10.1.4 HMAC_DRBG(...)
10.1.4.1 Discussion

HMAC_DRBG (...) uses several occurrences of an Approved keyed hash function and
an Approved hash function.. The same Approved hash function shall be used throughout.
The hash function used shall meet or exceed the security requirements of the consuming
application. Table 1 in Section 10.1.1 specifies the entropy and seed length requirements
that shall be used for each hash function in order to meet a specified security level.

HMAC_DRBG (...) is specified using an internal functions: Update (...). This function is
called during the instantiation, pseudorandom bit generation and reseeding processes to
adjust the state when new entropy or additional input is provided.

10.1.4.2 Interaction with HMAC_DRBG (...)
10.1.4.21 Instantiating HWAC_DRBG {(...)
Prior to the first request for pseudorandom bits, the HMAC_DRBG (...) shall be

instantiated using the following call:

(status, usage_class) = Instantiate_Hash_DRBG (requested_strength,
prediction_resistance_flag, personalization_string, mode),

as described in Sections 9.6.1 and 10.1.4.3.3.

10.1.4.2.2 Reseeding a HMAC_DRBG (...) Instantiation
When a HMAC_DRBG (...) instantiation requires reseeding, the DRBG shall be
reseeded using the following call:

status = Reseed HMAC_DRBG_Instantiation (usage_class, mode)
as described in Sections 9.7.2 and 10.1.4.3.4.

10.1.4.2.3 Generating Pseudorandom Bits Using HMAC_DRBG {...)
An application may request the generation of pseudorandom bits by HMAC_DRBG (...)
using the following call:

(status, pseudorandom_bits) = HMAC_DRBG (usage_class, requested_no_of bits,
requested_strength, additional_input, prediction_resistance_requested, mode)

as discussed in Sections 9.8.2 and 10.1.4.3.5.

10.1.4.2.4 Removing an HMAC_DRBG (...) Instantiation
An application may request the removal of an HMAC_DRBG (...) instantiation using the
following call:
status = Uninstantiate. HMAC DRBG (usage class)
as described in Sections 9.X.X and 10.1.4.3.6.

10.1.4.2.5 Self Testing of the HWAC_DRBG (...) Process

An HMAC_DRBG (...) implementation is tested at power-up and on demand using the
following call:

status = Self_Test HMAC_DRBG ()

as described in Sections 9.9 and 10.1.4.3.7.

10.1.4.3 Specifications

10.1.4.3.1 General

The instantiation and reseeding of HMAC_DRBG (...) consists of obtaining a seed with the
appropriate amount of entropy. The entropy input is used to derive a seed, which is then
used to derive elements of the initial state of the DRBG. The state consists of:

1.

The value ¥, which is updated each time another outlen bits of output are
produced (where outlen is the number of output bits in the underlying hash
function).

The value K, which are updated at least once each time the DRBG generates
pseudorandom bits.

3. The security strength of the DRBG instantiation.

A counter (ctr) that indicates the number of updates of ¥ since new entropy_input
was obtained whose entropy meets or exceeds the entropy requirement for the
security strength.

A prediction_resistance_flag that indicates whether or not a prediction resistance
capability is required for the DRBG.

(Optional) A transformation of the entropy input using a one-way function for
later comparison with new entropy input when the DRBG is reseeded; this value
shall be present if the DRBG will potentially be reseeded; it may be omitted if the
DRBG will not be reseeded.

The variables used in the description of HMAC_DRBG (...) are:
additional _input Optional additional input.

ctr

A counter that records the number of times that the
state has been updated since the DRBG instantiation
was seeded, reseeded or prediction resistance was
obtained.

entropy input The bits containing entropy that are used to determine

the seed_material.

Find_state_space (mode) A function that returns a usage_class indicating an

available state space. The mode indicates whether the
request is made during normal operation or during
testing.

Get_entropy (min_entropy, outlen, 2*2, mode)

K
max_no_of states

max_updates

min_entropy

mode

N

old_transformed_entropy input

outlen

personalization_string

prediction_resistance_flag

prediction_ resistance_requested

A function that acquires a string of bits from an
entropy input source. min_entropy indicates the
minimum amount of entropy to be provided in the
returned bits; outlen indicates the minimum number
of bits to return; 2° indicates the maximum number
of bits that may be returned; mode is used to indicate
whether the bits are to be obtained during normal
operation or during testing. See Section 9.6.2.

