ANS X9.82, Part 3 - DRAFT - May 2004

8. Additional Requirements
8.1 General Discussion

In additional to the functional requirements in Section 7, other general requirements are
levied on the implementation and use of a DRBG. These requirements are associated with
the DRBG boundary, the state of a DRBG, the seed, any key that is used by a given
DRBG, and any other input that is provided during operation. In addition, a discussion on
prediction resistance and backtracking resistance in relation to the DRBGs specified in
Section 10 is provided.

8.2 DRBG Boundary

DRBG processes shall be encapsulated within DRBG boundaries. A boundary may be
either physical or conceptual. Within a DRBG boundary,
1. The DRBG internal state and the operation of the DRBG processes shall only be
affected according to the DRBG specification.

2. The DRBG internal state shall exist solely within the DRBG boundary.

3. Information about secret parts of the DRBG internal state and intermediate values
in computations involving these secret parts shall not affect any information that
leaves the DRBG boundary, except as specified for the DRBG pseudorandom bit
outputs. The internal state shall be contained within the DRBG boundary and shall
not be accessibie from outside the boundary.

Cryptographic Module Boundary

entropy input - .
Cryptographic _ Pseudorandom
Primitive ' Bits
(Opt.) Additional > &y
Input ! I
NHNO !
! : DRBG Boundary
3
¥
Other Cryptographic
Functions

Figure 3: DRBG Boundary Contained within a Cryptographic Module Boundary

When a DRBG is implemented within a FIPS 140-2 cryptographic module, the DRBG
boundary shall be either fully contained within the cryptographic boundary or shall be
coincident with the cryptographic boundary of the DRBG.

ANS X9.82, Part 3 - DRAFT - May 2004

Figure 3 depicts the DRBG boundary being fully contained within the cryptographic
module boundary. The figure shows a generalized DRBG that contains a cryptographic
primitive. This design will provide higher assurance of correct operation than a design with
a coincident DRBG and cryptographic module boundary (see Figure 4). A cryptographic
primitive within the DRBG boundary (e.g., a hash function) shall not be accessible for
other purposes by a function outside the DRBG boundary; observe the {NO!! across the
dotted vertical arrows in the figure. For example, a digital signature function that is within
the cryptographic boundary, but not within the DRBG boundary shall not use a function
(e.g., the hash function) that resides within the DRBG boundary. In this case, a separate
hash function is required outside the DRBG boundary, but within the cryptographic
module boundary for digital signature purposes.

Cryptographic Module Boundary

Cryptographic ' Pseudorandom
Primitive ! Bits

L}

1
entropy input —f———»

;

1}

13

(Opt.) Additional
Input

[
i
i
i

Iemcsnseesssssseremme .i-...

Other Cryptographic
Functions

DRBG Boundary

Figure 4: Coincident DRBG and Cryptographic Module Boundaries

Figure 4 depicts coincident DRBG and Cryptographic Module boundaries (i.e., the
boundaries are identical). Note that the DRBG itself is contained within the dotted
rectangle for convenience only; this is not intended to indicate the actual DRBG boundary.
This design provides lesser assurance than the previous design because the internal state is
potentially accessible by other non-DRBG functions. In this case, a cryptographic
primitive within a DRBG boundary may be used by other cryptographic functions within
the coincident DRBG and cryptographic module boundaries (e.g., during the generation or
validation of digital signatures); observe the vertical dashed arrows to and from the
DRBG’s cryptographic primitive. However, the internal state of the DRBG shall not be
used or affected by other non-DRBG functions within the coincident boundary.

In both figures, the entropy input is shown as being provided from outside the
cryptographic module and DRBG boundaries. This is depicted as such for convenience
only. The entropy input may actually be provided from either inside or outside the two

ANS X9.82, Part 3 - DRAFT - May 2004

boundaries. In either case, however, the requirements for protecting and handling the
entropy input and the resulting seed are specified in Section 8.5.

All DRBG processes need not be contained within the same DRBG or cryptographic
module boundary. Particularly in the case of restricted environments (e.g., smart cards), it
may be beneficial to distribute the DRBG processes. See Section 8.3 and Annex B for
further discussion.

8.3 Model of DRBG Processes

A DRBG requires instantiation,
generation, testing and uninstantiation DREG I
processes. A DRBG may also include a
reseeding process. Figure 5 depicts the Indantiste ——t | T REG . [*
use of a DRBG by an application that =
contains the full “suite” of DRBG Reseed || Resced

processes. Instantiation DieC h‘
le—

Prior to requesting pseudorandom bits,

the application shall instantiate the RequetBis paherale |
DRBG using a seed that is generated | Bis
from entropy input. These seeds are

used to determine the initial internal Testine —1
state of the DRBG instantiation.
Although the entropy input is shown in
the figure as originating outside the
DRBG boundary, it may originate from

Testing

within the boundary.
When the generation of pseudorandom Figure 5: DRBG Processes
bits is requested, the state is updated.

Depending on the application, the BRDG Baunda _
DRBG instantiation may need to be T | [Earopy
periodically reseeded using new entropy DREG oot
input, either by a specific reseeding —— [
request or as determined by the generation Tatng —* | g %
process. During the reseeding process,
new entropy input is obtained and a new
internal state is determined.

When a DRBG instantiation is no longer
required, the internal state may be

“released” using an uninstantiate process. —| |, Gemerate

Request Bils Pseadorandom

An operational testing process shall be Bits
included within a DRBG boundary. The)

DRBG processes shall be tested at power- T T | Testing g
up, on-demand and at periodic intervals.
In actuality, a DRBG may be distributed. PRIy
Figure 6 depicts the DRBG processes that Reseed

—_— Reseed
Instanliation 1

shall be combined when DRBG processes DREG @

DRBEG Boundary

Entropy
Tnput

are distributed. Other distribution

Testing ——#| Testing

Figure 6: Distributed DRBG Processes

ANS X9.82, Part 3 - DRAFT - May 2004

configurations are allowed, subject to the following:
1. Any DRBG boundary that includes an instantiation process shall include an
uninstantiate and operational testing process.
2. A DRBG boundary containing a generation process shall include an operational
testing process.
3. A DRBG boundary that contains a reseeding process shall include an operational
testing process.

8.4 DRBG instantiation and the Internal State

A DRBG is instantiated for one or more purposes (see Section 9.4) by initializing with a
seed; an instantiation may subsequently be reseeded. Each seed defines an instance of the
DRBG instantiation; an instantiation

con§1sts of one or more .1nstanc'es that T I@
begin when a new seed is acquired (see
Fi gure 7). The peri§)d qf time petween (Opt) Other input = Instance 1
seeding and reseeding is considered as the
seed life. I (Opt.) Reseed with seed ,
At any given time after a DRBG has been A
: . ! . (Opt.) Other input
instantiated, a DRBG exists in a state that B fneanect:
is defined by all prior input information. Ii.——-
. A (Opt.) Reseed with seed
Different DRBG instances are defined by d
the seed and any other initial input (Opt.) Other input _, | Instances 3-n
information that is required by a specific :
DRBG.

A DRBG shall be instantiated prior to the
generation of output by the DRBG.
During instantiation, an initial internal
state (hereafter called just the state) is derived, in part, from a seed. The DRBG
instantiation may subsequently be reseeded at any time (see Section 8.5 for a discussion on
seeds).

Each DRBG instantiation will be associated with a different internal state. The state for an
instantiation includes:

1. One or more values that are derived from the seed(s); at least one of these derived
values is updated during the operation of the DRBG (e.g., at least one component
of the state is updated during each call to the DRBG),

2. Other information that is particular to a specific DRBG; this information may
remain static or may be updated during the operation of the DRBG,

3. An indication of whether or not prediction resistance is to be provided by the

~ DRBG upon request,

4. The security strength provided by the DRBG, and

5. A transformation of the entropy input used to create the seed; this information
remains static until replaced by new values during reseeding. This information need
not be present if reseeding will not be performed.

The state shall be protected at least as well as the intended use of the pseudorandom output
bits by the consuming application. Each DRBG instantiation shall have its own state. The
state for one DRBG instantiation shall not be used as the state for a different instantiation.

Figure 7: DRBG Instantiation

ANS X9.82, Part 3 - DRAFT - May 2004

A DRBG shall transition between states on demand (i.e., when the generator is requested
to provide new pseudorandom bits). A DRBG may also be implemented to transition in
response to internal or external events (e.g., system interrupts) or to transition continuously
(e.g., whenever time is available to run the generator). Additional unpredictability is
introduced when the generator transitions between states continuously or in response to
external events. However, when the DRBG transitions from one state to another between
requests, reseeding may need to be performed more frequently.

8.5 Seeds

8.5.1 General Discussion

When a DRBG is used to generate pseudorandom bits, a seed shall be acquired prior to the
generation of output bits by the DRBG. The seed is used to instantiate the DRBG and
determine the initial szafe that is used when calling the DRBG to obtain the first output
bits.

The seed, seed size and the entropy (i.e., randomness) of the seed shall be selected to
minimize the probability that the sequence of pseudorandom bits produced by one seed
significantly matches the sequence produced by another seed, and reduces the probability
that the seed can be guessed or exhaustively tested. Since this Standard does not require
full entropy for a seed but does require sufficient entropy, the length of the seed may be
greater than the entropy requirement (i.e., a seed with » bits of entropy may be longer than
n bits in length).

The entry of entropy into a DRBG using an insecure method could result in voiding the
intended security assurances. To ensure unpredictability, care shall be exercised in
obtaining and handling the entropy input used to create seeds.

8.5.2 Generation and Handling of Seeds

The seed and its use by a DRBG shall be generated and handled as follows:
1. Seed construction: A seed shall include
entropy input and should include a
personalization string (see Figure 8). (Optional)
Note that it is possible, in some cases, Entropy Input | [Personalization
that the entropy in the entropy input String

may not be distributed across the
sequence of entropy input bits. Whether \‘
or not the personalization string is ' <

present, the resulting seed shall be N, Opt.
unique. That is, when a personalization N df
string is used, the combination of the N7
entropy input and the personalization ¥
string shall determine a unique seed; l
when a personalization string is not Seed
used, the entropy input shall be
statistically unique.

The combination of the entropy input Figure 8: Seed Construction
and the optional personalization string

ANS X9.82, Part 3 - DRAFT - May 2004

is called the seed material. A derivation function shall be used to distribute the
entropy in the entropy input across the entire seed (e.g., so that the seed is not
constructed with all the entropy on one end of the seed) whenever:

e A personalization string is used, or

e A personalization string is not used, and the entropy in the entropy input is

not independent and uniformly distributed throughout the entropy input
string.

. Entropy requirements: The entropy input for the seed shall contain sufficient
entropy for the desired level of security, and the entropy shall be distributed across
the seed (e.g., by an appropriate derivation function). The DRBGs shall have the
required entropy provided in the entropy input. Additional entropy may be
provided in a personalization string, but this is not required.
A consuming application may or may not be concerned about collision resistance
between seeds. In order to accommodate possible collision concerns, the entropy
input for a seed shall have entropy that is equal to or greater than 128 bits or the
required security strength for the consuming application, whichever is greater (i.e.,
entropy = max (128, security_strength)).
Table 1 identifies the five security strengths to be provided by Approved DRBGs,
along with the associated entropy requirements. If a selected DRBG and the
entropy input for the seed are not able to provide the required strength required by
the consuming application, then a different DRBG and entropy input shall be used.

Tabie 1: Minimum Entropy and Seed Size

Bits of Security Strength 80 112 128 192 256

Minimum entropy in the entropy input | 128 128 128 192 | 256

Seed size: The minimum size of the seed depends on the DRBG and the security
strength required by the consuming application. See Section 10 and Annex C.

. Entropy input source: The
source of the entropy input NEBG
may be an Approved
NRBG, an Approved
DRBG (or chain of g §.
Approved DRBGs) that is
seeded by an Approved

NRBG, or another source {DEBG A

whose entropy §_ gl; g

characteristics are known.
Further discussion about

the entropy input is DREGR DEBG C DRBGD
provided in Section 7.2.3.

When sufficient entropy is J'a‘

not readily obtainable for §

multiple requests for

entropy input (e.g., multiple DREG E
seeds are required), but
sufficient entropy is

Figure 9: DRBG Chain

ANS X9.82, Part 3 - DRAFT - May 2004

available for a single DRBG (e.g., DRBG A), this DRBG may be used to provide
entropy input for other DRBGs (see Figure 9). In this case, the entropy provided to
the first DRBG (i.e., DRBG A) shall be equal to or greater than the entropy
requirement of any lower level DRBG. For example, DRBG A could provide
entropy input for DRBGs B, C and D. The highest level DRBG (i.e., DRBG A)
may, in fact, be used to provide entropy input for a chain of DRBGs. For example,
DRBG A could provide entropy input for DRBG B, which in turn could be used to
provide entropy input for DRBG E.

An entropy input source need not be co-located with the DRBG instantiation
process. The entropy input could be provided to the instantiation process and
combined with any personalization string to produce the seed and instantiate the
DRBG. See Annex B for further discussion.

. Entropy input and seed privacy: The entropy input and the resulting seed shall be
handled in a manner that is consistent with the security required for the data

protected by the consuming application. For example, if the only secrets in a
cryptographic system are the keys, then the entropy inputs and seeds used to
generate keys shall be treated as if they are keys.

. Reseeding: Reseeding (i.e., replacement of one seed with a new seed) is a means of
recovering the secrecy of the output of the DRBG if a seed or the internal state
becomes known. Periodic reseeding is a good countermeasure to the potential
threat that the seeds and DRBG output become compromised. In some
implementations (e.g., smartcards), an adequate reseeding process may not be

possible. In these cases, the best policy might be to replace the DRBG, obtaining a
new seed in the process (e.g., obtain a new smart card).

Generating too many outputs from a seed (and other input information) may
provide sufficient information for successfully predicting future outputs unless
prediction resistance is provided (see Section 8.8). Periodic reseeding will reduce
security risks, reducing the likelihood of a compromise of the data that is protected
by cryptographic mechanisms that use the DRBG.

Seeds shall have a specified finite seedlife. A seed shall be replaced periodically.
This shall be accomplished by 1) an explicit reseeding of the DRBG (e.g., by the
application), or 2) by specifying prediction resistance when instantiating the DRBG
and requesting the generation of pseudorandom bits (see Sections 9.5 and 9.7) or 3)
by making the DRBG inoperable at the end of the seedlife. If entropy input and the
seed become known (i.e., the seed is compromised), unauthorized entities may be
able to determine the DRBG output.

Reseeding of the DRBG (i.e., creating a new DRBG instance) shall be performed
in accordance with the specification for the given DRBG. The DRBG reseed
specifications within this standard are designed to produce a new seed that is
determined by both the old seed and newly-obtained entropy input that will support
the desired security level. The newly-obtained entropy input shall be checked to
assure that it is not the same as the entropy input obtained to create the previous
DRBG instance. More than one entropy input shall not be saved by the DRBG.
The entropy input shall not be saved in its original form, but shall be transformed

ANS X9.82, Part 3 - DRAFT - May 2004

by a one-way process (see the specifications in Section 10). When new entropy
input is generated and compared to the “old” entropy input (i.e., the new entropy
input is transformed and compared with the transformed old entropy input), the
transformed new entropy input shall replace the old transformed entropy input in
memory. If the new entropy input is determined to be identical to the old entropy
input, then the DRBG shall fail.

It should be noted that an alternative to reseeding is to create an entirely new
instantiation. This may be appropriate, for example, in environments with restricted
capabilities, where the seed is obtained from a source that is not co-located with the
DRBG (e.g., in a smart card applicaton).

7. Seed use: DRBGs may be used to generate both secret and public information. In
either case, the seed and the entropy input from which the seed is derived shall be
kept secret. A single instantiation of a DRBG should not be used to generate both
secret and public values. However, cost and risk factors must be taken into account
when determining whether different instantiations for secret and public values can
be accommodated.

A seed that is used to initialize one instantiation of a DRBG shall not be intentially
used to reseed the same instantiation or used as a seed for another DRBG

instantiation| .. Comment [ebb1}: Page: 50

SELERRSESe SRR S i e * o T T L e John raised a basic question of whether we can
A DRBG shall not provide output until a seed is available, and the state has been use the same entropy input for multiple

initialized. instantiations, but with different personalization
8. Seed separation: Seeds used by DRBGs shall not be used for other purposes (e.g., Elgglr e ceze, 15 secdz would oo

domain parameter or prime number generation). e
It is recommended that when resources permit (e.g., storage capacity), different
(i.e., statistically unique) seeds should be used for the generation of different types
of random data (i.e., the instantiations of the DRBGs should be different). For
example, the seed used to generate public values should be different than the seed
used to generate secret values. The seed used by a DRBG technique to generate
asymmetric key pairs should be different than a seed used by the same {or a
different) DRBG technique to seed other DRBGs, which should, in turn, be
different than a seed used by the same (or a different) DRBG technique to generate
symmetric keys. The seed used by a DRBG technique to generate random
challenges should be different than the seed used by the same (or a different)
DRBG technique to generate PINS or passwords. However, the amount of seed
separation is a cost/benefit decision.

