8.7 Prediction Resistance and Backtracking Resistance] .| Comment [ebb1]: Page: 48
; y This section could be empty for now. However,

. e the current text indicates a possible discussion
Each of the DRBGs specified in Section 10 has been designed to provide prediction {that may not be correct right now).

resistance and backtracking resistance when observed from outside the DRBG boundary,
given that the observer does not know the seed, or any key or state values.

Figure 6 depicts the sequence of DRBG states that result from a given seed. Some subset
of bits from each state are used to generate pseudorandom bits upon request by a user.
The following discussions will use the figure to explain backtracking and prediction
resistance. Suppose that the user wants assurance that an adversary cannot determine the
pseudorandom bits produced from State,.

State,, | [State,,,| * ¢ *

Seed — State || State, | * * * State, 5 Statex_l“ Statexl

Figure 6: Sequence of DRBG States

Backtracking Resistance: When a DRBG provides backtracking resistance, an adversary
is unable to determine the bits in State, if that adversary is able to determine the bits in
any state occurring subsequent to State,. That is, if State, (or any state after State 1) is
compromised, the adversary is unable to “back up” the process to determine the bits in
State,. Each of the DRBGs in this Standard provide backtracking resistance, with the
exception of the SHA1_Hash_DRBG specified in Section 10.1.2. When observed from
within the DRBG boundary (i.c., the DRBG is observed as a glass box, and the advsersary
can get the current state (e.g., Stafex:1)), the previous states cannot be determined.
Because the SHA1_Hash_DRBG does not provide backtracking resistance, this DRBG
should not be used for new applications, only for existing applications where
interoperability is required.

Prediction Resistance: When prediction resistance is provided, an adversary is unable to
determine the bits in State, if that adversary is able to determine the bits in any state prior
to State,. That is, if State,., (or any state prior to State .,) is compromised, the adversary
is unable to generate the next bits in the process and so (ultimately) to determine the bits
in State,. Note that an adversary will normally be able to determine the next bits if
prediction resistance is not provided because of the deterministic nature of the DRBG.
When observed from within the DRBG boundary (that is, as a glass box where the
current state (e.g., State, 1) is known), prediction resistance may be provided for a DRBG
by the insertion of sufficient additional entropy prior to generating pseudorandom bits;
for example, by doing an explicit reseed. Sufficient entropy is defined as being at least
equal to the amount of entropy required for the seed used to instantiate the DRBG at the
desired security strength (i.e., min-entropy = max (128, strength); see Section 8.4, item
2). Providing the additional entropy prior to generating new pseudorandom bits (i.e.,
generating a new state) isolates the newly generated bits from prior bits generated by the
DRBG (i.c., from prior states); knowledge of previously generated bits (e.g., obtained via

a compromise) does not allow the prediction of the new bits. In this Standard, the
SHA1_Hash_DRBG has not been specified to provide prediction resistance.

Note that prediction resistance is not provided if the entropy is obtained in amounts that
are less than required to support the desired security level. Inserting insufficient
additional entropy is better than not inserting additional entropy at all, but the DRBG
cannot provide prediction resistance.

10.1.2 Hash Function DRBG using SHA-1 (SHA1_Hash_DRBG)
10.1.2.1 Discussion

This DRBG was originally specified in ANSI X9.30, Part 1. A seed is used to initialize the
instance of a generator. Note that XKey (from ANSI X9.30, Part 1) is called V' in this
specification, and XSEED is now additional_input in order to provide clarity and naming
consistency.

The SHA1_Hash_DRBG (...) shall not be used in new applications. However, it may be
used for compatibility with old applications.

l T4 ++— 1
seed A—»V
(ot Thme & i Hash Pseudo.random
reseed only Function BltS
(Opt.) additional_input
0

4
If additional_input
is Null

Figure 6: SHA1_Hash_DRBG {(...)

Figure 6 depicts the SHA1_Hash_DRBG (...). SHA1_Hash_DRBG (...) employs the
SHA-1 hash function and produces a block of pseudorandom bits using a seed (seed) that
determines the initial value of ¥ during the first iteration of the algorithm; the seed’s role is
thereafter performed by a function of the hash function’s output. Additional input
(additional input) may be provided during each iteration of SHA1_Hash_DRBG (...); the
size in bits of this input should not exceed the length of the seed, as the extra bits will be
ignored.