A value in the state that is updated when the DRBG
generates pseudorandom bits.

The maximum number of states and instantiations
that an implementation can handle.

The maximum number of state updates allowed for
the DRBG instantiation from one seeding, reseeding
or prediction resistance operation.

The minimum amount of entropy to be provided in
the entropy_input.

An indication of whether a process is to be conducted
for normal operations or for testing. mode =1 =
Normal_operation indicates that normal operation is
required; mode =2 = Fixed 1 indicates thata
predetermined value is to be used during
instantiation, mode = 3 = Fixed 2 indicates that a
predetermined value is to be used during reseeding,
mode = 4 = Fajlure indicates that a failure indication
is to be returned.

The number of bytes in the hash function output
block.

The transformed_entropy input from the previous
acquisition of entropy input (e.g., used during
reseeding).

The number of bits in the hash function output block.

A string that may be used to personalize a DRBG
instantiation.

Indicates whether or not prediction resistance is to be
provided upon request during an instantiation. 1 =
Allow _prediction_resistance: requests for prediction
resistance will be handled; 0 =
No_prediction_resistance: requests for prediction
resistance will return an error indication.

Indicates whether or not prediction resistance is
required during the actual generation of
pseudorandom bits. 1 =

pseudorandom_bits
requested_no_of bits
requested_strength

seed_material

state(usage_class)

status

Strength

temp
transformed _entropy input

usage_class

Provide_prediction_resistance: prediction resistance
required; 0 = No_prediction_resistance: prediction
resistance not required.

The string of pseudorandom_bits that are generated
during a single “call” to the KHF_DRBG (...)
process.

The number of pseudorandom bits to be generated.

The security strength to be provided for the
pseudorandom bits to be obtained from the DRBG.

The data used as the seed.

An array of states for different DRBG instantiations.
A state is carried between calls to the DRBG. In the
following specifications, the state for a usage class is
defined as state(usage_class) = {V, Ko, K, strength,
ctr, prediction_resistance_flag,
transformed_entropy input}. A particular element of
the state is specified as state(usage_class).element;
e.g., state(usage_class).V.

The status returned from a function call, where status
= “Success” or an indication of failure. Failure
messages are:

1. Invalid requested strength.

2. Cannot support prediction resistance.
3. No available state space.
4

Failure indication returned by the entropy input
source.

w

State not available for the indicated usage class.
Entropy input source failure.

KHF_DRBG can no longer be used. Please re-
instantiate or reseed.

8. Too many bits requested.
9. Prediction resistance capability not instantiated.

The security strength provided by the DRBG
instantiation.

A temporary value.

A one-way transformation of the entropy input for
the DRBG.

The usage class of a DRBG instantiation. Used as a
pointer to an instantiation’s stafe values.

14 A value in the state that is updated whenever
pseudorandom bits are generated.

10.1.4.3.2 Internal Function : The Update Function
The Update (...) function updates the internal state of the HMAC DRBG (...) using
seed material.
Update (...):

Input: string (seed_material, K, V).

Output: string (K, V).

Process:

1. K=HMAC (K, V || 0x00 || seed material).

V=HMAC (X, V).
K=HMAC (X, V| 0x01 || seed_material).
V=HMAC (X, V).
ctr=ctr + 2.
Return (X, V).
10.1.4.3.3 Instantiation of HWAC_DRBG(...)

S D e 2 D

The following process or its equivalent shall be used to initially instantiate the
HMAC_DRBG (...) process. Let HMAC (...) be the Approved keyed hash function that is
based on an Approved hash function, and let Hash (...) be that hash function. Let outlen be
the output length of the hash function in bits, and let N be the output length of the hash
function in bytes.

Instantiate. HMAC_DRBG (...):

Input: integer (requested strength, prediction_resistance_flag,
personalization_string, mode).

