If szatus # “Success”, an invalid
state_handle is returned. ’

F.2 Hash_DRBG Example

F.2.1 Discussion

This example of Hash_DRBG uses the SHA-1 hash function, and prediction resistance is
supported in the example. Both a personalization string and additional input are allowed. A
32-bit incrementing counter is used as the nonce for instantiation (instantiation_nonce); the
nonce is initialized when the DRBG is installed (e.g., by a call to the clock or by setting it
to a fixed value) and is incremented for each instantiation.

A total of 10 internal states are provided (i.e., 10 instantiations may be handled
simultaneously).

For this implementation, the functions and algorithms are “inline”, i.e., the algorithms are
not called as separate routines from the function envelopes.

The internal state contains values for V, C, reseed_counter, security strength and
prediction_resistance flag, where V and C are bitstrings, and reseed counter,

security _strength and the prediction_resistance_flag are integers. A requested prediction
resistance capability is indicated when prediction_resistance flag = 1. Note: an empty
internal state is represented as { Null, Null, 0, 0, 0}.

In accordance with Table 3 in Section 10.1.1, the 112 and 128 bit security strengths may be
supported. Using SHA-1, the following definitions are applicable for the instantiate,
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generate and reseed functions and algorithms:

1.

ARG

5

highest_supported security strength=128.

Output block length (outlen) = 160.

Required minimum entropy for instantiation and reseed = security _strength.
Minimum entropy input length (min length) = security_strength.

Seed length (seedlen) = 440.

Maximum number of bits per request (max_number of bits_per_request) = 5000
bits.

Reseed interval (reseed interval) = 100,000 requests.

Maximum length of the personalization string (max_personalization_string_length)
= 500 bits.

Maximum length of additional input (max_additional_input_string_length) = 500
bits.

10. Maximum length of entropy input (max length) = 1000.

F.2.2

Instantiation of Hash_DRBG

This implementation will return a text message and an invalid state handle (-1) when an
error is encountered. Note that the value of instantiation_nownce is an internal value that is
always available to the instantiate function.

Note that this implementation does not check the prediction_resistance_flag, since the
implementation can handle prediction resistance. However, if an application actually wants
prediction resistance, the implementation expects that prediction_resistance flag=1
during instantiation; this will be used in the generate function in Annex F.2.4.

Instantiate_Hash_DRBG (...):

Input: integer (requested_instantiation_security_strength, prediction_resistance_flag),

bitstring personalization_string).

Output: string status, integer state_handle.

Process:

Comment: Check the input parameters.

1. If (requested instantiation_security_strength > 128), then Return (“Invalid
requested instantiation_security strength”, -1).

2. If (len (personalization_string) > 500), then Return (“Personalization_string
too long”, -1).
Comment: Set the security_strength to one of
the valid security strengths.
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If (requested instantiation_security_strength < 112), then security_strength =
112

Else security_strength = 128.
Comment: Get the entropy_input.

(status, entropy_input) = Get_entropy (security_strength, security_strength,
1000).

If (status # “Success™), then Return (“Failure indication returned by the
entropy_input source:” || status, -1).

Comment: Increment the nonce; actual coding
must ensure that it wraps when it’s storage
limit is reached.

instantiation nonce = instantiation_nonce + 1.

Comment: The instantiate algorithm is
provided in steps 7-11.

seed_material = entropy_input || instantiation_nonce || personalization_string.

seed = Hash_df (seed_material, 440).

V= seed.

10. C = Hash_df ((0x00 || V), 440).

11. reseed counter = 1.

Comment: Find an unused internal
state and save the initial values.

12. (status, state_handle) = Find_state_space ( ).

13. If (status # “Success”), then Return (status, -1).

14. internal state (state_handle) = {V, C, reseed_counter, security_strength,

prediction resistance flag}.

15. Return (“Success”, state_handle).
F.2.3 Reseeding a Hash_DRBG Instantiation

The implementation is designed to return a text message as the status when an error is
encountered.

Reseed_Hash_DRBG_Instantiation (...):
Input: integer state_handle, bitstring additional _inpu.
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Output: string status.

Process:
Comment: Check the validity of the
state_handle.
1. If ((state_handle > 9) or (internal_state (state_handle) = {Null, Null, 0, 0, 0})),

© ® N o

11.

12.

then Return (“State not available for the state_handle™).

Comment: Get the internal state values
needed to determine the new internal state.

Get the appropriate internal_state values, e.g., V' =
internal_state(state _handle).V, security_strength =
internal _state(state_handle).security _strength.

Check the length of the additional input.
If (len (additional_input) > 500), then Return (“Additional_input too long”).
Comment: Get the entropy_input.

(status, entropy_input) = Get_entropy (security_strength, security_strength,
1000).

If (status # “Success”), then Return (“Failure indication returned by the
entropy_input source:” || status).

Comment: The reseed algorithm is provided
in steps 7-11.

seed_material = 0x01 || V|| entropy_input || additional_input.
seed = Hash_df (seed material, 440).

V = seed.

C = Hash_df ((0x00 || V), 440).

. reseed _counter = 1.

Comment: Update the working state portion
of the internal state.

Update the appropriate state values.

11.1 internal_state (state_handle).V="V.

11.2 internal state (state_handle).C = C.

11.3 internal _state (state_handle.reseed counter = reseed_counter.

Return (“Success”).
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F.2.4 Generating Pseudorandom Bits Using Hash_DRBG

The implementation returns a Null string as the pseudorandom bits if an error has been
detected. Prediction resistance is requested when prediction_resistance_request = 1.

In this implementation, prediction resistance is requested by supplying
prediction resistance_request = 1 when the Hash_DRBG function is invoked.

Hash_DRBG (...):

Input: integer (state handle, requested no of bits, requested_security_strength,
prediction_resistance_request), bitstring additional _input.

Output: string status, bitstring pseudorandom_bits.
Process:

Comment: Check the validity of the
state_handle.

1. If ((state_handle > 9) or (state (state_handle) = {Null, Null, 0, 0, 0})), then
Return (“State not available for the state handle”, Null).

Comment: Get the internal state values.

2. V=internal_state (state_handle).V, C = internal_state (state_handle).C,
reseed counter = internal_state (state_handle).reseed_counter,
security_strength = internal_state (state_handle).security strength,
prediction resistance_flag = internal_state
(state_handle).prediction_resistance_flag.

Comment: Check the validity of the other
input parameters.