This DRBG may be used by applications requiring 80 bits of security, requiring 128 bits of
entropy for instantiation. The length of the seed (seedlen) for this DRBG shall be between
160 and 512 bits.

Figure 7 depicts the insertion of test input for the seed and the additional _input. The tests
shall be run on the output of the generator. Validation and operational testing are discussed in
Section 11. Detected errors shall result in a transition to the error state.

Note that the specifications for SHA1_Hash_DRBG (...) in the following sections do not
specify a method for background reseeding (see Section 9.7) or the insertion of additonal
entropy during the generation process except when pseudorandom bits are requested (see
Section 9.8). Since the use of this DRBG is not allowed for new applications, but only
only for compatibility with existing applications, these features have not been included.

h— e+ 1
seed 4@ v I
Test Input [" Hash | - Pseudorandom

13t Theie &
T Bits

reseed only

Function

(Opt.) additional_input

0 *

Test Input ———

Figure 7: SHA1_Hash_DRBG (...) with Tests

10.1.2.2 Interaction with SHA1_Hash_DRBG (...)

10.1.2.2.1 Instantiating SHA1_Hash_DRBG (...)

Prior to the first request for pseudorandom bits, the SHA1_Hash_DRBG (...) shall be
instantiated using the following call:
status = Instantiate_ SHA1 Hash_DRBG ([usage_class], requested._strength,
prediction_resistance_flag
as described in Section 9.6.1.

10.1.2.2.2 Reseeding a SHA1_Hash_DRBG (...) Instantiation

When a SHA1_Hash_DRBG (...) instantiation requires reseeding, the DRBG shall be re-
instantiated (i.c., reseeded) using the following call:

status = Reseed_SHA1_Hash_DRBG_Instantiation ([usage_class]

as described in Section 9.7.2.
10.1.2.2.3 Generating Pseudorandom Bits Using SHA1_Hash_DRBG (...)

An application may request the generation of pseudorandom bits by SHA1_Hash_DRBG
(...) using the following call:

(status, pseudorandom_bits) = SHA1_Hash_DRBG ([usage_class,]
requested no_of bits, requested_strength, additional_input_flag)

as discussed in Section 9.8.2.

10.1.2.3 Specifications
10.1.2.3.1 General

The instantiation of SHA1 Hash_DRBG (...) consists of obtaining a seed with the
appropriate amount of entropy, which is used to define the initial state of the DRBG. The
state consists of:
1. (Optional) The usage_class for the DRBG instantiation (if the DRBG is used for
multiple usage_classes, requiring multiple instantiations, then the usage class
parameter shall be present, and the implementation shall accommodate multiple

states simultancously; if the DRBG will be used for only one usage class, then the
usage_class parameter may be omitted),

The value (V) that is updated during each call to the DRBG,

The initial value (¢) for the hash function for the indicated usage_class,

The length of the seed (seedlen),

A prediction_resistance_flag that indicates whether or not prediction resistance is
required by the DRBG,

6. A counter (ctr) that indicates the number of states that have been used by the
DRBG instantiation, and

7. (Optional) A transformation of the seed using a one-way function for later
comparison with a new seed when the DRBG is reseeded; this value shall be
present if the DRBG will potentially be reseeded; it may be omitted if the DRBG
will not be reseeded.

The variables used in the description of SHA1_Hash_DRBG (...) are:
additional _input Optional additional input.
additional_input_flag A flag that indicates whether or not additional input is to be
requested (see Section 10.8.3); its values are as follows:
0 = Do not request additional input. Set
additional input = 0.
1 = Request additional input, but return 0 if no input is

available.
ctr A temporary counter value.
data The data to be hashed.

Get_entropy (128, 160, 512)
A function that acquires a string of bits from an entropy
source. 128 indicates the minimum amount of entropy to
be provided in the returned bits; 160 indicates the
minimum number of bits to be returned; 512 indicates the
maximum number of bits to be returned. See Section
9.6.2.

Get_additional_input () Returns a value for additional_input. This routine is left to
the implementer. See Section 9.8.3.

i A temporary value used as a loop counter.

m The number of iterations of the hash function that are
required to generate the requested number of
pseudorandom bits.

