G.4 DRBGs Based on Hard Problems

The Dual EC_DRBG generates pseudorandom outputs by extracting bits from elliptic
curve points. The secret, internal state of the DRBG is a value S that is the x-coordinate
of a point on an elliptic curve. Outputs are produced by first computing R to be the x-
coordinate of the point S*P and then extracting low order bits from the x-coordinate of
the elliptic curve point R*Q.

Security. The sccurity of Dual_ EC_DRBG is based on the so-called "Elliptic Curve
Discrete Logarithm Problem" that has no known attacks better than the so-called "meet-
in-the-middle" attacks. For an elliptic curve defined over a field of size 2", the work
factor of these attacks is approximately 2™? 50 that solving this problem is
computationally infeasible for the curves in this document. The Dual EC_DRBG is the
only DRBG in this document whose security is related to a hard problem in Number
Theory.

Constraints. For any one of the three elliptic curves, a particular instance of
Dual EC DRBG may generate at most 2 2 output blocks before reseeding. Since the
sequence of output blocks are expected to cycle in approximately sqrt(n) bits (where n is
the (prime) order of the particular elliptic curve being used), this is quite a conservative
reseed interval for any one of the there possible curves.

Performance. Due to the elliptic curve arithmetic involved in this DRBG, this algorithm
generates pseudorandom bits more slowly than the other DRBGS in this document. It
should be noted, however, that the design of this algorithm allows for certain
performance-enhancing possibilities. First, note that the use of fixed base points allows
one to substantially increase the performance of this DRBG via the use of tables. By
storing multiples of the points P and Q, the elliptic curve multiplication can be
accomplished via point additions rather than multiplications, a much less expensive
operation. In more constrained environments when table storage is not an option, the use
of so-called Montgomery Coordinates of the form (X : Z) can be used as a method to
increase performance since the y-coordinates of the computed points are not required. A
given implementation of this DRBG need not include all three of the NIST-approved
curves. Once the designer decides upon the strength required by a given application, he
can then choose to implement the single curve that most appropriately meets this
requirement. For a common level of optimization expended, the higher strength curves
will be slower and tend toward less efficient use of output blocks. To mitigate the latter,
the designer should be aware that every distinct request for random bits, whether for two
million bits or a single bit, requires the computational expense of at least two elliptic
curve point multiplications. Applications requiring large blocks of random bits (such as
IKE or SSL), can thus be implemented most efficiently by first making a single call to the
DRBG for all the required bits and then appropriately partitioning these bits as required
by the protocol. For applications that already have hardware or software support for
elliptic curve arithmetic, this DRBG is a natural choice as it allows the designer to utilize
existing capabilities to generate truly high-security random numbers.

Resources. Any entropy input source may be used with Dual EC_DRBG, provided that
it is capable of generating at least seedlen bits. This DRBG also requires an appropriate
hash function (see Table 4) that is used exclusively for producing an appropriately-sized
initial state from the entropy input at instantiation or reseeding. An implementation of
this DRBG must also have enough storage for the internal state (see 10.3.1.1). Some
optimizations require additional storage for moderate to large tables of pre-computed
values.

Algorithm Choices. The choice of appropriate elliptic curves and points used by
Dual EC_DRBG is discussed in Appendix A.1.

Below are Table 4 from Section 10.3.1, and the example in Appendix F.5. I have some
questions,

1. In the table, which entries are required for the curve to work properly, and which
entries are really dependent on the requested security strength during instantiation?
For example, if a consuming application requests instantiation at the 112-bit security
level, theoretically, any curve could be used. If it is determined that the P-256 curve
will be used in this case, do all the values in the P-256 column need to be used, or can
lesser values be used in some cases.

a. Can the min_length, for example, be reduced to 224? Why is the min_length
about twice the minimum entropy anyway? To give a big security cushion?

b. Can the seedlen be 224, as it was for the P-224 curve, or must it be 2567
c. Can the max_outlen be 208, or must it be 2407

These same questions apply if any curve is used to support a security strength < the
max. that it can support?

