Part 4: Constructions for Building and Validating RBGs

0 New Definitions for Glossaryll

a. RBG -- the full design that produces random bits, including any entropy sources,
determinsitic algorithms, reseeding rules, buffering—te= used.

b. DRBG -- An RBG providing only computational security, meaning that the RBG has a
specific maximum security level (i.c., one of {112,128,192,256}), depending on the
amount of entopy provided during instantiation. and that there is some amount of work
no less than the 2°°“"*-"*"*’ operations such that an attacker can distinguish the output
sequence from the DRBG from an ideal random output sequence. A DRBG may support
prediction resistance, as described in Part 3

amount of work for which an attacker can expect to be able to distinguish the output
sequence from an ideal random output sequence

d. Basic NRBG--An NRBG that relies only upon the underlying entropy source. If the
entropy source fails to behave according to its assessed entropy, there is no guarantee of
security made for the sequence of output bits from the NRBG. |

k. Enhanced NRBG--An NRBG that provides a guaranteed fallback to an approved
DRBG, in case the entropy source fails to behave according to its assessed entropy

f. Composite RBG-- An RBG capable of supporting requests for both computationally-
secure random bits and information-theoretically secure random bits-wsuath—with-seme-

g. critical failure -- A failure of an entropy source that leads to a major loss of security in
the surrounding RBG. [For DRBGs and constructions that guarantee a fallback to
DRBGs, a critical failure happens when the DRBG is insecurely instantiated--somewhat
arbitrarily defined for purposes of this standard as being instantiated with 16 or more
fewer bits of min-entropy than the DRBG's claimed security level. For Basic NRBGs, a
critical failure happens when any noticeable statistical flaw occurs in their gutput
sequence, or when any k bit output has less than 0.95 k& bits of min-entropy.”

h. entropy accumulation -- The process of gradually accumulating the entropy from a

long sequence of entropy source outputs, [without storing the full output sequence, |In Part

4, all accumulation discussed is happening outside the entropy source, with no knowledge

1 This whole section needs more entries, but [ haven't had time yet.

2My attempt at talking about computational security bounds here won't work, because we would need to
count on the validation labs/process determining how much computational security was in someone's
nonstandard algorithm, and that's not a reasonable thing to demand of the validation labs. [Do we need
to address an non-standard algorithm?]
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about the nature of the source except what appears in its entropy estimates|

i. entropy buffering -- The process of storing accumulated entropy from the entropy
source, to allow the handling of occasional bursts of requested entropy from a relatively
slow entropy source. [In Part 4, all buffering discussed is happening oufside the entropy
source

j. external conditioning -- The process of mapping a regular entropy source's outputs to
full-entropy outputs from outside the entropy source boundary, thus without any detailed
information about the entropy source's behavior except for its entropy estimates!

k. Conditioned entropy source-JAn entropy source whose output bits are assessed at full
entropy. |

I. External conditioning--Conditioning of an entropy source's outputs, done in a generic
way, outside the entropy source itself, and thus without any assumptions about the model
of the jnderlying entropy source except the assumption that the assessed min-entropy is
correct

m. Persistent state--memory or state for an RBG that is not lost on power-down,

1 Introduction

The preceding parts of this document have:

a. Provided definitions of fundamental concepts, such as entropy, randomness, and
security levels, and framed the problem of random bit generation for
cryptographic and security applications,

b. Provided guidance for developing approved entropy sources, mechanisms that
provide truly unpredictable values from some nondeterministic process, and

¢. Specified a number of DRBG mechanisms containing cryptographic algorithms
that, used correctly, are expected to produce bits indistinguishable from ideal
random bits up to the specified security level of the instantiation.

Part Four describes how the components and concepts from the previous three parts of
this Standard are to be combined into working RBGs--systems for using some source of
ultimate unpredictability to produce output bits that are sufficiently close to ideal random
bits for some specified purpose as specified by a (possibly infinite) security level.

The remainder of the document consists of discussions of tasks that must be
accomplished to design, implement, and validate an approved RBG, and constructions for
accomplishing some of these tasks.

A construction is a specified way of doing something, such as externally accumulating
entropy from an entropy source. Where one or more constructions are given for some

task, they represent the only acceptable ways of doing that task within an ANSI X9.82
approved RBG. In this document, constructions are explicitly specified by the heading
"Construction:".
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An RBG design is all the parts of an RBG fhat are not implementation specifid|

In the remainder of this document, when an entropy source, NRBG, DRBG, Composite
RBG, or RBG is discussed, it should be assumed to refer to an ANSI X9.82-approved
entropy source, NRBG, DRBG, etc., unless stated otherwise.

1.1 Structure of an RBG

An RBG produces random bits for some consuming application, providing some
assurances about the difficulty of distinguishing its output sequence from an ideal random
sequence (that is, a sequence of unbiased, independent, identically distributed bits). Any
RBG must consist of some ultimate source of unpredicability (an entropy source) to
provide an unguessable state ef seme-kind, and some deterministic algorithm to generate
random bits from that unguessable state (typically a DRBG algorithm). The basic
problem in building a working RBG of any kind is in managing the entropy in the
system, and in using the deterministic components in ways that do not violate their
security requirements.

(pseudo)random
bits

[Part One of this standard describes a much more detailed model, based on a state-
machine view of the process. Part Two etthis-standard-focuses upon the Entropy
Sources i1-thismedel; Part Three efthisstandard focuses upon choices of the State
Transition and Output functions that provide strong security assurances under a variety of
allowable ways of interacting with the entropy source. Part Four describes the whole
model, focusing on how the components may be combined to achieve a desired level of

security.
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1.2 Entropy Management: How Entropy Sources Go Wrong

The biggest problem in constructing an RBG is managing entropy. There are many

.
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reasons for this: algorithms are largely platform- and implementation-independent, but
entropy sources are always dependent on implementation details--a change in
manufacturing processes can convert an excellent entropy source into a terrible one! The
characterization of entropy sources is ultimately a matter of experiment and matching an
a priori sensible model to its observed behavior, and this is a messy and imprecise
process. Entropy sources tend to be much less reliable than deterministic components,
and testing their behavior in the field tends to be much more difficult. [These issues are
discussed in much more depth, below. |

An important concept to keep in mind is that of a critical failure of the entropy source. A

probability of a critical failure by providing some level of fallback security in the RBG
design, redundancy in components that might fail in some way, and tests to detect the
most likely and most damaging kinds of failure.

1.3 Narrow Pipes, Security Levels, and Cryptanalysis: How
Deterministic Algorithms Go Wrong

|An RBG ecither 1) claims some security level from the list of {112,128,192,256}. possibly
including a claim of providing prediction resistance, or 2) claims to be information-
theoretically secure. [For most RBGs, the outputs will be produced directly or indirectly
by an approved DRBG alesrithin. (The exceptions to this are called Basic NRBGs, and
are discussed below.) The cryptographic strength and other properties of the DRBG
aleotithms used determine the properties of the RBGs, as is discussed below.

For DRBGs, which claim computational security, the only requirement on the vndeshying

DRBG algeritha is that it be able to support the security level claimed by the DRBG.
For NRBGs, which claim information-theoretic security, and for composite mechanisms
which sometimes claim information-theoretic security, it is often surprisingly difficult to
get more than the design strength of security from the DRBG atzerithin. For this reason,
constructions are provided to accomplish these goals in secure ways.

1.4 Relationships between Entropy Rate and Output Rate

For DRBGs: or composite RBGs that ea# support computationally-secure requests for
random bits, there are two requirements on the rate of entropy input: In order to support a
given security level s, at least s+64 bits of entropy must be provided to the RBG before
any outputs are generated, and at least s new bits of entropy must be provided before any
output is generated with prediction resistance. Many DRBG designs may request some
multiple of these minimum values before generating outputs, especially before generating
the first output, to resist problems with the entropy source.

INRBGs supplied by raw entropy sources require at least 2k bits of entropy input for each

k-bit output. NRBGs supplied by conditioned entropy sources may use between k and 2k
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bits of entropy input for each &-bit output, depending on the details of the NRBG
construction used.

1-4-HRates Supported by Di

Real-world entropy sources tend to fall into several different categories:

a. Those based on human actions, such as coin flips and precise timing of mouse
events. These tend to be relatively slow; and to produce entropy at very different
rates at different times.

b. Those based on internal hardware and software events inside a general purpose
computer. These tend to produce entropy at a moderate rate under normal
conditions. Their rate tends to be variable, based on system loading, network
usage, and other conditions, but they are much less variable than sources based on
human actions.

c. Those based on noise inside electronic systems. These tend to produce entropy at
a high rate; and to be very consistent in their rate of production, given only
reasonable operating conditions.

