9.9 Self-Testing of the DRBG

9.9.1 Discussion

A DRBG shall perform self testing to obtain assurance that the implementation continues
to operate as designed and implemented (operational testing). A DRBG may also be tested
to validate that it has been implemented correctly. See Section 11 for a discussion of
operational and implementation validation testing.

9.9.2 Specifications

9.9.2.1 Test Specification Variables

Abort_to_error_state (sfatus_message)
The abort routine for critical failures that is specified in
Section 9.9.2.10.

additional_input_flag Indicates whether additional input should be provided for
testing, where additional _input_flag =
{Additional _input_provided,
No_additional _input_provided}.

additional input_text [The text to be used as additional input during the testing of

the pseudorandom bit generation and reseeding processes|

DRBG _specific_parameters DRBG-specific parameters to be included in the test function
calls. Thee parameters are identified for each DRBG in
Section 10, if required. Note that the presence of these
parameters may require additional steps in the testing
process. This will be addressed for each DRBG, when
necessary.

entropy_input 1, entropy_input 2
The entropy input returned from the Get_entropy (...)
function.

ES_Selftest () The entopy input source testing function specified in Section
9.9.2.9.

expected_instantiated_state with_personalization_string (strength,
prediction_resistance_flag)
An array of expected values of the state that is compared
against the state generated during instantiation testing when
a personalization_string is used.

expected_instantiated_state_with_no_personalization_string(strength,
prediction_resistance_flag)
An array of expected values of the state that is compared
against the state generated during instantiation testing when
no personalization_string is used.

expected_large_string with_no_prediction_resistance (strength, additional input_flag)
An array of expected values for each strength when a large
number of pseudorandom bits is requested from the
generation process without prediction resistance.

_..-| Comment [ebb1]: Page: 65
Should there be more than one value ? Should
there be different lengths ?

expected_large_string with_prediction_resistance (strength, additional_input_flag)
An array of expected values for each strength when a large
number of pseudorandom bits is requested from the
generation process with prediction resistance.

expected_reseeded_state_with_additonal input (strength)
An array of expected states when reseeding is performed and
additional input is provided; a state is defined for each
strength to be tested.

expected_reseeded_state_with_no additonal input (strength)
An array of expected states when reseeding is performed and
no additional input is provided; a state is defined for each
strength to be tested.

expected small_string with_no_prediction_resistance (strength, additional _input_flag)
An array of expected values for each strength when a small
number of pseudorandom bits is requested from the
generation process without prediction resistance.

expected_small_string with_prediction_resistanc e(strength, additional _input_flag)
An array of expected values for each strength when a small
number of pseudorandom bits is requested from the
generation process with prediction resistance.

Get_entropy (min_entropy, min_length, max_length, mode)
A function that acquires entropy input from an entropy
source. See Section 9.5.2

large_no_of bits The number of pseudorandom bits requested during testing
of the pseudorandom bit generation process. This value is
larger than a block of bits produced by the DRBG and is
specific to the DRBG and its specification. See the DRBGs
in Section 10 for an appropriate value for a given

implementation.
max_length The maximum length for a string of bits.
max_strength The maximum security strength supported by a DRBG
implementation (as opposed to a DRBG instantiation).
min_entropy The minimum amount of entropy required.
min_length The minimum length of a string of bits.
mode An indication of whether requests for entropy input are for

normal operation or for testing. Possible values are mode =
{0 = Normal operation, 2 = Failure, 3 =
Fixed entropy input 1, 4 = Fixed _entropy input 2,.... },
where Fixed entropy_input_n selects a fixed value as the
entropy input.

Null A null (i.e., empty) string.

prediction_resistance_flag Indicates whether or not prediction resistance requests
should be handled. Possible values are

pseudorandom_bits
requested_strength
reseed counter
reseed interval

small_no_of bits

state (state_pointer)

state_pointer

status
strength

temp

prediction_resistance flag = {No_prediction_resistance,
Allow_prediction_resistance}.

