X9.82 DRBG ALGORITHMS

HMAC DRBG:
10.1.2.2.2 The Update Function (Update)

(he Update [unction updates the internal state of HMAC _DRBG using the
provided daia. Note thal tor this DRBG. the Update tunction also serves as a derivation
tunction for the instanuate and resced functions.

Let HMAC be the keyed hash function specilied in IFIPS 198 using the hash function
selected for the DRBG from Table 2 tn Section 10,11,

The following or an equivaleut process shall be used as the Update function.
Input: |
1. provided data: The data to be used.
2. K: The current value of Key.
3. V: The current value of V.
Output:
1. K: The new value for Key.
2. V: The new value for V.
Process:
1. K=HMAC (X, V|| 0x00 || provided_data).
2. V=HMAC (K, V).
3. If (provided data = Null), then return K and V.
4. K=HMAC (X, V|| 0x01 || provided_data).
5. V=HMAC (X, V).
6. Return K and V.
10.1.2.2.3 Instantiation of HMAC_DRBG

Noles for the mstantiate function:

[he instantiation ol HMAC_DRBG requires a call (o the instantiate Tunction specilied

in Scction 9.2: step 9 of that function calls the instantiate algorithm specitied in this

section. For this DRBCGL step 3 should be omitted. The values of

highest_supporied securiiv strengih and min_lengih are provided in lable 2 of

Section L0 T, The contents of the ternal state ave provided in Scection 10.1.2.2.1.
The mstantiate algorithm:

Let Update be the tunction specified in Section 10.1.2.2.2. The output block length
(nutlen)y is provided in Table 2 of Section 10.1.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 9 of Section 9.2):

Input:
1. entropy input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.4.2.

3. personalization_string: The personalization string received from the consuming
application. If a personalization_string will never be used, then step 1 may be
modified to remove the personalization_string.

Output:

1. working state: The inital values for V, Key and reseed counter (see Section
10.1.2.2.1).

Process:
1. seed material = entropy input || nonce || personalization_string.
2. Key =0x00 00...00. Comment: outlen bits.
3. V =0x0101...01. Comment: outlen bits.
Comment: Update Key and V.
4. (Key, V)= Update (seed material, Key, V).

: » heinitial block &
o veith the 1t DRBC bloc]

5. reseed counter =1.

6. Return V, Key and reseed counter as the initial working state.
10.1.2.2.4 Reseeding an HMAC DRBG Instantiation

Notes [or the reseed function:
The reseeding ot an HMAC _DRBG instantiation requires a call to the reseed function
spectlied in Section 9.3: step 3 of that function calls the reseed algorithm specified in
this section. The values for min length ave prosided in Table 2 of Section 10.1.1.

The reseed algorithm:
[et Update be the function specilied in Section 10.1.2.2.2. The following process or its
cquivalent shall be used as the reseed algorithm for this DRBG (see step S of Section
9.3):
Input:

1. working state: The current values for V, Key and reseed counter (see Section
10.1.2.2.1).

2. entropy input. The string of bits obtained from the entropy input source.

additional input: The additional input string received from the consuming
application. If additional _input will never be used, then step 1 may be modified
to remove the additional input.

Output:

1. working state: The new values for V, Key and reseed counter.
Process:

1. seed material = entropy input || additional _input.

2. (Key, V)= Update (seed material, Key old, V old).
3. reseed counter=1.
4

Return V, Key and reseed counter as the new working state.
13.1.2.2.5 Generating Pseudorandom Bits Using HMAC DRBG

MNotes {or the generate functlion:

The generation ol pseudorandom bits using an HMAC DRBG instantiation requires a
call to the gencrate function specilicd in Section 942 step 8 ol that tunction calls the
generate algorithim specitied in this section. The values for

max _number o bits_per request and outlen are provided in Table 2 ol Section 10,11

he generate algorithin

Lel HMAC be the keved hash tunction specilied in FIPS 188 usine the hash lunction
3 ' =

sclected for the DRBG. The value lor reseed fnicrval s detined o Fable 2 of Section

[O. 1],

The Tollowing process or its equivatent shall be used as the zenerate algorithin for this
DRBG (see step 8 ol Seciion 9.4);

Input:

1. working state: The current values for V, Key and reseed counter (see Section
10.1.2.2.1).