[These varying rates of entropy production, especially in internal computer event sources,
make buffering (discussed below) an important system design consideration. Software
entropy sources should be combined tesether when the availability of certain devices or
other resources on a specific platform is lmlxnn\w.'ul_________ N

Entropy Production Side Entropy Consumption Side

__» Application 1
~p “ ——» Application 2

e %

Application m

produces entropy is ongoing, and unless the entropy source is turned off to cut power
consumption, its rate of production of entropy can be expected to remain roughly
constant. Buffering entropy outputs is useful if a large number of entropy requests are
made within a short period of time, or as a way to protect the system from occasional
"drop-outs" of the entropy source. Some minimal amount of buffering also masks the
timing variations caused by conditioning techniques on the bits produced by the noise
source that discard some bits, such as Von Neumann unbiasing.
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1.5 A Roadmap|

Part Four is arranged as follows: First, the issues raised in implementing, using, and
validating an entropy source as part of an RBG are discussed. For reasons that will
become clear below, an entropy source must be validated as part of an RBG. Next,
constructions for RBGs that support only computationally-bounded security (DRBGs) are
provided, along with requirements that must be met outside these constructions. Then,
constructions for RBGs providing information theoretic security (NRBGs) and providing
both DRBG and NRBG functionality (Composite RBGs) are discussed. Finally, a
number of other generally useful constructions are provided. An annex at the end of this
document discusses a number of security issues in more depth than is addressed in the
main text.

2 Entropy Sources in RBGs*

Part 2 describes entropy sources by themselves. The focus in Part 4 is on taking an
existing, good entropy source design, and fitting it into the RBG. This includes:

a. Supporting constraints put-on the size and rate of the entropy source's outputs by
other parts of the RBG's design, by accumulation and buffering outside the
entropy source's boundary,

b. Combining entropy source outputs tegethet in a “pool” of bits, and estimating the
min-entropy, based on conservative estimation strategies, and

¢c. Validating the entropy sources for use in the RBG, based on the idea of keeping
the probability of a critical failure of the entropy source acceptably low. (A
critical failure is a failure that leads to a practical security flaw’.)

2.1 Preliminaries

An entropy source is the component of an RBG that provides nondeterministic,
unpredictable behavior. An entropy source provides bitstrings containing some entropy
as output, and an assessment of the min-entropy of these bitstrings. Some entropy
sources are conditioned, meaning that their outputs are expected to provide
approximately full entropy, and to be statistically uniform, independent, and unbiased,
and thus, in principle, directly usable for cryptographic keys, IVs, efc.

There are two broad types of entropy sources: conditioned and normal (or “raw”) entropy
sources. Conditioned entropy sources provide bitstrings with full entropy--each bit is
unbiased and independent, and a k bit output has % bits of entropy. Normal (or "raw")

41t seems to me that a lot of this section, maybe most of it, could easily end up in Part Two. On the other
hand, there are some good reasons to keep it here—it discusses how to take an entropy source that
doesn't quite fit the needs of the RBG, and process its outputs so that it does fit. Comments?

5This is nebulous here, but I'm hoping to firm it up....--JMK

7

Comment [ebb27]: Page: 7
Needs to be revised in accordance with any changes?




entropy sources provide bitstrings with an assessed amount of entropy, but do not try to
massage the outputs into any particular distribution; nothing outside the normal entropy
source can assume anything about the output distribution, except what is implied by the
output size and the assessed min-entropy. Some operations (conditioning, buffering, and
the entropy accumulation) may be performed either inside or outside the entropy source.
Techniques and guidance for performing these operations inside the entropy source
appear in Part Two ef-this-standard; constructions for performing these operations outside
the entropy sourde are discussed in this document.

An entropy source must be tested for correct behavior frem-timeto-time. Entropy
sources are nondeterministic, but their behavior is expected to follow some probability
model. This means that a deviation from "correct behavior" can be quite subtle and
difficult to detect. Some combination of statistical tests based on the probability model
used for the entropy source, and testing for known or suspected failure modes; can be
used to determine, with reasonable assurance, that the source is still behaving properly.

Conceptually, tests of the raw entropy source need to be conducted by the entropy source,
although the tests may be implemented externally. The entropy source has detailed
information about the probability model of the raw entropy source and has internal values
that are not output during normal operation of the entropy source, From the perspective
of the RBG design, the goal of these tests is to detect a deviation of the entropy source
from its expected behavior that might lead to a critical failure of the source, and thus, to a
practical security vulnerability in the application relying upon the RBG.

2.2 Making it fit: Accumulating and Buffering Entropy and
External Conditioning

The DRBGs defined in Part 3 have an enormous range of acceptable entropy input sizes;
typically, these range up to around four billion bytes--far more than is likely to be useful
in practice. However, there are often good implementation reasons to restrict the size of
entropy input to some more manageable size; a real-world hardware implementation may
not be able to support processing an enormously long string. External accumulation of
entropy is required when the entropy source is producing long output strings with spatse
entropy, which must be condensed into shorter strings to be used; in this case, the entropy
source is not performing conditioning on the raw entropy bits to obtain full entropy.
External buffering of entropy is required when the entropy source is producing entropy
too slowly to meet multiple entropy requests within a short time period in order to store
entropy in anticipation of receiving such requests.

2.2.1 Accumulating Entropy

2.2.1.1 Accumulating Entropy Using the Derivation Functions

In practice, a DRBG atze+ithi uses a derivation function to reshape the output from the
entropy source into the size of internal parameters it needs. This is the standard way to
map an entropy input to an output of the right size, with uniform and independent bits.

8



When practical, the derivation functions should be used to accumulate entropy into the
right size for the DRBGs. It is acceptable to use the derivation function externally from
the DRBG, and then to feed the result into the DRBG for instantiation and reseeding.
(That is, it is acceptable to call the derivation function to process a long stream of entropy
source outputs, generate a result, and then use that result in the DRBG’s instantiate or
reseed function, even when the DRBG then uses the derivation function a second time to
process that input.)

2.2.1.1.1 Using Hash_df to Accumulate Entropy

A hash function is a natural tool for accumulating entropy, and hash_df (as specified in
Part 3) provides a reasonable way to use a hash function for this purpose. The requested
output size shall be a size that the RBG can process, e.g., by buffering or direct use in
reseeding or instantiating a DRBG atzerithi, and shall provide at least the number of
bits needed for instantiation or resceding. The output length should be a multiple of the
hash output size for efficiency. See-thefull-diseussionof Hash—dfinPas3-ofthis
shondeard—

So long as the output length is known before processing begins, this can be computed or-
the-Hy—without buffering the whole input string. However, when buffering is used, the
input string to the hash_df can be buffered using any of the techniques described in
Section 2.2.2, or can be used directly.

2.2.1.1.2 Using Block_Cipher_df to Accumulate Entropy

With Block Cipher df (as specified in Part 3), it is necessary to specify the input and
output lengths before the first block of the input string is processed. For most entropy
sources, this is acceptable, as the designer will know how many bits of entropy source
output must be processed to provide the required amount of entropy. However, some
entropy sources are extremely variable in how much entropy can be produced per bit of
output; for those entropy sources, the Block Cipher_df may be a bad accumulation
choice. Note that it is acceptable to pad the input strings with zeroes; the

Block Cipher_df could ¢hws be started with the maximum length of input that might be
required, but when sufficient entropy determined to be available in the input, the
remainder of the input could be filled in with zeros.

The outputs from the Block Cipher_df can be buffered using any of the schemes
described in Section 2.2.2.

2.2.1.2 Accumulating Entropy in a CRC

A CRC (cyclic redundancy check) is a widely used kind of non-cryptographic checksum
that uses a feedback polynomial. A CRC register of U bits can be implemented very
efficiently in hardware, and can be used to accumulate entropy from almost any soutce.
The requirement is that there shall be no influence of the specific feedback polynomial



on the entropy source's behavior®. A CRC shall be used as follows:
a. The feedback polynomial for the CRC shall be chosen to be irreducible.
b. The CRC shall always start at a nonzero value.

¢. When an accumulated value is output, the CRC register shall retain its value, and
the next CRC shall be computed starting from that value.

Entropy accumulated in a CRC should be buffered using the hash-buffer construction
discussed in Section 2.2.2.3, but may use any of the three buffering techniques described
in Section 2.2.2.

2.2.1.3 A Software Entropy Accumulation Mechanism

[Note: CRCs provide a good generic way to accumulate entropy in hardware, but are not
especially fast in software. ANS X9.82 needs to specify a well-analyzed way to do this,
generically, in software. The /dev/random approach looks reasonable enough, but it's
hard to prove anything about it. Perhaps a universal hash algorithm would be appropriate
here. TBD...]

2.2.2 Buffering Constructions and External Conditioning

The following constructions specify the three allowable ways to buffer entropy externally
from the entropy source; for later use by the RBG. (Note that internal buffering (i.c.,
buffering within the entropy source) is handled in Part 2; and can be much more flexible,
as the buffering technique can accommodate the entropy source's probability
distribution.) The buffering constructions in this section can be used along with the
external entropy accumulation mechanisms described in Section 2.2.1, or can be used
directly using the entropy source outputs, subject to the requirements in the descriptions
on the different buffering schemes.