The pseudorandom bits that are generated during a single
call to the generation process.

The requested strength during a pseudorandom bit generation
process.

A count of the number of requests for pseudorandom bits
since instantiation or reseeding.

The maximum number of requests for the generation of
pseudorandom bits before reseeding is required.

The number of pseudorandom bits requested during testing
of the pseudorandom bit generation process. This value is
smaller than a block of bits produced by the DRBG and is
specific to the DRBG and its specification. See the DRBGs
in Section 10 for an appropriate value for a given
implementation.

An array of states for for different DRBG instantiations. A
state is carried between DRBG calls. The state consists of
multiple elements that are accessed as state
(state_pointer).element. The state elements are specific to
each DRBG. The state may be considered as Empty,
Test_not_empty or contain the state for an instantiation.
Test_not_empty shall be an illegal value (i.e., not Empty and
not a recognized normal operational value for the state).

A pointer to the state space for a given DRBG instantiation.
An invalid/incorrect state pointer is specified as
Invalid_state_pointer.

The status returned from a function call, where status =
“Success” or a failure message.

The security strength to be provided by the DRBG
instantiation.

A temporary value.

Test_Generation (strength, state_pointer)

The pseudorandom bit generation testing function specified
in Section 9.9.2.4.

Test_Generation_Error_Handling (strength, state_pointer)

The testing function specified in Section 9.9.2.7 for error
handling by the pseudorandom bit generation process.

Test_Instantiation (strength, prediction_resistance_flag)

The instantiation testing function specified in Section
9.9.2.3.

Test_Instantiation_Error_Handling (strength)

The testing function specified in Section 9.9.2.6 for error
handling by the instantiation process.

Test_Reseeding (strength, state_pointer)

The reseeding test function specified in Section 9.9.2.5.

Test_Reseeding_Error_Handling (state_pointer)

The testing function specified in Section 9.9.2.8 for error
handling by the reseeding process.

Uninstantiate DRBG (state_pointer)

9.9.2.2

The uninstantiate process discussed in Section 9.8 and
specified for each DRBG in Section 10.

Test_DRBG {...)

Test_DRBG (...) shall test each DRBG process that resides in a DRBG boundary. As

discussed in Section 8.3, the testing function is contained within the same DRBG boundary

as the DRBG process being tested. Therefore, the internal state values are available for
modification and examination by the testing function. When an error is detected during

DRBG

Each DRBG function within a DRBG boundary shall be tested in accordance with Section

testing, the process shall enter an error state (see Section 9.9.2.10).

11.4 (operational testing) using the following process.
The following Test_ DRBG (...) process is the highest level routine of the tests. The steps
used by an implementation depends on the DRBG processes that are available in the

DRBG
°
.

boundary.

Steps 1 and 2 shall be present if a source of entropy input is available.

Step 3 shall include all security strengths implemented.

Steps 3.1, 3.2, 3.7, 4 and 5 shall be present if the instantation process is available
and prediction resistance is not required.

Steps 3.8, 3.9, 3.14, 4 and 5 shall be present if the instantation process is available
and prediction resistance can be handled.

Steps 3.3, 3.4, 6 and 7 shall be present if the generation process is available and
prediction resistance is not required. Note that if the instantiation process is not
available, the state_pointer shall be set to a state space that is not otherwise used
(e.g., reserved for testing only).

Steps 3.10, 3.11, 6 and 7 shall be present if the generation process is available and
prediction resistance can be handled. Note that if the instantiation process is not
available, the state_pointer shall be set to a state space that is not otherwise used
(e.g., reserved for testing only).

Steps 3.5, 3.6, 8 and 9 shall be present if the reseeding process is available and
prediction resistance is not required. Note that if the instantiation process is not
available, the state_pointer shall be set to a state space that is not otherwise used
(e.g., reserved for-testing only).

