[’ve provided the modified Dual_EC_DRBG section below. The gray highlight is used to
remind me that | may have to modify that text, depending on what happens in the rest of
the document, e.g., figure numbers change.

FIPS 140-2 (Section 4.9.2) has the following statements :

Continuous random number generator test, 1f a cryptographic module employs
Approved or non-Approved RNGs in an Approved mode of operation, the module
shall perform the following continuous random number generator test on each RNG
that tests for failure to a constant value.

1. If each call to a RNG produces blocks of # bits (where n > 15), the first »-bit
block generated after power-up, initialization, or reset shall not be used, but shall
be saved for comparison with the next n-bit block to be generated. Each
subsequent generation of an n-bit block shall be compared with the previously
generated block. The test shall fail if any two compared #-bit blocks are equal.

2. If each call to a RNG produces fewer than 16 bits, the first # bits generated after
power-up, initialization, or reset (for some # > [3) shall not be used, but shall be
saved for comparison with the next n generated bits. Each subsequent generation
of # bits shall be compared with the previously generated » bits. The test fails if

any two compared s-bit sequences are equal.

I’'m assuming that case 1 applies to us. | tried to address this in the previous version, but
goofed. [’ve made the text in the routines below red where 1 think I’ve addressed this
situation. Does it look OK?

["ve done the following:

a. Added a new value to the internal state (+_old) to hold the 1*/previous output
block).

b. In the instantiate algorithm (10.3.2.2.2), I used the ¢(x(s * Q)) function to
generate the 1™ value of r (that won’t actually be output).

c. Inthe generate algorithm (10.3.2.2.4), the old and new values of » are compared.
If they match, an error is returned. [n the generate function (9.4), the error will
cause all instantiations to be emptied, under the assumption that it subsequent
values of 7 match, there is a dire problem somewhere, so disable the DRBG.

10.3 Deterministic RBGs Based on Number Theoretic Problems
10.3.1 Discussion

A DRBG can be designed to take advantage of number theoretic problems (e.g., the
discrete logarithm problem). If done correctly, such a generator’s propetties of
randomness and/or unpredictability will be assured by the difficulty of finding a solution
to that problem. Section 10.3.2 specifies a DRBG based on the elliptic curve discrete
logarithm problem.

10.3.2 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)

10.3.2.1 Discussion

Dual_EC_DRBG is based on the following hard problem, sometimes known as the
“elliptic curve discrete logarithm problem” (ECDLP): given points P and Q on an elliptic
curve of order n, find a such that O = aP.

Dual_EC_DRBG uses a seed that is m bits in length (i.c., seedlen = m) to initiate the
generation of outlen-bit pseudorandom strings by performing scalar multiplications on
two points in an elliptic curve group, where the curve is defined over a field
approximately 2" in size. For all the NIST curves given in this Standard, m > 224. Figure
15 depicts the Dual_EC_DRBG.

seed 5
Instand. or
reseed only

O-o "‘T(t*P)) s (;*Q)) et

[Optional]
additional input :@_1 !
0 P Q Pseudorandom

¥ adiifional inpart = Null Bits

Figure 15: Dual_EC_DRBG

The instantiation of this DRBG requires the selection of an appropriate elliptic curve and
curve points specified in Annex A.1 for the desired security strength. Requirements for
the seed are provided in Section 8.4.2.

Backtracking resistance is inherent in the algorithm, even if the internal state is
compromised. As shown in Figure 16, Dual_EC_DRBG generates a seedlen-bit number
for each step i = 1,2,3,..., as follows:

Si=@(x(Si *P))
Ri=o(x(Si *Q)).

Each arrow in the figure represents an Elliptic 8
Curve scalar multiplication operation, followed —

by the extraction of the x coordinate for the

resulting point and for the random output K; [

and by truncation to produce the output. l R,

Following a line in the direction of the arrow is ! —
the normal operation; inverting the direction

implies the ability to solve the ECDLP for that

specific curve. An adversary’s ability to invert Figure 16: Dual EC_DRBG (...)
an arrow in the figure implies that the adversary Backtracking Resistance
has solved the ECDLP for that specific elliptic curve. Backtracking resistence is built

into the design, as knowledge of S; does not allow an adversary to determine Sy (and so
forth) unless the adversary is able to solve the ECDLP for that specific curve. In
addition, knowledge of R, does not allow an adversary to determine S (and so forth)
unless the adversary is able to solve the ECDLP for that specific curve.

Table 5 specifies the values that shall be used for the envelope and algorithm for each
curve. Complete specifications for each curve are provided in Annex A.1. Note that all
curves except the first three can be instantiated at a security strength lower than its
highest possible security strength. For example, the highest security strength that can be
supported by curve P-384 is 192 bits; however, this curve can alternatively be instantiated
to support only the 112 or 128-bit security strengths).