This Standard specifies acceptable constructions in order to avoid subtle attacks enabled
by designing the buffering scheme in the wrong way. Any practical buffering scheme
involves some finite amount of memory, and thus imposes a limit on how much entropy
may be collected, but poorly designed buffering techniques could result in failure to use
all available entropy produced by the entropy source.

Any of these external accumulating and buffering constructions could be combined with
an existing entropy source to provide a new entropy source with somewhat different
propetties, in terms of the length of its outputs and the rate at which the entropy source
can service entropy requests. The XOR Buffer and Hash Buffer constructions in Sections
2.2.2.2 and 2.2.2.3 can also be used to provide a conditioned entropy source. In all cases,
all other constructions in Part Four that require an entropy source can use these new
entropy source constructions as needed.

6This is true because if I don't tell you my polynomial, you have a very low probabilty of producing a set of
outputs that collides more often than expected by chance, at least for reasonable sized inputs.
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2.2.2.1 Construction: Simple Queue Buffer

The simplest possible buffering scheme is simply to queue up several of the most recent
outputs. This has two major advantages:

a. The scheme is very simple and cheap to implement, and

b. It is ebdeusly no weaker than just using the entropy source outputs as they're
produced.

[The disadvantage of this buffering scheme is that entropy is never accumulated across
outputs: if the entropy source is overestimating its entropy, the simple queue buffering
scheme will provide no additional defense, even if the RBG is using entropy from the
buffer much more slowly than it is being added to the queue. This affects the validation
of the entropy source for use in the RBG if, in normal operation, the RBG is expected to
produce many times more entropy than is drawn from the buffer.

This buffering scheme is applicable to any entropy source, conditioned or not.

The queue contains multiple entries; each entry contains a bit string and an entropy
estimate for that bit string. There are a maximum of N entries in the queue. Whenever a
new bit string is produced by the entropy source, the bitstring is entered into one end of
the queue. If the queue is full, then the oldest entry in the queue is discarded to make
room for the newest entry.

When entropy outputs are requested with an indicated minimum entropy, sufficient
entries are provided from the end of the queue containing the oldest entries to meet or
exceed the entropy requirement. These entries are removed from the queue. When an
entropy output is requested, and the queue entries contain insufficient entropy, either an
error condition shall be raised, or the response to the request shall be delayed until there
is sufficient entropy in the queue entries to meet the request.

2.2.2.2 Construction: XOR Buffer

A simple improvement to the Queue scheme involves recycling Queue entries that would
otherwise be discarded when the buffer is full (see Section 2.2.2.1). This is accomplished
by exclusive OR-ing (i.e., XORing) the queue entries to be discarded with the new
entries.

When a new entropy source output is cntered into the buffer, and the queue is not yet full,
the XOR buffer works exactly as does the Queue buffer. When the XOR buffer is full, a
new entropy source output is entered into the queue as follows:

a. The oldest queue entry is extracted from the queue to make room for the new
entry.

b. A new bit string is created by zero-padding the new or old entropy output as
needed until the bit string sizes match, and then XORing them together.

c. |A new entropy estimate is created from the old entry's estimate and the new
entropy output's estimatef—Hsis-s-<ene in one of two ways:
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(1) Ifthe entropy source outputs are conditioned internally or externally, the new
entropy estimate is the sum of the old entry's estimate and the new entry's
estimate, or the number of bits in the shorter of the two original bitstrings,
whichever is greater. ?7?]]

(2) Otherwise, the new entropy estimate is the larger of the old and new entry's

estimate. ..~ comment [ebb30]: Page: 12
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number of bits of entropy requested is satisfied. If there is not sufficient entropy in the
buffer to satisfy the request, then the buffer must either raise an error condition or delay
the response to the request until enough entropy is available. The XOR of all the entries
provided for the request is saved and is XORed with the next entropy output entered into
the buffer.

2.2.2.3 Construction: Hash Buffer

A hash buffer will efficiently accumulate entropy for any entropy source in a "pool" of
entropy. The buffer consists of R bits, a 32-bit counter C, and a buffer entropy estimate
E.

The following shall be performed to enter an inputString with estimated entropy cc into
the hash buffer, where Hash is the hash function, and outlen is the output size of the hash
function:

l. 1mp=ee
2. While in1p > 0:
2.1 X=MHash (C|| buffer || inputString).
22 C=C+1.
2.3 Shift huffer right by outlen bits, discarding the rightmost ou//en bits.
2.4 Prepend X to the buffer.

2.5 tmp=tmp - outlen

3. E= tmaxl (E+ ee, R) -~ Comment [ebb32]: Page: 13
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entropy is available.
2. tmp=""
3. While len (1mp) <k:
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3.1 tmp=tmp || Hash (C || buffer).
32 C=C+1.
4, E=E-k

5. Return the least significant & bits of (1p

2.2.2.3.1 Using the Hash Buffer as a Conditioned Entropy Source

The hash buffer may be used as an external conditioning routine under the following
conditions:

a. To generate & bits of output with full entropy, the buffer shall contain at least 2%
bits of entropy (i.e., [~ > 2k).

b. After & bits are pulled from the hash buffer, its entropy estimate shall be decreased
by 2k bits (i.c.. [ — £ - 2k).

c. Ifthe hash buffer is used to provide conditioned entropy outputs, it shall not also
be used to provide normal entropy outputs.

2.3 Combining Sources and Entropy Estimates

In some RBG designs, especially designs based entirely in software, many entropy
sources may be combined tegether to get enough entropy to instantiate a DRBG or to
produce full entropy output.

Software entropy sources tend to be wildly variable in the rate of entropy produced, as
their unpredictability depends on the natural variability in some process is occasionally
used, or which differs in its properties, depending on parameters outside the entropy
collection mechanism's control. For example, while hard drive latency is apparently an
excellent entropy source, entropy collection code written into the operating system kernel
is not likely to cause hard drive accesses that intentionally miss all the different levels of
cache. When other applications on the system are not accessing the disk, there will be
little entropy available from this source. Therefore, both the accumulating and buffering

entropy are extremely important in software-based entropy source sysems.

2.3.1 Accumulating Entropy for Output

Any of the accumulation methods described in Section 2.2.| are suitable for use with
multiple entropy sources. The accumulation of entropy inputs is valuable for very sparse
entropy sources (those that produce large numbers of output bits per bit of entropy), such
as are often extracted from operating system statistics and system loading sources. When
performance requirements permit, the hash_df accumulation method should be used (sce
Section 2.2.1.1.1).
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2.3.2 Maintaining an Entropy Pool

Any of the buffering techniques in Section 2.2.2 may be used with multiple entropy

sources, In software, the hash buffer construction can be used to provide an entropy pool,

capable of supporting DRBGs, enhanced NRBGs, or composite RBGs

2.3.3 Estimating Entropy from Multiple Sources

An approved RBG requires an entropy source whose assessments are known to be
accurate. Entropy estimates used in RBGs shall be based only upon assessed entropy
from approved entropy sources. When outputs from multiple approved entropy sources
are combined, the maximum entropy assessed for the combined outputs shall be fthe sum
of the estimates [from the approved entropy sources, but may be any value less thanor
equal to that sum.

Unapproved entropy sources may be combined with the approved ones using any of the
accumulation mechanisms, as well as the XOR Buffer and Hash Buffer, so long as
entropy values from unapproved sources are assessed as having zero entropy.

2.4 Validation Considerations

The hardest problem in constructing a working RBG is in managing entropy so that
security is provided even in the face of some kinds of failure of the entropy source.
Entropy sources are often quite fragile, and testing them in the field is complicated by the
fact that they are not deterministic, and that many failure modes are subtle enough to
require computationally expensive statistical tests to detect.

Each RBG construction places somewhat different requirements on the entropy source
for validation putpeses. The entropy source failures that would lead to a critical failure
are discussed for each RBG construction (see Sections 3 and 4).

The risk of entropy source failure shall be handled in one or more of the following three
ways:

a. The entropy source design and implementation minimizes or eliminates some
possible kinds of failure. For example, one reference entropy source from Part 2
uses three ring oscillators with different average periods. This design
substantially reduces the risk of failure from the phase locking of the oscillators
with some stable on-chip signal, because one signal will generally not be able to
phase lock with more than one of these ring oscillators. Alternatively, an
implementation might carefully shield the entropy source from any external
signals to avoid the risk of an oscillator phase locking with some external signal.
Part Two of this Standard includes an extensive discussion of this kind of design
and implementation decision.

b. The entropy source has substantial continuous or periodic testing to detect likely
failure modes. For example, an entropy source based on counting Geiger counter
clicks might run a Chi-square test on the counts it for a run of 1000 samples
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during startupl testing, and verify that this is consistent with some Poisson
parameter for the count distribution within the design specifications of the device.
Part Two efthestandard discusses the etails of testing at different points for

entropy sources.

c. The surrounding mechanisms that use the entropy source a# provide some level
of overdesign, so that minor or short-duration failures in the entropy source will
have minimal impact. For example, a DRBG might require twice as much
estimated min-entropy in the input it uses from the entropy source to instantiate
for the first time, and thereafter rely on the persistent state to retain enough
entropy to protect against incorrect entropy estimates from the source. This is
discussed for each of the RBG constructions, below.

