Below are Table 4 from Section 10.3.1, and the example in Appendix F.5. I have some

questions,

1. In the table, which entries are required for the curve to work properly, and which
entries are really dependent on the requested security strength during instantiation?
For example, if a consuming application requests instantiation at the 112-bit security
level, theoretically, any curve could be used. If it is determined that the P-256 curve
will be used in this case, do all the values in the P-256 column need to be used, or can
lesser values be used in some cases.

a. Can the min_length, for example, be reduced to 224? Why is the min length
about twice the minimum entropy anyway? To give a big security cushion?

b. Can the seedlen be 224, as it was for the P-224 curve, or must it be 2567
c. Can the max_outlen be 208, or must it be 240?

These same questions apply if any curve is used to support a security strength < the

max. that it can support?

2. Please check the blue text that is highlighted in gray. Does it make sense?

Table 4: Definitions for the Dual_EC_DRBG

256

P-384 P-521
Lo
P-256
See SP 800-57
Supported security strengths
highest_supported See SP 800-57
security_strength
| Output block length (max_outlen = 208 368 504
largest multiple of 8 less than 240
seedlen - (13 + log, (the cofactor))
Required minimum entropy for security _strength
instantiate and reseed
’ Minimum entropy input length 224 384 528
(min _length =8 x [seedlen/8 |) 256
Maximum entropy input length < 2" bits
(max _length)
Maximum personalization string <25 bits
length
(max_personalization_string length)
Supported security strengths See SP 800-57
Seed length (seedlen = m) 224 384 521

P-384 P-521
224
P-256
Appropriate hash functions SHA-1, SHA- | SHA-224, SHA- SHA-256,
224, SHA-256, | 256, SHA-384, SHA-384,
SHA-384, SHA- | SHA-512 SHA-512
512
max_number_of bits_per_request max_outlen x reseed_interval
Number of blocks between < 2% blocks
reseeding (reseed _interval)

F.5 Dual_EC_DRBG Example

This example of Dual_EC_DRBG allows a consuming application to instantiate using
any of the threefeur prime curves. The elliptic curve to be used is selected during
instantiation in accordance with the following:

requested_instantiation_security_strength | Elliptic Curve
<112 P-256
113 -128 P-256
129 -192 P-384
193 — 256 P-512

A reseed capability is available, but prediction resistance is not available. Both a
personalization_string and an additional input are allowed. A total of 10 internal states
are provided. For this implementation, the algorithms are provided as inline code within
the functions.

The nonce for instantiation (instantiation nonce) consists of a random value with
security strength/2 bits of entropy; the nonce is obtained by a separate call to the
Get_entropy_input routine than that used to obtain the entropy input itself.

The internal state contains values for s, seedlen, p, a, b, n, P, Q,+—etd; block counter and
security strength. In accordance with Table 4 in Section 10.3.1, security strengths of 112,
128, 192 and 256 may be supported. SHA-256 has been selected as the hash function.

The following definitions are applicable for the instantiate, reseed and generate functions:

1. highest supported security strength = 256.
2. Output block length (outlen): See Table 4.

3. Required minimum entropy for the entropy input at instantiation and reseed =
security strength.

4. Minimum entropy input length (min _length): See Table 4.
5. Maximum entropy input length (max length) = 1000 bits.

6. Maximum personalization string length (max_personalization string length)
= 800 bits.

7. Maximum additional input length (max_additional input length) = 800 bits.
8. Seed length (seedlen): See Table 4.

9. Maximum number of bits per request (max_number_of bits per request) =
1000 bits.

10. Reseed interval (reseed interval) = 16,0002 blocks.
F.5.1 Instantiation of Dual_EC_DRBG

This implementation will return a text message and an invalid state handle (-1) when an
ERROR is encountered. Hash_df is specified in Section 10.4.1.
Instantiate_Dual EC_DRBG (...):

Input: integer (requested_instantiation_security strength), bitstring
personalization_string.

QOutput: string status, integer state_handle.
Process:

Comment : Check the validity of the input
parameters.

1. If (requested instantiation_security strength > 256) then Return (“Invalid
requested_instantiation_security_strength”, -1).

2. If (len (personalization_string) > 800), then Return (“personalization_string
too long”, -1).

Comment : Select the prime field curve in
accordance with the
requested_instantiation_security strength

3. If requested_instantiation_security strength < 112), then

{security_strength = 112; seedlen = 256; outlen = 240;
min_entropy_input len =256}

Else if (requested_instantiation_security strength < 128), then

{security strength = 128; seedlen =?256; outlen = 240,
min_entropy _input len =256}

Else if (requested_instantiation_security strength <192), then

{security strength =192;, seedlen = 384; outlen = 368;
min_entropy input len =384}

Else {security strength =256;, seedlen = 521; outlen = 504;
min_entropy input_len = 528}.

4. Select the appropriate elliptic curve from Appendix A using the Table in
Appendix F.5 to obtain the domain parameters p, a, b, n, P, and Q.
Comment: Request entropy input.

5. (status, entropy input) = Get_entropy_input (security strength,
min_entropy_input length, 1000).

6. If (status # “Success”), then Return (“Eailure-indicationreturned
byCatastrophic failure of the entropy input source:” || status, -1).

7. (status, instantiation _nonce) = Get_entropy_input (security strength/2,
security strength/2, 1000).

8. If (status # “Success”), then Return (“Catastrophic failure of Eailure
indieationreturned-by-the random nonce source:” || status, -1).

Comment: Perform the instantiate algorithm.

9. seed _material = entropy_input || instantiation_nonce ||
personalization_string.