3. If (requested no of bits > 5000) then Return (“Too many bits requested”,
Null).

4. If (requested security strength > security strength), then Return (“Invalid
requested_security strength”, Null).

5. If (len (additional _input) > 500), then Return (“Additional _input too long”,
Null).

6. If ((prediction resistance request = 1) and (prediction_resistance_flag # 1)),
then Return (“Prediction resistance capability not instantiated”, Null).

Comment: Reseed if necessary. Note that
since the instantiate algorithm is inline with
the functions, this step has been written as a
combination of steps 6 and 7 of Section 9.4
and step 1 of the generate algorithm in
Section 10.1.2.2.4. Because of this combined
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step, step 11.4 of Section 7.4.is not required.
If ((reseed_counter > 100,000) OR (prediction_resistance_request = 1)), then

7.1 status = Reseed_ Hash_DRBG_Instantiation (state_handle,
additional _input).

7.2 If (status # “Success”), then Return (status, Null).
Comment: Get the new internal state values.

7.3 V=internal state (state_handle).V, C = internal_state (state_handle).C,
reseed_counter = internal_state (state_handle).reseed _counter,
security_strength = internal _state (state_handle).security strength,
prediction resistance_flag = internal_state
(state_handle).prediction resistance_flag.

7.4 additional _input = Null.

Comment: Steps 8-16 provide the rest of the
generate algorithm. Note that in this
implementation, the Hashgen routine is also
inline as steps 9-13.

If (additional _input # Null), then do
7.1 w=Hash (0x02 || V|| additional input).
7.2 V=(V+w)mod 2*°.

e requested _no _of _ bits
outlen '

data=7V.

W = the Null string.

Fori=1tom

12.1 w; = Hash (data).

122 W=W]| w,.

12.3 data = (data + 1) mod oseedlen

13. pseudorandom_bits = Leftmost (requested_no_of bits) bits of W.

14.
15.
16.

H=Hash (0x03 || V).

V=+H+ C+ reseed_counter) mod 240

reseed _counter = reseed counter + 1.

Comments: Update the working_state.
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13. Update the changed values in the state.
13.1 internal state (state handle).V = V.
13.2 internal_state (state_handle).reseed counter = reseed counter.
14. Return (“Success”, pseudorandom_bits).
F.3 HMAC_DRBG Example

F.3.1 Discussion

This example of HMAC DRBG uses the SHA-256 hash function. The reseed and, thus,
the prediction resistance is not provided. The nonce for intantiation consists of a random
value with 64-bits of entropy; the nonce is obtained by increasing the call for entropy bits
via the Get_entropy call by 64 bits (i.c., by adding 64 bits to the security_strength value).

A personalization string is allowed, but additional input is not. A total of 3 internal states
are provided. For this implementation, the functions and algorithms are written as separate
routines.

The internal state contains the values for V, Key, reseed_counter, and security strength,
where ¥V and C are bitstrings, and reseed counter and security strength are integers.

In accordance with Table 3 in Section 10.1.1, security strengths of 112, 128, 192 and 256
may supported. Using SHA-256, the following definitions are applicable for the instantiate
and generate functions and algorithms:

1. highest supported security strength=256.
2. Output block (outlen) =256.

3. Required minimum entropy for instantiation = security_strength + 64 (this includes
the entropy required for the nonce).

4. Minimum entropy input length (min length) = security strength + 64 (this
includes the minimum length for the nonce).

Seed length (seedlen) = 440.

6. Maximum number of bits per request (max number _of bits_per request) = 7500
bits.

7. Reseed_interval (reseed_ interval) = 10,000 requests.

8. Maximum length of the personalization string (max_personalization_string_length)
=100.

9. Maximum length of the entropy input (max _length) = 1000.
F.3.2 Instantiation of HMAC_DRBG

This implementation will return a text message and an invalid state handle (-1) when an error
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is encountered.
Instantiate. HMAC_DRBG (...):

Input: integer (requested_instantiation_security_strength), bitstring

personalization_string.

OQutput: string status, integer state_handle.

Process:

Check the validity of the input parameters.

If (requested_instantiation_security strength > 256), then Return (“Invalid
requested_instaptiation_security _strength”, -1).

If (len (personalization string)>100), then Return (“Personalization_string
too long”, -1)

Comment: Set the security_strength to
one of the valid security strengths.

. If (requested security strength < 112), then security_strength =112

Else (requested security strength < 128), then security_strength = 128
Else (requested_security strength < 192), then security_strength =192
Else security strength = 256.

Comment: Get the entropy inptu and
the nonce.

min_entropy = security _strength + 64.

5. (status, entropy_input) = Get_entropy (min_entropy, min_entropy, 1000).

8.
9.

If (status # “Success™), then Return (“Failure indication returned by the
entropy source” || status, -1).

Comment: Invoke the instantiate algorithm.
Note that the entropy _input contains the
nonce.

(¥, Key, reseed_counter) = Instantiate_algorithm (entropy input,
personalization_string).

Comment: Find an unused internal state and
save the initial values.

(status, state_handle) = Find_state_space ().

If (status # “Success”), then Return (“No available state space” || status, -1).

10. internal_state (state_handle) = {V, Key, reseed_counter, security_strength}.
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11. Return (“Success” and state_handle).
Instantiate_algorithm (...):
Input: bitstring (entropy _input, personalization_string).
Output: bitstring (V, Key), integer reseed_counter.
Process:
1. seed material = entropy_input || personalization _string.
2. Set Key to outlen bits of zeros.
3. Set ¥ to outlen/8 bytes of 0x01.
4. (Key, V)= Update (seed_material, Key, V).
5. reseed counter = 0.
6. Return (V, Key, reseed counter).
F.3.3 Generating Pseudorandom Bits Using HMAC_DRBG
The implementation returns a Null string as the pseudorandom bits if an error has been
detected. Ths function uses the Update function specified in Section 10.1.3.2.2.
HMAC_DRBG(...):
Input: integer (state_handle, requested_no_of bits, requested_security_strength).
Output: string (status), bitstring pseudorandom_bits.
Process:
Comment: Check for a valid state handle.

1. If((state_handle > 3) or (internal_state (state_handle) = {Null, Null, 0, 03}),
then Return (“State not available for the indicated state handle”, Null).

Comment: Get the internal state.

2. V=internal state (state_handle).V, Key = internal_state (state_handle).Key,
security_strength = internal_state (state_handle).security_strength,
reseed_counter = internal state (state_handle).reseed_counter.

Comment: Check the validity of the rest of
the input parameters.

3. If (requested no_of bits >7500), then Return (“Too many bits requested”,
Null).

4. If (requested_security strength > security_strength), then Return (“Invalid
requested_security strength”, Null).

Comment: Invoke the generate algorithm.
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6. (status, pseudorandom_bits, V, Key, reseed_counter) = Generate_algorithm
(V, Key, reseed counter, requested number_of bits).