Table §: Definitions for the Dual_EC_DRBG

P-224 | P-256 P-384 p-521
Supported security strengths See SP 800-57
highest_supported _ See SP 800-57
security_strength
Output block length (max_outlen = 208 240 368 504
largest multiple of 8 less than
seedlen - (13 + log, (the cofactor))
Required minimum entropy for security strength
instantiate and reseed
Minimum entropy input length 224 256 384 528
kmin _length=8 x [seedlen/8] ﬂ P [Comment [ebb1}: Page: 78

= —— Why can't this be min_entropy ?

Maximum entropy input length < 2" bits
(max _length)
Maximum personalization string < 2" bits
length
(max_personalization_string_length)
Supported security strengths See SP 800-57
Seed length (seedlen = m) 224 ‘ 256 384 521
Appropriate hash functions SHA-1, SHA-224, SHA-256, | SHA-224, | SHA-256,

SHA-384, SHA-512 SHA-256, | SHA-384,

SHA-384, | SHA-512
SHA-512

max_number_of bits_per_request max_outlen x reseed _interval

Validation and Operational testing are discussed in Section 11. Detected errors shall
result in a transition to the error state.

10.3.2.2 Specifications

10.3.2.2.1 Dual_EC_DRBG Internal State and Other Specification Details

The internal state for Dual EC_DRBG consists of:
1. The working state: .
A value () that determines the current position on the curve.

The elliptic curve domain parameters (seedlen, p, a, b, n), where seedfen is
the length of the seed ; @ and b are two field elements that define the equation
of the curve, and » is the order of the point G. If only one curve will be used
by an implementation, these parameters need not be present in the
working_state.

c. Two points P and Q on the curve; the generating point G specified in FIPS
186-3 for the chosen curve will be used as P. If only one curve will be used by
an implementation, these points need not be present in the working_state.

d. r old, the previous output block.

e. A counter (block counter) that indicates the number of blocks of random
produced by the Dual_EC_DRBG since the initial seeding or the previous
reseeding.

2. Administrative information:
a. The security strength provided by the instance of the DRBG,

b. A prediction resistance_flag that indicates whether prediction resistance is
required by the DRBG, and

The value of s is the critical value of the internal state upon which the security of this
DRBG depends (i.e., s is the “secret value” of the internal state).

10.3.2.2.2 Instantiation of Dual_EC_DRBG

Notes for the instantiate function:

The instantiation of Dual_EC_DRBG requires a call to the instantiate function
specified in Section 9.2; step 9 of that function calls the instantiate algorithm in this
section.

In step 5 of the instantiate function, the following step shall be performed to select an
appropriate curve if multiple curves are available.

5. Using the security_strength and Table § in Section 10.3.2.1, select the
smallest available curve that has a security strength > security strength.

The values for seedlen, p, a, b, n, P, Q are determined by that curve.

It is recommended that the default values be used for P and Q as given in Annex A.1.
However, an implementation may use different pairs of points, provided that they are
verifiably random, as evidenced by the use of the procedure specified in Annex A2.1
and the self-test procedure described in Annex A.2.2.

The values for highest_supported_security_strength and min_length are determined
by the selected curve (see Table § in Section 10.3.2.1).

The instantiate algorithm :

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 5 in Section 10.3.2.1. Let seedlen be the
appropriate value from Table 5.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 9 of Section 9.2):

Input:
1. entropy input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.4.

3. personalization_string: The personalization string received from the
consuming application.

Output:

1. s: The initial secret value for the working_state.

2. block counter: The initialized block counter for reseeding.
Process:

1. seed material = entropy input || nonce || personalization_string.

Comment: Use a hash function to ensure
that the entropy is distributed throughout the
bits, and s is m (i.e., seedlen) bits in length.

2. s= Hash_df (seed material, seedlen).

Comment: Generate the initial block for
comparing with the 1st DRBG output block
(for continuous testing).

b. r_old = @(x(s *Q)). Comment: r is a seedlen-bit number. .| Comment [ebb2]: Page: 1
- Is this suitable to use to compare withe the next
4. block counter =0. value of r used by the generate function for

continuous testing of the output blocks ?

5. Returns. i old and block counter for the working_state.

Implementation notes:

If an implementation never uses a personalization_string, then steps 1 and 2 may be
combined as follows :

s = Hash_df (entropy_input, seedlen).

10.3.2.2.3 Reseeding of a Dual_EC_DRBG Instantiation Comment [ebb3]: Page: 82
Need to add steps to perform the

) i £
Notes for the reseed function: £ confinuous z,tes

The reseed of Dual_ EC_DRBG requires a call to the reseed function specified in
Section 9.3; step 5 of that function calls the reseed algorithm in this section. The
values for min _length are provided in Table 5 of Section 10.3.2.1.

The reseed algorithm :

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table § in Section 10.3.2.1.

The following process or its equivalent shall be used to reseed the Dual_ EC_DRBG
process after it has been instantiated (see step § in Section 9.3):

Input:
1. s: The current value of the secret parameter in the working_state.
2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application.