2. requested number of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional input: The additional input string received from the consuming
application. If an implementation will never use additional input, then step 3
may be omitted. If an implementation does not include the additional input
parameter as one of the calling parameters, or if the implementation allows
additional input, but a given request does not provide any additional input,
then a Null string shall be used as the additional input in step 7.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, an ERROR or indicate that a reseed is required before the
requested pseudorandom bits can be generated.

2. returned bits: The pseudorandom bits to be returned to the generate function.

3. working state: The new values for V, Key and reseed counter.

Process:

1. Ifreseed counter > reseed interval, then return an indication that a reseed is
required.

Comment: Save the last ouput block for
comparison with the new output block.

2. V old=V.Key old = Key.

3. If additional input # Null, then (Key, V) = Update (additional _input, Key, V).

4. temp = Null.

5. While (len (temp) < requested number_of bits) do:

[Insert]

5.1 V=HMAC (Key V).

Comment: Continuous test - Check that
successive values of V are not identical.

okt =1t
54 temp=temp| V.

6. returned bits = Leftmost requested number of bits of temp.

(Key, V) = Update (additional input, Key, V).
If (Key = Key old)and (V' old = 1)), then return an ERROR.
reseed counter = reseed counter + 1.

Return SUCCESS, returned bits, and the new values of Key, V and
reseed_counter as the working state).

CTR DRBG :

10.2.2.2.1 CTR_DRBG Internal State

The internal state tor CTR_DRBG consists of:
L. The working state:

a. The value I of outlen bits, which is updated each time another outlen bits of
output are produced (see Table 3 in Section 10.2.2.1).

b. The keylen-bit Key. which is updated whenever a predetermined number of
output blocks are generated.

d. A counter (reseed counter) that indicates the number of requests for
pseudorandom bits since instantiation or reseeding.

2. Administrative information:
a. The securiry strength of the DRBG instantiation.

b. A prediction_resistance_ flag that indicates whether or not a prediction
resistance capability is required for the DRBG.

The values of V and Key are the critical values of the internal state upon which the security
of this DRBG depends (i.e., I"and Key are the “secret values™ of the internal state).

10.2.2.2.2 The Update Function (Update)

The Update function updates the internal state of the CTR_DRBG using the
provided data. The values for outlen. keylen and seedlen are provided in Table 3 of
Section 10.2.2.1. The block cipher operation in step 2.2 uses the selected block cipher
algorithm (also see Section 9.1).

The following or an equivalent process shall be used as the Update function:
Input:

1. provided data: The data to be used. This must be exactly seedlen bits in length;
this length is guaranteed by the construction of the provided data in the
instantiate, reseed and generate functions.

2. Key: The current value of Key.

3. V: The current value of V.
Output:

1. K: The new value for Key.

2. V: The new value for V.
Process:

1. temp = Null.

2. While (len (temp) < seedlen) do

2.1 V=(V+ 1) mod 2°“",

2.2 output block = Block_Encrypt (Key, V).
2.3 temp = temp || ouput block.

temp = Leftmost seedlen bits of temp.

temp = temp @ provided_data.

Key = Leftmost keylen bits of temp.

V = Rightmost outlen bits of temp.

I

Return the new values of Key and V.
10.2.2.2.3 Instantiation of CTR DRBG

Notes for the instantiate tunction:

The instantiation of CTR_DRBG requires a call to the instantiate function specified in
Section 9.2: step 9 of that function calls the instantiate algorithm specified in this
section. For this DRBG. step 3 should be omitted. The values of

highest supported security strength and min length are provided in Table 3 of
Section 10.2.2.1. The contents of the internal state are provided in Section 10.2.2.2.1.

The instantiate algorithm:

Let Update be the function specified in Section 10.2.2.2.2. The output block length
(outlen). key length (keylen). seed length (seedlen) and security strengths for the block
cipher algorithms are provided in Table 3 of Section 10.2.2.1.