OQutput: string stafus, integer usage_class.
Process:

1. If (requested_strength > the maximum security strength that can be provided
by the hash function (see Table 1)), then Return (“Invalid
requested_strength”, 0).

2. If (prediction_resistance_flag = Allow_prediction resistance) and prediction
resistance cannot be supported, then Return (“Cannot support prediction
resistance”, 0).

Comment: Find state space.
3. (status, usage class) = Find_state_space (mode).
4. 1If (status = “Failure), then Return (“No available state space”, 0).

Comment: Set the strength to one of

the five security strengths.
5. If (requested strength < 80), then strength = 80
Else if (requested strength < 112), then strength =112
Else (requested _strength < 128), then strength =128
Else (requested_strength < 192), then strength = 192
Else strength = 256.
Comment: Get the entropy_input.
6. min_entropy = max (128, strength).
7. (status, entropy input) = Get_entropy (min_entropy, outlen, 2% mode).

8. If (status = “Failure”), then Return (“Failure indication returned by the
entropy source”, 0).

Comment: Perform a one-way
function on the entropy input for
later comparison during reseeding.

9. transformed_entropy input = Hash (entropy_inpuf).

10. seed_material = entropy_input \| personalization_string.

11. K=0x00 00...00. Comment: N bytes of zeros.
12. ¥=0x01 01...01. Comment: N bytes of ones.
13.ctr=0.

14. (K, V) = Update (seed material, K, V).

15. state(usage class) = {V, K, strength, ctr, prediction_resistance_flag,
transformed_entropy_input}.

16. Return (“Success”, usage_class).

If an implementation does not handle all five security strengths, then step 5 must be
modified accordingly.

If no personalization_string will ever be provided, then the personalization_string
parameter in the input may be omitted, and step 10 becomes seed_material =
entropy_input.

If an implementation will never be reseeded using the process specified in Section
10.1.4.3.3, then step 9 may be omitted, as well as the transformed_entropy input in the
state (see step 18).

If an implementation does not need the prediction_resistance_flag as a calling parameter
(i.e., the HMAC_DRBG (....) routine in Section 10.1.2.3.4 either always or never
acquires new entropy in step 7), then the prediction_resistance_flag in the calling
parameters and in the state (see step 18) may be omitted, as well as omitting step 2.

10.1.4.3.4 Reseeding a HMAC_DRBG{(...) Instantiation

The following or an equivalent process shall be used to explicitly reseed the
HMAC_DRBG (...) process. Let HMAC (...) be the Approved keyed hash function that is
based on an Approved hash function, and let Hash (...) be that hash function. Let outlen be
the output length of the hash function in bits, and let N be the output length of the hash
function in bytes.

Reseed HMAC_DRBG_Instantiation (...):
Input: integer (usage class, mode).
Output: string status.

Process:

1. If ((usage_class > max_no_of states) or (state (usage_class)) = {Null, Null,
0, 0, 0, Null}), then Return (“State not available for the indicated
usage_class™).

Comment: Get the appropriate stafe
values for the indicated usage_class.

2. V= state(usage class).V, K = state(usage_class).K, strength =
state(usage_class).strength, prediction_resistance_flag =
state(usage_class).prediction_resistance_flag,
old_transformed_entropy_input =
state(usage_class).transformed_entropy_input.

Comment: Get the new
entropy input.

3. min_entropy = max (128, strength).
4. (status, entropy input) = Get_entropy (min_entropy, outlen, 2%, mode).

5. If (status = “Failure™), then Return (“Failure indication returned by the
entropy_input source”).

Comment: Compare the old
entropy_input with the new
entropy_input.

6. transformed entropy input = Hash (entropy_input).

7. If (transformed_entropy_input = old_transformed_entropy_input), then
Return (“Entropy _input source failure”).

8. cr=0.
9. (K, V)= Update (seed_material, K, V).

10. state(usage_class) = {V, Ko, Ky, strength, ctr, prediction_resistance_flag,
transformed_entropy_input}.

11. Return (“Success”).

10.1.4.3.56 Generating Pseudorandom Bits Using HWAC_DRBG(...)

The following process or an equivalent shall be used to generate pseudorandom bits. Let
outlen be the output length of the hash function in bits, and let N be the output length of the
hash function in bytes.