7. If (status # “Success”), then Return (“DRBG can no longer be used. Please re-
instantiate or reseed”, Null).

Comment: Update the internal state.
11. internal_state (state_handle) = {V, Key, security_strength, reseed_counter}.
12. Return (“Success”, pseudorandom_bits).
Generate_algorithm (...):
Input: bitstring (¥, Key), integer (reseed_counter, requested_number of bis).
Output: string status, bitstring (pseudorandom_bits, V, Key), integer reseed_counter.
Process:

1 If (reseed counter > 10,000), then Return (“Reseed required”, Null, V, Key,
reseed_counter).

2. temp = Null.

While (len (temp) < requested _no_of bits) do:

3.1 V=HMAC (Key, V).

32 temp=temp| V.

pseudorandom_bits = Lefimost (requested_no_of bits) of temp.
(Key, V)= Update (additional input, Key, V).

reseed counter = reseed counter + 1.

AN A

7. Return (“Success”, pseudorandom_bits, V, Key, reseed_counter).
F.4 CTR_DRBG Example

F.4.1 Discussion

This example of CTR_DRBG uses AES-128. The reseed and prediction resistance
capabilities are available, and a block cipher derivation function using AES-128 is used.
Both a personalization string and additional input are allowed. A total of 5 internal states
are available. For this implementation, the functions and algorithms are written as separate
routines. The Block Encrypt function uses AES-128 in the ECB mode.

The nonce for instantiation (instantiation_nonce) consists of a 32-bit incrementing counter
(instantiation_counter) appended to the personalization string. The nonce is initialized
when the DRBG is installed (e.g., by a call to the clock or by setting it to a fixed value) and
is incremented for each instantiation.

The internal state contains the values for V, Key, reseed counter, security_strength and
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prediction_resistance_flag, where V and Key are integers, and all other values are integers.

In accordance with Table 4 in Section 10.2.1, security strengths of 112 and 128 may be
supported. Using AES-128, the following definitions are applicable for the instantiate,
reseed and generate functions:

1. highest supported_security_strength= 128,

2. Output block length (outlen) = 128.

3. Key length (keylen) = 128.

4. Required minimum entropy for instantiate and reseed = security strength.
5. Minimum entropy input length (min _length) = security_strength.

6. Maximum entropy input length (max _length) = 1000.

7

. Maximum personalization string input length
(max_personalization_string_input_length) = 500.

8. Maximum additional input length (max_additional_input_length) = 500.
9. Seed length (seedlen) = 256.
10. Maximum number of bits per request (max_number_of bits_per_request) = 4000.

11. Reseed_interval (reseed interval) = 100,000 requests.
F.4.2 The Update Function

Update (...):
Input;: bitstring (provided_data, Key, V).
Output: bitstring (Key, V).
Process:
1. temp = Null.
2. While (len (temp) < 256) do
3.1 V=(V+1)mod2',
3.2 output_block= AES_ECB_Encrypt (Key, V).
3.3  temp = temp || ouput_block.
temp = Leftmost 256 bits of remp.
temp = temp @ provided_data.
Key = Lefimost 128 bits of remp.
¥ =Rightmost 128 bits of temp.
Return (Key, V).

o N oo u s
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F.4.3 Instantiation of CTR_DRBG

This implerhentation will return a text message and an invalid state handle (-1) when an error
is encountered. Block_Cipher_df is the derivation function in Section 9.6.3, and uses AES-
128 in ECB mode as the Block_Encrypt function.

Note that this implementation does not check the prediction resistance_flag, since the
implementation can provide prediction resistance. However, if an application actually
wants prediction resistance for a pseudorandom bitstring, the implementation expects that
prediction_resistance flag =1 during instantiation (i.e., an application may not require
prediction resistance for an instantiation).

Instantiate_CTR_DRBG (...):

Input: integer (requested instantiation_security strength, prediction_resistance_flag),
bitstring personalization_string.

Output: string status, integer state_handle.
Process:

Comment: Check the validity of the input
parameters.

1. If (requested instantiatio_security strength> 128) then Return (“Invalid
requested_instantiation_security Strength”, -1).

2. If (len (personalization_string) > 500), then Return (“Personalization_string
too long”, -1).

3. If (requested instantiation_security strength < 112), then security_strength =
112

Else security strength = 128.
Comment: Get the entropy input.

4. (status, entropy_input) = Get_entropy (security strength, security strength,
1000). ‘

5. If (status # “Success”), then Return (“Failure indication returned by the
entropy source” || status, -1).

Comment: Increment the nonce; actual coding
must ensure that it wraps when it’s storage
limit is reached.

6. instantiation _counter = instantiation_counter + 1.
7. instantiation_nonce = personalization_string || instantiation_counter.
Comment: Invoke the instantiate algorithm.

8. (V, Key, reseed_counter) = Instantiate_algorithm (entropy input,
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instantiation_nonce, personalization_string).

Comment: Find an available internal state and
save the initial values.

9. (status, state_handle) = Find_state_space ( ).
10. If (status # “Success”), then Return (“No available state space” || status, -1).
Comment: Save the internal state.

L1. internal _state (state_handle) = {V, Key, reseed counter, security_strength,
prediction_resistance_flag }.

12. Return (“Success”, state_handle).
Instantiate_algorithm (...):
Input: bitstring (entropy_input, nonce, personalization_string).
Output: bitstring (V, Key), integer (reseed_counter).
Process:

1. seed material = entropy_input || nonce || personalization_string.

seed_material = Block_Cipher_df (seed_material, 256).
Key=0"%, Comment: 128 bits.
V=07, Comment: 128 bits.

(Key, V)= Update (seed_material, Key, V).

reseed counter = 1.

AN O

7. Return (V, Key, reseed counter).
F.4.4 Reseeding a CTR_DRBG Instantiation

The implementation is designed to return a text message as the status when an error is
encountered.
Reseed CTR_DRBG_Instantiation (...):

Input: integer (state handle), bitstring additional _input.

Output: string status.

Process:

Comment: Check for the validity of
state_handle.

1. If ((state_handle > 5) or (internal_state(state_handle) = {Null, Null, 0, 0, 0, }),
then Return (“State not available for the indicated state_handle”).
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Comment: Get the internal state values.

V = internal _state (state_handle).V, Key = internal_state (state_handle).Key,
security strength = internal_state (state_handle).security_strength,
prediction_resistance_flag = internal_state
(state_handle).prediction_resistance_flag.