It a block cipher derivation function is to be used, then the Block_Cipher_df specified
in Section 9.6.3 shall be implemented using the chosen block cipher algorithm and key
size; in this case, step | below shall consist of steps 1.1 and 1.2 (i.e.. steps 1.3 to 1.5
shall not be used).

If full entropy is available whenever entropy input is required. and a block cipher
derivation function is not to be used, then step | below shall consist of steps 1.3 to 1.5
(i.e., steps 1.1 and 1.2 shall not be used).

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG:

Input:
1. entropy input: The string of bits obtained from the entropy input source.

2. nonce: A string of bits as specified in Section 8.4.2; this string shall not be
present unless a derivation function is used.

3. personalization_string: The personalization string received from the consuming
application.

Output:

1. working state: The inital values for V, Key, previous output_block and
reseed_counter (see Section 10.2.2.2.1).

Process:

1. If the block cipher derivation function is available, then
1.1 seed material = entropy_input || nonce || personalization_string.
1.2 seed material = Block_Cipher_df (seed material, seedlen).

Else Comment: If the block cipher
derivation function is not used and full
entropy is known to be available.

1.3 temp = len (personalization_string).

1.4 If (temp < seedlen), then personalization_string =
personalization_string || 0¥¢der - temp,

1.5 seed material = entropy_input ® personalization_string.
Key = (fn, Comment: keylen bits of zeros.
Y = (outen, Comment: outlen bits of zeros.
(Key, V) = Update (seed material, Key, V).

reseed counter = 1.

s D

Comment: Generate the initial block for
comparing with the 1st DRBG output block
(for continuous testing)

6. previous output block = Block_Encrypt (Key, V).

Oseedlen

7. zeros = Comment: Produce a string of seedlen

ZEeros.
8. (Key, V)= Update (zeros, Key, V).

9. Return V, Key, previous output _block and reseed counter as the
working_state.

Implementation notes:

L.

If a personalization_string will never be provided from the instantiate function and
a derivation function will be used, then step 1.1 becomes:

seed material = Block_Cipher_df (entropy _input, seedlen).

If a personalization string will never be provided from the instantiate function, a
full entropy source will be available and a derivation function will not be used, then
step 1 becomes

seed _material = entropy _input.

That is, steps 1.3 — 1.5 collapse into the above step.

10.2.2.2.4 Reseeding a CTR_DRBG Instantiation

Notes for the reseed function:

The reseeding of a CTR_DRBG instantiation requires a call to the reseed function
specified in Section 9.3; step 5 of that function calls the reseed algorithm specified in
this section. The values for min length are provided in Table 3 of Section 10.2.2.1.

The reseed algorithm:

Let Update be the function specified in Section 10.2.2.2.2. The seed length (seedlen) is
provided in Table 3 of Section 10.2.2.1.

If a block cipher derivation function is to be used, then the Block_Cipher_df specified
in Section 9.6.3 shall be implemented using the chosen block cipher algorithm and key
size; in this case, step 1 below shall consist of steps 1.1 and 1.2 (i.e., steps 1.3 to 1.5
shall not be used).

If full entropy is available whenever entropy input is required, and a block cipher
derivation function is not to be used, then step 1 below shall consist of steps 1.3 to 1.5
(i.e., steps 1.1 and 1.2 shall not be used).

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 of Section 9.3):

Input:

1. working state: The current values for V, Key, previous_output_block and
reseed _counter (see Section 10.2.2.2.1).

2. entropy input: The string of bits obtained from the entropy input source.

3. additional input: The additional input string received from the consuming
application.

Output:

1. working state: The new values for V, Key, previous_output_block and
reseed counter.

Process:
1. If the block cipher derivation function is available, then
1.1 seed material = entropy_input || additional_input.
1.2 seed material = Block_Cipher_df (seed_material, seedlen).

Else Comment: The block cipher derivation
function is not used because full
entropy is known to be available.

1.3 temp = len (additional_input).

1.4 If (temp < seedlen), then additional input = additional _input || eedlen -

temp

1.5 seed material = entropy input @ additional_input.
2. (Key, V) = Update (seed_material, Key, V).
3. reseed counter = 1.