M The padded data to be hashed.

max_updates The maximum number of updates of ¥ for the DRBG.
old_seedlen The seedlen from the previous instantiation.
old_transformed_seed The transformed_seed from the previous instantiation
old V The value of ¥ from the previous instantiation.

prediction_resistance_flag A flag indicating whether or not prediction resistance is
required by the instantiation. prediction_resistance flag =
1 =yes, 0 =no.

pseudorandom_bits The string of pseudorandom bits that are generated during
a single “call” to the SHA1_Hash_DRBG (...) process.

requested_no_of bits The number of bits requested from the DRBG.

requested_strength The requested security strength for the pseudorandom bits
obtained from the DRBG.

returned_bits The 160-bit value that is generated at each iteration of the
hash function.

seed_material The seed for this instance of the SHA1_Hash_DRBG(...).

seedlen The length of the seed.

state The state of SHA1 Hash_DRBG (...) that is carried

between calls to the DRBG. In the following
specifications, the entire state is defined as
{[usage _class, | V, t, seedlen, prediction_resistance flag,
ctr |, transformed _seed]}. A particular element of the
state is specified as state.element, €.g., state. V.
status The status returned from a function call, where status =
“Success” or an indication of a failure. Failure messages
are:
Invalid requested_strength.
Failure indication returned by the entropy source.
State not available for the indicated usage_class.
Entropy source failure.
Invalid additional_input_flag value.
Failure from request for additional input.
. additional_input too large.
! The initial value of the hash function. See Annex E.
temp A temporary value.
transformed _seed A one-way transformation of the seed for the
SHA1 Hash_DRBG(...) instance.
usage_class The purpose(s) of a DRBG instance.
14 A value that is initially derived from the seed, but assumes
new values during subsequent calls to the
SHA1_Hash_DRBG (...) process, based on the current
value of ¥ and the output of the hash function. The last
value of V from one call to the function is the new value
for the next call to the function.
10.1.2.3.2 Instantiation of SHA1_Hash_DRBG(...)

No Uk W=

The following process or its equivalent shall be used to initially instantiate the
SHA1_Hash_DRBG (...) process in Section 10.1.2.3.4:
Instantiate SHA1_Hash DRBG (...):
Input: integer ([usage_class), requested_strength, prediction_resistance_flag.
Output: string status.
Process:
1. If (requested_strength > 80), then Return (“Invalid requested strength”).
2. (status, seed_material) — Get_entropy (128, 160, 512).

bl

10.

11.

If (status = “Failure™), then Return (“Failure indication returned by the entropy

source”).

seedlen = ||seed _materiall|.

(Optional) Get additional input and combine with the seed material.

5.1 (status, additional input) = Get_additional_input().

52 If (status = “Failure™), then Return (“Failure from request for additional

input™).

5.3 seed material = seed material || additional _input.

Comment: Perform a one-way
function on the seed for later
comparison during reseeding.

(Optional) rransformed seed = SHA1 (seed_material).

Set up 1 for the indicated usage class. Comment: See Annex E.

ctr=1.

V' =SHA1_df (seed_material, seedlen). Comment: Ensure that the entropy in
the seed material is distributed
throughout V. See Section 9.6.3.2.

state = {[usage class, | V. t, seedlen, prediction_resistance_flag, cir [,

transformed _seed)}.

Return (“Success”).

Note that multiple state storage is required if the DRBG is used for multiple usage_classes.

10.1.2.3.3

Reseeding a SHA1_Hash_DRBG(...) Instantiation

The following or an equivalent process shall be used to explicitly reseed the
SHA1_Hash_DRBG (...) process:
Reseed SHA1_Hash_DRBG_Instantiation (...):

Input:

integer ([usage_class].

Output: string status.
Process:

1.