8.6 Keys

Some DRBGs require the use of one or more keys. Such DRBGs are designed to derive
keys from seeds (see Section 8.5, item 1 for a discussion on seed construction). A key and
its use in a DRBG shall conform to the following;:

1. Key entropy: The seed for the key shall have entropy that is equal to or greater than
128 bits or the required security strength of the consuming application, whichever
is greater (i.e., entropy = max (128, security_strength)).

2. Key size: Key sizes shall be selected to support the desired security strength of the
consuming application (see SP 800-57). If the DRBG primitive using the key (e.g.,

8.7

ANS X9.82, Part 3 - DRAFT - May 2004

the block cipher algorithm) cannot support the required security strength, then a
different primitive or a different DRBG shall be used.

. Entropy input source for a key: The entropy input source for the key is the seed for

the DRBG instance (see Section 8.5, item 4).

. Key secrecy: Keys shall remain secret and shall be handled in a manner that is

consistent with the security required for the data protected by the consuming
application using the DRBG pseudorandom bits. Keys shall be protected in
accordance with [SP 800-57].

. Rekeying: Rekeying (i.¢., replacement of one key with a new key) is a means of

recovering the secrecy of the output of the DRBG if a key becomes known.
Periodic rekeying is a good countermeasure to the potential threat that the keys and
DRBG output become compromised. In some implementations (e.g., smartcards),
an adequate rekeying process may not be possible. In these cases, the best policy
might be to replace the DRBG, obtaining a new key in the process (e.g., obtain a
new smart card).

Generating too many outputs using a given key may provide sufficient information
for successfully predicting future outputs when prediction resistance is not
provided. Periodic rekeying will reduce security risks, reducing the likelihood of a
compromise of the data that is protected by consuming applications that use the
DRBG.

Keys shall have a specified finite keylife (i.e. a cryptoperiod). Keys shall be
replaced when seeds are replaced. This shall be accomplished as specified in
Section 8.5, item 6. Expired keys or keys that have been replaced shall be
destroyed (see SP 800-57). If keys become known (e.g., the keys or seeds are
compromised), unauthorized entities may be able to determine the DRBG output.

. Key use: Keys shall be used as specified in a specific DRBG. A DRBG requiring a

key(s) shall not provide output until the key(s) is available.

. Key separation: A key used by a DRBG shall not be used for any purpose other

than pseudorandom bit generation. Different instantiations and different instances
of the same instantiation of a DRBG shall use different keys.

Other Input

Other input may be provided during DRBG instantiation, pseudorandom bit generation and
reseeding. This input may contain entropy, but this is not required. During instantiation, a
personalization string may be provided and combined with entropy input to derive a seed
(see Section 8.5, item 1). When pseudorandom bits are requested and when reseeding is
performed, additional input may be provided.

Depending on the method for acquiring the input, the exact value of the input may or may
not be known to the user or application. For example, the input could be derived directly
from values entered by the user or application, or the input could be derived from
information introduced by the user or application (e.g., from timing statistics based on key
strokes), or the input could be the output of another DRBG or an NRBG.

ANS X9.82, Part 3 - DRAFT - May 2004

8.7.1 Personalization String

A seed should be derived from both entropy input with sufficient entropy and a
personalization string (see Section 8.5). That is, the use of a personalization string is good
practice, but is not mandatory. The intent of a personalization string is to have information
in the seed that differentiates one DRBG’s seed from another DRBG’s seed in order to
increase assurance that two DRBG seeds are not inadvertently the same. Examples of data
that may be included in a personalization string include a product and device number, user
identification, date and timestamp, IP address, or any other information that helps to
differentiate DRBGs, including secret information containing entropy.

8.7.2 Additional Input

During each request for bits from a DRBG and during reseeding, the insertion of additional
input is allowed. This input is optional and may be either secret or publicly known; its
length and value are arbitrary (i.e., there are no restrictions on its length or content). The
additional input allows less reliance on both the seed and an entropy input source. If the
additional input is kept secret and has sufficient entropy, the input may be used to provide
additional entropy for random bit generation and provide an ability to recover from the
compromise of the seed or one or more states of the DRBG.

8.8 Prediction Resistance and Backtracking Resistance

Figure 10 depicts the sequence of DRBG states that result from a given seed. Some subset
of bits from each state are used to generate pseudorandom bits upon request by a user. The
following discussions will use the figure to explain backtracking and prediction resistance.
Suppose a compromise occurs at Statey, there Statex contains both secret and public
information.

Seed — | State, State, | * * * State, , | |State, | || State, || Statey,||Statey,,| * * *

Figure 10: Sequence of DRBG States

Backtracking Resistance: Backiracking resistance means that a compromise of the DROG
state has no effect pn the security of prior oulputs. H-a-compromise-ofStete - docurs:
buchtrackingresistance—prorrides assirance-thai-the suiphbsedqueneeresubting-Hom-states
before-State —vematns-seenre—That is, an adversary who is given access to all of any
subset-af-that prior output sequence cannot distinguish it from random; if the adversary
knows only part of the prior output, he cannot determine any bit of that prior output

sequence that &h&&ddvefsairyhe has not already seen. in-otherwords g compromise-has+o

For example suppose that an adversary knows State ., - and-also-knows-the-cutput-bits S
from-State,to-State, 5. Backtracking resistance means that; [?ormatted: Bullets and Numbering ‘%

g, The output bits from State, to State,., cannot be distinguished from random, ‘ [Formatted

PLELASE

ANS X9.82, Part 3 - DRAFT - May 2004

a—b. The prior state values themselves (State; to Siafe..,) cannot be recovered,
given knowledge of the secret information in Stafes. —%.fme, and-its-output-bits

caiiel b determiaed-fromkiowleda e b Saie e S camot-bebacked-ap-oh

|iﬂ-adélaﬂn—wﬂe&me%t~pui~bﬂw-hemémw et -dpﬁ&&ﬁh&-hﬂ mﬂd«-un— the

Backtracking resistance can be provided by ensuring that the state transition function of a
DRBG is a one-way function!, or by regenerating an additional2 DRBG state from
pseudorandom outputs at the end of each DRBG request.

Prediction Resistance: Prediction resistance means that a compromise of the DRBG state
hm ne f.ﬁ?:(r on the sec m;w of futiwre DRBG ﬂu!})u.‘s Hr-eomeropsise-ob-Sate oeeti
P : : ¢ :eqaeﬁeekesu%ﬂﬂ-g—ﬂem—%es
qﬁer—th&eemmﬁ%s&remﬁﬂs—seeaw—That is, an adversary who is given access to all of
ary-sibset-of-the output sequence after the compromise cannot distinguish it from random;
if the adversary knows only part of the future output sequence, an-advessasvhe cannot

predict any bit of that future output sequence that he has not already seen.Fs-ethervrords,«

For example, suppose that an adversary knows State,: -and-alse-knowsthe-output-bitsfrom
State, . to-Seerte, . ~Prediction resistance means that;
a. The output bits from Stute,., and forward cannot be distinguished from an ideal
random bitstring by the adversary
b—b. The future state values themselves (State;+; and forward) cannot be
predicted, given knowledge of State, -S#te.. .—afhi—ﬂ-'«)ﬂt&fiﬁl—hﬂr-v—e&m%ﬂ—be
et s kel sttt o -be-“backed-up)-in
adehithore sier -t erPut- Bl e St to-Sietie__appoti-—heBe sadomrihe
B R LIRS ﬂuﬁﬂ%&e—ﬁmw%ﬂ%&m
Stette, - -and-He- output-bits cannot-be predicted-from-knowledge-of State b addition:
becatse-the-outputbitsfrom-Stete .o-to-Stafe .. appeatto-be-random—the-output-bitsfor
Srata, . eannotbe-determined-Fom- the-outpul-bitsof Siate, o teState, -

Prediction resistance can be provided only by ensuring that a DRBG is effectively reseeded
between DRBG requests. That is, an amount of entropy sufficient to support the security
level of the DRBG (i.e., for strength bits of security, entropy = max (128, strength)) must
be added to the DRBG in a way that ensures that knowledge of the currenipreviens DRBG
state does not allow an adversary any useful knowledge about future DRBG states or
outputs. Note that inserting less than the required amount of entropy may improve the
security of the DRBG, but does not guarantee prediction resistance.

I A one-way function is a function whose result is easy to compute, but extremely difficult to reverse. For

example, for the function is f{x) = y, the result () is easy to compute given x and the function f. However, if

fis a one-way function, and y is known, it is computationally infeasible to determine the value of x,

2 Each DRBG is always updated after each request for pseudorandom bits. Prediction resistance would be
provided by an additional update of the DRBG state.

[Formatted) __'_]
.--| Comment [ebb2]: Page: 52
_This makes the definltion very convoluted.

[Formatted j

[Formatted: Bullets and Numbering]

[Formatted _J
.~ Comment [ebb3]: Page: 53

“This makes the definition very convoluted.

ANS X9.82, Part 3 - DRAFT - May 2004

9 General Discussion of the Specified DRBGs
9.1 Introduction

Numerous concepts have been employed in the DRBG specifications in Section 10. The
following subsections are intended to provide an understanding of these concepts and how
they are used.

9.2 Security Strength Supported by a DRBG Instantiation

The DRBGs specified in this Standard support one or more of five security strengths (i.e.,
security levels): 80, 112, 128, 192 or 256 bits. The security strengths that may be supported
by a particular DRBG are specified for each. However, the security strength actually
supported by a particular instantiation may be less than the maximum security strength
possible for that DRBG, depending upon the amount of entropy that is contained in the
seed.

The maximum strength provided by an instantiation is determined when the DRBG is
instantiated. The instantiated security strength shall be less than or equal to the maximum
security strength that can be supported by the DRBG.

For each DRBG instantiation, a security strength (i.e., security level) needs to be requested
and obtained during the instantiation process. The DRBGs in Section 10 allow security
strengths up to 256 bits, providing that the appropriate cryptographic primitives and
sufficient entropy are available. Any security strength up to 256 may be requested.
However, a DRBG will only be instantiated for one of the following five security levels:
80, 112, 128, 192 or 256. A requested security level that is between two of the five levels
will be instantiated to the next highest level (e.g., a request for 96 bits of security will
actually be instantiated at 112 bits of security).

When a DRBG instantiation needs to provide pseudorandom bits for only one purpose,
then the security level needs to support that purpose. Examples:

1. 256-bit AES keys can provide a maximum of 256-bits of security. An instantiation
must support at least 256 bits of security if the full 256 bits of security are to be
provided by the AES keys. Note that the minimum entropy requirement would be
256 bits to support 256 bits of security.

2. 1024-bit DSA private keys can only provide 80 bits of security. In this case, an
instantiation used only for the generation of 1024-bit DSA keys must be supported
by at least 128 bits of entropy (see Section 9.3) and a DRBG that provides at least
80 bits of security.

When an instantiation is used for multiple purposes, the minimum entropy requirement for
each purpose must be considered. The DRBG needs to be instantiated for the highest
entropy requirement (see Section 9.3). For example, if one purpose requires 80 bits of
security (i.e., min_entropy = 128 bits), and another purpose requires 256 bits of security
(i.e., min_entropy = 256 bits), then the DRBG shall be instantiated to support at least 256
bits of security (i.e., min_entropy = 256 bits).

ANS X9.82, Part 3 - DRAFT - May 2004

9.3 Security Strength, Entropy and Seed Size of an Instantiation

The instantiation of a DRBG requires the generation of a seed with sufficient entropy to
support the requested security strength; reseeding the instantiation requires the generation
of another seed with the same properties. As discussed in Section 8.5, reseeding requires
the acquisition of the appropriate amount of new entropy to support the desired security
level and combining the newly-obtained entropy with the entropy from the previous
instance.

As stated in Section 8.5, the minimum entropy (min_entropy) to be acquired when seeding
or reseeding shall be equal to either 128 or the instantiated strength, whichever is greater
(i.e., min_entropy = max (128, strength). Note that the use of more entropy than the
minimum value will offer a security “cushion”.

The minimum size of the seed depends on the DRBG. Many DRBGs allow a range of seed
sizes. A variation in the allowable seed size permits the use of an entropy input source that
provides either full entropy (i.e., one bit of entropy for each bit of the seed) or less than full
entropy (i.e., multiple bits of the seed may be required to provide each bit of entropy).

9.4 DRBG Purposes and States

A DRBG may be used to obtain pseudorandom bits for different purposes (e.g., DSA
private keys and AES keys). This Standard recommends that different instantiations be
used to generate bits for different purposes. However, if an application needs to generate
bits for different purposes, it may not always be practical to use multiple instantiations.
Each instantiation is associated with an internal state for the purpose(s)supported by the
instantiation. For example, a state may be associated with the generation of only 1024-bit
DSA keys, and a separate state may be associated with the generation of 128-bit AES keys.
Both states may use the same type of DRBG, but use different instantiations, or they may
use different DRBG types (e.g., the generation of DSA keys may use the Hash. DRBG
(...), while AES keys may be generated using the Dual_EC_DRBG (...)). As another
example, if an application cannot support multiple instantiations (e.g., because of memory
restrictions), then the same internal szafe could be associated with generating both 1024-bit
DSA keys and 128-bit AES keys (i.e., the stafe supports two purposes). As a third
example, the same DRBG instantiation might be used for similar purposes (e.g., the
generation of all digital signature keys, irrespective of the digital signature algorithm
used).

A DRBG implementation may be designed to handle multiple instantiations. Sufficient
“state space” shall be available for each instantiation, i.e., sufficient memory shall be
available to store the internal state associated with each instantiation. In addition, within
each DRBG boundary, state space shall always be available for operational testing. That
is, sufficient memory shall always be available to perform operational testing without
affecting the internal states associated with normal operation. For example, when a DRBG
boundary contains the pseudorandom bit generation process, and the DRBG is intended to
allow three separate instantiations, then state space for four internal states shall be
allocated; at least one of these states shall always be available for operational testing.

ANS X9.82, Part 3 - DRAFT - May 2004

9.5 Instantiating a DRBG

9.5.1 The Instantiation Function Call

Prior to the first request for pseudorandom bits, a DRBG shall be instantiated using a form
of the following function call:
(status, state_pointer) = Instantiate_DRBG (requested_strength,
prediction_resistance_flag, personalization_string, DRBG _specific_parameters, mode)

where:

1. status is the indication returned from the instantiation process. A status of Success
indicates that the instantiation has been successful, and pseudorandom bits may be
requested. Failure messages that could be returned from this process are specified
for each DRBG. The status shall be checked to determine that the DRBG has been
correctly instantiated.

2. state_pointer is used to identify the internal state for this instantiation in subsequent
calls to the generation and reseed processes.

3. Instantiate_ DRBG (...) is specified for each DRBG. Note that the name of the
generalized function call of this section (i.e., Instantiate_DRBG (...)) is different
than the specific name used for each DRBG (e.g., Instantiate_Dual EC_DRBG
G..))-

4. requested_strength is used to request the minimum security strength for the
instantiation. Note that DRBG implementations that support only one security
strength do not require this parameter; however, any application using the DRBG
must be aware of this limitation. :

5. The prediction_resistance_flag indicates whether or not prediction resistance may
be required by the consuming application during one or more requests for
pseudorandom bits. Note that DRBGs that are implemented to always or never
support prediction resistance do not require this parameter. However, the uset of a
consuming application must determine whether or not prediction resistance may be
required by the application.

6. The personalization_string is an optional input that is used to personalize a seed
(see Section 8.4, item 1 and Section 8.7). If an implementation never intends to use
a personalization string, then the parameter may be omitted.

7. The DRBG specific_parameters, if any, are provided in Section 10 for each
DRBG.

8. mode is used to indicate whether the instantiation is for normal operation or for
testing.

ANS X9.82, Part 3 - DRAFT - May 2004

9.5.2 Request for Entropy

The DRBG specifications in this Standard request bits from an entropy input source during
the instantiation and reseeding processes and in order to provide prediction resistance. This
is specified in each specification as:

(status, entropy_input) = Get_entropy (min_entropy, min_length, max_length, mode),
where

1. status is the status returned from the entropy input source. In the DRBG
specifications, either an indication of Success or Failure is expected as the returned
status. The status shall be checked to determine that the requested entropy input
has been provided.

2. entropy_input is the string of bits returned from the entropy input source when the
mode indicates normal operation, and the returned status = Success. For example,
entropy_inputx might be used as the seed or used to derive the seed, depending on
the DRBG. If the returned status = Failure, a Null string shall be returned. 1f the
mode indicates a test is being performed, and status = Success, then a fixed value is
returned as the entopy input (see Section 9.9).

3. min_entropy is the minimum amount of entropy to be returned in the
entropy_input. If an implementation always requires the same minimum entropy,
this parameter may be omitted.