A failure in the entropy source that is not detected or prevented from doing any harm
leads to a critical failure, and thus introduces a practical security vulnerability. A major
design goal for any RBG is to keep the probability of a critical failure to an acceptably
small value, and a major goal of the validation of an RBG is to verify that this probability
is acceptably small.

There are three kinds of entropy source failures that can be critical failures, depending on
the RBG that uses the entropy source.

a. A failure during the first time that the entropy source is used undermines all
security for pn Externally Seeded DRBG, and can lead to a critical failure in
Internally Seeded DRBGs with seed files. |

b. A failure immediately after startup can lead to a critical failure in Internally

Seeded DRBGs and Enhanced NRBGs, when those RBGs do not have seed files]

¢. A failure at any other time during operation can lead to a critical failure in Basic
NRBGs.

3 Building a Computationally-Secure RBG (DRBG)

|A Deterministic Random Bit Generator mechanism (hereafter called a DRBG) provides
computational security. |

The basic problem of such a mechanism is instantiating the underlying DRBG atgorithm
securely--reaching a secure starting point, from which outputs can be generated that are
computationally indistinguishable from ideal random bitstrings. The DRBG may also
support requests to reseed, perhaps in response to a request for prediction resistance, if
there is a live entropy source available.

Every RBG containing a DRBG requires some soutce of an unpredictable internal state,
and some algorithm for generating secure cryptographic pseudorandom bits from any
unpredictable internal state. There are two constructions for such RBGs:

a. DRBG with a Live Entropy Source
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b. DRBG without a Live Entropy Source

These constructions are discussed below. Note that the RBG can be built with no live

entropy source or other RBG (case a), or with an entropy source but no persistent storage
(case b), or with both. There is no approved construction for an RBG without either
persistent storage or a live entropy source.

3.1 Preliminaries

A DRBG promises at least s bits of security, where s is the security level. This means that
distinguishing the output sequence of the DRBG from random bits should be no easier
than distinguishing the output sequence from an ideal block cipher running in kounter
mode with an s-bit key from random bits. Any consuming application with an s-bit or.
lower security level may use a DRBG with an s-bit security level.

The most important problem in using any DRBG atzerithin is getting to a secure state--a
value of the working state from which outputs can be generated that will satisfy the k-bit
security level claimed by the design. In practical terms, this means that the secret part of
the working state must be unguessable by the attacker. A secondary problem is
ensuring that the DRBG recovers from compromise whenever possible. That is, if the
working state should somehow be leaked or learned through cryptanalysis, the DRBG
should eventually reach a new secure state if it is provided access to more entropy over
time.

All DRBGs in Part 3 specify functions for instantiating and reseeding the DRBG as well
as for generating pseudorandom bits.

a. The instuntiate function obtains entropy input and combines it with an optional
personalization siring to instantiate the DRBG,

b. The reseed function obtains entropy input and combines it with the current entropy
in the working state and optional additional input to produce a new working
state, and

¢. The generate tunction uses the current working state and optional additional inpul
to produce both pseudorandom bits and a new working state.

That is, the DRBGs use whatever entropy is in the entropy input. personalization_siring,
and additionul _input parameters to reach a secure state.

A DRBG requests entropy from its entropy source when instantiating the DRBG and
when reseeding it, perhaps in response to a request for prediction resistance. The goal for
each of these th+ee uses of entropy is to obtain a secure state for the DRBG, even if ihe
DRBG was completely compromised before. The DRBG algorithms are designed to
ensure that even entropy inputs under the control of an attacker cannot force an already
secure DRBG into an insecure state.
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3.1.1 Instantiation

The Instantiate function takes two inputs: The entropy input, and the personalization
string. The goal of the entropy input is to provide a value that cannot be guessed by any
attacker, so that the DRBG will end up in an unguessable and secure state after
instantiation. The goal of the personalization string is to provide a unique input value for
each DRBG implementation, and ideally, for each DRBG instantiation.

For the validation of a DRBG claiming k bits of security, the most important questions
are: Can the attacker guess the whole input to the instantiate function with much less than
2**work? And will an unknown input to the instantiate function ever repeat? If the
answer to either question is "yes," then the DRBG shall not pass validation.

There are two ways to ensure the answer to both questions is "no":

a. If the entropy input contains the required k+64 bits or more of min-entropy, then
guessing the inputs to the instantiate function is intractible and there is a
negligible chance of repetition of the input. A DRBG design can improve the
chances of this happening by oversampling—requesting some multiple of the
minimum entropy required for instantiating the DRBG. In the remainder of this
document, the term oversampling factor is used to describe this multiple, and the
symbol w is used.

. If the entropy input and personalization string together contain at least 4 + 64 bits
of min-entropy, and never repeat, then the DRBG is instantiated into a new,

secure state each time the instantiate function is called. |A DRBG can improve the .

chances of this happening by guaranteeing that the personalization string contains
a secret of at least k + 64 bits of min-entropy, and also a value that will never

repeat for two instantiations, such as a timestamp or a monotonic counter value. |

Either or both of these techniques may be used by a DRBG to minimize the chances of a
critical failure.

The different RBG constructions have very different ways of minimizing these chances,
and different resources with which to do so.

3.1.1.1 Entropy Input and the Oversampling Factor

The RBG design can specify an oversampling factor, w. An RBG design with an
oversampling factor of w instantiates its DRBG with at least w times the number of bits
of min-entropy required by the algorithm. This can be done in two ways:

a. The DRBG algorithm can be reseeded w times, in the normal way, before any
outputs are generated. This is the only way to apply an oversampling factor when
using a DRBG that is instantiated with full entropy inputs when a derivation
function is not used.

b. When a derivation function is available. the DRBG algorithm can be reseeded with
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a string that has w times as many bits as are minimally required for the
instantiation. Fis-ameuntsteachance inthe Getenttopy-eab-dhseussadinPart

INote that in the DRBG construction without a live entropy source, the notion of an
oversampling factor is meaningful only for its sced file initialization, not for instantiating
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""" Seedfiles are not discussed yet.

3.1.1.2 Personalization Strings

A personalization string is optional, but should be used. The following requirements and
recommendations apply, but see Part Three for a much more in-depth discussion of
personalization strings.

a. A personalization string shall be expected to be unique to a kingle implementation | '(Comment [ebb48]: Page: 19

or device. For example, it might contain a device serial number. user?

b. A personalization string should be expected to be unique per instantiate request.
For example, it might contain a timestamp accurate to hundredths of a second.

c. A personalization string may contain secret information. Secret information that
requires protection from disclosure at a higher security level than the DRBG
supports shall not be included in the personalization string.

Note that personalization strings are entirely optional; some DRBG designs will not

include them, though this has an fimpact on validation, .| Comment [ebb49]: Page: 19
B Don’t understand this.

3.1.2 Generation of Bits
All the DRBG constructions handle the generation of bits by calling their underlying

DRBG algorithms. Any additional requests, such as prediction resistance, are passed
along to the underlying DRBG algorithm, if they are supported.
3.1.3 Reseeding

Reseeding is handled differently in the different DRBG constructions. DRBGs without a
live entropy source are not likely to ever reseed, and the reseed function may be omitted
from an implementation. For DRBGs with live entropy sources, reseeding strategy is a
major issue, as discussed below.

3.1.4 Implementation Validation Concerns

An RBG containing a DRBG shall NOT pass validation if and-ewd—if the probability of a
failure to instantiate the DRBG to a secure point is acceptably low.

3.2 Construction: RBG with an Internally Seeded DRBG
An RBG with an internally-seeded DRBG consists of DRBG functions and an entropy
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3.2.1 Instantiating the DRBG Algorithm

Before the first bit of output is generated from the DRBG, the DRBG #lze+ith must be
instantiated. The DRBG instantiate algorithm requires two parameters: the entropy input
and the personalization string.

The DRBG design specifies an oversampling rate, w. This rate is used to determine the
minimum amount of entropy required before the DRBG can be used to generate bits.

[Discuss the two ways to implement: having a reliable entropy source available whenever
instantiate or reseed is required, or using a seed file for the case where the entropy source
may not always be available, and the sedfile is used as a failsafe mechanism.]

b.2.1.1 Saving Entropy Across Startups: The Seed File[ _{ comment [ebb51]: The seed file discussions
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sufficient time jat startup/ to do an extensive battery of statistical tests to detect the failure. . -{ Comment [ebb52]: Page: 20 1
lo do an exiensive batiery of statisucal 2.0, 00788 10 e Y
In these cases, the DRBG can save some entropy across btartup_sL_ using a seed file. (Note the DRBG to generate bits? prior to cach
that the use of the word file here is not meant to imply any particular way of storing the “.. | instantiation after the first? Between resceds? |
entropy.) A seed [ile shall be stored in jpersistent nonvolatilememory. ~~ “((Comment [ebb53]: Page: 20
T instantiations? reseeds?