If (len (additional _input) > 500), then Return (“Additional_input too long”).
min_entropy = security strength + 64.
(status, entropy input) = Get_entropy (min_entropy, min_entropy, 1000).

If (status # “Success™), then Return (“Failure indication returned by the
entropy source” || status).

Comment: Invoke the reseed algorithm.

(V, Key, reseed _counter) = Reseed_algorithm (V, Key, reseed_counter,
entropy_input, additional input).

Comment: Save the new internal state.

internal_state (state_handle) = {V, Key, reseed_counter, security_strength,
reseed_counter, prediction_resistance_flag}.

Return (“Success™).

Reseed_algorithm (...):

Input: bitstring (V, Key), integer (reseed_counter), bitstring (entropy_input,

additional _input).

Output: bitstring (¥, Key), integer (reseed_counter).

Process:
1. seed material = entropy_input || additional input.
2. seed_material = Block_Cipher_df (seed material, 256).
3. (Key, V)= Update (seed material, Key, V).
4. reseed counter=1.
5. Return (V, Key, reseed counter).

F.4.5 Generating Pseudorandom Bits Using CTR_DRBG

The implementation returns a Nu/l string as the pseudorandom bits if an error has been

detected.

CTR_DRBG(...):

Input: integer (state_handle, requested no_of bits, requested_security_strength,
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prediction_resistance_request), bitstring additional_input.

Output: string status, bitstring pseudorandom_bits.

Process:

1.

Comment: Check the validity of state handle.

If ((state_handle > 5) or (internal_state (state_handle) = {Null, Null, 0, 0, 0}),
then Return (“State not available for the indicated state_handle”, Null).

Comment: Get the internal state.

V = internal_state (state_handle).V, Key = internal_state (state_handle).Key,
security strength = internal_state (state_handle).security_strength,

reseed _counter = internal_state (state_handle).reseed_counter,

prediction resistance_flag = internal _state

(state_handle).prediction resistance_flag.

Comment: Check the rest of the input
parameters.

If (requested_no_of bits > 4000), then Return (“Too many bits requested”,
Null).

If (requested_security_strength > security_strength), then Return (“Invalid
requested security strength”, Null).

If (len (additional_input) > 500), then Return (“Additional _input too long”,
Null).

If ((prediction_resistance request = 1) and (prediction_resistance_flag # 1)),
then Return (“Prediction resistance capability not instantiated”, Nu/l).

reseed required flag = 0.

If (reseed _required flag = 1) or (prediction_resistance_request = 1)), then

8.1 status = Reseed CTR_DRBG_Instantiation (state handle,
additional input).

8.2 If (status # “Success”), then Return (status, Null).

Comment: Get the new working state values;
the administrative information was not
affected.

8.3 V=internal_state (state_handle).V, Key = internal_state
(state_handle).Key, reseed counter = internal_state
(state_handle).reseed counter.

8.4 additional input = Null.

8.5 reseed request flag=0.
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Comment: Generate bits using the generate
algorithm.

9. (status, pseudorandom_bits, V, Key, reseed_counter) = Generate_algorithm
(V, Key, reseed_counter, requested number_of bits, additional input).

10. If (status # “Success”), then
10.1 reseed required flag=1.
10.2 Go to step 8.
Comment: Collect bits.

11. internal_state (state handle) = {V, Key, security strength, reseed_counter,
prediction_resistance flag).

Comment: Determine the pseudorandom bits
to be returned.

12. Return (“Success”, pseudorandom_bits).
Generate_algorithm (...):

Input: bitstring (V, Key), integer (reseed_counter, requested_number_of bits)
bitstring addiional input.

Output: string status, bitstring (returned_bits, V, Key), integer reseed_counter.
Process:

1. If (reseed counter > 100,000), then Return (“Failure”, Null, V, Key,
reseed_counter).

2. If(additional input # Null), then
2.1 temp = len (additional input).

2.2 If (temp > 256), then additional _input = Block_Cipher_df
(additional _input, 256).

2.3 If (temp < 256), then additional_input = additional input || 0%~
2.4 (Key, V) =Update (additional_input, Key, V).
3. temp= Null.
4. While (len (temp) < requested number_of bits) do:
4.1 V=(¥+1)mod2%,
4.2  output block = AES_ECB_Encrypt (Key, V).
4.3  temp = temp || ouput_block.

5. returned_bits = Leftmost (requested_number of bits) of temp.
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5
. zeros =07

. (Key, V)= Update (zeros, Key, V)

6 Comment: Produce a string of 256 zeros.
7
8. reseed counter =reseed counter+ 1.
9

. Return (“Success”, returned_bits, V, Key, reseed_counter).
F.5 OFB_DRBG Example

F.5.1 Discussion

This example of OFB_DRBG uses 3 key TDEA. Full entropy is available, and a block
cipher derivation function is not used ; therefore, a nonce is not used. Prediction resistance
is supported. A total of 5 internal states are available. A personalization string is allowed
during instantiation, and additional input is allowed during reseeding and a request for
pseudorandom bit generation. For this implementation, the functions and algorithms are
written as separate routines. The Block_Encrypt function uses 3 key TDEA in the ECB
mode.

The internal state contains the values for V, Key, reseed_counter, security strength and
prediction_resistance flag; V and Key are integers; reseed_counter, security_strength and
prediction_resistance flag are integers.

In accordance with Table 4 in Section 10.2.1, a security strength of 112 is supported. Using
3 key TDEA, the following definitions are applicable for the instantiate, reseed and
generate functions:

1. highest_supported security strength=112.
2. Output block length (outlen) = 64.

3. Key length (keylen) = 168.
4

. Number of bits for entropy input if full entropy is supported and a derivation
function is not used: 232.

W

. Minimum entropy input length (min length) = min_entropy = 232.
6. Maximum entropy input length (max _length) = 232.

7. Maximum personalization string input length
(max_personalization_string input length) = 232.

8. Maximum additional input length (max_additional input _length) = 232.
9. Seed length (seedlen) = 232.
10. Maximum number of bits per request (max_number of bits per request) = 1000.

12. Reseed interval (reseed _interval) = 10,000 requests.
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F.5.2 The Update Function

Update (...):
Input: bitstring (provided data, Key, V).
Output: bitstring (Key, V).
Process:
1. temp = Null
2. While (len (femp) < 232) do
2.1 V=TDEA_ECB Encrypt (Key, V).
2.2 temp=temp | V.
. temp = Leftmost 232 bits of temp.

. Key = Leftmost 168 bits of temp.
V' = Rightmost 64 bits of temp.