4. min_length is the minimum length of the bit string to be returned as the
entropy_input. Note that min_length is determined either by the value of
min_entropy or by the DRBG design requirements. If an implementation always
requires the same minimum length, this parameter may be omitted.

5. max_length is the maximum length of the bit string to be returned as the
entropy_input. Some of the DRBGs have a maximum length requirement in their
design. Other DRBGs have no such restriction. If an implementation always
requires the same maximum length, this parameter may be omitted.

6. mode indicates whether the request is made as a part of normal operation, in which
actual entropy input bits are requested, or whether a test is being performed, in
which case the mode is used to indicate what is being tested (see Section 9.9 for
further details).

For implementations where the min_length is always the same as the max_length, the two
parameters may be expressed as a single parameter (e.g., the call would be (status,
entropy_input) = Get_entropy (min_entropy, length)).

The specific details of the Get_entropy (...) process are left to the implementer, with the
above restrictions and any other entropy input source requirements in this Standard (see
Sections 7.2.1, 8.5 and 8.6).

ANS X9.82, Part 3 - DRAFT - May 2004

9.5.3 Find State Space

When a DRBG is instantiated, an area to save the internal state for that instantiation is
required. The Find_state_space (...) function is called as follows:

(status, state_pointer) = Find_state_space (mode)
where

1. status is the status return from the Find_state_space (...) function. Either an
indication of Success or Failure is expected. The status shall be checked to
determine that the requested space has been allocated.

2. state_pointer is used to identify the internal state for this instantiation in subsequent
calls to the generation and reseed processes.

3. mode indicates whether the request is made as part of normal operation or for
operational testing.

The following or an equivalent process shall be used as the Find_state_space (...)
function. Let state_space be an array of n internal states, and let the state_space array be
numbered from 0 to n-1. Let Empty represent an empty state (i.e., a state space that has not
been assigned to an instantiation). The actual value of Empty is DRBG dependent.

Find_state_space (...):
Input: integer mode.
Output: string status, integer state_pointer.
Process:

Comment: only allow the last
state_space to be used for testing;
otherwise, testing may use any
available state space.

1. If (mode = Normal_operation), then last_state = n-2
Else last_state = n-1.

Comment: Search for an empty
state_space.

2. Fori=0to last state do
If (state_space (i) = Empty), then Return (“Success”, i).

3. Return (“No available state space”, nvalid_state_pointer).

ANS X9.82, Part 3 - DRAFT - May 2004

9.5.4 Derivation Functions

9.5.4.1 Introduction

Derivation functions are used during DRBG instantiation and reseeding to either derive
state values or to distribute entropy throughout a bit string. Two methods are provided.
One method is based on hash functions and the other method is based on the block cipher
algorithm used by a given DRBG.

9.5.4.2 Derivation Function Using a Hash Function

The hash-based derivation function hashes an input string and returns the requested
number of bits. Let Hash (...) be the hash function used by the DRBG, and let outlen be its
output length. Note that the requested_bits string shall not be greater than (255 x outlen)
bits in length (i.e., no_gf bits to_return < (255 x outlen)). However, implementations may
use a smaller value (max_no_of bits) whose value is an implementation choice that shall
be < (255 x outlen)). The following or an equivalent process shall be used to derive the
requested number of bits.
Hash_df (...):
Input; bitstring input_string, integer no_of bits_to_return.
Output: bitstring requested_bits.
Process:
1. If (no_of bits to return> max_no_of bits), then Return ("Too many bits
requested from derivation function").
2. temp = the Null string.
5 Ien:{no_of_bits_to_return]‘
outlen
4. counter = an 8 bit binary value represented in hexadecimal as x’01°.
5. Fori=1to Jendo
5|.1 temp = temp || Hash (counter || no_of bits_to_return || .‘upmﬁsn-fng).l
5.2 counter = counter + 1.
6. requested bits = Leftmost (no_of bits_to_return) of temp.
7. Return (requested_bits).
9.5.4.3 Derivation Function Using a Block Cipher Algorithm

9.5.4.31 The TDEA_df (...)Derivation Function

The TDEA_df (...) function derives bits from an input string using the TDEA block cipher

algorithm, a derivation key and an Approved key wrapping algorithm (TDEA_Wrap (...)).

TDEA_Wrap(...) is define in ANSI X9.102. Note that two key and three key TDEA are
specified. Two keys are presented in a 112-bit string; three keys are presented in a 168-bit
string.
The following or an equivalent process shall be used to derive the requested number of
bits.
TDEA_df(...):
Input: integer keylen, bitstring (derivation_key, M), integer no_of bits_to_return.
Output: string status, bitstring (requested_bits).

_...——| Comment [ebb4]: Page: 60

We need to specify an integer to string
conversion process.

ANS X9.82, Part 3 - DRAFT - May 2004

Process:
Comment: Parse the derivation_key
into three TDEA keys (see below).
1. (status, keyl, key2, key3) = Parse_TDEA_Key (derivation_key).

2. If (status = “Failure”), then Return (“Invalid Key size”, Null).

Comment: Wrap M using the three
TDEA keys; the ciphertext string is
returned as C.

3. If (no_of bits to_return> len (M)), then Return (“Too many bits requested
from TDEA_df”, Null).
4. C=TDEA_Wrap (keyl, key2, key3, (]no_of_bits_to_returnh_ﬁg{})_,._______I______”_I________
5. requested_bits = Leftmost (no_of bits_to_return) of C.
6. Return (“Success”, requested_bits).
Parse_TDEA_Key (...):
Input: bitstring Key.
Output: string status, bitstring (key, key», keys).
1. keylen=len (Key).
2. If (keylen = 112), then do:
2.1 key, = Leftmost 56 bits of Key.
2.2 key, = Rightmost 56 bits of Key.
2.3 key3 = keyl.
2.4 Return (“Success”, keyi, key,, keys).
3. If (keylen=168), then do:
3.1 key; = Lefimost 56 bits of Key.
2.2 key, = Bits 57-112 of Key.
2.3 key; = Rightmost 56 bits of Key.
2.4 Return (“Success”, keyi, keys, keys).
4. Return (“Failure”).
9.5.4.3.2 The AES_df (...)Derivation Function

The AES_df (...) function derives bits from an input string using the AES block cipher

algorithm,

a derivation key and an Approved key wrapping algorithm (AES_Wrap (...)).

AES_Wrap (...) is define in ANSI X9.102. Note that AES keys may consist of 128, 192 or

256 bits.

The following or an equivalent process shall be used to derive the requested number of

bits.
AES_df (.
Input:

e

integer keylen, bitstring (derivation_key, M), integer no_of bits_to_return.

Output: string status, bitstring requested_bits.
Process:

1.

If (no_of bits_to_return > len (M)), then Return (“Too many bits requested
from AES_df”, Null).
Comment: Get the ciphertext string C.

C = AES_Wrap (derivation_key, keylen, (no_of bits_to_return || M).

requested_bits = Leftmost (no_of bits_to_return) of C.

.| Comment [ebb5]: Page: 60

We need to specify an integer to slring
conversion process.

.| Comment [ebb6]: Page: 62
Need to specify an integer to string conversion
process.

ANS X9.82, Part 3 - DRAFT - May 2004

4. Return (“Success”, requested_bits).
9.6 Reseeding a DRBG Instantiation

9.6.1 Introduction

The reseeding of an instantiation is not required, but is recommended whenever an
application and implementation are able to perform this process. Reseeding will insert
additional entropy into the generation process. Reseeding may be :

e explicitly requested by an application,
o performed when prediction resistance is requested by an application

e performed by the generation process when a predetermined number of
pseudorandom outputs have been produced (e.g., at the end of the seedlife}, or

o triggered by external events (e.g., whenever sufficient entropy is available).
Alternatively, a new DRBG instantiation may be created (see Section 9.5).

During reseeding, a DRBG shall not continue to produce output bits until the DRBG is
completely reseeded and a new internal state is determined.)

9.6.2 The Function Call

When a DRBG instantiation is reseeded, the DRBG shall be reseeded using a form of the
following function call:

status = Reseed_ DRBG_Instantiation (state_pointer, additional_input, mode)
where:

1. status is the indication returned from the reseeding process. A status of Success
indicates that the reseeding process has been successful, and pseudorandom bits
may be requested. Failure messages that could be returned from this process are
specified for each DRBG. The status shall be checked to determine that the DRBG
has been correctly reseeded.

2. Reseed_ DRBG_Instantiation (...) is specified for each DRBG. Note that the
name of the generalized function call of this section (i.e.,
Reseed DRBG_Instantiation (...)) is different than the specific name used for
each DRBG (e.g., Reseed_Hash_DRBG_Instantiation (...)).

3. state_pointer indicates the internal state to be reseeded.

4, Optional additional_input may be provided. This parameter is not required for
implementations that will never use the additional input.

5. mode is used to indicate whether the reseeding is for normal operation or for
testing.

ANS X9.82, Part 3 - DRAFT - May 2004

9.7 Generating Pseudorandom Bits Using a DRBG

9.7.1 Introduction

Each request for pseudorandom bits shall generate bits for only one value. For example, a
single request shall not be used to generate bits for multiple AES keys, or bits for both an
AES key and a DSA key). Instead, separate calls to the generation function shall be used.

Multiple requests may be used to construct a single value. For example, a 1024 bit
pseudorandom string may be generated using eight calls for 128 bits each, and
concatenating the eight 128-bit strings.

9.7.2 The Function Call

An application may request the generation of pseudorandom bits by a DRBG using a form
of the following call:

(status, pseudorandom_bits) = DRBG (state_pointer, requested_no_of bits,
requested strength, additional input, prediction_resistance_flag, mode)

where:

1. status is the indication returned from DRBG (...). A status of Success indicates that
pseudorandom_bits have been successfully generated. Failure messages that could
be returned from this process are specified for each DRBG. If an indication of
failure is returned, a Null string is returned in place of the pseudorandom_bits. The
status returned by the DRBG shall be checked by the consuming application to
determine that the request has been successful prior to using any bit string returned.

2. pseudorandom_bits are returned when the status indicates Success. These are the
bits requested by the application. If the status indicates a failure, a Null string shall
be returned.

3. DRBG (...) is specified for each DRBG. Note that the name of the generalized
function call of this section (i.e., DRBG (...)) is different than the specific name
used for each DRBG (e.g., Hash_DRBG (...)).

4, state_pointer indicates the internal state to be used and updated during
pseudorandom bit generation.

5. requested _no_of bits indicates the number of bits to be returned by the DRBG. If
an application always requires the same number of pseudorandom bits to be
returned, this parameter may be omitted.

6. requested strength is used to request the minimum security strength for the
pseudorandom bits to be generated. Note that this parameter is not required for
implementations that provide only a single security strength. Note that the
requested_strength parameter in the DRBG call is a failsafe mechanism. The
implementation shall check that the value requested is not more than that provided
by the instantiation, as determined by the call to the instantiation process (see
Section 9.5.1). A call for greater strength shall result in an error.

ANS X9.82, Part 3 - DRAFT - May 2004

7. Optional additional inpur may to be provided. This parameter is not required for
implementations that will never use additional _input.

8. prediction_resistance_ flag indicates whether or not prediction resistance is to be
provided for the pseudorandom bits to be generated (see Section 8.8). This
parameter is not required if an implementation will always or never require
prediction resistance.

9. mode indicates whether pseudorandom bits are requested as part of normal
operation or whether testing is being performed.

9.8 Uninstantiate

A process may need to “release” the state space allocated for an instantiation. This may be
required, for example, following operational testing of the instantiation process. The
Uninstantiate (...) process shall be performed using the following function call:

status = Uninstantiate (state_pointer)
where

1. status is the indication returned from the uninstantiate process. A status of Success
or Failure is expected. The status should be checked to ensure that the state space
has been released.

2. Uninstantiate (...) is specified for each DRBG. Note that the name of the
generalized function call (i.e., Uninstantiate (...)) is different than the specific
name used for each DRBG (e.g., Uninstantiate_Hash_DRBG (...)).

3. state_pointer indicates the internal state to be released.

9.9 Self-Testing of the DRBG

9.9.1 Discussion

A DRBG shall perform self testing to obtain assurance that the implementation continues
to operate as designed and implemented (operational testing). A DRBG may also be tested
to validate that it has been implemented correctly. See Section 11 for a discussion of
operational and implementation validation testing.

9.9.2 Specifications

9.9.21 Test Specification Variables

Abort_to_error_state (status_message)
The abort routine for critical failures that is specified in
Section 9.9.2.10.

additional _input_flag Indicates whether additional input should be provided for
testing, where additional _input_flag =
{Additional_input_provided,
No_additional _input_provided}.

additional _input_text [The text to be used as additional input during the testing of
the pseudorandom bit generation and reseeding processes.[

__..-| Comment [ebb7]: Page: 65
Should there be more than one value ? Should
there be different lengths 7

ANS X9.82, Part 3 - DRAFT - May 2004

ctr A count of the number of requests for pseudorandom bits
since instantiation or reseeding.

DRBG specific_parameters DRBG-specific parameters to be included in the test function
calls. Thee parameters are identified for each DRBG in
Section 10, if required. Note that the presence of these
parameters may require additional steps in the testing
process. This will be addressed for each DRBG, when
necessary.

entropy_input 1, entropy input 2
The entropy input returned from the Get_entropy (...)
function.

ES_Selftest () The entopy input source testing function specified in Section
9.9.2.9.

expected_instantiated state with_personalization_string (strength,
prediction_resistance_flag)
An array of expected values of the state that is compared
against the state generated during instantiation testing when
a personalization, string is used.

expected_instantiated _state_with_no_personalization_string(strength,
prediction_resistance_flag)
An array of expected values of the state that is compared
against the state generated during instantiation testing when
no personalization_string is used.

expected_large_string with_no_prediction_resistance (strength, additional_input_flag)
An array of expected values for each strength when a large
number of pseudorandom bits is requested from the
generation process without prediction resistance.

expected_large_string with_prediction_resistance (strength, additional_input_flag)
An array of expected values for each strength when a large
number of pseudorandom bits is requested from the
generation process with prediction resistance.

expected reseeded_state (strength)
An array of expected states when reseeding is performed; a
state is defined for each strength to be tested.
expected_small_string with_no_prediction_resistance (strength, additional_input_flag)
An array of expected values for each strength when a small
number of pseudorandom bits is requested from the
generation process without prediction resistance.

expected_small_string with_prediction_resistanc e(strength, additional_input_flag)
An array of expected values for each strength when a small
number of pseudorandom bits is requested from the
generation process with prediction resistance.

Get_entropy (min_entropy, min_length, max_length, mode)

large no_of bits

last_state
max_length
max_strength
max_updates
min_entropy

min_length
mode

Null
prediction_resistance_flag

pseudorandom_bits

requested_strength

small_no_of bits

state (state_pointer)

ANS X9.82, Part 3 - DRAFT - May 2004

A function that acquires entropy input from an entropy
source. See Section 9.5.2

The number of pseudorandom bits requested during testing
of the pseudorandom bit generation process. This value is
larger than a block of bits produced by the DRBG and is
specific to the DRBG and its specification. See the DRBGs
in Section 10 for an appropriate value for a given
implementation.

The index of the last stafe in an implementation.

The maximum length for a string of bits.

The maximum security strength supported by a DRBG
implementation (as opposed to a DRBG instantiation).

The maximum number of requests for the generation of
pseudorandom bits before reseeding is required.

The minimum amount of entropy required.

The minimum length of a string of bits.

An indication of whether requests for entropy input are for
normal operation or for testing. Possible values are mode =
{Normal_operation, Fixed entropy_input_I,
Fixed_entropy input 2,...., Failure}, where

Fixed _entropy input n selects a fixed value as the entropy
input.

A null (i.e., empty) string.

Indicates whether or not prediction resistance requests
should be handled. Possible values are
prediction_resistance_flag = {No_prediction_resistance,
Allow_prediction_resistance}.

The pseudorandom bits that are generated during a single
call to the generation process.

The requested strength during a pseudorandom bit generation
process.

The number of pseudorandom bits requested during testing
of the pseudorandom bit generation process. This value is
smaller than a block of bits produced by the DRBG and is
specific to the DRBG and its specification. See the DRBGs
in Section 10 for an appropriate value for a given
implementation.

An array of states for for different DRBG instantiations. A
state is carried between DRBG calls. The state consists of
multiple elements that are accessed as state
(state_pointer).element. The state elements are specific to
each DRBG. The state may be considered as Empty,
Test_not_empty or contain the state for an instantiation.
Test_not_empty shall be an illegal value (i.e., not Empty and
not a recognized normal operational value for the state).

ANS X9.82, Part 3 - DRAFT - May 2004

state_pointer A pointer to the state space for a given DRBG instantiation.
An invalid/incorrect state pointer is specified as
Invalid_state_pointer.

status The status returned from a function call, where status =
“Success” or a failure message.

strength The security strength to be provided by the DRBG
instantiation.

temp A temporary value.

Test_Generation (strength, state_pointer)
The pseudorandom bit genération testing function specified
in Section 9.9.2.4.