Output:
1. status: The status returned from the reseed function.
2. s: The new value of the secret parameter in the working_state.
3. block counter: The re-initialized block counter for reseeding,
Process:

Comment: pad8 returns a copy of s padded
on the right with binary 0’s, if necessary, to
a multiple of 8.

1. seed material = pad8 (s) || entropy_input || additional_input_string.
2. s=Hash_df (seed material, seedlen).

3. block counter=0.

4, Return s and block_counter for the new working_state.

Implementation notes:

If an implementation never allows additional_input, then step 1 may be modified as
follows :

seed_material = pad8 (s) || entropy_input.
10.3.2.2.4 Generating Pseudorandom Bits Using Dual_EC_DRBG

Notes for the generate function:

The generation of pseudorandom bits using a Dual EC_DRBG instantiation requires
a call to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max number of bits per request and max_outlen are provided in Table $ of Section
10.3.2.1. outlen is the number of pseudorandom bits taken from each x-coordinate as

the Dual_EC_DRBG steps. For performance reasons, the value of outlen should be
set to the maximum value as provided in Table 5. However, an implementation may
set outlen to any multiple of 8 bits less than or equal to max_outlen. The bits that
become the Dual_EC_DRBG output are always the rightmost bits, i.e., the least
significant bits of the x-coordinates.

The generate algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 5 in Section 10.3.2.1. The value of
reseed_interval is also provided in Table §.

The following are used by the generate algorithm:

a. pad8 (bitstring) returns a copy of the bitstring padded on the right with binary
0’s, if necessary, to a multiple of 8.

b. Truncate (bitstring, in len, out_len) inputs a bitstring of in_len bits, returning
a string consisting of the leftmost out_len bits of bitstring. If in_len <
out len, the bitstring is padded on the right with (out_len - in_len) zeroes, and
the result is returned.

c. x(A) is the x-coordinate of the point 4 on the curve.

d. ¢ (x) maps field elements to non-negative integers, taking the bit vector
representation of a field element and interpreting it as the binary expansion of
an integer. Section 10.3.2.2.4 has the details of this mapping.

The precise definition of ¢(x) used in steps 6 and 7 below depends on the field
representation of the curve points. In keeping with the convention of FIPS
186-2, the following elements will be associated with each other (note that m
= seedlen):

B: |CyilCmal -« |€i|col| , abitstring, with c,., being lefimost
Zo 2™ b2 et e e Z;
Fa: ey 2™ + .. 422 + c2'+ co modp € GF(p) ;

Thus, any field element x of the form Fa will be converted to the integer Z
or bitstring B, and vice versa, as appropriate.

e. *is the symbol representing scalar multiplication of a point on the curve.

The following process or its equivalent shall be used to generate pseudorandom bits
(see step 8 in Section 9.4): '

Input:

1. working state: The current values for s, seedlen, p, a b, n, P, Q,r oldand
reseed counter (see Section 10.1.3.2.1).

2. requested _number of bits: The number of pseudorandom bits to be returned
to the generate functione.

3. additional_input: The additional input string received from the consuming

application.
Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, ERROR or an indication that a reseed is required before the
requested pseudorandom bits can be generated.

2. returned bits: The pseudorandom bits to be returned to the generate function.

3. s: The new value for the secret parameter in the working_state.

4. block_counter: The updated block counter for reseeding.

Process:
Comment: Check whether a reseed is
required.

1. If | block _counter + {requested ommber of blts.\ >reseed_interval,

) outlen
then return an indication that a reseed is required.
Comment: If additional input is Null, set to
seedlen zeroes; otherwise, Hash_df to
seedlen bits.

2. If (additional input string = Null), then additional_input =0
Else additional input = Hash_df (pad8 (additional_input_string), seedlen).

Comment: Produce requested no of bits,
outlen bits at a time:

3. temp = the Null string.

4 i=0.

5. t =5 @ additional_input.

6. s =0o(x(t *P)). Comment: ¢ is to be interpreted as a seedlen-
bit unsigned integer. To be precise, ¢ should
be reduced mod n; the operation * will effect
this. s is a seedlen-bit number.

7. r =o(x(s *Q)). Comment: r is a seedlen-bit number.
Comment: Continuous test — Compare the
old and new output blocks to assure that
they are different.

8. If(r=r old), then return an ERROR.

9. r old=r.

10. temp = temp || (rightmost outlen bits of r).

11.

12.
13.
14.

15

16.

additional_input=0 Comment: seedlen zeroes;
additional_input_string is added only on the
first iteration.

block counter = block_counter + 1.
i=i+1.
If (len (femp) < requested_number_of bits), then go to step 6.

returned bits = Truneate (temp, i x outlen, requested_number_of bits).

Return SUCCESS, returned_bits, and s and block_counter for the
working_state.

