10.3 Deterministic RBGs Based on Number Theoretic Problems
10.3.1 Discussion

A DRBG can be designed to take advantage of number theoretic problems (e.g., the
discrete logarithm problem). If done correctly, such a generator’s properties of randomness
and/or unpredictability will be assured by the difficulty of finding a solution to that
problem. Section 10.3.2 specifies a DRBG based on elliptic curves; Section 10.3.3
specifies a DRBG based on the RSA integer factorization problem.

10.3.2 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)

10.3.2.1 Discussion

Dual_EC_DRBG (...) is based on the following hard problem, sometimes known as the
“clliptic curve logarithm problem™: given points £ and Q on an elliptic curve of order n,
find @ such that 0 = aP.

Dual_EC_DRBG (...) uses a seed m bits in length to initiate the generation of m-bit
pseudorandom strings by performing scalar multiplications on two random points in an
elliptic curve group, where the curve is defined over a field approximately 2" in size. For
efficiency, m should be kept as small as possible, subject to the security strength required
by the application. For all the NIST curves given in this Standard, m > 163. Figure 18
depicts the Dual_EC_DRBG (...).

seeld T §

I=Tias &4
remed 3

L = x * R N L
opt) 4 00 *) (65 * Q) Biks Biks

IJ—r*S B Q

Tf additiona] ingrap = Hall

Figure 18: Dual_EC_DRBG (...)

The instantiation of this DRBG requires the selection of an appropriate elliptic curve and
curve points specified in Annex E.4 for the desired security strength. The seed used to
determine the initial value (S) of the DRBG shall have entropy that is at least the
maximum of 128 and the desired security strength (i.e., entropy > max (128, strength). Its
length shall be m bits. Further requirements for the seed are provided in Section 8.4,
When optional additional input (additional _input) is used, the value of additional _input is
arbitrary, in conformance with Section 9.8.3, but it will be hashed to an m-bit string.
Figure 19 depicts the insertion of test input for the seed and the additional _input. The tests
shall be run on the output of the generator. Validation and Operational testing are
discussed in Section 11. Detected errors shall result in a transition to the error state.

seed 4
Test Input M_E-‘ 3
L f N s K R | Extract
(Opt.) additional ""GSJ_'I ¢ (X(; P Iﬁ ’|° (xS Q‘-l_‘ Rits
t

input [
Test InpugEB; P Q

Pseudorandom
Bits

Figure 19: Dual_EC_DRBG (...) with Tests

10.3.2.2 Interaction with Dual_EC_DRBG {(...)
10.3.2.2.1 Instantiating Dual EC_DRBG {(...)

Prior to the first request for pseudorandom bits, Dual EC_DRBG (...) shall be instantiated
using the following call:
status = Instantiate_Hash_DRBG ([usage class, | requested_strength,
prediction_resistance_flag [, integer ([requested_curve_type] [, max_ctr])])
as described in Section 9.6.1, with the addition of the optional requested_curve_type and
max_ctr parameters. requested curve_type is used to specify a class of elliptic curves from
which the instantiated elliptic curve is to be selected. max_ctr indicates the maximum
number of steps that may be taken along the curve before the DRBG must be seeded.

10.3.2.2.2 Reseeding a Dual_EC_DRBG (...) Instantiation

When a DRBG instantiation requires explicit reseeding (see Section 9.7), the DRBG shall
be re- instantiated (i.e., reseeded) using the following call:

status = Reseed_ Dual_ EC_DRBG_Instantiation ([usage_class,]

as described in Section 9.7.2.
10.3.2.2.3 Generating Pseudorandom Bits Using Dual_EC_DRBG (...)

An application shall request the generation of pseudorandom bits by Dual EC_DRBG
(...) using the following call:

(status, pseudorandom_bits) = Dual_EC_DRBG ([usage_class, | requested _no_of bits,
requested_strength, additional_input_flag)
as described in Section 9.8.2.
10.3.2.2.4 Inserting Additional Entropy into the State Using Dual_EC_DRBG {(...)

Additional entropy may be inserted into the state of the Dual EC_DRBG (...) between
requests for pseudorandom bits as follows:

(status) = Add_Entropy_to_Dual EC_DRBG ([usage_class])
as described in Section 9.9.

10.3.2.3

10.3.2.3

Specifications

.1 General

The instantiation of Dual_EC_DRBG (...) consists of selecting an appropriate elliptic
curve and point pairing from Annex E.4 and obtaining a seed that is used to determine an
initial value (S) for the DRBG that is one element of the initial state. The state consists of:

1.

6.