3.2.1.3.1 Instantiating with the Seed File '[C‘.’"‘"‘e“.‘ [CRESIBBdd

Discuss this concept and its implications.

The seed file is processed as follows during each instantiation:
a. The entropy source is used to generate an entropy_input.

b. The personalization_string is constructed, using whatever personalization

information is available, plus the current contents of the| seed file) .| comment [ebb55]: Page: 20
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contain sufficient entropy fso that the first seedfile
will thereafter contain sufficient entropy

d. Before any other outputs are generated, the DRBG algorithm generates
+64 bits of output, which are written to the seed file, overwriting
any previous values.

3.2.2 Generating Bits

A DRBG implementation may support output generation with prediction resistance.
Generate requests to the DRBG are simply translated to requests to the underlying
generate algorithm.

3.2.3 Reseeding the DRBG Algorithm
Reseeding a DRBG aleorithsr means adding entropy input (and addi/ional input) into the
19



DRBG internal state, in such a way that if the DRBG was not previously in a secure state,

it ends up in one, while if it started in a secure state, even full attacker control over all the
inputs cannot force it into a weak state.

3.2.3.1 When Should a Reseed Occur?

The DRBG algoritha may be reseeded for four reasons:

a. A consuming application specifically requests reseeding based on a user’s
decision.

b. Some consuming application asks for bits with prediction resistance.

c. The DRBG algorithe reaches a limit on its outputs, which requires reseeding
before more bits may be generated.

d. The DRBG carries out a reseed based on available entropy and its reseeding
strategy to minimize the exposure due to any compromise of the DRBG internal
state (see Section 3.2.3.3

The DRBG requests at least & bits of min-entropy from its entropy source (where / is the
security level), and prov1des this as entropy input to reseed the DRBG atzorithm.
Additional information that is likely to be different each time the DRBG reseeds, such as
timestamps, other system status information, or seed file contents (see below) may be
included in the additional input to the reseed function.

3.2.3.2 Seed Files and Reseeding

If a seed file is present, it shall be used in reseeding in the following way:

a. The seed file contents are included as part of the additional input to the reseed
function

b. Immediately after reseeding, the DRBG generates securify leve/+64 bits of
output. This output string is used to overwrite the previous seed file contents.

3.2.3.3 Reseed Strategy

3.2.3.3.1 Using Entropy Wisely in a DRBG

Masi- DRBGs with an entropy source available may have far more entropy available than
is required to operate the DRBG, after the jstartupl. By forcing reseeds to occur from time
to time, the DRBG can attempt to protect the internal state from as-yet- -unknown
cryptanalytic attacks, as well as from any other form of compromise.

The RBG collects and buffers entropy from the entropy source over time. At some point,
the RBG triggers a reseed of the DRBG alzerithas, based on the amount of entropy
buffered, the number of outputs since the last reseed, the amount of time since the last
reseed, and potentially any number of other factors.
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There are two goals for reseeding:

a. By waiting until a large amount of entropy is buffered, the RBC can give the
DRBG slesrithn the best possible chance of eventually getting to a secure state,
even in the face of a serious overestimate of entropy from the entropy source.

b. By reseeding often, the RIBG can give the DRBG aleoriths the best possible
chance of recovering from compromises of its internal state, and of resisting
unknown cryptanalytic attacks.

3.2.3.3.2 Reseeding Before the First Output is Generated

Any RBG with a DRBG with the capability of buffering the live entropy source should
implement the following procedure:

a. The RBG collects and buffers entropy from the entropy source until the first
DRBG output is requested.

b. The full contents of the buffer are used to resced the DRBG alzerithn,
c. The DRBG algerithin responds to the request.

This gives the DRBG atzoriths: its best possible chance of getting a new secure state
before the first output is generated.

If no facility is available for buffering entropy from the entropy source, the DRBG
#leasithm should implement the following procedure: Reseed the DRBG aleesithi as
many times as time and other resources permit, before the first output.

[This is the most valuable and important piece of the rescedstrategy, and should be

implemented even if all other resced advice is ignored. | _..-| comment [ebb58]: Page: 22 J
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3.2.3.3.3 Reseeding After the First Output

After the first output, the proper reseed strategy depends on the system designer's
assessment of threats. Frequent reseeds provide substantial practical protection from
crytpanalysis of the DRBG algorithm, in exactly the same way as frequently changing the
key of any cryptographic algorithm provides protection against cryptanalysis. Reseeds

that take place only after accumulating su(Ticient entropy in accordance with the security
level provide a chance to recover from compromise even in the face of serious failure of
the entropy sourcek-se-lons-asseneentropy-is-comingfrom-thesoured, —{ comment [ebb59]: Page: 22
' - This seems to conflict with the concept of providing
A simple reseed strategy that addresses these goals is as follows: prediciton resistance Perhaps this nceds to be

removed or more information needs to be provided

The DRBG maintains two accumulations of entropy, called the fast pool and the slow
pool, with alternating entropy outputs going into each pool. Reseeds are then triggered as
follows:

a. Whenever the fast pool's assessed entropy is k bits, the DRBG uses its contents to
reseed the DRBG aleorithn,
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b. If areseed is triggered by the DRBG aleerithi or the consuming application, the
fast pool's contents are used, along with whatever additional entropy source
outputs are required to reach an assessed value of at least k bits of min-entropy for
the reseed.

c. The slow pool's reseed threshhold starts at # = 2*¥k. Whenever the slow pool
reaches ¢ bits of assessed entropy, the DRBG does the following steps:

(1) Reseed the DRBG atgerithin with the contents of the slow pool.

(2) Sets a new reseed threshold to £ = 2*¢, unless ¢ is already at its Imaximum

value. (The practical advantages of this design fall off as ¢ gets very large, : ---[Comment [ebb60]: Page: 23
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3.2.4 Implementation Validation Concerns

Validation must answer the question: Is the probability that the DRBG atzerithns will
reach a secure, unguessable state before the first input acceptably high, even in the face
of possible entropy source failures?

3.3 Construction: Externally Seeded DRBG

A DRBG can implemented without access to a live entropy source. This DRBG cannot
support automatic reseeding, including the ability to gencrate outputs with prediction
resistance. An externally seeded DRBG shall have a fixed cryptoperiod, which may be
stated in terms of maximum number of outputs allowed, or of maximum time until the
DRBG must be discarded, or re-instantiated or reseeded using an external source of
entropy input. Note that the differences between reseeding and re-instantiating are as
follows:

a. Reseeding requires an additional function that is slightly different than the
instantiate function, and

b. The reseed function uses both new entropy bits and entropy contained within the
internal state of the instantiation to be reseeded, whereas the instantiate functin
uses only the new entropy bits.

The Externally Seeded DRBG provides a less convenient, and less secure alternative to
an internally seeded DRBG, but may be more affordable in some environments.

The only entropy available to this DRBG is kept in the seed file (if used), in some secure,
persistent storage. If the storage is manipulated or read by an attacker, the DRBG must
be assumed to irretrieveably lose all security.
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3.3.1 First Instantiation: The External Seeding

The Externally Seeded DRBG is instantiated using entropy input obtained from outside
the RBG. There are two permitted methods of doing this:

h. State Importation: An external, trusted source may provide the DRBG with a
complete DRBG working state for some DRBG stzerithsi. In this case, the
DRBG implementation may omit support for the Instantiate function. |

b. Entropy Importation: An external, trusted source may provide the entropy input
for the DRBG, which then instantiates using its own routines.

3.3.1.1 Requirements for State Importation|

The following requirements apply to First Instantiation:
a. The instantiate function shall be trusted and subject to validation.

bl The instantiate function shall have a validated Internally Seeded DRBG, including
the Instantiate function for at least the security level claimed by the target
Externally Seeded DRBG. |

¢. The instantiate function shall use its entropy source and-Hastantiatefanction to
produce a securely instantiated DRBG's working state.

d. [The working state produced above shall be imported into the Externally Seeded
DRBG over a secure and authenticated link of no less security level than the
Externally Seeded DRBG claims)

e. The DRBG boundary containing the instantiate function khall not retain the
working state generated, or the entropy input from which it was instantiated.

f. Immediately upon importing the working state, the Externally Seeded DRBG shall
perform the following steps’

(1) Let S, = the transferred working state.

(2) Generate a single output of one bit and another working state S, using the
Generate function, from the eusrent-working state So and additional input =
"Xll'

(3) Store the new working state 5| in persistent storage.