4. Return V, Key, previous output_block and reseed counter as the
working state.

Implementation notes:

1. If additional input will never be provided from the reseed function and a
derivation function will be used, then step 1.1 becomes:

seed material = Block_Cipher_df (entropy_input, seedlen).

2. If additional input will never be provided from the reseed function, a full entropy
source will be available and a derivation function will not be used, then step 1
becomes

seed material = entropy_input.

That is, steps 1.3 — 1.5 collapse into the above step.
10.2.2.2,5 Generating Pseudorandom Bits Using CTR_DRBG

Notes for the generate function:

The generation of pseudorandom bits using a CTR_DRBG instantiation requires a call
to the generate function specified in Section 9.4, step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number of bits_per request and outlen are provided in Table 3 of Section
10.2.2.1. If the derivation function is not used, then the maximum allowed length of
additional _input = seedlen.

Let Update be the function specified in Section 10.2.2.2.2. The seed length (seedlen)
and the value of reseed interval are provided in Table 3 of Section 10.2.2.1. Step 5.2
below uses the selected block cipher algorithm. If a derivation function is not used for
a DRBG implementation, then step 3.2 shall be omitted.

If a block cipher derivation function is to be used, then the Block_Cipher_df specified
in Section 9.6.3 shall be implemented using the chosen block cipher algorithm and key
size; in this case, step 3.2 below shall be included.

If full entropy is available whenever entropy input is required, and a block cipher
derivation function is not to be used, then step 3.2 below shall not be used.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of Section 9.4):

Input:

1. working state: The current values for V, Key, previous_output_block and
reseed_counter (see Section 10.2.2.2.1).

2. requested number of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional_input: The additional input string received from the consuming
application. If additional_input will never be provided, then step 3 may be
omitted.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, an ERROR or indicate that a reseed is required before the
requested pseudorandom bits can be generated.

2. returned bits: The pseudorandom bits returned to the generate function.

3. working state: The new values for V, Key, previous_output_block and

reseed_counter.

Process:
1. If reseed counter > reseed interval, then return an indication that a reseed is
required.
2. Vold=V.
3. If (additional input # Null), then
Comment: If the length of the additional input
is > seedlen, derive seedlen bits.
3.1 temp =len (additional input).
Comment: If a block cipher derivation
function is used:
3.2 If (temp > seedlen), then additional_input = Block_Cipher_df
(additional_input, seedlen).
Comment: If the length of the
additional_input is < seedlen, pad with zeros
to seedlen bits.
3.3 If (temp < seedlen), then additional_input = additional_input || Qseedlen -
temp
3.4 (Key, V) = Update (additional_input, Key, V).
4. temp = Null.
5. While (len (tfemp) < requested_number_of bits) do:

5.1 V=(V+1)mod 2%
5.2 output block=Block_Encrypt (Key, V).

Comment: Continuous test: Check that the old
and new output blocks are different.

8.
9.

5.3 If (output _block = previous_output_block), then return an ERROR.
5.4 previous_output_block = output_block.

5.5 temp = temp || ouput_block.

returned_bits = Leftmost requested_number_of bits of temp.

Comment: Update for backtracking
resistance.

gseedlen. Comment: Produce a string of seedlen

Z€1ro8s.

(Key, V) = Update (zeros, Key old, V_old).

Zeros =

reseed counter = reseed counter + 1.

10. Return SUCCESS and returned _bits; also return Key, V,

previous_output_block and reseed_counter as the new working_state.

10.3 Deterministic RBG Based on Number Theoretic Problems
10.3.1 Discussion

A DRBG can be designed to take advantage of number theoretic problems (e.g., the
discrete logarithm problem). If done correctly, such a generator’s properties of
randomness and/or unpredictability will be assured by the difficulty of finding a solution
to that problem. Section 10.3.2 specifies a DRBG based on the elliptic curve discrete
logarithm problem.

10.3.2 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)
10.3.2.1 Discussion

The Dual_EC_DRBG is based on the following hard problem, sometimes known as the
“eclliptic curve discrete logarithm problem” (ECDLP): given points P and Q on an elliptic

curve of order », find a such that O = aP.