Steps 3.12, 3.13, 8 and 9 shall be present if the reseeding process is available and
prediction resistance can be handled. Note that if the instantiation process is not
available, the state_pointer shall be set to a state space that is not otherwise used
(e.g., reserved for testing only).

Step 10 shall be present for all implementations.

_....'| Comment [ebb2]: Page: 68

Is a single string sufficient ? Should there be
different lengths ?

The following process or its equivalent shall be used to test a DRBG implementation.

Test_ DRBG ():
Input: None

Output: string status.

Process:

1. status = ES_Selftest (). Comment : Test the entropy input

source. See Section 9.9.2.9.

2. If (status = “Success”), then Abort_to_error_state (“Self testing failure of the
entropy input source”).

B. For strength= 80,112, 128, 192, 25¢

3.1

32

33
3.4

3.5
3.6

3.7

3.8

39

Comment : Test normal operation for each
strength supported by a DRBG
implementation.

Comment : Test the instantiation
process with no prediction resistance.
See Section 9.9.2.3.

(status, state_pointer) = Test_Instantiation (strength,
No_prediction_resistance).
If (status # “Success™), then Abort_to_error_state (“Self testing failure
during instantiation (no prediction resistance):” || status).
Comment : Test the generation
process. See Section 9.9.2.4.

status = Test_Generation (strength, state_pointer).
If (status # “Success™), then Abort_to_error_state (“Self testing failure
during pseudorandom bit generation (no prediction resistance):” ||
status).
Comment : Test the reseeding process.
See Section 9.9.2.5.

status = Test_Reseeding (strength, state_pointer).

If (status # “Success™), then Abort_to_error_state (“Self testing failure

during reseeding (no prediction resistance) :” || status).

status = Uninstantiate_ DRBG (state_pointer).
Comment : Test the instantiation
process with prediction resistance. See
Section 9.9.2.3.

(status, state_pointer) = Test_Instantiation (strength,
Allow_prediction_resistance).
If (status # “Success™), then Abort_to_error_state (“Self testing failure
during instantiation (with prediction resistance):” || status).
Comment : Test the generation
process. See Section 9.9.2 4.

Have not yet included tests for in between
slzes.

-t)mment [ebb3]: Page: 70

9.9.2.3

3.10 status = Test_Generation (strength, state_pointer).

3.11 If (status # “Success”), then Abort_to_error_state (“Self testing failure
during pseudorandom bit generation (with prediction resistance):” ||
status).

Comment : Test the reseeding process.
See Sectuion 9.9.2.5.

3.12 status = Test_Reseeding (strength, state_pointer).
3.13 If (status # “Success”), then Abort_to_error_state (“Self testing failure
during reseeding (with prediction resistance) :” || status).

3.14 status = Uninstantiate_ DRBG (state_pointer).
Comment : Test error handling. Note
that strength should now be the
highest strength available in an
implementation
Comment : Test error handling during
instantiation. See Section 9.9.2.6.

. status = Test_Instantiation_Error_Handling (strength).
. If (status # “Success”), then Abort_to_error_state (“Self testing failure during

instantiation error handling test :” || status).
Comment : Test error handling during
pseudorandom bit generation. See
Section 9.9.2.7.

. status = Test_Generation_Error_Handling (strength, state_pointer).

If (status # “Success”), then Abort_to_error_state (“Self testing failure during
pseudorandom bit generation error handling test > || status).
Comment : Test error handling during
reseeding. See Section 9.9.2.8.

. status = Test_Reseeding_Error_Handling (strength, state_pointer).
. If (status # “Success”), then Abort_to_error_state (“Self testing failure during

reseeding error handling test :” || status).

10. Return (“Success™).

Test_DRBG_Instantiation {(...)

The following Test_Instantiation (...) process shall be present when the DRBG boundary
contains the instantiation process. Calls to Instantiate DRBG (...) shall be considered as
calls to the instantiation process for the appropriate DRBG (e.g.,
Instantiate_Hash DRBG (...)).