(4) Generate a single output of one bit and another working state S~ using the
Generate function, from the esrent-working state 5, with no
culelitional input. Discard the output.|

7This sensand-danceroutine guarantees that outputs are not repeated if the system crashes after
instantiating.
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3.3.1.2 Requirements for Entropy iImportation
Requirements associated with the importation of entropy input for instantiation are:

a. [The external source shall be trusted and subject to validation]

b. The external source shall be an approved entropy source or an approved RBG with
at least the same security level as that claimed by the Externally Seeded DRBG.|

|c. The external source shall not retain the entropy input provided to the Externally
Seeded DRBG/

d. The Externally Seeded DRBG shall carry out its Instantiate function using the
entropy input provided by the external source, and a personalization string should
be provided during instantiation]

e. Immediately upon instantiation, the Externally Seeded DRBG shall generate a
security length+64 bit pseudorandom output, and store this in its seedfile if a
seedfile is supported by the design.

f. Entopy input shall be entered and handled in the same manner as a cryptographic
key of the same security level.

3.3.2 Instantiation Before the First Output is Generated

Prior to the first use of the DRBG to generate bits, the Externally Seeded DRBG must be
instantiated with sufficient entropy for the intended security level. There are two
approaches possible for this, depending on whether the Instantiate function is supported
by the DRBG

B.3.21 PeowerUp-with Instantiation Support and a Seed Filel

IWith a seedfile and support for Instantiation, the following process is used:

a. [The Externally Seeded DRBG is instantiated, using the contents of the sced file as
the entropy input. [The Externally Seeded DRBG should use a personalization
string, if one is available.

b. Immediately upon instantiation, the Externally Seeded DRBG shall generate an
output of security leve/+64 bits, and write that output to the seed [ild, overwriting
any previous value,

3.4.2.2 PowerUp Withc

[When the Externally Seeded DRBG does not have Instantiate support, the following
process is used at power up:[

Without Instantiation Support

a. The current-contentsof working state is read into memory as the working state Sp.

b. Generate a single output of one bit and a new working state S| using the Generate
function from working state S, and additional input ="X".
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c. Store working state S| in persistent storage.

d. |Generate a single output of one bit and a new working state S using the Generate
function, from the current working state, with no additional_input. Discard the
output.|

3.3.3 Generating Bits

The Externally Seeded DRBG generates outputs by calling the uaderlyine DRBG's
Generate function. The reseed limit parameter is set to enforce the cryptoperiod of the
Externally Seeded DRBG.

This DRBG construction cannot support prediction resistance, but may support additional
input. If so, additional input is handled as follows, to ensure that the Externally Seeded
DRBG benefits from any entropy that is provided to it

3.3.3.1 Processing Additional Input when a Seed File is Supported|

When the DRBG supports fnstantiation-and-has a seed file, the following process is done
immediately before the Generate function generates pseudorandom bits to be returned to
the consuming aplication (but before they are actually returned):

k. Generate security leve/+64 bits of pseudorandom output from the DRBG.

b. Overwrite the current contents of the seed file with these newly generated output
bits (i.c., not the bits to be returned to the consuming application)]

3.3.3.2 Processing Additional Input when a Seed File is not Supported

When the Externally Seeded DRBG does not support hustantiate-or-have a seedfile, the
following process is done immediately before the Generate function generates
pseudorandom bits to be returned to the consuming aplication (but before they are
actually returned):

la. Let S, = the working state.

b. Generate a single output of one bit and a new working state .., using the Generate
function from working state S, and «ddiitional input="X". Discard the output.

c. Store working state S, in persistent storage.

d. Generate a single output of one bit and a new working state .. using the Generate
function from working state 5., and no additional_input. Same question as
above. |

3.3.4 Implementation Validation Concerns
Validation of this construction consists of answering the following questions:

a. Is the DRBG securely instantiated the first time”
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b. [Can an attacker or a component failure cause the persistent storage or seed file
used by the Externally Seeded DRBG to be disclosed to some attacker, to repeat
values, or to take on predictable values?|

4 Information-Theoretically Secure RBGs: NRBG
Constructions

An NRBG produces bits that are indistinguishable from random, even given unlimited
computing power. In other words, the bits output from an NRBG are close enough to
being ideal random bits in terms of distribution, that even given a large number of output
bits, there is not sufficient information available in the output sequence to distinguish it
from an ideal random sequence.

4.1 Preliminaries

Information theoretic security can be provided only by the entropy source. Since entropy
sources are generally a lot less reliable than deterministic components, a fundamental
question to ask about this kind of construction is "what happens when the entropy source
fails in some undetected way?" There are two broad NRBG designs:

a. FEnhanced NRBGs provide a fallback to an approved DRBG if the entropy source
suffers some kind of disasterous failure. This has the practical effect of making
the validation of the entropy source much easier.

b. Basic NRBGs make no suaranteeota fallback to an approved DRBG if there is a
failure of the entropy source. This means that validation and health testing of the
entropy source must be much more demanding.

4.1.1 Conditioning

All NRBGs claim information theoretic security, which is possible because bits are
obtained from a live entropy source. A fundamental part of any NRBG is "conditioning"
the bits from the entropy source. i.c.. mapping unpredictable bits from the entropy source
to uniform, independent, random bits with full entropy for output from the NRBG.

Techniques are provided in Section 2-abeveprovide-the-ability to externally condition
any entropy source. The Basic NRBG with External Conditioning construction discussed
in Section 777 uses these techniques, and the Enhanced NRBG Based on XOR
xonstruction discussed in Section 4.3 can use them to obtain a conditioned entropy
source.

The external conditioning of an entropy source can make no assumptions about the
internal probability model of the entropy source, but must assuine that the assessed
entropy from the source is correct. Any external conditioning technique requires at least
2k bits of min-entropy as input, in order to reliably produce £ bits of full-entropy output.
As discussed in Part Two, techniques for conditioning inside the entropy source can malke
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use a detailed knowledge of the probability model, and thus can be much more efficient.

The Enhanced NRBG Based on continuous Reseeding (see Section 4) essentially uses an
approved DRBG to condition an entropy source. It is acceptable, though somewhat
wasteful, to use a conditioned entropy source with this construction.

4.2 Construction: Enhanced NRBG Based on Continuous
Reseeding®

2b buts
min-
entropy

A natural way to build an enhanced NRBG is to use an approved DRBG to essentially
condition the entropy source. The entropy source provides the unpredictability, and the
DRBG provides both conditioning in the presence of sufficient input entropy, and
computational security in its absence.

Each DRBG has a natural blocksize—the number of output bits that can are generated by
the underlying cryptographic primitive at a time. For example, a block cipher-based
DRBGs that uses AES as the cryptogrpahic primitive has a blocksize of 128 bits, while a
hash-based DRBG using SHA256 has a blocksize of 256 bits.

Each DRBG also has a seed length (seedlen) appropriate to its cryptographic primitive.

In order to generate full-entropy outputs, the output size b for each DRGB and
cryptographic primitive is defined as:

4.2.1 Components of the NRBG
The enhanced NRBG consists of two components:

a. A DRBG aleorithm and associated internal state from Part 3, to be used with
output size b as discussed above.

b. An approved entropy source from Part 2.

81 think I could redesign this NRBG construction to use the DRBG only via an envelope or one of my
previous DRBG constructions, but it would make the NRBG itself somewhat less efficient. Let's
discuss whether this would be a better way of doing things.
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4.2.2 Instantiation

Sufficient entropy for instantiating the DRBG is critical to maintianing the security of the
NRBG, even when the entropy source partially fails. As a result, the DRBG shall be
instantiated using an oversampling multiple w > 2-of+the pinimum-number ol bits-of
entropyrequired-by-the- DRBG-aleorithimras discussed in Section 3-abeve, and should

satisfy w > 4. This oversampling multiple can be applied by increasing the amount of
entropy requested for instantiation by a factor of w, or by reseeding w times.

A seed file, as discussed in Section 3 abeve, may be used during instantiation.

A personalization string should be used, and may include a long term secret value of at

least security level b|ts—%a+4—kv#wﬁm4w»ﬁy—k%wm+ﬂumhm .| Ccomment [ebb90]: Page: |
o The security level depends on the crypto primitive
and the amount of entropy requeted during
4_2_3 Generation of outputs instntiation; there is a maximum security level

possible, however.

When the Enhanced NRBG receives a request for » bits of full-entropy output, the
following process takes place’:

| tmp — nn
2. While len (tmp) <n:
2.1 seed= at least 2b bits of min-entropy from the entropy source.

2.2 tmp = tmp || Generate (b,seed)

. Return the leftmost # bits of tmp.‘ ..~ comment [ebb91]: Page: 1
""""" — ' We've discussed that this is not the way to do this

because of the reseed interval.

4.2.4 Reseed Management 3 .--@mt Tebb92]: Page

Reword based on changes to 4.2.3

Explicit reseeding the DRBG abeesiths MAY be done at any time, but reseeds are not
required. Note that the process of generating outputs always inserts more entropy into
the DRBG internal state than is taken out, so that the DRBG's internal state is constantly
being rep]aced with 2 new, unpredictable internal state. One way to effectively leseed the
DRBG is to generate more than seedlen bits of NRBG output, and discard the output'’.