(Optional) The usage_class of the DRBG instantiation; if the DRBG is used for
multiple usage_classes, requiring multiple instantiations, then the usage class
shall be indicated, and the implementation shall accommodate multiple states
simultaneously; if the DRBG will be used for only one usage_class, then the
usage class may be omitted,

A counter (ctr) that indicates the number of requests to Dual_EC_DRBG (...)
during the current instance,

. An optional max_counter may be provided, which will be checked for automatic

reseeding of the Dual_EC_DRBG (...),

A value () that is updated during each request for pseudorandom bits.

The elliptic curve domain parameters (curve_type, m. p]. 4, b, n), where
curve_type indicates a prime field Fy, or a pseudorandom or Koblitz curve over the
field is F2" : @ and b are two field elements that define the equation of the curve,
and # is the order of the point P; one of the binary curve types may be requested at
initialization; otherwise, the default curve_type 0, indicating mod p, will be used,
Two points P and Q on the curve; the generating point of the curve will be used as
P,

The security strength provided by the instance of the DRBG; the curve will be
selected to provide a maximum of requested_strength bits of security,

A prediction_resistance_ flag that indicates whether or not prediction resistance is
required by the DRBG, and

(Optional) A record of the seeding material in the form of a one-way function that
is performed on the seed for later comparison with a new seed when the DRBG is
reseeded; this value shall be present if the DRBG will potentially be reseeded; it
may be omitted if the DRBG will not be reseeded.

The variables used in the description of Dual_EC_DRBG (...) are:

a, b

Two field elements that define the equation of the curve.

additional _input Optional additional input. A bitstring returned by

Get_additional_input(), a function that prompts the user to
supply an input . It will be hashed and truncated to m bits.

additional_input_flag A flag that indicates whether or not additional input may be

used, with values as follows:

0 = None requested, return 0.

1 = Request additional_input, but return 0 if no input is
available.

B The output block length of the hash function.

ctr A count of the number of iterations of the of
Dual_EC_DRBG (...) since the last reseeding.

curve_type Either 0,1,2 indicating a curve over a prime field, a random

binary curve, or a Koblitz curve, respectively.

E
f

G

An elliptic curve defined over F, or F,"

The cofactor of the curve: 1 for all prime field curves, 2 or 4
for the binary curves. Comment: This value will be implicit
from the curve_type and a.

A generating point of prime order » on the curve.

Get_entropy (min_entropy,min_length, max_length)

i
m
max (4, B)

max_ctr

min_entropy

n
old_transformed_seed

order P
P
PO

A function that acquires a string of bits from an Approved
entropy source. The parameters indicate the minimum
entropy to be provided in the returned bit string, and the
limits between which the length of that string must lie (i.c.,
min_length and max_length). Dual_EC_DRBG (....) will
always specify (min_length - max_length) = m.

A temporary value that is used as a loop counter.

Length in bits of the internal state S; the curve is defined
over a field with approximately 2" elements.

The maximum of the values 4 and B.

The maximum number of steps taken along the curve before
the DRBG must be reseeded. When counter reaches 100,000,
a new seeding is recommended (see Annex D.3.2).

A value used in the request to Get_entropy (...) to indicate
the minimum entropy to be provided.

Comment: In fact, the value of strength is used in this
determination, and strength is always at least

requested strength.

The order of the point P on the curve.

A record of the seed_material used in this previous instance
of the DRBG.

The order of the point P. Note: For the NIST approved
curves, the order of Q equals the order of P.

The modulus when curve_type = 0 (prime field); an m-bit
prime.

Random points on the elliptic curve E, such that each
generates a large cyclic subgroup on E. The generating point
G will be used as P.

prediction_resistance_flag

pseudorandom_bits
R
requested curve_ type

requested_no_of bits

requested stength
s

An indication of whether or not prediction resistance is to be
provided by the DRBG.

The pseudorandom bits produced by the DRBG.

A value from which pseudorandom bits are extracted.

The curve_type can be specified as input to

Initialize Dual_EC_DRBG (...); if none is requested the
default value of 0 is assigned.

The number of pseudorandom bits to be returned on a call to
Dual EC_DRBG (...).

The security strength of the bits requested from the DRBG.
A temporary value.

seed_material
seedlen
state

status

strength

temp
temp_input
transformed_seed

A value that is initially determined by a seed, but assumes
new values during each request of pseudorandom bits from
the DRBG.

The seed used to derive the initial value of S.

The length of the seed_material.