23

If a state is not available for an indicated usage class, then Return (“State not
available for the indicated usage_class™).
Get the appropriate state values for the indicated usage_class, e.g., old V=
state.V, old seedlen = state.seedlen, old_transformed seed =
state.transformed_seed.
Perform steps 1 to 8 of Instantiate_ SHA1_Hash_DRBG (...).
3.1 (status. seed material) = Get_entropy (128. 160, 512).
3.2 If (status = “Failure”), then Return (“Failure indication returned by the
entropy source”).
3.3 seedlen= |seed materiall.
3.4 (Optional) Get additional input and combine with the seed material.
3.4.1 (status, additional_input) = Get_additional_input(),
3.4.2 If (status = “Failure”), then Return (“Failure from request for
additional input™).
3.4.3 seed material = seed_material || additional _inpul.
Comment: Perform a one-way
function on the seed for later
comparison during reseeding.

o

8.

3.5 (Optional) transformed seed = SHA1 (seed material).

3.6 Setup ¢ for the indicated usage cluss. ~ Comment: See Annex E.

37 lerr=1.

If (old transformed_seed = transformed_seed), then Return (“Entropy source

failure™).

seedlen = max (seedlen, old_seedlen). Determine the larger of the seed sizes
so that entropy is not lost.
Comment: Combine the new seed
with the current value of ¥ to derive
the new initial V (the new seed).

¥ =SHAI1_df ((old_V'|| seed_material), seedlen).

Update the appropriate state values for the usage_class.

7.1 state V=V.

7.2 state.seedlen = seedlen.

7.3 state.cir = cir.

7.4 state.transformed_seed = transformed.seed.

Return (“Success”).

1.2.3.4 Generating Pseudorandom Bits Using SHA1_Hash_DRBG{...)

The following process or an equivalent shall be used to generate pseudorandom bits:
SHA1_Hash_DRBG(...):
Input: integer ([usage class), requested no_of bits, requested_strength,

additional_input _flag).

Output: string (status, pseudorandom_bits).
Process:

1.
2.

3.

S

If ((requested._strength >80), then Return (“Invalid requested strength’, Null).
If ((additional input _flag < 0) or (additional_input_flag > 1)), then Return
(“Invalid additional input_flag value”, Null).

If a state for the indicated usage class is not available, then Return (“State not
available for the indicated usage class”, Null).

Get the appropriate state values in accordance with the indicated usage_class,
e.g., V= state.V, t = state.l, seedlen = state.seedlen, prediction_resistance_flag
= state.prediction_resistance_flag, cir = state.ctr.

equested _no ¢ its ;
m= Irrequu ed_no_of _bits 1 Comment: Determine the number of

160
loops needed to generate the requested
number of bits.
temp = the Null string.
Fori=1tomdo:
Comment: Get additional input in
accordance with the
additional_input_ flag.
7.1 If (additional input _flag = 0), then additional_input =0
Else do
7.1.1 (status, additional input) = Get_additional_input ().

72
7.3

7.4
7.5

7.6
1.7
7.8

7.1.2 If (status = “Failure”), then Return (“Failure from request for
additional _input”, Null).

7.1.3 If (| additional input || > seedlen), then Return (“additional_input
too large”, Null).

data = (V + additional _input) mod

M = data || 0°'%5e4e" Comment: 0°'*¥" s a string of (512 -

seedlen) zero bits.

Execute the process specified in Section 6.1.2 of FIPS 180-2.

returned_bits = the result from step 7.4 (i.e., returned bits =Ho || Hi || Hz |

H; || Hy).

V=(1+ V+ returned_bits) mod 2°“*".

cr=ctr+1.

temp = temp || returned bits.

2seedlen

8. pseudorandom_bits = Lefimost (requested_no_of bits) of (temp).
9. If ((ctr = max_updates) or (prediction_resistance flag = 1)), then

9.1 status = Reseed_SHA1_Hash_DRBG_Instantiation

([usage_class}).

9.2 If (status # “Success”), then Return (status, Null).

Else Update the changed values in the stafe.

93 swate V=Y.
94 state.ctr=ctr.

10. Return (“Success”, pseudorandom_bits).
10.1.2.3.5 Implementation Considerations

[To be added later]
10.1.2.4 Generator Strength and Attributes

[To be determined]
10.1.2.5 Reseeding

A new seed shall be generated to reseed the generator [[ow often? This will determine the
value for max_updates].

Comment [ebb1]: Page: 64
Is this OK, since the old version didn't count the
number of states (i.e., updates) ?

Comment [ebb2]: Page: 64
Does this make any sense for this DRBG ?