Steps 1-3 shall be present if an implementation can handle a personalization string.
Step 4 shall be present if steps 5-7 are present.

Steps 5-7 shall be present if an implementation can handle a Null personalization
string and does not require prediction resistance.

Step 8 shall be present for all implementations.

Note that steps 5-7 are not followed by a call for uninstantiation. This will allow the final
instantiation to be used for subsequent testing (e.g., for pseudorandom bit generation). The

test sets may be reordered, but the final test set shall provide an instantiation that can be
used for further testing.

The following process or its equivalent shall be used to test a DRBG instantiation process.
Test_ Instantiation ():

Input:

integer strength, prediction_resistance_flag.

Output: string status, integer state_pointer.
Process:

8.
9.9.24 T

Comment: Test with a personalization
string. See Section 9.5.1.

(status, state_pointer) = Instantiate_ DRBG (strength,
prediction_resistance_flag, Test_personalization_string,
DRBG _specific_parameters, Fixed entropy input I).
If (status # “Success”), then Return (status).
If (state (state_pointer) #
expected_instantiated_state_with_personalization_string (strength,
prediction_resistance_flag), then Return (“Incorrect test state using a
personalization_string ™).
Comment: Remove the state. See
Section 9.8.

status = Uninstantiate DRBG (state_pointer).
Comment: Test with no
personalization string. See Section
9.5.1.

(status, state_pointer) = Instantiate_DRBG (strength,
prediction_resistance_flag, Null, DRBG specific_parameters,

Fixed entropy input_1).

If (status # “Success™), then Return (status).

If (state (state_pointer) # expected_instantiated state with_
no_personalization_string (strength, prediction_resistance_flag), then Return
(“Incorrect test state with a null personalization_string™).

Return (“Success”, state_pointer).

est_Generation {...)

The following Test_Generation (...) process shall be present when the DRBG boundary
includes the generation process. Calls to DRBG (...) shall be considered as calls to the

generation

process for the appropriate DRBG (e.g., Hash_DRBG (...)).

e The appropriate steps of steps 1-12 shall be present if a generation process does not
require prediction resistance.

Steps 1-3 and 7-9 shall be present when an implemenation is capable of
handling additional_input.

Steps 4-6 and 10-12 shall be present when an implemenation can handle null
additional _input.

e Step 13 shall be present if an implementation does not require prediction resistance
at all times.

¢ The appropriate steps of steps 14-25 shall be present if a generation process can
handle prediction resistance.
- Steps 14-16 and 20-22 shall be present when an implemenation is capable of
handling additional _input.
- Steps 17-19 and 23-25 shall be present when an implemenation can handle null
additional _input.
e Steps 26-28 shall be present if an implementation is unable to reseed from the
generation process, but shall be omitted otherwise.
e Steps 29-32 shall be present when reseeding is available online, but shall be
omitted otherwise.
The following process or its equivalent shall be used to test a pseudorandom bit generation
process.
Test_Generation ():

Input: integer requested_strength, state_pointer.
Output: string status.
Process: .
Comment : Request the generation of
a small number of bits with an
additional _input string and no
prediction resistance. See Section
9.7.1.

1. (status, pseudorandom_bits) = DRBG (state_pointer, small_no_of bits,
requested_strength, additional_input text, No prediction_resistance,
Fixed entropy_input 1).

2. If (status # “Success”), then Return (startus).

3. If (pseudorandom_bits # expected small_string with no prediction_resistance
(requested_strength, Additional input provided)), then Return (“Incorrect bits
returned when additional_input but no prediction resistance is provided, and a
small string is requested”).

Comment : Request the generation of
a small number of bits with no
additional input string and no
prediction resistance. See Section
9.7.1.

4. (status, pseudorandom_bits) = DRBG (state_pointer, small_no_of bits,
requested_strength, Null, No_prediction_resistance, Fixed_entropy input 1).