The state of the DRBG that is carried between calls to the
generator. In the following specifications, the entire state is
([usage_class, | counter, max_counter, S, curve_type,) a,
b, n, P, Q, strength, prediction_resistance flag [,
transformed_seed)). A particular element of the state is
specified as state.element, e.g., state. S

The status returned from a function call, where status =
“Quccess” or an indication of a failure. Failure messages are:
Invalid requested strength.

Failure indication returned by the entropy source.

State not available for the indicated usage_class.
Entropy source failure.

Invalid additional_input flag value.

. Failure from request for additional input.

The maximum strength of an instance of the DRBG (i.e., 80,
112, 128, 192 or 256).

A temporary value.

A temporary value.

A record of the seed_material used in the current instance of
the DRBG.

Truncate (bits, in_len, out_len)

usage _class

x(A)

*

A function that inputs a bit string of in_len bits,

returning a string consisting of the leftmost our_len bits of
input. If in len < out len, the input string is padded on the
right with (out_len - in_len) zeroes, and the result is
returned.

The usage_class of a DRBG instance. This optional integer
parameter may be used to differentiate instantiations of the
Dual_ EC_DRBG (...), e.g., when there are multiple
purposes being serviced that require differing strengths.
The x-coordinate of the point 4 on the curve E.

A mapping from field elements to non-negative integers,
which takes the bit vector representation of a field element
and interprets it as the binary expansion of an integer.
Section 10.3.2.2.5 includes details of this mapping.

Scalar multiplication of a point on the curve.

10.3.2.2.2 Instantiation of Dual_EC_DRBG (...)

The following process or its equivalent shall be used to instantiate the Dual EC_DRBG
(...) process. Let Hash (...) be an Approved hash function for the security strengths to be
supported. If the DRBG will be used for multiple security strengths, and only a single hash

function will be available, that hash function shall be suitable for all supported security
strengths (see SP 800-57).
Instantiate Dual_EC_DRBG (...):
Input: integer ([usage_class,] requested_strength, prediction_resistance_flag [, integer
([requested _curve_type] [, max_ctr])]
Output: string status.
Process:

1. If (requested_strength> 256) , then Return (“Invalid requested_strength”).
Comment : Determine m appropriate
for the requested strength : this will
depend on curve_type.

2. If (requested_curve_type = 0), then Comment : choose one of the prime
field curves :
If drequested_strength < 96), then {strength =96, m= 192}'l .| Comment [ebb1]: Page: 126
Else if (requested strength < 112), then {strength =112, m =224} Sgﬁt‘s“f’s‘ﬁiﬁ,ﬂm 2?1‘;: P;':?f;j;’;;‘g‘“ s
Else if (requested strength <128),then {strength=128, m =256} strength of 80 bits ?
Else if (requested strength < 192), then {strength=192, m = 384}
Else if (requested strength <256), then {strength =256, m =
521}
Comment : There is no NIST curve
with m=512.
3. If (requested curve_type # 0), then Comment : choose one of the binary
curves.
If (requested _strength < 80), then { strength = 80, m =163}
Else if (requested strength <112), then {strength=112, m= 233}
Else if (requested strength < 128), then {strength =128, m= 283}
Else if (requested_strength < 192), then {strength=192, m = 409}
Else if (requested strength < 256), then {strength =256,
m =571
4. Choose a suitable elliptic curve £ defined over Fp based on
requested curve_fype, where p is an m-bit prime, or F,"” from Annex E.4.
5. Set the point P to the generator G and determine the order of P o [Comment {ebb2]: Page: 128]
6. [Select the appropriate O from Annex EU. e . — Doniteee that Ris (et Acltvi sl
Comment: Request seed_material of [ﬁ“gg’;‘&ﬂ’:g{;:::g . i‘?‘y s]
length m and the appropriate amount restrictions ?
of entropy.
7. min_entropy = max (128, strength).
8. (status, seed material) = Get_entropy (min_entropy, M,_ m). o Comment [ebb4]: Page: 129
9. If (status = "Failure"), then Return ("Failure indication returned by the entropy T‘éf:::"'"—'e"gm [Ehotiegueste et

source").
10. seedlen = ||seed_material|.
11. (Optional) Get additional input and combine with the seed _material.
11.1 (status, additional_inpuf) = Get_additional_input ().
11.2 If (status = “Failure”), then Return (“Failure from request for additional
input”).
11.3 seed_material = seed_material || additional _input.