7. Return (Key, V).
F.5.3 Instantiation of OFB_DRBG

3
4 temp = temp ® provided data.
5
6

This implementation will return a text message and an invalid state handle (-1) when an error
is encountered.

Note that this implementation does not use the prediction_resistance_flag, since it is
known that prediction resistance is supported. However, if prediction_resistance flag=1,
then a prediction resistance capability is requested for the instantiation.

Instantiate_OFB_DRBG (...):

Input: integer (requested instantiation_security _strength, prediction_resistance_flag),
bitstring personalization_string.

Output: string status, integer state_handle.

Process:

Comment: Check the validity of the input
parameters.

1. If (requested instantiation security_strength > 112) then Return (“Invalid
requested instantiation_security strength”, -1).

2. If (len (personalization_string) > 232), then Return (“Personalization_string
too long”, -1).

3. security strength=112.
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Comment: Get the entropy input.
(status, entropy_input) = Get_entropy (232, 232, 232).

If (status # “Success™), then Return (“Failure indication returned by the
entropy source” || status, -1).

Comment: Invoke the instantiate algorithm.

(V, Key, reseed counter) = Instantiate_algorithm (entropy_input,
personalization_string).

(status, state_handle) = Find_state_space ().
If (status # “Success”), then Return (“No available state space” || status, -1).
Comment: Save the internal state.

internal_state (state_handle) = {V, Key, reseed_counter, security strength,
prediction_resistance_flag).

10. Return (“Success”, state_handle).

Instantiate_algorithm (...):

Input: bitstring (entropy_input, personalization_string).

Output: bitstring (¥, Key), integer reseed counter.

Process:
1. seed material = entropy input ® personalization_string.
2. Key=0"%. Comment: 168 bits.
3. V=0% Comment: 64 bits.
4. (Key, V)= Update (seed_material, Key, V).
5. reseed counter=1.
6. Return (“Success”, V, Key, reseed_counter).

F.5.4 Reseeding the OFB_DRBG Instantiation

The implementation is designed to return a text message as the status when an error is
encountered.

Reseed_OFB_DRBG_Instantiation (...):

Input: integer state handle, bitstring additional _input.

Output: string status.

Process:
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Comment: Check for the validity of
state_handle.

1. If ((state_handle > 5) or (internal_state (state_handle)= {Null, Null, 0, 0}),
then Return (“State not available for the indicated state_handle™).

Comment: Get the necessary internal state
values.

2. V=internal _state (state_handle).V, Key = internal_state (state_handle).Key,
security strength = internal_state (state_handle).security_strength.

3. If (len (additional_input) > 232), then Return (“Additional_input too long”).
Comment: Get the entropy_input.
4. (status, entropy input) = Get_entropy (232, 232, 232).

5. If (status # “Success™), then Return (“Failure indication returned by the
entropy source” || status).

Comment: Invoke the reseed algorithm.

6. (V, Key, reseed counter) = Reseed_algorithm (V, Key, entropy input,
additional _input).

7. internal_state (state_handle).V =V, internal_state (state_handle).Key = Key;
internal_state (state handle).reseed counter = reseed_counter.

8. Return (“Success”).
Reseed_algorithm (...):
Input: bitstring (¥, Key), bitstring (entropy_input, additional _input).
Output: bitstring (¥, Key), integer reseed_counter.
Process:
1. temp = len (additional inpuft).

Comment: If the additional input <232, pad
with zeros.

If (temp < 232), then additional input = additional_input || 232 - temp.
seed material = entropy_input © additional input.
(Key, V) = Update (seed_material, Key, V).

reseed counter = 1.

AN~ CR - o

Return (V, Key, reseed_counter).
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F.5.5 Generating Pseudorandom Bits using OFB_DRBG

The implementation returns a Nu// string as the pseudorandom bits if an error has been
detected. Note that prediction resistance is requested when prediction_resistance request = 1.

OFB_DRBG(...):

Input: integer (state_handle, requested_no_of bits, requested_security strength,

prediction_resistance_request), bitstring additional _input.

Output: string status, bitstring pseudorandom_bits.

Process:

1.

Comment: Check the validity of state _handle.

If ((state_handle > 5) or (internal_state (state_handle)= {Null, Null, 0, 0}),
then Return (“State not available for the indicated state_handle”, Null).

Comment: Get the internal state values.

V= internal_state (state_handle).V, Key = internal_state (state_handle).Key,
reseed_counter = internal _state (state_handle).reseed_counter,

security strength = internal_state (state_handle).security_strength,
prediction_resistance_flag = internal_state

(state_handle).prediction resistance_flag.

Comment: Check the rest of the input
parameters.

. If (requested no of bits > 1000), then Return (“Too many bits requested”,

Null).

If (requested security strength> security_strength), then Return (“Invalid
requested_security strength”, Null).

If (len (additional_inpuf) > 232), then Return (“Additional input too long”,
Null).

If (prediction_resistance_request = 1) and (prediction_resistance_flag # 1)),
then Return (“Invalid prediction resistance request”, Null).

reseed required flag = 0.

8. If ((reseed required_flag = 1) or (prediction_resistance_request = 1)), then do

Comment: Reseed.

8.1 status = Reseed_OFB_DRBG_Instantiation (state_handle,
additional _input).

8.2 If (status # “Success™), then Return (status, Null).
8.3 V= internal_state (state_handle).V, Key = internal_state
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(state_handle).Key, reseed_counter = internal _state
(state_handle).reseed counter.

8.4 additional input = Null.
8.5 reseed required flag=0.

9. (status, pseudorandom_bits, V, Key, reseed_counter) = Generate_algorithm
(V, Key, reseed_counter, requested_number of bits, additional _input).

10. If (status # “Success”), then
10.1 reseed required flag=1.
10.2 Go to step 8.

11. internal_state (state _handle) = {V, Key, security_strength, reseed_counter,
prediction_resistance_flag).

12. Return (“Success”, pseudorandom_bits).
Generate_algorithm (...):

Input: bitstring (¥, Key), integer (reseed_counter, requested number_of bits),
bitstring additional _input.

integer (state_handle, requested_number_of bits).
Output: string status, bitstring returned_bits.
Process:
1. If(reseed counter> reseed interval), then Return (“Reseed required”).
2. If (additional_input # Null), then
2.1 temp =len (additional input).

seedlen -

2.2 If (femp < seedlen), then additional_input = additional_input || 0

femp

2.3 (Key, V)= Update (additional input, Key, V).
3. temp= Null.
4, While (Ien (temp) < requested number of bits) do:
4.1 V==TDEA_ECB_Encrypt (Key, V).
42 temp=temp | V.
5. returned bits = Leftmost (requested number_of bits) of temp.