5. If (status # “Success”), then Return (status).

6. If (pseudorandom_bits # expected_small_string with_no_prediction_resistance
(rerquested strength, No_additional input_provided)), then Return
(“Incorrect bits returned when no additional _input and no prediction resistance
is provided, and a small string is requested).

Comment : Request the generation of
a larger number of bits with an

7.

10.

11.
12.

13.

14.

15.

16

additional _input string. See Section
9.7.1.

(status, pseudrandom_bits) = DRBG (state_pointer, large no_of bits,
requested_strength, additional _input text, No_prediction_resistance,
Fixed entropy_input 1).
If (status # “Success”), then Return (status).
If (pseudorandom_bits # expected large_string with no_prediction_resistance
(requested_strength, Additional_input provided)), then Return (“Incorrect bits
returned when additional_input but no prediction resistance is provided, and a
large string is requested”).
Comment : Request the generation of
a larger number of bits when no
additional _input is provided. See
Section 9.7.1.

(status, pseudrandom_bits) = DRBG (state_pointer, large no_of bits,
requested_strength, Null, No_prediction_resistance, Fixed entropy input_1).
If (status # “Success™), then Return (status).
If (pseudorandom_bits # expected_large_string (requested_strength,
No_additional_input)), then Return (“Incorrect bits returned when no
additional _input and no prediction resistance is provided, and a large string is
requested”).
Comment : Return if there is no
prediction resistance capability in the
state. See Section 9.7.1.

If (state (state_pointer).prediction_resistance_flag) =
No_prediction_resistance), then go to step 26.
Comment : Test the
prediction_resistance capability.

Comment : Request the generation of
a small number of bits with an
additional _input string. See Section
9.7.1.

(status, pseudorandom_bits) = DRBG (state_pointer, small no_of bits,
requested_strength, additional_input_text, Provide_prediction_resistance,
Fixed entropy_input 2).

If (status # “Success™), then Return (status).

. If (pseudorandom_bits # expected small string with prediction_resistance

(requested_strength, Additional input provided)), then Return (“Incorrect bits
returned when additional_input and prediction resistance is provided, and a
small string is requested”).
Comment : Request the generation of
a small number of bits with no

17.

18.
19.

20.

21.
22.

23.

24,
25.

26.
27.

additional _input string. See Section
9.7.1.

(status, pseudorandom_bits) = DRBG (state_pointer, small_no_of bits,
requested_strength, Null, Provide prediction_resistance,
Fixed_entropy_input_3).
If (status # “Success™), then Return (status).
If (pseudorandom_bits # expected_small_string_with prediction_resistance
(requested_strength, No_additional_input_provided)), then Return (“Incorrect
bits returned when no additional_input is provided but prediction resistance is
requested, and a small string is requested ”).
Comment : Request the generation of
a larger number of bits with an
additional_input string. See Section
9.7.1.

(status, pseudrandom_bits) = DRBG (state_pointer, large_no_of bits,
requested_strength, additional_input_text, Provide_prediction_resistance,
Fixed entropy_input 4).
If (status # “Success”), then Return (status).
If (pseudorandom_bits # expected_large_string with prediction_resistance
(requested_strength, Additional_input_provided)), then Return (“Incorrect bits
returned when additional input is provided, but prediction resistance is
requested, and a large string is requested”).
Comment : Request the generation of
a larger number of bits when no
additional _input is provided. See
Section 9.7.1.

(status, pseudrandom_bits) = DRBG (state_pointer,
large no_of bits,requested_strength, Null, Provide_prediction_resistance,
Fixed _entropy input 5).
If (status # “Success”), then Return (status).
If (pseudorandom_bits + expected_large_string_with prediction_resistance
(requested_strength, No_additional_input)), then Return (“Incorrect bits
returned when no additional_input is provided, but prediction resistance is
requested, and a large string is requested”).
Comment : Test the end of the DRBG
when reseeding and prediction
resiatence is not available (i.e., step 3
of Hash_DRBG (...)). See Section
9.71

state (state_pointer).reseed counter = reseed_interval.