4.2.5 Making a Composite RBG

This construction deseribed-here can be extended to allow users access to both
computationally-secure and information-theoretically secure bit strings. This is very
valuable when the device is servicing both security-critical operations like key pair
generation, and relatively low-importance operations like generating nonces, TCP
sequence numbers, IVs, etc.

9I'm trying to figure out if Dan's attack requires us to add a reseed at the end, here. Should we just do the
whole thing with reseeds?

10This works for everything but Hash_DRBG; I'm not sure about Hash_DRBG, though.
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To provide # bits of computationally secure output-bits, a request is made to the DRBG’s
Generate function is-eated to produce # bits with prediction resistance''— With-direct-
pesessto-thenlporithm—thisis-densasfollows:

l. Let seed = a string with at least £ bits of min-entropy from the entropy source.
b. Reseed the DRBG algorithm with entropy input = seed.

c. Call the DRBG algorithm's generate method to satisfy the request for n
pseudorandom output bits)

Note that while the NRBG outputs can support any security level, the DRBG-compenents
cannot support any security level higher than that of the DRBG primitive can support.

4.2.6 Validation Concerns

Validation must ensure that the DRBG reaches a secure state before the first output is
generated, and is thus the same as for the DRBG with Internal Seeding or DRBG with
Internal Se|eding and Memory constructions, depending upon whether there is a seedfile
available.

4.3 Construction: Enhanced NRBG Based on XOR"?

Given a conditioned entropy source and a DRBG, this NRBG construction works by 1)
instantiating the DRBG aleosithim, 2) satisfying each k-bit request for full-entropy output
by generating k bits from the DRBG atse+ith# and k bits from the conditioned entropy
source, and 3) XORing the /-bit outputs together. This very cleanly provides assurance
of security that is no worse than the stronger of the two sources of random bits (i.e.. the
conditioned entropy source and the DRBG), and is a special case of the construction in
Section 5.1 for combining RBGs.

(ottpuits)

[ 1This is required, or a computationally powerful attacker can determine the DRBG state from the outputs
seen, and then backtrack to the previous state, because backtracking is only guaranteed to be as strong
as the DRBG.

12This Enhanced NRBG can be done using only Elaine's DRBG envelopes with no loss of efficiency or
added complexity—one of many much cleaner aspect of the design.
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4.3.1 Instantiation
Instantiation proceeds exactly as in Section 4.2.1. That is, the DRBG algorithm is
instantiated with at least w(security level+64) bits of min-entropy, where secuity level
is the claimed security level of the DRBG.
4.3.2 Generation
A request for n bits of NRBG output is satisfied as follows:

a. Let 7= n bits of output from the conditioned entropy source.

b. Let U= n bits of output from the DRBG aleerithe.
¢. RetunT®U

4.3.3 Reseed Management

In this design, the DRBG does not receive any entropy from the entropy source in normal

operation. Designs using this construction should reseed the DRBG when there is
entropy available that would otherwise go unused, and shall respect the reseed limits of
the DRBG algorithin.

4.3.4 Using the Construction as a Composite RBG

In order to provide access to » bits of computationally-secure RBG outputs, the DRBG’s
Generate function is used to generate n bits of computationally-secure outputs, which are
then returned.

4.3.5 ImplementationValidation Concerns

As with the previeus Enhanced NRBG construction based on continuous reseeding in
Section 4.2, the requirement on validation is simply that the DRBG cemponent-otthe
construetion reaches a secure state before the first output is generated.

4.4 Basic NRBGs

In this Standard, a Basic NRBG is defined as an RBG that claims information-theoretic
security, but does not provide security in the event of an entropy source lailure. This
kind-of construction falls into three broad categories, with different design goals behind
each category.

a. Extremely lightweight NRBGs can be designed; using very few gates and very
little power. Some applications may benefit from having an approved RBG 1hat
does not require any cryptographic operations, and whose supporting hardware is
measured in hundreds of gates at most.

b. NRBGs can designed to provide high security using only non-cryptographic
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processing and well-understood and well-analyzed entropy sources. Both the
design and the validation of such an NRBG arc quite demanding.

¢. Enhanced NRBGs can be designed that default to some non-approved DRBG for
their security. Existing hardware random bit generators made before this
Standard was published are a natural source of this category of NRBG.

4.4.1 Validating a Basic NRBG

In the previously discussed NRBG constructions, the design provided a great deal of
assurance of security. This came in two broad categories:

a. No entropy source failure could ever make the outputs look obviously bads
because a DRBG that is instantiated from a known value will still produce outputs
that will pass all known statistical tests, assuming that the conditioned entropy
source is still working correctly, and

b. The only critical failures possible are failures to instantiate the component DRBG
of the design securely. If the component DRBG is instantiated securely, then the
entropy source can immediately cease functioning: without leading to a
catastrophic loss of security in any enhanced NRBG design.

Neither of these conditions can be assumed about a basic NRBG design. A Basic NRBG
with no cryptographic processing of outputs has nothing with which to provide a fallback
to computational security. A basic NRBG with an unapproved component DRBG may
provide such a fallback, but the validation lab cannot reasonably be expected to evaluate
the unapproved DRBG wlessiths for security, and so can make no assumptions about the
desion’s security for validation purposes. A basic NRBG will typically contain no
element that provides assurance that its outputs will pass all statistical tests, though
cormmeon designs may contain internal mixing functions that will mask entropy source
failures from at least some statistical tests. Intermittent entropy source failures that
would cause no problems for other designs can lead to critical failures in a basic NRBG.

A Basic NRBG will besaid-te suffer a critical failure if any k-bit output (k<256) is

expected to be successfully guessed with less than 2096 trialsh?, | .| comment [ebb95]: Need to explain the
it numbers.

i

5 Constructions for Combining and Chaining RBGs

5.1 Combining RBGs

RBGs may be combined using either multiple approved RBGs, or using approve one or
more approved RBGs and one or more unapproved RBGs. Combining RBGs might be
used for a number of reasons, including:

13MUCH more is needed here, but we need to discuss it and hash it out first. Basic NRBGs' validation is
almost entirely done at the level of the entropy source.
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a. The desire to use an unapproved DRBG that is believed to be superior in security
over an approved DRBG; combining the approved and unapproved DRBGs
would comply with ANS X9.82.

b. The desire to combine DRBGs or NRBGs driven by different entropy sources or
based on different primitives or design principles for increased assurance.

¢. The desire to combine RBGs from different implementers or contained on
different modules in order to obtain increased assurance.

Combining RBGs is an excellent way of meeting the requirements of this Standard for an
RBG, while gaining whatever security properties are desired from some unapproved
design in which the designer has enormous confidence. Existing designs that have been
evaluated outside the ANS X9.82 process (designs that have been published and
subjected to extensive peer review and analysis) and designs that incorporate DRBGs
aleorithms that are approved in this Standard, but which are believed by the designer to
be highly secure, are all good candidates for use in a combined RBG.

The construction for combining RBGs provides assurance that the resulting combined
RBG will be no weaker than the strongest component RBG, assuming the RBGs are
seeded independently. Note, however, that there is no assurance that the combined RBG
will be substantially stronger than the strongest component RBG.

A major potential pitfall to using a combined RBG is the dillution of entropy. Given k
bits of total entropy available for instantiating a DRBG, using the full % bits to instantiate
one DRBG gives something close to k& bits of practical security. Using half the entropy to
instantiate each of two DRBGs, and using them in a combined RBG construction, gives
something close to 472 bits of practical security. A combined RBG should be used only
when the risk of dillution of entropy is outweighed by the expected gains in security. A
natural approach is to instantiate one component DRBG with £ bits of entropy from the
source, and the other with all remaining available entropy, so that at least one DRBG is
likely to get sufficient entropy even if the entropy souce is failing. In this case, an
approved DRBG shall be substantiated with sufficient entropy for the target security
level. This construction allows N component RBGs, at least one of which is approved.

5.1.1 Instantiation|

Each component RBG shall be handled independently for instantiation and reseeding.
Each RBG should be instantiated with a unique personalization string, although the
personalization strings may be closely related, e.g., differing only in a single index byte.
Each component RBG shall be provided with unique entropy input, not related in any
way to that provided to the other component RBGs. Sced files, if used, shall not be
shared among component RBGs.

5.1.2 Reseeding

Each component RBG may be reseeded independently from-timeto-timme. Any entropy
input used to reseed a component RBG shall not be reused or in any way related to those
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used to reseed other component RBGs. There is no natural notion of reseeding a
combined RBG, because there is no assurance that unapproved RBGs will even support
such an operation or any of the security requirements associated with it.

5.1.3 Generation

To produce 7 bits of output from the combined RBG construction, each component RBG
shall generate 1 bits of output, and the /-bit intermediate outputs shall be exclusive-
XORed together to produce a combined r-bit final output. Additional input may be
provided to any or all of the component RBGs. e additional input for cach component
RBG shall be unigue, although it may be closely related, e.g., differing only by an index
byte. The component RBG outputs used to generate a combined RBG output (i.c., the
intermediate r-bit outputs) shall not be individually available.