232

6. zeros=10 Comment: Produce a string of seedlen zeros,

7. (Key, V)= Update (zeros, Key, V)
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8. reseed counter = reseed counter + 1.

Comment: Save the new values of V, Key and
reseed counter.

9. Return (“Success”, returned_bits, V, Key, reseed_counter).
F.6 Dual_EC_DRBG Example

F.6.1 Discussion

This example of Dual EC_DRBG allows a consuming application to instantiate using any
of the recommended elliptic curves, depending on the security strength. A reseed capability
is available, but prediction resistance is not available. Both a personalization_string and
additional_input are allowed. A total of 10 internal states are provided. For this
implementation, the algorithms are provided as inline code within the functions.

The nonce for intantiation (instantiation_nonce) consists of a random value with 64-bits of
entropy; the nonce is obtained by a separate call to the Get_entropy routine.

The internal state contains values for s, curve_type, seedlen, p, a, b, n, P, Q, block_counter
and security strength. In accordance with Table 5 in Section 10.3.2.1, security strengths of
112, 128, 192 and 256 may be supported. SHA-256 has been selected as the hash function.
The following definitions are applicable for the instantiate, reseed and generate functions:

L. highest_supported security strength =256.

2. Output block length (outlen): See Table.

3. Required minimum entropy for instantiation and reseed = security_strength.

4. Minimum entropy input length (min _length): See Table.

5. Maximum entropy input length (max _length) = 1000.

6. Maximum personalization string length (max_personalization_string_length) =
500.

7. Maximum additional input length (max_additional _input_length) = 500.

Seed length (seedlen): See Table.

9. Maximum number of bits per request (max_number_of bits_per_request) =
1000.

10. Reseed interval (reseed_interval) = 10,000.
F.6.2 Instantiation of Dual_EC_DRBG
This implementation will return a test message and an invalid state handle (-1) when an
ERROR is encountered. A DRBG-specific parameter requested_curve_type is required

(rather than optional) for this implementation for a consuming application to select a curve
type. Hash_df is specified in Section 9.6.2.
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Instantiate_Dual_EC_DRBG (...):

Input: integer (requested instantiation_security strength), bitstring
personalization_string, integer requested_curve_type.

Output: string status, integer state handle.
Process:

Comment : Check the validity of the input
parameters.

1. If (requested_instantiation security strength> 256) then Return (“Invalid
requested_instantiation security strength”, -1).

2. If (len (personalization_string) > 500), then Return (“personalization_string
too long”, -1).

3. If ((requested curve type # Prime_field curve) and (requested_curve_type #
Random_binary curve) and (requested curve_type # Koblitz_curve)), then
Return (“Valid curve type not specified”, -1).

Comment : Determine an m that is appropriate
for the requested strength; this will depend
on curve_type.

4, 1If (requested_curve type = Prime_field curve), then

Comment : Choose one of the prime field
curves

4.1 1If (requested_instantiation security strength < 112),then

{security strength=112; seedlen = 224; outlen = 208,
min_entropy input_len =224}

Else if (requested_instantiation security _strength < 128), then

{security_strength =128, seedlen = 256; outlen = 240;
min_entropy_input_len =256}

Else if (requested_instantiation_security _strength < 192), then

{security strength=192;, seedlen = 384; outlen = 368;
min_entropy input len =384}

Else {security_strength = 256;, seedlen = 521; outlen = 504;
min_entropy input_len = 528}.

42  Select elliptic curve P-seedlen, if available. If this curve is not available,
then Return (“Prime_field curve of the correct length not available”, -1).

5. If (requested curve type # Prime_field_curve), then
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Comment: choose one of the binary or
Koblitz curves.

5.1 If (requested_instantiation_security_strength <112), then
{security_strength = 112; seedlen = 233; outlen =216;
min_entropy input_len= 240}
Else if (requested_ instantiation_security_strength < 128), then

{security _strength = 128; seedlen = 283; outlen = 264;
min_entropy_input_len = 288}
Else if (requested _instantiation_security_strength < 192), then
{security strength=192; seedlen = 409; outlen = 392,
min_enropy_input_length =416}
Else {security strength=256; seedlen=57T1; outlen =552,
min_enropy input_length =576}
52 p=0.
53  If (curve_type = Random binary_curve), then select elliptic curve B-

seedlen; if this curve is not available, then Return
(“Random_binary curve of the correct length not available”, -1).

Else select elliptic curve K-seedlen; if this curve is not available, then
Return (“Koblitz_curve of the correct length not available”, -1).

N

Set the point P to the generator G for the curve, and set » to the order of G.
7. Set the corresponding point Q from Annex A.1.

Comment: Request entropy_input.

o]

. (status, entropy_input) = Get_entropy (security strength, min _length, 1000).

0

If (status # “Success”), then Return (“Failure indication returned by the
entropy_input source:” || status, -1).

10. (status, instantiation_nonce) = Get_entropy (64, 64, 1000).

11. If (status # “Success™), then Return (“Failure indication returned by the
random nonce source:” || status, -1).

Comment : Perform the instantiate algorithm.
12. seed material = entropy input || instantiation_nonce || personalization_string.
13.s = Hash_df (seed_material, seedlen).
14. block _counter = 0.

Comment: Find an unused internal state and
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save the initial values.
15. (status, state_handle) = Find_state_space ( ).
16. If (status # “Success”), then Return (status, -1).

17. internal_state (state handle) = {s, curve_type, m, p,a, b, n, P, Q,
block_counter, security strength}.

18. Return (“Success”, state_handle).

F.6.3 Reseeding a Dual_EC_DRBG Instantiation
The implementation is designed to return a text message as the status when an error is
encountered.
Reseed_Dual EC_DRBG_Instantiation (...):

Input: integer state handle,string additional_input_string.

Output: string status.

Process:

Comment: Check the input parameters.

1. If ((state_handle > 10) or (internal_state (state_handle).security_strength = 0)),
then Return (“State not available for the state handle™).

2. If (len (additional _input) > 500), then Return (“Additional_input too long”).

Comment: Get the appropriate state values for
the indicated state handle.

3. s=internal_state (state_handle).s, seedlen = internal_state
(state_handle).seedlen, security strength = internal_state
(state_handle).security_strength.

Comment: Request new entropy_input with
the appropriate entropy and bit length.

3. (status, entropy_input) = Get_entropy (security_strength,
min_entropy input_length, 1000).

4, 1If (status # “Success™), then Return (“Failure indication returned by the
entropy source:”| status).