(status, pseudorandom_bits) = DRBG (state_pointer, small_no_of bits,
requested_strength, additional_input_text, No_prediction_resistance,
Fixed entropy_input_1).

28. If (status # “DRBG can no longer be used. Please re-instantiate or reseed”),
then Return (“Incorrect result for reseed_interval test”).
Comment : Test the reseeding
capability when reseed counter >
reseed_interval and the reseeding
process is available (i.e., step 12 of
Hash_DRBG (...)).
29. state(state_pointer).reseed_counter = reseed_interval - 1.
30. (status, pseudorandom_bits) = DRBG (state_pointer, small no_of bits,
requested_strength, additional input_text, No_prediction resistance,
Fixed entropy input_6).
31. If (status # “Success™), then Return (status).
32. If (pseudorandom_bits # string_after reseeding (requested_strength)), then
Return (“Incorrect reseeding process™).
33. Return (“Success™).
9.9.2.5 Test_Reseeding (...)

The following Test_ Reseeding (...) process shall be available when an implementation
has the reseeding process. Calls to Reseed_DRBG_Instantiation (...) shall be considered
as calls to the reseeding process for the appropriate DRBG (e.g.,
Reseed_Hash DRBG_Instantiation (...)).
e Steps 1-3 shall be present if an implementation can handle additional input during
reseeding.
e Steps 4-6 shall be present if an implementation can handle a null additional input
string during reseeding.
The following process or its equivalent shall be used to test a DRBG reseeding process.
Test_Reseeding ():

Input: integer strength, state_pointer.
Output: string status.
Process:
Comment: Test with additional input.

1. status = Reseed_DRBG_Instantiation (state_pointer, additional input text,
Fixed entropy_input 7).

2. [If (status # “Success”), then Return (status).

3. If (state(state_pointer) # expected_reseeded_state_with_additional input
(strength)), then Return (“Incorrect reseed test state when additional input is
provided”).

Comment: Test with no additional
input.

4. status = Reseed_DRBG_Instantiation (state_pointer, Null,

Fixed _entropy input 8).
5. If (status # “Success”), then Return (status).

6. If (state(state_pointer) # expected_reseeded_state with_no_additional _input
(strength)), then Return (“Incorrect reseed test state when no additional input
is provided™).

7. Return (“Success”).
9.9.2.6 Test_lInstantiation_Error_Handling (...)

The following Test_Instantiation_Error_Handling (...) process shall be available when
an implementation has the instantiation process. Calls to Instantitate DRBG (...) shall be
considered as calls to the instantiation process for the appropriate DRBG (e.g.,
Instantiate_Hash_DRBG (...)).
¢ Note that strength shall be the highest strength available in an implementation.
o Ifthe No_prediction_resistance flag in steps 1, 3 and 6 cannot be handled by an
implementation, the flag shall be changed to Allow prediction_resistance.
¢ If the implementation cannot handle a personalization string, then
Test_personalization_string shall be changed to Null in steps 1, 3 and 6.
The following process or its equivalent shall be used to test error handling by an
instantiation process.
[Test_Instantiation_Error_Handling ()
Input: integer strength.
Output: string status.
Process:
Comment : Test requested_strength
check failure. The strength > the last
strength tested by Test DRBG (...).
1. (status, state_pointer) = Instantiate_ DRBG (strength + 1,
No_prediction_resistance, Test_personalization_string,
DRBG _specific_parameters, Fixed entropy inpui 1).

2. If (status = “Success”), then Return (“Accepted incorrect strength’).
Comment : Test Get_entropy (...)
status check failure.

3. (status, state_pointer) = Instantiate_ DRBG (strength,
No_prediction_resistance, Test_personalization_string,
DRBG _specific_parameters, Failure).
4. If (status = “Success”), then Return (“Get_entropy failure not detected”).
Comment : Test the
Find_state_space (...) error handling
process. Fill any unused state space.
5. Fori=0to last_state do

If (state (i) = Empty), then state (i) = Test_not_empty.