Test_Generation_Error_Handling (strength, state_pointer)
The testing function specified in Section 9.9.2.7 for error
handling by the pseudorandom bit generation process.

Test_Instantiation (strength, prediction_resistance_flag)
The instantiation testing function specified in Section
9.9.2.3.

Test_Instantiation_Error_Handling (strength)
The testing function specified in Section 9.9.2.6 for error
handling by the instantiation process.

Test_Reseeding (strength, state_pointer)
The reseeding test function specified in Section 9.9.2.5.

Test_Reseeding_Error_Handling (state_pointer)
The testing function specified in Section 9.9.2.8 for error
handling by the reseeding process.

Test_personalization_string lA personalization string to be used during testing

Uninstantiate (state pointer)
The uninstantiate process discussed in Section 9.8 and
specified for each DRBG in Section 10.

9.9.2.2 Test_DRBG (..)

Test_ DRBG (...) shall test each DRBG process that resides in a DRBG boundary. As
discussed in Section 8.3, the testing function is contained within the same DRBG boundary
as the DRBG process being tested. Therefore, the internal state values are available for
modification and examination by the testing function. When an error is detected during
DRBG testing, the process shall enter an error state (see Section 9.9.2.10).

Each DRBG function within a DRBG boundary shall be tested in accordance with Section
11.4 (operational testing) using the following process.

The following Test DRBG (...) process is the highest level routine of the tests. The steps
used by an implementation depends on the DRBG processes that are available in the
DRBG boundary.

Is a single string sufficient ? Should there be
different lengths 7

; [Comment [ebb8]: Page: 68

ANS X9.82, Part 3 - DRAFT - May 2004

Steps 1 and 2 shall be present if a source of entropy input is available.
Step 3 shall include all security strengths implemented.

e Steps 3.1, 3.2, 3.7, 4 and 5 shall be present if the instantation process is available
and prediction resistance is not required.

e Steps 3.8,3.9, 3.14, 4 and 5 shall be present if the instantation process is available
and prediction resistance can be handled.

e Steps 3.3, 3.4, 6 and 7 shall be present if the generation process is available and
prediction resistance is not required. Note that if the instantiation process is not
available, the state_pointer shall be set to a state space that is not otherwise used
(e.g., reserved for testing only).

e Steps 3.10, 3.11, 6 and 7 shall be present if the generation process is available and
prediction resistance can be handled. Note that if the instantiation process is not
available, the state_pointer shall be set to a state space that is not otherwise used
(e.g., reserved for testing only).

e Steps 3.5, 3.6, 8 and 9 shall be present if the reseeding process is available and
prediction resistance is not required. Note that if the instantiation process is not
available, the state_pointer shall be set to a state space that is not otherwise used
(e.g., reserved for testing only).

e Steps 3.12, 3.13, 8 and 9 shall be present if the reseeding process is available and
prediction resistance can be handled. Note that if the instantiation process is not
available, the state_pointer shall be set to a state space that is not otherwise used
(e.g., reserved for testing only).

¢ Step 10 shall be present for all implementations.

The following process or its equivalent shall be used to test a DRBG implementation.
Test DRBG ():

Input: None
Output: string status.
Process:
1. status = ES_Selftest (). Comment : Test the entropy input

source. See Section 9.9.2.9.
2. If (status # “Success”), then Abort_to_error_state (“Self testing failure of the
entropy input source”).
Comment : Test normal operation for each
strength supported by a DRBG

implementation.
B. For strength = 80, 112, 128, 192,256 ...~ comment [ebbg]: Page: 69
| m e mm mw m e Hive ot yot Inciid o basts for in boiesh
Comment : Test the instantiation pizes:
process with no prediction resistance.
See Section 9.9.2.3.

3.1 (status, state_pointer) = Test_Instantiation (strength,
No_prediction_resistance).

3.2 If (status = “Success”), then Abort_to_error_state (“Self testing failure
during instantiation (no prediction resistance):” || status).

4.
S

3.3
34

3.5
3.6

3.7

3.8

3.9

3.10
3.11

3.12
3.13

3.14

ANS X9.82, Part 3 - DRAFT - May 2004

Comment : Test the generation
process. See Section 9.9.2.4.

status = Test_Generation (strength, state_pointer).
If (status # “Success”), then Abort_to_error_state (“Sclf testing failure
during pseudorandom bit generation (no prediction resistance):” ||
status).
Comment : Test the reseeding process.
See Section 9.9.2.5.

status = Test_Reseeding (strength, state_pointer).

If (status # “Success”), then Abort_to_error_state (“Self testing failure

during reseeding (no prediction resistance) :” || status).

status = Uninstantiate (state_pointer).
Comment : Test the instantiation
process with prediction resistance. See
Section 9.9.2.3.

(status, state_pointer) = Test_Instantiation (strength,
Allow_prediction_resistance).
If (status # “Success™), then Abort_to_error_state (“Self testing failure
during instantiation (with prediction resistance):” || status).
Comment : Test the generation
process. See Section 9.9.2.4.

status = Test_Generation (strength, state_pointer).
If (status # “Success”), then Abort_to_error_state (“Self testing failure
during pseudorandom bit generation (with prediction resistance):” ||
status).
Comment : Test the reseeding process.
See Sectuion 9.9.2.5.

status = Test_Reseeding (strength, state_pointer).

If (status # “Success™), then Abort_to_error_state (“Self testing failure

during reseeding (with prediction resistance) :” || status).

status = Uninstantiate (state_pointer).
Comment : Test error handling. Note
that strength should now be the
highest strength available in an
implementation
Comment : Test error handling during
instantiation. See Section 9.9.2.6.

status = Test_Instantiation_Error_Handling (strength).

If (status # “Success”), then Abort_to_error_state (“Self testing failure during
instantiation error handling test :” || status).

ANS X9.82, Part 3 - DRAFT - May 2004

Comment : Test error handling during
pseudorandom bit generation. See
Section 9.9.2.7.
6. status = Test_Generation_Error_Handling (strength, state_pointer).
7. If (status # “Success™), then Abort_to_error_state (“Self testing failure during
pseudorandom bit generation error handling test :” || status).
Comment : Test error handling during
reseeding. See Section 9.9.2.8.
8. status = Test_Reseeding_Error_Handling (strength, state_pointer).
9. If (status # “Success”), then Abort_to_error_state (“Self testing failure during
reseeding error handling test :” || status).
10. Return (“Success”).
9.9.2.3 Test_DRBG_Instantiation (...)

The following Test_Instantiation (...) process shall be present when the DRBG boundary
contains the instantiation process. Calls to Instantiate DRBG (...) shall be considered as
calls to the instantiation process for the appropriate DRBG (e.g.,
Instantiate_Hash_ DRBG (...)).

e Steps 1-3 shall be present if an implementation can handle a personalization string.

e Step 4 shall be present if steps 5-7 are present.

e Steps 5-7 shall be present if an implementation can handle a Null personalization

string and does not require prediction resistance.

o Step 8 shall be present for all implementations.
Note that steps 5-7 are not followed by a call for uninstantiation. This will allow the final
instantiation to be used for subsequent testing (e.g., for pseudorandom bit generation). The
test sets may be reordered, but the final test set shall provide an instantiation that can be
used for further testing.
The following process or its equivalent shall be used to test a DRBG instantiation process.
Test_ Instantiation ():

Input: integer strength, prediction_resistance_flag.

Output: string status, integer state_pointer.

Process:
Comment: Test with a personalization
string. See Section 9.5.1.

1. (status, state_pointer) = Instantiate_ DRBG (strength,
prediction_resistance_flag, Test_personalization_string,
DRBG specific_parameters, Fixed_entropy_input_I).

2. If (status # “Success”), then Return (status).

3. If (state (state_pointer) #
expected_instantiated_state_with_personalization_string (strength,
prediction_resistance_flag), then Return (“Incorrect test state using a
personalization_string).

Comment: Remove the state. See
Section 9.8.

ANS X9.82, Part 3 - DRAFT - May 2004

4. status = Uninstantiate (state_pointer).
Comment: Test with no
personalization string. See Section
9.5.1.

5. (status, state_pointer) = Instantiate DRBG (strength,

prediction_resistance_flag, Null, DRBG _specific_parameters,

Fixed _entropy input_1).

If (status # “Success™), then Return (startus).

7. 1f (state (state_pointer) # expected_instantiated_state_with_
no_personalization_string (strength, prediction_resistance_flag), then Return
(“Incorrect test state with a null personalization_string”).

8. Return (“Success”, state_pointer).

&

9.9.2.4 Test_Generation (...)

The following Test_Generation (...) process shall be present when the DRBG boundary
includes the generation process. Calls to DRBG (...) shall be considered as calls to the
generation process for the appropriate DRBG (e.g., Hash_DRBG (...)).

The appropriate steps of steps 1-12 shall be present if a generation process does not

require prediction resistance.

- Steps 1-3 and 7-9 shall be present when an implemenation is capable of
handling additional_input.

- Steps 4-6 and 10-12 shall be present when an implemenation can handle null
additional_input.

Step 13 shall be present if an implementation does not require prediction resistance

at all times.

The appropriate steps of steps 14-25 shall be present if a generation process can

handle prediction resistance.

- Steps 14-16 and 20-22 shall be present when an implemenation is capable of
handling additional_input.

- Steps 17-19 and 23-25 shall be present when an implemenation can handle null
additional_input.

Steps 26-28 shall be present if an implementation is unable to reseed from the

generation process, but shall be omitted otherwise.

Steps 29-32 shall be present when reseeding is available online, but shall be

omitted otherwise.

The following process or its equivalent shall be used to test a pseudorandom bit generation
process.
Test_Generation ():

Input: integer requested_strength, state_pointer.
Output: string status.
Process:

Comment : Request the generation of
a small number of bits with an
additional _input string and no

10.

11.
12.

ANS X9.82, Part 3 - DRAFT - May 2004

prediction resistance. See Section
9.7.1.

(status, pseudorandom_bits) = DRBG (state_pointer, small_no_of bits,
requested_strength, additional_input_text, No_prediction_resistance,
Fixed entropy_input_1).
If (status # “Success”), then Return (status).
If (pseudorandom_bits # expected_small_string_with no prediction_resistance
(requested_strength, Additional input_provided)), then Return (“Incorrect bits
returned when additional_input but no prediction resistance is provided, and a
small string is requested”).
Comment : Request the generation of
a small number of bits with no
additional _input string and no
prediction resistance. See Section
9.7.1.

(status, pseudorandom_bits) = DRBG (state_pointer, small_no_of bits,
requested._strength, Null, No_prediction_resistance, Fixed_entropy_input_1).
If (status # “Success”), then Return (status).
If (pseudorandom_bits = expected small_string with_no_prediction_resistance
(rerquested_strength, No_additional _input_provided)), then Return
(“Incorrect bits returned when no additional input and no prediction resistance
is provided, and a small string is requested).
Comment : Request the generation of
a larger number of bits with an
additional_input string. See Section
9.7.1.

(status, pseudrandom_bits) = DRBG (state_pointer, large_no_of bits,
requested_strength, additional_input_text, No_prediction_resistance,
Fixed entropy input 1).
If (status # “Success™), then Return (status).
If (pseudorandom_bits = expected large_string_with no_prediction_resistance
(requested_strength, Additional_input_provided)), then Return (“Incorrect bits
returned when additional input but no prediction resistance is provided, and a
large string is requested™).
Comment : Request the generation of
a larger number of bits when no
additional_input is provided. See
Section 9.7.1.

(status, pseudrandom_bits) = DRBG (state_pointer, large_no_of bits,
requested_strength, Null, No_prediction_resistance, Fixed_entropy_input_1).
If (status # “Success”), then Return (status).

If (pseudorandom_bits = expected_large_string (requested_strength,
No_additional_input)), then Return (“Incorrect bits returned when no

13.

14.

15.
16.

17.

18.
19.

20.

21.

ANS X9.82, Part 3 - DRAFT - May 2004

additional_input and no prediction resistance is provided, and a large string is
requested”).
Comment : Return if there is no
prediction resistance capability in the
state. See Section 9.7.1.

If (state (state_pointer).prediction_resistance_flag) =
No_prediction_resistance), then go to step 26.
Comment : Test the
prediction_resistance capability.

Comment : Request the generation of
a small number of bits with an
additional _input string. See Section
9.7.1.

(status, pseudorandom_bits) = DRBG (state_pointer, small_no_of bits,
requested_strength, additional _input_text, Provide_prediction_resistance,
Fixed entropy input 2).
If (status # “Success™), then Return (status).
If (pseudorandom_bits + expected small _string with prediction_resistance
(requested_strength, Additional input_provided)), then Return (“Incorrect bits
returned when additional input and prediction resistance is provided, and a
small string is requested”).
Comment : Request the generation of
a small number of bits with no
additional_input string. See Section
9.7.1.

(status, pseudorandom_bits) = DRBG (state_pointer, small no_of bits,
requested_strength, Null, Provide_prediction_resistance,
Fixed entropy input 3).
If (status # “Success™), then Return (status).
If (pseudorandom_bits # expected_small_string with prediction_resistance
(requested_strength, No_additional input_provided)), then Return (“Incorrect
bits returned when no additional input is provided but prediction resistance is
requested, and a small string is requested).
Comment : Request the generation of
a larger number of bits with an
additional_input string. See Section
9.7.1.

(status, pseudrandom _bits) = DRBG (state_pointer, large_no_of bits,
requested_strength, additional input text, Provide_prediction_resistance,
Fixed entropy input 4).

If (status # “Success”), then Return (status).

ANS X9.82, Part 3 - DRAFT - May 2004

22. If (pseudorandom_bits # expected large string_with prediction_resistance
(requested _strength, Additional input provided)), then Return (“Incorrect bits
returned when additional input is provided, but prediction resistance is
requested, and a large string is requested”).

Comment : Request the generation of
a larger number of bits when no
additional _input is provided. See
Section 9.7.1.

23. (status, pseudrandom_bits) = DRBG (state_pointer,
large_no_of bits,requested_strength, Null, Provide_prediction_resistance,
Fixed entropy input 5).

24. If (status # “Success”), then Return (status).

25. If (pseudorandom_bits # expected large string with prediction_resistance
(requested_strength, No_additional_input)), then Return (“Incorrect bits
returned when no additional _input is provided, but prediction resistance is
requested, and a large string is requested”).

Comment : Test the end of the DRBG
when reseeding and prediction
resiatence is not available (i.c., step 3
of Hash_DRBG (...)). See Section
9.7.1

26. state (State_pointer).ctr = max_updates.
27. (status, pseudorandom_bits) = DRBG (state_pointer, small_no_of bits,
requested_strength, additional_input text, No_prediction_resistance,
Fixed entropy input_1).
28. If (status # “DRBG can no longer be used. Please re-instantiate or reseed”),
then Return (“Incorrect result for max_updates test”).
Comment : Test the reseeding
capability when ctr > max_updates
and the reseeding process is available
(i.e., step 12 of Hash_DRBG (...)).
29. state(state_pointer).ctr = max_updates - 1.
30. (status, pseudorandom_bits) = DRBG (state_pointer, small_no_of bits,
requested_strength, additional_input_text, No_prediction_resistance,
Fixed entropy_input_6).
31. If (status # “Success™), then Return (status).
32. If (pseudorandom_bits + string_after reseeding (requested_strength)), then
Return (“Incorrect reseeding process”).
33. Return (“Success”).
9.9.2.5 Test_Reseeding (...)

The following Test_ Reseeding (...) process shall be available when an implementation
has the reseeding process. Calls to Reseed_DRBG_Instantiation (...) shall be considered

ANS X9.82, Part 3 - DRAFT - May 2004

as calls to the reseeding process for the appropriate DRBG (e.g.,

Reseed Hash_DRBG_Instantiation (...)).

The following process or its equivalent shall be used to test a DRBG reseeding process.
Test_Reseeding ():

Input: integer strength, state_pointer.
Output: string status.
Process:
1. status = Reseed_ DRBG_Iiistantiation (state_pointer,
Fixed entropy input 7).
2. If (status # “Success”), then Return (status).
3. If (state(state_pointer) = expected reseeded_state (strength)), then Return
(“Incorrect reseed test state™).
4. Return (“Success”™).
9.9.2.6 Test_Instantiation_Error_Handling (...)

The following Test_Instantiation_Error_Handling (...) process shall be available when
an implementation has the instantiation process. Calls to Instantitate_DRBG (...) shall be
considered as calls to the instantiation process for the appropriate DRBG (e.g.,
Instantiate Hash_ DRBG (...)).
o Note that strength shall be the highest strength available in an implementation.
e Ifthe No_prediction_resistance flag in steps 1, 3 and 6 cannot be handled by an
implementation, the flag shall be changed to Allow prediction_resistance.
e If the implementation cannot handle a personalization string, then
Test_personalization_string shall be changed to Null in steps 1, 3 and 6.
The following process or its equivalent shall be used to test error handling by an
instantiation process.
[Test_Instantiation_Error_Handling ()
Input: integer strength.
Output: string status.
Process:
Comment : Test requested_strength
check failure. The strength > the last
strength tested by Test_DRBG (...).
1. (status, state_pointer) = Instantiate_DRBG (strength + 1,
No_prediction_resistance, Test_personalization_string,
DRBG specific parameters, Fixed entropy_input 1).