HMAC_DRBG(...):

Input: integer (usage_class, requested_no_of bits, requested_strength,

additional_input, prediction_resistance_requested, mode).

Output: string (status, pseudorandom_bits).

Process:

1.

If ((usage_class > max_no_of states) or (state (usage_class)) = {Null, Null,
0, 0, 0, Null}), then Return (“State not available for the indicated
usage class”, Null).

Comment: Get the appropriate state
values for the indicated usage_class.

V = state(usage_class).V, K = state(usage_class).K, strength =
state(usage_class).strength, ctr = state(usage_class).ctr,
prediction_resistance_flag = state(usage_class).prediction_resistance_flag,
old_transformed_entropy_bits =
state(usage_class).transformed_entropy_bits.

Comment: If ctr 2 max_updates,
then reseeding could not be done in
step 14 (below) during the previous
call because of no available entropy
source.

If (ctr = max_updates), then Return (“‘HMAC_DRBG can no longer be used.
Please re-instantiate or reseed.”, Null).

If (requested_strength > strength), then Return (“Invalid
requested_strength”, Null).

If (requested no_of bits > 2%5), then Return (“Too many bits requested”,
Null).

If ((prediction_resistance_requested = Provide_prediction_resistance) and
(prediction_resistance_flag = No_prediction_resistance)), then Return
(“Prediction resistance capability not instantiated”, Null).

If (prediction_resistance_requested = Provide_prediction_resistance), then
7.1 min_entropy = max (128, strength).

7.2 (status, entropy bits) = Get_entropy (min_eniropy, outlen, 22,
mode).

7.3 If (status = “Failure”), then Return (“Failure indication returned by
the entropy_input source”, Null).

7.4 transformed _entropy input = Hash (entropy_input).

7.5 If (transformed_entropy_input = old_transformed_entropy_input),
then Return (“Entropy_input source failure”, Null).

7.6 ctr=0.
Else
7.7 entropy input=Null.
8. seed material = entropy_input || additional_input.
9. If (seed_material # Null), then (K, V) = Update (seed_material, K, V).
10. temp = Null.
11. While (len (temp) < requested_no_of bits) do:
11.1 ¥=HMAC (KX V).
11.2 temp=temp| V.
12. pseudorandom_bits = Leftmost (requested_no_of bits) of temp.
13. If (seed material # Null), then (K, V) = Update (seed_material, K, V)
Else
13.1 K=HMAC (X, V|| 0x00).
13.2 V=HMAC (X, V).
14. If (ctr = max_updates), then
14.1 status = Reseed HMAC_DRBG (usage_class, mode).
14.2 If (status # “Success”), then Return (status, Null).
14.3 Go to step 16.

15. state(usage_class) = {V, K, strength, ctr, prediction_resistance_flag,
transformed_entropy _bils).

16. Return (“Success”, pseudorandom_bits).

If an implementation will never provide additional_input, then the additional_input input
parameter may be omitted, and step 8 becomes seed_material = entropy_input.

If an implementation does not need the prediction_resistance_flag, then the
prediction_resistance_flag may be omitted as an input parameter, and step 6 may be
omitted. If prediction resistance is never used, then step 7 becomes entropy. input = Null.

If an implementation does not have a reseeding capability, then step 14 is omitted, and
step 3 takes effect during the next call to the DRBG.

10.1.3.3.6 Removing a KHF_DRBG (...) Instantiation

The following or an equivalent process shall be used to remove a HMAC_DRBG (...)
instantiation:

Uninstantiate. HMAC_DRBG (...):

Input: integer usage_class.

Output: string status.

Process:
1. If (usage_class> max_no_of states), then Return (“Invalid usage_class”).
2. state(usage_class) = {Null, Null, 0, 0, 0, Null}.
3. Return (“Success”).