Dual EC_DRBG uses a seed that is m bits in length (i.¢., seedlen = m) to initiate the
generation of outlen-bit pseudorandom strings by performing scalar multiplications on
two points in an elliptic curve group, where the curve is defined over a field
approximately 2" in size. For all of the NIST curves given in this Standard for the

DRBG, m > 224. Figure 11 depicts the Dual EC_DRBG.

seed =

r Extract

O & B ol *) Ry

[Optional]
additional input 3@_} 1 1 i
0 P Q Pseudorandom

Bits

¥ additimal inpart = Bl

Figure 11: Dual_EC_DRBG

The instantiation of this DRBG requires the selection of an appropriate elliptic curve and
curve points specified in Annex A.1 for the desired security strength. Requirements for
the seed are provided in Section 8.4.2.

Backtracking resistance is inherent in the

algorithm, even if the internal state is
compromised. As shown in Figure 12,] =
Dual EC_DRBG generates a seedlen-bit \ S }7 S M1 8 ’——
number for each step i = 1,2,3,..., as follows: _— —

Si= @(x(Si-1 *P)) I

Figure 12: Dual_EC_DRBG (...)

Ri=o(x(Si *Q)).
Each arrow in the figure represents an Elliptic Curve scalar multiplication operation,
followed by the extraction of the x coordinate for the resulting point and for the random
output R; and by truncation to produce the output (formal definitions for ¢ and x are
given in Section 10.3.2.2.4). Following a line in the direction of the arrow is the normal
operation; inverting the direction implies the ability to solve the ECDLP for that specific
curve. An adversary’s ability to invert an arrow in the figure implies that the adversary
has solved the ECDLP for that specific elliptic curve. Backtracking resistence is built
into the design, as knowledge of S; does not allow an adversary to determine Sy (and so
forth) unless the adversary is able to solve the ECDLP for that specific curve. In
addition, knowledge of R does not allow an adversary to determine S} (and so forth)
unless the adversary is able to solve the ECDLP for that specific curve.

Table 4 specifies the values that shall be used for the envelope and algorithm for each
curve. Complete specifications for each curve are provided in Annex A.1. Note that all
curves except the P-224 curve can be instantiated at a security strength lower than its
highest possible security strength. For example, the highest security strength that can be
supported by curve P-384 is 192 bits; however, this curve can alternatively be instantiated
to support only the 112 or 128-bit security strengths).

Table 4: Definitions for the Dual_EC_DRBG

P-224 P-256 P-384 P-521
Supported security strengths See SP 800-57
highest_supported See SP 800-57
security _strength
Output block length (max_outlen = 208 240 368 504
largest multiple of 8 less than
seedlen - (13 + log, (the cofactor))
Required minimum entropy for security strength
instantiate and reseed
Minimum entropy input length 224 256 384 528
(min_length =8 x [seedlen/81)
Maximum entropy input length < 2" bits
(max _length)
Maximum personalization string < 2" bits
length
(max_personalization_string_length)
Supported security strengths See SP 800-57
Seed length (seedlen = m) 224 256 384 521

P-224 P-256 P-384 P-521
Appropriate hash functions SHA-1, SHA-224, SHA-256, | SHA-224, | SHA-256,
SHA-384, SHA-512 SHA-256, | SHA-384,
SHA-384, | SHA-512
SHA-512
max_number_of bits_per request max_outlen x reseed_interval
Number of blocks between < 2*? blocks
reseeding (reseed_interval)

Validation and Operational testing are discussed in Section 11. Detected errors shall
result in a transition to the error state.

10.3.2.2 Specifications

10.3.2.2.1 Dual_EC_DRBG Internal State

The internal state for Dual EC_DRBG consists of:
1. The working state:
A value (s) that determines the current position on the curve.