2. If (status = “Success”), then Return (“Accepted incorrect strength”).
Comment : Test Get_entropy (...)
status check failure.

3. (status, state_pointer) = Instantiate_ DRBG (strength,
No_prediction_resistance, Test_personalization_string,
DRBG specific_parameters, Failure).

4. If (status = “Success”), then Return (“Get_entropy failure not detected™).

.| Comment [ebb10]: Page: 77

Don't know how to check prediction resistance
capability flag failure.

ANS X9.82, Part 3 - DRAFT - May 2004

Comment : Test the

Find_state_space (...) error handling

process. Fill any unused state space.
5. Fori=0to last_state do

If (state (i) = Empty), then state (i) = Test_not_empty.

6. (status, state_pointer) = Instantiate DRBG (strength,
No_prediction_resistance, Test_personalization_string,
DRBG specific_parameters, Fixed entropy inpui_8).

If (status = “Success”), then Return (“Did not detect the full state space”).
For i = 0to last_state do

% =

If (state (i) = Test_not_empty), then state (i) = Empty.
9. Return (“Success”).

9.9.2,7 Test_Generation_Error_Handling (...)

The following Test_Generation_Error_Handling (...) process shall be available when an
implementation has the pseudorandom bit generation process. Calls to DRBG (...) shall be
considered as calls to the generation process for the appropriate DRBG (e.g., Hash_DRBG

().

Note that the requested strength is the highest strength available for the
implementation.

If the implementation cannot handle additional_input_text or the
No_prediction_resistance flag, then step 1 shall be modified to a call that can be
handled (e.g., by changing to the Allow prediction_resistance flag).

Steps 1 and 2 shall be present when the generation process includes a check for an
appropriate state pointer.

Steps 3-7 shall be present when the generation process has no ability to
automatically reseed.

Steps 8 and 9 shall be present when the generation process checks for an
appropriate security strength request.

Steps 10 and 17 shall be present to test prediction resistance.

Steps 11-13 shall be present when prediction resistance is supported, and the
generation process checks whether a prediction resistance capability was
instantiated.

Steps 14-16 shall be present when both reseeding and prediction resistance are
supported.

Steps 18-20 shall be present when automatic reseeding is available and a check is
made to determine if max_updates has been reached.

Step 21 shall always be included.

The following process or its equivalent shall be used to test error handling by a
pseudorandom bit generation process.
Test_Generation_Error_Handling () :

Input: integer requested_strength, state_pointer.

ANS X9.82, Part 3 - DRAFT - May 2004

Output: string status.

Process:
Comment : Test state_pointer
checking.
1. (status, entropy_input) = DRBG (Invalid_state_pointer, small_number_of bits,

W

10.
11.
12.

13.

14.

15.

requested_strength, additional_input_text, No_prediction_resistance,

Fixed _entropy_input_1).

If (status = “Success”), then Return (“Accepted incorrect state_pointer”).
Comment : Test abort when
max_updates is reached and reseeding
is unavailable.

temp = state (state_pointer).ctr.
state (state_pointer).ctr = max_updates.
(status, entropy_input) = DRBG (state_pointer, small_no_of bits,
requested_strength, additional_input_text, No_prediction_resistance,
Fixed entropy_input_1).
If (status = “Success”), then Return (“Incorrect operation when ctr =
max_updates™).
state (state_pointer).ctr = temp.
Comment : Test requested_strength
checking.

(status, entropy_input) = DRBG (state_pointer, small_no_of bits,
requested_strength + 1, additional_input_text, No_prediction_resistance,
Fixed no_of bits 1).
If (status = “Success”), then Return (“Accepted incorrect
requested_strength”).
Comment : Test inappropriate
prediction_resistance_request
checking.
temp = state (state_pointer).prediction_resistance_flag.
state (state_pointer).prediction_resistance_flag = No_prediction_resistance.
(status, entropy_input) = DRBG (state_pointer, small_no_of _bits,
requested_strength, additional_input_text, Provide_prediction_resistance,
Fixed no_of bits 2).
If (status = “Success”), then Return (“Incorrect handling of prediction
resistance request”).
Comment : Test reseeding error when
prediction resistance requested.

state (state_pointer).prediction_resistance_flag =
Provide_prediction_resistance.

(status, entropy_input) = DRBG (state_pointer, small_no_of_bits,
requested_strength, additional_input_text, Provide_prediction_resistance,
Failure).

ANS X9.82, Part 3 - DRAFT - May 2004

16. If (status = “Success™), then Return (“Failure indication from reseed request
when prediction resistance requested”).

17. state (state_pointer).prediction_resistance_flag = temp.

Comment : Test reseeding when ctr
reaches max_updates.

18. state (state_pointer).ctr = max_updates - 1.

19. (status, entropy_input) = DRBG (state_pointer, small_no_of bits,
requested_strength + 1, additional_input_text, Provide_prediction_resistance,
Failure).

20. If (status = “Success™), then Return (“Incorrect reseed handling when ctr >
max_updates”).

21. Return (“Success”).

9.9.2.8 Test_Reseeding_Error_Handling (...)

The following Test. DRBG_Reseeding_Error_Handling (...) process shall be available
when an implementation has the reseeding process. Calls to Reseed_Instantiation (...)
shall be considered as calls to the reseeding process for the appropriate DRBG (e.g.,
Reseed_Hash_DRBG_Instantation (...)).

e Steps 3 and 4 shall be present if entropy can be readily obtained.
The following process or its equivalent shall be used to test error handling by a reseeding
process.
Test_Reseeding_Error_Handling () :

Input: integer state_pointer.
Output: string status.

Process:
Comment : Test state_pointers check
failure.
1. status = Reseed_Instantiation (Invalid_state_pointer, Fixed_entropy_input 2).
2. If (status = “Success™), then Return (“Accepted incorrect state_pointer”).

Comment : Test Get_entropy (...)
status check failure.
status = Reseed _ Instantiation (state_pointer, Failure).
4. If (status = “Success”), then Return (“Get_entropy failure not detected”).
Comment : Test check of old and new
entropy_input.

W

state (state_pointer).transformed_seed = Fixed_entropy_input 2.

status = Reseed_ Instantiation (state_pointer, Fixed_entropy_input 2).

If (status = “Success”), then Return (“Entropy input failure not detected”).
. Return (“Success”).

9.9.2.9 [ES_Selftest(...)

% N oy

The concept of an entropy input source selftest is introduced in Part 1 of this Standard.
This test shall consist of the following steps. Let max_strength be the maximum strength
to be supported by the DRBG implementation; let min_length be the appropriate minimum

ANS X9.82, Part 3 - DRAFT - May 2004

length of the entropy input for the DRBG when it supports the maximum strength; and let
max_length be the maximum length of the entropy input for the DRBG when it supports
the maximum strength.
The following process or its equivalent shall be used to test the entropy input source.
ES_Selftest (...):

Input: None..

Output: string status.

Process:

Comment: Obtain two strings.

p—

min_entropy = max (128, max_strength).

2. (status, entropy input_1) = Get_entropy (min_entropy, min_length,
max_length, Normal operation).

3. If (status = “Success™), then Return (“Failure indication returned by the
Get_entropy source”).

4, (status, entropy_input_2) = Get_entropy (min_entropy, min_length,
max_length, Normal operation).

5. If (status # “Success™), then Return (“Failure indication returned by the

Get_entropy source”).

Comment : Compare the two strings.

6. If (len (entropy input_1)+ len (entropy_input_2)), then Return (“Success™).
7. If (entropy _input 1= entropy_input_2), then Return (“Entropy input source
failure™).
8. Return (“Success”).
9.9.2.10 Abort_to_error_state (...)

Critical errors, such as the failure of the entopy input source, shall call the
Abort_to_error_state (...) process specified below.

The following or an equivalent process shall be used as the Abort_to_error_state (...)
function:

Abort_to_error_state (...):

Input: string status.

Output: None.
Process:
1. Display (“status”). Comment : Display the error
indication message.
2. Fori=0to last_state Comment: Uninstantiate all states.

Uninstantiate (7).
3. Abort (). Comment: Abort the DRBG.
9.10 Error Handling

The expected errors are indicated for each DRBG in Section 10 and for testing in Section
9.9. The error handling routine shall indicate the type of error. For catastrophic errors (e.g.,

ANS X9.82, Part 3 - DRAFT - May 2004

entropy input source failure), the DRBG shall not produce further output until the source
of the error is corrected (see Section 9.9.2.9).

Most errors during normal operation are caused by an application’s improper DRBG
request. In these cases, the application user is responsible for correcting the request within
the limits of the user’s organization security policy. For example, if a failure of “Invalid
requested_strength” is returned, a security strength higher than the DRBG can support has
been requested. The user may reduce the requested strength if the organization’s security
policy allows the information to be protected using a lower security strength, or the user
shall use another appropriately instantiated DRBG for the usage class.

Failures that indicate that the entropy source has failed or that the DRBG failed operational
testing (see Sections 9.9.2.9 and 11.4) shall be perceived as complete DRBG failures. The
indicated DRBG problem shall be corrected before re-instantiating the DRBG and
requesting pseudorandom bits.

ANS X9.82, Part 3 - DRAFT - March 2004

8. Additional Requirements
8.1 General Discussion

In additional to the functional requirements in Section 7, other requirements are levied on
the implementation and use of a DRBG. These requirements are associated with the DRBG
boundary, the state of a DRBG, the seed, any key that is used by a given DRBG, and any
additional input that is provided during operation. In addition, a discussion on prediction
resistance and backtracking resistance in relation to the DRBGs specified in Section 10 is
provided.

8.2 DRBG Boundary

A DRBG shall be encapsulated within a DRBG boundary. The boundary may be either
physical or conceptual. Within the DRBG boundary,
1. The DRBG internal state and the operation of the DRBG functions shall only be
affected according to the DRBG specification.

2. The DRBG internal state shall exist solely within the DRBG boundary.

3. Information about secret parts of the DRBG internal state and intermediate values
in computations involving these secret parts shall not affect any information that
leaves the DRBG boundary, except as specified for the DRBG pseudorandom bit
outputs. The internal state shall be contained within the DRBG boundary and shall
not be accessible from outside the boundary.

When a DRBG is implemented within a FIPS 140-2 cryptographic module, the DRBG

Cryptographic Module Boundary

seed = .
Cryptographic Pseudorandom

Primitive Bits
(Opt.) Additional —* LN
Input 1 l
NNO !
| DRBG Boundary
T 1
i+
Other Cryptographic
Functions

Figure 3: DRBG Boundary Contained within a Cryptographic Module Boundary

boundary shall be either fully contained within the cryptographic boundary or shall be
coincident with the cryptographic boundary of the DRBG.

ANS X9.82, Part 3 - DRAFT - March 2004

Figure 3 depicts the DRBG boundary being fully contained within the cryptographic
module boundary. The figure shows a generalized DRBG that contains a cryptographic
primitive. This design will provide higher assurance of correct operation than a design with
a coincident DRBG and cryptographic module boundary. A cryptographic primitive within
the DRBG boundary (e.g., a hash function) shall not be accessible for other purposes by a
function outside the DRBG boundary; observe the !NO!! across the dotted vertical arrows
in the figure. For example, a digital signature function that is within the cryptographic
boundary, but not within the DRBG boundary shall not use a function (e.g., the hash
function) that resides within the DRBG boundary. A separate hash function is required
outside the DRBG boundary, but within the cryptographic module boundary for digital
signature purposes.

Cryptographic Module Boundary

T a

seed
Cryptographic

1
i
! 1
|
H . e —_— 4 Pseudorandom
i Primitive =
L}
1

Bits

(Opt.) Additional
Input

i
i
i DRBG
i

A
Other Cryptographic
Functions

DRBG Boundary

Figure 4: Coincident DRBG and Cryptographic Module Boundaries

Figure 4 depicts coincident DRBG and Cryptographic Module boundaries (i.e., the
boundaries are identical). Note that the DRBG itself is contained within the dotted
rectangle for convenience only; this is not intended to indicate the actual DRBG boundary.
This design provides lesser assurance than the previous design because the internal state is
potentially accessible by other non-DRBG functions. In this case, a cryptographic
primitive within a DRBG boundary may be used by other cryptographic functions within
the coincident DRBG and cryptographic module boundaries (e.g., during the generation or
validation of digital signatures); observe the vertical dashed arrows to and from the
DRBG’s hash function. However, the internal state of the DRBG shall not be used or
affected by other non-DRBG functions within the coincident boundary.

In both figures, the seed is shown as being input from outside the cryptographic module
and DRBG boundaries. This is depicted as such for convenience only. The seed may
actually be input from either inside or outside the two boundaries. In either case, however,
the requirements for protecting and handling the seed are specified in Section 8.4.

ANS X9.82, Part 3 - DRAFT - March 2004

8.3 DRBG instantiation and the Internal State

A DRBG is instantiated for a

usage class (i.e., one or more Instantiation: [Initialize with seed I
purposes; see Section 9.4) by

initiali'zin.g with a seed; an (Opt) Other input = Instance 1
instantiation may subsequently be L

reseeded. Each seed defines an ' :

instance of the DRBG CopRomelelt ma
instantiation; an instantiation (Opt.) Other input — Instance 2
consists of one or more instances

that begin when a new seed is l (Opt) Reseed with seed |

acquired (see Figure S5). The

period of time between seeding (Opt.) Other input _, ¥ Instances 3-n
and reseeding is considered as the ;

seed life.

At any given time after a DRBG

has been instantiated, a DRBG Figure 5: DRBG Instantiation

exists in a state that is defined by

all prior input information.

Different DRBG instances are defined by the seed and any other initial input information
that is required by a specific DRBG.

A DRBG shall be instantiated prior to the generation of output by the DRBG. During
instantiation, an initial internal state (hereafter called just the state) is derived, in part, from
a seed. The DRBG instantiation may subsequently be reseeded at any time (see Section 8.4
for a discussion on seeds).

Depending on the DRBG, the state includes:

1. The usage class of the DRBG instantiation,

2. One or more values that are derived from the seed(s); at least one of these derived
values is updated during the operation of the DRBG (e.g., at least one component
of the state is updated during each call to the DRBG),

3. Other information that is particular to a specific DRBG; this information may
remain static or may be updated during the operation of the DRBG,

4. An indication of whether or not prediction resistance is to be provided by the
DRBG upon request,

5. The security strength provided by the DRBG, and

6. A transformation of the entropy bits used to create the seed; this information
remains static until replaced by new values during reseeding.

The state shall be protected at least as well as the intended use of the output bits by the
consuming application. Each DRBG instantiation shall have its own state. The state for
one DRBG instantiation shall not be used as the state for a different instantiation.

A DRBG shall transition between states on demand (i.e., when the generator is requested
to provide new pseudorandom bits). A DRBG may also be implemented to transition in
response to internal or external events (e.g., system interrupts) or to transition continuously
(e.g., whenever time is available to run the generator). Additional unpredictability is
introduced when the generator transitions between states continuously or in response to

ANS X9.82, Part 3 - DRAFT - March 2004

external events. However, when the DRBG transitions from one state to another between
requests, reseeding may need to be performed more frequently.

8.4 Seeds

When a DRBG is used to generate bits, a seed shall be acquired prior to the generation of
output bits by the DRBG. The seed is used to instantiate the DRBG and determine the
initial state that is used when calling the DRBG to obtain the first output bits.

The seed, seed size and the entropy (i.e., randomness) of the seed shall be selected to
minimize the probability that the sequence of pseudorandom bits produced by one seed
significantly matches the sequence produced by another seed, and reduces the probability
that the seed can be guessed or exhaustively tested. Since this Standard does not require
full entropy for a seed but does require sufficient entropy, the length of the seed may be
greater than the entropy requirement (i.e., a seed with » bits of entropy may be longer than
n bits in length).

The entry of entropy into a DRBG using an insecure method could result in voiding the
intended security assurances. To ensure unpredictability, care shall be exercised in
obtaining and handling the entropy bits used to create seeds. The seed and its use by a
DRBG shall be generated and handled as follows:

1. Seed construction: A seed shall include entropy bits and should include a
personalization string (see Figure 6). Note that it is possible, in some cases, that the
entropy in the entropy bits may not be distributed across the sequence of bits.