10.1.3.3.7 Self Testing of the HWAC_DRBG (...)
[To be added later]

110.1.3.4 Generator Strength and Attributes

10.1.3.5 Reseeding and Optional Inpuf| Co:pment [ebb?1]= Do we even need these
N sechons any more

10.1.4 HMAC_DRBG (...)
10.1.4.1 Discussion

HMAC_DRBG (...) uses multiple occurrences of both an Approved keyed hash function
and an Approved hash function. The same hash function shall be used throughout, both
directly and as part of the keyed hash function. The hash function used shall meet or
exceed the security requirements of the consuming application. Table 1 in Section 10.1.1
specifies the entropy and seed length requirements that shall be used for each hash
function in order to meet a specified security level.

HMAC_DRBG (...) is specified using an internal function: Update (...). This function is
called during the instantiation, pseudorandom bit generation and reseeding processes to
adjust the state when new entropy or additional input is provided.

10.1.4.2 Interaction with HMAC_DRBG (...)
10.1.4.2.1 Instantiating HMAC_DRBG (...)
Prior to the first request for pseudorandom bits, the HMAC_DRBG (...) shall be

instantiated using the following call:

(status, usage_class) = Instantiate_Hash_DRBG (requested_strength,
prediction resistance_flag, personalization string, mode),

as described in Sections 9.6.1 and 10.1.4.3.3.

10.1.4.2.2 Reseeding a HMAC_DRBG (...} Instantiation
When an HMAC_DRBG (...) instantiation requires reseeding, the DRBG shall be
reseeded using the following call:

status = Reseed HMAC_DRBG_Instantiation (usage class, mode)
as described in Sections 9.7.2 and 10.1.4.3.4.

10.1.4.2.3 Generating Pseudorandom Bits Using HMAC_DRBG (...)
An application may request the generation of pseudorandom bits by HMAC_DRBG (...)
using the following call:

(status, pseudorandom_bitsy = HMAC_DRBG (usage_class, requested_no_of bits,
requested_strength, additional input, prediction_resistance_requested, mode)

as discussed in Sections 9.8.2 and 10.1.4.3.5.

10.1.4.2.4 Removing an HMAC_DRBG (...) Instantiation
An application may request the removal of an HMAC_DRBG (...) instantiation using the
following call:
status = Uninstantiate. HMAC_DRBG (usage_class)
as described in Sections 9.X.X and 10.1.4.3.6.

10.1.4.2.5 Self Testing of the HMAC_DRBG (...) Process

An HMAC_DRBG (...) implementation is tested at power-up and on demand using the
following call:

status = Self_Test. HMAC_DRBG ()
as described in Sections 9.9 and 10.1.4.3.7.

10.1.4.3 Specifications
10.1.4.3.1 General

The instantiation and reseeding of HMAC_DRBG (...) consists of obtaining a seed with the
appropriate amount of entropy. The entropy input is used to derive a seed, which is then
used to derive elements of the initial state of the DRBG. The state consists of:

1. The value ¥, which is updated each time another outlen bits of output are
produced (where outlen is the number of output bits in the underlying hash
function).

2. The value K, which is updated at least once each time the DRBG generates
pseudorandom bits.

3. The security strength of the DRBG instantiation.

4. A counter (ctr) that indicates the number of times that pseudorandom bits were
generated since the DRBG instantiation was seeded, reseeded or prediction
resistance was obtained.

5. A prediction resistance_flag that indicates whether or not a prediction resistance
capability is required for the DRBG.

6. (Optional) A transformation of the entropy input using a one-way function for
later comparison with new entropy input when the DRBG is reseeded; this value
shall be present if the DRBG will potentially be reseeded; it may be omitted if the
DRBG will not be resceded.

The variables used in the description of HMAC_ DRBG (...) are:
additional_input Optional additional input.

ctr A counter that records the number of times that
pseudorandom bits were generated since the DRBG
instantiation was seeded, reseeded or prediction
resistance was obtained.

entropy_input The bits containing entropy that are used to determine
the seed material.

Find_state_space (mode) A function that returns a usage_class indicating an
available state space. The mode indicates whether the
request is made during normal operation or during
testing.