6. (status, state_pointer) = Instantiate DRBG (strength,
No_prediction_resistance, Test_personalization_string,
DRBG _specific_parameters, Fixed entropy input 8).

_.--| Comment [ebb4]: Page: 70
Don't know how to check prediction resistance
capability flag failure,

7. If (status = “Success™), then Return (“Did not detect the full state space”).
8. Fori=0to last_state do

If (state (i) = Test_not_empty), then state (i) = Empty.
9. Return (“Success”).
9.9.2.7 Test_Generation_Error_Handling (...)

The following Test_Generation_Error_Handling (...) process shall be available when an
implementation has the pseudorandom bit generation process. Calls to DRBG (...) shall be
considered as calls to the generation process for the appropriate DRBG (e.g., Hash_DRBG
()

¢ Note that the requested_strength is the highest strength available for the
implementation.

e Ifthe implementation cannot handle additional input_text or the
No_prediction_resistance flag, then step 1 shall be modified to a call that can be
handled (e.g., by changing to the Allow_prediction resistance flag).

e Steps 1 and 2 shall be present when the generation process includes a check for an
appropriate state pointer.

e Steps 3-7 shall be present when the generation process has no ability to
automatically reseed.

e Steps 8 and 9 shall be present when the generation process checks for an
appropriate security strength request.

e Steps 10 and 17 shall be present to test prediction resistance.

e Steps 11-13 shall be present when prediction resistance is supported, and the
generation process checks whether a prediction resistance capability was
instantiated.

o Steps 14-16 shall be present when both reseeding and prediction resistance are
supported.

e Steps 18-20 shall be present when automatic reseeding is available and a check is
made to determine if reseed interval has been reached.

e Step 21 shall always be included.

The following process or its equivalent shall be used to test error handling by a
pseudorandom bit generation process.
Test_Generation_Error_Handling () :

Input: integer requested_strength, state_pointer.

Output: string status.

Process:
Comment : Test state_pointer
checking.

1. (status, entropy_input) = DRBG (Invalid_state_pointer, small_number_of bits,
requested_strength, additional _input_text, No_prediction_resistance,
Fixed entropy_input_1).

2. If (status = “Success”), then Return (“Accepted incorrect state_pointer™).

Sptgt?

10.
11.

12

13.

14.

15.

16.

17.

18.
19.

Comment : Test abort when
reseed_interval is reached and
reseeding is unavailable.

temp = state (state_pointer).reseed_counter.
state (state_pointer).reseed_counter = reseed_interval.
(status, entropy _input) = DRBG (state_pointer, small_no_of bits,
requested._strength, additional_input_text, No_prediction_resistance,
Fixed_entropy_input 1).
If (status = “Success™), then Return (“Incorrect operation when reseed_counter
= reseed_interval”).
state (state_pointer).reseed_counter = temp.
Comment : Test requested_strength
checking.

(status, entropy _inpurf) = DRBG (state_pointer, small_no_of bits,
requested_strength + 1, additional_input_text, No_prediction_resisiance,
Fixed _no_of bits 1).
If (status = “Success”), then Return (“Accepted incorrect
requested_strength”).
Comment : Test inappropriate
prediction_resistance_request
checking.
temp = state (state_pointer).prediction_resistance_flag.
state (state_pointer).prediction_ resistance_flag = No_prediction_resistance.