The elliptic curve domain parameters (seedlen, p, a, b, n), where seedlen is
the length of the seed ; a and b are two field elements that define the equation
of the curve, and 7 is the order of the point G. If only one curve will be used
by an implementation, these parameters need not be present in the

working state.

c. Two points P and Q on the curve; the generating point G specitied in FIPS
186-3 for the chosen curve will be used as P. If only one curve will be used by
an implementation, these points need not be present in the working_state.

d. r old, the previous output block.

e. A counter (block counter) that indicates the number of blocks of random
produced by the Dual_EC_DRBG since the initial seeding or the previous
reseeding.

2. Administrative information:
a. The security strength provided by the instance of the DRBG,

b. A prediction_resistance_flag that indicates whether prediction resistance is
required by the DRBG.

The value of s is the critical value of the internal state upon which the security of this
DRBG depends (i.e., s is the “secret value” of the internal state).

10.3.2.2.2 Instantiation of Dual_EC_DRBG

Notes for the instantiate function:

The instantiation of Dual EC_DRBG requires a call to the instantiate function
specified in Section 9.2; step 9 of that function calls the instantiate algorithm in this
section.

In step 5 of the instantiate function, the following step shall be performed to select an
appropriate curve if multiple curves are available.

5. Using the security_strength and Table 4 in Section 10.3.2.1, select the
smallest available curve that has a security strength > security_strength.

The values for seedlen, p, a, b, n, P, Q are determined by that curve.

It is recommended that the default values be used for P and Q as given in Annex A.1.
However, an implementation may use different pairs of points, provided that they are
verifiably random, as evidenced by the use of the procedure specified in Annex A2.1
and the self-test procedure described in Annex A.2.2.

The values for highest supported security strength and min_length are determined
by the selected curve (see Table 4 in Section 10.3.2.1).

The instantiate algorithm :

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 4 in Section 10.3.2.1. Let seedlen be the
appropriate value from Table 4.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 9 of Section 9.2):

Input:
1. entropy input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.4.2.

3. personalization_string: The personalization string received from the
consuming application.

Output:

1. s: The initial secret value for the working_state.

2. r old: The initial output block (which will not be used).

3. block counter: The initialized block counter for reseeding.
Process:

1. seed material = entropy input || nonce || personalization_string.

Comment: Use a hash function to ensure
that the entropy is distributed throughout the
bits, and s is m (i.e., seedlen) bits in length.

2. s=Hash_df (seed material, seedlen).

Comment: Generate the initial block for
comparing with the 1st DRBG output block
(for continuous testing).

3. r old=o(x(s *Q)). Comment: 7 is a seedlen-bit number.
4. block_counter = 0.

5. Returns, r old and block counter for the working_state.
10.3.2.2.3 Reseeding of a Dual_EC_DRBG Instantiation

Notes for the reseed function:

The reseed of Dual_ EC_DRBG requires a call to the reseed function specified in
Section 9.3; step 5 of that function calls the reseed algorithm in this section. The
values for min _length are provided in Table 4 of Section 10.3.2.1.

The reseed algorithm :

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 4 in Section 10.3.2.1.

The following process or its equivalent shall be used to reseed the Dual EC_DRBG
process after it has been instantiated (see step 4 in Section 9.3):

Input:
1. s: The current value of the secret parameter in the working_state.
2. entropy_input: The string of bits obtained from the entropy input source.

3. additional input: The additional input string received from the consuming
application.

Output:
1. s: The new value of the secret parameter in the working_state.
2. block counter: The re-initialized block counter for reseeding.
Process:

Comment: pad8 returns a copy of s padded
on the right with binary 0’s, if necessary, to
a multiple of 8.

1. seed material = pad8 (s) || entropy_input || additional _input_string.
2. s=Hash_df (seed material, seedlen).

3. block counter = 0.

4, Return s and block counter for the new working_state.

Implementation notes:

If an implementation never allows additional_input, then step 1 may be modified as
follows :

seed material = pad8 (s) || entropy_input.
10.3.2.2.4 Generating Pseudorandom Bits Using Dual_EC_DRBG

Notes for the generate function:

The generation of pseudorandom bits using a Dual_EC_DRBG instantiation requires
a call to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number_of bits_per request and max_outlen are provided in Table 4 of Section
10.3.2.1. outlen is the number of pseudorandom bits taken from each x-coordinate as
the Dual_ EC_DRBG steps. For performance reasons, the value of outlen should be
set to the maximum value as provided in Table 5. However, an implementation may
set outlen to any multiple of 8 bits less than or equal to max_outlen. The bits that
become the Dual EC_DRBG output are always the rightmost bits, i.e., the least
significant bits of the x-coordinates.