Get_entropy (min_entropy, outlen, 2*°, mode)

K
len (x)
max_no_of states

max_updates

min_entropy

mode

N

old _transformed_entropy_input

outlen

personalization_string

prediction_resistance_flag

A function that acquires a string of bits from an
entropy input source. min_entropy indicates the
minimum amount of entropy to be provided in the
returned bits; outlen indicates the minimum number
of bits to return; 2> indicates the maximum number
of bits that may be returned; mode is used to indicate
whether the bits are to be obtained during normal
operation or during testing. See Section 9.6.2.

A value in the state that is updated when the DRBG
generates pseudorandom bits.

A function that returns the number of bits in input
string x.

The maximum number of states and instantiations
that an implementation can handle.

The maximum number of state updates allowed for
the DRBG instantiation from one seeding, reseeding
or prediction resistance operation.

The minimum amount of entropy to be provided in
the entropy _input.

An indication of whether a process is to be conducted
for normal operations or for testing. mode = 1=
Normal_operation indicates that normal operation is
required; mode =2 = Fixed_1 indicates that a
predetermined value is to be used during
instantiation, mode = 3 = Fixed 2 indicates that a
predetermined value is to be used during reseeding,
mode = 4 = Failure indicates that a failure indication
is to be returned. Note that the mode = 2 fixed values
shall be different than the mode = 3 fixed values.

The number of bytes in the hash function output
block.

The transformed_eniropy input from the previous
acquisition of entropy input (e.g., used during
reseeding).

The number of bits in the hash function output block.

A string that may be used to personalize a DRBG
instantiation.

Indicates whether or not prediction resistance is to be
provided upon request during an instantiation. 1=
Allow_prediction_resistance: requests for prediction
resistance will be handled; 0 =
No_prediction_resistance: requests for prediction
resistance will return an error indication.

prediction_resistance_requested Indicates whether or not prediction resistance is

pseudorandom_bits

requested no_of bits

requested_strength

seed_material

state(usage_class)

status

strength

temp

required during the actual generation of
pseudorandom bits. 1 =
Provide_prediction_resistance: prediction resistance
required; 0 = No_prediction_resistance: prediction
resistance not required.

The string of pseudorandom_bits that are generated
during a single “call” to the KHF_DRBG (...)
process.

The number of pseudorandom bits to be generated.

The security strength to be provided for the
pseudorandom bits to be obtained from the DRBG.

The data used as the seed.

An array of states for different DRBG instantiations.
A state is carried between calls to the DRBG. In the
following specifications, the state for a usage class is
defined as state(usage_class) = {V, K, strength, ctr,
prediction_resistance_flag,
transformed_entropy input}. A particular element of
the state is specified as state(usage class).element;
e.g., state(usage_class).V.

The status returned from a function call, where status
=“Success” or an indication of failure. Failure
messages are:

1. Invalid requested_strength.

2. Cannot support prediction resistance.
3. personalization_string too long.

4. No available state space.
5

Failure indication returned by the entropy input
source.

2

State not available for the indicated usage class.
7. Entropy input source failure.

HMAC_DRBG can no longer be used. Please re-
instantiate or reseed.

9. additional input too long
10. Too many bits requested.
11. Prediction resistance capability not instantiated.

The security strength provided by the DRBG
instantiation.

A temporary value.

transformed_entropy_input A one-way transformation of the entropy input for
the DRBG.

usage_class The usage class of a DRBG instantiation. Used as a
pointer to an instantiation’s state values.

vV A value in the state that is updated whenever
pseudorandom bits are generated.

10.1.4.3.2 Internal Function : The Update Function
The Update (...) function updates the internal state of the HMAC_DRBG (...) using
seed material.
Update(...):

Input: string (seed material, K, V).

Output: string (X, V).

Process:

1. K=HMAC (X, V| 0x00 || seed material).

2. V=HMAC (K, V).
3. If (seed_material = Null), Then Return (X, V)
4. K=HMAC (K, V| 0x01 || seed_material).
5. V=HMAC (K, V).
6. Return (X, V).
10.1.4.3.3 Instantiation of HWAC_DRBG(...)

The following process or its equivalent shall be used to initially instantiate the
HMAC_DRBG (...) process. Let HMAC (...) be the Approved keyed hash function that is
based on an Approved hash function, and let Hash (...) be that hash function. Let outlen be
the output length of the hash function in bits, and let N be the output length of the hash
function in bytes.