Comment : Perform a one-way
function on the seed values for later
comparison

12. (Optional) transformed seed = tHash (seed_material).
13.ctr=0.
14. S = Hash_df (seed_material, seedlen). Comment : See Section 9.6.3.2. e (s:gm:gen: [eb:s]: Pager: 129 =
’ 0Nz T h .
15. If max_ctr not present as an input parameter, then max_ctr = 0. S e ot

Comment : Setting max_counter =0
means that there is no maximum.
16. state = {[usage class,] ctr, max_ctr, S, curve_type, m, pl, a b,n, P, QO
strength, prediction_resistance_flag [, transformed_seed]}.
17. Return ("Success").
10.3.2.2.3 Reseeding of a Dual_EC_DRBG (...) Instantiation

The following process or its equivalent shall be used to reseed the Dual_ EC_DRBG ()
process, after it has been instantiated. Let Hash (...) be an Approved hash function for the
security strengths to be supported.
Reseed_Dual_EC_DRBG_Instantiation (...):
Input: integer [usage_class].
Output: string status.
Process:
1. If a state is not available for the indicated usage_class, Return ("State not
available for the indicated usage_class").
2. Get the appropriate state values for the indicated usage_class, ¢.g., S = state.S,
m = state.m, strength = state.strength, old_transformed_seed =
state.transformed_seed.
3. Perform steps 7-13 of Instantiate_Dual_ EC_DRBG (...).
3.1 min_entropy = max (128, strength).
3.2 (status, seed_material) = Get_entropy (min_entropy, m, m).
3.3 If (status = “Failure”), then Return (“Failure indication returned by the
entropy source”).
3.4 seedlen = || seed material ||.
3.5 (Optional) Get additional input and combine with the seed material.
3.5.1 (status, additional_input) = Get_additional_input ().
3.5.2 If (status = “Failure”), then Return (“Failure from request for
additional input”).
3.5.3 seed material = seed_material || additional_input.
3.6 transformed _seed = Hash (seed_material).
3.7 cr=0.
4. 1f (transformed seed = old_transformed_seed), then Return (“Entropy source
failure™).
5. temp = Hash_df ((S || seed_material), B).
S = Truncate (temp, B, m).
7. Update the changed values in the state.
7.1 state.S=S.
7.2 state.transformed seed = transformed _seed
7.3 state.ctr =ctr.

=

8.

Return (“Success”).

10.3.2.2.4 Generating Pseudorandom Bits Using Dual_EC_DRBG (...}

The following process or its equivalent shall be used to generate pseudorandom bits.
Dual EC_DRBG (...):
Input: integer ([usage class, | requested_no_of bits. requested_strength,

additional _input_flag).

Qutput; string status, bitstring pseudorandom_bits.
Process:
1. If a state is not available for the indicated usage class, Return ("State not

available for the indicated usage_class", Null).

2. Get the appropriate state values for the indicated usage_class, e.g., S = state.S,
m = state.m, strength = state.strength, P = state.P, Q = state.(, ctr = state.ctr,
max_ctr = state.max_ctr, prediction_resistance_flag =
state.prediction_resistance_flag.

3. If (requested strength > strength), then Return ("Incorrect
requested_strength", Null).

4. If ((additional_input flag <0) or (additional input flag > 1)), then Return
("Invalid additional input_flag value", Null).

5. If (additional input flag=0), then additional input =0 Comment: m zeroes
Else do
5.1 (status, temp_input) = Get_additional_input ().

5.2 If (status = “Failure”), then Return (“Failure from request for
additional _input”, Null).
5.3 temp input = Hash (temp_input).
5.4 additional_input = Truncate (temp_input, B, m).
Comment: Determine whether
reseeding is required.

6. temp = the Null string.

7. i=0.

8. If ((max ctr>0) and (ctr = max_ctr)), then
8.1 status = Reseed_Dual EC_DRBG ([usage_class]).

8.2 If (status # “Success”), then Return (status, Null).
9. s =S @ additional_input. Comment: s is to be interpreted as an m-
bit unsigned integer. To be precise, s
should be reduced mod n; the scalar *
will affect this.
10. S = ¢(x(s * P)). Comment: S is an m-bit number.
11.R =o(x(S * Q). Comment: R is an m-bit number. See

footnote 1.

1 The precise definition of ¢(x) used in steps 12 and 13 depends on the field representation of the
curve points. In keeping with the convention of FIPS 186-2, the following elements will be
associated with each other:

lCmr | Cma | - |C1]Col , abitstring, with ¢, being leftmost

12. temp = temp || R.

13.i=i+1.

14. etr = ctr+l.

15. If (||temp|| < requested_no_of bits), then go to step 7/

16, pseudorandom_bits = Truncate (femp, i X B, requested no_of bits).
\7. If (prediction_resistance_flag = 1). then

17.1 status = Reseed_Dual_EC_DRBG ([usage class]).
17.2 If (status # “Success™), then Return (status. Null),
Else Update the changed values in the state.
17.3 state.S = 5.
17.4 state.ctr = cir.