Comment: Perform the reseed algorithm.
5. seed material = pad8 (s) || entropy_input || additional_input.
6. s= Hash_df (seed_material, seedlen).

7. block_counter=20.
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Comment: Update the changed values in the
state.

8. internal state (state_handle).s = s.
9. internal_state.block counter = block_counter.
10. Return (“Success™).
F.6.4 Generating Pseudorandom Bits Using Dual_EC_DRBG
The implemenation returns a Nu// string as the pseudorandom bits if an error is
encountered.
Dual_EC_DRBG (...):

Input: integer (state_handle, requested_security_strength, requested no_of bits),
bitstring additional _input.

Output: string status, bitstring pseudorandom_bits.
Process:
Comment: Check for an invalid state _handle.

1. If ((state_handle > 10) or (internal_state (state_handle) = 0)), then Return
(“State not available for the state_handle”, Null).

Comment: Get the appropriate state
values for the indicated state _handle.

2. s=internal state (state_handle).s, seedlen = internal_state
(state_handle).seedlen, security_strength = internal_state
(state_handle).security_strength, P = internal_state (state_handle).P, Q =
internal _state (state_handle).Q, block_counter = internal_state
(state_handle).block counter.

Comment: Check the rest of the input
parameters.

3. If (requested number_of bits > 1000), then Return (“Too many bits
requested”, Null).

4. If (requested_security_strength > security_strength), then Return (“Invalid
requested strength”, Null).

5. If (len (additional_input) > 500), then Return (“Additional_input too long”,
Null).

Comment; Check whether a reseed is
required.
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requested number _of _bits

If (block _counter +[ -‘> 10,000, then

outlen

6.1 Reseed_Dual_ EC_DRBG_Instantiation (state handle,
additional_input).

6.2 additional _input = Null.

6.3 s=internal state (state_handle).s, seedlen = internal_state
(state_handle).seedlen, security strength = internal state
(state_handle).security_strength, P = internal state (state handle).P, Q
= internal_state (state_handle).Q, block counter = internal state
(state_handle).block_counter.

Comment: Execute the generate algorithm.

If (additional _input = Null) then additional_input =0

Comment: additional _input set to m zeroes.
Else additional _input = Hash_df (pad8 (additional input), seedlen).

Comment: Produce requested no_of bits,
outlen bits at a time:

8. temp = the Null string.

9. i=0.

10. t =5 @ additional input.

11. s = @(x(t # P)).

12. 7 = o x(s #Q)).

13. temp = temp || (rightmost outlen bits of r ).

14. additional input=0°"" Comment: seedlen zeroes; additional input
is added only on the first iteration.

15. block_counter = block _counter + 1.

16.i=i+1.

17.1f (len (temp) < requested no of bits), then go to step 11.

18. pseudorandom_bits = Truncate (temp, i x outlen, requested _no_of bits).

19.

Comment: Update the changed values
in the state.

internal_state.s = s.
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20. internal_state.block_counter = block_counter.
21. Return (“Success”, pseudorandom_bits).
F.7 MS_DRBG Example

F.7.1 Discussion

This example of MS_DRBG allows a consuming application to request specific values for
¢ and outlen. A reseed capability is available, but prediction resistance is dependent on the
user’s system. Both a personalization_string and additional_input are allowed. A total of 5
internal states are provided. For this implementation, the handling of the DRBG-specific
parameters and the algorithms are provided as separate routines.

The nonce for intantiation consists of a random value with 64-bits of entropy; the nonce is
obtained by increasing the call for entropy bits via the Get_entropy call by 64 bits (i.e., by
adding 64 bits to the security_strength value).

The internal state contains values for n, e, seedlen, outlen, S, block_counter,
security_strength and prediction_resistance_flag.

In accordance with Table 6 in Section 10.3.3.1, security strengths of 112 and 128 may be
supported. SHA-1 has been selected as the hash function. The following definitions are
applicable for the instantiate, reseed and generate functions :

1. highest_supported security strength: Depends on the requested security strength.
2. Output block length (outlen): 8, unless otherwise requested using requested_outlen.

3. Required minimum entropy for instantiation = security_strength + 64 (includes the
randm nonce).

Required minimum entropy for reseed = security strength.
Minimum entropy input length (min _length): min_entropy.

Maximum entropy input length (max _length) = 5000 bits.

N A

Maximum personalization string length (max_personalization_string_length) = 500
bits.

.

Maximum additional input length (max_additional_input _length) = 500 bits.
9. Number of hard bits = 11.
10. Seed length (seedlen): 1g (n) - 8.

11. Maximum number of bits per request (max_number_of bits_per_request) =
200,000 bits.

12. Reseed interval (reseed_interval) = 25,000 blocks of outlen bits.
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F.7.2 Instantiation of MS_DRBG

This implementation will return a test message and an invalid state handle (-1) when an
ERROR is encountered. DRBG-specific parameters (requested_e and requested_outlen)
are provided that will allow a consuming application to optionally select the values for e
and outlen. Hash_df is specified in Section 9.6.2.

If prediction_resistancé_flag =1, then a prediction resistance capability is requested for
the instantiation. If the user’s system is capable of handling prediction resistance (e.g., a
source of randomness is readily available), the user has been instructed to indicate the
ability to provide prediction resistance by setting prediction_resistance_capability = 1
during system configuration.

Let Get_random_modulus be a function that gets a random modulus » that meets the
criteria specified in Section 10.3.3.2.3, step 5.5.

Instantiate_ MS_DRBG (...):

Input: integer (requested_instantiation_security_strength,,
prediction_resistance_flag), bitstring personalization_string, integer
(requested e , requested_outlen).

Output: string status, integer state_handle.
Process:

1. If (requested_ instantiation_security_strength> 128), then Return (“Invalid
requested _instantiation_security_strength”, -1).

2. If ((prediction_resistance_flag = 1) and (prediction_resistance_capability #
1)), then Return (“Cannot support prediction resistance”, -1).

3. If (len (personalization_string) > 500), then Return (“Personalization_string
too long”, -1).

4. If (requested _instantiation security strength < 112), then security_strength =
112

Else security _strength = 128.

5. (status, n, e, seedlen, outlen) = Get_ DRBG_specific_parameters
(security_strength, requested_e, requested_outlen).

Comment: Get entropy_input.
6. min_entropy = security_strength + 64.

(status, entropy_input) = Get_entropy (min_entropy, min_entropy, 5000).
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8. If (status # “Success™), then Return (“Failure indication returned by the
entropy source”, -1).

9. (S, block_counter) = Instantiate_algorithm (entropy_input,
personalization_string, seedlen).