A personalization string need not be secret. Whether or not the personalization
string is present, the resulting seed shall be unique. That is, when a personalization
string is used, the combination of the entropy bits and the personalization string
shall determine a unique seed; when

a personalization string is not used,
the entropy bits shall be statistically (Optional)
unique. Examples of data that may Entropy Bits | [Personalization
be included in a personalization .
string include a product and device String
number, user identification, date and

timestamp, IP address, or any other

information that provides assurance . (RN S
that two DRBG seeds are not “ Opt. /
inadvertently the same. N df /
The combination of the entropy bits N
and the optional personalization kY
string is called the seed material. A J'
derivation function shall be used to

distribute the entropy in the entropy Seed

bits across the entire seed (e.g., the
seed is not constructed with all the Figure 6: Seed Construction
entropy on one end of the seed)
whenever:

e A personalization string is used, or

ANS X9.82, Part 3 - DRAFT - March 2004

¢ When a personalization string is not used, and entropy bits are not
independent and uniformaly distributed throughout the entropy bit string.
2. Seed entropy: The entropy bits in the seed shall contain entropy that is appropriate
for the desired level of security, and the entropy shall be distributed across the seed
(e.g., by an appropriate derivation function).
A consuming application may or may not be concerned about collision resistance
between seeds. In order to accommodate possible collision concerns, a seed shall
have entropy that is equal to or greater than 128 bits or the required security
strength for the consuming application, whichever is greater (i.e., entropy = max
(128, security_strength)).
Table 1 identifies the five security strengths to be provided by Approved DRBGs,
along with the associated entropy requirements. If a selected DRBG and seed are
not able to provide the required strength required by the consuming application,
then a different DRBG and seed shall be used.

Table 1: Minimum Entropy and Seed Size

Bits of Security Strength 80 | 112 | 128 | 192 | 256

Minimum entropy 128 | 128 | 128 | 192 | 256

3. Seed size: The minimum size of the seed depends on the DRBG and the security
strength required by the consuming application. See Section 10.

4. Entropy input for a seed: The entropy input for a seed shall provide the required
amount of entropy for that seed in order to support the appropriate security level for
a consuming application. The source of the entropy input may be an Approved
NRBG, an Approved DRBG (or chain of Approved DRBGs) that is seeded by an
Approved NRBG, or another source whose entropy characteristics are known.
Further discussion about the entropy source is provided in Section 7.2.3.
When entropy input is not readily obtainable for multiple requests for entropy input
(e.g., multiple seeds are required), but sufficient entropy is available for a single
DRBG (e.g., DRBG A), this DRBG may be used to provide entropy input for other
DRBGs. In this case, the entropy provided to the first DRBG (i.e., DRBG A) shall
be equal to or greater than the entropy requirement of any lower level DRBG. For
example, DRBG A could provide entropy input for DRBGs B, C and D. The
highest level DRBG (i.e., DRBG A) may, in fact, be used to provide entropy input
for a chain of DRBGs. For example, DRBG A could provide entropy input for
DRBG B, which in turn could be used to provide entropy input for DRBG E.

An entropy input source need not be co-located with the DRBG. For example, for
smart card applications, the entropy input could be generated from an NRBG that is
not resident on the smart card and loaded onto the card to be combined with any
personalization string to produce the seed.

5. Seed privacy: Seeds shall be handled in a manner that is consistent with the
security required for the data protected by the consuming application. For example,
if the only secrets in a cryptographic system are the keys, then the seeds used to
generate keys shall be treated as if they are keys.

ANS X9.82, Part 3 - DRAFT - March 2004

6. Reseeding: Reseeding (i.e., replacement of one seed with a new seed) is a means of
recovering the secrecy of the output of the DRBG if a seed or the internal state
becomes known. Periodic reseeding is a good countermeasure to the potential
threat that the seeds and DRBG output become compromised. In some
implementations (e.g., smartcards), an adequate reseeding process may not be
possible. In these cases, the best policy might be to replace the DRBG, obtaining a
new seed in the process (e.g., obtain a new smart card).

Generating too many outputs from a seed (and other input information) may
provide sufficient information for successfully predicting future outputs unless
prediction resistance is provided (see Section 8.7). Periodic reseeding will reduce
security risks, reducing the likelihood of a compromise of the data that is protected
by cryptographic mechanisms that use the DRBG.

Seeds shall have a specified finite seedlife. rThe seed shall be replaced periodically,
or prediction resistance shall be provided or the DRBG shall be rendered

inoperable at the end of the seedlife. If seeds become known (i.e., the seeds are .| Comment [ebb1]: Page: 1

compromised), unauthorized entities may be able to determine the DRBG output. e ey~ oroned

Reseeding of the DRBG (i.e., creating a new DRBG instance) shall be performed
in accordance with the specification for the given DRBG!. The DRBG reseed
specifications within this standard are designed to produce a new sced that is
determined by both the old seed and newly-obtained entropy bits that will support
the desired security level. The newly-obtained entropy bits shall be checked to
assure that they are not the same as the entropy bits obtained to create the previous
DRBG instance. More than one set of entropy bits shall not be saved by the
DRBG. The entropy bits shall not be saved in their original form, but shall be
transformed by a one-way process (see the specifications in Section 10). When new
entropy bits are generated and compared to the “old” entropy bits (i.e., the new
entropy bits are transformed and compared with the transformed old entropy bits),
the transformed new entropy bits shall replace the old transformed entropy bits in
memory. If the new entropy bits are determined to be identical to the old eniropy
bits, then the DRBG shall fail.

It should be noted that an alternative to reseeding is to create an entirely new
instantiation. This may be appropriate, for example, in environments with restricted
capabilities, where the seed is obtained from a source that is not co-located with the
DRBG (e.g., in a smart card applicaton).

7. Seed use: DRBGs may be used to generate both secret and public information. In
either case, the seed shall be kept secret. A single instantiation of a DRBG should
not be used to generate both secret and public values. However, cost and risk
factors must be taken into account when determining whether different
instantiations for secret and public values can be accommodated.

L For some applications (e.g., smart cards), resceding essentially consists of replacing the entire DRBG
module. Therefore, the restrictions within this paragraph may not apply [NEED TO ANALYZE THIS
STATEMENT)

ANS X9.82, Part 3 - DRAFT - March 2004

A seed that is used to initialize one instantiation of a DRBG shall not be intentially
used to reseed the same instantiation or used as a seed for another DRBG
instantiation.

A DRBG shall not provide output until a seed is available, and the state has been
initialized.

Seed separation: Seeds used by DRBGs shall not be used for other purposes (e.g.,
domain parameter or prime number generation).

It is recommended that when resources permit (e.g., storage capacity), different
(i.e., statistically unique) seeds should be used for the generation of different types
of random data (i.e., the instantiations of the DRBGs should be different). For
example, the seed used to generate public values should be different than the seed
used to generate secret values. The seed used by a DRBG technique to generate
asymmetric key pairs should be different than a seed used by the same (or a
different) DRBG technique to seed other DRBGs, which should, in turn, be
different than a seed used by the same (or a different) DRBG technique to generate
symmetric keys. The seed used by a DRBG technique to generate random
challenges should be different than the seed used by the same (or a different)
DRBG technique to generate PINS or passwords. However, the amount of seed
separation is a cost/benefit decision.

8.5 Keys

Some DRBGs require the use of one or more keys. Such DRBGs are designed to generate
keys from seeds (see Section 8.4, item 1 for a discussion on seed construction). A key and
its use in a DRBG shall conform to the following:

1.

Key entropy: The seed for the key shall have entropy that is equal to or greater than
128 bits or the required security strength of the consuming application, whichever
is greater (i.e., entropy = max (128, security_strength)).

Key size: Key sizes shall be selected to support the desired security strength of the
consuming application (see SP 800-57). If the DRBG primitive using the key (e.g.,
the block cipher algorithm) cannot support the required security strength, then a
different primitive or a different DRBG shall be used.

. Entropy source for a key: The entropy source for the key is the seed for the DRBG

instance(see Section 8.4, item 4).

Key secrecy: Keys shall remain secret and shall be handled in a manner that is
consistent with the security required for the data protected by the consuming
application using the DRBG pseudorandom bits. Keys shall be protected in
accordance with [SP 800-57].

Rekeying: Rekeying (i.e., replacement of one key with a new key) is a means of
recovering the secrecy of the output of the DRBG if a key becomes known.
Periodic rekeying is a good countermeasure to the potential threat that the keys and
DRBG output become compromised. However, the result from rekeying is only as
good as the entropy source used to provide the new key. In some implementations
(e.g., smartcards), an adequate rekeying process may not be possible, and rekeying
may actually reduce security. In these cases, the best policy might be to replace the
DRBG, obtaining a new key in the process (e.g., obtain a new smart card).

ANS X9.82, Part 3 - DRAFT - March 2004

Generating too many outputs using a given key may provide sufficient information
for successfully predicting future outputs when prediction resistance is not
provided. Periodic rekeying will reduce security risks, reducing the likelihood of a
compromise of the data that is protected by consuming applications that use the
DRBG.

Keys shall have a specified finite keylife (i.e. a cryptoperiod). Keys shall be
replaced periodically. Expired keys or keys that have been replaced shall be
destroyed (see SP 800-57). If keys become known (e.g., the keys or seeds are
compromised), unauthorized entities may be able to determine the DRBG output.

6. Key use: Keys shall be used as specified in a specific DRBG. A DRBG requiring a
key(s) shall not provide output until the key(s) is available.

7. Key separation: A key used by a DRBG shall not be used for any purpose other
than random bit generation. Different instantiations of a DRBG shall use different
keys. Different instances of of the same instantiation of a DRBG should use
different keys.

8.6 Additional Input

During each request for bits from a DRBG, the insertion of additional input is allowed.
This input is optional and may be either secret or publicly known; its length and value are
arbitrary (i.e., there are no restrictions on its length or content). The additional input allows
less reliance on the seed. If the additional input is kept secret and has sufficient entropy,
the input may be used to provide additional entropy for random bit generation and provide
an ability to recover from the compromise of the seed or one or more states of the DRBG.
Depending on the method for acquiring the input, the exact value of the input may or may
not be known to the user or application. For example, the input could be derived directly
from values entered by the user or application, or the input could be derived from
information introduced by the user or application (e.g., from timing statistics based on key
strokes), or the input could be the output of another DRBG or an NRBG.

Additional unpredictability for the DRBG may also be provided by reseeding the DRBG
(see Section 8.4).

8.7 Prediction Resistance and Backtracking Resistance

Each of the DRBGs specified in Section 10 has been designed to provide prediction
resistance and backtracking resistance when observed from outside the DRBG boundary,
given that the observer does not know the seed, or any key or state values.

Figure 7 depicts the sequence of DRBG states that result from a given seed. Some subset
of bits from each state are used to generate pseudorandom bits upon request by a user. The
following discussions will use the figure to explain backtracking and prediction resistance.
Suppose that the user wants assurance that an adversary cannot determine the
pseudorandom bits produced from Statey.

ANS X9.82, Part 3 - DRAFT - March 2004

Seed ——s| Statc, || State, | © * ¢ |State,,||State, ;|| State, State,,| |State | * * *

Figure 7: Sequence of DRBG States

Backtracking Resistance: When a DRBG provides backtracking resistance, an adversary is
unable to determine the bits in State, if that adversary is able to determine the bits in any
state occurring subsequent to State,. That is, if State.+ (or any state after State 1) is
compromised, the adversary is unable to “back up” the process to determine the bits in
State,. When observed from within the DRBG boundary (i.e., the DRBG is observed as a
glass box, and the advsersary can get the current state (e.g., Statex)), the previous states
cannot be determined. Each of the DRBGs in this Standard provide backtracking
resistance;with-the-exeepti “the-Hash—BREGC eified-in-Seetion104-2.

Prediction Resistance: When prediction resistance is provided, an adversary is unable to
determine the bits in State, if that adversary is able to determine the bits in any state prior
to State,. That is, if State,, (or any state prior to State ») is compromised, the adversary is
unable to generate the next bits in the process and so (ultimately) to determine the bits in
State,. Note that an adversary will normally be able to determine the next bits if prediction
resistance is not provided because of the deterministic nature of the DRBG. When
observed from within the DRBG boundary (that is, as a glass box where the current state
(e.g., State,.,) is known), prediction resistance may be provided for a DRBG by the
insertion of sufficient additional entropy prior to generating pseudorandom bits; for
example, by doing an explicit reseed. Sufficient entropy is defined as being at least equal
to the amount of entropy required for the seed used to instantiate the DRBG at the desired
secutity strength (i.c., min-entropy = max (128, strength); see Section 8.4, item 2).
Providing the additional entropy prior to generating new pseudorandom bits (ie.,
generating a new state) isolates the newly generated bits from prior bits generated by the
DRBG (i.e., from prior states); knowledge of previously generated bits (e.g., obtained via a
compromise) does not allow the prediction of the new bits.

Note that prediction resistance is not provided if the entropy is obtained in amounts that are
less than required to support the desired security level. Inserting insufficient additional
entropy is better than not inserting additional entropy at all, but the DRBG cannot provide
prediction resistance in this case.

ptioR-6r v,

ANS X9.82, Part 3 - DRAFT - March 2004

9 General Discussion of the Specified DRBGs

9.1 Model of DRBG Interaction

Figure 8 depicts the use of a DRBG

by an application. Prior to requesting

pseudorandom bits, the application DREG Boundary
shall instantiate the DRBG using a ctact Instantiaie

seed. Depending on the application, “"}?:23 = DRBG [States |
the DRBG instantiation may need to

be periodically reseeded using a new e

seed. These seeds are used to Instertiation ~ g‘;‘g’g

determine the initial state of the g
DRBG instantiation and the new state Infy
resulting from the reseed process. Request Bits p,e?,e;e:::m

When the generation of Tosting ——+| Bits
pseudorandom bits is requested, the —

state is updated.

The diSCl}:l)SSiOI‘lS in the following Addltienalfeprc
subsections assume that a single type

of DRBG will be available to an :
application. The availability and use

of multiple DRBG types (e.g., both

the Hash_DRBG (...) and the Dual_ EC_DRBG (...)) is allowed, and the discussions may
be extended to this case.

9.2 Security Strength Supported by a DRBG Instantiation

Figure 8: Using a DRBG

The DRBGs specified in this Standard support one or more of five security strengths (i.e.,
security levels): 80, 112, 128, 192 or 256 bits. The security strengths that may be supported
by a particular DRBG are specified for each. However, the security strength actually
supported by a particular instantiation may be less than the maximum security strength
possible for that DRBG, depending upon the amount of entropy that is obtained in the
seed.

The maximum strength provided by an instantiation is determined when the DRBG is
instantiated. The instantiated security strength shall be less than or equal to the maximum
security strength that can be supported by the DRBG

9.3 Effective Security Strength, Entropy and Seed Size of an Instantiation

The instantiation of a DRBG requires the acquisition of a seed with sufficient entropy to
support the requested security strength; reseeding the instantiation requires the acquisition
of another seed with the same properties. As discussed in Section 8.4, reseeding requires
the acquisition of the appropriate amount of new entropy to support the desired security
level and combining the newly-obtained entropy with the entropy from the previous
instance.

ANS X9.82, Part 3 - DRAFT - March 2004

The minimum new entropy (min_entropy) to be acquired when seeding or reseeding shall
be equal to either 128 or the requested strength, whichever is greater (i.e., min_entropy =
max (128, requested_strength).

Note that the use of more entropy than the minimum value will offer a security “cushion”.
The minimum size of the seed depends on the DRBG. Many DRBGs allow a range of seed
sizes. A variation in the allowable seed size permits the use of an entropy source that
provides either full entropy (i.e., one bit of entropy for each bit of the seed) or less than full
entropy (i.e., multiple bits of the seed may be required to provide each bit of entropy).

9.4 DRBG Purposes and Usage Classes

A DRBG may be used to obtain pseudorandom bits for different purposes (e.g., DSA
private keys and AES keys). This Standard recommends that different instantiations be
used to generate bits for different purposes. However, if an application needs to generate
bits for different purposes, it may not always be practical to use multiple instantiations.
Each instantiation is associated with a usage_class for the purpose(s)supported by the
instantiation. For example, a usage_class may be associated with the generation of only
1024-bit DSA keys, and a separate usage_class may be associated with the generation of
128-bit AES keys. Both usage_classes may use the same type of DRBG, but use different
instantiations, or they may use different DRBG types (e.g., the generation of DSA keys
may use the Hash_DRBG (...), while AES keys may be generated using the
Dual_EC_DRBG (...)). As another example, if an application cannot support multiple
instantiations (e.g., because of memory restrictions), then the same usage_class could be
associated with generating both 1024-bit DSA keys and 128-bit AES keys (i.e., the
usage_class supports two purposes).

9.5 Security Strengths of an Instantiation for a Usage Class

For each DRBG instantiation, a security strength (i.e., security level) needs to be requested
and obtained during the instantiation process. When a DRBG instantiation needs to provide
pseudorandom bits for only one purpose (i.e., the usage_class is associated with that single
purpose), then the security level needs to support that purpose. Examples:

1. 256-bit AES keys can provide a maximum of 256-bits of security. An instantiation
must support at least 256 bits of security if the full 256 bits of security are to be
provided by the AES keys. Note that the minimum entropy requirement would be
256 bits to support 256 bits of security.

2. 1024-bit DSA private keys can only provide 80 bits of security. In this case, an
instantiation used only for the generation of 1024-bit DSA keys must be supported
by at least 128 bits of entropy (see Section 9.3).