2. Please check the blue text that is highlighted in gray. Does it make sense?

Table 4: Definitions for the Dual_EC_DRBG

P-384 P-521
2224
P-256
See SP 800-57

Supported security strengths
highest_supported See SP 800-57
security_strength
Qutput block length (rmax_outlen = 208 368 504
largest multiple of 8 less than 240
seedlen - (13 + log, (the cofactor))
Required minimum entropy for security _strength
instantiate and reseed
Minimum entropy input length 224 384 528
(min_length = 8 x [seedlen/8) 256
Maximum entropy input length < 2" bits
(max _length)
Maximum personalization string < 2" bits
length
(max_personalization_string_length)
Supported security strengths See SP 800-57
Seed length (seedlen = m) 224 384 521

256

P-384 P-521
2224
P-256
Appropriate hash functions SHA-1, SHA- | SHA-224, SHA- SHA-256,
224, SHA-256, | 256, SHA-384, SHA-384,
SHA-384, SHA- | SHA-512 SHA-512
512
max_number_of bits_per_request max_outlen x reseed_interval
Number of blocks between < 2% blocks
reseeding (reseed_interval)

‘ The-generate function-is-the same-as-that provided-in-Annex-E.3.5.
F.5 Dual_EC_DRBG Example

This example of Dual_EC_DRBG allows a consuming application to instantiate using
any of the threetour prime curves, The elliptic curve to be used is selected during
instantiation in accordance with the following:

requested. instantiation_security_strength | Elliptie Curve

113128
129—=192
193 - 256

A reseed capability is available, but prediction resistance is not available. Both a
personalization_string and an additional_input are allowed. A total of 10 internal states
are provided. For this implementation, the algorithms are provided as inline code within
the functions.

The nonce for instantiation (instantiation nonce) consists of a random value with
security strength/2 bits of entropy; the nonce is obtained by a separate call to the
Get_entropy_input routine than that used to obtain the entropy input itself.

The internal state contains values for s, seedlen, p, a, b, n, P, O, +—eld; and
security strength. In accordance with Table 4 in Section 10.3.1, security strengths of 112,
128, 192 and 256 may be supported. SHA-256 has been selected as the hash function.

The following definitions are applicable for the instantiate, reseed and generate functions:

1. highest supported _security strength = 256.
2. Output block length (outlen): See Table 4.

3. Required minimum entropy for the entropy input at instantiation and reseed =
security strength.

Minimum entropy input length (min length): See Table 4.

5. Maximum entropy input length (max length) = 1000 bits.

Maximum petrsonalization string length (max_personalization_string_length)
= 800 bits.

Maximum additional input length (max_additional input length) = 800 bits.

8. Seed length (seedlen): See Table 4.

9.

Maximum number of bits per request (max number _of bits per request) =
1000 bits.

10. Reseed interval (reseed interval) = 10;0002** blocks.
F.5.1 Instantiation of Dual_EC_DRBG

This implementation will return a text message and an invalid state handle (-1) when an
ERROR is encountered. Hash_df is specified in Section 10.4.1.

Instantiate Dual EC_DRBG (...):

Input: integer (requested_instantiation security_strength), bitstring

personalization_string.

Output;: string status, integer state handle.

Process:
Comment : Check the validity of the input
parameters.
1. If (requested instantiation security strength > 256) then Return (“Invalid
requested_instantiation_security strength”, -1).
2. If (len (personalization string) > 800), then Return (“personalization_string
too long”, -1).
Comment : Select the prime field curve in
accordance with the
requested instantiation security strength
3. Ifrequested instantiation security_strength < 112), then

{security_strength=112; seedlen=256; outlen=240;
min_entropy_input len =256}
Else if (requested instantiation security strength < 128), then

{security_strength=128; seedlen =256; outlen = 240;
min_entropy input len =256}

Else if (requested_instantiation_security strength <192), then

{security_strength = 192;, seedlen = 384; outlen = 368;
min_entropy input len =384}

Else {security_strength =256;, seedlen = 521; outlen = 504;
min_entropy input len=528}.

4, Select the appropriate elliptic curve from Appendix A using the Table in
Appendix F.5 to obtain the domain parameters p, a, b, n, P, and Q.

Comment: Request entropy input.

5. (status, entropy input) = Get_entropy_input (security_strength,
min_entropy_input length, 1000).

6. If (status # “Success”), then Return (“Eaiture-indieationreturned
byCatastrophic failure of the entropy input source:” || status, -1).

7. (status, instantiation_nonce) = Get_entropy_input (security strength/2,
security_strength/2, 1000).

8. If (status # “Success”), then Return (“Catastrophic failure of Fatlure
indicationreturned-by-the random nonce source:” || status, -1).

Comment: Perform the instantiate algorithm.

9. seed_material = entropy input || instantiation_nonce ||
personalization_string.