Comment: Find an empty state in the state
space.

10. (status, state_handle) = Find_state_space ().

11. If (status # “Success ), Return (status, -1).
Comment: Store all values in state .

12. internal_state (state_handle) = {n, e, seedlen, outlen, S, block_counter,
security_strength, prediction_resistance_flag}.

13. Return (“Success ”, state_handle).
Get_DRBG_specific_parameters (...).
Input: integer (security_strength, requested_e, requested_outlen).
Output: string (status), integer (n, e, seedlen, outlen).
Process:
Comment: Determine modulus size (i.e.,
lg(m)).
1. If (security strength = 112)then modulus_size = 2048
Else modulus_size = 3072.
Comment: Select the exponent e.
2. If (requested e = 0) or is not provided, then e =3
Else
2.1 e=requested e.

2.2 If((e<3)or(e> (25" - (2 x2" Ig(")))) or (e mod 2 = 0)), then
Return (“Invalid requested e”, -1).
Comment: Determine outlen.

3. If (requested outlen =0) or is not provided, then outlen =8
Else
3.1 outlen =requested_outlen.

3.2 If ((outlen < 1) or (outlen > min d_ lg(n) — 2*security strength 1L
lg(n) * (1 -2/e) 1) or (outlen mod 8 # 0)), then Return
(“Inappropriate value for requested_outlen”, -1).
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4. seedlen = modulus size — outlen. Comment: Determine the seed length.
Comment: Select the modulus #.
5. (status, n) = Get_random_modulus (modulus_size, e).

6. If (status # “Success ), then Return (“Failed to produce an appropriate
modulus”, -1).

7. Return (“Success”, », e, seedien, outlen).
Instantiate_algorithm (...):
Input: bitstring (entropy_input, personalization_string), integer seedlen.
Output: integer (S, block counter).
Process:
1. seed _material = entropy_input || personalization_string.
2. S=Hash_df (seed_material, seedlen).
3. block _counter=0.
4. Return (S, block _counter).
F.7.3 Reseeding an MSDRBG Instantiation
The implementation is designed to return a text message as the status when an error is
returned.
Reseed_MS_DRBG (...):
Input: integer state handle, bitstring additional_input.
Qutput: string status.
Process:

1. If ((state_handle > 5) or (internal_state (state_handle).security _strength =0)),
then Return (“State not available for the indicated state_handle ).

Comment: Get the required state values for
the indicated state _handle.

2. S=internal_state(state_handle).S, seedlen =
internal state(state_handle).seedlen, security_strength = internal_state
(state handle).security_strength.

3. If(len (additional_input) > 500), then Return (“Additional_input too long ”, -
1.
4. min_entropy = security_strength.

5. (status, entropy_inpuf) = Get_entropy (min_entropy, min_entropy, 5000).
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6. If (status # “Success”), then Return (“Failure indication returned by the
entropy_input source ).

7. (S, block counter) = Reseed_algorithm (entropy_input, additional_input, S,
seedlen).

8. internal state (state_handle).S = S, internal_state (state_handle),
block_counter = block_counter.

9. Return (“Success”).
Reseed_algorithm (...):
Input: bitstring (entropy_input, additional_input), integet (S, seedlen).
Output: integer (S, block_counter).
Process:
1. seed material =S || entropy_input || additional_input.
2. S=Hash_df (seed material, seedlen).
3. block counter = 0.
4. Return (S, block_counter).
F.7.4 Generating Pseudorandom Bits Using MS_DRBG
The implementation returns a Null string as the pseudorandom bits if an error is
encountered. If prediction resistance is needed, then prediction_resistance_request = 1.
MS_DRBG (...):

Input: integer (state_handle, requested_no_of bits, requested_security_strength,
prediction_resistance_request), bitstring additional _input.

Output: string status , bitstring pseudorandom_bits.
Process:

1. If ((state_handle > 5) or (internal_state (state_handle).security_strength = 0)),
then Return (“State not available for the indicated state_handle », Null).

Comment: Get the appropriate state for the
indicated state handle.

2. S = internal_state (state_handle).S, n = internal_state (state_handle).n, e =
internal_state (state_handle).e, outlen = = internal_state (state_handle).outlen,
seedlen = internal_state (state_handle).seedlen, security_strength =
internal_state (state_handle).security_strength, block_counter = internal_state
(state_handle). block_counter, prediction_resistance_flag = internal_state
(state_handle). prediction_resistance_flag.

3. If (requested no_of bits > (25000 x outlen)), then Return (“Too many bits
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requested”, Null).

4. If (requested security strength > security_strength), then Return (“Invalid
requested_security_strength”, Null).

5. If (len (additional _input) > 500), then Return (“Additional input too long”,
Null).

6. If (prediction_resistance_request = 1) and (prediction_resistance_flag # 1)),
then Return (“Prediction resistance capability not instantiated”, Null).

7. reseed required flag=0.
8. If ((reseed required flag = 1) or (prediction_resistance_request = 1)), then
8.1 status = Reseed_MS_DRBG (state_handle, additional _input).

8.2 S =internal _state (state_handle).S, block_counter = internal_state
(state_handle).block_counter.

8.3 additional _input = Null.
8.4 reseed request flag=0.

9. (status, pseudorandom_bits, S, block_counter) = Generate_algorithm (n, e,
seedlen, outlen, S, block_counter, requested _number of bits,
additional _input).

10. If (status # “Success™), then
10.1 reseed required flag=1.
10.2 Go to step 8.
11. internal state.S = S, internal_state.block_counter = block counter.
12.  Return (“Success”, pseudorandom_bits).
Generate_algorithm (...):

Input: integer (n, e, seedlen, outlen, S, block counter, requested number_of bits),
bitstring additional _input.

Output: string status, bitstring pseudorandom_bits.
Process:

1. If [(reseed counter + [requested 00711 D > 25,000} , then
- outlen

Return (“Reseed required”, Null).
2. If (additional_input = Null), then additional _input=0
Else additional_input = Hash_df (pad8 (additional_input), seedlen).
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temp = temp || R.

3. temp = the Null string.

4. i=0.

5. s=S8® additional_input.

6. S=[(s°modn)/ 2] Comment: S is an seedlen-bit number.
7. R = (s mod n) mod 27", Comment: R is an outlen-bit number.
8.

9

. additional _input=0""""",

10.i=i+1.

11. block counter = block_counter+1.

12. If (len (temp) < requested_no_of bits), then go to step 6.

13. pseudorandom_bits = Truncate (temp, i x outlen, requested _no_of bits).

14. Return (“Success”, pseudorandom_bits).
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