When an instantiation is used for multiple purposes (i.e., the usage_class is associated with
more than one purpose), the minimum entropy requirement for each purpose must be
considered. The DRBG needs to be instantiated for the highest entropy requirement (see
Section 9.3). For example, if one purpose requires 80 bits of security (i.e., min_entropy =
128 bits), and another purpose requires 256 bits of security (i.e., min_entropy = 256 bits),
then the DRBG shall be instantiated to support at least 256 bits of security (i.e.,
min_entropy = 256 bits).

ANS X9.82, Part 3 - DRAFT - March 2004

9.6 Instantiating a DRBG

9.6.1 The Instantiation Function Call

Prior to the first request for pseudorandom bits, a DRBG shall be instantiated using a form
of the following function call:
status = Instantiate DRBG (usage class, requested_strength ,
prediction_resistance_flag, personalization_string, DRBG_specific_parameters)

where:

1. status is the indication returned from the instantiation process. A status of Success
indicates that the instantiation has been successful, and pseudorandom bits may be
requested. Failure messages that could be returned from this process are specified
for each DRBG. The status shall be checked to determine that the DRBG has been
correctly instantiated.

2. Instantiate DRBG (...) is specified for each DRBG. Note that the name of the
generalized function call of this section (i.e., Instantiate DRBG (...)) is different
than the specific name used for each DRBG (e.g., Instantiate_Dual EC_DRBG

().

3. usage_class indicates the usage_class of the DRBG instantiation (e.g., to create
DSA private keys). An indication of the usage_class is optional when the DRBG
will never be used to support multiple usage classes; if the usage_class indicator is
present, then the DRBG may be associated with multiple usage_classes.

4. requested strength is used to request the minimum security strength for the
instantiation. Note that DRBG implementations that support only one security
strength do not require this parameter; however, any application using the DRBG
must be aware of this limit.

5. The prediction_resistance_flag indicates whether or not prediction resistance may
be required by the consuming application during one or more requests for
pseudorandom bits. Note that DRBGs that are implemented to always or never
support prediction resistance do not require this parameter. However, the user of a
consuming application must determine whether or not prediction resistance may be
required by the application. ‘

6. The personalization_string is an optional input that is used to personalize a seed
(see Section 8.4, item 1). If an implementation never intends to use a
personalization string, then the parameter may be omitted.

7. The DRBG specific_parameters, if any, are provided in Section 10 for each
DRBG.

ANS X9.82, Part 3 - DRAFT - March 2004

9.6.2 Request for Entropy

The DRBG specifications in this Standard may request bits from an entropy source during
the instantiation and reseeding processes and in order to provide prediction resistance. This
is specified in each specification as:

(status, entropy_bits) = Get_entropy (min_entropy, min_length, max_length),
where

1. status is the status returned from the entropy source. In the DRBG specifications,
either an indication of Success or Failure is expected as the returned status. The
status shall be checked to determine that the requested entropy has been provided.

2. entropy bits is the string of bits returned from the entropy source when the returned
status = Success. For example, x might be used as the seed or used to derive the
seed, depending on the DRBG. If the returned status = Failure, a Null string shall
be returned.

3. min_entropy is the minimum amount of entropy to be returned in the bit string x. If
an implementation always requires the same minimum entropy, this parameter may
be omitted.

4. min_length is the minimum length of the bit string to be returned as x. Note that
min_length is determined either by the value of min_entropy or by the DRBG
design requirements. If an implementation always requires the same minimum
length, this parameter may be omitted.

5. max_length is the maximum length of the bit string to be returned as x. Some of the
DRBGs have a maximum length requirement in their design. Other DRBGs have
no such restriction: in this case, the maximum length is an implementation issue
and is denoted as implementation_choice in the specification. If an implementation
always requires the same maximum length, this parameter may be omitted.

For implementations where the min_length is always the same as the max_length, the two
parameters may be expressed as a single parameter (e.g., the call would be (status, x) =
Get_entropy (min_entropy, length)).

The specific details of the Get_entropy (...) process are left to the implementer, with the
above restrictions and any other entropy source requirements in this Standard (see Sections
7.2.1, 8.4 and 8.5).

9.6.4 Derivation Functions
9.6.4.1 Introduction

Derivation functions are used during DRBG instantiation and reseeding to either derive
state values or to distribute entropy throughout a bit string. Two methods are provided.
One method is based on hash functions and is used when the DRBG is based on hash
functions (e.g., Hash_DRBG (...)); the other method is based on the block cipher
algorithm used by a given DRBG (e.g., B DRBG (...) using AES).

ANS X9.82, Part 3 - DRAFT - March 2004

9.6.4.2 Derivation Function Using a Hash Function

The hash-based derivation function hashes an input string and returns the requested
number of bits. Let Hash (...) be the hash function used by the DRBG, and let outlen be its
output length. Note that the requested_bits string shall not be greater than (255 x outlen)
bits in length (i.e., no_of bits_to_return < (255 x outlen)). The following or an equivalent
process shall be used to derive the requested number of bits.
Hash_df (...):

Input: bitstring input_string, integer no_of bits_to_return.

Output: bitstring requested_bits.

Process:

1. temp = the Null string.

no_af bits_to_return
Ien:" & _bis_lo -l

2
outlen
3. counter = an 8 bit binary value represented in hexadecimal as x’01°.
4, Fori=1tolendo
‘4.1 temp = temp || Hash (counter || no_of bits_to_return, fnpur_sfrfng)j
4.2 counter = counter + 1.
5. requested_bits = Leftmost (no_of bits_to_return) of temp.
6. Return (requested_bils).
9.6.4.3 Derivation Function Using a Block Cipher Algorithm

9.6.4.3.1 The TDEA_df (...)Derivation Function

The TDEA_df (...) function derives bits from an input string using the TDEA block cipher

algorithm, a derivation key and an Approved key wrapping algorithm (TDEA_Wrap (...)).

TDEA_Wrap(...) is define in ANSI X9.102. Note that two key and three key TDEA are
specified. Two keys are presented in a 112-bit string; three keys are presented in a 168-bit
string.
The following or an equivalent process shall be used to derive the requested number of
bits.
TDEA_df (...):
Input: integer keylen, bitstring (derivation_key, M), integer no_of bits_to_return.
Output: string status, bitstring (requested_bits).

Process:
Comment: Parse the derivation_key
into three TDEA keys (see below).
1. (status, keyl, key2, key3) = Parse_TDEA_Key (derivation_key).
2. If (status = “Failure”), then Return (“Invalid Key size”, Null).

Comment: Wrap M using the three
TDEA keys; the ciphertext string is
returned as C.

w

If (no_of bits_to_return > len (M)), then Return (“Too many bits requested
from TDEA_df”, Null).
4, C=TDEA_Wrap (keyl, key2, key3, dnohof_bits_to_return 1 M)).

We need to speclfy an integer to string
converslon process.

LComment [ebb2]: Page: 1

_..~-| Comment {ebb3]: Page: 1
We need lo specify an integer to string
conversion process.

ANS X9.82, Part 3 - DRAFT - March 2004

5. requested bits = Leftmost (no_of bits_to_return) of C.
6. Return (“Success”, requested_bits).
Parse_ TDEA_Key (...):
Input: bitstring Key.
Output: string status, bitstring (keyi, keys, keys).
1. keylen = len (Key).

2. If (keylen = 112), then do:

2.1 key, = Lefimost 56 bits of Key.

2.2 key, = Rightmost 56 bits of Key.

2.3 keyy = key:.

2.4 Return (“Success”, keyy, key,, keys).
3. If (keylen = 168), then do:

3.1 key: = Leftmost 56 bits of Key.

2.2 key, = Bits 57-112 of Key.

2.3 keyy = Rightmost 56 bits of Key.

2.4 Return (“Success”, key, key,, keys).
4. Return (“Failure”).

9.6.4.3.2 The AES_df (...)Derivation Function

The AES_df (...) function derives bits from an input string using the AES block cipher
algorithm, a derivation key and an Approved key wrapping algorithm (AES_Wrap (...)).
AES_Wrap (...) is define in ANSI X9.102. Note that AES keys may consist of 128, 192 or
256 bits.
The following or an equivalent process shall be used to derive the requested number of
bits.
AES df (...):
Input: integer keylen, bitstring (derivation_key, M), integer no_of bits_to_return.
Output: string status, bitstring requested_bits.
Process:
1. If (no_of bits_to_return > len (M)), then Return (“Too many bits requested
from AES_df”, Null).
Comment: Get the ciphertext string C.
2. C=AES_Wrap (derivation_key, keylen, dno_of_bits_to_return||_M))‘.____. .| comment [ebba]: Page: 1
3. requested bits = Leftmost (no_of bits_to_return) of C. ':rii‘;;‘;‘s"ec'fy aft{nGesE o string CoMEreion
4. Return (“Success”, requested_bits).

9.7 Reseeding a DRBG Instantiation

9.7.1 Introduction

The reseeding of an instantiation is not required, but is recommended whenever an
application and implementation are able to perform this process. Alternatively, a new
DRBG instantiation may be created (see Section 9.6). Reseeding may also be performed in
order to provide prediction resistance (see Section 8.7).

Reseeding will insert additional entropy into the generation process. Reseeding may be
performed at the explicit request of the consuming application, perhaps on a periodic basis

ANS X9.82, Part 3 - DRAFT - March 2004

determined by time. Reseeding may also be initiated by the DRBG when the maximum
number of states have been generated or when prediction resistance is required. In either
case, the DRBG shall not continue to produce bits until the DRBG is successfully
reseeded.

9.7.2 The Function Call

When a DRBG instantiation is reseeded, the DRBG shall be reseeded using a form of the
following function call:

status = Reseed_ DRBG_Instantiation (usage_class)

where:

1. status is the indication returned from the reseeding process. A status of Success
indicates that the reseeding process has been successful, and pseudorandom bits
may be requested. Failure messages that could be returned from this process are
specified for each DRBG. The status shall be checked to determine that the DRBG
has been correctly reseeded.

2. Reseed_DRBG_Instantiation (...) is specified for each DRBG. Note that the
name of the generalized function call of this section (i.e.,
Reseed DRBG_Instantiation (...)) is different than the specific name used for
each DRBG (e.g., Reseed_Hash_DRBG_Instantiation (...)).

3. usage class indicates the purpose of the DRBG instance (e.g., to create DSA
private keys). An indication of the usage_class is optional when the DRBG will not
be used to support multiple usage classes; if the usage_class indicator is present,
then the DRBG may be associated with multiple usage_classes.

9.8 Generating Pseudorandom Bits Using a DRBG

9.8.1 Introduction

Each request for pseudorandom bits shall generate bits for only one value. For example, a
single request shall not be used to generate bits for multiple AES keys, or bits for both an
AES key and a DSA key). Instead, separate calls to the generation function shall be used.

Multiple requests may be used to construct a single value. For example, a 1024 bit
pseudorandom string may be generated using eight calls for 128 bits each, and
concatenating the eight 128-bit strings.

9.8.2 The Function Call

An application may request the generation of pseudorandom bits by a DRBG using a form
of the following call:

(status, pseudorandom_bits) = DRBG (usage_class, requested_no_of bits,
requested_strength, additional_input, prediction_resistance_flag)

where:

ANS X9.82, Part 3 - DRAFT - March 2004

1. status is the indication returned from DRBG (...). A status of Success indicates that
pseudorandom_bits have been successfully generated. Failure messages that could
be returned from this process are specified for each DRBG. If an indication of
failure is returned, a Null string is returned in place of the pseudorandom_bits. The
status returned by the DRBG shall be checked by the consuming application to
determine that the request has been successful prior to using any bit string returned.

2. pseudorandom_bits are returned when the status indicates Success. These are the
bits requested by the application. If the status indicates a failure, a Null string shall
be returned.

3. DRBG (...) is specified for each DRBG. Note that the name of the gencralized
function call of this section (i.e., DRBG (...)) is different than the specific name
used for each DRBG (e.g., Hash_DRBG (...)).

4. usage class indicates the purpose of the DRBG instance. An indication of the
usage_class is optional when the DRBG will not be used to support multiple usage
classes; if the usage_class indicator is present, then usage_class is used to select
the appropriate instantiation to be reseeded.

5. requested_no_of bits indicates the number of bits to be returned by the DRBG. If
an application always requires the same number of pseudorandom bits to be
returned, this parameter may be omitted.

6. requested strength is used to request the minimum security strength for the
pseudorandom bits to be generated. Note that this parameter is not required for
implementations that provide only a single security strength. Note that the
requested_strength parameter in the DRBG call is a failsafe mechanism. The
implementation shall check that the value requested is not more than that provided
by the instantiation, as determined by the call to the instantiation process (see
Section 9.6.1). A call for greater strength shall result in an error condition .

7. Optional additional_input may to be provided. This parameter is not required for
implementations that will never use additional_input.

8. prediction_resistance_flag indicates whether or not prediction resistance is to be
provided for the pseudorandom bits to be generated (see Section 8.7). This
parameter is not required if an implementation will always or never require
prediction resistance.

9.9 Inserting Additional Entropy Between Requests

An implementation may insert additional entropy between requests for pseudorandom bits.
This may be initiated by internal or external events. When additional entropy is inserted
between requests for pseusorandom bits, it is recommended that such entropy not be
inserted unless sufficient entropy is available to support the security strength of the
instantiation (i.e., entropy > max (128, strength)). The insertion of additonal entropy will
result in an update of the state. tlf insufficient entropy is available, the implementation may
choose to update the state or to exit the process without changing the state)

-+ Comment [ebb5]: Page: 57

This needs to be incorporated, if we really want
it.

ANS X9.82, Part 3 - DRAFT - March 2004

Additional entropy may be inserted into the state of the DRBG (...) between requests for
pseudorandom bits as follows:

where:
1.

(status, entropy_bits) = Add_Entropy_to_ DRBG (usage_class,
request_syfficient_entropy_flag, always_update_flag)

status is the indication returned from Add_Entropy_to_ DRBG (...). A status of
Success indicates that additional entropy has been inserted. Failure messages that
could be returned from this process are specified for each DRBG. The returned

status shall be checked to determine whether or not new_bits have been returned.

entropy_bits contains the additional entropy that is acquired.

Add_Entropy_te_DRBG (...) is specified for each DRBG. Note that the name of
the generalized function call of this section (i.c., Add_Entropy_to_DRBG (...)) is
different than the specific name used for each DRBG (e.g.,
Add_Entropy_to_Hash_DRBG_ (...)).

usage_class indicates the purpose of the DRBG instance. An indication of the
usage_class is optional when the DRBG will not be used to support multiple usage
classes; if the usage_class indicator is present, then usage_class is used to select
the appropriate DRBG instantiation for the add entropy process.
request_sufficient_entropy_flag indicates whether or not the new bits containing
entropy are to be used if the entropy is insufficient to support the security strength
of the instantiation.

always_update_flag indicates whether or not the state is to be updated when
additional entropy is not available. This parameter is not required if the
implementation is designed to always behave in the same way, i.e., always update
the state whether or not additional entropy is available, or never update the state
unless additional entropy is available.

9.10 Error Handling

[This section will contain guidance about the handling of error conditions by the
consuming application]

9.11 DRBG Selection

Several DRBGs are specified in this Standard . The selection of a DRBG depends on
several factors, including the security strength to be supported and what basic building
blocks are available. An analysis of the consuming application’s requirements for random
numbers shall be conducted in order to select an appropriate DRBG.

10 DRBG Specifications

ANS X9.82, Part 3 - DRAFT - March 2004

10.1 Deterministic RBGs Based on Hash Functions

10.1.1 Discussion

A hash DRBG is based on a hash function that is non-invertible or one way. The following
are provided as DRBGs based on hash functions:

1. The Hash_DRBG (...) specified in Section 10.1.2 has been designed to use any
Approved hash function and may be used by applications requiring various levels
of security, providing that the appropriate hash function is used and su fficient
entropy is obtained for the seed.

2. The Keyed_Hash_DRBG (...) specification in Section 10.1.3 is based on the
Hash_DRBG (...) in Section 10.1.2, with the addition of a key.

10.1.2 Hash Function DRBG Using Any Approved Hash Function (Hash_DREG)

10.1.2.1 Discussion

Figures 9 and 10 present a DRBG that uses any Approved hash function.

t seed

Hash
Function 1
Lo
C V ctr

Figure 9: Hash_DRBG (...)
Instantiation

Hash_DRBG (...) employs an Approved hash
function that produces a block of pseudorandom bits
using a seed (seed) and an application specific
constant (¢). Optional additional input
(additional_input) may be provided during each
access of Hash_DRBG (...) to obtain bits; the size of
the additional_input is arbitrary.

The Hash_DRBG (...) requires the use of a hash
function at three points in the process, including the
instantiation and reseeding processes (see Figures 9
and 10). The same hash function shall be used at all
three points. The hash function to be used shall meet
or exceed the desired security strength of the
consuming application.