18. Return (“Success”, pseudorandom_bits).
[.3.2.2.1 Adding Additional Entropy to Dual_EC_DRBG (...)

The Dual_EC_DRBG (...) may be reseeded at any time. There is also the additional

input parame:cr that allows a bitstring to be added to the current state (seed) whenever
Dual EC_DRBG (...) is invoked.

Add_Entropy_to_Dual EC_DRBG (...):
Input: integer ([usage class,| always_update_flag).
Qutput: string stafus.
Process:

1.

2.

If a state for the indicated usage class is not available, then Return (“State not
available for the indicated usage class™, Null).

Get the appropriate state values for the indicated usage _class, e.g., S = state.S,
m = state.m, strength = state.strength, P = state.P. Q = state.Q, ctr = state.cr,
max ctr = state.max_ctr, prediction_resistance_flag =
state.prediction_resistance_flag.
(status, additional_entropy) = Get_entropy (1, 1, inlen).

If (status = “Failure”), then Return (“Failure from request for additional
entropy™).

If ((additional _entropy = Null) and (always_update_flag = 0)), then Return
(“No update performed”).

. Perform steps 5.3-17 of Dual_ EC_DRBG (...).

6.1 temp input=Hash (temp_input).

6.2 additional_input = Truncate (temp_input, B, m).
Comment: Determine whether
reseeding is required.

Thus, any

Z 2™ L +e22 + 012‘+ c € Z;
Fa: cp2™ + . +0222 + ¢2'+ ¢ modp € GF(p) ;
Fb: cpit™ @ ... @t €B ct®cy € GF(2’") whenapolynomlal basis is used,

Fe: ¢y © cpe zﬁ @ ¢, 3[3 @) coﬁ e GF(2"), when a normal basis is used.

field clement x of the form Fa, Fb or Fc will be converted to the integer Z or bitstring B, and vice

versa, as appropriate.

This demands inpul each time unless the
additional_input_flag = 0. Is this what is
wanted 7

e -r.omnmnt [ebb6]: Page: 132

6.3 temp = the Null string.
64 i=0.
6.5 If ((max ctr> 0) and (ctr = max_ctr)), then
6.5.1 status = Reseed_Dual_EC_DRBG ([usage_class]).
6.5.2 If (status + “Success™), then Return (status, Null).
6.6. s =S @ additional input. Comment: s is to be interpreted as an
m-bit unsigned integer. To be precise,
s should be reduced mod n; the scalar
* will affect this.

6.7 S=0o¢(x(s *P)). Comment: S is an m-bit number.
6.8 R =o(x(S*Q)). Comment: R is an m-bit number. See
footnote.

6.9 temp=temp || R.

6.10 i=i+1.

6.11 ctr = cirtl.

6.12 If (||temp|| < requested_no_of bits), then [go to step 3{

6.13 pseudorandom_bits = Truncate (femp, i x B, requested_no_of_bits).

6.14 If (prediction_resistance_flag = 1), then
6.14.1 status = Reseed_Dual EC_DRBG ([usage class]).
6.14.2 If (status # “Success™), then Return (status, Null).

Else Update the changed values in the state.
6.14.3 state.S = S.
6.14.4 state.ctr = ctr.
7. Return (“Success”).
10.3.2.3.7 Implementation Considerations

[To be inserted]
10.3.2.3 Generator Strength and Attributes

The particular curve used is based on strength, which is selected from one of five security
levels and is always at least requested strength. The curves and associated security levels
are those given in Section 1.2 of FIPS 186-2; they are meant to correspond to the strengths
of various standard symmetric encryption algorithms.

There are three curves associated with each security level, one defined over a prime field
GF(p) and two over a binary field GF(2™), where 2" ~ p . The mod p curves, assigned
curve_type 0, are used by default. Any of these three curves may be used for the security
level.

Initial seeding is accomplished with a call to Get_entropy(...), which returns a bitstring
of a specified length and entropy. The Dual_EC_DRBG (...) specifies max (128,
strength) bits of entropy.

10.3.2.4 Reseeding and Rekeying

The reseeding process is covered in 10.3.2.2.3 . Reseeding may be performed
“automatically”, by using a nonzero value for max_ctr . Alternatively, or in addition, a call
to Reseed_Dual EC_DRBG_Instantiation (...) can be made at any time.

Comment [ebb7]: Page: 133

This demands input each time unless the
additional_input_flag = 0. Is this what is
wanted ?

The Dual_EC_DRBG (...) is not keyed per se; however, the additional_input feature may
be used to effect keying, if desired.