10. s = Hash_df (seed material, seedlen).
1 l-+—old=otx—+D
12+, block counter = 0.

Comment: Find an unused internal state and
save the initial values.

1312. (status, state_handle) = Find_state_space ().
1413. If (status # “Success”), then Return (status, -1).

1514. internal_state (state_handle) = {s, seedlen, p, a, b, n, P, O, ¥—ele:
block counter, security strength}.

1615, Return (“Success”, state_handle).
F.5.2 Reseeding a Dual_EC_DRBG Instantiation

The implementation is designed to return a text message as the status when an error is
encountered.
Reseed_Dual EC_DRBG_Instantiation (...):

Input: integer state_handle, string additional input_string.

Output: string status.

Process:

Comment: Check the input parameters.

7.
8.
9.

If ((state_handle < 0) or (state_handle > 9) or (internal _state
(state_handle).security strength = 0)), then Return (“State not available for
the state_handle™).

. If (len (additional_inpuf) > 800), then Return (“Additional_input too long”).

Comment: Get the appropriate state values
for the indicated state_handle.

s = internal_state (state_handle).s, seedlen = internal_state
(state_handle).seedlen, security strength = internal_state
(state_handle).security strength.

Comment: Request new entropy input with
the appropriate entropy and bit length.

(status, entropy_input) = Get_entropy_input (security strength,
min_entropy_input_length, 1000).

If (status # “Success”), then Return (“Catastrophic failure of Failure
indicationreturned-by-the entropy source:”|| status).

Comment: Perform the reseed algorithm.
seed_material = pad8 (s) || entropy input || additional_input.
s = Hash_df (seed material, seedlen).

Comment: Update the changed values in the
state.

internal_state (state handle).s = s.
internal_state.block counter = 0.

Return (“Success™).

F.5.3 Generating Pseudorandom Bits Using Dual_EC_DRBG

The implemenation returns a Null string as the pseudorandom bits if an error is
encountered.

Dual EC_DRBG (...):

Input: integer (state_handle, requested_security_strength, requested_no_of bits),

bitstring additional _input.

Output: string status, bitstring pseudorandom_bits.

Process:
Comment: Check for an invalid
state_handle.
1. If ((state_handle < 0) or (state_handle > 9) or (internal_state (state_handle)

=0)), then Return (“State not available for the state handle”, Null).

8.
9.

Comment: Get the appropriate state
values for the indicated state handle.

s = internal_state (state_handle).s, seedlen = internal_state
(state_handle).seedlen, P = internal state (state_handle).P, O =
internal state (state_handle).Q, +—old—internal—state-(state—handie)+—otd-

block _counter = internal_state (state_handle).block_counter.

Comment: Check the rest of the input
parameters,

If (requested number_of bits > 1000), then Return (“Too many bits
requested”, Null).

If (requested security strength > security_strength), then Return (“Invalid
requested strength”, Null).

If (len (additional_input) > 800), then Return (“Additional_input too long”,
Null).

Comment: Check whether a reseed is
required.

requested _number

If (block counter +‘V oo —‘ > 19.0002°%), then

outlen

6.1 Reseed Dual EC_DRBG_Instantiation (state handle,
additional input).

6.2 If (status # “Success”), then Return (status).

6.3 s=internal_state (state_handle).s, block counter = internal state
(state_handle).block _counter.

6.4 additional_input = Null.

Comment: Execute the generate algorithm.

. If (additional input = Null) then additional _input =0

Comment: additional_input set to m zeroes.
Else additional input = Hash_df (pad8 (additional input), seedlen).

Comment: Produce requested no of bits,
outlen bits at a time:

temp = the Null string.
i=0.

10. t=s & additional_input.
11. s = @(x(t * P)).

12. r = o(x(s *Q)).

13, At — ot then-Reprn L ERROR—outputsamateh ™ ulls
Hr—eld=r

L-temp = temp || (rightmost outlen bits of r).

1614. additional_in, ut=0°ecdlen Comment: seedlen zeroes; additional input
_Inp: _Inp
is added only on the first iteration.

+715. block _counter = block counter + 1.
116 i=i+1.
1917. If (Ien (temp) <

requested no_of bits), then go to
step 10.

2018. pseudorandom_bits = Truncate (temp, i x outlen, requested_no_of bits).

Comment: Update the changed
values in the state.

2419, internal state.s = s.
23-internal_state.block counter = block_counter.

2421. Return (“Success”, pseudorandom_bits).