. (status, entropy_input) = DRBG (state_pointer, small_no_of_bits,

requested_strength, additional_input_text, Provide_prediction_resistance,
Fixed no_of bits 2).
If (status = “Success”), then Return (“Incorrect handling of prediction
resistance request™).
Comment : Test reseeding error when
prediction resistance requested.

state (state_pointer).prediction_resistance_flag =
Provide prediction_resistance.
(status, entropy_input) = DRBG (state_pointer, small_no_of bits,
requested_strength, additional_input_text, Provide_prediction_resistance,
Failure).
If (status = “Success”), then Return (“Failure indication from reseed request
when prediction resistance requested”).
state (state_pointer).prediction_resistance_flag = temp.
Comment : Test reseeding when
reseed_counter reaches
reseed _interval.
state (state_pointer).reseed_counter = reseed_interval - 1.
(status, entropy _input) = DRBG (state_pointer, small_no_of bits,
requested_strength + 1, additional _input_text, Provide_prediction_resistance,
Failure).

20. If (status = “Success™), then Return (“Incorrect reseed handling when
reseed_counter > reseed_interval”).
21. Return (“Success™).
9.9.2.8 Test_Reseeding_Error_Handling (...)

The following Test DRBG_Reseeding_Error_Handling (...) process shall be available
when an implementation has the reseeding process. Calls to Reseed_Instantiation (...)
shall be considered as calls to the reseeding process for the appropriate DRBG (e.g.,
Reseed_Hash_DRBG_Instantation (...)).

e Steps 3 and 4 shall be present if entropy can be readily obtained.
The following process or its equivalent shall be used to test error handling by a reseeding
process.
Test_Reseeding_Error_Handling () :

Input: integer stafe_pointer.
Output: string status.

Process:
Comment : Test state pointers check
failure.
1. status = Reseed_Instantiation (Invalid_state_pointer, Fixed_entropy_input_2).
2. If (status = “Success™), then Return (“Accepted incorrect state_poinier”).

Comment : Test Get_entropy (...)
status check failure.
status = Reseed_ Instantiation (state_pointer, Failure).
4. If (status = “Success”), then Return (“Get_entropy failure not detected”).
Comment : Test check of old and new
entropy_input.

w

state (state_pointer).transformed_seed = Fixed_entropy_input 2.

status = Reseed_ Instantiation (state_pointer, Fixed_entropy_input 2).

If (status = “Success”), then Return (“Entropy input failure not detected”).
. Return (“Success”).

9.9.2.9 ES_Selftest...)

% N o

The concept of an entropy input source selftest is introduced in Part 1 of this Standard.
This test shall consist of the following steps. Let max_strength be the maximum strength
to be supported by the DRBG implementation; let min_length be the appropriate minimum -
length of the entropy input for the DRBG when it supports the maximum strength; and let
max_length be the maximum length of the entropy input for the DRBG when it supports
the maximum strength.
The following process or its equivalent shall be used to test the entropy input source.
ES_Selftest (...):

Input: None..

Qutput: string status.

Process:

Comment: Obtain two strings.

—

6.
7

8.
9.9.2.10 Al

min_entropy = max (128, max_strength).
(status, entropy_input_1) = Get_entropy (min_entropy, min_length,
max_length, Normal_operation).
If (status # “Success™), then Return (“Failure indication returned by the
Get_entropy source”).
(status, entropy_input_2) = Get_entropy (min_entropy, min_length,
max_length, Normal_operation).
If (status = “Success™), then Return (“Failure indication returned by the
Get_entropy source™).

Comment : Compare the two strings.

If (len (entropy_input_1) # len (entropy_input_2)), then Return (“Success”).

. If (entropy_input 1 =entropy_input_2), then Return (“Entropy input source

failure™).
Return (“Success™).

bort_to_error_state (...)

Critical errors, such as the failure of the entopy input source, shall call the
Abort_to_error_state (...) process specified below. Let no_of states be the number of
states available to the DRBG implementation.

The following or an equivalent process shall be used as the Abort_to_error_state (...)

function:

Abort_to_error_state (...):

Input: string status.
Output: None.
Process:
1. Display (“status™). Comment : Display the error
indication message.
2. Fori=1to no_of states Comment: Uninstantiate all states.

3.

Uninstantiate DRBG ().
Abort (). Comment: Abort the DRBG.