10. s = Hash_df (seed material, seedlen).

ll—r—eld=etxs+D)
2. block counter =0.

Comment: Find an unused internal state and
save the initial values.

1312. (status, state_handle) = Find_state_space ().
H413. If (status # “Success”), then Return (status, -1).

1514. internal_state (state handle) = {s, seedlen, p, a, b, n, P, O, ¥—otd:
block counter, security strength}.

3615. Return (“Success”, state _handle).

F.5.2 Reseeding a Dual_EC_DRBG Instantiation

The implementation is designed to return a text message as the status when an error is
encountered.

Reseed_Dual EC_DRBG_Instantiation (...):

Input: integer state handle, string additional input_string.

Output: string status.

Process:

Comment: Check the input parameters.

7.
8.
9.

If ((state_handle < 0) or (state_handle > 9) or (internal_state
(state_handle).security strength = 0)), then Return (“State not available for
the state_handle”).

If (len (additional_input) > 800), then Return (“Additional input too long”).

Comment: Get the appropriate state values
for the indicated state _handle.

s = internal_state (state_handle).s, seedlen = internal_state
(state_handle).seedlen, security strength = internal_state
(state_handle).security strength.

Comment: Request new entropy input with
the appropriate entropy and bit length.

(status, entropy input) = Get_entropy_input (security strength,
min_entropy_input length, 1000).

If (status # “Success™), then Return (“Catastrophic failure of Failure

indicationreturned-by-the entropy source:”|| status).

Comment: Perform the reseed algorithm.

. seed _material = pad8 (s) || entropy_input || additional input.

s = Hash_df (seed material, seedlen).

Comment: Update the changed values in the
state.

internal_state (state_handle).s = s.
internal_state.block counter = 0.

Return (“Success”).

F.5.3 Generating Pseudorandom Bits Using Dual_EC_DRBG

The implemenation returns a Null string as the pseudorandom bits if an error is
encountered.

Dual_EC_DRBG (...):
Input: integer (state_handle, requested security strength, requested no of bits),

bitstring additional input.

Output: string status, bitstring pseudorandom_bits.

Process:

Comment: Check for an invalid
state_handle.

1. If ((state_handle < 0) or (state_handle > 9) or (internal_state (state_handle)

= 0)), then Return (“State not available for the state handle”, Null).

8.
9.

Comment: Get the appropriate state
values for the indicated state_handle.

s = internal_state (state_handle).s, seedlen = internal_state
(state_handle).seedlen, P = internal_state (state_handle).P, Q =
internal_state (state_handle). Q, r—etd—internal—state-(state—handle)r—old:
block counter = internal_state (state_handle).block counter.

Comment: Check the rest of the input
parameters.

If (requested number of bits > 1000), then Return (“Too many bits
requested”, Null).

If (requested_security strength > security_strength), then Return (“Invalid
requested_strength”, Null).

If (len (additional input) > 800), then Return (“Additional_input too long”,
Null).

Comment; Check whether a reseed is
required.

requested number of bits

If (block counter +[-‘> -1-0;0002_32), then

outlen

6.1 Reseed_Dual EC_DRBG_Instantiation (state_handle,
additional _input).

6.2 If (status # “Success”), then Return (status).

6.3 s =internal_state (state_handle).s, block counter = internal_state
(state_handle).block counter.

6.4 additional input = Null.

Comment: Execute the generate algorithm.

. If (additional_input = Null) then additional_input = 0

Comment: additional_input set to m zeroes.
Else additional input = Hash_df (pad8 (additional input), seedlen).

Comment: Produce requested no of bits,
outlen bits at a time:

temp = the Null string.
i=0.

10. t=s @ additional input.
11. 5 = o(x(t *P)).

12. r = o(x(s *Q)).

L He=r—voildythenRetura(~BRROR-eutputs-mateh™Null)-
——alel ==

15—temp = temp || (rightmost outlen bits of r).

1614. additional_inpur=0°e", Comment: seedlen zeroes; additional input
is added only on the first iteration.

+715. block counter = block counter + 1.

1816. i=i+1.

1917. If (len (temp) <
requested no_of bits), then go to
step 10.

2018. pseudorandom_bits = Truncate (temp, i x outlen, requested_no_of bits).

Comment: Update the changed
values in the state.

2+19. internal state.s = s.
23—internal_state.block counter = block counter.

2421. Return (“Success”, pseudorandom_bits).

Email note to interested parties:

A draft NIST Special Publication (Draft SP 800-90, Recommendation for Random
Number Generation Using Deterministic Random Bit Generators) is available for public
comment at http://csrc.nist.gov/publications/drafts.hitml. Comments should be submitted
to ebarker@nist.gov by Wednesday, February 1, 2006. Please place “Comments on SP
800-90” in the subject line.

Instructions to Patrick:
Please place the following on the csrc page:

December 16, 2005: A draft NIST Special Publication (Draft SP 800-90,
Recommendation for Random Number Generation Using Deterministic Random Bit
Generators) is pvailablefessij for public comment. Comments should be submitted to
ebarker@nist.gov by Wednesday, February 1, 2006. Please place “Comments on SP 800-
90” in the subject line.

The draft document is attached.

Instructions to Larry Bassham:
Please place the following on the http://csrc.nist.gov/CryptoToolkit/tkrng.html page:

A draft NIST Special Publication (Draft SP 800-90, Recommendation for Random
Number Generation Using Deterministic Random Bit Generators) is bvailablgimaaz] for
public comment. Comments should be submitted to ebarker@nist.gov by Wednesday,
February 1, 2006. Please place “Comments on SP 800-90” in the subject line.

Patrick will be placing the document on the drafts page.