Hash_DRBG (...) has been designed to meet different
security levels, depending on the hash function used.
The security strengths that can be accommodated by

each hash function, the associated entropy requirement and the seed lengths are specified
in Table 1. For each security strength, the required minimum entropy (min_entropy) shall
be the maximum of 128 and the security strength (i.e., min_entropy = max (128,
strength)). The minimum length of the seed (seedlen) shall be the maximum of the hash
output block size (outlen) and the security sirength + 64; the maximum length of the seed
shall be the size of the hash input block (inlen); i.e., max (outlen, strength + 64) < seedlen
< inlen. Further requirements for the seed are provided in Section 8.4.

ANS X9.82, Part 3 - DRAFT - March 2004

Table 1: Security Strength, Entropy Requirement and Seed Length for Each Hash Function

Hash Function Security Strength Required Seed Length
Minimum Entropy

SHA-1 80 128 160-512
112 128 160-512

128 128 192-512

SHA-224 80 128 224-512
112 128 224-512

128 128 224-512

192 192 256-512

SHA-256 80 128 256-512
112 128 256-512

128 128 256-512

192 192 256-512

256 256 384-512

SHA-384 80 128 384-1024
112 128 384-1024

128 128 384-1024
192 192 384-1024
256 256 384-1024
SHA-512 80 128 512-1024
112 128 512-1024
128 128 512-1024
192 192 512-1024
256 256 512-1024

ANS X9.82, Part 3 - DRAFT - March 2004

v C etr
(Opt.)
additional input
| |
additional v
input
1

Elterate o obtain {
| enoughbits o, Counter |
: l (From 0)!
l_ Hash :.
t Function]
1]
Bl s o oo s s] k ‘I
v . l L
Pseudorandom Bits Y A
v ctr

Figure 10: Hash_DRBG (...)

The application-specific constant (7) shall be outlen bits in length. See Annex E.?97 for
some values for ¢ for different purposes.

Figures 11 and 12 depict the insertion of test input for the seed, the application-specific
constant (¢) and the additional.input values (additional_input). The tests shall be run on the
output of the generator.

ANS X9.82, Part 3 - DRAFT - March 2004

Validation and operational testing are discussed in
Section 11. Detected errors shall result in a transition
to the error state.

10.1.2.2 Interaction with Hash_DRBG (...)

Test Test
t Input seed Input

10.1.2.21 Instantiating Hash_DRBG (...)

Prior to the first request for pseudorandom bits,
Hash_DRBG (...) shall be instantiated using the
following call:

status = Instantiate_Hash_DRBG (usage_class,
I requested_strength, prediction_resistance_flag,

Hash personalization_string),
Function 1 . . .
l as described in Section 9.6.1.

v

4 L

10.1.2.2.2 Reseeding a Hash_DRBG (...)
C VYV octr Instantiation

When a DRBG instantiation requires reseeding (see

Figure 11: Hash_DRBG (...) Section 9.7), the DRBG shall be reseeded using the
Instantiation (with Tests) following call:

status = Reseed_ Hash_DRBG_Instantiation (usage_class)
as described in Section 9.7.2.
10.1.2.2.3 Generating Pseudorandom Bits Using Hash_DRBG (...)

An application shall request the generation of pseudorandom bits by Hash_DRBG (...)
using the following call:

(status, pseudorandom_bits) = Hash_DRBG (usage_class, requested no_of bits,
requested_strength, additional_input, prediction_resistance_flag)

as described in Section 9.8.2.

10.1.2.2.4 Self Testing of the Hash_DRBG (...) Process

A Hash_DRBG(...) implementation is tested at power up and on demand using the
following call:

(status) = Self_Test_Hash_DRBG ()
as described in Section 9.9.

ANS X9.82, Part 3 - DRAFT - March 2004

v C ctr
(Opt)
Test additional
Input input
Input | v
Hash
Function
l v c otr
r L
+ +—t
b
If Input = Null ;
v v
e s Rs s TR Sy e S e E e —— 1 1I—+
{ Tterate to obtain i
! enoughbiis 44— Counter |
| (From 0)}
i Hash !
it Function E L
e ST T
+
(@ | 1
v cr C
Pseudo random Bits

Figure 12; Hash_DRBG (...) with Tests
10.1.2.3 Specifications

10.1.2.3.1 General

The instantiation and reseeding of Hash_DRBG (...) consists of obtaining a seed with at
least the requested amount of entropy. The seed is used to derive elements of the initial
state, which consists of:
1. (Optional) The usage_class for the DRBG instantiation; if the DRBG is used for
multiple usage_classes, requiring multiple instantiations, then the usage_class

S

E

ANS X9.82, Part 3 - DRAFT - March 2004

parameter shall be present, and the implementation shall accommodate multiple
states simultaneously; if the DRBG will be used for only one usage_class, then the
usage_class parameter may be omitted).

A value (V) that is updated during each call to the DRBG.

A constant C that depends on the application-specific constant (¢) and the seed.

A counter (ctr) that indicates the number of ipdates of ¥ since the seed was
acquired.

The application specific constant (¢) (see Annex E).

The security strength of the DRBG instance.

The length of the seed (seedlen).

A prediction_resistance_flag that indicates whether or not prediction resistance is
required by the DRBG, and

(Optional) A transformation of the seed using a one-way function for later
comparison with a new seed when the DRBG is reseeded; this value shall be
present if the DRBG will potentially be reseeded; it may be omitted if the DRBG
will not be reseeded.

The variables used in the description of Hash_DRBG (...) are:

additional entropy A string of bits containing entropy.
additional_input Optional additional input.
C An outlen-bit constant that is calculated during the

instantiation and reseeding processes.

ctr A counter that is used to update the state of Hash_DRBG (...)
and records the number of times that ¥ has been updated since
the instantiation was seeded or reseeded.

data The data to be hashed.

Get_additional_input ()

Returns a value for additional_input. The specification of this
function is left to the implementer. See Section 9.6.3.

Get_entropy (min_entropy, min_length, max_length)

A function that acquires a string of bits from an entropy
source. min_entropy indicates the minimum amount of
entropy to be provided in the returned bits; min_length
indicates the minimum number of bits to be returned;
max_length indicates the maximum number of bits to be
returned. See Section 9.6.2

Hash (a) A hashing operation on data a using an appropriate Approved
P

hash function for the required security strength (see Table 1).

Hash_df (seed material, seedlen)

The derivation function specified in Section 9.6.2. The same
hash function that is used to generate bits for the Hash_DRBG
(..,) shall be used by the derivation function. seed_material is
the data that will be used to create the seed; seedlen is the
requested seed length.

A temporary value used as a loop counter.

inlen The length of the input block of a hash function.

m

max_updated .

min_entropy
min_length

old _seedlen
old_transformed_seed

outlen

ANS X9.82, Part 3 - DRAFT - March 2004

The number of iterations of the hash function needed to obtain
the requested number of pseudorandom bits.

The maximum number of updates of ¥ for the DRBG. . _...-| Comment [e?bEL: Page:1
The minimum amount of entropy to be provided in the seed. Hiebda oo 160,

The minimum length of the seed.

The seedlen from the previous seeding of the instantiation.
The transformed_seed from the previous seeding of the
instantiation

The length of the hash function output block.

prediction_resistance_flag

For instantiation, this flag indicates whether or not

prediction_resistance may need to be provided upon request. 1 =

requests may indicate a need for prediction resistance; 0 =

prediction_resistance should never be provided. Comment [ebb7]: Page: 1

prediction_resistance_requested This may not make sense.

pseudorandom_bits
requested_no_of bils
requested_strength
seed

seedlen

seed_material
state

status

strength
t

transformed_seed

usage_class

For pseudorandom bit generation, this flag indicates whether or
not prediction resistance is required; 1 = yes, 0 = no.

The pseudorandom bits produced by the DRBG.

The number of bits to be generated.

The security strength to be associated with the pseudorandom
bits obtained from the DRBG.

The string of bits containing entropy that is used to determine
the initial state of the DRBG during instantiation or reseeding.
The length of the seed containing the required entropy.

The data that will be used to create the seed

The state of Hash_DRBG (...) that is carried between calls to
the DRBG. In the following specifications, the entire state is
defined as {usage class, V, C, ctr, 1, strength, seedlen,

prediction-resistance_flag, transformed_seed}. A particular
element of the state is specified as state.element, e.g., state. V.
The status returned from a function call, where status =
“Success”, “No update performed” (informative message
only) or an indication of failure. Failure messages are:

Invalid requested_strength.

No value of ¢ is available for the usage_class.

Failure indication returned by the entropy source.

State not available for the indicated usage_class.

Failure from request for additional_input.

Prediction resistance cannot be supported.

. Prediction resistance capability not instantiated

The security strength provided by the instance of the DRBG.
The application-specific constant associated with the
usage_class (see Annex E.3). _

A one-way transformation of the seed for the Hash_DRBG
(...) instance.

The usage class of a DRBG instance.

No LR w N

w, W
10.1.2.3.2

ANS X9.82, Part 3 - DRAFT - March 2004

A value that is initially derived from the seed, but assumes
new values based on optional additional input
(additional_input), the pseudorandom bits produced by the
generator (pseudorandom_bits), the constant (C) and the
iteration count (ctr).
Intermediate values.

Instantiation of Hash_DRBG {...)

The following process or its equivalent shall be used to instantiate the Hash_DRBG (...)
process. Let Hash (...) be the Approved hash function to be used; let outlen be the output
length of that hash function, and let infen be the input length.

Instantiate_Hash_DRBG (...):

Input :

integer (usage_class, requested_strength, prediction_resistance ' flag,
personalization_string).

Output : string status.
Process :

L

2.

3.

w

7.
8.

9.
10.
11.

12.

If requested_strength > the maximum security strength that can be provided for
the hash function (see Table 1), then Return (“Invalid requested strength”).
If (prediction_resistance_flag = 1) and prediction resistance cannot be
supported, then Return (“Prediction resistance cannot be supported”).

Set the strength to one of the five security strengths.

If (requested_strength < 80), then strength = 80

Else if (requested_strength < 112), then strength =112

Else (requested_strength < 128), then strength =128

Else (requested_strength < 192), then strength =192

Else strength = 256.

Set up ¢ in accordance with the indicated usage_class. If no value of t is
available for the usage_class, then Return (“No value of 7 is available for the
usage_class”™).

min_entropy = max (128, strength).

min_length = max (outlen, strength).

Comment Get the seed.
(status, entropy_bits) = Get_entropy (min_entropy, min_length, inlen).
If (status = “Failure”), then Return (“Failure indication returned by the entropy
source™).
seed_material = entropy_bits || personalization_string.
seedlen = max (strength + 64, outlen). '
If (seedlen > inlen), then seedlen = inlen.
Comment: Ensure that the entropy is
distributed throughout the seed.
seed = Hash_df (seed_material, seedlen).

Comment : Perform a one-way
function on the seed formlater
comparison during reseeding.

ANS X9.82, Part 3 - DRAFT - March 2004

13. transformed_seed = Hash (entropy_bits).
14.ctr=1.

15. V= seed.

16. C=Hash (||).

17. state = {usage_class, V, C, ctr, t, strength, seedlen, prediction_resistance flag,

transformed_seed}.

18. Return (“Success”).
Note that multiple state storage is required if the DRBG is used for multiple usage_classes.
If an implementation does not need the usage_class as a calling parameter (i.e., the
implementation does not handle multiple usage classes), then the usage class parameter
can be omitted, step 4 must set 7 to the value to be used, and the usage _class indication in
the state (see step 17) must be omitted.
If an implementation does not handle all five security strengths, then step 3 must be
modified accordingly.
If no personalization_string will ever be provided, then the personalization_string
parameter in the input may be omitted, and step 9 becomes seed_material = entropy.
If an implementation will never be reseeded using the process specified in Section
10.1.2.3.3, then step 13 may be omitted, as well as the transformed _seed in the state (see
step 17).
If an implementation does not need the prediction_resistance flag as a calling parameter
(i.e., the Hash_DRBG (....) routine in Section 10.1 .2.3.4 cither always or never acquires
new entropy in step 5), then the prediction_resistance_flag in the calling parameters and in
the state (see step 17) may be omitted.
10.1.2.3.3 Reseeding a Hash_DRBG {(...) Instantiation

The following process or its equivalent shall be used to reseed the Hash_DRBG (...)
process. Let Hash (...) be the Approved hash function to be used; let outlen be the output
length of that hash function, and let infen be the input length.
Reseed Hash_DRBG_Instantiation (...):
Input: integer (usage_class).
Output: string status.
Process:
1. Ifa state is not available for the indicated usage_class, then Return (“State not
available for the indicated usage_class™).
2. Get the appropriate state values for the indicated usage_class, e.g., V =state.V,
t = state.t, strength = state.strength, old_seedlen = state.seedlen,
old_transformed_seed = state.transformed_seed.
min_entropy = max (128, strength).
min_length = max (outlen, strength).
(status, entropy_bits) = Get_entropy (min_entropy, min_length, inlen).
If (status = “Failure™), then Return (“Failure indication returned by entropy
source”).

oo W

Comment: Determine the larger of the
key sizes so that entropy is not lost.

.

10.
11.

12.
13.
14.
15.

16.

ANS X9.82, Part 3 - DRAFT - March 2004

seedlen = max (strength + 64, outlen).
Comment: Combine the new
entropy_bits with the entropy present
in ¥, and distribute throughout the
seed.

seed_material = entropy _bits || V.

seed = Hash_df (seed_material, seedlen).
Comment: Perform a one-way
function on the seed and compare with
the old transformed seed.

transformed_seed = Hash (entropy_bits).

If (transformed_seed = old_transformed_seed), then Return (“Entropy source

failure”).

V = seed.

ctr=1.

C=Hash (z| V).

Update the appropriate state values for the usage_class.

15.1 state.V="V.

15.2 state.C=C.

153 state.ctr = ctr.

15.4 state.seedlen = seedlen.

15.5 state.transformed_seed = transformed.seed.

Return (“Success”).

If an implementation does not need the usage_class as a calling parameter (i.e., the
implementation does not handle multiple usage classes), then the usage_class parameter
and step 1 can be omitted, and steps 2 and 15 will use the only state available.

10.1.2.3.4

Generating Pseudorandom Bits Using Hash_DRBG (...)

The following process or its equivalent shall be used to generate pseudorandom bits. Let
Hash (...) be the Approved hash function to be used; let outlen be the output length of that
hash function, and let infen be the input length.

Hash_DRBG (...):

Input:

integer (usage_class, requested_no_of bits, requested_strength,
additional_input, prediction_resistance_requested).

Output: string status, bitstring pseudorandom_bits.
Process:

1.

2.

If a state for the indicated usage_class is not available, then Return (“State not
available for the indicated usage_class”, Null).

Set up the state in accordance with the indicated usage_class, e.g., V = state. v,
C = state.C, cir = state.ctr, strength = state.strength, seedlen = state.seedlen,
prediction_resistance_flag = state.prediction_resistance_flag.

If (requested_strength > strength), then Return (“Invalid requested_strength™).
If ((prediction_resistance_requested = 1) and (prediction_resistance ' flag = 0)),
then Return (“Prediction resistance capability not instantiated”).

. If (prediction_resistance_requested = 1), then

5.1 status = Reseed_ Hash_DRBG_Instantiation (usage_class).

7.
8.
9.
1

ANS X9.82, Part 3 - DRAFT - March 2004

5.2 If (status # “Success”), then Return (status, Nulb).

If (additional_input = Null), then do

6.1 w = Hash (additional_input || V).

6.2 V= (¥ + w) mod 274",

pseudorandom_bits = Hashgen {requested_no_gf_bits, V).
V = (V + pseudorandom_bits + C + ctr) mod 2",
ctr=ctr+ 1.

0. If (ctr = max_updates), then

10.1 status = Reseed_ Hash_DRBG_Instantiation (usage_class).
10.2 If (status # “Success”), then Return (status, Null).
Else Update the changed values in the state.
10.3 state.V="V.
10.4 state.ctr = ctr.

11. Return (“Success”, pseudorandom_bits).
Hashgen (...):
Input: integer requested_no_of bits, bitstring V.
Output: bitsiring pseudorandom_bits.

Process:
1 B [requested _no_of _bits]
’ outlen '
2. data=V.
3. W= the Null string.
4, Fori=1ltom

4.1 w; = Hash (data).

4.3 data = data + 1. [Note that in Figures 5 and 7, this step
is shown a bit differently; a suggestion
for reconciliation is welcome.]

5. pseudorandom_bits = Lefimost (requested_no_of bits) bits of W.

6.

Return (pseudorandom_bits).

If an implementation does not need the usage_class as a calling parameter (i.e., the
implementation does not handle multiple usage classes), then the usage_class input
parameter and step 1 can be omitted, and step 2 uses the only state available.

If an implementation does not need the prediction_resistance ' flag, then the
prediction_resistance_flag and steps 4 may be omitted. If prediction resistance is never
used, then step 5 may be omitted.