Instantiate. HMAC_DRBG (...):

Input: integer (requested_strength, prediction_resistance_flag,
personalization_string, mode).

Output: string status, integer usage_class.
Process:

1. If (requested_strength > the maximum security strength that can be provided
by the hash function (see Table 1)), then Return (“Invalid
requested_strength”, 0).

2. If (prediction_resistance_flag = Allow_prediction_resistance) and prediction
resistance cannot be supported, then Return (“Cannot support prediction
resistance”, 0).

3. If(len (personalization_string)>235), then Return (“personalization_string

too long.”)
Comment: Find state space.
4, (status, usage class) = Find_state_space (mode).
5. If (status = “Failure”), then Return (“No available state space”, 0).

Comment: Set the strength to one of
the five security strengths.

6. If (requested_strength < 80), then strength = 80

Else if (requested_strength < 112), then strength =112

Else (requested_strength < 128), then strength = 128

Else (requested_strength < 192), then strength =192

Else strength = 256.

Comment: Get the entropy_input.

7. min_entropy = max (128, strength).
8. (status, entropy input) = Get_entropy (min_entropy, outlen, 2%, mode).

9. If (status = “Failure”), then Return (“Failure indication returned by the
entropy source”, 0).

Comment: Perform a one-way
function on the entropy_input for
later comparison during reseeding.

10. transformed_entropy_input = Hash (entropy_input).

11. seed _material = entropy_input || personalization_string.

12, K = 0x00 00...00. Comment: N bytes of zeros.
13. V=0x01 01...01. Comment: N bytes of ones.
14. ctr = 0.

15. (K, V) = Update (seed_material, K, V).

16. state(usage_class) = {V, K, strength, ctr, prediction resistance flag,
transformed_entropy _input}.

17. Return (“Success”, usage_class).

If an implementation does not handle all five security strengths, then step 5 must be
modified accordingly.

If no personalization_string will ever be provided, then the personalization_string
parameter in the input and step 3 may be omitted, and step 10 becomes seed material =
entropy_input.

If an implementation will never be reseeded using the process specified in Section
10.1.4.3.3, then step 10 may be omitted, as well as the transformed_entropy_input in the
state (see step 16).

If an implementation does not need the prediction_resistance_flag as a calling parameter
(i.e., the HMAC_DRBG (....) routine in Section 10.1.2.3.4 either always or never
acquires new entropy in step 8), then the prediction_resistance_flag in the calling
parameters and in the state (see step 16) may be omitted, as well as omitting step 2.

10.1.4.3.4 Reseeding a HMAC_DRBG(...) Instantiation

The following or an equivalent process shall be used to explicitly reseed the
HMAC_DRBG (...) process. Let HMAC (...) be the Approved keyed hash function that is
based on an Approved hash function, and let Hash (...) be that hash function. Let outlen be
the output length of the hash function in bits, and let N be the output length of the hash
function in bytes.

Reseed HMAC _DRBG_Instantiation (...):
Input: integer (usage class, mode).
Output: string status.

Process:

1. If ((usage_class > max_no_of states) or (state(usage_class) = {Null, Null, 0,
0, 0, Null}), then Return (“State not available for the indicated usage_class”).

Comment: Get the appropriate state
values for the indicated usage class.

2. V=state(usage_class).V, K = state(usage_class).K, strength =
state(usage_class).strength, prediction_resistance_flag =
state(usage class).prediction resistance_flag,
old_transformed_entropy input =
state(usage_class).transformed_entropy_input.

Comment: Get the new
entropy_input.

3. min_entropy = max (128, strength).
4. (status, entropy input) = Get_entropy (min_entropy, outlen, 2% mode).

5. If (status = “Failure™), then Return (“Failure indication returned by the
entropy_input source”).

Comment: Compare the old
entropy input with the new
entropy_input.

6. transformed _entropy input = Hash (entropy_input).

7. If (transformed_entropy input = old_transformed_entropy_input), then
Return (“Entropy_input source failure”).

8. ctr=0.
9. (K, V)= Update (seed material, K, V).

10. state(usage_class) = {V, K, strength, ctr, prediction_resistance_flag,
transformed_entropy input}.