The generate algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 4 in Section 10.3.2.1. The value of
reseed_interval is also provided in Table 4.

The following are used by the generate algorithm:

a. pads8 (bitstring) returns a copy of the bitstring padded on the right with binary
0’s, if necessary, to a multiple of 8.

b. Truncate (bitstring, in_len, out_len) inputs a bitstring of in_len bits, returning
a string consisting of the leftmost out len bits of bitstring. 1fin len <
out len, the bitstring is padded on the right with (out_len - in_len) zeroes, and
the result is returned.

c. x(A) is the x-coordinate of the point 4 on the curve, given in affine
coordinates. An implementation may choose to represent points internally
using other coordinate systems; for instance, when efficiency is a primary
concern. In this case, a point shall be translated back to affine coordinates
before x() is applied.

d. ¢ (x) maps field elements to non-negative integers, taking the bit vector
representation of a field element and interpreting it as the binary expansion of
an integer.

The precise definition of @(x) used in steps 6 and 7 below depends on the field
representation of the curve points. In keeping with the convention of FIPS
186-2, the following elements will be associated with each other (note that m
= seedlen):

B: cmillemall ... llcilico , abitstring, with ¢, being leftmost
Z ep2™ 4 Fe2t + e+ ¢ € Z;

Fa: 2™ + .. +c2% + ci2'+ ¢g modp € GF(p) ;

c.

Thus, any field element x of the form Fa will be converted to the integer Z or
bitstring B, and vice versa, as appropriate.

* is the symbol representing scalar multiplication of a point on the curve.

The following process or its equivalent shall be used to generate pseudorandom bits
(see step 8 in Section 9.4):

Input:
1.

working state: The current values for s, seedlen, p, a, b, n, P, O, r_old and
reseed counter (see Section 10.1.3.2.1).

requested_number of bits: The number of pseudorandom bits to be returned
to the generate function.

additional_input: The additional input string received from the consuming
application.

Output:

1.

& ¥ P

status: The status returned from the function. The status will indicate
SUCCESS, ERROR or an indication that a reseed is required before the
requested pseudorandom bits can be generated.

returned_bits: The pseudorandom bits to be returned to the generate function.
s: The new value for the secret parameter in the working_state.
r_old: The last output block.

block counter: The updated block counter for reseeding.

Process:

L If (block_counter +[

Comment: Check whether a reseed is
required.

requested _number _of _bits

>reseed_interval,
outlen

then return an indication that a reseed is required.

Comment: If additional_input is Null, set to
seedlen zeroes; otherwise, Hash_df to
seedlen bits.

If (additional _input string = Null), then additional_input =0
Else additional input = Hash_df (pad8 (additional_input_string), seedlen).

Comment: Produce requested no_of bits,
outlen bits at a time:

temp = the Null string.
i=0.

5. t=1s @ additional_input. Comment: ¢ is to be interpreted as a seedlen-

bit unsigned integer. To be precise, ¢ should
be reduced mod #; the operation * will effect

this.
s = o(x(t * P)). Comment: s is a seedlen-bit number.
r =o(x(s *Q)). Comment: is a seedlen-bit number.

Comment: Continuous test — Compare the
old and new output blocks to assure that
they are different.

8. If (r =r_old), then return an ERROR.

10.
11.

12.
13.
14.

15

16.

r old=r.
temp = temp || (rightmost outlen bits of r).

additional _input=0 Comment: seedlen zeroes;
additional_input_string is added only on the
first iteration.

block counter = block_counter + 1.

i=i+1.

If (len (temp) < requested_number_of bits), then go to step SH
returned_bits = Truncate (temp, i x outlen, requested_number_of bits).

Return SUCCESS, returned_bits, and s, r_old and block_counter for the
working state.

