10.1.2Hash Function DRBG Using HMAC with Any Approved Hash (HMAC_DRBG)

10.1.21 Discussion

This section discusses a new DRBG based on using any approved hash function in the
HMAC construction for making a keyed hash function. Any application that has access
to an approved hash function can implement HMAC, though dedicated implementations
of HMAC will be considerably more efficient.

10.1.2.2 Interaction with HMAC_DRBG
10.1.2.21 Instantiating HMAC_DRBG (...)

Prior to the first request for pseudorandom bits, the HMAC_DRBG (...) shall be
instantiated using the following call:
status = Instantiate. HMAC_DRBG (usage_class, requested_strength,
prediction_resistance_flag)
as described in Section 9.6.1.
10.1.2.2.2 Reseeding a HMAC_DRBG (...) Instantiation

When a HMAC_DRBG (...) instantiation requires reseeding, the DRBG shall be
reseeded using the following call:
status = Reseed HMAC_DRBG_Instantiation (usage_class)
as described in Section 9.7.2.
10.1.2.2.3 Generating Pseudorandom Bits Using HMAC_DRBG (...)

An application may request the generation of pseudorandom bits by HMAC_DRBG (...)
using the following call:
(status, pseudorandom_bits) = HMAC_DRBG (usage_class, requested no_of bits,
requested_strength, additional _input_flag)
as discussed in Section 9.8.2.
10.1.2.3 Specifications

10.1.2.3.1 General

The instantiation of HMAC_DRBG (...) consists of obtaining a seed with the appropriate
amount of entropy, which is used to define the initial state of the DRBG. The state consists
of:

1. The usage class for the DRBG instantiation (if the DRBG is used for multiple
usage_classes, requiring multiple instantiations, then the usage_class parameter
shall be present, and the implementation shall accommodate multiple stazes
simultaneously; if the DRBG will be used for only one usage_class, then the
usage_class parameter may be omitted).

2. The value X, which is updated each time another N bits of output are produced
(where N is the number of output bits in the underlying hash).

3. The value K, which is updated at least once each time the DRBG generates
pseudorandom bits.

4. The size of the hash function output, N.

A prediction_resistance_flag that indicates whether or not prediction resistance is

(9]

required by the DRBG. Note that if the DRBG is implemented to always or never
support prediction resistance, then this parameter is not required in the state.

6. (Optional) The first output generated by the DRBG after the DRBG is either
instatiated or reseeded. No information about the DRBG's working state after
instantiation or reseeding can be recovered from this stored value.

additional_input
additional input flag

Get_entropy (128,160, 512)

Get_additional_input ()
HMAC(K,X)
old_transformed seed
prediction_resistance_flag
pseudorandom_bits
requested no of bits
requested_strength

N
Seed material

state

starus

The variables used in the description of HMAC_DRBG (...) are:

Additional input.
A flag that indicates whether or not additional input is to
be requested (see Section 9.6.3); its values are as follows:
0 = Do not request additional input. Set
additional_input = 0.
1 = Request additional input, but return 0 if no input
is available.

A function that acquires a string of bits from an entropy
source. 128 indicates the minimum amount of entropy
to be provided in the returned bits; 160 indicates the
minimum number of bits to be returned; 512 indicates
the maximum number of bits to be returned. See
Section 9.6.2.

Returns a value for additional _input. This routine is left
to the implementer. See Section 9.6.3.

Apply the HMAC keyed hash function with key K to
message input X.

The transformed_seed from the previous seeding of the
instantiation.

A flag indicating whether or not prediction resistance is
required by the instantiation. 1 = yes; 0 = no.

The string of pseudorandom bits that are generated
during a single “call” to the HMAC_DRBG (...)
process.

The number of bits requested from the DRBG.

The requested security strength for the pseudorandom
bits obtained from the DRBG.

The number of bits in the hash function output.

The seed material used to initialize or reseed this instance
of the HMAC_DRBG(...).

The state of HMAC_DRBG (...) that is carried between
calls to the DRBG. In the following specifications, the
entire state is defined as {usage class, N, X, K,
prediction_resistance_flag, transformed_seed}. A
particular element of the state is specified as
state.element, e.g., state. K.

The status returned from a function call, where status =
“Success” or an indication of a failure. Failure
messages are:

1. Invalid requested strength.

Failure indication returned by the entropy source.

State not available for the indicated usage class.

Entropy source failure.

Invalid additional _input flag value.

Failure from request for additional_input.

additional_input too large.

t The initial value of the hash function. See Annex E.

temp A temporary value.

transformed_seed A one-way transformation of the seed for the
HMAC_ DRBG(...) instance.

usage_class The purpose(s) of a DRBG instance.