11. Return (“Success™).

10.1.4.3.5

Generating Pseudorandom Bits Using HMAC_DRBG(...)

The following process or an equivalent shall be used to generate pseudorandom bits. Let
outlen be the output length of the hash function in bits, and let N be the output length of the
hash function in bytes.

HMAC_DRBG(...):

Input: integer (usage_class, requested_no_of bits, requested_strength,

additional_input, prediction_resistance_requested, mode).

Output: string (status, pseudorandom_bits).

Process:

1.

If (usage_class > max_no_of states) or (state (usage_class) = {Null, Null, 0,
0, 0, Null}), then Return (“State not available for the indicated usage_class”,
Null).

Comment: Get the appropriate state
values for the indicated usage_class.

V = state(usage_class).V, K = state(usage_class).K, strength =
state(usage_class).strength, ctr = state(usage_class).ctr,
prediction_resistance_flag = state(usage_class).prediction_resistance_flag,
old_transformed entropy_bits =
state(usage_class).transformed_entropy_bits.

If (requested_sirength > strength), then Return (“Invalid
requested_strength”, Null).

If (len (additional_input)>235), then Return(“additional_input too long.”)

5. If (requested no_of bits > 2%5), then Return (“Too many bits requested”,

Null).

If ((prediction_resistance_requested = Provide_prediction_resistance) and
(prediction_resistance_flag = No_prediction_resistance)), then Return
(“Prediction resistance capability not instantiated”, Null).

If (prediction_resistance_requested = Provide_prediction_resistance), then
7.1 min_entropy = max (128, strength).

7.2 (status, entropy_bits) = Get_entropy (min_entropy, outlen, 2%,
mode).

7.3 If (status = “Failure”), then Return (“Failure indication returned by
the entropy_input source”, Null).

7.4 transformed _entropy_input = Hash (entropy_inpur).

7.5 If (transformed_entropy_input = old_transformed_entropy_input),
then Return (“Entropy_input source failure”, Null).

7.6 ctr=0.

Else
7.7 entropy_input = Null.
8. seed material = entropy input || additional_inpu.
9. If (seed_material # Null), then (K, ¥) = Update (seed_material, K, V).
10. If (ctr = max_updates), then
10.1 status = Reseed HMAC_DRBG (usage_class, mode).
10.2 If (status = “Success”), then Return (status, Null).
11. temp = Null.
12. While (len (temp) < requested_no_of bits) do:
12.1 V=HMAC (K V).
12.2 temp =temp || V.
13. pseudorandom_bits = Leftmost (requested_no_of bits) of temp.
14. (K, V) = Update (seed material K,V).
15.ctr=ctr + 1.

16. state(usage_class) = {V, K, strength, ctr, prediction_resistance_flag,
transformed_entropy bits).

17. Return (“Success”, pseudorandom_bits).

If an implementation will never provide additional_input, then the additional_input input
parameter may be omitted, and step 8 becomes seed_material = entropy_input.

If an implementation does not need the prediction_resistance_flag, then the
prediction_resistance_flag may be omitted as an input parameter, and step 6 may be
omitted. If prediction resistance is never used, then step 7 becomes entropy_input = Null.

If an implementation does not have a reseeding capability, then step 10 shall be replaced
by the following:

If (ctr > max_updates), then Return (“HMAC_DRBG can no longer be used. Please
re-instantiate or reseed”, Null).

10.1.3.3.6 Removing a KHF_DRBG (...) Instantiation

The following or an equivalent process shall be used to remove a HMAC_DRBG (...)
instantiation:

Uninstantiate. HMAC_DRBG (...):
Input: integer usage class.
Output: string status.
Process:
1. If (usage_class > max_no_of states), then Return (“Invalid usage_class”).
2. state(usage_class) = {Null, Null, 0, 0, 0, Null}.

3. Return (“Success”).
10.1.3.3.7 Self Testing of the HNAC_DRBG (...)
[To be added later]

10.1.3.4 Generator Strength and Attributes

10.1.3.5 Reseeding and Optional Input - Comment [barker1]: Do we even need these
. sections any more?