The combined RBG outputs can support a request for information-theoretic security, for
computational security up to some security level s, and prediction resistance at a security
level, based on the properties of its component RBGs. In particular:

a. The combined RBG construction shall include at least one component RBG from
this Standard.

b. The combined RBG construction shall be permitted to support an s bit or lower
security level; if at least one approved component RBG from this Standard
supports an s-bit security level. In this case, the combined RBG construction
shall be considered equivalent to an approved DRBG with an s-bit security level.

¢. The combined RBG construction shall be permitted to support prediction
resistance for the s-bit or lower security level, if at least one 982 Approved
component RBG supports prediction resistance at an s-bit security level.

d. The combined RBG construction shall be considered equivalent to an approved
NRBG, if at least one component RBG is an approved NRBG.

e. The combined RBG construction shall be considered equivalent to an approved
Composite RBG, if at least one component RBG is an approved Composite RBG,
and if the composite RBG(s) is(are) given the request for information-theoretic
security whenever the combined construction generates information-theoretically
secure outputs.

f. The combined RBG construction may omit the intermediate outputs from some
component RBGs when computing a given combined RBG output: if the RBGs
whose outputs are included allow the combined RBG construction ae-+ot-
sesitpod-forthe-copbined RI3G o support whatever properties are required for
the combined output.
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5.2 Construction: Chaining DRBGs (Instantiating Subordinate
DRBGs from a Master DRBG)

Part Three ot the-standard strongly recommends using different DRBG instantiations for
different consuming applications. For example, a different DRBG instantion might be
used for generating nonces than for generating AES keys. Separate instantiations
provides some protection against cryptanalysis of the DRBGs, because an attack that
requires a large number of known outputs might lead to the compromise of the RBG used
to generate the nonce (which produces large numbers of outputs that are exposed to the
world), but not to the RBG used to generate the AES key (whose outputs are never
provided as plaintext). This construction may be used to derive entropy tfor multiple
subordinate DRBGs from a single master RBG, which may be any approved DRBG.

It is important to chain the DRBGs in a sensible way in order to avoid spreading the

limited entropy thatnay-be-available-mmonsrmany-RBGs in a way that makes the
resulting system much less robust against entropy source failures.

5.2.1 Requirements

The enb-requirements on RBGs used in this construction are as follows:

a. The subordinate RBGs shall be Approved DRBGs, and shall claim a security
level that is no greater than the security level of the master RBG.

b. The subordinate RBGs shall not claim to provide prediction resistance.
¢. The master RBG shall not be used for any purpose other than instantiating RBGs.
d. The master RBG shall provide seed material for reseeding the subordinate
DRBGs, as needed.
5.2.2 Instantiation of the Master RBG

The master RBG is the only RBG with access to the live entropy source; if there are
multiple entropy sources available, they shall be combined to support the master RBG.
Instantiation is performed in accordance with for the specific RBG construction and
implementation.

[The masjter RBG shall not be used for any purpose other than supporting the subordinate
DRBGs

5.2.3 Instantiation of the Subordinate DRBGs
Each subordinate DRBGs shall be instantiated as follows:

a. Each subordinate DRBG should be provided with a unique personalization string.
The personalization strings may differ only by some small part of the value, such
as an index byte.
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b. The entropy input for each subordinate DRBG shall be requested from the master
DRBG using a Generate request for at least the minimum number of bits needed
to provide the required seed material for the subordinate DRBG. Each request
should include a request for prediction resistance.

c. [If the subordinate DRBG supports being instantiated with full entropy input, it —— [Comment [ebb98]: They all can support full ]
may treat the entropy input from the master DRBG as full entropy input from a SntOpyL don't hink you are saying what you mean.
conditioned entropy source.

5.3 Construction: Using RBGs as Entropy Sources

Entropy input for a DRBG can be acquired from an entropy source, or from an approved
RBG that has access to a live entropy source. An RBG that is used to provide entropy
input is called a source RBG; an RBG that requests entropy input from a source RBG is
called a target RBG. Note that this construction is closely related to the construction in
Section 5.2. In that construction, subordinate DRBGs can be used to compartmentalize
the risks from cryptanalysis, and fresh entropy is not generally expected to be available
for the subordinate DRBGs. |lowever, in this construction, an RBG with access to a live
entropy source is used to provide fresh entropy.

5.3.1 Source RBG Requirements

A source RBG shall be one of the following:
a. An approved NRBG,
b. An approved Composite RBG, or

c. An approved DRBG supporting prediction resistance, with a security level no
fower than that of the target RBG.

Each of these RBGs #ecessarity-has an entropy source available to-it upon demand. An
RBG without access to an onboard entropy source shall not be used to produce entropy
input in this construction. A source RBG should not be used to produce outputs directly
to a consuming application. The following requirements apply to the source RBG, based
on the properties of the target RBG:

d. When the target RBG is operating as an NRBG (that is, the target RBG is either
an NRBG or a Composite RBG generating full-entropy outputs), the source RBG
shall generate entropy input for the target RBG while operating as an approved
NRBG.

e. When the target RBG is operating as a DRBG with a security level of s bits, the
source RBG shall generate entropy input for the targer RBG while operating as
either an approved NRBG, or as a DRBG with prediction resistance and a security
level of at least s bits.

f. [If the target RBG is a DRBG supporting full-entropy input, it may process the
entropy input from the source RBG as full-entropy input. However, that input
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shall not be assessed as having full entropy for NRBG constructions unless the

source RBG is operating as an NRBG] [ comment [ebb99]: This needs to be reworded
: o for clarity, Too much confusion about the inputs and
outputs

Annex A: Security Considerations

This section is a shambles now, but will eventually hold some of the sideline comments I
noted about security issues, and some explanations about why I do some of the things I
do in these constructions.

A.1 DRBG Instantiation

a. If the entropy source fails entirely, but the personalization string is different for each
time the DRBG is instantiated (e.g., the mechanism uses a timestamp), then the
DRBG's outputs will show no obvious pattern of weakness, though an attacker who
knows of the entropy source failure can detect the problem and predict any unseen
DRBG outputs.

b. If the entropy source provides much less entropy than expected, say m bits, then an
attacker can detect the problem (and exploit it) doing a 2" attack for each attacked
DRBG instance.

¢. If the personalization string is unguessable to the attacker, but doesn't vary between
DRBG instantiations, and the entropy source fails entirely, the attacker will notice
repeating DRBG output sequences, but will have no way of knowing any bits that he
has not yet observed.

d. Ifthe personalization string is unguessable to the attacker, and the entropy source
partially fails; so that it produces only m bits for the instantiation, then the attacker
expects to have to observe outputs from about 2?2 outputs to detect the problem, at
which point he will know only the bits that he has seen from repeatlng DRBG output
sequences. If the DRBG is never instantiated more than 2" times, the attacker will
never even recognize the weakness, and will be unable to exploit it.

This has consequences for validating the entropy source: If the personalization string is
unguessable to the attacker (it contains a secret with at least s bits of min-entropy), then
a failure in the entopy source will not cause a critical failure unless the number of bits of
min-entropy provided is less than Ig(number of instantiations in DRBG lifetime)/2.

XXX Reseeding for Composite RBGs

The reseed is necessary before any computationally-secure bits are output, to protect the
unconditional security of the last block of the previous output.
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Note: This is one of those areas that makes me glad we're writing this up in its own part.
The problem here is fairly subtle (I'm pretty sure /dev/random's design missed it.) The
basic problem is that backtracking resistance never promises more than the security level.
So, if we don't reseed before generating a computationally-secure output immediately
after an information-theoretic one, the more powerful attacker we care about for the
information-theoretic secure outputs can violate our backtracking resistance, and recover
the previous internal state of the DRBG, and thus determine the information-theoretic
secure output.

As an example, suppose you first generate a full-entropy output (pump 256 bits of min-
entropy into AES-128-CTR, and then produce 128 bits of full-entropy output). Ithen
request a few hundred bits of output from the computationally secure side. If you didn't
reseed first, and I was able to do a little more than a 128-bit search, I'd end up knowing
the key and counter that the computationally-secure output started with. I'd also know
that new key/counter values are generated by running the old generator. So, I'd now
guess the previous key, and see whether D_{guessed_key}(new_key) and

D {guessed key}(new_counter) were only one apart. If so, I'd almost certainly have the
right key. (I expect one false positive.) Now, I know the previous key and counter, so 1
know the information-theoretically secure output.

This stuff is tricky.

Annex B: References

References include:

Yarrow and Yarrow160
Peter's paper

Peter's Cryptlib code
PGP source code
/dev/random source code
EGD

the Truerand paper
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Our DRBG cryptanalysis paper

Lisa et al's paper on security proofs for DRBGs
Intel RNG documents (specifies an integrated DRBG + entropy source....
Declassified Clipper/Fortezza RNG details

NIST Statistical Test Suite

Dichard Statistical Test Suite

Werner's papers and standards documents, as applicable

Others?
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