N L AW

10.1.2.3.2 Instantiation of HMAC_DRBG(...)

The following process or its equivalent shall be used to initially instantiate the
HMAC DRBG (...) process in Section 10.1.2.3.4:
Instantiate HMAC DRBG (...):
Input: integer (usage_class, requested_strength, prediction_resistance_flag)
Output: string status.
Process:
1. Ifrequested strength>N, then Return(“Invahd requested_strength)
2. (status,seed) = Get entropy(N,N, pag
3. If (status = “Failure”), then Return (“Failure indication returned by the
entropy source”).
K = HMAC(0x0000...00,0x0101..01||0x00]||seed)
X = HMAC(K,X)
K = HMAC(K,X]||0x01||seed)
transformed_seed = X
X = HMAC(K,X)
Set up ¢ for the indicated usage class. Comment: See Annex E.
10 state = {usage class, prediction_resistance flag,N,K,X}
11. Return (“Success”).
Note that multiple state storage is required if the DRBG is used for multiple
usage classes.
If an implementation does not need the usage class as a calling parameter (i.e., the
implementation does not handle muitiple usage classes), then the usage class calling
parameter may be omitted, step 7 must set ¢ to the value to be used, and the usage_class
indication in the state (see step 10) must be omitted.
If an implementation will never require more than N bits of security, then the
requested_strength parameter and step 1 can be omitted.
If an implementation does not need the prediction resistance flag as a calling parameter
(i.e., the HMAC_ DRBG (....) routine in Section 10.1.2.3.4 either always or never
acquires new entropy in step 9), then the prediction_resistance_flag in the state (see step
10) must be omitted.
If an implementation will never be reseeded using the process specified in Section
10.1.2.3.3, then step 6 may be omitted, as well as the transformed seed in the state (see
step 10). This does not preclude using the Instantiate. HMAC_DRBG (...) process to
create a new instantiation.

© %0 N oL R

.1.2.3.3 Reseeding a HMAC DRBG(...) Instantiation
The following or an equivalent process shall be used to explicitly reseed the
HMAC DRBG (...) process:
Reseed HMAC DRBG Instantiation (...):
Input: integer (usage class).
Output: string status.
Process:
1. If a state is not available for an indicated usage class, then Return (“State not
available for the indicated usage class™).
2. Get the appropriate state values for the indicated usage_class, e.g., K=
state.K, N = state.N, transformed seed = state.transformed_seed.
3. Perform the following steps:
3.1. (status,seed) = Get entropy(N N2
3.2. If (status = “Failure”), then Return (“Failure indication returned by the
entropy source”).
3.3. K =HMAC(K,X]|0x00||seed)

5. X=HMAC(K,X)

6. K=HMAC(K,X]||0x01]||seed)

7. ifold transformed seed ==X then Return(“Entropy source failure”)
else transformed_seed = X

8. X=HMAC(K,X)

8. Set up ¢ for the indicated usage class. Comment: See Annex E.

9. state X=X

10. state. K =K

11. Return (“Success”).

If an implementation does not need the usage_class as a calling parameter (i.€., the
implementation does not handle multiple usage classes), then the usage class calling
parameter and step 1 can be omitted and step 2 acquires the only state that is specified.
If an implementation will never request a strength greater than 80, then

If an implementation will never request additional_input, then step 3.4 may be omitted.

10.1.2.3.4 Generating Pseudorandom Bits Using HMAC_DRBG(...)

The following process or an equivalent shall be used to generate pseudorandom bits:
HMAC DRBG(...):
Input: integer (usage class, requested_no_of bits, requested_sirength,
additional_input _flag).
Output: string (status, pseudorandom_bits).

Process:
1. If ((requested_strength >N), then Return (“Invalid requested_strength”,
Null).

2. If ((additional _input flag < 0) or (additional input_flag > 1)), then Return
(“Invalid additional_input flag value”, Null).

3. If a state for the indicated usage class is not available, then Return (“State
not available for the indicated usage class”, Null).

4. If requested_no_of_.bits>235 then Return(“Too many bits requested.”,Null)

5. Get the appropriate state values in accordance with the indicated usage_class,
e.g., K= state. K, t = state.t, etc..
seed =7
If (state.prediction_resistance_flag==1) then seed = Get_entropy(N,N,2"{32})
If (additional input flag==1) then seed = seed || Get_input()
If (additional_input flag or state.prediction_resistance) then:
9.1 K = HMAC(K.,X]||0x00||seed)
9.2 X = HMAC(K,X)
10. temp =~
11. while (Ien(temp)<requested_no_of bits) do:
11.1 X=HMAC(K,X)
11.2 temp =temp || X
12. pseudorandom_bits = Leftmost (requested no_of bits) of (femp).
13. K = HMAC(K,X||0x01]||seed)
14. X = HMAC(K,X)
15. state. X =X
16. state K =K
17. Return(*“Success”,pseudorandom_bits)

© 00 N O

If an implementation does not need the usage_class as a calling parameter (i.e., the
implementation does not handle multiple usage classes), then the usage_class parameter
and step 3 can be omitted, and step 4 acquires the only state available.

If an implementation will never require more than N bits of security, then the

requested strength parameter and step 1 can be omitted.

If an implementation will never request additional input, then the additional_input ' flag
in the calling parameter may be omitted, and the additional_input term may be removed.
If an implementation does not use the prediction resistance_flag in the state (see Section
10.1.2.3.2), then the prediction resistance_flag is not acquired, and the reference to the
prediction_resistance_flag is omitted.

10.1.24 Generator Strength and Attributes

The HMAC_DRBG provides outputs indistinguishable from ideal random outputs and
reseeds securely if HIMAC provides a pseudorandom function. It is instantiated securely
if HMAC with an arbitrary key distills entropy from the input seed material.

10.1.2.5 Reseeding

Instantiation, reseeding, and generating pseudorandom bits with prediction resistance are
all equivalent in security terms. Indeed, the mechanism for instantiating the
HMAC_DRBG is nothing more than setting K and X to constant bitstrings, and then
doing operations equivalent to generating N bits of DRBG output with prediction
resistance, and reseeding the DRBG is nothing more than generating N bits of DRBG
output with prediction resistance.

